
WebSphere® Application Server – Express, Version 6

Securing applications and their environment

���

Note

Before using this information, be sure to read the general information under “Notices” on page 981.

Compilation date: December 6, 2004

© Copyright International Business Machines Corporation 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . ix

Chapter 1. Overview and new features for securing applications and their environment 1

Overview of securing applications and their environment 2

What is new for security specialists . 3

Enabling security for WSIF . 4

Chapter 2. How do I secure applications and their environments? 7

Chapter 3. Securing applications and their environment 13

Chapter 4. Integrating IBM WebSphere Application Server security with existing security

systems . 15

Interoperability issues for security . 18

Interoperating with a C++ common object request broker architecture client 18

Interoperating with previous product versions . 20

Security: Resources for learning . 21

Chapter 5. Planning to secure your environment . 23

Security considerations when adding a Base Application Server node to Network Deployment 30

Creating login key files . 31

Preparing truststore files . 32

Configuring the application server for interoperability 32

Chapter 6. Implementing security considerations at installation time 33

Securing your environment before installation . 33

Securing your environment after installation . 34

Protecting plain text passwords . 35

PropFilePasswordEncoder command reference . 37

Chapter 7. Migrating security configurations from previous releases 39

Migrating custom user registries . 39

Migrating trust association interceptors . 42

Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and

Authorization Service . 45

Migrating from the CustomLoginServlet class to servlet filters 48

Chapter 8. Developing secured applications . 51

Developing with programmatic security APIs for Web applications 51

Example: Web applications code . 53

Developing servlet filters for form login processing 54

Developing form login pages . 59

Example: Form login . 60

Developing with programmatic APIs for EJB applications 62

Example: Enterprise bean application code . 64

Programmatic login . 66

Developing programmatic logins with the Java Authentication and Authorization Service 74

Example: Programmatic logins . 76

Custom login module development for a system login configuration 78

Example: Customizing a server-side Java Authentication and Authorization Service authentication and

login configuration . 94

Example: Getting the Caller Subject from the Thread 99

Example: Getting the RunAs Subject from the Thread 100

© Copyright IBM Corp. 2004 iii

Example: Overriding the RunAs Subject on the Thread 101

Example: User revocation from a cache . 101

Developing your own J2C principal mapping module 102

Developing custom user registries . 104

Example: Custom user registries . 105

UserRegistry interface methods . 106

Trust association interceptor support for Subject creation 112

Chapter 9. Assembling secured applications . 115

Enterprise bean component security . 115

Securing enterprise bean applications . 116

Web component security . 117

Securing Web applications using an assembly tool . 118

Role-based authorization . 120

Admin roles . 122

Naming roles . 123

Adding users and groups to roles using an assembly tool 124

Mapping users to RunAs roles using an assembly tool 125

Chapter 10. Deploying secured applications . 127

Assigning users and groups to roles . 128

Security role to user and group mappings . 129

Security role to user and group selections . 130

Look up users and groups settings . 131

Delegations . 132

Assigning users to RunAs roles . 134

Unprotected EJB 2.0 methods protection settings 135

EJB 2.1 method protection level settings . 136

RunAs roles to users mapping . 136

Updating and redeploying secured applications . 137

Chapter 11. Testing security . 139

Chapter 12. Administering security . 141

Global security . 141

Configuring global security . 142

Enabling global security . 144

Configuring server security . 148

Server-level security settings . 150

Administrative console and naming service authorization 151

Assigning users to administrator roles . 153

Console groups and CORBA naming service groups 154

Assigning users to naming roles . 156

Console users settings and CORBA naming service user settings 156

Authentication mechanisms . 158

Configuring authentication mechanisms . 160

Simple WebSphere authentication mechanism . 160

Lightweight Third Party Authentication . 160

Configuring Lightweight Third Party Authentication 161

Trust associations . 165

Configuring trust association interceptors . 169

Single signon . 171

Configuring single signon . 172

Single signon using WebSEAL or the Tivoli Access Manager plug-in for Web servers 179

Creating a trusted user account in Tivoli Access Manager 179

Configuring WebSEAL for use with WebSphere Application Server 179

iv IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application

Server . 180

Configuring single signon using the trust association interceptor 181

Configuring single signon using trust association interceptor ++ 182

Global signon principal mapping . 185

Configuring global signon principal mapping . 186

User registries . 189

Configuring user registries . 190

Local operating system user registries . 191

Configuring local operating system user registries 195

Lightweight Directory Access Protocol . 197

Configuring Lightweight Directory Access Protocol user registries 198

Configuring Lightweight Directory Access Protocol search filters 204

Using specific directory servers as the LDAP server 206

Locating a user’s group memberships in Lightweight Directory Access Protocol 209

Dynamic groups and nested group support . 210

Dynamic and nested group support for the SunONE or iPlanet Directory Server 210

Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server 211

Dynamic groups and nested group support for the IBM Directory Server 211

Configuring dynamic and nested group support for the IBM Directory Server 211

Custom user registries . 211

Configuring custom user registries . 213

Java Authentication and Authorization Service . 240

Java Authentication and Authorization Service authorization 240

Configuring application logins for Java Authentication and Authorization Service 242

Login configuration for Java Authentication and Authorization Service 245

Configuration entry settings for Java Authentication and Authorization Service 247

System login configuration entry settings for Java Authentication and Authorization Service 248

Login module settings for Java Authentication and Authorization Service 254

Login module order settings for Java Authentication and Authorization Service 255

Login configuration settings for Java Authentication and Authorization Service 255

J2EE Connector security . 256

Managing J2EE Connector Architecture authentication data entries 259

Identity mapping . 260

Configuring inbound identity mapping . 261

Example: Custom login module for inbound mapping 267

Configuring outbound mapping to a different target realm 270

Example: Using the WSLogin configuration to create a basic authentication subject 271

Example: Sample login configuration for RMI_OUTBOUND 273

Security attribute propagation . 275

Enabling security attribute propagation . 279

Default PropagationToken . 282

Implementing a custom PropagationToken . 287

Example: com.ibm.wsspi.security.token.PropagationToken implementation 288

Example: custom PropagationToken login module 294

Default AuthorizationToken . 297

Implementing a custom AuthorizationToken . 300

Example: com.ibm.wsspi.security.token.AuthorizationToken implementation 301

Example: custom AuthorizationToken login module 306

Default SingleSignonToken . 309

Implementing a custom SingleSignonToken . 310

Example: com.ibm.wsspi.security.token.SingleSignonToken implementation 311

Example: custom SingleSignonToken login module 316

Example: HTTP cookie retrieval . 318

Default AuthenticationToken . 321

Implementing a custom AuthenticationToken . 322

Contents v

Example: com.ibm.wsspi.security.token.AuthenticationToken implementation 323

Example: custom AuthenticationToken login module 329

Propagating a custom Java serializable object . 331

Authorization in WebSphere Application Server . 335

JACC providers . 336

Authorization providers settings . 336

JACC support in WebSphere Application Server . 337

JACC policy context handlers . 340

JACC policy context identifiers (ContextID) format 340

JACC policy propagation . 341

JACC registration of the provider implementation classes 342

Enabling an external JACC provider . 342

External Java Authorization Contract for Containers provider settings 343

Propagating security policy of installed applications to a JACC provider using wsadmin 345

Configuring a JACC provider . 346

Interfaces used to support JACC . 348

Tivoli Access Manager integration as the JACC provider 351

Tivoli Access Manager security for WebSphere Application Server 352

Creating the security administrative user . 355

Tivoli Access Manager JACC provider configuration 355

Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility 356

Configuring the JACC provider for Tivoli Access Manager using the administrative console 358

Tivoli Access Manager JACC provider settings . 360

Enabling the JACC provider for Tivoli Access Manager 361

Configuring additional authorization servers . 362

Role-based security with embedded Tivoli Access Manager 362

Administering security users and roles with Tivoli Access Manager 363

Configuring Tivoli Access Manager groups . 364

Tivoli Access Manager JACC provider configuration properties 364

Static role caching properties . 365

Dynamic role caching properties . 365

Object caching properties . 366

Role-based policy framework properties . 367

System-dependent configuration properties . 368

Logging Tivoli Access Manager security . 368

Enabling embedded Tivoli Access Manager . 369

Disabling embedded Tivoli Access Manager client . 370

Disabling embedded Tivoli Access Manager client using the Administration Console 370

Disabling embedded Tivoli Access Manager client using wsadmin 371

Forcing the unconfiguration of the Tivoli Access Manager JACC provider 371

Updating console users and groups . 372

The Tivoli Access Manager migrateEAR utility . 372

Troubleshooting authorization providers . 375

Authentication protocol for EJB security . 378

Common Secure Interoperability Version 2 features 382

Identity assertion . 382

Message layer authentication . 383

Secure Sockets Layer client certificate authentication 384

Supported authentication protocols . 386

Configuring Common Secure Interoperability Version 2 and Security Authentication Service

authentication protocols . 386

Common Secure Interoperability Version 2 and Security Authentication Service client configuration 387

Configuring Common Secure Interoperability Version 2 inbound authentication 390

Configuring Common Secure Interoperability Version 2 outbound authentication 395

Configuring inbound transports . 400

Configuring outbound transports . 402

vi IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Example: Common Secure Interoperability Version 2 scenarios 404

Secure Sockets Layer . 411

Authenticity . 413

Confidentiality . 414

Integrity . 416

Configuring Secure Sockets Layer . 417

Configuring Secure Sockets Layer for Web client authentication 418

Configuring Secure Sockets Layer for the Lightweight Directory Access Protocol client 419

Configuring IBM HTTP Server for Secure Sockets Layer mutual authentication 421

Configuring the Web server plug-in for Secure Sockets Layer 422

Configuring Secure Sockets Layer for Java client authentication 427

Secure Sockets Layer configuration repertoire settings 430

Creating a Secure Sockets Layer repertoire configuration entry 437

Configuring Federal Information Processing Standard Java Secure Socket Extension files 438

Digital certificates . 439

Managing digital certificates . 443

Changes to IBM Developer Kit for Java Technology Edition Version 1.4.x 452

Cryptographic token support . 454

Opening a cryptographic token using the key management utility (iKeyman) 455

Configuring to use cryptographic tokens . 455

Cryptographic token settings . 458

Using Java Secure Socket Extension and Java Cryptography Extension with Servlets and enterprise

bean files . 459

Java 2 security . 463

Access control exception . 468

Configuring Java 2 security . 469

Using PolicyTool to edit policy files . 471

Migrating Java 2 security policy . 494

Chapter 13. Configuring security with scripting . 497

Enabling and disabling global security using scripting 497

Enabling and disabling Java 2 security using scripting 498

Chapter 14. Learn about WebSphere applications 501

Web applications . 501

Security constraints . 501

EJB applications . 502

Configuring security for message-driven beans that use listener ports 502

Configuring security for EJB 2.1 message-driven beans 502

Client applications . 503

Accessing secure resources using SSL and applet clients 503

Web services . 504

Transport level security . 504

Configuring HTTP outbound transport level security with the administrative console 504

Configuring HTTP outbound transport level security with an assembly tool 505

Configuring HTTP outbound transport-level security using Java properties 506

HTTP basic authentication . 507

Configuring HTTP basic authentication with the administrative console 507

Configuring HTTP basic authentication with an assembly tool 508

Configuring HTTP basic authentication programmatically 509

Configuring additional HTTP transport properties using the administrative console 510

Configuring additional HTTP transport properties with an assembly tool 511

Configuring additional HTTP transport properties using wsadmin 512

Provide HTTP endpoint URL information . 513

Publish WSDL zip files settings . 514

Securing Web services for version 6 applications based on WS-Security 515

Contents vii

Securing Web services for version 5.x applications based on WS-Security 801

Configuring UDDI Security Roles . 936

Security API for the UDDI V3 Registry . 937

Data access resources . 938

Security of lookups with component managed authentication 938

Messaging resources . 938

Configuring authorization security for a Version 5 default messaging provider 938

Securing WebSphere MQ messaging directories and log files 943

Configuring security for message-driven beans that use listener ports 944

Configuring security for EJB 2.1 message-driven beans 945

Mail, URLs, and other J2EE resources . 945

JavaMail security permissions best practices . 945

Learn about WebSphere programming extensions . 946

Scheduler . 946

Chapter 15. Tuning security configurations . 949

Tuning CSIv2 . 949

Tuning LDAP authentication . 950

Tuning Web authentication . 950

Tuning authorization . 951

Security cache properties . 951

Secure Sockets Layer performance tips . 952

Tuning security . 953

Chapter 16. Troubleshooting security configurations 955

Errors when trying to configure or enable security . 955

Access problems after enabling security . 957

Errors after enabling security . 960

Errors trying to enable or configure Secure Socket Layer (SLL) encrypted access 965

Errors after configuring or enabling Secure Sockets Layer 965

Security components troubleshooting tips . 968

Notices . 981

Trademarks and service marks . 983

viii IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004 ix

x IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 1. Overview and new features for securing

applications and their environment

This topic summarizes the contents and organization of the security documentation, including links to

conceptual overviews and descriptions of new features.

v “Overview of securing applications and their environment” on page 2

v What is new for administrators

Sections in the security documentation:

 Chapter 4, “Integrating IBM WebSphere Application Server security with existing security

systems,” on page 15

This provides interoperability information. WebSphere Application Server security is an integral part

of your multiple-tier enterprise computing framework. WebSphere Application Server adopts the

open architecture paradigm and provides many plug-in points to integrate with enterprise software

components to provide end-to-end security. WebSphere Application Server plug-in points are

based on standard J2EE specifications wherever applicable. WebSphere Application Server is

actively involved in various standard bodies to externalize and to standardize plug-in interfaces.

 Chapter 5, “Planning to secure your environment,” on page 23

This examines some typical configuration and common security practices. There are several

communication links from a browser on the Internet, through web servers and product servers, to

the enterprise data at the back end. WebSphere Application Server security is built on a layered

security architecture. This also examines the security protection offered by each security layer and

common security practice for good quality of protection in end-to-end security.

 Chapter 6, “Implementing security considerations at installation time,” on page 33

This describes how to implement security before, during, and after installing the product.

 Chapter 7, “Migrating security configurations from previous releases,” on page 39

This describes how to migrate your security configurations from a previous product release.

 Chapter 8, “Developing secured applications,” on page 51

This describes how to implement declarative and programmatic security while developing,

assembling, and deploying your applications. The product security components provide or

collaborate with other services to provide authentication, authorization, delegation, and data

protection. The product also supports the security features described in the Java 2 Enterprise

Edition (J2EE) specification.

 Chapter 9, “Assembling secured applications,” on page 115

This describes how to use assembly tools to secure applications and the EJB and Web modules

that comprise them.

 Chapter 9, “Assembling secured applications,” on page 115

This describes security tasks and considerations as you are deploying applications onto the

application server and testing that users can access the secured applications.

 Chapter 12, “Administering security,” on page 141

This describes how to configure and administer security features, including:

v Global security

v Authentication mechanisms (directories and user registries)

v Authorization policies and providers, including Java Authentication and Authorization Service

(JAAS)

v Trust association interceptors

v Single signon

v Common Secure Interoperability Version 2 (CSIv2)

© Copyright IBM Corp. 2004 1

v Secure Sockets Layer (SSL)

v Java 2 Security manager

v Security attribute propagation

 Chapter 14, “Learn about WebSphere applications,” on page 501

This provides security instructions that are specific to the various types of applications, such as

Web applications or Web services.

 “Tuning security” on page 953

Enabling security decreases performance. This describes considerations for increasing

performance.

 Chapter 16, “Troubleshooting security configurations,” on page 955

This describes how to troubleshoot errors related to security.

Overview of securing applications and their environment

This topic provides links to conceptual overviews of securing applications and the application serving

environment.

 “What is new for security specialists” on page 3

 This topic provides an overview of new and changed features in security.

 WebSphere security architecture

 This Education on Demand presentation provides an overview of the security architecture.

Additional presentations are available that focus on the following concepts:

v CSIv2 security overview

v JACC overview

v JAAS client overview

v Resource security overview

Introduction: Security

 This topic describes how IBM WebSphere Application Server provides security infrastructure and

mechanisms to protect sensitive Java 2 Platform, Enterprise Edition (J2EE) resources and

administrative resources and to address enterprise end-to-end security requirements on

authentication, resource access control, data integrity, confidentiality, privacy, and secure

interoperability.

Chapter 4, “Integrating IBM WebSphere Application Server security with existing security systems,”

on page 15

 This topic describes how the product security features relate to the security features of the

environment into which you have added application serving capability.

Chapter 5, “Planning to secure your environment,” on page 23

 Several communication links from a browser on the Internet, through Web servers and product

servers, to the enterprise data at the back-end. This topic examines some typical configuration and

common security practices. WebSphere Application Server security is built on a layered security

architecture. This section also examines the security protection offered by each security layer and

common security practice for good quality of protection in end-to-end security.

Tutorials

 Education on Demand offers:

v Secure WebSphere Bank application

2 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Architecture/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_CSIv2/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JACC/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JAAS/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Resources/player.html
http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/LabInstructions/WASv6_Secure_WSB.pdf

Samples

 The Samples Gallery offers:

v Login - Form Login

The Form Login Sample demonstrates a very simple

example of how to use the WebSphere login facilities to

implement and configure login applications. The Sample

uses the J2EE form-based login technology to

customize the look and feel of the login screens. It uses

servlet filters to log the user information and the date

information. The Sample finishes the session by using

the form-based logout function, an IBM extension to the

J2EE specification.

v Login - JAAS Login

The JAAS Login Sample demonstrates how to use the

Java Authentication and Authorization Service (JAAS)

with WebSphere Application Server. The Sample uses

server-side login with JAAS to authenticate a real user

to the WebSphere security run time. Based upon a

successful login, the WebSphere security run time uses

the authenticated Subject to perform authorization

checks on a protected stateless session enterprise

bean. If the Sample runs successfully, it displays all the

principals and public credentials of the authenticated

user.

What is new for security specialists

This topic highlights what is new or changed in Version 6 for users who are responsible for securing

applications and the application serving environment.

 The biggest improvement in security involves the set of supported specifications.

 External JACC provider support The Java Authorization Contract for Containers

specification (JACC) version 1.0, introduced in

WebSphere Application Server Version 6 and defined by

Java 2 Platform, Enterprise Edition (J2EE) Version 1.4,

defines a contract between J2EE containers and external

authorization providers. Based on this specification,

WebSphere Application Server enables you to plug in an

external provider to make authorization decisions when

you are accessing a J2EE resource. When you use this

feature, WebSphere Application Server supports Tivoli

Access Manager as the default JACC provider.

For more information, see “JACC providers” on page 336.

Java 2 security manager WebSphere Application Server Version 6 provides you

with greater control over the permission granted to

applications for manipulating non-system threads. You can

permit applications to manipulate non-system threads

using the was.policy file. However, these thread control

permissions are disabled, by default.

For more information, see“Configuring the was.policy file”

on page 482.

Chapter 1. Overview and new features - Securing applications and their environment 3

JCA 1.5 support WebSphere Application Server Version 6 supports the

J2EE Connector Architecture (JCA) Version 1.5

specification, which provides new features such as the

inbound resource adapter. For more information, see

J2EE Connector Architecture resource adapters.

From a security perspective, Version 6 provides an

enhanced custom principal and credential programming

interface and custom mapping properties at the resource

reference level. The custom JAAS LoginModule, which

was developed for JCA principal and credential mapping

for WebSphere Application Server Version 5.x, continues

to be supported.

SSL channel framework The Secure Sockets Layer channel framework

incorporates the new IBMJSSE2 implementation and

separates the security function of Java Secure Sockets

Extension (JSSE) from the network communication

function.

Web authentication using the Java Authentication and

Authorization Service programming model

WebSphere Application Server Version 6 enables you to

use the Java Authentication and Authorization Service

(JAAS) programming model to perform Web authentication

in your application code. To use this function, you must

create your own JAAS login configuration by cloning the

WEB_INBOUND login configuration and define a

cookie=true login option. After a successful login using

your login configuration, the Web login session is tracked

by single signon (SSO) token cookies. This option

replaces the SSOAuthenticator interface, which was

deprecated in WebSphere Application Server Version 4.

For more information, see “Java Authentication and

Authorization Service authorization” on page 240.

Web services security WebSphere Application Server Version 6 increases the

extensibility of Web services security by providing a

pluggable architecture. The implementation in WebSphere

Application Server includes many of the features

described in the Organization for the Advancement of

Structured Information Standards (OASIS) Web Services

Security Version 1 standard. As part of this standard,

WebSphere Application Server supports custom,

pluggable tokens that are used for signing and encryption;

pluggable signing and encryption algorithms; pluggable

key locators for locating a key that is used for digital

signature or encryption; signing or encrypting elements in

a Simple Object Access Protocol (SOAP) message; and

specifying the order of the signing or encryption

processes.

Enabling security for WSIF

The Web Services Invocation Framework (WSIF) interacts with a security manager in the following ways:

v WSIF runs in the Java 2 platform, Enterprise Edition (J2EE) security context without modification.

v When WSIF is run under a J2EE container, port implementations can use the security context to pass

on security tokens or credentials as necessary.

4 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v WSIF implementations can automatically convert J2EE security context into appropriate context for

onward services.

For WSIF to interact effectively with the WebSphere Application Server security manager, enable the

following permission in the was.policy file: FilePermission to load the WSDL. This permission is required

when a WSDL file is referred to using the file:// protocol.

Chapter 1. Overview and new features - Securing applications and their environment 5

6 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 2. How do I secure applications and their

environments?

v Develop and deploy secure applications

v Secure the application hosting environment

v Troubleshoot security

 Legend for ″How do I?...″ links

 Documentation Show me Tell me Guide me Teach me

Refer to the detailed

steps and reference

Watch a brief

multimedia

demonstration

View the presentation

for an overview

Be led through the

console pages

Perform the tutorial

with sample code

Approximate time:

Varies

Approximate time: 3

to 5 minutes

Approximate time:

10 minutes+

Approximate time:

1/2 hour+

Approximate time: 1

hour+

Develop and deploy secure applications

These tasks involve securing your applications during development (optional, programmatic security),

assembly (declarative security), and after deploying them on the application server.

--

 Secure Web applications: Authentication and authorization

 Most of the security for an application is configured during the assembly stage. The security

configured during the assembly stage is called declarative security because the security is

declared or defined in the deployment descriptors. The declarative security is enforced by the

security run time. For some applications, declarative security is not sufficient to express the

security model of the application. For these applications, you can use programmatic security.

 Documentation

v Declarative

v Programmatic

 Tell me

Related documentation topics:

v Session security support

v Chapter 8, “Developing secured applications,” on page 51

--

 Secure EJB applications: J2EE authorization

 Most of the security for an application is configured during the assembly stage. The security

configured during the assembly stage is called declarative security because the security is

declared or defined in the deployment descriptors. The declarative security is enforced by the

security run time. For some applications, declarative security is not sufficient to express the

security model of the application. For these applications, you can use programmatic security.

© Copyright IBM Corp. 2004 7

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_User_Registry/player.html

Documentation

v Declarative

v Programmatic

 Tell me

--

 Use Web services security (WS-Security)

 Use any of many methods to integrate message-level security into an application serving

environment. Web services security for WebSphere Application Server is based on standards

included in the Web services security (WS-Security) specification. These standards address how

to provide protection for messages exchanged in a Web service environment. The specification

defines the core facilities for protecting the integrity and confidentiality of a message and provides

mechanisms for associating security-related claims with the message.

 Documentation Show me Tell me

--

 Enable Java 2 security

 Java 2 security is disabled by default, but is enabled automatically when global security is

enabled. Whether you use it is independent of your decision to use J2EE role-based authorization.

It provides an extra level of access control protection on top of the J2EE role-based authorization.

It particularly addresses the protection of system resources and APIs.

 Documentation

v Console

v Scripting

 Tell me

--

 Develop JAAS clients

 If you write a login module that adds information to the Subject of a system login, refer to this topic

for the main Java Authentication and Authorization Service (JAAS) plug in points for configuring

system logins.

 Documentation Tell me

--

 Enable resource security (overview)

 Applications access many resources for data access, messaging, mail, and other purposes.

 Tell me Teach me

--

 Enable resource security: J2C and JDBC data sources

 Secure the Java DataBase Connectivity (JDBC) data sources and Java 2 Connector (J2C)

resources used by applications to access data.

 Show me Tell me

8 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_User_Registry/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Simulations/WASv6_WS_Security_Binding.viewlet/WASv6_WS_Security_Binding_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Presentations/WASv6_WSSecurity_Overview/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Java2_Security/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JAAS/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Resources/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/LabInstructions/WASv6_Secure_WSB.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_JDBC_J2C.viewlet/WASv6_Sec_JDBC_J2C_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JDBC_J2C/player.html

Related documentation topics:

v “Security of lookups with component managed authentication” on page 938

v “JavaMail security permissions best practices” on page 945

--

 Enable resource security: JMS resources

 Secure the Java Message Service (JMS) resources used by applications to obtain messaging

support.

 Documentation Tell me

--

Secure the application hosting environment

The counterpart of secure your applications, before and after deployment, is to secure the server hosting

environment into which the applications are deployed.

--

 Secure the administrative environment

 Use the administrative console to assign users to administrative roles.

 Documentation Tell me

v Security for system

administrator

v Securing

administrative

environment

Guide me

Related documentation topics:

v “Securing your environment before installation” on page 33 (installing with proper authority)

v “Securing your environment after installation” on page 34 (passwords and such)

--

 Configure security with wsadmin scripting (overview)

 Scripting is a non-graphical alternative that you can use to configure and manage WebSphere

Application Server. The WebSphere Application Server wsadmin tool provides the ability to run

scripts. The wsadmin tool supports a full range of product administrative activities.

 Documentation

--

 Configure global security

 Configure global security, which applies to all applications running in the environment and

determines whether security is used at all, the type of registry against which authentication takes

place, and other values, many of which act as defaults.

Chapter 2. How do I secure applications and their environments? 9

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_SIBus/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Administration/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Administration/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/player.html

Documentation

v Console

v Scripting

 Tell me Guide me

--

 Authenticate users with the local operating system user registry

 Configure the product to authenticate users against the local operating system user registry. The

product provides and supports the implementation for Windows operating system registries, AIX,

Solaris and multiple versions of Linux operating systems. The respective operating system APIs

are called by the product processes (servers) for authenticating a user and other security-related

tasks (for example, getting user or group information).

 Documentation Show me

v SWAM

v LTPA

Tell me Guide me

--

 Authenticate users with an LDAP user registry

 Configure the product to authenticate users against a Lightweight Directory Access Protocol

(LDAP) user registry. The product security provides and supports implementation of most major

LDAP directory servers, which can act as the repository for user and group information. These

LDAP servers are called by the product processes (servers) for authenticating a user and other

security-related tasks (for example, getting user or group information). This support is provided by

using different user and group filters to obtain the user and group information. These filters have

default values that you can modify to fit your needs. The custom LDAP feature enables you to use

any other LDAP server (which is not in the product supported list of LDAP servers) for its user

registry by using the appropriate filters.

 Documentation Show me Tell me Guide me

--

 Authenticate with a custom user registry

 After you have implemented and built the UserRegistry interface, you can configure the product to

use your custom user registry to authenticate users.

 Documentation Show me Tell me Guide me

--

 Set up Single Sign On (SSO)

 With single signon (SSO) support, Web users can authenticate once when accessing Web

resources across multiple WebSphere Application Servers. Form login mechanisms for Web

applications require that SSO is enabled.

 Documentation

--

 Set up Secure Sockets Layer (SSL) between remote servers or clients and servers

10 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Administration/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_SWAM_LocalOS.viewlet/WASv6_Sec_SWAM_LocalOS_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_LTPA_LocalOS.viewlet/WASv6_Sec_LTPA_LocalOS_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_User_Registry/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_Registry_LDAP.viewlet/WASv6_Sec_Registry_LDAP_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_User_Registry/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_Registry_Custom.viewlet/WASv6_Sec_Registry_Custom_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_User_Registry/player.html

Secure Sockets Layer (SSL) is used by multiple components within WebSphere Application Server

to provide trust and privacy.

 Documentation Show me Tell me

Related documentation topics:

v “Accessing secure resources using SSL and applet clients” on page 503

--

 Set up CSIv2

 Configure Common Secure Interoperability Version 2 (CSIv2) features including SSL client

certificate authentication, message layer authentication, identity assertion, and security attribute

propagation.

 Documentation Tell me

--

 Configure an authorization provider (JACC)

 Configure the product to use an external security provider you have set up to work with

WebSphere Application Server that can support Java 2 Platform, Enterprise Edition (J2EE)

authorization based on the JACC specification.

 Documentation Tell me

--

Troubleshoot security problems

Troubleshoot several types of problems related to enabling or configuring security.

--

 Troubleshoot the security subsystem

 Troubleshoot several types of problems related to enabling or configuring security.

 Documentation

--

Chapter 2. How do I secure applications and their environments? 11

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_SSL.viewlet/WASv6_Sec_SSL_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_SSL/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_CSIv2/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JACC/player.html

12 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 3. Securing applications and their environment

WebSphere Application Server supports the J2EE model for creating, assembling, securing, and deploying

applications. This article provides a high-level description of what is involved in securing resources in a

J2EE environment. Applications are often created, assembled and deployed in different phases and by

different teams.

Consult the J2EE specifications for complete details.

 1. Plan to secure your applications and environment. For more information, see Chapter 5, “Planning to

secure your environment,” on page 23. Complete this step before you install the WebSphere

Application Server.

 2. Consider pre-installation and post-installation requirements. For more information, see Chapter 6,

“Implementing security considerations at installation time,” on page 33. For example, during this step,

you learn how to protect security configurations after you install the product.

 3. Migrate your existing security systems. For more information, see Chapter 7, “Migrating security

configurations from previous releases,” on page 39.

 4. Develop secured applications. For more information, see Chapter 8, “Developing secured

applications,” on page 51.

 5. Assemble secured applications. For more information, see Chapter 9, “Assembling secured

applications,” on page 115. Development tools, such as the Assembling applications are used to

assemble J2EE modules and to set the attributes in the deployment descriptors.

Most of the steps in assembling J2EE applications involve deployment descriptors; deployment

descriptors play a central role in application security in a J2EE environment.

Application assemblers combine J2EE modules, resolve references between them, and create from

them a single deployment unit, typically an Enterprise Archive (EAR) file. Component providers and

application assemblers can be represented by the same person but do not have to be.

 6. Deploy secured applications. For more information, see Chapter 10, “Deploying secured applications,”

on page 127.

Deployer link entities referred to in an enterprise application are mapped to the runtime environment.

The deployer:

v Maps actual users and groups to application roles

v Installs the enterprise application into the environment

v Makes the final adjustments needed to run the application

 7. Test secured applications. For more information, see Chapter 11, “Testing security,” on page 139.

 8. Manage security configurations. For more information, see Chapter 12, “Administering security,” on

page 141.

 9. Improve performance by tuning security configurations. For more information, see Chapter 15,

“Tuning security configurations,” on page 949.

10. Troubleshoot security configurations. For more information, see Chapter 16, “Troubleshooting security

configurations,” on page 955.

Your applications and production environment are secured.

See “Security: Resources for learning” on page 21 for more information on the WebSphere Application

Server security architecture.

© Copyright IBM Corp. 2004 13

14 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 4. Integrating IBM WebSphere Application Server

security with existing security systems

WebSphere Application Server plays an integral part of the multiple-tier enterprise computing framework.

WebSphere Application Server adopts the open architecture paradigm and provides many plug-in points to

integrate with enterprise software components to provide end-to-end security. WebSphere Application

Server plug-in points are based on standard J2EE specifications wherever applicable. WebSphere

Application Server is actively involved in various standard bodies to externalize and to standardize plug-in

interfaces.

In the following example, several typical multiple-tier enterprise network configurations are discussed. In

each case, various WebSphere Application Server plug-in points are used to integrate with other business

components. The discussion starts with a basic multiple-tier enterprise network configuration:

A list of terms used in this discussion follows:

Protocol firewall

Prevents unauthorized access from the Internet to the demilitarized zone. The role of this node is

to provide the Internet traffic access only on certain ports and to block other IP ports.

WebSphere Application Server plug-in

Redirects all the requests for servlets and JSP pages. Also referred to in WebSphere Application

Server literature as Web server redirector was introduced to separate Web server from application

server. The advantage of using Web server redirector is that you can move an application server

and all the application business logic behind the domain firewall.

Domain firewall

Prevents unauthorized access from the demilitarized zone to an internal network. The role of this

firewall is to allow the network traffic originating from the demilitarized zone and note from the

Internet.

Directory

Provides information about the users and their rights in the Web application. The information can

WebSphere

Application Server

Version 6

Access manager

(Authorization)

Security Role-based

authorization engine

Principal/

credential

mapping

J2EE

connector

Trust

association

interceptor

CSIv2 security protocol

Application

server

Enterprise

Information

System

Secure reverse

proxy server

JAAS

login module
User registry

Credential

mapping

Security server

(Authentication)

UserRegistry

interface

JAAS

login module

© Copyright IBM Corp. 2004 15

contain user IDs, passwords, certificates, access groups, and so forth. This node supplies the

information to the security services like authentication and authorization service.

Enterprise information system

Represents existing enterprise applications and business data in back-end databases.

WebSphere Application Server provides the infrastructure to run application business logic and

communicate with internal back-end systems and databases Web applications and enterprise beans can

access. WebSphere Application Server has a built in HTTPS server that can accept client requests. A

typical configuration, however, places WebSphere Application Server behind the domain firewall for better

protection. A WebSphere Application Server plug-in to Web server configuration can redirect Web requests

to WebSphere Application Server. WebSphere Application Server provides plug-ins for many popular Web

servers.

You can configure WebSphere Application Server and the Web server plug-in to communicate through

secure SSL channels. You can configure a WebSphere Application Server HTTP server to open

communication channels only with a restricted set of Web server plug-ins. You can configure the HTTP

server to require client certificate authentication with self-signed certificates and to trust only the signer

certificate.

For more information, refer to

For instructions on how to generate self-signed certificates and how to set up secure communications

channels between an HTTP server and the WebSphere Application Server plug-in, refer to Configuring IHS

plug-in and the Internal Web Server for SSL and Configuring IHS for SSL Mutual Authentication.

The WebSphere Application Server plug-in routes HTTP requests according to the virtual host and port

configuration and the URL pattern matching. Client authentication and finer grained access control are

handled by WebSphere Application Server behind the firewall.

In cases where the Web server can contain sensitive data and direct access is not desirable, the following

configuration uses Tivoli WebSEAL to shield a Web server from unauthorized requests. WebSEAL is a

Reverse Proxy Security Server (RPSS) that uses Tivoli Access Manager to perform coarse-grained access

control to filter out unauthorized requests before they reach the domain firewall. WebSEAL uses Tivoli

Access Manager to perform access control as illustrated in the picture. WebSphere Application Server

supports various user registry implementations through the pluggable user registry interface.

WebSphere Application Server ships a Local OS user registry implementation for Windows, AIX, AS/400,

and Lightweight Directory Access Protocol (LDAP).

Browser

In
te

rn
e
t

Demilitarized Zone

(DMZ)

Database

(DB2 version

8.1 fix pack 6)

MQ

CICS

IBM Directory

(LDAP)

Internet Enterprise

Information

Systems

D
o
m

a
in

fi
re

w
a
ll

P
ro

to
c
o
l
fi
re

w
a
ll

WebSphere

Application

Server

Web

server

WebSphere

Application

Server plug-in

16 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

WebSphere Application Server also supports users in developing their own custom registry and plug-in

through the pluggable user registry interface. When integrated with a third party security provider,

WebSphere Application Server can share the user registry with the third-party security provider. In the

particular example of integrating with WebSEAL, you can configure WebSphere Application Server to use

the LDAP user registry, which can be shared with WebSEAL and Tivoli Access Manager. Moreover, you

can configure WebSphere Application Server to use the Light Weight Third Party (LTPA) authentication

mechanism, which supports the Trust Association Interceptor plug-in point.

Basically, the RPSS performs authentication and adds proper authentication data into the request header

and then redirects the request to Web server. A trust relationship is formed between an RPSS and

WebSphere Application Server, and the RPSS can assert client identity to WebSphere Application Server

to achieve single signon (SSO) between RPSS and WebSphere Application Server. When the request is

forward to WebSphere Application Server, WebSphere Application Server uses the TAI plug-in for the

particular RPSS server to evaluate the trust relationship and to extract the authenticated client identity.

WebSphere Application Server then maps the client identity to a WebSphere Application Server security

credential. For instructions on setting up a trust association interceptor, refer to Trust associations,

Configuring trust association interceptors.

When configured to use the LDAP user registry, WebSphere Application Server uses LDAP to perform

authentication. The client ID and password are passed from WebSphere Application Server to the LDAP

server. You can configure WebSphere Application Server to set up an SSL connection to LDAP so that

passwords are not passed in plain text. To set up an SSL connection from WebSphere Application Server

to the LDAP server, refer to Configuring SSL for the LDAP client. WebSphere Application Server Version 5

supports the J2EE Connector Architecture (JCA). The connector architecture defines a standard interface

for WebSphere Application Server to connect to heterogeneous enterprise information systems (EIS).

Examples of EIS includes database systems, transaction processing such as CICS, and messaging such

as Message Queue (MQ). The EIS implementation can perform authentication and access control to

protect business data and resources. Resource Adapters authenticate EIS. The authentication data can be

provided either by application code or by WebSphere Application Server. WebSphere Application Server

provides a principal mapping plug-in point. A principal mapping module plug-in maps the authenticated

client principal to a password credential, (that is, user ID and password, for the EIS security domain).

WebSphere Application Server ships a default principal mapping module, which maps any authenticated

client principal to a configured pair of user IDs and passwords.

Each connector can be configured to use a different set of IDs and passwords. For a description on how

to configure JCA principal mapping user IDs and passwords, refer to Managing J2C Authentication Data

Entries. A principal mapping module is a special purpose Java Authentication and Authorization Service

Browser

In
te

rn
e
t

Reverse

proxy security

server

(WebSeal,

and so on)

Demilitarized Zone

(DMZ)

Database

(DB2 version

8.1 fix pack 6)

MQ

CICS

IBM Directory

(LDAP)

Internet Enterprise

Information

Systems

D
o
m

a
in

fi
re

w
a
ll

P
ro

to
c
o
l
fi
re

w
a
ll

WebSphere

Application

Server

Web

server

WebSphere

Application

Server plug-in

Trust

Association

Interceptor

Third-party

security provider

(Tivoli Access Manager,

and so on)

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 17

(JAAS) login module. You can develop your own principal mapping module to fit your particular business

application environment. For detailed steps on developing and configuring a custom principal mapping

module, refer to the articles, Developing your own Java 2 security mapping module underneath JAAS

Programmatic Login and Managing Java Authentication and Authorization Service (JAAS) Login

Configuration.

Security and WebSphere MQseries

It is important to note that security logging information on UNIX systems is not protected because of the

world-writeable files in the /var file system of MQseries. MQseries ships the following files with its product:

v -rw-rw-rw- /var/mqm/errors/AMQERR01.LOG

v -rw-rw-rw- /var/mqm/errors/AMQERR02.LOG

v -rw-rw-rw- /var/mqm/errors/AMQERR03.LOG

The previously mentioned files are world-writeable and enable any users on the system to fill up the /var

file system where all the security logging information is stored. This leaves the security information

unprotected because anyone can access the logging information without being tracked.

To work around this problem, create a file system for the embedded messaging component working data

on UNIX. Before you install the embedded messaging component of WebSphere Application Server on

UNIX platforms, consider creating and mounting a journalized file system called /var/mqm. Use a partition

strategy with a separate volume for the WebSphere MQ data. This means that other system activity is not

affected if a large amount of WebSphere MQ work builds up.

To determine the size of the /var/mqm file system for a server installation, consider the following:

v Maximum number of messages in the system at one time

v Contingency for message buildups, if there is a system problem

v Average size of the message data, plus 500 bytes for the message header

v Number of queues

v Size of log files and error messages

Allow 50MB as a minimum for a WebSphere MQ server. You need less space in the /var/mqm file system

for a WebSphere MQ client (typically 15MB).

Interoperability issues for security

To have interoperability of Security Authentication Service (SAS) between C++ and WebSphere Application

Server, use the Common Secure Interoperability Version 2 (CSIv2) authentication protocol over Remote

Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP).

Interoperating with a C++ common object request broker architecture

client

You can achieve interoperability of Security Authentication Service between the C++ Common Object

Request Broker Architecture (CORBA) client and WebSphere Application Server using Common Secure

Interoperability Version 2 (CSIv2) authentication protocol over Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI-IIOP). The CSIv2 security service protocol has authentication, attribute and

transport layers. Among the three layers, transport authentication is conceptually simple, however,

cryptographically based transport authentication is the strongest. WebSphere Application Server Enterprise

has implemented the transport authentication layer, so that C++ secure CORBA clients can use it

effectively in making CORBA clients and protected enterprise bean resources work together.

Security authentication from non-Java based C++ client to enterprise beans. WebSphere Application

Server supports security in the CORBA C++ client to access protected enterprise beans. If configured,

18 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

C++ CORBA clients can access protected enterprise bean methods using client certificate to achieve

mutual authentication on WebSphere Application Server Enterprise applications.

To support the C++ CORBA client in accessing protected enterprise beans:

v Create an environment file for the client, such as current.env. Set the variables listed below

(security_sslKeyring, client_protocol_user, client_protocol_password) in the file.

v Point to the environment file using the fully qualified path name through the environment variable

WAS_CONFIG_FILE. For example, in the test shell script test.sh, export

WAS_CONFIG_FILE=/WebSphere/V5R0M0/AppServer/bin/current.env.

 C++ security setting Description

client_protocol_password Specifies the password for the user ID.

client_protocol_user Specifies the user ID to be authenticated at the target

server.

security_sslKeyring Specifies the name of the RACF keyring the client will

use. The keyring must be defined under the user ID that

is issuing the command to run the client.

To support the C++ CORBA client in accessing protected enterprise beans:

1. Obtain a valid certificate to represent the client and export its public key to the target enterprise bean

server.

A valid certificate is needed to represent the C++ client. Request a certificate from the certificate

authority (CA) or create a self-signed certificate for testing purposes.

Use the Key Management Utility from the Global Security Kit (GSKit) to extract the public key from the

personal certificate and save it in the .arm format. For details, see the related information about how to

extract the personal certificate of the public key.

2. Prepare a truststore file for WebSphere Application Server.

Add the extracted client public key in the .arm file from the client to the server key truststore file. The

server can now authenticate the client.

Note: This is done by invoking the Key Management Utility through ikeyman.bat or ikeyman.sh from

WebSphere Application Server installation.

For details, see the article on Adding truststore files.

3. Configure WebSphere Application Server to support SSL as the authentication mechanism.

a. Start the administrative console.

b. Locate the application server that has the target enterprise bean deployed and configure it to use

SSL client certificate authentication.

If it is a base installation, complete the following steps:

1) Click Security > Global security. Under Authentication, click Authentication protocol >

CSIv2 inbound authentication. Select Supported for the Basic authentication and Client

certificate authentication options. Leave the rest of the options as defaults.

2) Click Security > Global security. Under Authentication, click Authentication protocol >

CSIv2 inbound transport and verify that the SSL-supported option is selected.

If it is a Network Deployment setting, complete the following steps:

1) Click Server > Application Server >server_name_where_the_EJB_resides. Under security,

click Server security. Under Additional properties, click CSI inbound authentication. Select

Supported for the Basic authentication and Client certificate authentication options. Leave the

rest of the options as defaults.

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 19

2) Click Server > Application Server >server_name_where_the_EJB_resides. Under security,

click Server security. Under Additional properties, click CSI inbound transport. Verify that the

SSL-Supported option is selected.

For details, see the security articles Configuring CSIv2 inbound authentication and Configuring

CSIv2 inbound transport.

c. Restart the application server.

The WebSphere Application Server is ready to take a C++ CORBA security client and a mutually

authenticated server and client by using SSL in the transport layer.

4. Configure the C++ CORBA client to use a certificate in performing the mutual authentication.

Client users are accustomed to using property files in their applications because they are helpful in

specifying configuration settings. The following list presents important C++ security settings:

 C++ security setting Description

com.ibm.CORBA.bootstrapHostName=ricebella.austin.ibm.com Specifies the target host name.

com.ibm.CORBA.securityEnabled=yes Enables security.

com.ibm.CSI.performTLClientAuthenticationSupported=yes Ensures client is supporting mutual

authentication by certificate

com.ibm.CSI.performTransportAssocSSLTLSSupported=yes Ensures SSL is used, not TCP/IP

com.ibm.ssl.keyFile=C:/ricebella/etc/DummyKeyRingFile.KDB Specifies which key database file to use.

com.ibm.ssl.keyPassword=WebAS Specifies the password for opening the key

database file. WebSphere Application Server

supports a utility called PasswordEncode4cpp

to encode the plain password.

com.ibm.CORBA.translationEnabled=1 Enables the valueType conversion.

To use the property files in running a C++ client, an environment variable WASPROPS, is used to

indicate where a property file or a list of property files exist.

For the complete set of C++ client properties, see the sample property file scclient.props, which is

shipped with the product located in the install_root\profiles\profile_name\etc directory.

Interoperating with previous product versions

IBM WebSphere Application Server, Version 5.x or later interoperates with the previous product versions

(such as Version 4 and Version 3.5). Interoperability is achieved only when the Lightweight Third Party

Authentication (LTPA) authentication mechanism and Lightweight Directory Access Protocol (LDAP) user

registry are used. Credentials derived from Simple WebSphere Authentication Mechanisms (SWAM) are

not forwardable.

1. Enable security with the LTPA authentication mechanism and the LDAP user registry. Make sure that

the same LDAP user registry is shared by all the product versions.

2. Extract and add Version 5 server certificates into the server key ring file of the previous version.

a. Open the Version 5 server key ring file using the key management utility (iKeyman) and extract the

server certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and

add the certificate extracted from product Version 5.

3. Extract and add Version 5 server certificates into the server key ring file of the previous version.

a. Open the Version 5 server key ring file using the key management utility (iKeyman) and extract the

server certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and

add the certificate extracted from product Version 5.

4. Extract and add Version 5 trust certificates into the trust key ring file of the previous product version.

20 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

a. Open the Version 5 trust key ring file using the key management utility and extract the trust

certificate to a file.

b. Open the trust key ring file of the previous product version using the key management utility and

add the certificate extracted from Version 5.

5. If single signon (SSO) is enabled, export keys from the Version 5 product and import them into the

previous product version. The Version 4 product requires the fix, PQ61779, and the Version 3.5

product requires the fix, PQ59667, for SSO to function.

6. Verify that the application uses the correct JNDI name. In Version 5, the enterprise beans are

registered with long JNDI names like, (top)/nodes/node_name/servers/server_name/HelloHome.

Whereas in previous releases, enterprise beans are registered under a root like, (top)/HelloHome.

Therefore, EJB applications from previous versions perform a lookup on the Version 5 enterprise

beans.

You can also create EJB name bindings in Version 5 that are compatible with the previous version. To

create an EJB name binding at the root Version 5, start the administrative console and click

Environment > Naming > Naming Space Bindings > New > EJB > Next. Complete all the fields

and enter a short name (for example, -HelloHome) as the JNDI Name. Click Next and Finish.

7. Stop and restart all the servers.

8. Make sure that the correct naming bootstrap port is used to perform naming lookup. In previous

product versions, the naming bootstrap port is 900. In Version 5, the bootstrap port is 2809.

Security: Resources for learning

Use the following links to find relevant supplemental information about Securing applications and their

environment. The information resides on IBM and non-IBM Internet sites, whose sponsors control the

technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

v “Planning, business scenarios and IT architecture”

v “Programming model and decisions”

v “Programming specifications” on page 22

v “Administration” on page 22

Planning, business scenarios and IT architecture

v WebSphere Application Server Library

v WebSphere Application Server Support

v WebSphere Application Server Version 5 Security Redbook

v Accessing the Samples (Samples Gallery)

The technology sample in the WebSphere Application Server Samples Gallery contains several

security-related samples including the form login sample and the Java Authentication and Authorization

Service (JAAS) login sample.

v WebSphere Application Server security: Presentation series

Programming model and decisions

v JSSE Documentation.

Refer to the http://www.ibm.com/developerworks/java/jdk/security/jsseDocs.zip file for the Javadoc of the

APIs, JSSE Reference Guide, and JSSE samples.

v iKeyman documentation.

Look in the http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file for the Secure

Sockets Layer (SSL) Introduction and iKeyman documentation.

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 21

http://www-3.ibm.com/software/webservers/appserv/library.html
http://www-3.ibm.com/software/webservers/appserv/support.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246573.pdf
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0409_botzum/0409_botzum.html
http://www.ibm.com/developerworks/java/jdk/security/jsseDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

v JCE documentation.

– For the JCA spec and JCE API usage refer to the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

– For JCE sample applications refer to the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

– For Java Cryptography Architecture Reference refer to the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

– For how to implement a JCE provider refer to the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

– For the Javadoc of JCE APIs refer to the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

– For the 1.4.2 release of the IBM developer kit for the Java platform refer to the http://www-
106.ibm.com/developerworks/java/library/j-ibmsecurity.html file.

Programming specifications

v J2EE Specifications

v EJB Specifications

v Servlet Specifications

v Common Secure Interoperability Version 2 (CSIv2) Specification

v JAAS Specification.

For programming and usage in JAAS, refer to the specification located at

http://www.ibm.com/developerworks/java/jdk/security/ and scroll down to find the JAAS documentation

for your platform. This document contains the following when unpacked:

– login.html - LoginModule Developer’s Guide

– api.html - Developer’s Guide (JAAS JavaDoc)

– HelloWorld.tar - Sample JAAS Application
v Java 2 Platform, Standard Edition, v 1.4.2 API Specification

v Java Authorization Contract for Containers (JSR 115) Specification

Administration

v WebSphere Application Server Version 4.0 Security Redbook: WebSphere Security Model.

v IBM HTTP Server Support and Documentation

v IBM Directory Server Support and Documentation

v IBM developer kits

This Web site provides access to the IBM developer kits provided by the IBM Centre for Java

Technology Development. Using this Web site, you can find various security and diagnostic information

including information on the Federal Information Processing Standard, Java Version 1.4.1, Java Version

1.4.2, the iKeyman tool, and the Public Key Cryptography Standards (PKCS).

v IBM cryptographic hardware devices

v Supported hardware, software and APIs prerequisite Web site

v WebSphere education on demand: Enabling security best practice tutorials

v http://www.redbooks.ibm.com/abstracts/sg244986.html?Open

22 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www-106.ibm.com/developerworks/java/library/j-ibmsecurity.html
http://www-106.ibm.com/developerworks/java/library/j-ibmsecurity.html
http://java.sun.com/j2ee/download.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html
http://www.omg.org/technology/documents/corba_spec_catalog.htm#CSIv2
http://www.ibm.com/developerworks/java/jdk/security/
http://java.sun.com/j2se/1.4/docs/api/index.html
http://java.sun.com/j2ee/javaacc/
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246520.pdf?#M10.8.newlink.WebSphereSecurityModel
http://www-3.ibm.com/software/webservers/httpservers/support.html
http://www-3.ibm.com/software/network/directory/support/
http://www.ibm.com/developerworks/java/jdk/index.html
http://www.ibm.com/security/cryptocards/html/library.shtml
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/
http://www.redbooks.ibm.com/abstracts/sg244986.html?Open

Chapter 5. Planning to secure your environment

There are several communication links from a browser on the Internet, through Web servers and product

servers, to the enterprise data at the back-end. This section examines some typical configurations and

common security practices. WebSphere Application Server security is built on a layered security

architecture as showed in the following figure. This section also examines the security protection that is

offered by each security layer and common security practice for good quality of protection in end-to-end

security. The following figure illustrates the building blocks that comprise the operating environment for

security within WebSphere Application Server:

WebSphere Application Server resources

Access control

WebSphere Application Server security

Java security

Platform security

WebSphere security

J2EE security API

CORBA security (CSIv2)

Java 2 security

Java Virtual Machine (JVM) 1.4

Operating system security

• Naming

• User r egistry

• JMX m essage

beans

• HTML

• Servlet or JSP file

• Enterprise beans

• Web services

WebSphere Security Layers

v Operating System Security -

The security infrastructure of the underlying operating system provides certain security services for

WebSphere Application Server. These services include the file system security support that secure

sensitive files in the product installation for WebSphere Application Server. The system administrator

can configure the product to obtain authentication information directly from the operating system user

registry.

v Network Security - The Network Security layers provide transport level authentication and message

integrity and encryption. You can configure the communication between separate application servers to

use Secure Sockets Layer (SSL) and HTTPS. Additionally, you can use IP Security and Virtual Private

Network (VPN) for added message protection.

v JVM 1.4 - The JVM security model provides a layer of security above the operating system layer.

v Java 2 Security - The Java 2 Security model offers fine-grained access control to system resources

including file system, system property, socket connection, threading, class loading, and so on.

Application code must explicitly grant the required permission to access a protected resource.

v OMG CSIv2 Security - Any calls made among secure Object Request Brokers (ORB) are invoked over

the Common Security Interoperability Version 2 (CSIv2) security protocol that sets up the security

context and the necessary quality of protection. After the session is established, the call is passed up to

the enterprise bean layer. For backward compatibility, WebSphere Application Server supports the

Secure Authentication Service (SAS) security protocol, which was used in prior releases of WebSphere

Application Server and other IBM products.

v J2EE Security - The security collaborator enforces Java 2 Platform, Enterprise Edition (J2EE)-based

security policies and supports J2EE security APIs.

© Copyright IBM Corp. 2004 23

v WebSphere Security - WebSphere Application Server security enforces security policies and services

in a unified manner on access to Web resources, enterprise beans, and JMX administrative resources.

It consists of WebSphere Application Server security technologies and features to support the needs of

a secure enterprise environment.

WebSphere Application Server Network Deployment installation: The following figure shows a typical

multiple-tier business computing environment for a WebSphere Application Server Network Deployment

installation.

Important: There is a node agent instance on every computer node.

Each product application server consists of a Web container, an EJB container, and the administrative

subsystem. The WebSphere Application Server deployment manager contains only WebSphere

administrative code and the administrative console. The administrative console is a special J2EE Web

application that provides the interface for performing administrative functions. WebSphere Application

Server configuration data is stored in XML descriptor files, which must be protected by operating system

security. Passwords and other sensitive configuration data can be modified using the administrative

console. However, you must protect these passwords and sensitive data. For more information, see

“Protecting plain text passwords” on page 35.

The administrative console Web application has a setup data constraint that requires the administrative

console servlets and JSP files to be accessed only through an SSL connection when global security is

enabled.

After installation, the administrative console HTTPS port is configured to use DummyServerKeyFile.jks

and DummyServerTrustFile.jks with the default self-signed certificate. Using the dummy key and trust file

certificate is not safe and you need to generate your own certificate to replace dummy ones immediately. It

is more secure if you first enable global security and complete other configuration tasks after global

security is enforced.

Machine A

Data tier

(optional)

Application

data

Deployment

manager

Clustered application servers

Cell

JMS server

Node agent

Machine C Machine D

Web

container

cluster

manager

EJB

container

cluster

manager

Web server

Machine B

Client

HTTP

requests

HTTP

server

Plug-in

Clients

Figure 1. Multiple-tier business computing environment.

24 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Global and administrative security:

WebSphere Application Servers interact with each other through CSIv2 and Secure Authentication

Services (SAS) security protocols as well as HTTP and HTTPS protocols.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere

Application Server global security. The WebSphere Application Server administrative subsystem in every

server uses Simple Object Access Protocol (SOAP) Java Management Extensions (JMX) connectors and

Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass

administrative commands and configuration data. When global security is disabled, the SOAP JMX

connector uses HTTP protocol and the RMI/IIOP connector uses the TCP/IP protocol. When global

security is enabled, the SOAP JMX connector always uses HTTPS protocol. When global security is

enabled, you can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is

recommended that you enable global security and enable SSL to protect the sensitive configuration data.

Global security and administrative security configuration is at the cell level.

When global security is enabled, you can disable application security at each individual application server

by clearing the Enable global security option on the global security panel. The Global security panel is

accessed through the administrative console by clicking Security > Global security. Disabling application

server security does not affect the administrative subsystem in that application server, which is controlled

by the global security configuration only. Both administrative subsystem and application code in an

application server share the optional per server security protocol configuration. For more information, see

“Configuring server security” on page 148.

Security for J2EE resources: Security for J2EE resources is provided by the Web container and the EJB

container. Each container provides two kinds of security: declarative security and programmatic security.

In declarative security, an application security structure includes data integrity and confidentiality,

authentication requirements, security roles, and access control. Access control is expressed in a form that

is external to the application. In particular, the deployment descriptor is the primary vehicle for declarative

security in the J2EE platform. WebSphere Application Server maintains J2EE security policy, including

information derived from the deployment descriptor and specified by deployers and administrators in a set

of XML descriptor files. At run time, the container uses the security policy that is defined in the XML

descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might

use “Programmatic login” on page 66 to make access decisions. When global security is enabled and

application server security is not disabled at the server level, J2EE applications security is enforced. When

the security policy is specified for a Web resource, the Web container performs access control when the

resource is requested by a Web client. The Web container challenges the Web client for authentication

data if none is present according to the specified authentication method, ensures the data constraints are

met, and determines whether the authenticated user has the required security role. The Web security

collaborator enforces role-based access control by using an access manager implementation. An access

manager makes authorization decisions that are based on security policy derived from the deployment

descriptor. An authenticated user principal can access the requested servlet or JavaServer Pages (JSP)

file if it has one of the required security roles. Servlets and JSP pages can use the HttpServletRequest

methods isUserInRole and getUserPrincipal.

When global security is enabled and application server security is not disabled, the EJB container enforces

access control on EJB method invocation.

The authentication takes place regardless of whether method permission is defined for the specific EJB

method. The EJB security collaborator enforces role-based access control by using an access manager

implementation. An access manager makes authorization decisions that are based on security policy

derived from the deployment descriptor. An authenticated user principal can access the requested EJB

Chapter 5. Planning to secure your environment 25

method if it has one of the required security roles. EJB code can use the EJBContext methods

isCallerInRole and getCallerPrincipal. Use the J2EE role-based access control to protect valuable

business data from access by unauthorized users from both the Internet and the intranet. Refer to

“Securing Web applications using an assembly tool” on page 118 and “Securing enterprise bean

applications” on page 116.

Role-based security: WebSphere Application Server extends the security, role-based access control to

administrative resources including the JMX system management subsystem, user registries, and JNDI

name space. WebSphere administrative subsystem defines four administrative security roles:

Monitor role

A monitor can view the configuration information and status, but cannot make any changes.

Operator role

An operator can trigger run-time state changes, such as start an application server or stop an

application, but cannot make configuration changes.

Configurator role

A configurator can modify the configuration information, but cannot change the state of the run

time.

Administrator role

An operator as well as a configurator, which additionally can modify sensitive security configuration

and security policy such as setting server ID and password, enable or disable global security and

Java 2 security, and map users and groups to the administrator role.

A user with the configurator role can perform most administrative work including installing new applications

and application servers. There are certain configuration tasks a configurator does not have sufficient

authority to do when global security is enabled, including modifying a WebSphere Application Server

identity and password, LTPA password and keys, and assigning users to administrative security roles.

Those sensitive configuration tasks require the administrative role because the server ID is mapped to the

administrator role.

WebSphere Application Server administrative security is enforced when global security is enabled. It is

recommended that WebSphere Application Server global security be enabled to protect administrative

subsystem integrity. Application server security can be selectively disabled if there is no sensitive

information to protect. For securing administrative security, refer to “Assigning users to administrator roles”

on page 153 and “Assigning users and groups to roles” on page 128.

Java 2 security permissions: WebSphere Application Server uses the Java 2 security model to create a

secure environment to run application code. Java 2 security provides a fine-grained and policy-based

access control to protect system resources such as files, system properties, opening socket connections,

loading libraries, and so on. The J2EE Version 1.4 specification defines a typical set of Java 2 security

permissions that Web and EJB components expect to have. These permissions are shown in the following

table.

 Table 1. J2EE security permissions set for Web components

Security Permission Target Action

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.io.FilePermission * read, write

java.util.PropertyPermission * read

26 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Table 2. J2EE security permissions set for EJB components

Security Permission Target Action

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security implementation is based on the J2EE Version 1.4

specification. The specification granted Web components read and write file access permission to any file

in the file system, which might be too broad. The WebSphere Application Server default policy gives Web

components read and write permission to the subdirectory and the subtree where the Web module is

installed. The default Java 2 security policy for all Java virtual machines and WebSphere Application

Server processes are contained in the following policy files:

${java.home}/jre/lib/security/java.policy

Used as the default policy for the Java virtual machine (JVM).

${USER_INSTALL_ROOT}/properties/server.policy

Used as the default policy for all product server processes

To simplify policy management, WebSphere Application Server policy is based on resource type rather

than code base (location). The following files are the default policy files for WebSphere Application Server

subsystem. These policy files, which are an extension of WebSphere Application Server run time and are

referred to as Service Provider Programming Interfaces (SPI), are shared by multiple J2EE applications:

${WAS_INSTALL_ROOT}/profiles/profile_name/config/cells/cell_name/nodes/node_name/spi.policy

Used for embedded resources defined in the resources.xml file, such as the Java Message

Service (JMS), JavaMail, and JDBC drivers.

${WAS_INSTALL_ROOT}/profiles/profile_name/config/cells/cell_name/nodes/node_name/library.policy

Used by the shared library that is defined by the WebSphere Application Server administrative

console.

${WAS_INSTALL_ROOT}/profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy

Used as the default policy for J2EE applications.

In general, applications should not require more permissions to run than those recommended by the J2EE

specification to be portable among various application servers. However, some applications might require

more permissions. WebSphere Application Server supports a per application policy file, was.policy, to be

packaged together with each application from granting extra permissions to that application.

Attention: Grant extra permissions to an application after careful consideration because of the potential of

compromising the system integrity.

WebSphere Application Server uses a permission filtering policy file to alert users when an application

requires permissions that are on the filter list during application installation and causes the offended

application installation to fail. For example, it is recommended that you not give the

java.lang.RuntimePermission exitVM permission to an application so that application code cannot

terminate WebSphere Application Server. The filtering policy is defined by the filterMask in

${WAS_INSTALL_ROOT}/profiles/profile_name/config/cells/cell_name/filter.policy. Moreover,

WebSphere Application Server also performs run-time permission filtering that is based on the run-time

filtering policy to ensure that application code is not granted a permission that is considered harmful to

system integrity.

WebSphere Application Server Version 4 supported Java 2 Security, but enforced only three permissions

checking against exitVM, create and set the security manager. Other permission checking is disabled by

default.

Chapter 5. Planning to secure your environment 27

Therefore, many applications developed for prior releases of WebSphere Application Server might not be

Java 2 Security ready. To migrate those applications to WebSphere Application Server Version 6 quickly,

you might temporarily give those applications java.security.AllPermission in the was.policy file. It is

recommended to test or make those applications Java 2 Security ready; for example, identity what extra

permissions, if any, are required and to grant only those permissions to a particular application. Not

granting applications AllPermission can certainly reduce the risk of compromising system integrity. For

more information on migrating applications to WebSphere Application Server Version 6, refer to “Migrating

Java 2 security policy” on page 494.

The WebSphere Application Server run time uses Java 2 Security to protect sensitive run-time functions;

therefore, it is recommended that you enforce Java 2 security. Applications that are granted with

AllPermission not only have access to sensitive system resources, but also WebSphere Application

Server run-time resources and can potentially cause damage to both. In cases where an application can

be trusted to be safe, WebSphere Application Server allows Java 2 Security to be disabled on a per

application server basis. You can enforce Java 2 security by default in the security center and disable the

per application server Java 2 Security flag to disable it at the particular application server.

When you specify the Enable global security and Enable Java 2 Security options on the Global security

panel of the administrative console, the information, along with other sensitive configuration data, are

stored in a set of XML configuration files. Both role-based access control and Java 2 Security

permission-based access control are employed to protect the integrity of the configuration data. The

example uses configuration data protection to illustrate how system integrity is maintained.

v When Java 2 security is enforced, the application code cannot access the WebSphere Application

Server run-time classes that manage the configuration data unless it is granted the required WebSphere

Application Server run-time permissions.

v When Java 2 security is enforced, application code cannot access the WebSphere Application Server

configuration XML files unless it has been granted the required file read and write permission.

v The JMX administrative subsystem provides SOAP over HTTP or HTTPS and RMI/IIOP remote

interface to enable application programs to extract and to modify configuration files and data. When

global security is enabled, an application program can modify the WebSphere Application Server

configuration if the application program has presented valid authentication data and the security identity

has the required security roles.

v If a user can disable Java 2 security, then that user can modify the WebSphere Application Server

configuration including the WebSphere Application Server security identity and authentication data along

with other sensitive data. Only users with the administrator security role can disable Java 2 security.

v Because WebSphere Application Server security identity is given to the administrator role, only users

with the administrator role can disable global security, to change server ID and password, and to map

users and groups to administrative roles, and so on.

Other Runtime resources: Other WebSphere Application Server run time resources are protected by a

similar mechanism as described previously. It is very important to enable WebSphere Application Server

global security and to enforce Java 2 Security. J2EE Specification defines several authentication methods

for Web components: HTTP Basic Authentication, Form-Based Authentication, and HTTPS Client

Certificate Authentication. When you use client certificate login, it is more convenient for the browser client

if the Web resources have integral or confidential data constraint. If a browser uses HTTP to access the

Web resource, the Web container automatically redirects the browser to the HTTPS port. The CSIv2

security protocol also supports client certificate authentication. You can also use SSL client authentication

to setup secure communication among a selected set of servers based on a trust relationship.

If you start from the WebSphere Application Server plug-in at the Web server, you can configure SSL

mutual authentication between it and the WebSphere Application Server HTTPS server. When using a

self-signed certificate, you can restrict the WebSphere Application Server plug-in to communicate with only

the selected two WebSphere Application Server servers as shown in the following figure. Suppose you

want to restrict the HTTPS server in WebSphere Application Server A and in WebSphere Application

Server B to accept secure socket connections only from the WebSphere Application Server plug-in W. You

can generate three self-signed certificates using the IKEYMAN and the certificate management utilities.

28 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

For example, use certificate W and trust certificate A and B. The HTTPS server of WebSphere Application

Server A is configured to use certificate A and to trust certificate W. The HTTPS server of WebSphere

Application Server B is configured to use certificate B and to trust certificate W. For more information on

IKEYMAN, refer to “Starting the key management utility (iKeyman)” on page 446.

The trust relationship depicted in the previous picture is shown in the following table.

 Server Key Trust

WebSphere Application Server plug-in W A, B

WebSphere Application Server A A W

WebSphere Application Server B B W

When WebSphere Application Server is configured to use an Lightweight Directory Access Protocol

(LDAP) user registry, you also can configure SSL with mutual authentication between every application

server and the LDAP server with self-signed certificate so that a password is not passed in clear text from

WebSphere Application Server to the LDAP server. In this example, the node agent processes are not

discussed. Each node agent must communicate with application servers on the same node and with the

Deployment Manager. Node agents also must communicate with LDAP servers when they are configured

to use an LDAP user registry. It is reasonable to let the deployment manager and the node agents use the

same certificate. Suppose application server A and C are on the same computer node. The Node agent

on that node needs to have certificates A and C in its trust file. WebSphere Application Server does not

provide a user registry configuration or management utility. In addition, it does not dictate the user registry

password policy. It is recommended that you use the password policy recommended by your user registry,

including the password length and expiration period.

1. Determine which versions of WebSphere Application Server you are using.

2. Review the WebSphere Application Server security architecture.

3. Review each of the following topics as also defined in Related reference.

v “Authentication protocol for EJB security” on page 378

Browser

In
te

rn
e
t

Demilitarized Zone

(DMZ)
Database

(DB2 version

8.1 fix pack 6)

MQ

CICS

IBM Directory

(LDAP)

Internet

Enterprise

Information

Systems

D
o
m

a
in

fi
re

w
a
ll

P
ro

to
c
o
l
fi
re

w
a
ll

WebSphere

Application

Server A

Web

server

WebSphere

Application

Server plug-in

Administrative

WebSphere

Application

Server C

Administrative

WebSphere

Application

Server D

Administrative

WebSphere

Application

Server B

Administrative

WebSphere

Application Server

Deployment Manager,

Administrative

Console

Browse

E

W

Chapter 5. Planning to secure your environment 29

– “Supported authentication protocols” on page 386

– “Common Secure Interoperability Version 2 features” on page 382

– “Identity assertion” on page 382
v “Authentication mechanisms” on page 158

– “Lightweight Third Party Authentication settings” on page 163

– “Trust associations” on page 165

– “Single signon” on page 171
v “User registries” on page 189

– “Local operating system user registries” on page 191

– “Lightweight Directory Access Protocol” on page 197
v “Custom user registries” on page 211

v “Java 2 security” on page 463

– “Java 2 security policy files” on page 472
v “Java Authentication and Authorization Service” on page 240

– “Programmatic login” on page 66
v “J2EE Connector security” on page 256

v “Access control exception” on page 468

– “Role-based authorization” on page 120

– “Administrative console and naming service authorization” on page 151
v “Secure Sockets Layer” on page 411

– “Authenticity” on page 413

– “Confidentiality” on page 414

– “Integrity” on page 416

Security considerations when adding a Base Application Server node

to Network Deployment

At some point, you might decide to centralize the configuration of your stand-alone base application

servers by adding them into a Network Deployment cell. If your base application server is currently

configured with security, there are some issues to consider. The major issue when adding a node to the

cell is whether the user registries between the base application server and the Deployment Manager are

the same.

When adding a node to the cell, you automatically inherit both the user registry and the authentication

mechanism of the cell.

For distributed security, all servers in the cell must use the same user registry and authentication

mechanism. To recover from a user registry change, you must modify your applications so that the user

and group to role mappings are correct for the new user registry. To do this, see the article on “Assigning

users and groups to roles” on page 128.

Another major issue is the SSL public-key infrastructure. Prior to performing addNode with the Deployment

Manager, verify that addNode can communicate as an SSL client with the Deployment Manager. This

requires that the addNode truststore (configured in sas.client.props) contains the signer certificate of the

Deployment Manager personal certificate as found in the keystore (specified in the administrative console).

See the article, “Managing digital certificates” on page 443.

The following are other issues to consider when running the addNode command with security:

1. When attempting to run system management commands such as addNode, you need to explicitly

specify administrative credentials to perform the operation. The addNode command accepts -username

and -password parameters to specify the userid and password, respectively. The user ID and password

that are specified must be an administrative user; for example, a user that is a member of the console

users with Operator or Administrator privileges or the administrative user ID configured in the User

Registry. An example for addNode, addNode CELL_HOST 8879 -includeapps -username user -password

30 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

pass. -includeapps is optional, but this option attempts to include the server applications into the

Deployment Manager. The addNode command might fail if the user registries used by the WebSphere

Application Server and the Deployment Manager are not the same. To correct this problem, either

make the user registries the same or turn off security. If you change the user registries, remember to

verify that the users to roles and groups to roles mappings are correct. See addNode command for

more information on the addNode syntax.

2. Adding a secured remote node through the administrative console is not supported. You can either

disable security on the remote node before performing the operation or perform the operation from the

command line using the addNode script.

3. Before running the addNode command, you must verify that the truststore files on the nodes can

communicate with the keystore files from the Deployment Manager and vice versa. When using the

default DummyServerKeyFile and DummyServerTrustFile, you should not see this problem as these are

already able to communicate. However, never use these dummy files in a production environment or

anytime sensitive data is being transmitted.

4. After running addNode, the application server is in a new SSL domain. It might contain SSL

configurations that point to keystore and truststore files that are not prepared to interoperate with other

servers in the same domain. Consider which servers will be intercommunicating and ensure that the

servers are trusted within your truststore files.

Proper understanding of the security interactions between distributed servers greatly reduces problems

encountered with secure communications. Security adds complexity because additional function needs to

be managed. For security to function, it needs thorough consideration during the planning of your

infrastructure. This document helps to reduce the problems that could occur due to inherent security

interactions.

When you have security problems related to the WebSphere Application Server Network Deployment

environment, check the Chapter 16, “Troubleshooting security configurations,” on page 955 section to see

if you can get information about the problem. When trace is needed to solve a problem, because servers

are distributed, quite often it is required to gather trace on all servers simultaneously while recreating the

problem. This trace can be enabled dynamically or statically, depending on the type problem occurring.

Creating login key files

1. Create a login key file. The authenticating user IDs, passwords, and target realms for each different

target server are specified in the login key file, which is an ASCII file. When the security authentication

service processes the login key file, the passwords in the file are encoded.

2. Add information to the login key file in the following format:

Realm_name User_ID Password

3. Make sure that the data conforms to the following rules:

v One realm name

v One user ID, and one password defined in each entry

v One entry per line

v No blank lines between entries

v Comments on separate lines only

v Begin any comment with a pound sign (#):

Example:

Sample key file

First target realm

TargetRealm serverID serverPassword

#

Chapter 5. Planning to secure your environment 31

Second target realm

TargetRealm2 serverID2 serverPassword2

End of key file

A sample file named wsserver.key also contains these instructions. After installation, you can locate

this sample file in the install_root/properties directory. You can use or modify the sample file as

needed for testing.

Note: You can place the login key file anywhere on a host machine running the application server.

However, it is recommended that you place the login key file under a securable file system .

After creating the login key files, read the article entitled, “Preparing truststore files.”

Preparing truststore files

Secure Sockets Layer (SSL) protocol protects the communication between WebSphere Application

Servers. To complete the SSL connection, establish a valid truststore file for the WebSphere Application

Server. A truststore file is a key database file that contains the public keys (See “Creating login key files”

on page 31 for information about how to create a new keystore file.)

1. Extract the public key of the server by using the key management tool from WebSphere Application

Server. For details, see “Configuring the server for request decryption: choosing the decryption

method” on page 891.

2. Add the public key from the WebSphere Application Server as a signer certificate into the requesting

WebSphere Application Server truststore file. For details, see the related information about how to

“Importing signer certificates” on page 451.

The WebSphere Application Server truststore file is now ready to use for SSL connections with the

WebSphere Application Server.

See “Configuring the application server for interoperability” for interoperability.

Configuring the application server for interoperability

After the truststore file is ready, complete the following steps to configure the WebSphere Application

Server.

1. Configure the enterprise beans that access WebSphere Application Server. Before deploying the

enterprise beans, configure the RunAs Identity.

2. Enable security.

3. Enable outbound SAS authentication protocol.

4. Specify the truststore file in an Secure Sockets Layer (SSL) configuration alias and configure the

WebSphere Application Server with that alias.

5. Set the Request timeout and Locate request timeout values to zero for the Object Request Broker

(ORB) service.

6. Specify a security property named com.ibm.CORBA.keyFileName for the absolute path of the login key

file created earlier.

7. Restart the WebSphere Application Server.

32 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 6. Implementing security considerations at

installation time

Complete the following tasks to implement security before, during, and after installing WebSphere

Application Server.

1. “Securing your environment before installation.” This step describes how to install WebSphere

Application Server with the proper authority.

2. Install the WebSphere Application Server. This step describes how to install WebSphere Application

Server as the root user on a UNIX platform or as an administrator on a Windows platform.

During installation you are prompted to Chapter 7, “Migrating security configurations from previous

releases,” on page 39.

3. “Securing your environment after installation” on page 34. This step provides information on how to

protect password information after you install WebSphere Application Server.

Securing your environment before installation

The following instructions explain how to perform a product installation with proper authority on UNIX

platforms, Linux platforms, Solaris operating environments, and Windows platforms.

UNIX platforms

On UNIX platforms, log on as root and verify that the umask value is 022.

To verify that the umask value is 022, execute the umask command.

To set up the umask value as 022, execute the umask 022 command.

Linux platforms and Solaris operating environments

On Linux platforms or Solaris operating environments, make sure that the /etc directory contains a

shadow password file. The shadow password file is named shadow and is in the /etc directory. If the

shadow password file does not exist, an error occurs after enabling global security and configuring the

user registry as local operating system.

To create the shadow file, run the pwconv command (with no parameters). This command creates an

/etc/shadow file from the /etc/passwd file. After creating the shadow file, you can configure local operating

system security.

Windows platforms

On Windows platforms, the logon user must be a member of the administrator group with the rights of Act

as part of the operating system and Log on as a service.

To add the rights to a user on a Windows 2000 platform:

1. Click Start > Programs > Administrative Tools > Local Security Policy (for domain configuration,

select Domain Security Policies, instead).

2. From the Local Security Settings Panel, click Local Policies > User Rights Assignment and add the

following rights to the user ID:

v Act as part of the operating system

v Log on as a service

© Copyright IBM Corp. 2004 33

Securing your environment after installation

WebSphere Application Server depends on several configuration files created during installation. These

files contain password information and need protection. Although the files are protected to a limited degree

during installation, this basic level of protection is probably not sufficient for your site. Verify that these files

are protected in compliance with the policies of your site.

The files in the install_root\profiles\profile_name\config and

install_root\profiles\profile_name\properties , except for those in the following list, need protection.

For example, give permission to the user who logs onto the system for WebSphere Application Server

primary administrative tasks. Other users or groups, such as WebSphere Application Server console users

and console groups, who perform partial WebSphere Application Server administrative tasks, like

configuring, starting servers and stopping servers, need permissions as well.

The files in the install_root\profiles\profile_name\properties directory that should not be protected

are:

v TraceSettings.properties

v client.policy

v client_types.xml

v implfactory.properties

v sas.client.props

v sas.stdclient.properties

v sas.tools.properties

v soap.client.props

v wsadmin.properties

v wsjaas_client.conf

1. Secure files on a Windows system:

a. Open the browser for a view of the files and directories on the machine.

b. Locate and right-click the file or the directory that you want to protect.

c. Click Properties.

d. Click the Security tab.

e. Remove the Everyone entry and any other user or group that you do not want to have access to

the file.

f. Add the users who can access the files with the proper permission.

2. Secure files on UNIX systems. This procedure applies only to the ordinary UNIX file system. If your

site uses access-control lists, secure the files by using that mechanism. Any site-specific requirements

can affect the owner, group, and corresponding privileges. For example, on AIX,

a. Go to the install_root directory and change the ownership of the directory configuration and

properties to the user who logs onto the system for WebSphere Application Server primary

administrative tasks. Run the following command: chown -R logon_name directory_name

Where:

v login_name is a specified user or group.

v directory_name is the name of the directory that contains the files.

It is recommended that you assign ownership of the files that contain password information to the

user who runs the application server. If more than one user runs the application server, provide

permission to the group in which the users are assigned in the user registry.

b. Set up the permission by running the following command: chmod -R 770 directory_name.

c. Go to the install_root\profiles\profile_name\properties directory and set the following file

permission to everybody by running the following command: chmod 777 file_names. where

file_names are the following files:

v TraceSettings.properties

v client.policy

34 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v client_types.xml

v implfactory.properties

v sas.client.props

v sas.stdclient.properties

v sas.tools.properties

v soap.client.props

v wsadmin.properties

v wsjaas_client.conf

d. Create a group for WebSphere Application Server and put the users who perform full or partial

WebSphere Application Server administrative tasks in that group.

e. If you want to use WebSphere MQ as a JMS provider, restrict access to the /var/mqm directories

and log files used. Give write access to the user ID mqm or members of the mqm user group only.

After securing your environment, only the users given permission can access the files. Failure to

adequately secure these files can lead to a breach of security in your WebSphere Application Server

applications.

If failures occur that are caused by file accessing permissions, check the permission settings.

Protecting plain text passwords

The WebSphere Application Server has several plain text passwords. These passwords are not encrypted,

but are encoded. The following is a list of files with encoded passwords:

Important: WAS_INSTALL_ROOT is a WebSphere Application Server Environment variable that you can

configure through the administrative console by clicking Environment > WebSphere

variables.

 File name Additional information

WAS_INSTALL_ROOT

\profiles\profile_name\config\cells\cell_name\security.xml

The following fields contain encoded

passwords:

v LTPA password

v JAAS authentication data

v User registry server password

v LDAP user registry bind password

v Key file password

v Trust file password

v Cryptographic token device

password

WAS_INSTALL_ROOT

\profiles\profile_name\properties\sas.client.props

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

war/WEB-INF/ibm_web_bnd.xml Specify passwords for the default basic

authentication for the ″resource-ref″

bindings within all descriptors (except in

the Java cryptography architecture)

ejb jar/META-INF/ibm_ejbjar_bnd.xml Specify passwords for the default basic

authentication for the ″resource-ref″

bindings within all descriptors (except in

the Java crytography architecture)

client jar/META-INF/ibm-appclient_bnd.xml Specify passwords for the default basic

authentication for the ″resource-ref″

bindings within all descriptors (except in

the Java crytography architecture)

Chapter 6. Implementing security considerations at installation time 35

File name Additional information

ear/META-INF/ibm_application_bnd.xml Specify passwords for the default basic

authentication for the ″run as″ bindings

within all descriptors

WAS_INSTALL_ROOT

\profiles\profile_name\config\cells\cell_name\nodes\node_name\servers\server.xml

The following fields contain encoded

passwords:

v Key file password

v Trust file password

v Cryptographic token device

password

v Authentication target password

v Session persistence password

v DRS Client data replication

password

WAS_INSTALL_ROOT\profiles\profile_name\config\cells\cell_name\nodes\node_name\servers\server1\resources.xml The following fields contain encoded

passwords:

v WAS40Datasource password

v mailTransport password

v mailStore password

v MQQueue queue mgr password

For WebSphere Application Server and WebSphere Application Server

Express:

v

 WAS_INSTALL_ROOT\profiles\profile_name\config\cells\cell_name\ws-
security.xml

v

 WAS_INSTALL_ROOT\profiles\profile_name\config\cells\cell_name\nodes\node_name\servers\server1\ws-security

For Network Deployment:

WAS_INSTALL_ROOT\profiles\profile_name\config\cells\cell_name\ws-security.xml

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

WAS_INSTALL_ROOT

\profiles\profile_name\properties\soap.client.propscom.ibm.ssl.trustStorePassword

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.SOAP.loginPassword

WAS_INSTALL_ROOT

\profiles\profile_name\properties\sas.tools.properties

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

WAS_INSTALL_ROOT

\profiles\profile_name\properties\sas.stdclient.propertiescom.ibm.ssl.keyStorePassword

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

WAS_INSTALL_ROOT \profiles\profile_name\properties\wsserver.key

To re-encode a password in one of the previous files, complete the following steps:

1. Access the file using a text editor and type over the encoded password in plain text. The new

password is shown in plain text and must be encoded.

2. Use the PropFilePasswordEncoder.bat or PropFilePasswordEncode.sh file in the

WAS_INSTALL_ROOT\profiles\profile_name\bin\ directory to re-encode the password.

If you are re-encoding SAS properties files, type PropFilePasswordEncoder file_name -sas and the

PropFilePasswordEncoder file encodes the known SAS properties.

36 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

If you are encoding files that are not SAS properties files, type PropFilePasswordEncoder file_name

password_properties_list

file_name is the name of the z/SAS properties file. password_properties_list is the name of the

properties to encode within the file.

Use the PropFilePasswordEncoder utility to encode WebSphere Application Server password files only.

The utility cannot encode passwords contained in XML files or other files that contain open and close

tags.

If you reopen the affected file or files, the passwords do not display in plain text. Instead, the passwords

appear encoded. WebSphere Application Server does not provide a utility for decoding the passwords.

PropFilePasswordEncoder command reference

Purpose

The PropFilePasswordEncoder command encodes passwords located in plain text property files. This

command encodes both Secure Authentication Server (SAS) property files and non-SAS property files.

After you have encoded the passwords, note that a decoding command does not exist. To encode

passwords, you must run this command from the install_dir/bin directory of a WebSphere Application

Server installation.

Syntax

The command syntax is as follows:

PropFilePasswordEncoder file_name

Parameters

The following option is available for the PropFilePasswordEncoder command:

-sas

Encodes SAS property files.

The following examples demonstrate the correct syntax.

PropFilePasswordEncoder file_name password_properties_list

PropFilePasswordEncoder file_name -SAS

Chapter 6. Implementing security considerations at installation time 37

38 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 7. Migrating security configurations from previous

releases

This article addresses the need to migration your security configurations from a previous release of IBM

WebSphere Application Server to WebSphere Application Server, Version 6. Complete the following steps

to migrate your security configurations:

v Before migrating your configurations, verify that the administrative server of the previous release is

running.

v If security is enabled in the previous release, obtain the server ID and password of the previous

release. This information is needed to log onto the administrative server of the previous release during

migration.

v You can optionally disable security in the previous release before migrating the installation. There is no

logon required during the installation.

1. Start the First steps wizard by launching the firststeps.bat or firststeps.sh file. The first steps file

is located in the following directory:

v

./install_root/profiles/profile_name/firststeps/firststeps.sh

v

install_root\profiles\profile_name\firststeps\firststeps.bat

2. On the First steps wizard panel, click Migration wizard.

3. Follow the instructions provided in the First steps wizard to complete the migration.

For more information on the Migration wizard, see Using the Migration wizard.

The security configuration of previous WebSphere Application Server releases and its applications are

migrated to the new installation of WebSphere Application Server Version 6.

This task is for migrating an installation.

If custom user registry is used in the previous version, the migration process does not migrate the class

files used by the custom user registry in the <previous_install_root>\classes directory. Therefore, after

migration, copy your custom user registry implementation classes to the install_root\classes directory.

If you upgrade from WebSphere Application Server, Version 5.x or 4.0.x to WebSphere Application Server,

Version 6, data associated with Version 5.x or 4.0.x trust associations is not automatically migrated to

Version 6. To migrate trust associations, see “Migrating trust association interceptors” on page 42.

Migrating custom user registries

Before you perform this task, it is assumed that you already have a custom user registry implemented and

are working with WebSphere Application Server Version 5.x or 4.x. The custom registry in WebSphere

Application Server Version 4 is based on the CustomRegistry interface. For WebSphere Application Server

Version 5.x and later, the interface is called the UserRegistry interface. The WebSphere Application Server

Version 4-based custom registry works without any changes to the implementation in WebSphere

Application Server Version 5.x or later except when the implementation is using data sources to connect to

a database during initialization. If the previous implementation is using a data source to access a

database, change the implementation to use JDBC connections to connect to the database. The

WebSphere Application Server Version 4 version of the CustomRegistry interface was deprecated in

WebSphere Application Server Version 5. So, moving your implementation to the WebSphere Application

Server Version 5.x and later based interface is expected.

In WebSphere Application Server Version 5.x and later, in addition to the UserRegistry interface, the

custom user registry requires the Result object to handle user and group information. This file is already

provided in the package and you are expected to use it for the getUsers, getGroups and the

getUsersForGroup methods.

© Copyright IBM Corp. 2004 39

In WebSphere Application Server Version 4.x, it might have been possible to use other WebSphere

Application Server components (for example, datasources) to initialize the custom registry. This is no

longer possible in WebSphere Application Server Version 5 or later, because other components like the

containers are initialized after security and are not available during the registry initialization. In WebSphere

Application Server Version 5, a custom registry implementation is a pure custom implementation,

independent of other WebSphere Application Server components.

In WebSphere Application Server Version 4, if you had display names for users the EJB method

getCallerPrincipal() and the servlet methods getUserPrincipal() and getRemoteUser() returned the

display names. This behavior changed in WebSphere Application Server Version 5.x. By default, these

methods now return the security name instead of the display name. However, if you need the display

names to return, set the WAS_UseDisplayName property to true. See the getUserDisplayName method

description or the Javadoc, for more information.

If the migration tool was used to migrate the WebSphere Application Server Version 4 configuration to

WebSphere Application Server Version 5.x or later, be aware that this migration does not involve any

changes to your existing code. Since the WebSphere Application Server Version 4 custom registry works

in WebSphere Application Server Version 5.x or later without any changes to the implementation (except

when using data sources) you can use the Version 4-based custom registry after the migration without

modifying the code. Consider that the migration tool might not copy your implementation files from Version

4 to Version 5.x or later. You might have to copy them to the class path in the Version 6 setup (preferably

to the classes subdirectoy, just like in Version 4). If you are using the WebSphere Application Server

Network Deployment version, copy the files to the cell and to each of the nodes class paths.

In Version 5.x or later, a case insensitive authorization can occur when using the custom registry. This

authorization is in effect only on the authorization check. This function is useful in cases where your

custom registry returns inconsistent (in terms of case) results for user and group unique IDs.

Note: Setting this flag does not have any effect on the user names or passwords. Only the unique IDs

returned from the registry are changed to lower-case before comparing them with the information in

the authorization table, which is also converted to lowercase during run time.

Before proceeding, look at the UserRegistry interface. See “Developing custom user registries” on page

104 for a description of each of these methods in detail and the changes from Version 4.

The following steps go through in detail all the changes required to move your WebSphere Application

Server Version 4 custom user registry to the Version 5.x or later custom user registry. The steps are very

simple and involve minimal code changes. The sample implementation file is used as an example when

describing some of the steps.

 1. Change your implementation to UserRegistry instead of CustomRegistry. Change:

public class FileRegistrySample implements CustomRegistry

to

public class FileRegistrySample implements UserRegistry

 2. Throw the java.rmi.RemoteException in the constructors public FileRegistrySample() throws

java.rmi.RemoteException

 3. Change the mapCertificate method to take a certificate chain instead of a single certificate. Change

public String mapCertificate(X509Certificate cert)

to

public String mapCertificate(X509Certificate[]cert)

Having a certificate chain gives you the flexibility to act on the chain instead of one certificate. If you

are only interested in the first certificate just take the first certificate in the chain before processing. In

Version 5, the mapCertificate method is called to map the user in a certificate to a valid user in the

40 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

registry, when certificates are used for authentication by the Web or the Java clients (transport layer

certificates, Identity Assertion certificates). In Version 4, this was only called by Web clients since the

Common Secure Interoperability Version 2 (CSIv2) protocol was not supported.

 4. Remove the getUsers() method.

 5. Change the signature of the getUsers(String) method to return a Result object and accept an

additional parameter (int). Change:

public List getUsers(String pattern)

to

public Result getUsers(String pattern, int limit)

In your implementation, construct the Result object from the list of the users obtained from the

registry (whose number is limited to the value of the limit parameter) and call the setHasMore()

method on the Result object if the total number of users in the registry exceeds the limit value.

 6. Change the signature of the getUsersForGroup(String) method to return a Result object and accept

an additional parameter (int) and throw a new exception called NotImplementedException. Change

the following:

public List getUsersForGroup(String groupName)

 throws CustomRegistryException,

 EntryNotFoundException {

to

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

In Version 5.x and later, this method is not called directly by the WebSphere Application Server

Security component. However, other components of the WebSphere Application Server like the

WebSphere Business Integration Server Foundation Process Choreographer use this method when

staff assignments are modeled using groups. Since this already is implemented in WebSphere

Application Server Version 4, it is recommended that you change the implementation similar to the

getUsers method as explained in step 5.

 7. Remove the getUniqueUserIds(String) method.

 8. Remove the getGroups() method.

 9. Change the signature of the getGroups(String) method to return a Result object and accept an

additional parameter (int). change the following:

public List getGroups(String pattern)

to

public Result getGroups(String pattern, int limit)

In your implementation, construct the Result object from the list of the groups obtained from the

registry (whose number is limited to the value of the limit parameter) and call the setHasMore()

method on the Result object if the total number of groups in the registry exceeds the limit value.

10. Add the createCredential method. This method is not called at this time, so return as null.

public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws CustomRegistryException,

 NotImplementedException,

Chapter 7. Migrating security configurations from previous releases 41

EntryNotFoundException {

 return null;

 }

The first and second lines of the previous code example normally appear on one line. However, it

extended beyond the width of the page.

11. To build the Version 5.x and later implementation make sure you have the sas.jar and wssec.jar in

your class path.

%install_root%\java\bin\javac -classpath %WAS_HOME%\lib\wssec.jar;

%WAS_HOME%\lib\sas.jar FileRegistrySample.java

Type the previous lines as one continuous line.

12. Copy the implementation classes to the product class path. The %install_root%/lib/ext directory is

the preferred location. If you are using the Network Deployment product, make sure that you copy

these files to the cell and all the nodes. Without the files in each of the node class paths the nodes

and the application servers in those nodes cannot start when security is on.

13. Use the administrative console to set up the custom registry. Follow the instructions in the

“Configuring custom user registries” on page 213 article to set up the custom registry including the

IgnoreCase flag. Make sure that you add the WAS_UseDisplayName properties, if required.

Migrates a Version 4 custom registry to the Version 5.x and later custom registry.

This step is required to migrate a custom registry from WebSphere Application Server Version 4 to

WebSphere Application Server Version 5.x and later.

If you are enabling security, make sure you complete the remaining steps. Once completed, save the

configuration and restart all the servers. Try accessing some J2EE resources to verify that the custom

registry migration was successful.

Migrating trust association interceptors

The following topics are addressed in this document:

v Changes to the product-provided trust association interceptors

v Migrating product-provided trust association interceptors

v Changes to the custom trust association interceptors

v Migrating custom trust association interceptors

Changes to the product-provided trust association interceptors

For the product provided implementation for the WebSeal server a new optional property

com.ibm.websphere.security.webseal.ignoreProxy has been added. If this property is set to true or yes,

the implementation does not check for the proxy host names and the proxy ports to match any of the host

names and ports listed in the com.ibm.websphere.security.webseal.hostnames and the

com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains

the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),

HTP/1.1 webseal1:7002, 1.1 webseal2:7001

Note: The previous VIA header information was split onto two lines due to the width of the printed page.

and the com.ibm.websphere.security.webseal.ignoreProxy is set to true or yes, the host name Fred is

not be used when matching the host names. By default, this property is not set, which implies that any

42 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

proxy host names and ports expected in the VIA header should be listed in the host names and the ports

properties to satisfy the isTargetInterceptor method.

Migrating product-provided trust association interceptors

The properties located in the webseal.properties and trustedserver.properties files are not migrated

from previous versions of the WebSphere Application Server. You must migrate the appropriate properties

to WebSphere Application Server, Version 5 using the trust association panels in the administrative

console. For more information, see Configuring trust association interceptors.

Changes to the custom trust association interceptors

If the custom interceptor extends,

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor, then implement the following

new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the Trust Association implementation.

Zero (0) is the default value for indicating the interceptor was successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status

you can either change your implementation to match the expectations or make one of the following

changes:

Method 1:

Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust

association interceptor custom properties. Set the property to the value that indicates that the

interceptor is successfully initialized. All of the other possible values imply failure. In case of

failure, the corresponding trust association interceptor is not used.

Method 2:

Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust

association interceptor custom properties. Set the value of this property to true, which tells

WebSphere Application Server to ignore the status of this method. If you add this property to the

custom properties, WebSphere Application Server does not check the return status, which is

similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props); method replaces the public int init (String

propsFile) method.

The init(Properties) method accepts a java.util.Properties object which contains the set of properties

required to initialize the interceptor. All the properties set for an interceptor (by using the Custom

Properties link for that interceptor or using scripting) will be sent to this method. The interceptor can then

use these properties to initialize itself. For example, in the product provided implementation for the

WebSEAL server, this method reads the hosts and ports so that a request coming in can be verified to

come from trusted hosts and ports. A return value of 0 implies that the interceptor initialization is

successful. Any other value implies that the initialization was not successful and the interceptor will not be

used.

All the properties set for an interceptor (by using the Custom Properties link in the administrative console

for that interceptor or using scripting) is sent to this method. The interceptor can then use these properties

to initialize itself. For example, in the product-provided implementation for the WebSEAL server, this

method reads the hosts and ports so that an incoming request can be verified to come from trusted hosts

and ports. A return value of 0 implies that the interceptor initialization is successful. Any other value implies

that the initialization was not successful and the interceptor is ignored.

Chapter 7. Migrating security configurations from previous releases 43

Note: The init(String) method still works if you want to use it instead of implementing the

init(Properties) method. The only requirement is that the file name containing the custom trust

association properties should now be entered using the Custom Properties link of the interceptor

in the administrative console or by using scripts. You can enter the property using either of the

following methods. The first method is used for backward compatibility with previous versions of

WebSphere Application Server.

Method 1:

The same property names used in the previous release are used to obtain the file name.

The file name is obtained by concatenating the .config to the

com.ibm.websphere.security.trustassociation.types property value. If the file name is

called myTAI.properties and is located in the C:/WebSphere/AppServer/properties

directory, set the following properties:

v com.ibm.websphere.security.trustassociation.types = myTAItype

v com.ibm.websphere.security.trustassociation.myTAItype.config =

C:/WebSphere/AppServer/properties/myTAI.properties
Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in

the trust association custom properties to the location of the file. For example, set the

following property:

com.ibm.websphere.security.trustassociation.initPropsFile=

C:/WebSphere/AppServer/properties/myTAI.properties

 The previous line of code was split into two lines due to the width of the screen. Type as

one continuous line.

However, it is highly recommended that your implementation be changed to implement the init(Properties)

method instead of relying on init (String propsfile) method.

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are not automatically

migrated to version 5.x and later. Users can manually migrate these trust associations using the following

steps:

1. Recompile the implementation file, if necessary.

For more information, refer to the ″Changes to the custom trust association interceptors″ section

previously discussed in this document.

To recompile the implementation file, type the following:

%WAS_HOME%/java/bin/javac -classpath %WAS_HOME%/lib/wssec.jar;

%WAS_HOME%/lib/j2ee.jar <your implementation file>.java

Note: The previous line of code was broken into two lines due to the width of the page. Type the code

as one continuous line.

2. Copy the custom trust association interceptor class files to a location in your product class path. It is

suggested that you copy these class files into the %WAS_HOME%/lib/ext directory.

3. Start the WebSphere Application Server

4. Enable security to use the trust association interceptor. The properties located in your custom trust

association properties file and in the trustedserver.properties file are not migrated from previous

versions of WebSphere Application Server to version 5. You must migrate the appropriate properties to

WebSphere Application Server, version 5.x or later using the trust association panels in the GUI. For

more information, see Configuring trust association interceptors.

44 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Migrating Common Object Request Broker Architecture programmatic

login to Java Authentication and Authorization Service

WebSphere Application Server fully supports the Java Authentication and Authorization Service (JAAS) as

programmatic login APIs. See “Configuring application logins for Java Authentication and Authorization

Service” on page 242 and “Developing programmatic logins with the Java Authentication and Authorization

Service” on page 74, for more details on JAAS support.

This document outlines the deprecated Common Object Request Broker Architecture (CORBA)

programmatic login APIs and the alternatives provided by JAAS. The following are the deprecated CORBA

programmatic login APIs:

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/LoginHelper.java.

The sampleApp is not included in Version 5.x and later.

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/ServerSideAuthenticator.java.

The sampleApp is not included in Version 5.x and later.

v com.ibm.IExtendedSecurity._LoginHelper.

This API is included with the product, but is deprecated.

v org.omg.SecurityLevel2.Credentials.

This API is included with the product, but not recommended to use.

The APIs provided in WebSphere Application Server Version 5.x and later are a combination of standard

JAAS APIs and a product implementation of standard JAAS interfaces.

The following information is only a summary; refer to the JAAS documentation for your platform located at:

http://www.ibm.com/developerworks/java/jdk/security/ .

v Programmatic login APIs:

– javax.security.auth.login.LoginContext

– javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product

provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

Provides a non-prompt CallbackHandler when the application pushes basic authentication

data (user ID, password, and security realm) or token data to product LoginModules. This

API is recommended for server-side login.

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl

Provides a login prompt CallbackHandler to gather basic authentication data (user ID,

password, and security realm). This API is recommended for client-side login.

Note: If this API is used on the server side, the server is blocked for input.
– javax.security.auth.callback.Callback interface:

javax.security.auth.callback.NameCallback

Provided by JAAS to pass the user name to the LoginModules interface.

javax.security.auth.callback.PasswordCallback

Provided by JAAS to pass the password to the LoginModules interface.

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

Provided by the product to perform a token-based login. With this API, an application can

pass a token-byte array to the LoginModules interface.
– javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides LoginModules implementation for client and server-side

login. Refer to “Configuring application logins for Java Authentication and Authorization Service” on

page 242 for details.
v javax.security.Subject:

Chapter 7. Migrating security configurations from previous releases 45

http://www.ibm.com/developerworks/java/jdk/security/

com.ibm.websphere.security.auth.WSSubject

An extension provided by the product to invoke remote J2EE resources using the credentials in

the javax.security.Subject

com.ibm.websphere.security.cred.WSCredential

After a successful JAAS login with the WebSphere Application Server LoginModules intefaces, a

com.ibm.websphere.security.cred.WSCredential credential is created and stored in the

Subject.

com.ibm.websphere.security.auth.WSPrincipal

An authenticated principal, that is created and stored in a Subject that is authenticated by the

WebSphere LoginModules interface.

1. Use the following as an example of how to perform programmatic login using the CORBA-based

programmatic login APIs: The CORBA-based programmatic login APIs are replaced by JAAS login.

public class TestClient {

...

private void performLogin() {

// Get the ID and password of the user.

String userid = customGetUserid();

String password = customGetPassword();

// Create a new security context to hold authentication data.

LoginHelper loginHelper = new LoginHelper();

try {

// Provide the ID and password of the user for authentication.

org.omg.SecurityLevel2.Credentials credentials =

loginHelper.login(userid, password);

// Use the new credentials for all future invocations.

loginHelper.setInvocationCredentials(credentials);

// Retrieve the name of the user from the credentials

// so we can tell the user that login succeeded.

String username = loginHelper.getUserName(credentials);

System.out.println(″Security context set for user: ″+username);

} catch (org.omg.SecurityLevel2.LoginFailed e) {

// Handle the LoginFailed exception.

}

}

...

}

2. Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS

programmatic login APIs. The following example assumes that the application code is granted for the

required Java 2 security permissions. For more information, see “Configuring application logins for

Java Authentication and Authorization Service” on page 242, “Configuring Java 2 security” on page 469

and the JAAS documentation located at: http://www.ibm.com/developerworks/java/jdk/security/.

public class TestClient {

...

private void performLogin() {

// Create a new JAAS LoginContext.

javax.security.auth.login.LoginContext lc = null;

try {

// Use GUI prompt to gather the BasicAuth data.

lc = new javax.security.auth.login.LoginContext(″WSLogin″,

46 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println(″ERROR: failed to instantiate a LoginContext and the exception: ″

+ e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission ″createLoginContext″ is not granted

// to the application, or the JAAS Login Configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB

} catch (Exception e) {

System.out.println(″ERROR: error while accessing EJB resource, exception: ″

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

// Retrieve the name of the principal from the Subject

// so we can tell the user that login succeeded,

// should only be one WSPrincipal.

java.util.Set ps =

s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);

java.util.Iterator it = ps.iterator();

while (it.hasNext()) {

com.ibm.websphere.security.auth.WSPrincipal p =

(com.ibm.websphere.security.auth.WSPrincipal) it.next();

System.out.println(″Principal: ″ + p.getName());

}

} catch (javax.security.auth.login.LoginException e) {

System.err.println(″ERROR: login failed with exception: ″ + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Chapter 7. Migrating security configurations from previous releases 47

}

...

}

Migrating from the CustomLoginServlet class to servlet filters

The CustomLoginServlet class was deprecated in Version 5. Those applications using the

CustomLoginServlet class to perform authentication now need to use form-based login. Using the

form-based login mechanism, you can control the look and feel of the login screen. In form-based login, a

login page is specified that displays when retrieving the user ID and password information. You also can

specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.

Servlet filters can dynamically intercept requests and responses to transform or use the information

contained in the requests or responses. One or more servlet filters attach to a servlet or a group of

servlets. Servlet filters also can attach to JSP files and HTML pages. All the attached servlet filters are

called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant Web

container. A form login servlet performs the authentication and servlet filters can perform additional

authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either

form login page or for /j_security_check URL. The j_security_check is posted by the form login page

with the j_username parameter, containing the user name and the j_password parameter containing the

password. A servlet filter can use user name and password information to perform more authentication or

meet other special needs.

1. Develop a form login page and error page for the application, as described in “Developing form login

pages” on page 59.

2. Configure the form login page and the error page for the application as described in “Securing Web

applications using an assembly tool” on page 118.

3. Develop servlet filters if additional processing is required before and after form login authentication.

Refer to “Developing servlet filters for form login processing” on page 54 for details.

4. Configure the servlet filters developed in the previous step for either the form login page URL or for the

/j_security_check URL. Use an assembly tool or development tools like Rational Application

Developer to configure filters. After configuring the servlet filters, the web-xml file contains two stanzas.

The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.

The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL. In

this case, the servlet filter maps to /j_security_check.

<filter id=″Filter_1″>

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login operation</description>

 <init-param>

 <param-name>ParamName</param-name>

 <param-value>ParamValue</param-value>

 <init-param>

 </filet>

 <filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

 </filter-mapping>

48 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

This migration results in an application that uses form-based login and servlet filters without the use of the

CustomLoginServlet class.

The use of form-based login and servlet filters by the new application are used to replace the

CustomLoginServlet class. Servlet filters also are used to perform additional authentication, auditing and

logging.

Chapter 7. Migrating security configurations from previous releases 49

50 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 8. Developing secured applications

IBM WebSphere Application Server provides security components that provide or collaborate with other

services to provide authentication, authorization, delegation, and data protection. WebSphere Application

Server also supports the security features described in the Java 2 Platform, Enterprise Edition (J2EE)

specification. An application goes through three stages before it is ready to run:

v Development

v Assembly

v Deployment

Most of the security for an application is configured during the assembly stage. The security configured

during the assembly stage is called declarative security because the security is declared or defined in the

deployment descriptors. The declarative security is enforced by the security run time. For some

applications, declarative security is not sufficient to express the security model of the application. For these

applications, you can use programmatic security.

1. Develop secure Web applications.

2. Develop secure Web applications. For more information, see “Developing with programmatic security

APIs for Web applications.”

3. Develop servlet filters for form login processing. For more information, see “Developing servlet filters

for form login processing” on page 54.

4. Develop form login pages. For more information, see “Developing form login pages” on page 59.

5. Develop enterprise bean component applications. For more information, see “Developing with

programmatic APIs for EJB applications” on page 62.

6. Develop with Java Authentication and Authorization Service to log in programmatically. For more

information, see “Developing programmatic logins with the Java Authentication and Authorization

Service” on page 74.

7. Develop your own Java 2 security mapping module. For more information, see “Configuring application

logins for Java Authentication and Authorization Service” on page 242.

8. Develop custom user registries. For more information, see “Developing custom user registries” on page

104.

9. Develop a custom interceptor for trust associations. For more information, see “Trust association

interceptor support for Subject creation” on page 112

Developing with programmatic security APIs for Web applications

Programmatic security is used by security-aware applications when declarative security alone is not

sufficient to express the security model of the application. Programmatic security consists of the following

methods of the HttpServletRequest interface:

getRemoteUser()

Returns the user name the client used for authentication. Returns null if no user is authenticated.

isUserInRole

(String role name): Returns true if the remote user is granted the specified security role. If the

remote user is not granted the specified role, or if no user is authenticated, it returns false.

getUserPrincipal()

Returns the java.security.Principal object containing the remote user name. If no user is

authenticated, it returns null.

When the isUserInRole() method is used, declare a security-role-ref element in the deployment descriptor

with a role-name subelement containing the role name passed to this method. Since actual roles are

created during the assembly stage of the application, you can use a logical role as the role name and

provide enough hints to the assembler in the description of the security-role-ref element to link that role to

the actual role. During assembly, the assembler creates a role-link subelement to link the role name to the

© Copyright IBM Corp. 2004 51

actual role. Creation of a security-role-ref element is possible if development tools such as Rational Web

Developer is used. You also can create the security-role-ref element during assembly stage using an

assembly tool.

1. Add the required security methods in the servlet code.

2. Create a security-role-ref element with the role-name field. If a security-role-ref element is not created

during development, make sure it is created during the assembly stage.

A programmatically secured servlet application.

This step is required to secure an application programmatically. This action is particularly useful is when a

Web application wants to access external resources and wants to control the access to external resources

using its own authorization table (external-resource to remote-user mapping). In this case, use the

getUserPrincipal() or getRemoteUser() methods to get the remote user and then it can consult its own

authorization table to perform authorization. The remote user information also can help retrieve the

corresponding user information from an external source such as a database or from an enterprise bean.

You can use the isUserInRole() method in a similar way.

After development, a security-role-ref element can be created:

<security-role-ref>

<description>Provide hints to assembler for linking this role

name to an actual role here<\description>

<role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

<description>Hints provided by developer to map the role

name to the role-link</description>

<role-name>Mgr</role-name>

<role-link>Manager</role-link>

</security-role-ref>

You can add programmatic servlet security methods inside any servlet doGet(), doPost(), doPut(),

doDelete() service methods. The following example depicts using a programmatic security API:

public void doGet(HttpServletRequest request,

HttpServletResponse response) {

 // to get remote user using getUserPrincipal()

 java.security.Principal principal = request.getUserPrincipal();

 String remoteUser = principal.getName();

 // to get remote user using getRemoteUser()

 remoteUser = request.getRemoteUser();

 // to check if remote user is granted Mgr role

 boolean isMgr = request.isUserInRole(″Mgr″);

 // use the above information in any way as needed by

 // the application

52 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

....

}

After developing an application, use an assembly tool to create roles and to link the actual roles to role

names in the security-role-ref elements. For more information, see “Securing Web applications using an

assembly tool” on page 118.

Example: Web applications code

The following example depicts a Web application or servlet using the programmatic security model. The

following example is one usage and not necessarily the only usage of the programmatic security model.

The application can use the information returned by the getUserPrincipal(), isUserInRole() and

getRemoteUser() methods in any other way that is meaningful to that application. Using the declarative

security model whenever possible is strongly recommended.

File : HelloServlet.java

public class HelloServlet extends javax.servlet.http.HttpServlet {

 public void doPost(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws javax.servlet.ServletException, java.io.IOException {

 }

public void doGet(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws javax.servlet.ServletException, java.io.IOException {

 String s = "Hello";

 // get remote user using getUserPrincipal()

 java.security.Principal principal = request.getUserPrincipal();

 String remoteUserName = "";

 if(principal != null)

 remoteUserName = principal.getName();

// get remote user using getRemoteUser()

 String remoteUser = request.getRemoteUser();

 // check if remote user is granted Mgr role

 boolean isMgr = request.isUserInRole("Mgr");

 // display Hello username for managers and bob.

 if (isMgr || remoteUserName.equals("bob"))

 s = "Hello " + remoteUserName;

 String message = "<html> \n" +

 "<head><title>Hello Servlet</title></head>\n" +

 "<body> /n +"

 "<h1> " +s+ </h1>/n " +

 byte[] bytes = message.getBytes();

 // displays "Hello" for ordinary users

 // and displays "Hello username" for managers and "bob".

 response.getOutputStream().write(bytes);

Chapter 8. Developing secured applications 53

}

}

After developing the servlet, you can create a security role reference for the HelloServlet as shown in the

following example:

<security-role-ref>

<description> </description>

<role-name>Mgr</role-name>

</security-role-ref>

Developing servlet filters for form login processing

You can control the look and feel of the login screen using the form-based login mechanism. In

form-based login, you specify a login page that is used to retrieve the user ID and password information.

You also can specify an error page that displays when authentication fails.

If additional authentication or additional processing is required before and after authentication, servlet

filters are an option. Servlet filters can dynamically intercept requests and responses to transform or use

the information contained in the requests or responses. One or more servlet filters can attach to a servlet

or a group of servlets. Servlet filters also can attach to JSP files and HTML pages. All the attached servlet

filters are called before the servlet is invoked.

Both form-based login and servlet filters are supported by any servlet version 2.3 specification complaint

Web container. The form login servlet performs the authentication and servlet filters perform additional

authentication, auditing, or logging information.

To perform pre-login and post-login actions using servlet filters, configure these filters for either form login

page support or for the /j_security_check URL. The j_security_check is posted by a form login page with

the j_username parameter containing the user name and the j_password parameter containing the

password. A servlet filter can use the user name parameter and password information to perform more

authentication or other special needs.

A servlet filter implements the javax.servlet.Filter class. There are three methods in the filter class that

need implementing:

v init(javax.servlet.FilterConfig cfg). This method is called by the container exactly once when the

servlet filter is placed into service. The FilterConfig passed to this method contains the init-parameters

of the servlet filter. Specify the init-parameters for a servlet filter during configuration using the assembly

tool.

v destroy(). This method is called by the container when the servlet filter is taken out of a service.

v doFilter(ServletRequest req, ServletResponse res, FilterChain chain). This method is called by the

container for every servlet request that maps to this filter before invoking the servlet. FilterChain passed

to this method can be used to invoke the next filter in the chain of filters. The original requested servlet

executes when the last filter in the chain calls the chain.doFilter() method. Therefore, all filters should

call the chain.doFilter() method for the original servlet to execute after filtering. If an additional

authentication check is implemented in the filter code and results in failure, the original servlet does not

be execute. The chain.doFilter() method is not called and can be redirected to some other error page.

If a servlet maps to many servlet filters, servlet filters are called in the order that is listed in the deployment

descriptor of the application (web.xml).

An example of a servlet filter follows: This login filter can map to /j_security_check to perform pre-login and

post-login actions.

54 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

import javax.servlet.*;

 public class LoginFilter implements Filter {

 protected FilterConfig filterConfig;

 // Called once when this filter is instantiated.

 // If mapped to j_security_check, called

 // very first time j_security_check is invoked.

 public void init(FilterConfig filterConfig) throws ServletException {

 this.filterConfig = filterConfig;

 }

 public void destroy() {

 this.filterConfig = null;

 }

 // Called for every request that is mapped to this filter.

 // If mapped to j_security_check,

 // called for every j_security_check action

 public void doFilter(ServletRequest request,

 ServletResponse response, FilterChain chain)

 throws java.io.IOException, ServletException {

 // perform pre-login action here

 chain.doFilter(request, response);

 // calls the next filter in chain.

 // j_security_check if this filter is

 // mapped to j_security_check.

 // perform post-login action here.

 }

 }

Place the servlet filter class file in the WEB-INF/classes directory of the application.

Configuring servlet filters

IBM Rational Application Developer or an assembly tool can configure the servlet filters. There are two

steps in configuring a servlet filter.

1. Name the servlet filter and assign the corresponding implementation class to the servlet filter.

Optionally, assign initialization parameters that get passed to the init() method of the servlet

filter.After configuring the servlet filter, the application deployment descriptor, web.xml, contains a

servlet filter configuration similar to the following example:

<filter id=″Filter_1″>

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login

 operation</description>

 <init-param>// optional

 <param-name>ParameterName</param-name>

Chapter 8. Developing secured applications 55

<param-value>ParameterValue</param-value>

 </init-param>

</filter>

2. Map the servlet filter to URL or servlet.

After mapping the servlet filter to a servlet or a URL, the application deployment descriptor (web.xml)

contains servlet mapping similar to the following example:

<filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

 // can be servlet <servlet>servletName</servlet>

</filter-mapping>

You can use servlet filters to replace the CustomLoginServlet, and to perform additional authentication,

auditing, and logging.

The WebSphere Application Server Samples Gallery provides a form login sample that demonstrates how

to use the WebSphere Application Server login facilities to implement and configure form login procedures.

The sample integrates the following technologies to demonstrate the WebSphere Application Server and

Java 2 Platform, Enterprise Edition (J2EE) login functionality:

v J2EE form-based login

v J2EE servlet filter with login

v IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access

the form login sample, see Accessing the Samples (Samples Gallery).

Example: Servlet filters

This example illustrates one way the servlet filters can perform pre-login and post-login processing during

form login.

Servlet filter source code: LoginFilter.java

/**

 * A servlet filter example: This example filters j_security_check and

 * performs pre-login action to determine if the user trying to log in

 * is in the revoked list. If the user is on the revoked list, an error is

 * sent back to the browser.

 *

 * This filter reads the revoked list file name from the FilterConfig

 * passed in the init() method. It reads the revoked user list file and

 * creates a revokedUsers list.

 *

 * When the doFilter method is called, the user logging in is checked

 * to make sure that the user is not on the revoked Users list.

 *

 */

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class LoginFilter implements Filter {

 protected FilterConfig filterConfig;

56 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

java.util.List revokeList;

 /**

 * init() : init() method called when the filter is instantiated.

 * This filter is instantiated the first time j_security_check is

 * invoked for the application (When a protected servlet in the

 * application is accessed).

 */

 public void init(FilterConfig filterConfig) throws ServletException {

 this.filterConfig = filterConfig;

 // read revoked user list

 revokeList = new java.util.ArrayList();

 readConfig();

 }

 /**

 * destroy() : destroy() method called when the filter is taken

 * out of service.

 */

 public void destroy() {

 this.filterConfig = null;

 revokeList = null;

 }

 /**

 * doFilter() : doFilter() method called before the servlet to

 * which this filteris mapped is invoked. Since this filter is

 * mapped to j_security_check,this method is called before

 * j_security_check action is posted.

 */

 public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain) throws java.io.IOException, ServletException {

 HttpServletRequest req = (HttpServletRequest)request;

 HttpServletResponse res = (HttpServletResponse)response;

 // pre login action

 // get username

 String username = req.getParameter(″j_username″);

 // if user is in revoked list send error

 if (revokeList.contains(username)) {

 res.sendError(javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);

 return;

 }

 // call next filter in the chain : let j_security_check authenticate

 // user

 chain.doFilter(request, response);

 // post login action

Chapter 8. Developing secured applications 57

}

 /**

 * readConfig() : Reads revoked user list file and creates a revoked

 * user list.

 */

 private void readConfig() {

 if (filterConfig != null) {

 // get the revoked user list file and open it.

 BufferedReader in;

 try {

 String filename = filterConfig.getInitParameter(″RevokedUsers″);

 in = new BufferedReader(new FileReader(filename));

 } catch (FileNotFoundException fnfe) {

 return;

 }

 // read all the revoked users and add to revokeList.

 String userName;

 try {

 while ((userName = in.readLine()) != null)

 revokeList.add(userName);

 } catch (IOException ioe) {

 }

 }

 }

}

Important: In the previous code sample, the line that begins public void doFilter(ServletRequest

request was broken into two lines due to the width of the page. The public void

doFilter(ServletRequest request line and the line after it are one continuous line.

Portion of the web.xml file showing the LoginFilter configured and mapped to j_security_check:

<filter id=″Filter_1″>

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login operation</description>

 <init-param>

 <param-name>RevokedUsers</param-name>

 <param-value>c:\WebSphere\AppServer\installedApps\

 <app-name>\revokedUsers.lst</param-value>

 </init-param>

</filter-id>

<filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

</filter-mapping>

58 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

An example of a revoked user list file:

user1

cn=user1,o=ibm,c=us

user99

cn=user99,o=ibm,c=us

Developing form login pages

A Web client or browser can authenticate a user to a Web server using one of the following mechanisms:

v HTTP basic authentication: A Web server requests the Web client to authenticate and the Web client

passes a user ID and password in the HTTP header.

v HTTPS client authentication: This mechanism requires a user (Web client) to possess a public key

certificate. The Web client sends the certificate to a Web server that requests the client certificates. This

is a strong authentication mechanism and uses the Hypertext Transfer Protocol with Secure Sockets

Layer (HTTPS) protocol.

v Form-based Authentication: A developer controls the look and feel of the login screens using this

authentication mechanism.

The Hypertext Transfer Protocol (HTTP) basic authentication transmits a user password from the Web

client to the Web server in simple base64 encoding. Form-based authentication transmits a user password

from the browser to the Web server in plain text. Therefore, both HTTP basic authentication and

form-based authentication are not very secure unless the HTTPS protocol is used.

The Web application deployment descriptor contains information about which authentication mechanism to

use. When form-based authentication is used, the deployment descriptor also contains entries for login

and error pages. A login page can be either an HTML page or a JavaServer Pages (JSP) file. This login

page displays on the Web client side when a secured resource (servlet, JSP file, HTML page) is accessed

from the application. On authentication failure, an error page displays. You can write login and error pages

to suit the application needs and control the look and feel of these pages. During assembly of the

application, an assembler can set the authentication mechanism for the application and set the login and

error pages in the deployment descriptor.

Form login uses the servlet sendRedirect() method, which has several implications for the user. The

sendRedirect() method is used twice during form login:

v The sendRedirect() method initially displays the form login page in the Web browser. It later redirects

the Web browser back to the originally requested protected page. The sendRedirect(String URL)

method tells the Web browser to use the HTTP GET (not the HTTP POST) request to get the page

specified in the URL. If HTTP POST is the first request to a protected servlet or JavaServer Pages

(JSP) file, and no previous authentication or login occurred, then HTTP POST is not delivered to the

requested page. However, HTTP GET is delivered because form login uses the sendRedirect() method,

which behaves as an HTTP GET request that tries to display a requested page after a login occurs.

v Using HTTP POST, you might experience a scenario where an unprotected HTML form collects data

from users and then posts this data to protected servlets or JSP files for processing, but the users are

not logged in for the resource. To avoid this scenario, structure your Web application or permissions so

that users are forced to use a form login page before the application performs any HTTP POST actions

to protected servlets or JSP files.

1. Create a form login page with the required look and feel including the required elements to perform

form-based authentication. For an example, see “Example: Form login” on page 60

2. Create an error page. You can program error pages to retry authentication or display an appropriate

error message.

3. Place the login page and error page in the Web archive (WAR) file relative to the top directory. For

example, if the login page is configured as /login.html in the deployment descriptor, place it in the top

directory of the WAR file. An assembler can also perform this step using the assembly tool.

Chapter 8. Developing secured applications 59

4. Create a form logout page and insert it to the application only if required. This step is required when a

Web application requires a form-based authentication mechanism.

See the “Example: Form login” article for sample form login pages.

The WebSphere Application Server Samples Gallery provides a form login sample that demonstrates how

to use the WebSphere Application Server login facilities to implement and configure form login procedures.

The sample integrates the following technologies to demonstrate the WebSphere Application Server and

Java 2 Platform, Enterprise Edition (J2EE) login functionality:

v J2EE form-based login

v J2EE servlet filter with login

v IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access

the form login sample, see Accessing the Samples (Samples Gallery).

After developing login and error pages, add them to the Web application. Use the assembly tool to

configure an authentication mechanism and insert the developed login page and error page in the

deployment descriptor of the application.

Example: Form login

For the authentication to proceed appropriately, the action of the login form must always be

j_security_check. The following example shows how to code the form into the HTML page:

<form method=″POST″ action=″j_security_check″>

<input type=″text″ name=″j_username″>

<input type=″text″ name=″j_password″>

<\form>

use the j_username input field to get the user name and use the j_password input field to get the user

password.

On receiving a request from a Web client, the Web server sends the configured form page to the client

and preserves the original request. When the Web server receives the completed Form page from the

Web client, it extracts the user name and password from the form and authenticates the user. On

successful authentication, the Web server redirects the call to the original request. If authentication fails,

the Web server redirects the call to the configured error page.

The following example depicts a login page in HTML (login.html):

<!DOCTYPE HTML PUBLIC ″-//W3C/DTD HTML 4.0 Transitional//EN″>

<html>

<META HTTP-EQUIV = ″Pragma″ CONTENT=″no-cache″>

<title> Security FVT Login Page </title>

<body>

<h2>Form Login</h2>

<FORM METHOD=POST ACTION=″j_security_check″>

<p>

 Enter user ID and password:

 User ID <input type=″text″ size=″20″ name=″j_username″>

 Password <input type=″password″ size=″20″ name=″j_password″>

 And then click this button:

60 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

<input type=″submit″ name=″login″ value=″Login″>

</p>

</form>

</body>

</html>

The following example depicts an error page in a JSP file:

<!DOCTYPE HTML PUBLIC ″-//W3C/DTD HTML 4.0 Transitional//EN″>

<html>

<head><title>A Form login authentication failure occurred</head></title>

<body>

<H1>A Form login authentication failure occurred</H1>

<P>Authentication may fail for one of many reasons. Some possibilities include:

The user-id or password may be entered incorrectly; either misspelled or the

wrong case was used.

The user-id or password does not exist, has expired, or has been disabled.

</P>

</body>

</html>

After an assembler configures the Web application to use form-based authentication, the deployment

descriptor contains the login configuration as shown:

<login-config id=″LoginConfig_1″>

<auth-method>FORMauth-method>FORM>

<realm-name>Example Form-Based Authentication Area</realm-name>

<form-login-config id=″FormLoginConfig_1″>

<form-login-page>/login.html</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>

A sample Web application archive (WAR) file directory structure showing login and error pages for the

previous login configuration:

META-INF

 META-INF/MANIFEST.MF

 login.html

 error.jsp

 WEB-INF/

 WEB-INF/classes/

 WEB-INF/classes/aServlet.class

Form logout

Form logout is a mechanism to log out without having to close all Web-browser sessions. After logging out

the form logout mechanism, access to a protected Web resource requires reauthentication. This feature is

not required by J2EE specifications, but is provided as an additional feature in WebSphere security.

Chapter 8. Developing secured applications 61

Suppose that it is desirable to log out after logging into a Web application and perform some actions. A

form logout works in the following manner:

1. The logout-form URI is specified in the Web browser and loads the form.

2. The user clicks Submit on the form to log out.

3. The WebSphere security code logs the user out.

4. Upon logout, the user is redirected to a logout exit page.

Form logout does not require any attributes in a deployment descriptor. It is an HTML or JSP file that is

included with the Web application. The form-logout page is like most HTML forms except that like the

form-login page, it has a special post action. This post action is recognized by the Web container, which

dispatches it to a special internal WebSphere form-logout servlet. The post action in the form-logout page

must be ibm_security_logout.

You can specify a logout-exit page in the logout form and the exit page can represent an HTML or JSP file

within the same Web application to which that the user is redirected after logging out. The logout-exit page

is specified as a parameter in the form-logout page. If no logout-exit page is specified, a default logout

HTML message is returned to the user. Here is a sample form logout HTML form. This form configures the

logout-exit page to redirect the user back to the login page after logout.

<!DOCTYPE HTML PUBliC ″-//W3C/DTD HTML 4.0 Transitional//EN″>

<html>

 <META HTTP-EQUIV = ″Pragma″ CONTENT=″no-cache″>

 <title>Logout Page </title>

 <body>

 <h2>Sample Form Logout</h2>

 <FORM METHOD=POST ACTION=″ibm_security_logout″ NAME=″logout″>

 <p>

 Click this button to log out:

 <input type=″submit″ name=″logout″ value=″Logout″>

 <INPUT TYPE=″HIDDEN″ name=″logoutExitPage″ VALUE=″/login.html″>

 </p>

 </form>

 </body>

</html>

The WebSphere Application Server samples gallery provides a form login sample that demonstrates how

to use the WebSphere Application Server login facilities to implement and configure form login procedures.

The sample integrates the following technologies to demonstrate the WebSphere Application Server and

Java 2 Platform, Enterprise Edition (J2EE) login functionality:

v J2EE form-based login

v J2EE servlet filter with login

v IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access

the form login sample, see Accessing the Samples (Samples Gallery).

Developing with programmatic APIs for EJB applications

Programmatic security is used by security-aware applications when declarative security alone is not

sufficient to express the security model of the application. The javax.ejb.EJBContext interface provides

two methods whereby the bean provider can access security information about the enterprise bean caller.

62 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v IsCallerInRole(String rolename): Returns true if the bean caller is granted the specified security role

(specified by role name). If the caller is not granted the specified role, or if the caller is not

authenticated, it returns false. If the specified role is granted Everyone access, it always returns true.

v getCallerPrincipal(): Returns the java.security.Principal object containing the bean caller name. If the

caller is not authenticated, it returns a principal containing UNAUTHENTICATED name.

You can enable a login module to indicate which principal class is returned by these calls.

Refer to for more information.

When the isCallerInRole() method is used, declare a security-role-ref element in the deployment

descriptor with a role-name subelement containing the role name passed to this method. Since actual

roles are created during the assembly stage of the application, you can use a logical role as the role name

and provide enough hints to the assembler in the description of the security-role-ref element to link that

role to actual role. During assembly, assembler creates a role-link sub element to link the role-name to the

actual role. Creation of a security-role-ref element is possible if development tools such as Rational Web

Developer is used. You also can create the security-role-ref element during the assembly stage using an

assembly tool.

1. Add the required security methods in the EJB module code.

2. Create a security-role-ref element with a role-name field for all the role names used in the

isCallerInRole() method. If a security-role-ref element is not created during development, make sure

it is created during the assembly stage.

A programmatically secured EJB application.

Hard coding security policies in applications is strongly discouraged. The Java 2 Platform, Enterprise

Edition (J2EE) security model capabilities of declaratively specifying security policies is encouraged

wherever possible. Use these APIs to develop security-aware EJB applications. An example where this

implementation is useful is when an EJB application wants to access external resources and wants to

control the access to these external resources using its own authorization table (external-resource to user

mapping). In this case, use the getCallerPrincipal() method to get the caller identity and then the

application can consult its own authorization table to perform authorization. The caller identification also

can help retrieve the corresponding user information from an external source, such as database or from

another enterprise bean. You can use the isCallerInRole() method in a similar way.

After development, a security-role-ref element can be created:

<security-role-ref>

<description>Provide hints to assembler for linking this role-name to

actual role here<\description>

<role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

<description>Hints provided by developer to map role-name to role-link</description>

<role-name>Mgr</role-name>

<role-link>Manager</role-link>

</security-role-ref>

You can add programmatic EJB component security methods (isCallerInRole() and getCallerPrincipal())

inside any business methods of an enterprise bean. The following example of programmatic security APIs

includes a session bean:

Chapter 8. Developing secured applications 63

public class aSessionBean implements SessionBean {

 // SessionContext extends EJBContext. If it is entity bean use EntityContext

 javax.ejb.SessionContext context;

 // The following method will be called by the EJB container

 // automatically

 public void setSessionContext(javax.ejb.SessionContext ctx) {

 context = ctx; // save the session bean’s context

 }

 private void aBusinessMethod() {

 // to get bean’s caller using getCallerPrincipal()

 java.security.Principal principal = context.getCallerPrincipal();

 String callerId= principal.getName();

 // to check if bean’s caller is granted Mgr role

 boolean isMgr = context.isCallerInRole(″Mgr″);

 // use the above information in any way as needed by the

 //application

 }

}

After developing an application, use an assembly tool to create roles and to link the actual roles to role

names in the security-role-ref elements. For more information, see “Securing enterprise bean applications”

on page 116.

Example: Enterprise bean application code

The following EJB component example illustrates the use of isCallerInRole() and getCallerPrincipal()

methods in an EJB module. Using that declarative security is recommended. The following example is one

way of using the isCallerInRole() and getCallerPrincipal() methods. The application can use this result in

any way that is suitable.

A remote interface

File : Hello.java

package tests;

import java.rmi.RemoteException;

/**

 * Remote interface for Enterprise Bean: Hello

 */

public interface Hello extends javax.ejb.EJBObject {

64 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

public abstract String getMessage()throws RemoteException;

 public abstract void setMessage(String s)throws RemoteException;

}

A home interface

File : HelloHome.java

package tests;

/**

 * Home interface for Enterprise Bean: Hello

 */

public interface HelloHome extends javax.ejb.EJBHome {

 /**

 * Creates a default instance of Session Bean: Hello

 */

 public tests.Hello create() throws javax.ejb.CreateException,

 java.rmi.RemoteException;

}

A bean implementation

File : HelloBean.java

package tests;

/**

 * Bean implementation class for Enterprise Bean: Hello

 */

public class HelloBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 /**

 * getSessionContext

 */

 public javax.ejb.SessionContext getSessionContext() {

 return mySessionCtx;

 }

 /**

 * setSessionContext

 */

 public void setSessionContext(javax.ejb.SessionContext ctx) {

 mySessionCtx = ctx;

 }

 /**

 * ejbActivate

 */

 public void ejbActivate() {

 }

 /**

 * ejbCreate

 */

 public void ejbCreate() throws javax.ejb.CreateException {

 }

 /**

 * ejbPassivate

 */

 public void ejbPassivate() {

 }

Chapter 8. Developing secured applications 65

/**

 * ejbRemove

 */

 public void ejbRemove() {

 }

 public java.lang.String message;

 //business methods

 // all users can call getMessage()

 public String getMessage() throws java.rmi.RemoteException {

 return message;

 }

 // all users can call setMessage() but only few users can set new message.

 public void setMessage(String s) throws java.rmi.RemoteException {

 // get bean’s caller using getCallerPrincipal()

 java.security.Principal principal = mySessionCtx.getCallerPrincipal();

 java.lang.String callerId= principal.getName();

 // check if bean’s caller is granted Mgr role

 boolean isMgr = mySessionCtx.isCallerInRole(″Mgr″);

 // only set supplied message if caller is ″bob″ or caller is granted Mgr role

 if (isMgr || callerId.equals(″bob″))

 message = s;

 else

 message = ″Hello″;

 }

}

After development of the entity bean, create a security role reference in the deployment descriptor under

the session bean, Hello:

<security-role-ref>

<description>Only Managers can call setMessage() on this bean (Hello)</description>

<role-name>Mgr</role-name>

</security-role-ref>

For an explanation of how to create a <security-role-ref> element, see “Securing enterprise bean

applications” on page 116. Use the information under Map security-role-ref and role-name to role-link to

create the element.

Programmatic login

Programmatic login is a type of form login that supports application presentation site-specific login forms

for the purpose of authentication.

When enterprise bean client applications require the user to provide identifying information, the writer of

the application must collect that information and authenticate the user. You can broadly classify the work of

the programmer in terms of where the actual user authentication is performed:

v In a client program

66 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v In a server program

Users of Web applications can receive prompts for authentication data in many ways. The <login-config>

element in the Web application deployment descriptor file defines the mechanism used to collect this

information. Programmers who want to customize login procedures, rather than relying on general purpose

devices like a 401 dialog window in a browser, can use a form-based login to provide an

application-specific HTML form for collecting login information.

No authentication occurs unless global security is enabled. If you want to use form-based login for Web

applications, you must specify FORM in the auth-method tag of the <login-config> element in the

deployment descriptor of each Web application.

Applications can present site-specific login forms by using the WebSphere Application Server form-login

type. The Java 2 Platform, Enterprise Edition (J2EE) specification defines form login as one of the

authentication methods for Web applications. WebSphere Application Server provides a form-logout

mechanism.

Java Authentication and Authorization Service programmatic login

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server. It

is also mandated by the J2EE 1.3 Specification. JAAS is a collection of strategic authentication APIs that

replace the CORBA programmatic login APIs. WebSphere Application Server provides some extensions to

JAAS:

Before you begin developing with programmatic login APIs, consider the following points :

v For the pure Java client application or client container application, initialize the client Object Request

Broker (ORB) security prior to performing a JAAS login. Do this by executing the following code prior to

the JAAS login:

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

// Perform an InitialContext and default lookup prior to logging

// in to initialize ORB security and for the bootstrap host/port

// to be determined for SecurityServer lookup. If you do not want

// to validate the userid/password during the JAAS login, disable

// the com.ibm.CORBA.validateBasicAuth property in the

// sas.client.props file.

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 ″com.ibm.websphere.naming.WsnInitialContextFactory″);

env.put(Context.PROVIDER_URL,

 ″corbaloc:iiop:myhost.mycompany.com:2809″);

Context initialContext = new InitialContext(env);

Object obj = initialContext.lookup(″″);

For more information, see “Example: Programmatic logins” on page 76.

v For the pure Java client application or client container application, make sure that the host name and

the port number of the target JNDI bootstrap properties are specified properly. See the Developing

applications that use CosNaming (CORBA Naming interface) section for details.

v If the application uses custom JAAS login configuration, make sure that the custom JAAS login

configuration is properly defined. See the “Configuring application logins for Java Authentication and

Authorization Service” on page 242 section for details.

Chapter 8. Developing secured applications 67

v Some of the JAAS APIs are protected by Java 2 security permissions. If these APIs are used by

application code, make sure that these permissions are added to the application was.policy file. See

“Adding the was.policy file to applications” on page 486 to the application, “Using PolicyTool to edit

policy files” on page 471 and “Configuring the was.policy file” on page 482 sections for details. For more

details of which APIs are protected by Java 2 Security permissions, check the IBM Developer Kit, Java

edition; JAAS and the WebSphere Application Server public APIs Javadoc for more details. The

following list indicates the APIs used in the samples code provided in this documentation.

– javax.security.auth.login.LoginContext constructors are protected by

javax.security.auth.AuthPermission ″createLoginContext″.

– javax.security.auth.Subject.doAs() and com.ibm.websphere.security.auth.WSSubject.doAs() are

protected by javax.security.auth.AuthPermission ″doAs″.

– javax.security.auth.Subject.doAsPrivileged() and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged() are protected by

javax.security.auth.AuthPermission ″doAsPrivileged″.
v com.ibm.websphere.security.auth.WSSubject: Due to a design oversight in the JAAS 1.0,

javax.security.auth.Subject.getSubject() does not return the Subject associated with the thread of

execution inside a java.security.AccessController.doPrivileged() code block. This can present an

inconsistent behavior that is problematic and causes undesirable effort. The

com.ibm.websphere.security.auth.WSSubject API provides a work around to associate Subject to thread

of execution. The com.ibm.websphere.security.auth.WSSubject API extends the JAAS model to J2EE

resources for authorization checks. The Subject associated with the thread of execution within

com.ibm.websphere.security.auth.WSSubject.doAs() or

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged() code block is used for J2EE resources

authorization checks.

v UI support for defining new JAAS login configuration: You can configure JAAS login configuration in the

administrative console and store it in the WebSphere Configuration API. Applications can define new

JAAS login configuration in the administrative console and the data is persisted in the configuration

repository (stored in the WebSphere Configuration API). However, WebSphere Application Server still

supports the default JAAS login configuration format (plain text file) provided by the JAAS default

implementation. But if there are duplication login configurations defined in both the WebSphere

Configuration API and the plain text file format, the one in the WebSphere Configuration API takes

precedence. There are advantages to defining the login configuration in the WebSphere Configuration

API:

– UI support in defining JAAS login configuration.

– You can manage the JAAS configuration login configuration centrally.

– The JAAS configuration login configuration is distributed in a Network Deployment installation.
v JAAS login configurations For WebSphere Application Server: WebSphere Application Server provides

JAAS login configurations for application to perform programmatic authentication to the WebSphere

Application Server security run time. These JAAS login configurations for WebSphere Application Server

perform authentication to the configured authentication mechanism (SWAM or LTPA) and user registry

(Local OS, LDAP, or Custom) based on the authentication data supplied. The authenticated Subject

from these JAAS login configurations contain the required Principal and Credentials that can be used by

WebSphere Application Server security run time to perform authorization checks on J2EE role-based

protected resources. Here is the JAAS login configurations provided by WebSphere Application Server:

– WSLogin JAAS login configuration: A generic JAAS login configuration that a Java Client, client

container application, servlet, JSP file, enterprise bean, and so on, can use to perform authentication

based on a user ID and password, or a token to the WebSphere Application Server security run time.

However, this does not honor the CallbackHandler specified in the Client Container deployment

descriptor.

– ClientContainer JAAS login configuration: This JAAS login configuration honors the CallbackHandler

specified in the client container deployment descriptor. The login module of this login configuration

uses the CallbackHandler in the client container deployment descriptor if one is specified, even if the

application code specified one CallbackHandler in the LoginContext. This is for client container

application.

– Subject authenticated with the previously mentioned JAAS login configurations contain a

com.ibm.websphere.security.auth.WSPrincipal and a com.ibm.websphere.security.auth.WSCredential.

68 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

If the authenticated Subject is passed the in com.ibm.websphere.security.auth.WSSubject.doAs() (or

the other doAs() methods), the WebSphere Application Server security run time can perform

authorization checks on J2EE resources, based on the Subject

com.ibm.websphere.security.auth.WSCredential.
v Customer-defined JAAS login configurations: You can define other JAAS login configurations. See

“Configuring application logins for Java Authentication and Authorization Service” on page 242 section

for details. Use these login configurations to perform programmatic authentication to the customer

authentication mechanism. However, the subjects from these customer-defined JAAS login

configurations might not be used by WebSphere Application Server security run time to perform

authorization checks if the subject does not contain the required principal and credentials.

Finding the root cause login exception from a JAAS login

If you get a LoginException after issuing the LoginContext.login() API, you can find the root cause

exception from the configured user registry. In the login modules, the registry exceptions are wrapped by a

com.ibm.websphere.security.auth.WSLoginFailedException. This exception has a getCause() method that

allows you to pull out the exception that was wrapped after issuing the above command.

Note: You are not always guaranteed to get an exception of type WSLoginFailedException, but you

should note that most of the exceptions generated from the user registry show up here.

The following is a LoginContext.login() API example with associated catch block. WSLoginFailedException

has to be casted to com.ibm.websphere.security.auth.WSLoginFailedException if you want to issue the

getCause() API.

Note: The determineCause() example below can be used for processing CustomUserRegistry exception

types.

try

 {

 lc.login();

 }

 catch (LoginException le)

 {

 // drill down through the exceptions as they might cascade through the runtime

 Throwable root_exception = determineCause(le);

 // now you can use ″root_exception″ to compare to a particular exception type

 // for example, if you have implemented a CustomUserRegistry type, you would

 // know what to look for here.

 }

/* Method used to drill down into the WSLoginFailedException to find the

″root cause″ exception */

 public Throwable determineCause(Throwable e)

 {

 Throwable root_exception = e, temp_exception = null;

 // keep looping until there are no more embedded WSLoginFailedException or

 // WSSecurityException exceptions

 while (true)

 {

 if (e instanceof com.ibm.websphere.security.auth.WSLoginFailedException)

 {

Chapter 8. Developing secured applications 69

temp_exception = ((com.ibm.websphere.security.auth.WSLoginFailedException)

 e).getCause();

 }

 else if (e instanceof com.ibm.websphere.security.WSSecurityException)

 {

 temp_exception = ((com.ibm.websphere.security.WSSecurityException)

 e).getCause();

 }

 else if (e instanceof javax.naming.NamingException)

 // check for Ldap embedded exception

 {

 temp_exception = ((javax.naming.NamingException)e).getRootCause();

 }

 else if (e instanceof your_custom_exception_here)

 {

 // your custom processing here, if necessary

 }

 else

 {

 // this exception is not one of the types we are looking for,

 // lets return now, this is the root from the WebSphere

 // Application Server perspective

 return root_exception;

 }

 if (temp_exception != null)

 {

 // we have an exception, let’s go back an see if this has another

 // one embedded within it.

 root_exception = temp_exception;

 e = temp_exception;

 continue;

 }

 else

 {

 // we finally have the root exception from this call path, this

 // has to occur at some point

 return root_exception;

 }

 }

 }

Finding the root cause login exception from a Servlet filter

You can also receive the root cause exception from a servlet filter when addressing post-Form Login

processing. This is suitable because it shows the user what happened. The following API can be issued to

obtain the root cause exception:

Throwable t = com.ibm.websphere.security.auth.WSSubject.getRootLoginException();

if (t != null)

 t = determineCause(t);

Note: Once you have the exception you can run it through the determineCause() example above to get

the native registry root cause.

70 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Enabling root cause login exception propagation to pure Java clients

Currently, the root cause does not get propagated to a pure client for security reasons. However, you

might want to propagate the root cause to a pure client in a trusted environment. If you want to enable

root cause login exception propagation to a pure client, click Security > Global Security > Custom

Properties on the WebSphere Application Server administrative console and set the following property:

com.ibm.websphere.security.registry.propagateExceptionsToClient=true

Non-prompt programmatic login

WebSphere Application Server provides a non-prompt implementation of the

javax.security.auth.callback.CallbackHandler interface, which is called

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl. Using this interface, an application can

push authentication data to the WebSphere LoginModule instance to perform authentication. This

capability proves useful for server-side application code to authenticate an identity and to use that identity

to invoke downstream J2EE resources.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext(″WSLogin″,

new com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl(″user″,

 ″securityrealm″, ″securedpassword″));

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication data is ″push″ to the authentication mechanism

// implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println(″ERROR: failed to instantiate a LoginContext and the exception: ″

+ e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission ″createLoginContext″ is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected EJB

} catch (Exception e) {

System.out.println(″ERROR: error while accessing EJB resource, exception: ″

+ e.getMessage());

e.printStackTrace();

}

return null;

Chapter 8. Developing secured applications 71

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println(″ERROR: login failed with exception: ″ + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

You can use the com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl callback handler with

a pure Java client, a client application container, enterprise bean, JavaServer page (JSP) files, servlet, or

other Java 2 Platform, Enterprise Edition (J2EE) resources. See “Example: Programmatic logins” on page

76 for more information about object request broker (ORB) security initialization requirements in a Java

pure client.

User interface prompt programmatic login

WebSphere Application Server also provides a user interface implementation of the

javax.security.auth.callback.CallbackHandler implementation to collect authentication data from user

through user interface login prompts. This callack handler,

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl, presents a user interface login

panel to prompt users for authentication data.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext(″WSLogin″,

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by GUI login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println(″ERROR: failed to instantiate a LoginContext and the exception: ″

+ e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission ″createLoginContext″ is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected enterprise bean

} catch (Exception e) {

72 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

System.out.println(″ERROR: error while accessing EJB resource, exception: ″

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println(″ERROR: login failed with exception: ″ + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Attention: Do not use the com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl callback

handler for server-side resources (like enterprise bean, servlet, JSP file, or any other server

side resources). The user interface login prompt blocks the server for user input. This behavior

is not desirable for a server process.

Stdin prompt programmatic login

WebSphere Application Server also provides a stdin implementation of the

javax.security.auth.callback.CallbackHandler interface to collect authentication data from a user through

stdin, which is called com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl. This

callback handler prompts a user for authentication data.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext(″WSLogin″,

new com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by stdin prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println(″ERROR: failed to instantiate a LoginContext and the exception:

 ″ + e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission ″createLoginContext″ is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

Chapter 8. Developing secured applications 73

try {

bankAccount.deposit(100.00);

// where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.println(″ERROR: error while accessing EJB resource, exception: ″

 + e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println(″ERROR: login failed with exception: ″ + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Do not use the com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl callback handler

for server side resources (like enterprise beans, servlets, JSP files, and so on). The input from the stdin

prompt is not sent to the server environment. Most servers run in the background and do not have a

console. However, if the server does have a console, the stdin prompt blocks the server for user input.

This behavior is not desirable for a server process.

Developing programmatic logins with the Java Authentication and

Authorization Service

Java Authentication and Authorization Service represents the strategic application programming interfaces

(API) for authentication.

JAAS replaces the CORBA programmatic login APIs

WebSphere Application Server provides some extension to JAAS:

v Refer to the Developing applications that use CosNaming (CORBA Naming interface) article for details

on how to set up the environment for thin client applications to access remote resources on a server.

v If the application uses custom JAAS login configuration, verify that it is properly defined. See the

“Configuring application logins for Java Authentication and Authorization Service” on page 242 article for

details.

v Some of the JAAS APIs are protected by Java 2 Security permissions. If these APIs are used by

application code, verify that these permissions are added to the application was.policy file. See “Adding

the was.policy file to applications” on page 486, “Using PolicyTool to edit policy files” on page 471 and

“Configuring the was.policy file” on page 482 articles for details. For more details on which APIs are

protected by Java 2 Security permissions, check the IBM Application Developer Kit, Java Technology

Edition; JAAS and WebSphere Application Server public APIs Javadoc in “Security: Resources for

learning” on page 21. Some of the APIs used in the sample code in this documentation and the Java 2

Security permissions required by these APIs follow:

– javax.security.auth.login.LoginContext constructors are protected by

javax.security.auth.AuthPermission ″createLoginContext″

– javax.security.auth.Subject.doAs() and com.ibm.websphere.security.auth.WSSubject.doAs() are

protected by javax.security.auth.AuthPermission ″doAs″

– javax.security.auth.Subject.doAsPrivileged() and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged() are protected by

javax.security.auth.AuthPermission ″doAsPrivileged″

74 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v Enhanced model to J2EE resources for authorization checks. Due to a design oversight in JAAS

Version 1.0, the javax.security.auth.Subject.getSubject() method does not return the Subject

associated with the thread of execution inside a java.security.AccessController.doPrivileged() code

block. This can present an inconsistent behavior, which might have undesirable effects. The

com.ibm.websphere.security.auth.WSSubject provides a workaround to associate a Subject to a thread

of execution. The com.ibm.websphere.security.auth.WSSubject extends the JAAS model to J2EE

resources for authorization checks. If the Subject associates with the thread of execution within the

com.ibm.websphere.security.auth.WSSubject.doAs() method or if the

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged() code block contains product

credentials, the Subject is used for J2EE resources authorization checks.

v User Interface support for defining new JAAS login configuration. You can configure JAAS login

configuration in the administrative console and store it in the WebSphere Common Configuration Model.

Applications can define a new JAAS login configuration in the administrative console and the data is

persisted in the configuration repository (stored in the WebSphere Common Configuration Model).

However, WebSphere Application Server still supports the default JAAS login configuration format (plain

text file) provided by the JAAS default implementation. If there are duplication login configurations

defined in both the WebSphere Common Configuration and the plain text file format, the one in the

WebSphere Common Configuration takes precedence. There are advantages to defining the login

configuration in the WebSphere Common Configuration:

– UI support in defining JAAS login configuration

– JAAS configuration login configuration can be managed centrally

– JAAS configuration login configuration is distributed in a Network Deployment installation
v Application support for programmatic authentication. WebSphere Application Server provides JAAS

login configurations for applications to perform programmatic authentication to the WebSphere security

run time. These configurations perform authentication to the WebSphere-configured authentication

mechanism (Simple WebSphere Authentication Mechanism (SWAM) or Lightweight Third Party

Authentication (LTPA)) and user registry (Local OS, Lightweight Directory Access Protocol (LDAP) or

Custom) based on the authentication data supplied. The authenticated Subject from these JAAS login

configurations contains the required Principal and Credentials that the WebSphere security run time can

use to perform authorization checks on J2EE role-based protected resources. Here are the JAAS login

configurations provided by the WebSphere Application Server:

– WSLogin JAAS login configuration. A generic JAAS login configuration can use Java clients, client

container applications, servlets, JSP files, and EJB components to perform authentication based on a

user ID and password, or a token to the WebSphere security run time. However, this does not honor

the CallbackHandler specified in the client container deployment descriptor.

– ClientContainer JAAS login configuration. This JAAS login configuration honors the

CallbackHandler specified in the client container deployment descriptor. The login module of this

login configuration uses the CallbackHandler in the client container deployment descriptor if one is

specified, even if the application code specified one CallbackHandler in the LoginContext. This is for

a client container application.

A Subject authenticated with the previously mentioned JAAS login configurations contains a

com.ibm.websphere.security.auth.WSPrincipal principal and a

com.ibm.websphere.security.cred.WSCredential credential. If the authenticated Subject is passed in

com.ibm.websphere.security.auth.WSSubject.doAs() or the other doAs() methods, the product

security run time can perform authorization checks on J2EE resources based on the Subject

com.ibm.websphere.security.cred.WSCredential.
v Customer-defined JAAS login configurations. You can define other JAAS login configurations to

perform programmatic authentication to your authentication mechanism. See the “Configuring

application logins for Java Authentication and Authorization Service” on page 242 article for details. For

the product security run time to perform authorization checks, the subjects from these customer-defined

JAAS login configurations must contain the required principal and credentials.

v Naming requirements for programmatic login on a pure Java client. When programmatic login

occurs on a pure Java client and the property com.ibm.CORBA.validateBasicAuth equals true, it is

necessary for the security code to know where the SecurityServer resides. Typically, the default

InitialContext is sufficient when a java.naming.provider.url property is set as a system property or

when the property is set in the jndi.properties file. In other cases it is not desirable to have the same

Chapter 8. Developing secured applications 75

java.naming.provider.url properties set in a system wide scope. In this case, there is a need to

specify security specific bootstrap information in the sas.client.props file. The following steps present

the order of precedence for determining how to find the SecurityServer in a pure Java client:

1. Use the sas.client.props file and look for the following properties:

com.ibm.CORBA.securityServerHost=myhost.mydomain

com.ibm.CORBA.securityServerPort=mybootstrap port

If you specify these properties, you are guaranteed that security looks here for the SecurityServer. The

host and port specified can represent any valid WebSphere host and bootstrap port. The

SecurityServer resides on all server processes and therefore it is not important which host or port you

choose. If specified, the security infrastructure within the client process look up the SecurityServer

based on the information in the sas.client.props file.

2. Place the following code in your client application to get a new InitialContext():

...

 import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 ...

// Perform an InitialContext and default lookup prior to logging

// in so that target realm and bootstrap host/port can be

// determined for SecurityServer lookup.

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, "

 com.ibm.websphere.naming.WsnInitialContextFactory");

 env.put(Context.PROVIDER_URL,

 "corbaloc:iiop:myhost.mycompany.com:2809");

 Context initialContext = new InitialContext(env);

 Object obj = initialContext.lookup("");

 // programmatic login code goes here.

Complete this step prior to executing any programmatic login. It is in this code that you specify a URL

provider for your naming context, but it must point to a valid WebSphere Application Server within the

cell that you are authenticating to. This allows thread specific programmatic logins going to different

cells to have a single system-wide SecurityServer location.

3. Use the new default InitialContext() method relying on the naming precedence rules. These rules are

defined in the article, Example: Getting the default initial context.

See the article, “Example: Programmatic logins.”

Example: Programmatic logins

The following example illustrates how application programs can perform a programmatic login using Java

Authentication and Authorization Service (JAAS):

LoginContext lc = null;

 try {

 lc = new LoginContext(″WSLogin″,

 new WSCallbackHandlerImpl(″userName″, ″realm″, ″password″));

 } catch (LoginException le) {

 System.out.println(″Cannot create LoginContext. ″ + le.getMessage());

 // insert error processing code

 } catch(SecurityException se) {

 System.out.printlin(″Cannot create LoginContext.″ + se.getMessage();

76 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// Insert error processing

 }

 try {

 lc.login();

 } catch(LoginExcpetion le) {

 System.out.printlin(″Fails to create Subject. ″ + le.getMessage());

 // Insert error processing code

As shown in the example, the new LoginContext is initialized with the WSLogin login configuration and the

WSCallbackHandlerImpl CallbackHandler. Use the WSCallbackHandlerImpl instance on a server-side

application where prompting is not desirable. A WSCallbackHandlerImpl instance is initialized by the

specified user ID, password, and realm information. The present WSLoginModuleImpl class implementation

that is specified by WSLogin can only retrieve authentication information from the specified

CallbackHandler. You can construct a LoginContext with a Subject object, but the Subject is disregarded

by the present WSLoginModuleImpl implementation. For product client container applications, replace

WSLogin by ClientContainer login configuration, which specifies the WSClientLoginModuleImpl

implementation that is tailored for client container requirements.

For a pure Java application client, the product provides two other CallbackHandler implementations:

WSStdinCallbackHandlerImpl and WSGUICallbackHandlerImpl, which prompt for user ID, password, and

realm information on the command line and pop-up panel, respectively. You can choose either of these

product CallbackHandler implementations depending on the particular application environment. You can

develop a new CallbackHandler if neither of these implementations fit your particular application

requirement.

You also can develop your own LoginModule if the default WSLoginModuleImpl implementation fails to meet

all your requirements. This product provides utility functions that the custom LoginModule can use, which

are described in the next section.

In cases where there is no java.naming.provider.url set as a system property or in the jndi.properties

file, a default InitialContext does not function if the product server is not at the localhost:2809 location.

In this situation, perform a new InitialContext programmatically ahead of the JAAS login. JAAS needs to

know where the SecurityServer resides to verify that the user ID or password entered is correct, prior to

doing a commit(). By performing a new InitialContext in the way specified below, the security code has

the information needed to find the SecurityServer location and the target realm.

Attention: The first line starting with env.put was split into two lines because it extends beyond the width

of the printed page.

...

 import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 ...

// Perform an InitialContext and default lookup prior to logging in so that target realm

// and bootstrap host/port can be determined for SecurityServer lookup.

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 ″com.ibm.websphere.naming.WsnInitialContextFactory″);

 env.put(Context.PROVIDER_URL, ″corbaloc:iiop:myhost.mycompany.com:2809″);

 Context initialContext = new InitialContext(env);

 Object obj = initialContext.lookup(″″);

Chapter 8. Developing secured applications 77

LoginContext lc = null;

 try {

 lc = new LoginContext(″WSLogin″,

 new WSCallbackHandlerImpl(″userName″, ″realm″, ″password″));

 } catch (LoginException le) {

 System.out.println(″Cannot create LoginContext. ″ + le.getMessage());

 // insert error processing code

 } catch(SecurityException se) {

 System.out.printlin(″Cannot create LoginContext.″ + se.getMessage();

 // Insert error processing

 }

 try {

 lc.login();

 } catch(LoginException le) {

 System.out.printlin(″Fails to create Subject. ″ + le.getMessage());

 // Insert error processing code

 }

Custom login module development for a system login configuration

For WebSphere Application Server, there are multiple Java Authentication and Authorization Service

(JAAS) plug in points for configuring system logins. WebSphere Application Server uses system login

configurations to authenticate incoming requests, outgoing requests, and internal server logins. Application

login configurations are called by Java 2 Platform, Enterprise Edition (J2EE) applications for obtaining a

Subject based on specific authentication information. This login configuration enables the application to

associate the Subject with a specific protected remote action. The Subject is picked up on the outbound

request processing. The following list are the main system plug in points. If you write a login module that

adds information to the Subject of a system login, these are the main login configurations to plug in:

v WEB_INBOUND

v RMI_OUTBOUND

v RMI_INBOUND

v DEFAULT

WEB_INBOUND login configuration

The WEB_INBOUND login configuration authenticates Web requests. Figure 1 shows an example of a

configuration using a Trust Association Interceptor (TAI) that creates a Subject with the initial information

that is passed into the WEB_INBOUND login configuration. If the trust association interceptor is not

configured, the authentication process goes directly to the WEB_INBOUND system login configuration,

which consists of all of the login modules combined in Figure 1. Figure 1 shows where you can plug in

custom login modules and where the ltpaLoginModule and wsMapDefaultInboundLoginModule are

required.

Figure 1

78 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Custom

login

module

Authenticated?

Trust

association

interceptor?

Authenticate

Use trust

association

interceptor

Web request

requiring

authorization

Custom

login

module

Web

container

Custom

login

module

Trust

association

interceptor

wsMapDefaultInboundLoginModule

Optional

custom credential

Hashtable

in Subject

ItpaLoginModule

Subject,

security name

or unique I.D.

Already authenticated

IBM required

authentication

modules

Single application server

Web authentication

plug points

For more detailed information on the WEB_INBOUND configuration including its associated callbacks, see

″RMI_INBOUND, WEB_INBOUND, DEFAULT″ in “System login configuration entry settings for Java

Authentication and Authorization Service” on page 248.

RMI_OUTBOUND login configuration

The RMI_OUTBOUND login configuration is a plug point for handling outbound requests. WebSphere

Application Server uses this plug point to create the serialized information that is sent downstream based

on the Subject passed in (the invocation Subject) and other security context information such as

PropagationTokens. A custom login module can use this plug point to change the identity. For more

information, see “Configuring outbound mapping to a different target realm” on page 270. Figure 2 shows

where you can plug in custom login modules and shows where the wsMapCSIv2OutboundLoginModule is

required.

Figure 2

Chapter 8. Developing secured applications 79

Custom

login

module

Common Secure

Interoperability version 2

session established

Authenticate

Outbound

RMI request

Single application server

Remote

enterprise bean

container

Possibly modified

Subject and propagation

attributes. Opportunity

for mapping, if needed.

Already established

IBM required

authentication module

Custom

login

module

wsMapCSIv2OutoundLoginModule

RMI outbound

authentication

plug points

For more information on the RMI_OUTBOUND login configuration including its associated callbacks, see

″RMI_OUTBOUND″ in “System login configuration entry settings for Java Authentication and Authorization

Service” on page 248.

RMI_INBOUND login configuration

The RMI_INBOUND login configuration is a plug point that handles inbound authentication for enterprise

bean requests. WebSphere Application Server uses this plug point for either an initial login or a

propagation login. For more information about these two login types, see “Security attribute propagation”

on page 275. During a propagation login, this plug point is used to de-serialize the information received

from an upstream server. A custom login module can use this plug point to change the identity, handle

custom tokens, add custom objects into the Subject, and so on. For more information on changing the

identity using a Hashtable, which is referenced in figure 3, see “Configuring inbound identity mapping” on

page 261. Figure 3 shows where you can plug in custom login modules and shows that the

ltpaLoginModule and wsMapDefaultInboundLoginModule are required.

Figure 3

80 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Custom

login

module

Authenticated?

Authenticate

RMI inbound

request

Single application server

Enterprise

bean

container

Custom

login

module

Optional custom credential

Hashtable in Subject

RMI inbound

authentication

plug points

Already authenticated

IBM required

authentication modules

Custom

login

module

wsMapDefaultInboundLoginModuleItpaLoginModule

For more information on the RMI_INBOUND login configuration including its associated callbacks, see

″RMI_INBOUND, WEB_INBOUND, DEFAULT″ in “System login configuration entry settings for Java

Authentication and Authorization Service” on page 248.

DEFAULT login configuration

The DEFAULT login configuration is a plug point that handles all of the other types of authentication

requests, including administrative Simple Object Access Protocol (SOAP) requests and internal

authentication of the server ID. Propagation logins typically do not occur at this plug point.

For more information on the DEFAULT login configuration including its associated callbacks, see

″RMI_INBOUND, WEB_INBOUND, DEFAULT″ in “System login configuration entry settings for Java

Authentication and Authorization Service” on page 248.

Writing a login module

When you write a login module that plugs into a WebSphere Application Server application login or system

login configuration, read the JAAS programming model located at:http://java.sun.com/products/jaas. The

JAAS programming model provides basic information about JAAS. However, before writing a login module

for the WebSphere Application Server environment, read the following sections in this article

v Useable callbacks

v Shared state variables

v Initial versus propagation logins

v Sample custom login module

Useable callbacks

Each login configuration must document the callbacks that are recognized by the login configuration.

However, the callbacks are not always passed data. Thus, the login configuration must contain logic to

know when specific information is present and how to use the information. For example, if you write a

custom login module that can plug into all four of the pre-configured system login configurations mentioned

Chapter 8. Developing secured applications 81

http://java.sun.com/products/jaas

previously, three sets of callbacks might be presented to authenticate a request. Other callbacks might be

present for other reasons, including propagation and making other information available to the login

configuration.

Login information can be presented in the following combinations:

User name (NameCallback) and password (PasswordCallback)

This information is a typical authentication combination.

User name only (NameCallback)

This information used for identity assertion, Trust Association Interceptor (TAI) logins, and

certificate logins.

Token (WSCredTokenCallbackImpl)

This information is for Lightweight Third Party Authentication (LTPA) token validation.

Propagation token list (WSTokenHolderCallback)

This information is used for a propagation login.

The first three combinations are used for typical authentication. However, when the

WSTokenHolderCallback is present in addition to one of the first three information combinations, the login

is called a propagation login. A propagation login means that some security attributes are propagated to

this server from another server. The servers can reuse these security attributes if the authentication

information validates successfully. In some cases, a WSTokenHolderCallback might not have sufficient

attributes for a full login. Thus, check the requiresLogin() method on the WSTokenHolderCallback to

determine if a new login is required. You can always ignore the information returned by the requiresLogin()

method, but, as a result, you might duplicate information.

The following is a list of the callbacks that might be present in the system login configurations. The list

includes a description of their responsibility.

 Callback Description

callbacks[0] = new javax.security.

auth.callback.NameCallback

(″Username: ″);

This callback handler collects the user name for the login.

The result can be the user name for a basic authentication

login (user name and password) or a user name for an

identity assertion login.

callbacks[1] = new javax.security.

auth.callback.PasswordCallback

(″Password: ″, false);

This callback handler collects the password for the login.

callbacks[2] = new com.ibm.

websphere.security.auth.callback.

WSCredTokenCallbackImpl

(″Credential Token: ″);

This callback handler collects the Lightweight Third Party

Authentication (LTPA) token, or other token type, for the

login. It is typically present when a user name and

password is not present.

callbacks[3] = new com.ibm.

wsspi.security.auth.callback.

WSTokenHolderCallback

(″Authz Token List: ″);

This callback handler collects the ArrayList of TokenHolder

objects that are returned from a call to the

WSOpaqueTokenHelper.

createTokenHolderListFromOpaqueToken () API using the

Common Secure Interoperability version 2 (CSIv2)

authorization token as input.

callbacks[4] = new com.ibm.

websphere.security.auth.callback.

WSServletRequestCallback

(″HttpServletRequest: ″);

This callback handler collects the HTTP servlet request

object, if present. It enables login modules to get

information from the HTTP request for use in the login.

This callback handler is presented from the

WEB_INBOUND login configuration only.

82 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Callback Description

callbacks[5] = new com.ibm.

websphere.security.auth.callback.

WSServletResponseCallback

(″HttpServletResponse: ″);

This callback handler collects the HTTP servlet response

object, if present. It enables login modules to put

information into the HTTP response as a result of the

login. An example of this situation might be adding the

SingleSignonCookie to the response.This callback handler

is presented from the WEB_INBOUND login configuration

only.

callbacks[6] = new com.ibm.

websphere.security.auth.callback.

WSAppContextCallback

(″ApplicationContextCallback: ″);

This callback handler collects the Web application context

used during the login. It consists of a HashMap, which

contains the application name and the redirect URL, if

present. This callback handler is presented from the

WEB_INBOUND login configuration only.

Shared state variables

Shared state variables are used to share information between login modules during the login phase. The

following list contains recommendations for using the shared state variables:

v When you have a custom login module, use the shared state variables to communicate to a WebSphere

Application Server login module using a documented shared state variable as shown in the following

table.

v Try not to update the Subject until the commit phase. If you call the abort() method, you must remove

any objects added to the Subject.

v Enable the login module that adds information into the shared state Map during login to remove this

information during commit in case the same shared state is used for another login.

v If an abort or logout occurs, clean up the information in the login configuration for the shared state and

the Subject.

The com.ibm.wsspi.security.token.AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY shared

state variable can inform the WebSphere Application Server login configurations about asserted privilege

attributes. This variable references the com.ibm.wsspi.security.cred.propertiesObject property. You should

associate a java.util.Hashtable with this property. This hashtable contains properties used by WebSphere

Application Server for login purposes and ignores the callback information. This hashtable enables a

custom login module, which is carried out first in the login configuration, to map user identities or enable

WebSphere Application Server to avoid making unnecessary user registry calls if you already have the

required information. For more information, see “Configuring inbound identity mapping” on page 261.

If you want to access the objects that WebSphere Application Server creates during a login, refer to the

following shared state variables.

Login module in which variables are set:

ltpaLoginModule, swamLoginModule, and wsMapDefaultInboundLoginModule

Shared state variable

com.ibm.wsspi.security.auth.callback.Constants.WSPRINCIPAL_KEY

Purpose

Specifies the com.ibm.websphere.security.auth.WSPrincipal object. See the WebSphere

Application Server Javadoc for application programming interface (API) usage. This shared state

variable is for read-only purposes. Do not set this variable in the shared state for custom login

modules.

Login module in which variables are set:

Chapter 8. Developing secured applications 83

ltpaLoginModule, swamLoginModule, and wsMapDefaultInboundLoginModule

Shared state variable

com.ibm.wsspi.security.auth.callback.Constants.WSCREDENTIAL_KEY

Purpose

Specifies the com.ibm.websphere.security.cred.WSCredential object. See the WebSphere

Application Server Javadoc for API usage. This shared state variable is for read-only purposes. Do

not set this variable in the shared state for custom login modules.

Login module in which variables are set:

wsMapDefaultInboundLoginModule

Shared state variable

com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY

Purpose

Specifies the default com.ibm.wsspi.security.token.AuthorizationToken object. Login modules can

use this object to set custom attributes plugged in after wsMapDefaultInboundLoginModule. The

information set here is propagated downstream and available to the Application. See the

WebSphere Application Server Javadoc for API usage.

Initial versus propagation logins

As mentioned previously, some logins are considered initial logins because of the following reasons:

v It is the first time authentication information is presented to WebSphere Application Server.

v The login information is received from a server that does not propagate security attributes so this

information must be gathered from a user registry.

Other logins are considered propagation logins when a WSTokenHolderCallback is present and contains

sufficient information from a sending server to recreate all the required objects needed by WebSphere

Application Server run time. In cases where there is sufficient information for WebSphere Application

Server run time, the information you might add to the Subject is likely exists from the previous login. To

verify if your object is present, you can get access to the ArrayList present in the WSTokenHolderCallback,

and search through this list looking at each TokenHolder getName() method. This search is used to

determine if WebSphere Application Server is deserializing your custom object during this login. Check the

class name returned from the getName() method using the String startsWith() method because the run

time might add additional information at the end of the name to know which Subject set to add the custom

object after de-serialization.

The following code snippet can be used in your login() method to determine when sufficient information is

present. For another example, see “Configuring inbound identity mapping” on page 261.

Sample code

// This is a hint provided by WebSphere Application Server that

 // sufficient propagation information does not exist and, therefore,

 // a login is required to provide the sufficient information. In this

 // situation, a Hashtable login might be used.

 boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback) callbacks[1]).requiresLogin();

 if (requiresLogin)

 {

 // Check to see if your object exists in the TokenHolder list,

 if not, add it.

84 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

java.util.ArrayList authzTokenList = ((WSTokenHolderCallback) callbacks[6]).

 getTokenHolderList();boolean found = false;

 if (authzTokenList != null)

 {

 Iterator tokenListIterator = authzTokenList.iterator();

 while (tokenListIterator.hasNext())

 {

 com.ibm.wsspi.security.token.TokenHolder th = (com.ibm.wsspi.security.token.

 TokenHolder) tokenListIterator.next();

 if (th != null && th.getName().startsWith(″com.acme.myCustomClass″))

 {

 found=true;

 break;

 }

 }

 if (!found)

 {

 // go ahead and add your custom object.

 }

 }

 }

 else

 {

 // This code indicates that sufficient propagation information is present.

 // User registry calls are not needed by WebSphere Application Server to

 // create a valid Subject. This code might be a no-op in your login module.

 }

Sample custom login module

You can use the following sample to get ideas on how to use some of the callbacks and shared state

variables.

public customLoginModule()

{

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthenticationToken customAuthzToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthzToken = null;

 com.ibm.websphere.security.cred.WSCredential credential = null;

 com.ibm.websphere.security.auth.WSPrincipal principal = null;

 private javax.security.auth.Subject _subject;

 private javax.security.auth.callback.CallbackHandler _callbackHandler;

 private java.util.Map _sharedState;

 private java.util.Map _options;

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 _subject = subject;

 _callbackHandler = callbackHandler;

 _sharedState = sharedState;

 _options = options;

 }

Chapter 8. Developing secured applications 85

public boolean login() throws LoginException

 {

 boolean succeeded = true;

 // Gets the CALLBACK information

 javax.security.auth.callback.Callback callbacks[] = new javax.security.

 auth.callback.Callback[7];

 callbacks[0] = new javax.security.auth.callback.NameCallback(

 ″Username: ″);

 callbacks[1] = new javax.security.auth.callback.PasswordCallback(

 ″Password: ″, false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl (″Credential Token: ″);

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSServletRequestCallback (″HttpServletRequest: ″);

 callbacks[4] = new com.ibm.wsspi.security.auth.callback.

 WSServletResponseCallback (″HttpServletResponse: ″);

 callbacks[5] = new com.ibm.wsspi.security.auth.callback.

 WSAppContextCallback (″ApplicationContextCallback: ″);

 callbacks[6] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback (″Authz Token List: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Sees which callbacks contain information

 uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 javax.servlet.http.HttpServletRequest request = ((WSServletRequestCallback)

 callbacks[3]).getHttpServletRequest();

 javax.servlet.http.HttpServletResponse response = ((WSServletResponseCallback)

 callbacks[4]).getHttpServletResponse();

 java.util.Map appContext = ((WSAppContextCallback)

 callbacks[5]).getContext();

 java.util.List authzTokenList = ((WSTokenHolderCallback)

 callbacks[6]).getTokenHolderList();

 // Gets the SHARED STATE information

 principal = (WSPrincipal) _sharedState.get(com.ibm.wsspi.security.

 auth.callback.Constants.WSPRINCIPAL_KEY);

 credential = (WSCredential) _sharedState.get(com.ibm.wsspi.security.

 auth.callback.Constants.WSCREDENTIAL_KEY);

 defaultAuthzToken = (AuthorizationToken) _sharedState.get(com.ibm.

 wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

 // What you tend to do with this information depends upon the scenario

 // that you are trying to accomplish. This example demonstrates how to

86 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// access various different information:

 // - Determine if a login is initial versus propagation

 // - Deserialize a custom authorization token (For more information, see

 // “Security attribute propagation” on page 275

 // - Add a new custom authorization token (For more information, see

 // “Security attribute propagation” on page 275

 // - Look for a WSCredential and read attributes, if found.

 // - Look for a WSPrincipal and read attributes, if found.

 // - Look for a default AuthorizationToken and add attributes, if found.

 // - Read the header attributes from the HttpServletRequest, if found.

 // - Add an attribute to the HttpServletResponse, if found.

 // - Get the web application name from the appContext, if found.

 // - Determines if a login is initial versus propagation. This is most

 // useful when login module is first.

 boolean requiresLogin = ((WSTokenHolderCallback) callbacks[6]).requiresLogin();

 // initial login - asserts privilege attributes based on user identity

 if (requiresLogin)

 {

 // If you are validating a token from another server, there is an

 // application programming interface (API) to get the uniqueID from it.

 if (credToken != null && uid == null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.

 validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID

 (uniqueID);

 // Now set it to the UID so you can use that to either map or

 // login with.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 }

 catch (Exception e)

 {

 // handle exception

 }

 }

 // Adds a Hashtable to shared state.

 // Note: You can perform custom mapping on the NameCallback value returned

 // to change the identity based upon your own mapping rules.

 uid = mapUser (uid);

 // Gets the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Gets the local UserRegistry object.

 com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.security.

 UserRegistry) ctx.lookup(″UserRegistry″);

 // Gets the user registry uniqueID based on the uid specified in the

 // NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

Chapter 8. Developing secured applications 87

// Gets the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Gets the groups associated with this uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information you gathered from

 // the UserRegistry.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the lookup mechanism for

 // the created Subject. The cache key can be an Object, but should

 // implement the toString() method. Make sure the cacheKey contains

 // enough information to scope it to the user and any additional

 // attributes that you use. If you do not specify this property the

 // Subject is scoped to the WSCREDENTIAL_UNIQUEID returned, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY,

 ″myCustomAttribute″ + uniqueid);

 // Adds the hashtable to the sharedState of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY,hashtable);

 }

 // propagation login - process propagated tokens

 else

 {

 // - Deserializes a custom authorization token. For more information, see

 // “Security attribute propagation” on page 275.

 // This can be done at any login module plug in point (first,

 // middle, or last).

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom AuthorizationToken

 // implementation

 if (tokenHolder.getName().equals(″com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl″) && tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom AuthorizationToken constructor

 // to deserialize

 customAuthzToken = new

 com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl(tokenHolder.getBytes());

88 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

}

 }

 }

 // - Adds a new custom authorization token (For more information,

 // see “Security attribute propagation” on page 275)

 // This can be done at any login module plug in point (first, middle,

 // or last).

 else

 {

 // Gets the PRINCIPAL from the default AuthenticationToken. This must

 // match all of the tokens.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.

 WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom authorization token. This is an initial login.

 // Pass the principal into the constructor

 customAuthzToken = new com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl(principal);

 // Adds any initial attributes

 if (customAuthzToken != null)

 {

 customAuthzToken.addAttribute(″key1″, ″value1″);

 customAuthzToken.addAttribute(″key1″, ″value2″);

 customAuthzToken.addAttribute(″key2″, ″value1″);

 customAuthzToken.addAttribute(″key3″, ″something different″);

 }

 }

 }

 // - Looks for a WSCredential and read attributes, if found.

 // This is most useful when plugged in as the last login module.

 if (credential != null)

 {

 try

 {

 // Reads some data from the credential

 String securityName = credential.getSecurityName();

 java.util.ArrayList = credential.getGroupIds();

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 // - Looks for a WSPrincipal and read attributes, if found.

 // This is most useful when plugged as the last login module.

 if (principal != null)

 {

 try

 {

 // Reads some data from the principal

Chapter 8. Developing secured applications 89

String principalName = principal.getName();

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 // - Looks for a default AuthorizationToken and add attributes, if found.

 // This is most useful when plugged in as the last login module.

 if (defaultAuthzToken != null)

 {

 try

 {

 // Reads some data from the defaultAuthzToken

 String[] myCustomValue = defaultAuthzToken.getAttributes (″myKey″);

 // Adds some data if not present in the defaultAuthzToken

 if (myCustomValue == null)

 defaultAuthzToken.addAttribute (″myKey″, ″myCustomData″);

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 // - Reads the header attributes from the HttpServletRequest, if found.

 // This can be done at any login module plug in point (first, middle,

 // or last).

 if (request != null)

 {

 java.util.Enumeration headerEnum = request.getHeaders();

 while (headerEnum.hasMoreElements())

 {

 System.out.println (″Header element: ″ + (String)headerEnum.nextElement());

 }

 }

 // - Adds an attribute to the HttpServletResponse, if found

 // This can be done at any login module plug in point (first, middle,

 // or last).

 if (response != null)

 {

 response.addHeader (″myKey″, ″myValue″);

 }

 // - Gets the web application name from the appContext, if found

 // This can be done at any login module plug in point (first, middle,

 // or last).

 if (appContext != null)

 {

 String appName = (String) appContext.get(com.ibm.wsspi.security.auth.

 callback.Constants.WEB_APP_NAME);

 }

90 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

return succeeded;

 }

 public boolean commit() throws LoginException

 {

 boolean succeeded = true;

 // Add any objects here that you have created and belong in the

 // Subject. Make sure the objects are not already added. If you added

 // any sharedState variables, remove them before you exit. If the abort()

 // method gets called, make sure you cleanup anything added to the

 // Subject here.

 if (customAuthzToken != null)

 {

 // Sets the customAuthzToken token into the Subject

 try

 {

 // Do this in a doPrivileged code block so that application code

 // does not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom authorization token if it is not

 // null and not already in the Subject

 if ((customAuthzTokenPriv != null) &&

 (!_subject.getPrivateCredentials().contains(customAuthzTokenPriv)))

 {

 _subject.getPrivateCredentials().add(customAuthzTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 return succeeded;

 }

 public boolean abort() throws LoginException

 {

 boolean succeeded = true;

Chapter 8. Developing secured applications 91

// Makes sure to remove all objects that have already been added (both into the

 // Subject and shared state).

 if (customAuthzToken != null)

 {

 // remove the customAuthzToken token from the Subject

 try

 {

 final AuthorizationToken customAuthzTokenPriv = customAuthzToken;

 // Do this in a doPrivileged block so that application code does not need

 // to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Removes the custom authorization token if it is not

 // null and not already in the Subject

 if ((customAuthzTokenPriv != null) &&

 (_subject.getPrivateCredentials().

 contains(customAuthzTokenPriv)))

 {

 _subject.getPrivateCredentials().

 remove(customAuthzTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 return succeeded;

 }

 public boolean logout() throws LoginException

 {

 boolean succeeded = true;

 // Makes sure to remove all objects that have already been added

 // (both into the Subject and shared state).

 if (customAuthzToken != null)

 {

92 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// Removes the customAuthzToken token from the Subject

 try

 {

 final AuthorizationToken customAuthzTokenPriv = customAuthzToken;

 // Do this in a doPrivileged code block so that application code does

 // not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Removes the custom authorization token if it is not null and not

 // already in the Subject

 if ((customAuthzTokenPriv != null) && (_subject.

 getPrivateCredentials().

 contains(customAuthzTokenPriv)))

 {

 _subject.getPrivateCredentials().remove(customAuthzTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 return succeeded;

 }

}

After developing your custom login module for a system login configuration, you can configure the system

login using either the administrative console or using the wsadmin utility. To configure the system login

using the administrative console, click Security > JAAS Configuration > System logins. For more

information on using the wsadmin utility for system login configuration, see “Example: Customizing a

server-side Java Authentication and Authorization Service authentication and login configuration” on page

94. Also refer to the “Example: Customizing a server-side Java Authentication and Authorization Service

authentication and login configuration” on page 94 article for information on system login modules and to

determine whether to add additional login modules.

Chapter 8. Developing secured applications 93

Example: Customizing a server-side Java Authentication and

Authorization Service authentication and login configuration

WebSphere Application Server supports plugging in a custom Java Authentication and Authorization

Service (JAAS) login module before or after the WebSphere Application Server system login module.

However, WebSphere Application Server does not support the replacement of the WebSphere Application

Server system login modules, which are used to create WSCredential and WSPrincipal in the Subject. By

using a custom login module, you can either make additional authentication decisions or add information to

the Subject to make additional, potentially finer-grained, authorization decisions inside a Java 2 Platform,

Enterprise Edition (J2EE) application.

WebSphere Application Server enables you to propagate information downstream that is added to the

Subject by a custom login module. For more information, see “Security attribute propagation” on page 275.

To determine which login configuration to use for plugging in your custom login modules, see the

descriptions of the login configurations located in the “System login configuration entry settings for Java

Authentication and Authorization Service” on page 248 article.

WebSphere Application Server supports the modification of the system login configuration through the

administrative console and by using the wsadmin scripting utility. To configure the system login

configuration using the administrative console, click Security. Under Authentication, click JAAS

Configuration > System logins.

Refer to the following code sample to configure a system login configuration using the wsadmin tool. The

following sample JACL script adds a custom login module into the Lightweight Third-party Authentication

(LTPA) Web system login configuration:

Attention: Lines 32, 33, and 34 in the following code sample were split onto two lines because of the

width of the printed page.

1. ###

2. #

3. # Open security.xml

4. #

5. ###

6.

7.

8. set sec [$AdminConfig getid /Cell:hillside/Security:/]

9.

10.

11. ###

12. #

13. # Locate systemLoginConfig

14. #

15. ###

16.

17.

18. set slc [$AdminConfig showAttribute $sec systemLoginConfig]

19.

20. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]

21.

22.

23. ###

24. #

25. # Append a new LoginModule to LTPA_WEB

26. #

94 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

27. ###

28.

29. foreach entry $entries {

30. set alias [$AdminConfig showAttribute $entry alias]

31. if {$alias == ″LTPA_WEB″} {

32. set newJAASLoginModuleId [$AdminConfig create JAASLoginModule

 $entry {{moduleClassName

 ″com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy″}}]

33. set newPropertyId [$AdminConfig create Property

 $newJAASLoginModuleId {{name delegate}{value

 ″com.ABC.security.auth.CustomLoginModule″}}]

34. $AdminConfig modify $newJAASLoginModuleId

 {{authenticationStrategy REQUIRED}}

35. break

36. }

37. }

38.

39.

40. ###

41. #

42. # save the change

43. #

44. ###

45.

46. $AdminConfig save

47.

Attention: The wsadmin scripting utility inserts a new object to the end of the list. To insert the custom

LoginModule before the AuthenLoginModule, delete the AuthenLoginModule and then recreate it after

inserting the custom LoginModule. Save the sample script into a file, sample.jacl, executing the sample

script using the following command:

Wsadmin -f sample.jacl

You can use the following sample JACL script to remove the current LTPA_WEB login configuration and all

the LoginModules:

48. ###

49. #

50. # Open security.xml

51. #

52. ###

53.

54.

55. set sec [$AdminConfig getid /Cell:hillside/Security:/]

56.

57.

58. ###

59. #

60. # Locate systemLoginConfig

61. #

62. ###

63.

64.

65. set slc [$AdminConfig showAttribute $sec systemLoginConfig]

66.

Chapter 8. Developing secured applications 95

67. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]

68.

69.

70. ###

71. #

72. # Remove the LTPA_WEB login configuration

73. #

74. ###

75.

76. foreach entry $entries {

77. set alias [$AdminConfig showAttribute $entry alias]

78. if {$alias == ″LTPA_WEB″} {

79. $AdminConfig remove $entry

80. break

81. }

82. }

83.

84.

85. ###

86. #

87. # save the change

88. #

89. ###

90.

91. $AdminConfig save

You can use the following sample JACL script to recover the original LTPA_WEB configuration:

Attention: Lines 122, 124, and 126 in the following code sample were split onto two or more lines

because of the width of the printed page. The two lines of code for line 122 are normally one

continuous line. The three lines of code for line 124 are normally one continuous line. Also, the

three lines of code for line 126 are normally one continuous line.

92. ###

93. #

94. # Open security.xml

95. #

96. ###

97.

98.

99. set sec [$AdminConfig getid /Cell:hillside/Security:/]

100.

101.

102. ###

103. #

104. # Locate systemLoginConfig

105. #

106. ###

107.

108.

109. set slc [$AdminConfig showAttribute $sec systemLoginConfig]

110.

111. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]

112.

113.

114.

96 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

115. ###

116. #

117. # Recreate the LTPA_WEB login configuration

118. #

119. ###

120.

121.

122. set newJAASConfigurationEntryId [$AdminConfig create JAASConfigurationEntry

 $slc {{alias LTPA_WEB}}]

123.

124. set newJAASLoginModuleId [$AdminConfig create JAASLoginModule

 $newJAASConfigurationEntryId

 {{moduleClassName

 ″com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy″}}]

125.

126. set newPropertyId [$AdminConfig create Property

 $newJAASLoginModuleId {{name delegate}

 {value ″com.ibm.ws.security.web.AuthenLoginModule″}}]

127.

128. $AdminConfig modify $newJAASLoginModuleId {{authenticationStrategy REQUIRED}}

129.

130.

131. ###

132. #

133. # save the change

134. #

135. ###

136.

137. $AdminConfig save

The WebSphere Application Server Version ltpaLoginModule and AuthenLoginModule use the shared state

to save state information so that custom LoginModules can modify the information. The ltpaLoginModule

initializes the callback array in the login() method using the following code. The callback array is created

by ltpaLoginModule only if an array is not defined in the shared state area. In the following code sample,

the error handling code was removed to make the sample concise. If you insert a custom LoginModule

before the ltpaLoginModule, custom LoginModule might follow the same style to save the callback into the

shared state.

Attention: In the following code sample, several lines of code have been split onto two lines because of

the width of the printed page. Each of these split lines are one continuous line.

138. Callback callbacks[] = null;

139. if (!sharedState.containsKey(

 com.ibm.wsspi.security.auth.callback.Constants.

 CALLBACK_KEY)) {

140. callbacks = new Callback[3];

141. callbacks[0] = new NameCallback(″Username: ″);

142. callbacks[1] = new PasswordCallback(″Password: ″, false);

143. callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl(″Credential Token: ″);

144. try {

145. callbackHandler.handle(callbacks);

146. } catch (java.io.IOException e) {

147. . . .

148. } catch (UnsupportedCallbackException uce) {

149. . . .

Chapter 8. Developing secured applications 97

150. }

151. sharedState.put(

 com.ibm.wsspi.security.auth.callback.Constants.CALLBACK_KEY,

 callbacks);

152. } else {

153. callbacks = (Callback [])

 sharedState.get(com.ibm.wsspi.security.auth.callback.

 Constants.CALLBACK_KEY);

154. }

ltpaLoginModule and AuthenLoginModule generate both a WSPrincipal and a WSCredential object to

represent the authenticated user identity and security credentials. The WSPrincipal and WSCredential

objects also are saved in the shared state. A JAAS login uses a two-phase commit protocol. First, the login

methods in login modules, which are configured in the login configuration, are called. Then, their commit

methods are called. A custom LoginModule, which is inserted after the ltpaLoginModule and the

AuthenLoginModule, can modify the WSPrincipal and WSCredential objects before they are committed.

The WSCredential and WSPrincipal objects must exist in the Subject after the login is completed. Without

these objects in the Subject, WebSphere Application Server run-time code rejects the Subject when it is

used to make any security decisions.

AuthenLoginModule uses the following code to initialize the callback array:

Attention: In the following code sample, several lines of code have been split onto two lines because of

the width of the printed page. Each of these split lines are one continuous line.

155. Callback callbacks[] = null;

156. if (!sharedState.containsKey(

 com.ibm.wsspi.security.auth.callback.Constants.

 CALLBACK_KEY)) {

157. callbacks = new Callback[6];

158. callbacks[0] = new NameCallback(″Username: ″);

159. callbacks[1] = new PasswordCallback(″Password: ″, false);

160. callbacks[2] =

 new com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(

 ″Credential Token: ″);

161. callbacks[3] =

 new com.ibm.wsspi.security.auth.callback.WSServletRequestCallback(

 ″HttpServletRequest: ″);

162. callbacks[4] =

 new com.ibm.wsspi.security.auth.callback.WSServletResponseCallback(

 ″HttpServletResponse: ″);

163. callbacks[5] =

 new com.ibm.wsspi.security.auth.callback.WSAppContextCallback(

 ″ApplicationContextCallback: ″);

164. try {

165. callbackHandler.handle(callbacks);

166. } catch (java.io.IOException e) {

167. . . .

168. } catch (UnsupportedCallbackException uce {

169. . . .

170. }

171. sharedState.put(com.ibm.wsspi.security.auth.callback.

 Constants.CALLBACK_KEY, callbacks);

172. } else {

173. callbacks = (Callback []) sharedState.get(

 com.ibm.wsspi.security.auth.callback.

98 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Constants.CALLBACK_KEY);

174. }

Three more objects, which contain callback information for the login, are passed from the Web container to

the AuthenLoginModule: a java.util.Map, a HttpServletRequest, and a HttpServletResponse object.

These objects represent the Web application context. The WebSphere Application Server Version 5.1

application context, java.util.Map object, contains the application name and the error page URL. You can

obtain the application context, java.util.Map object, by calling the getContext() method on the

WSAppContextCallback object. The java.util.Map object is created with the following deployment

descriptor information.

Attention: In the following code sample, several lines of code have been split onto two lines because of

the width of the printed page. Each of these split lines are one continuous line.

175. HashMap appContext = new HashMap(2);

176. appContext.put(

 com.ibm.wsspi.security.auth.callback.Constants.WEB_APP_NAME,

 web_application_name);

177. appContext.put(

 com.ibm.wsspi.security.auth.callback.Constants.REDIRECT_URL,

 errorPage);

The application name and the HttpServletRequest object might be read by the custom LoginModule to

perform mapping functions. The error page of the form-based login might be modified by a custom

LoginModule. In addition to the JAAS framework, WebSphere Application Server supports the Trust

Association Interface (TAI).

Other credential types and information can be added to the caller Subject during the authentication

process using a custom LoginModule. The third-party credentials in the caller Subject are managed by

WebSphere Application Server as part of the security context. The caller Subject is bound to the thread of

execution during the request processing. When a Web or EJB module is configured to use the caller

identity, the user identity is propagated to the downstream service in an EJB request. WSCredential and

any third-party credentials in the caller Subject are not propagated downstream. Instead, some of the

information can be regenerated at the target server based on the propagated identity. Add third-party

credentials to the caller Subject at the authentication stage. The caller Subject, which is returned from the

WSSubject.getCallerSubject() method, is read-only and thus cannot be modified. For more information on

the WSSubject, see “Example: Getting the Caller Subject from the Thread.”

Example: Getting the Caller Subject from the Thread

The Caller subject (or ″received subject″) contains the user authentication information used in the call for

this request. This subject is returned after issuing the WSSubject.getCallerSubject() API to prevent

replacing existing objects. The subject is marked read-only. This API can be used to get access to the

WSCredential (documented in the Javadoc information) so that you can put or set data in the hashmap

within the credential.

Most data within the subject is not propagated downstream to another server. Only the credential token

within the WSCredential is propagated downstream (and a new caller subject generated).

try

{

 javax.security.auth.Subject caller_subject;

 com.ibm.websphere.security.cred.WSCredential caller_cred;

 caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

Chapter 8. Developing secured applications 99

if (caller_subject != null)

 {

 caller_cred = caller_subject.getPublicCredentials

 (com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

 String CALLERDATA = (String) caller_cred.get (″MYKEY″);

 System.out.println(″My data from the Caller credential is: ″ + CALLERDATA);

 }

}

catch (WSSecurityException e)

{

 // log error

}

catch (Exception e)

{

 // log error

}

Requirement: You need the following Java 2 Security permissions to execute this API: permission

javax.security.auth.AuthPermission ″wssecurity.getCallerSubject;″.

Example: Getting the RunAs Subject from the Thread

The RunAs subject (or invocation subject) contains the user authentication information for the RunAs

mode set in the application deployment descriptor for this method.

The RunAs subject (or invocation subject) contains the user authentication information for the RunAs

mode set in the application deployment descriptor for this method. This subject is marked read-only when

returned from theWSSubject.getRunAsSubject() application programming interface (API) to prevent

replacing existing objects. You can use this API to get access to the WSCredential (documented in the

Javadoc information) so that you can put or set data in the hashmap within the credential.

Note: Most data within the Subject is not propagated downstream to another server. Only the credential

token within the WSCredential is propagated downstream and a new Caller subject is generated.

try

{

 javax.security.auth.Subject runas_subject;

 com.ibm.websphere.security.cred.WSCredential runas_cred;

 runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

 if (runas_subject != null)

 {

 runas_cred = runas_subject.getPublicCredentials(

 com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

 String RUNASDATA = (String) runas_cred.get (″MYKEY″);

 System.out.println(″My data from the RunAs credential is: ″ + RUNASDATA);

 }

}

catch (WSSecurityException e)

{

 // log error

}

catch (Exception e)

100 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

{

 // log error

}

Requirements: You need the following Java 2 Security permissions to run this API: permission

javax.security.auth.AuthPermission ″wssecurity.getRunAsSubject;″.

Example: Overriding the RunAs Subject on the Thread

To extend the function provided by the Java Authentication and Authorization Service (JAAS) application

programming interfaces (APIs), you can set the RunAs subject (or invocation subject) with a different valid

entry that is used for outbound requests on this execution thread.

Gives flexibility for associating the Subject with all remote calls on this thread whether using a

WSSubject.doAs() to associate the subject with the remote action or not. For example:

try

{

javax.security.auth.Subject runas_subject, caller_subject;

 runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

 caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

 // set a new RunAs subject for the thread, overriding the one declaratively set

 com.ibm.websphere.security.auth.WSSubject.setRunAsSubject(caller_subject);

 // do some remote calls

 // restore back to the previous runAsSubject

 com.ibm.websphere.security.auth.WSSubject.setRunAsSubject(runas_subject);

}

catch (WSSecurityException e)

{

 // log error

}

catch (Exception e)

{

 // log error

}

You need the following Java 2 Security permissions to run these APIs:

permission javax.security.auth.AuthPermission ″wssecurity.getRunAsSubject″;

permission javax.security.auth.AuthPermission ″wssecurity.getCallerSubject″;

permission javax.security.auth.AuthPermission ″wssecurity.setRunAsSubject″;

Example: User revocation from a cache

In WebSphere Application Server, Version 5.0.2 and later, revocation of a user from the security cache

using an MBean interface is supported. The following Java Command Language (JACL) revokes a user

when given the realm and user ID, and cycles through all security administration MBean instances

returned for the entire cell when run from the Deployment Manager WSADMIN. The command also purges

the user from the cache during each process.

Note: This procedure can be called from another JACL script.

Chapter 8. Developing secured applications 101

Attention: In some of the following lines of code, the lines have been split onto two or more lines.

proc revokeUser {realm userid} {

 global AdminControl AdminConfig

 if {[catch {$AdminControl queryNames WebSphere:type=SecurityAdmin,*}

 result]} {

 puts stdout ″\$AdminControl queryNames WebSphere:type=SecurityAdmin,*

 caught an exception $result\n″

 return

 } else {

 if {$result != {}} {

 foreach secBean $result {

 if {$secBean != {} || $secBean != ″null″} {

 if {[catch {$AdminControl invoke $secBean

 purgeUserFromAuthCache ″$realm $userid″} result]} {

 puts stdout ″\$AdminControl invoke $secBean

 purgeUserFromAuthCache $realm $userid caught an

 exception $result\n″

 return

 } else {

 puts stdout ″\nUser $userid has been purged from the

 cache of process $secBean\n″

 }

 } else {

 puts stdout ″unable to get securityAdmin Mbean, user

 $userid not revoked″

 }

 }

 } else {

 puts stdout ″Security Mbean was not found\n″

 return

 }

 }

 return true

}

Developing your own J2C principal mapping module

You can develop your own J2C mapping module if your application requires more sophisticated mapping

functions. The mapping LoginModule that you might have developed on WebSphere Application Server

Version 5 is still supported in WebSphere Application Server Version 6. The Version 5 LoginModules can

be used in the connection factory mapping configuration (that is, they can be defined on the resource).

They also can also be used in the resource manager connection factory reference mapping configuration.

A Release 5 mapping LoginModule is not able to take advantage of the custom mapping properties.

If you want to develop a new mapping LoginModule in Version 6, use the programming interface described

in the following sections.

Migrate your Version 5 mapping LoginModule to use the new programming model to take advantage of the

new custom properties as well as the mapping configuration isolation at application scope. Note that

mapping LoginModules developed using the WebSphere Application Server Release 6 cannot be used at

the deprecated resource connection factory mapping configuration.

Resource Reference Mapping LoginModule invocation

102 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

A com.ibm.wsspi.security.auth.callback.WSMappingCallbackHandler class, which implements the

javax.security.auth.callback.CallbackHandler interface, is a new WebSphere Application Service Provider

Programming Interface (SPI) in WebSphere Application Server Version 6.

Application code uses the com.ibm.wsspi.security.auth.callback.WSMappingCallbackHandlerFactory helper

class to retrieve a CallbackHandler object:

package com.ibm.wsspi.security.auth.callback;

public class WSMappingCallbackHandlerFactory {

 private WSMappingCallbackHandlerFactory;

 public static CallbackHandler getMappingCallbackHandler(

ManagedConnectionFactory mcf,

HashMap mappingProperties);

}

The WSMappingCallbackHandler class implements the CallbackHandler interface:

package com.ibm.wsspi.security.auth.callback;

public class WSMappingCallbackHandler implements CallbackHandler {

 public WSMappingCallbackHandler(ManagedConnectionFactory mcf,

HashMap mappingProperties);

 public void handle(Callback[] callbacks) throws IOException,

 UnsupportedCallbackException;

}

WSMappingCallbackHandler can handle two new callback types defined in Release 6:

com.ibm.wsspi.security.auth.callback.WSManagedConnectionFactoryCallback

com.ibm.wsspi.security.auth.callback.WSMappingPropertiesCallback

The two Callback types should be used by new LoginModules that are used at the resource manager

connection factory reference mapping configuration. The WSManagedConnectionFactoryCallback provides

a ManagedConnectionFactory instance that should be set in the PasswordCredential. It allows a

ManagedConnectionFactory instance to determine whether a PasswordCredential instance is used for

sign-on to the target EIS instance. The WSMappingPropertiesCallback provides a HashMap that contains

custom mapping properties. The property name ″com.ibm.mapping.authDataAlias″ is reserved for setting

the authentication data alias.

The WebSphere Application Server Release 6 WSMappingCallbackHandle continues to support the two

WebSphere Application Server Release 5 Callback types that can be used by older mapping

LoginModules. The two Callbacks defined below can only be used by LoginModules that are used by login

configuration at the connection factory. For backward compatibility, WebSphere Application Server Release

6 passes the authentication data alias, if defined in the list of custom properties under the

“com.ibm.mapping.authDataAlias” property name, via the WSAuthDataAliasCallback to Release 5

LoginModules:

com.ibm.ws.security.auth.j2c.WSManagedConnectionFactoryCallback

com.ibm.ws.security.auth.j2c.WSAuthDataAliasCallback

Connection Factory Mapping LoginModule Invocation

The WSPrincipalMappingCallbackHandler class handles two Callback types:

WSManagedConnectionFactoryCallback and WSMappingPropertiesCallback:

com.ibm.wsspi.security.auth.callback.WSManagedConnectionFactoryCallback

com.ibm.wsspi.security.auth.callback.WSMappingPropertiesCallback

The WSPrincipalMappingCallbackHandler and the two Callbacks are deprecated in WebSphere Application

Server Release 6 and should not be used by new development work.

Mapping LoginModule Resource Reference Mapping Properties

Chapter 8. Developing secured applications 103

You can pass arbitrary custom properties to your mapping LoginModule. The following example shows

how the WebSphere Application Server default mapping LoginModule looks for the authentication data

alias property.

 try {

 wspm_callbackHandler.handle(callbacks);

 String userID = null;

 String password = null;

 String alias = null;

 wspm_properties = ((WSMappingPropertiesCallback)callbacks[1]).getProperties();

 if (wspm_properties != null) {

 alias = (String) wspm_properties.get(com.ibm.wsspi.security.auth.callback.Constants.MAPPING_ALIAS);

 if (alias != null) {

 alias = alias.trim();

 }

 }

 } catch (UnsupportedCallbackException unsupportedcallbackexception) {

 . . . // error handling

The WebSphere Application Server Version 6 default mapping LoginModule requires one mapping property

to define the authentication data alias. The property name, MAPPING_ALIAS, is defined in the

Constants.class in the com.ibm.wsspi.security.auth.callback package.

MAPPING_ALIAS = ″com.ibm.mapping.authDataAlias″

When you specify the Use default method > Select authentication data entry authentication method

on the Map resource references to resources panel, the administrative console automatically creates a

MAPPING_ALIAS entry with the selected authentication data alias value in the mapping properties. If you

choose to create your own custom login configuration and then use the default mapping LoginModule,

you‘ll have to set this property manually on the mapping properties for the resource factory reference.

In a custom login module, you can use the WSSubject.getRunAsSubject() method to retrieve the subject

that represents the identity of the current running thread. The identity of the current running thread is

known as theRunAs identity. The RunAs subject typically contains a WSPrincipal in the principal set and a

WSCredential in the public credential set. The subject instance that is created by your mapping module

contains a Principal instance in the principals set and a PasswordCredential or an

org.ietf.jgss.GSSCredential instance in the set of private credentials.

The GenericCredential interface that was defined in Java Cryptography Architecture (JCA) Spec Version

1.0 has been removed in the JCA Version 1.5 spec. The GenericCredentail interface is supported by

WebSphere Application Server Version 6 to support older resource adapters that might have been

programmed to the GenericCredential interface.

Developing custom user registries

WebSphere Application Server security supports the use of custom registries in addition to Local OS and

Lightweight Directory Access Protocol (LDAP) registries for authentication and authorization purposes. A

custom user registry is a customer implemented user registry which implements the UserRegistry Java

interface as provided by WebSphere Application Server. A custom implemented user registry can support

virtually any type or notion of an accounts repository from a relational database, flat file, and so on. The

custom user registry provides considerable flexibility in adapting WebSphere Application Server security to

various environments where some notion of a user registry, other than LDAP or LocalOS, already exist in

the operational environment.

Implementing a custom user registry is a software development effort. Use the methods defined in the

UserRegistry interface to make calls to the desired registry to obtain user and group information. The

104 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

interface defines a very general set of methods, for encapsulating a wide variety of registries. You can

configure a custom user registry as the active user registry when configuring WebSphere Application

Server global security.

Make sure that your implementation of the custom registry does not depend on any WebSphere

Application Server components such as data sources, enterprise beans, and so on. Do not have this

dependency because security is initialized and enabled prior to most of the other WebSphere Application

Server components during startup. If your previous implementation used these components, make a

change that will eliminate the dependency. For example, if your previous implementation used data

sources to connect to a database, use Java DataBase Connectivity (JDBC) to connect to the database.

For backward compatibility, the WebSphere Application Server Version 4 custom registry is also supported.

Refer to the “Migrating custom user registries” on page 39 for more information on migrating. If your

previous implementation uses data sources to connect to a database, change the implementation to use

JDBC connections. However, it is recommended that you use the new interface to implement your custom

registry.

1. If not familiar with the custom user registry concept, refer to the article, “Custom user registries” on

page 211. This section explains each of the methods in the interface in detail and the changes for

these methods from the version 4 release.

2. Implement all the methods in the interface except for the CreateCredential method, which is

implemented by WebSphere Application Server. “FileRegistrySample.java file” on page 220 is provided

for reference.

3. Build your implementation. You need the %install_root%/lib/sas.jar and

%install_root%/lib/wssec.jar files in your class path. For example: %install_root%\java\bin\javac

-classpath %install_root%\lib\wssec.jar;%install_root%\lib\sas.jar

yourImplementationFile.java.

4. Copy the class files generated in the previous step to the product class path. The preferred location is

the %install_root%/lib/ext directory. This should be copied to all the product processes (cell, all

NodeAgents) class path.

5. Follow the steps in “Configuring custom user registries” on page 213 to configure your implementation

using the administrative console. This step is required to implement custom user registries in Version

5.x or later.

If you enabling security, make sure you complete the remaining steps. Once this is done, make sure you

save and synchronize the configuration and restart all the servers. Try accessing some J2EE resources to

verify that the custom registry implementation is successful.

Example: Custom user registries

A custom user registry is a customer-implemented user registry that implements the UserRegistry Java

interface as provided by WebSphere Application Server. A custom-implemented user registry can support

virtually any type or form of an accounts repository from a relational database, flat file, and so on. The

custom user registry provides considerable flexibility in adapting WebSphere Application Server security to

various environments where some form of a user registry, other than Lightweight Directory Access Protocol

(LDAP) or Local OS, already exist in the operational environment.

Implementing a custom user registry is a software development effort. You must use the methods defined

in the UserRegistry interface to make calls to the desired registry for obtaining user and group information.

The interface defines a very general set of methods, so it can encapsulate a wide variety of registries. You

can configure a custom user registry as the active user registry when configuring the product global

security.

If you are using the WebSphere Application Server Version 4.x CustomRegistry interface, you can plug in

your registry without any changes. However, using the new interface to implement your custom registry is

recommended.

Chapter 8. Developing secured applications 105

To view a sample custom registry, refer to the following files:

v “FileRegistrySample.java file” on page 220

v “users.props file” on page 239

v “groups.props file” on page 239

UserRegistry interface methods

Implementing this interface enables WebSphere Application Server security to use custom registries. This

capability should extend the java.rmi file. With a remote registry, you can complete this process remotely.

Implementation of this interface must provide implementations for:

v initialize(java.util.Properties)

v checkPassword(String,String)

v mapCertificate(X509Certificate[])

v getRealm

v getUsers(String,int)

v getUserDisplayName(String)

v getUniqueUserId(String)

v getUserSecurityName(String)

v isValidUser(String)

v getGroups(String,int)

v getGroupDisplayName(String)

v getUniqueGroupId(String)

v getUniqueGroupIds(String)

v getGroupSecurityName(String)

v isValidGroup(String)

v getGroupsForUser(String)

v getUsersForGroup(String,int)

v createCredential(String)

public void initialize(java.util.Properties props)

 throws CustomRegistryException,

 RemoteException;

This method is called to initialize the UserRegistry method. All the properties defined in the Custom User

Registry panel propagate to this method.

For the sample, the initialize method retrieves the names of the registry files containing the user and group

information.

This method is called during server bring up to initialize the registry. This method is also called when

validation is performed by the administrative console, when security is on. This method remains the same

as in version 4.x.

public String checkPassword(String userSecurityName, String password)

 throws PasswordCheckFailedException,

 CustomRegistryException,

 RemoteException;

The checkPassword method is called to authenticate users when they log in using a name (or user ID) and

a password. This method returns a string which, in most cases, is the user being authenticated. Then, a

credential is created for the user for authorization purposes. This user name is also returned for the

enterprise bean call, getCallerPrincipal(), and the servlet calls, getUserPrincipal() and

getRemoteUser(). See the getUserDisplayName method for more information if you have display names in

your registry. In some situations, if you return a user other than the one who is logged in, verify that the

user is valid in the registry.

106 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

For the sample, the mapCertificate method gets the distinguished name (DN) from the certificate chain

and makes sure it is a valid user in the registry before returning the user. For the sample, the

checkPassword method checks the name and password combination in the registry and (if they match)

returns the user being authenticated.

This method is called for various scenarios. It is called by the administrative console to validate the user

information once the registry is initialized. It is also called when you access protected resources in the

product for authenticating the user and before proceeding with the authorization. This method is the same

as in version 4.x.

public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException,

 RemoteException;

The mapCertificate method is called to obtain a user name from an X.509 certificate chain supplied by

the browser. The complete certificate chain is passed to this method and the implementation can validate

the chain if needed and get the user information. A credential is created for this user for authorization

purposes. If browser certificates are not supported in your configuration, you can throw the exception,

CertificateMapNotSupportedException. The consequence of not supporting certificates is authentication

failure if the challenge type is certificates, even if valid certificates are in the browser.

This method is called when certificates are provided for authentication. For Web applications, when the

authentication constraints are set to CLIENT-CERT in the web.xml file of the application, this method is

called to map a certificate to a valid user in the registry. For Java clients, this method is called to map the

client certificates in the transport layer, when using the transport layer authentication. Also, when the

Identity Assertion Token (when using the CSIv2 authentication protocol) is set to contain certificates, this

method is called to map the certificates to a valid user.

In WebSphere Application Server Version 4.x, the input parameter was the X509Certificate. In WebSphere

Application Server Version 5.x and later, this parameter changes to accept an array of X509Certificate

certificates (such as a certificate chain). In version 4.x, this parameter was called only for Web

applications, but in version 5.x and lateryou can call this method for both Web and Java clients.

public String getRealm()

 throws CustomRegistryException,

 RemoteException;

The getRealm method is called to get the name of the security realm. The name of the realm identifies the

security domain for which the registry authenticates users. If this method returns a null value, a default

name of customRealm is used.

For the sample, the getRealm method returns the string, customRealm. One of the calls to this method is

when the registry information is validated. This method is the same as in version 4.x.

public Result getUsers(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

The getUsers method returns the list of users from the registry. The names of users depend on the pattern

parameter. The number of users are limited by the limit parameter. In a registry that has many users,

getting all the users is not practical. So the limit parameter is introduced to limit the number of users

retrieved from the registry. A limit of 0 indicates to return all the users that match the pattern and might

cause problems for large registries. Use this limit with care.

Chapter 8. Developing secured applications 107

The custom registry implementations are expected to support at least the wildcard search (*). For

example, a pattern of (*) returns all the users and a pattern of (b*) returns the users starting with b.

The return parameter is an object of type com.ibm.websphere.security.Result. This object contains two

attributes, a java.util.List and a java.lang.boolean. The list contains the users returned and the

Boolean flag indicates if there are more users available in the registry for the search pattern. This Boolean

flag is used to indicate to the client whether more users are available in the registry.

In the sample, the getUsers retrieves the required number of users from the registry and sets them as a

list in the result object. To find out if there are more users than requested, the sample gets one more user

than requested and if it finds the additional user, it sets the Boolean flag to true. For pattern matching, the

match method in the RegExpSample class is used, which supports wildcard characters such as the asterisk

(*) and question mark (?).

This method is called by the administrative console to add users to roles in the various map users to roles

panels. The administrative console uses the Boolean set in the result object to indicate that more entries

matching the pattern are available in the registry.

In WebSphere Application Server Version 4.x, this method specifies to take only the pattern parameter.

The return is a list. In WebSphere Application Server Version 5.x or later, this method is changed to take

one additional parameter, the limit. Ideally, your implementation should change to take the limit value and

limit the users returned. The return is changed to return a result object, which consists of the list (as in

version 4) and a flag indicating if more entries exist. So, when the list returns, use the

Result.setList(List) to set the List in the result object. If there are more entries than requested in the

limit parameter, set the Boolean attribute to true in the result object, using Result.setHasMore() method.

The default for the Boolean attribute in the result object is false.

public String getUserDisplayName(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

The getUserDisplayName method returns a display name for a user, if one exists. The display name is an

optional string that describes the user that you can set in some registries. This is a descriptive name for

the user and does not have to be unique in the registry.

For example in Windows systems, you can display the full name of the user.

If you do not need display names in your registry, return null or an empty string for this method.

Note: In WebSphere Application Server Version 4.x, if display names existed for any user these names

were useful for the EJB method call getCallerPrincipal() and the servlet calls

getUserPrincipal() and getRemoteUser(). If the display names were not the same as the security

name for any user, the display names are returned for the previously mentioned enterprise beans

and servlet methods. Returning display names for these methods might become problematic is

some situations because the display names might not be unique in the registry. Avoid this problem

by changing the default behavior to return the user’s security name instead of the user’s display

name in this version of the product. However, if you want to have the same behavior as in Version

4, set the property WAS_UseDisplayName to true in the Custom Registry Properties panel in the

administrative console. For more information on how to set properties for the custom registry, see

the section on Setting Properties for Custom Registries.

In the sample, this method returns the display name of the user whose name matches the user name

provided. If the display name does not exist this returns an empty string.

108 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

This method can be called by the product to present the display names in the administrative console, or

using the command line using the wsadmin tool. Use this method only for displaying. This method is the

same as in Version 4.0.

public String getUniqueUserId(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique ID of the user given the security name.

In the sample, this method returns the uniqueId of the user whose name matches the supplied name. This

method is called when forming a credential for a user and also when creating the authorization table for

the application.

public String getUserSecurityName(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the security name of a user given the unique ID. In the sample, this method returns

the security name of the user whose unique ID matches the supplied ID.

This method is called to make sure a valid user exists for a given uniqueUserId. This method is called to

get the security name of the user when the uniqueUserId is obtained from a token.

public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException,

 RemoteException;

This method indicates whether the given user is a valid user in the registry.

In the Sample, this method returns true if the user is found in the registry, otherwise this method returns

false. This method is primarily called in situations where knowing if the user exists in the directory

prevents problems later. For example, in the mapCertificate call, once the name is obtained from the

certificate if the user is found to be an invalid user in the registry, you can avoid trying to create the

credential for the user.

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

The getGroups method returns the list of groups from the registry. The names of groups depend on the

pattern parameter. The number of groups is limited by the limit parameter. In a registry that has many

groups, getting all the groups is not practical. So, the limit parameter is introduced to limit the number of

groups retrieved from the registry. A limit of 0 implies to return all the groups that match the pattern and

can cause problems for large registries. Use this limit with care. The custom registry implementations are

expected to support at least the wildcard search (*). For example, a pattern of (*) returns all the users and

a pattern of (b*) returns the users starting with b.

The return parameter is an object of type com.ibm.websphere.security.Result. This object contains two

attributes, a java.util.List and a java.lang.boolean. The list contains the groups returned and the

Boolean flag indicates whether there are more groups available in the registry for the pattern searched.

This Boolean flag is used to indicate to the client if more groups are available in the registry.

Chapter 8. Developing secured applications 109

In the sample, the getUsers retrieves the required number of groups from the registry and sets them as a

list in the result object. To find out if there are more groups than requested, the sample gets one more

user than requested and if it finds the additional user, it sets the Boolean flag to true. For pattern

matching, the match method in the RegExpSample class is used. It supports wildcards like *, ?.

This method is called by the administrative console to add groups to roles in the various map groups to

roles panels. The administrative console will use the boolean set in the Result object to indicate that more

entries matching the pattern are available in the registry.

In WebSphere Application Server Version 4, this method is used to take the pattern parameter only and

returns a list. In WebSphere Application Server Version 5.x or later, this method is changed to take one

additional parameter, the limit. Change to take the limit value and limit the users returned. The return is

changed to return a result object, which consists of the list (as in version 4) and a flag indicating whether

more entries exist. Use the Result.setList(List) to set the list in the result object. If there are more

entries than requested in the limit parameter, set the Boolean attribute to true in the result object using

Result.setHasMore(). The default for the Boolean attribute in the result object is false.

public String getGroupDisplayName(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

The getGroupDisplayName method returns a display name for a group if one exists. The display name is an

optional string describing the group that you can set in some registries. This name is a descriptive name

for the group and does not have to be unique in the registry. If you do not need to have display names for

groups in your registry, return null or an empty string for this method.

In the sample, this method returns the display name of the group whose name matches the group name

provided. If the display name does not exist, this method returns an empty string.

The product can call this method to present the display names in the administrative console or through

command line using the wsadmin tool. This method is only used for displaying.

public String getUniqueGroupId(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique ID of the group given the security name.

In the sample, this method returns the unique ID of the group whose name matches the supplied name.

This method is called when creating the authorization table for the application.

public List getUniqueGroupIds(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique IDs of all the groups to which a user belongs.

In the sample, this method returns the unique ID of all the groups that contain this uniqueUserID. This

method is called when creating the credential for the user. As part of creating the credential, all the

groupUniqueIds in which the user belongs are collected and put in the credential for authorization

purposes when groups are given access to a resource.

110 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

public String getGroupSecurityName(String uniqueGroupId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the security name of a group given its unique ID.

In the sample, this method returns the security name of the group whose unique ID matches the supplied

ID. This method verifies that a valid group exists for a given uniqueGroupId.

public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException,

 RemoteException;

This method indicates if the given group is a valid group in the registry.

In the sample, this method returns true if the group is found in the registry, otherwise the method returns

false. This method can be used in situations where knowing whether the group exists in the directory

might prevent problems later.

public List getGroupsForUser(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns all the groups to which a user belongs whose name matches the supplied name. This

method is similar to the getUniqueGroupIds method with the exception that the security names are used

instead of the unique IDs.

In the sample, this method returns all the group security names that contain the userSecurityName.

This method is called by the administrative console or the scripting tool to verify that the users entered for

the RunAs roles are already part of that role in the users and groups to role mapping. This check is

required to ensure that a user cannot be added to a RunAs role unless that user is assigned to the role in

the users and groups to role mapping either directly or indirectly (through a group that contains this user).

Since a group in which the user belongs can be part of the role in the users and groups to role mapping,

this method is called to check if any of the groups that this user belongs to mapped to that role.

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method retrieves users from the specified group. The number of users returned is limited by the limit

parameter. A limit of 0 indicates to return all the users in that group. This method is not directly called by

the WebSphere Application Server security component. However, this can be called by other components.

For example, this method issued by the process choreographer when staff assignments are modeled using

groups. In rare situations, if you are working with a registry where getting all the users from any of your

groups is not practical (for example, if there are a large number of users), you can throw the

NotImplementedException exception for the particular groups. In this case, verify that if the process

choreographer is installed (or if it is installed later) the staff assignments are not modeled using these

particular groups. If there is no concern about returning the users from groups in the registry, it is

recommended that you do not throw the NotImplemented exception when implementing this method.

Chapter 8. Developing secured applications 111

The return parameter is an object of type com.ibm.websphere.security.Result. This object contains two

attributes, java.util.List and java.lang.boolean. The list contains the users returned and the Boolean

flag, which indicates whether there are more users available in the registry for the search pattern. This

Boolean flag indicates to the client whether users are available in the registry.

In the example, this method gets one user more than the requested number of users for a group if the limit

parameter is not set to 0. If it succeeds in getting one more user, it sets the Boolean flag to true.

In WebSphere Application Server Version 4, this getUsers method was mandatory for the product. For

WebSphere Application Server Version 5.x or later, this method can throw the exception

NotImplementedException exception in situations where it is not practical to get the requested set of users.

However, this exception should be thrown in rare situations, as other components can be affected. In

version 4, this method accepted only the pattern parameter and the returned a list. In version 5, this

method accepts one additional parameter, the limit. Change your implementation to take the limit value

and limit the users returned. The return changes to return a result object, which consists of the list (as in

version 4) and a flag indicating whether more entries exist. When the list is returned, use the

Result.setList(List) method to set the list in the Result object. If there are more entries than requested

in the limit parameter, set the Boolean attribute to true in the result object using Result.setHasMore().

The default for the Boolean attribute in the Result object is false.

Attention: The first two lines of the following code sample is one continuous line.

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 In this release of the WebSphere Application Server, this method is not called. You can return null. In the

example, a null is returned.

Trust association interceptor support for Subject creation

The new Trust Association Interceptor (TAI) interface,

com.ibm.wsspi.security.tai.TrustAssociationInterceptor, supports several new features and is different from

the existing com.ibm.websphere.security.TrustAssociationInterceptor interface. Although the existing

interface is still supported, it is being deprecated in a future release.

The new TAI interface supports a multi-phase, negotiated authentication process. For example, some

systems require a challenge response protocol back to the client. The two key methods in this new

interface are:

Key method name

public boolean isTargetInterceptor (HttpServletRequest req)

 The isTargetInterceptor method determines whether the request originated with the proxy server

associated with the interceptor. The implementation code must examine the incoming request

object and determine if the proxy server forwarding the request is a valid proxy server for this

interceptor. The result of this method determines whether the interceptor processes the request.

Method result

 A true value tells WebSphere Application Server to have the TAI handle the request.

 A false value, tells WebSphere Application Server to ignore the TAI.

112 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The negotiateValidateandEstablishTrust method determines whether to trust the proxy server from

which the request originated. The implementation code must authenticate the proxy server. The

authentication mechanism is proxy-server specific. For example, in the product implementation for

the WebSEAL server, this method retrieves the basic authentication information from the HTTP

header and validates the information against the user registry used by WebSphere Application

Server. If the credentials are invalid, the code throws the WebTrustAssociationException, which

indicates that the proxy server is not trusted and the request is denied. If the credentials are valid,

the code returns a TAIResult, which indicates the status of the request processing along with the

client identity (Subject and principal name) to be used for authorizing the Web resource.

Key method name

public TAIResult negotiateValidateandEstablishTrust (HttpServletRequest req, HttpServletResponse

res)

Method result

Returns a TAIResult, which indicates the status of the request processing. The request object can

be queried and the response object can be modified.

The TAIResult class has three static methods for creating a TAIResult. The TAIResult create methods take

an int type as the first parameter. WebSphere Application Server expects the result to be a valid HTTP

request return code and is interpreted in one of the following ways:

v If the value is HttpServletResponse.SC_OK, this response tells WebSphere Application Server that the

TAI has completed its negotiation. The response also tells WebSphere Application Server use the

information in the TAIResult to create a user identity.

v Other values tell WebSphere Application Server to return the TAI output, which is placed into the

HttpServletResponse, to the Web client. Typically, the Web client provides additional information and

then places another call to the TAI.

The created TAIResults have the following meanings:

 TAIResult Explanation

public static TAIResult create(int

status);

Indicates a status to WebSphere Application Server. The status should not be

SC_OK because the identity information is provided.

public static TAIResult create(int

status, String principal);

Indicates a status to WebSphere Application Server and provides the user ID

or the unique ID for this user. WebSphere Application Server creates

credentials by querying the user registry.

public static TAIResult create(int

status, String principal, Subject

subject);

Indicates a status to WebSphere Application Server, the user ID or the unique

ID for the user, and a custom Subject. If the Subject contains a Hashtable, the

principal is ignored. The contents of the Subject becomes part of the eventual

user Subject.

All of the following examples are within the negotiateValidateandEstablishTrust() method of a TAI.

The following code sample indicates that additional negotiation is required:

// Modify the HttpServletResponse object

 // The response code is meaningful only on the client

 return TAIResult.create(HttpServletResponse.SC_CONTINUE);

The following code sample indicates that the TAI has determined the user identity. WebSphere Application

Server receives the user ID only and then it queries the user registry for additional information:

// modify the HttpServletResponse object

 return TAIResult.create(HttpServletResponse.SC_OK, userid);

Chapter 8. Developing secured applications 113

The following code sample indicates that the TAI had determined the user identity. WebSphere Application

Server receives the complete user information that is contained in the Hashtable. For more information on

the Hashtable, see “Configuring inbound identity mapping” on page 261. In this code sample, the

Hashtable is placed in the public credential portion of the Subject:

// create Subject and place Hashtable in it

 Subject subject = new Subject;

 subject.getPublicCredentials().add(hashtable);

 //the response code is meaningful only the client

 return TAIResult.create(HttpServletResponse.SC_OK, ″ignored″, subject);

The following code sample indicates that there is an authentication failure. WebSphere Application Server

fails the authentication request:

//log error message

 //

 throw new WebTrustAssociationFailedException(″TAI failed for this reason″);

There are a few additional methods on the TrustAssociationInterceptor interface that are discussed in the

Java documentation. These methods are used for initialization, shut down, and for identifying the TAI to

WebSphere Application Server.

114 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 9. Assembling secured applications

There are several assembly tools that are graphical user interfaces for assembling enterprise (J2EE)

applications. You can use these tools to assemble an application and secure EJB and Web modules in

that application. An EJB module consists of one or more beans. You can enforce security at the EJB

method level. A Web module consists of one or more Web resources (an HTML page, a JSP file or a

servlet). You can also enforce security for each Web resource. You can use an assembly tool to secure an

EJB module (Java archive (JAR) file) or a Web module (Web archive (WAR) file) or an application

(enterprise archive (EAR) file). You can create an application, an EJB module, or a Web Module and

secure them using an assembly tool or development tools like the IBM Rational Application Developer.

1. Secure EJB applications using an assembly tool. For more information, see “Securing enterprise bean

applications” on page 116.

2. Secure Web applications using an assembly tool. For more information, see “Securing Web

applications using an assembly tool” on page 118.

3. Add users and groups to roles while assembling secured application using an assembly tool. For more

information, see “Adding users and groups to roles using an assembly tool” on page 124.

4. Map users to RunAs roles using an assembly tool. For more information, see “Mapping users to

RunAs roles using an assembly tool” on page 125.

5. “Adding the was.policy file to applications” on page 486.

6. Assemble the application components that you just secured using an assembly tool. For more

information, see Assembling applications.

After securing an application, the resulting .ear file contains security information in its deployment

descriptor. The EJB module security information is stored in the ejb-jar.xml file and the Web module

security information is stored in the web.xml file. The application.xml file of the application EAR file

contains all the roles used in the application. The user and group to roles mapping is stored in the

ibm-application-bnd.xmi file of the application EAR file.

The was.policy file of the application EAR contains the permissions granted for the application to access

system resources.

This task is required to secure EJB modules and Web modules in an application. This task is also required

for applications to run properly when Java 2 security is enabled. If the was.policy file is not created and it

does not contain required permissions, the application might not be able to access system resources.

After securing an application, you can install an application using the administrative console. When you

install a secured application, refer to the Chapter 10, “Deploying secured applications,” on page 127 article

to complete this task.

Enterprise bean component security

An EJB module consists of one or more beans. You can use development tools such as Rational Web

Developer to develop an EJB module. You can also enforce security at the EJB method level.

You can assign a set of EJB methods to a set of one or more roles. When an EJB method is secured by

associating a set of roles, grant at least one role in that set so that you can access that method. To

exclude a set of EJB methods from being accessed by anyone mark them excluded. You can give

everyone access to a set of enterprise beans method by clearing those methods. You can run enterprise

beans as a different identity (runAs identity) before invoking other enterprise beans.

© Copyright IBM Corp. 2004 115

Securing enterprise bean applications

You can protect enterprise bean methods by assigning security roles to them. Before you assign security

roles, you need to know which EJB methods need protecting and how to protect them.

1. In an assembly tool, import your EJB JAR file or an application archive (EAR) file that contains one or

more Web modules. For more information, see the Importing EJB files article or the Importing

enterprise applications article.

2. In the Project Explorer , click the EJB Projects directory and click the name of your application.

3. Right-click the Deployment descriptor and select Open with > Deployment Descriptor Editor. If you

selected an EJB .jar file, an EJB deployment descriptor editor opens. If you selected an application

.ear file, an application deployment descriptor editor opens. To see online information about the editor,

press F1 and click the editor name.

4. Create security roles. You can create security roles at the application level or at the EJB module level.

If you create a security role at the EJB module level, the role displays in the application level. If a

security role is created at the application level, the role does not appear in all the EJB modules. You

can copy and paste one or more EJB module security roles that you create at application level:

v Create a role at an EJB module level. In an EJB deployment descriptor editor, select the Assembly

tab. Under Security Roles, click Add. In the Add Security Role wizard, name and describe the

security role; then click Finish.

v Create a role at the application level. In an application deployment descriptor editor, select the

Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and

describe the security role; then click Finish.

5. Create method permissions. Method permissions map one or more methods to a set of roles. An

enterprise bean has four types of methods: Home methods, Remote methods, LocalHome methods

and Local methods. You can add permissions to enterprise beans on the method level. You cannot add

a method permission to an enterprise bean unless you already have one or more security roles

defined. For Version 2.0 EJB projects, there is an unchecked option that specifies that the selected

methods from the selected beans do not require authorization to execute. To add a method permission

to an enterprise bean:

a. On the Assembly tab of an EJB deployment descriptor editor, under Method Permissions, click

Add. The Add Method Permission wizard opens.

b. Select a security role from the list of roles found and click Next.

c. Select one or more enterprise beans from the list of beans found. You can click Select All or

Deselect All to select or deselect all of the enterprise beans in the list. Click Next.

d. Select the methods that you want to bind to your security role. The Method Elements page lists all

methods associated with the enterprise bean(s). You can click Apply to All or Deselect All to

quickly select or clear multiple methods. It selects only the * method for each bean. Creating a

method permission for the exact method signature overrides the default (*) method permission

setting. The * method represents all methods within the bean. There are * for each interface as

well. By not selecting all of the individual methods in the tree, you can set other permissions on the

remaining methods.

e. Click Finish.

After the method permission is created, you can see the new method permission in the tree. Expand

the tree to see the bean and methods defined in the method permission.

6. Exclude user access to methods. Users cannot access excluded methods. Any method in the

enterprise beans that is not assigned to a role or is not excluded, is deselected during the application

installation by the deployer.

a. On the Assembly tab of an EJB deployment descriptor editor, under Excludes List, click Add.

The Exclude List wizard opens.

b. Select one or more enterprise beans from the list of beans found and click Next.

c. Select one or more of the method elements for the security identity and click Finish.

116 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

7. Map the security-role-ref and role-name to the role-link. When developing enterprise beans, you can

create the security-role-ref element. The security-role-ref element contains only the role-name field.

The role-name field determines if the caller is in a specified role(isCallerInRole()) and contains the

name of the role that is referenced in the code. Since you create security roles during the assembly

stage, the developer uses a logical rolename in the role-name field and provides enough information

in the description field for the assembler to map the actual role (role-link). The security-role-ref

element is located at the EJB level. Enterprise beans can have zero or more security-role-ref elements.

a. On the Reference tab of an EJB deployment descriptor editor, under the list of references, click

Add. The Add Reference wizard opens.

b. Select Security role reference and click Next.

c. Name the security role reference, select a security role to link the reference to, describe the

security role reference, and click Finish.

d. Map every role-name used during development to the role (role-link) using the previous steps.

8. Specify the RunAs Identity for enterprise beans components. The RunAs Identity of the enterprise

bean is used to invoke the next enterprise beans in the chain of EJB invocations. When the next

enterprise beans are invoked, the RunAsIdentity passes to the next enterprise beans for performing

an authorization check on the next enterprise bean. If the RunAs Identity is not specified, the client

identity is propagated to the next enterprise bean. The RunAs Identity can represent each of the

enterprise beans or can represent each method in the enterprise beans.

a. On the Access tab of an EJB deployment descriptor editor, next to the Security Identity (Bean

Level) field, click Add. The Add Security Identity wizard opens.

b. Select the appropriate run as mode, describe the security identity, and click Next. Select the Use

identity of caller mode to instruct the security service to not make changes to the credential

settings for the principal. Select the Use identity assigned to specific role (below) mode to use

a principal that has been assigned to the specified security role for running the bean methods. This

association is part of the application binding in which the role is associated with the user ID and

password of a user who is granted that role. If you select the Use identity assigned to specific

role (below) mode , you must specify a role name and role description.

c. Select one or more enterprise beans from the list of beans found and click Next. If Next is

unavailable, click Finish.

d. Optional: On the Method Elements page, select one or more of the method elements for the

security identity and click Finish.

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.

After securing an EJB application, the resulting .jar file contains security information in its deployment

descriptor. The security information of the EJB modules is stored in the ejb-jar.xml file.

After securing an EJB application using an assembly tool, you can install the EJB application using the

administrative console. During the installation of a secured EJB application, follow the steps in the

Chapter 10, “Deploying secured applications,” on page 127 article to complete the task of securing the

EJB application.

Web component security

A Web module consists of servlets, JSP files, server-side utility classes, static Web content (HTML,

images, sound files, cascading style sheets (CSS)), and client-side classes (applets). You can use

development tools such as Rational Application Developer to develop a Web module and enforce security

at the method level of each Web resource.

You can identify a Web resource by its URI pattern. A Web resource method can be any HTTP method

(GET, POST, DELETE, PUT, for example). You can group a set of URI patterns and a set of HTTP

methods together and assign this grouping a set of roles. When a Web resource method is secured by

associating a set of roles, grant a user at least one role in that set to access that method. You can exclude

Chapter 9. Assembling secured applications 117

anyone from accessing a set of Web resources by assigning an empty set of roles. A servlet or a JSP file

can run as different identities (RunAs identity) before invoking another enterprise bean component. All the

secured Web resources require the user to log in by using a configured login mechanism. There are three

types of Web login authentication mechanisms: basic authentication, form-based authentication and client

certificate-based authentication.

For more detailed information on Web security see the product architectural overview article.

Securing Web applications using an assembly tool

There are three types of Web login authentication mechanisms that you can configure on a Web

application: basic authentication, form-based authentication and client certificate-based authentication.

Protect Web resources in a Web application by assigning security roles to those resources.

To secure Web applications, determine the Web resources that need protecting and determine how to

protect them.

1. In an assembly tool, import your Web archive (WAR) file or an application archive (EAR) file that

contains one or more Web modules. For more information, see the Importing WAR files article or the

Importing enterprise applications.

2. In the Project Explorer, locate your Web application.

3. Right-click the deployment descriptor and select Open With > Deployment Descriptor Editor. The

Deployment Descriptor window opens. To see online information about the editor, press F1 and click

the editor name. If you selected Web archive (WAR) file, a Web deployment descriptor editor opens. If

you selected an enterprise application (EAR) file, an application deployment descriptor editor opens.

4. Create security roles either at the application level or at Web module level. If a security role is created

at the Web module level, the role also displays in the application level. If a security role is created at

the application level, the role does not display in all the Web modules. You can copy and paste a

security role at the application level to one or more Web module security roles.

v Create a role at a Web-module level. In a Web deployment descriptor editor, select the Security

tab. Under Security Roles, click Add.. Enter the security role name, describe the security role, and

click Finish.

v Create a role at the application level. In an application deployment descriptor editor, select the

Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and

describe the security role; then click Finish.

5. Create security constraints. Security constraints are a mapping of one or more Web resources to a set

of roles.

a. On the Security tab of a Web deployment descriptor editor, click Security Constraints. On the

Security Constraints tab that opens, you can do the following:

v Add or remove security constraints for specific security roles.

v Add or remove Web resources and their HTTP methods.

v Define which security roles are authorized to access the Web resources.

v Specify None, Integral, or Confidential constraints on user data. None means that the application

requires no transport guarantees. Integral means that data cannot be changes in transit between

client and server. And Confidential means that data content cannot be observed while it is in

transit. Integral and Confidential usually require the use of SSL.

b. Under Security Constraints, click Add.

c. Under Constraint name, specify a display name for the security constraint and click Next.

d. Type a name and description for the Web resource collection.

e. Select one or more HTTP methods. The HTTP method options are: GET, PUT, HEAD, TRACE,

POST, DELETE, and OPTIONS.

f. Beside the Patterns field, click Add.

118 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

g. Specify a URL Pattern. For example, type - /*, *.jsp, /hello. Consult the Servlet specification

Version 2.4 for instructions on mapping URL patterns to servlets. Security run time uses the exact

match first to map the incoming URL with URL patterns. If the exact match is not present, the

security run time uses the longest match. The wild card (*.,*.jsp) URL pattern matching is used

last.

h. Click Finish.

i. Repeat these steps to create multiple security constraints.

6. Map security-role-ref and role-name elements to the role-link element. During the development of a

Web application, you can create the security-role-ref element. The security-role-ref element contains

only the role-name field at this stage. The role-name field contains the name of the role that is

referenced in the servlet or JSP code to determine if the caller is in a specified role (isUserInRole()).

Since security roles are created during the assembly stage, the developer uses a logical role name in

the role-name field and provides enough description in the description field for the assembler to map

the role actual (role-link). The Security-role-ref element is at the servlet level. A servlet or JSP file can

have zero or more security-role-ref elements.

a. Go to the References tab of a Web deployment descriptor editor. On the References tab, you can

add or remove the name of an enterprise bean reference to the deployment descriptor. There are 5

types of references you can define on this tab:

v EJB reference

v Service reference

v Resource reference

v Message destination reference

v Security role reference

v Resource environment reference

b. Under the list of EJB references, click Add.

c. Specify a name and a type for the reference in the Name and Ref Type fields.

d. Select either Enterprise Beans in the workplace or Enterprise Beans not in the workplace.

e. Optional: If you select Enterprise Beans not in the workplace, select the type of enterprise bean

in the Type field. You can specify either an entity bean or a session bean.

f. Optional: Click Browse to specify values for the local home and local interface in the Local home

and Local fields before you click Next.

g. Map every role-name used during development to the role (role-link) using the previous steps.

Every role name used during development maps to the actual role.

7. Specify the RunAs identity for servlets and JSP files. The RunAs identity of a servlet is used to invoke

enterprise beans from within the servlet code. When enterprise beans are invoked, the RunAs identity

is passed to the enterprise bean for performing an authorization check on the enterprise beans. If the

RunAs identity is not specified, the client identity is propagated to the enterprise beans. The RunAs

identity is assigned at the servlet level.

a. On the Servlets tab of a Web deployment descriptor editor, under Servlets and JSPs, click Add.

The Add Servlet or JSP wizard opens.

b. Specify the servlet or JavaServer page (JSP) settings including the name, initialization parameters,

and URL mappings and click Next.

c. Specify the class file destination.

d. Click Next to specify additional settings or click Finish.

e. Under Run As on the Servlets tab, select the security role and describe the role.

f. Specify a RunAs identity for each servlet and JSP file used by your Web application.

8. Configure the login mechanism for the Web module. This configured login mechanism applies to all the

servlets, JavaServer page (JSP) files and HTML resources in the Web module.

a. On the Pages tab of a Web deployment descriptor editor, under Login, select the required

authentication method. Available method values include: Unspecified, Basic, Digest, Form, and

Client-Cert.[

Chapter 9. Assembling secured applications 119

b. Specify a realm name.

c. If you select the Form authentication method, select a login page and an error page URLs (for

example: /login.jsp and /error.jsp). The specified login and error pages are present in the .war

file.

d. Install the client certificate on the browser or Web client and place the client certificate in the server

trust keyring file, if ClientCert is selected.

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.

After securing a Web application, the resulting WAR file contains security information in its deployment

descriptor. The Web module security information is stored in the web.xml file. When you work in the Web

deployment descriptor editor, you also can edit other deployment descriptors in the Web project, including

information on bindings and IBM extensions in the ibm-web-bnd.xmi and ibm-web-ext.xmi files.

After using an assembly tool to secure a Web application, you can install the Web application using the

administrative console. During the Web application installation, complete the steps in the Chapter 10,

“Deploying secured applications,” on page 127 article to finish securing the Web application.

Role-based authorization

Use authorization information to determine whether a caller has the necessary privileges to request a

service.

The following figure illustrates the process used during authorization. Web resource access from a Web

client is handled by a Web collaborator. The EJB resource access from a Java client (can be enterprise

beans or a servlet) is handled by an EJB Collaborator. The EJB collaborator and the Web collaborator

extract the client credentials from the object request broker (ORB) current object. The client credentials are

set during the authentication process as received credentials in the ORB Current. The resource and the

received credentials are presented to WSAccessManager to check whether access is permitted to the

client for accessing the requested resource.

The access manager module contains two main modules:

v Resource permission module helps determine the required roles for a given resource. It uses a resource

to roles mapping table that is built by the security run time during application startup. To build the

resource-to-role mapping table, the security run time reads the deployment descriptor of the enterprise

beans or the Web module (ejb-jar.xml or web.xml)

v Authorization table module consults a role to user or group table to determine whether a client is

granted one of the required roles. The role to user or group mapping table, also known as the

authorization table, is created by the security run time during application startup.

– To build the authorization table, the security run time reads the application binding file

(ibm-application-bnd.xmi file).

120 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Use authorization information to determine whether a caller has the necessary privilege to request a

service. You can store authorization information many ways. For example, with each resource, you can

store an access-control list, which contains a list of users and user privileges. Another way to store the

information is to associate a list of resources and the corresponding privileges with each user. This list is

called a capability list.

WebSphere Application Server uses the Java 2 Enterprise Edition (J2EE) authorization model. In this

model, authorization information is organized as follows:

v During the assembly of an application, permission to invoke methods is granted to one or more roles. A

role is a set of permissions; for example, in a banking application, roles can include teller, supervisor,

clerk, and other industry-related positions. The teller role is associated with permissions to run methods

related to managing the money in an account, such as the withdraw and deposit methods. The teller

role is not granted permission to close accounts; this permission is given to the supervisor role. The

application assembler defines a list of method permissions for each role; this list is stored in the

deployment descriptor for the application.

There are two special subjects that are not defined by the J2EE model, but are worth understanding:

AllAuthenticatedUsers and Everyone. A special subject is a product-defined entity independent of the user

registry. It is used to generically represent a class of users or groups in the registry.

v AllAuthenticatedUsers is a special subject that permits all authenticated users to access protected

methods. As long as the user can authenticate successfully, the user is permitted access to the

protected resource.

v Everyone is a special subject that permits unrestricted access to a protected resource. Users do not

have to authenticate to get access; this special subject provides access to protected methods as if the

resources are unprotected.

During the deployment of an application, real users or groups of users are assigned to the roles. When a

user is assigned to a role, the user gets all the method permissions that are granted to that role.

Access manager

module

WebSphere Application Server

(1)

(1)

(2)

(2)

CSIV2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

authorization

table

resource

permission

WebSphere

Access

Manager

Enterprise beans

collaborator

Web

collaborator

ORB

current object

Java client

Web client

(2)

(4)

(5)

authorization

data

received

credentials

(2)

received

credentials

(3)

(3)

resource and

credentials

resource and

credentials

resource

True/False

roles

roles, credentials

authorization

data

Authentication

role
users/
groups

resource roles

Chapter 9. Assembling secured applications 121

The application deployer does not need to understand the individual methods. By assigning roles to

methods, the application assembler simplifies the job of the application deployer. Instead of working with a

set of methods, the deployer works with the roles, which represent semantic groupings of the methods.

Users can be assigned to more than one role; the permissions granted to the user are the union of the

permissions granted to each role. Additionally, if the authentication mechanism supports the grouping of

users, these groups can be assigned to roles. Assigning a group to a role has the same effect as

assigning each individual user to the role.

A best practice during deployment is to assign groups, rather than individual users to roles for the following

reasons:

v Improves performance during the authorization check. Typically far fewer groups exist than users.

v Provides greater flexibility, by using group membership to control resource access.

v Supports the addition and deletion of users from groups outside of the product environment. This action

is preferred to adding and removing them to WebSphere Application Server roles. Stop and restart the

enterprise application for these changes to take effect. This action can be very disruptive in a production

environment.

At run time, WebSphere Application Server authorizes incoming requests based on the user’s identification

information and the mapping of the user to roles. If the user belongs to any role that has permission to

execute a method, the request is authorized. If the user does not belong to any role that has permission,

the request is denied.

The J2EE approach represents a declarative approach to authorization, but it also recognizes that you

cannot deal with all situations declaratively. For these situations, methods are provided for determining

user and role information programmatically. For Enterprise JavaBeans, the following two methods are

supported by WebSphere Application Server:

v getCallerPrincipal: This method retrieves the user identification information.

v isCallerInRole: This method checks the user identification information against a specific role.

For servlets, the following methods are supported by WebSphere Application Server:

v getRemoteUser

v isUserInRole

v getUserPrincipal

These methods correspond in purpose to the enterprise bean methods.

For more information on the J2EE security authorization model see the following Web site:

http://java.sun.com

Admin roles

The J2EE role-based authorization concept has been extended to protect the WebSphere Application

Server administrative subsystem. A number of administrative roles have been defined to provide degrees

of authority needed to perform certain WebSphere administrative functions from either the Web-based

administrative console or the system management scripting interface. The authorization policy is only

enforced when global security is enabled. The following table describes the admin roles:

 Admin roles

Role Description

monitor Least privileged that basically allows a user to view the

WebSphere Application Server configuration and current

state.

configurator Monitor privilege plus the ability to change the

WebSphere Application Server configuration.

122 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://java.sun.com

Admin roles

operator Monitor privilege plus the ability to change runtime state,

such as starting or stopping services for example.

administrator Operator and configurator privilege, plus additional

privileges granted solely to the administrator role.

Examples include:

v Modifying the server user ID and password

v Mapping users and groups to the administrator role

The identity specified when enabling global security is automatically mapped to the administrator role.

Users, groups, can be added or removed from the admin roles from the WebSphere Application Server

administrative console at anytime. However, a server restart is required for the changes to take effect. A

best practice is to map a group or groups, rather than specific users, to admin roles because it is more

flexible and easier to administer in the long run. By mapping a group to an admin role, adding or removing

users to or from the group occurs outside of WebSphere Application Server and does not require a server

restart for the change to take effect.

In addition to mapping user or groups, a special-subject can also be mapped to the admin roles. A

special-subject is a generalization of a particular class of users. The AllAuthenticated special subject

means that the access check of the admin role ensures that the user making the request has at least been

authenticated. The Everyone special subject means that anyone, authenticated or not, can perform the

action, as if security was not enabled.

Naming roles

The J2EE role-based authorization concept has been extended to protect the WebSphere CosNaming

service.

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming

functions are available on CosNaming servers such as the WebSphere Application Server. They affect the

content of the WebSphere Name Space. There are generally two ways in which client programs will result

in CosNaming calls. The first is through the JNDI interfaces. The second is CORBA clients invoking

CosNaming methods directly.

Four security roles are introduced: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. However, the roles now have authority level from low to high as follows:

v CosNamingRead. Users who have been assigned the CosNamingRead role will be allowed to do

queries of the WebSphere Name Space, such as through the JNDI ″lookup″ method. The

special-subject Everyone is the default policy for this role.

v CosNamingWrite. Users who have been assigned the CosNamingWrite role will be allowed to do write

operations such as JNDI ″bind″, ″rebind″, or ″unbind″, plus CosNamingRead operations. The

special-subject AllAuthenticated is the default policy for this role.

v CosNamingCreate. Users who have been assigned the CosNamingCreate role will be allowed to

create new objects in the Name Space through such operations as JNDI ″createSubcontext″, plus

CosNamingWrite operations. The special-subject AllAuthenticated is the default policy for this role.

v CosNamingDelete. And finally users who have been assigned CosNamingDelete role will be able to

destroy objects in the Name Space, for example using the JNDI ″destroySubcontext″ method, as well

as CosNamingCreate operations. The special-subject AllAuthenticated is the default policy for this role.

Users, groups, or the special subjects AllAuthenticated and Everyone can be added or removed to or from

the naming roles from the WebSphere Application Server administrative console at anytime. However, you

must restart the server for the changes to take effect. A best practice is to map groups or one of the

special-subjects, rather than specific users, to Naming roles because it is more flexible and easier to

Chapter 9. Assembling secured applications 123

administer in the long run. By mapping a group to an naming role, adding or removing users to or from the

group occurs outside of WebSphere Application Server and does not require a server restart for the

change to take effect.

If a user is assigned a particular naming role and that user is a member of a group that has been

assigned a different naming role, the user will be granted the most permissive access between the role he

was assigned and the role his group was assigned. For example, assume that user MyUser has been

assigned the CosNamingRead role. Also, assume that group MyGroup has been assigned the

CosNamingCreate role. If MyUser is a member of MyGroup, MyUser will be assigned the

CosNamingCreate role because he is a member of MyGroup. If MyUser were not a member of MyGroup,

he would be assigned the CosNamingRead role.

The CosNaming authorization policy is only enforced when global security is enabled. When global

security is enabled, attempts to do CosNaming operations without the proper role assignment will result in

a org.omg.CORBA.NO_PERMISSION exception from the CosNaming Server.

In WebSphere Application Server version 4.0.2, each CosNaming function is assigned to only one role.

Therefore, users who have been assigned CosNamingCreate role will not be able to query the Name

Space unless they have also been assigned CosNamingRead. In most cases a creator would need to be

assigned three roles: CosNamingRead, CosNamingWrite, and CosNamingCreate. This has been

changed in the release. The CosNamingRead and CosNamingWrite roles assignment for the creator

example in above have been included in CosNamingCreate role. In most of the cases, WebSphere

Application Server administrators do not have to change the roles assignment for every user or group

when they move to this release from previous one.

Although the ability exist to greatly restrict access to the Name space by changing the default policy, doing

so may result in unexpected org.omg.CORBA.NO_PERMISSION exceptions at run time. Typically, J2EE

applications access the Name space and the identity they use is that of the user that authenticated to

WebSphere Application Server when they access the J2EE application. Unless the J2EE application

provider clearly communicates the expected Naming roles, care should be taken when changing the

default naming authorization policy.

Adding users and groups to roles using an assembly tool

Before you perform this task, you should have already completed the steps in the “Securing Web

applications using an assembly tool” on page 118 and “Securing enterprise bean applications” on page

116 articles where you created new roles and assigned those roles to EJB and Web resources. Complete

these steps during application installation. This is because the environment (user registry) under which the

application is running is not known until deployment.

If you already know the environment in which the application is running and the user registry that is used,

then you can use an assembly tool to assign users and groups to roles. It is recommended that you use

the administrative console to assign users and groups to roles.

1. In the Project Explorer view of an assembly tool, right-click an enterprise application project (EAR file)

and click Open With > Deployment Descriptor Editor. An application deployment descriptor editor

opens on the EAR file. To access information about the editor, press F1 and click Application

deployment descriptor editor.

2. Click the Security tab and, under the main pane, click Add.

3. In the Add Security Role wizard, name and describe the security role. Then click Finish.

4. Under WebSphere Bindings, select the user or group extension properties for the security role.

Available values include: Everyone, All authenticated users, and Users/Groups.

5. If you selected Users/Groups, click Add beside the Users or Groups panes. In the wizard that opens,

specify a user or group name and click Finish. Repeat this step until you have added all users and

groups to which the security role applies.

124 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

6. Close the application deployment descriptor editor and, when prompted, click Yes to save the changes.

The ibm-application-bnd.xmi file in the application contains the users and groups to roles mapping table

(authorization table).

After securing an application, install the application using the administrative console.

Mapping users to RunAs roles using an assembly tool

RunAs roles are used for delegation. A servlet or enterprise bean component uses the RunAs role to

invoke another enterprise bean by impersonating that role.

Before you perform this task:

v Secure the Web application and enterprise bean applications, including creating and assigning new

roles to enterprise bean and Web resources. For more information, see “Securing Web applications

using an assembly tool” on page 118 and “Securing enterprise bean applications” on page 116.

v Assign users and groups to roles. For more information, see “Adding users and groups to roles using an

assembly tool” on page 124. Complete this step during the installation of the application. The

environment or user registry under which the application is going to run is not known until deployment. If

you already know the environment in which the application is going to run and you know the user

registry, then you can use an assembly tool to assign users to RunAs roles.

You must define RunAs roles when a servlet or an enterprise bean in an application is configured with

RunAs settings.

1. In the Project Explorer view of an assembly tool, right-click an enterprise application project (EAR file)

and click Open With > Deployment Descriptor Editor. An application deployment descriptor editor

opens on the EAR file. To access information about the editor, press F1 and click Application

deployment descriptor editor.

2. On the Security tab, under Security Role Run As Bindings, click Add.

3. Click Add under RunAs Bindings.

4. In the Security Role wizard, select one or more roles and click Finish.

5. Repeat steps 3 through 5 for all the RunAs roles in the application.

6. Close the application deployment descriptor editor and, when prompted, click Yes to save the changes.

The ibm-application-bnd.xmi file in the application contains the user to RunAs role mapping table.

After securing an application, you can install the application using the administrative console. You can

change the RunAs role mappings of an installed application. For more information, see “RunAs roles to

users mapping” on page 136.

Chapter 9. Assembling secured applications 125

126 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 10. Deploying secured applications

Before you perform this task, verify that you have already designed, developed and assembled an

application with all the relevant security configurations. For more information on these tasks refer to the

Chapter 8, “Developing secured applications,” on page 51 and Chapter 9, “Assembling secured

applications,” on page 115 articles. In this context, deploying and installing an application are considered

the same task.

Deploying applications that have security constraints (secured applications) is not much different than

deploying applications any security constraints. The only difference is that you might need to assign users

and groups to roles for a secured application, which requires that you have the correct active registry. To

deploy a newly secured application click Applications > Install New Application in the navigation panel

on the left and follow the prompts. If you are installing a secured application, roles would have been

defined in the application. If delegation was required in the application, RunAs roles also are defined.

One of the steps required to deploy secured applications is to assign users and groups to roles defined in

the application. This task is completed as part of the step titled Map security roles to users and groups.

This assignment might have already been done through an assembly tool. In that case you can confirm

the mapping by going through this step. You can add new users and groups and modify existing

information during this step.

If the applications support delegation, then a RunAs role is already defined in the application. If the

delegation policy is set to Specified Identity (during assembly) the intermediary invokes a method using

an identity setup during deployment. Use the RunAs role to specify the identity under which the

downstream invocations are made. For example, if the RunAs role is assigned user ″bob″ and the client

″alice″ is invoking a servlet, with delegation set, which in turn calls the enterprise beans, then the method

on the enterprise beans is invoked with ″bob″ as the identity. As part of the deployment process one of the

steps is to assign or modify users to the RunAs roles. This step is titled ″Map RunAs roles to users″. Use

this step to assign new users or modify existing users to RunAs roles when the delegation policy is set to

Specified Identity.

These steps are common for both installing an application and modifying an existing application. If the

application contains roles, you see the ″Map security roles to users and groups″ link during application

installation and also during managing applications, as a link in the Additional properties section.

1. Click Applications > Install New Application. Complete the steps (non-security related) required prior

to the step titled Map security roles to users and groups.

2. Assign users and groups to roles. For more information, see “Assigning users and groups to roles” on

page 128.

3. Map users to RunAs roles if RunAs roles exist in the application. For more information, see “Assigning

users to RunAs roles” on page 134.

4. Click Correct use of System Identity to specify RunAs roles if needed. Complete this action if the

application has delegation set to use System Identity (applicable to enterprise beans only). System

Identity uses the WebSphere Application Server security server ID to invoke downstream methods and

should be used with caution as this ID has more privileges than other identities in terms of accessing

WebSphere Application Server internal methods. This task is provided to make sure that the deployer

is aware that the methods listed in the panel have System Identity set up for delegation and to correct

them if necessary. If no changes are necessary, skip this task.

5. Complete the remaining (non-security related) steps to finish installing and deploying the application.

Once a secured application is deployed, verify that you can access the resources in the application with

the correct credentials. For example, if your application has a protected Web module, make sure only the

users that you assigned to the roles are able to use the application.

© Copyright IBM Corp. 2004 127

Assigning users and groups to roles

Before you perform this task:

v Secure the Web applications and EJB applications where new roles were created and assigned to Web

and EJB resources.

v Create all the roles in your application.

v Verify that you have properly configured the user registry that contains the users that you want to

assign. It is preferable to have security turned on with the user registry of your choice before beginning

this process.

v Make sure that if you change anything in the security configuration (for example, enable security or

change the user registry) you save the configuration and restart the server before the changes become

effective.

Since the default active registry is LocalOS, it is not necessary, although it is recommended, that you

enable security if you want to use the LocalOS registry to assign users and groups to roles. You can

enable security once the users and groups are assigned in this case. The advantage of enabling security

with the appropriate registry before proceeding with this task is that you can validate the security setup

(which includes checking the user registry configuration) and avoid any problems using the registry.

These steps are common for both installing an application and modifying an existing application. If the

application contains roles, you see the Map security roles to users/groups link during application

installation and also during application management, as a link in the Additional properties section at the

bottom.

 1. Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.

 2. Click Applications > Enterprise applications >application_name.

 3. Under Additional properties, click Map security roles to users/groups. A list of all the roles that

belong to this application displays. If the roles already had users or special subjects (All

Authenticated, Everyone) assigned, they display here.

 4. To assign the special subjects, select either the Everyone or the All Authenticated check box for the

appropriate roles.

 5. Click Apply to save any changes and then continue working with user or group roles.

 6. To assign users or groups, select the role. You can select multiple roles at the same time, if the same

users or groups are assigned to all the roles.

 7. Click Look up users or Look up groups.

 8. Get the appropriate users and groups from the registry by completing the limit (number of items) and

the Search String fields and clicking Search. The limit field limits the number of users that are

obtained and displayed from the registry. The pattern is a searchable pattern matching one or more

users and groups. For example, user* lists users like user1, user2. A pattern of asterisk (*) indicates

all users or groups.

Use the limit and the search strings cautiously so as not to overwhelm the registry. When using large

registries (like Lightweight Directory Access Protocol (LDAP)) where information on thousands of

users and groups resides, a search for a large number of users or groups can make the system very

slow and can make it fail. When there are more entries than requests for entries, a message displays

on top of the panel. You can refine your search until you have the required list.

 9. Select the users and groups to include as members of these roles from the Available field and click

>> to add them to the roles.

10. To remove existing users and groups, select them from the Selected field and click <<. When

removing existing users and groups from roles use caution if those same roles are used as RunAs

roles.

For example, if user1 is assigned to RunAs role, role1, and you try to remove user1 from role1, the

administrative console validation does not delete the user since a user can only be a part of a RunAs

role if the user is already in a role (User1 should be in role1 in this case) either directly or indirectly

128 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

through a group. For more information on the validation checks that are performed between RunAs

role mapping and user and group mapping to roles, see the “Assigning users to RunAs roles” on

page 134 section.

11. Click OK. If there are any validation problems between the role assignments and the RunAs role

assignments the changes are not committed and an error message indicating the problem displays at

the top of the panel. If there is a problem, make sure that the user in the RunAs role is also a

member of the regular role. If the regular role contains a group which contains the user in the RunAs

role, make sure that the group is assigned to the role using the administrative console. Follow steps 4

and 5. Avoid using the Application Server Toolkit or any other manual process where the complete

name of the group, host name, group name, or distinguished name (DN) is not used.

The user and group information is added to the binding file in the application. This information is used later

for authorization purposes.

This task is required to assign users and groups to roles, which enables the correct users and groups to

access a secured application. If you are installing an application, complete your installation. Once the

application is installed and running you can access your resources according to the user and group

mapping you did in this task. If you are managing applications and have modified the users and groups to

role mapping, make sure you save, stop and restart the application so that the changes become effective.

Try accessing the J2EE resources in the application to verify that the changes are effective.

Security role to user and group mappings

Use this page to map security roles to users. You can map roles to specific users, to specific groups, or to

different categories.

To view this administrative console page, click Application > Install New Application. While running the

Application Installation Wizard, prompts appear to help you map security roles to users or groups. To

change role to user or group mappings for deployed applications, click Application > Enterprise

Application > deployed_application > Map security roles to users/groups.

Users

Specifies the users for role mapping. Verify that the users are defined in your chosen user registry.

To change the roles to users mapping, click Manage Application >application > Map security roles to

users.

 Data type: String

Groups

Specifies the groups for role mapping. Verify that the groups are defined in your chosen user registry.

To change the roles to users mapping, click Manage Application >application > Map security roles to

groups.

 Data type: String

Roles

Specifies the roles to which you want to map users and groups. Role privileges give users and groups

permission to run as specified.

Select the check boxes to choose a role or a set of roles. Click Look-up Users to map users to the roles

that you have selected. Click Look-up Groups to map groups to the selected roles. Use the check boxes

to map roles to EVERYONE or ALL AUTHENTICATED special subject.

Chapter 10. Deploying secured applications 129

Data type: String

Everyone

Specifies to map roles to everyone. Mapping a role to everyone means that anyone can access resources

protected by this role, and essentially, there is no security.

 Data type: Boolean

All Authenticated

Specifies to authenticate all users. Roles are mapped to all authenticated users, and all authenticated

users in the selected user registry are granted access to the role.

 Data type: Boolean

Security role to user and group selections

Use this page to select users and groups for security roles.

To view this administrative console page, click Application > Install New Application.

While using the Install New Application Wizard, prompts appear to help you map security roles to users.

You also can configure security roles to user mappings of deployed applications. Different roles can have

different security authorizations. Mapping users or groups to a role authorizes those users or groups to

access applications defined by the role. Users, groups and roles are defined when an application is

installed or configured.

You also can select role to user and group mappings while you are deploying applications. After

deployment in Additional Properties, click Map Security roles to users to change user and group

mappings to a role.

Look up users

Specifies whether the server looks up selected users.

Choose the role by selecting the check box beside the role and clicking Lookup users. Complete the

Limit and the Pattern fields. The Limit field contains the number of entries that the search function

returns. The Pattern field contains the search pattern used for searching entries. For example, bob*

searches all users or groups starting with bob. A limit of zero returns all the entries that match the pattern.

Use this value only when a small number of users or groups match this pattern in the registry. If the

registry contains more entries that match the pattern than requested, a message appears in the console to

indicate that there are more entries in the registry. You can either increase the limit or refine the search

pattern to get all the entries.

Look up groups

Specifies whether the server looks up selected groups.

Choose the role by selecting the check box beside the role and clicking Lookup groups. Complete the

Limit and the Pattern fields. The Limit field contains the number of entries that the search function

returns. The Pattern field contains the search pattern used for searching entries. For example, bob*

searches all users or groups starting with bob. A limit of zero returns all the entries that match the pattern.

Use this value only when a small number of users or groups match this pattern in the registry. If the

registry contains more entries that match the pattern than requested, a message appears in the console to

indicate that there are more entries in the registry. You can either increase the limit or refine the search

pattern to get all the entries.

130 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Role

Specifies user roles.

A number of administrative roles are defined to provide degrees of authority needed to perform certain

WebSphere administrative functions from either the Web-based administrative console or the system

management scripting interface. The authorization policy is only enforced when global security is enabled.

The following roles are valid:

v Monitor--least privileged that basically allows a user to view the server configuration and current state

v Configurator--monitor privilege plus the ability to change the server configuration

v Operator--monitor privilege plus the ability to change the run time state, such as starting or stopping

services

v Administrator--operator plus configurator privilege

 Range Monitor, Configurator, Operator, Administrator

Everyone

Specifies to authenticate everyone.

 Range Monitor, Configurator, Operator, Administrator

All authenticated

 Range Monitor, Configurator, Operator, Administrator

Mapped users

Mapped groups

Look up users and groups settings

Use this page to select users and groups for security roles.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Map security roles to users/groups > Look up users or groups button.

Different roles can have different security authorizations. Mapping users or groups to a role authorizes

those users or groups to access applications defined by the role. Users, groups and roles are defined

when an application is installed or configured. Use the Search field to display users in the Available Users

list. Click the arrows to add users from the Available Users list to the Selected Users list.

Limit

Specifies the maximum number of users/groups that can be returned when assigning users/groups to

roles.

A value of 0 implies a return of all users/groups that match the pattern. You can either increase the limit or

refine the search pattern to get all the entries.

 Data type Integer

Units User name

Default 20

Range 0 or more

Pattern

Indicates the search pattern used to search for the entries.

Chapter 10. Deploying secured applications 131

The pattern field should contain the search pattern that should be used to search for the entries. For

example, bob* will search all users or groups starting with bob. A limit of 0 gets all the entries that match

the pattern and should be used only when a small number users/groups match that pattern in the registry.

If the registry contains more entries that match the pattern than requested for, a message shows in the

console to indicate that there are more entries in the registry.

 Data type String

Units Number of users

Default 20

Range A-Z with *

Delegations

Delegation is a process security identity propagation from a caller to a called object. As per the J2EE

specification, a servlet and enterprise beans can propagate either the client (remote user) identity when

invoking enterprise beans or they can use another specified identity as indicated in the corresponding

deployment descriptor.

The IBM extension supports Enterprise JavaBeans (EJB) to propagate to the server ID when invoking

other entity beans. There are three types of delegations:

v Delegate (RunAs) Client Identity

v Delegate (RunAs) Specified Identity

v Delegate (RunAs) System Identity

Delegate (RunAs) Client Identity

Delegate (RunAs) Specified Identity

ID=user1

Enterprise beans

or Web Client

RunAs client ID

Enterprise beans

or Servlet

Other

enterprise beans

ID=user1

Delegate Client Identity

ID=user1

Delegate Specified Identity

Other

enterprise beans

Run As specified role

mapped to user2

Enterprise beans

or Web client

Enterprise beans

or servlet

ID=user2

132 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Delegate (RunAs) System Identity

The EJB specification only supports delegation (RunAs) at the EJB level. But an IBM extension allows EJB

method level RunAs specification. Method EJB method level runAs specification allows one to specify a

different RunAs role for different methods within the same enterprise beans.

The RunAs specification is detailed in the deployment descriptor (the ejb-jar.xml file in the EJB module

and the web.xml file in the Web module). The IBM extension to the RunAs specification is included in the

ibm-ejb-jar-ext.xmi file.

There is also an IBM specific binding file for each application that contains a mapping from the RunAs role

to the user. This file is specified in the ibm-application-bnd.xmi file.

These specifications are read by the run time during application startup. The following figure illustrates the

delegation mechanism as implemented in the WebSphere Application Server security model.

Delegation Process

There are two tables that help in the delegation process:

v Resource to RunAs role mapping table

v RunAs role to user ID and password mapping table

ID=user1

RunAs system ID

ID=user1

Delegate System Identity

Enterprise beans

or Web servlet
Enterprise beans

Other

enterprise beans

server1

Java client

Delegation process

WebSphere Application Server

(1)

(1)

CSIV2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

Enterprise beans

collaborator

Web

authenticator
Web client

(2)

Resource

(2)

Resource

Delegation

Run As role to

credentials

Resource

to Run As role

(3)

(4)

(5)

(6)

(7)

(7)

(6)

Resource

Credentials

Run As roles

Run As roles

Run As
role

users and
passwords

Resource
Run As
roles

Delegate

module

Invoke credentials ORB

current

Enterprise

beans

Servlet

Chapter 10. Deploying secured applications 133

Use the Resource to RunAs role mapping table to get the role that is used by a servlet or by enterprise

beans to propagate to the next enterprise beans call.

Use the RunAsRole to User ID and Password mapping table to get the user ID that belongs to the RunAs

role and its password.

Delegation is performed after successful authentication and authorization. During this process, the

delegation module consults the Resource to RunAs role mapping table to get the RunAs role (3). The

delegation module consults the RunAs role to user ID and password mapping table to get the user that

belongs to the RunAs role (4). The user ID and password is used to create a new credential using the

authentication module, which is not shown in figure.The resulting credential is stored in the ORB Current

as an invocation credential (5). Servlet and enterprise beans when invoking other enterprise beans pick up

the invocation credential from the ORB Current (6) and call the next enterprise beans (7).

Assigning users to RunAs roles

Before you perform this task,

v Secure the Web applications and EJB applications where new RunAs roles were created and assigned

to Web and EJB resources.

v Create all the RunAs roles in your application. The user in the RunAs role can only be entered if that

user or a group to which that user belongs is already part of the regular role.

v Assign users and groups to security roles. Refer to “Assigning users and groups to roles” on page 128

for more information.

v Verify that the user registry requirements are met. These requirements are the same as those discussed

in the same as in the case of “Assigning users and groups to roles” on page 128 task. For example, if

role1 is a role that is also used as a RunAs role, then the user, user1, can be added to the RunAs role.

role1, if user1 or a group that user1 belongs to, already is assigned to role1. The administrative console

checks this logic when Apply or OK is clicked. If the check fails, the change is not made and an error

message displays at the top of the panel.

If the special subjects ″Everyone″ or ″All Authenticated″ are assigned to a role, then no check takes place

for that role.

The checking is done every time Apply in this panel is clicked or when OK is clicked in the Map security

roles to users/groups panel. The check verifies that all the users in all the RunAs roles do exist directly

or indirectly (through a group) in those roles in the Map security roles to users/groups panel. If a role is

assigned both a user and a group to which that user belongs, then either the user or the group (not both)

can be deleted from Map security roles to users/groups panel.

If the RunAs role user belongs to a group and if that group is assigned to that role, make sure that the

assignment of this group to the role is done through administrative console and not through an assembly

tool or any other method. When using the administrative console, the full name of the group is used (for

example, hostname\groupName in windows systems, and distinguished names (DN) in Lightweight Directory

Access Protocol (LDAP)). During the check, all the groups to which the RunAs role user belongs are

obtained from the registry. Since the list of groups obtained from the registry are the full names of the

groups, the check works correctly. If the short name of a group is entered using an assembly tool (for

example, group1 instead of CN=group1, o=myCompany.com) then this check fails.

These steps are common to both installing an application and modifying an existing application. If the

application contains RunAs roles, you see the Map RunAs roles to users link during application

installation and also during managing applications as a link in the Additional properties section at the

bottom.

1. Click Applications > Enterprise Applications >application_name.

2. Under Additional properties, click Map RunAs roles to users. A list of all the RunAs roles that belong

to this application displays. If the roles already had users assigned, they display here.

134 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

3. To assign a user, select the role. You can select multiple roles at the same time if the same user is

assigned to all the roles.

4. Enter the user’s name and password in the designated fields. The user name entered can be either

the short name (preferred) or the full name (as seen when getting users and groups from the registry).

5. Click Apply. The user is authenticated using the active user registry. If authentication is successful, a

check is made to verify that this user or group is mapped to the role in the Map security roles to

users and groups panel. If authentication fails, verify that the user and password are correct and that

the active registry configuration is correct.

6. To remove a user from a RunAs role, select the roles and click Remove.

The RunAs role user is added to the binding file in the application. This file is used for delegation

purposes when accessing J2EE resources. This step is required to assign users to RunAs roles so that

during delegation the appropriate user is used to invoke the EJB methods.

If you are installing the application, complete installation. Once the application is installed and running you

can access your resources according to the RunAS role mapping. Save the configuration.

If you are managing applications and have modified the RunAs roles to users mapping, make sure you

save, stop and restart the application so that the changes become effective. Try accessing your J2EE

resources to verify that the new changes are in effect.

Unprotected EJB 2.0 methods protection settings

Use this page to verify that unprotected EJB 2.0 methods have the correct level of protection before you

map users to roles.

To view this administrative console page, click Application > Install New Application. While running the

Install New Application Wizard, prompts appear to help you map security roles to users.

Exclude

Specifies that the method is completely protected.

 Data type: Check box

Default: Cleared

Uncheck

Specifies that everyone can access the security method.

 Data type: Check box

Default: Uncheck

Specify role

Specifies the EJB level of protection based on the security role.

The roles listed in this menu are obtained from the application scope. If the selected role is not in the

module, then it is added to the modules or Java archive (JAR) files.

 Data type: String

Units: Role

Module name

Specifies the name of the module.

Chapter 10. Deploying secured applications 135

If a module name appears in this list, then the module contains unprotected EJB methods.

 Data type: String

Units: Module name

Protection

Specifies the level of protection assigned to a particular module name.

 Data type: String

Default: Cleared

EJB 2.1 method protection level settings

Use this page to verify that all unprotected EJB 2.1 methods have the correct level of protection before

you map users to roles.

To view this administrative console page, click Applications > Install New Application. While running the

Install New Application Wizard, prompts appear to help you determine that all unprotected EJB 2.1

methods have the correct level of protection.

EJB Module

Specifies the enterprise bean module name.

 Data Type: String

Units: EJB module name

Module URI

Specifies the Java archive (JAR) file name.

 Data Type: String

Units: JAR file name

Method protection

Specifies the level of protection assigned to the EJB module.

A selected box means to Deny All and that the method is completely protected.

 Data Type: Check box

Default: Cleared

Range: Yes or No

RunAs roles to users mapping

Use this page to map RunAs roles to users. You can change the RunAs settings after an application

deploys.

To view this administrative console page, click Applications > Install New Application. While running the

application installation wizard, prompts appear to help you map RunAs roles to users. You can change the

RunAs roles to users mappings for deployed applications by completing the following steps:

1. Click Applications > Enterprise Applications >application_name.

2. Under Additional properties, click Map RunAs roles to users.

136 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The enterprise beans you are installing contain predefined RunAs roles. RunAs roles are used by

enterprise beans that need to run as a particular role for recognition while interacting with another

enterprise bean.

User name

Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to roles panel. You can map

the user to its appropriate role by either mapping the user to that role directly or mapping a group that

contains the user to that role.

 Data type: String

Password

Specifies the password for the RunAs user.

 Data type: String

Confirm password:

Specifies the confirmed password of the administrative user.

 Data type String

Role:

Specifies administrative user roles.

 A number of administrative roles have been defined to provide degrees of authority needed to perform

certain WebSphere administrative functions from either the web based administrative console or the

system management scripting interface. The authorization policy is only enforced when global security is

enabled. The following roles are valid:

v Monitor--least privileged that basically allows a user to view the WebSphere configuration and current

state

v Configurator--monitor privilege plus the ability to change the WebSphere configuration

v Operator--monitor privilege plus the ability to change runtime state, such as starting or stopping

services for example

v Administrator--operator plus configurator privilege

Updating and redeploying secured applications

Before you perform this task, secure Web applications, secure EJB applications, and deploy them in

WebSphere Application Server. This section addresses the way to update existing applications.

1. Use the administrative console to modify the existing users and groups mapping to roles. For

information on the required steps, see “Assigning users and groups to roles” on page 128.

2. Use the administrative console to modify the users for the RunAs roles. For information on the required

steps, see “Assigning users to RunAs roles” on page 134.

3. Complete the changes and save them.

4. Stop and restart the application for the changes to become effective.

5. Use the an assembly tool. For more information, see Assembling applications.

6. Use an assembly tool to modify roles, method permissions, auth-constraints, data-constraints and so

on. For more information, see Assembling applications.

Chapter 10. Deploying secured applications 137

7. Save the Enterprise Archive (EAR) file, uninstall the old application, deploy the modified application

and start the application to make the changes effective.

The applications are modified and redeployed. This step is required to modify existing secured

applications.

If information about roles is modified make sure you update the user and group information using the

administrative console. Once the secured applications are modified and either restarted or redeployed,

make sure that the changes are effective by accessing the resources in the application.

138 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 11. Testing security

After configuring global security and restarting all of your servers in a secure mode, it is best to validate

that security is properly enabled.

There are a few techniques that you can use to test the various security login types. For example, you can

test the Web-based BasicAuth login, Web-based form login, and the Java client BasicAuth login.

There are basic tests that show that the fundamental security components are working properly. Complete

the following steps to validate your security configuration:

1. Test the Web-based BasicAuth with Snoop, by accessing the following URL:

http://hostname.domain:9080/snoop. A login panel appears. If a login panel does not appear, then a

problem exists. If the panel appears, type in any valid user ID and password in your configured user

registry.

Note: In a Network Deployment environment, the Snoop servlet is only available in the domain if you

included the DefaultApplication option when adding the application server to the cell. The

-includeapps option for the addNode command migrates the DefaultApplication option to the

cell. Otherwise, skip this step.

2. Test the Web-based form login by bringing up the administrative console:

http://hostname.domain:9060/ibm/console. A form-based login page appears. If a login page does not

appear, try accessing the administrative console by typing https://myhost.domain:9043/ibm/console.

Type in the administrative user ID and password used for configuring your user registry when

configuring security.

When the authentication mechanism is set as Lightweight Third Party Authentication (LTPA), represent

the host name as a fully qualified host name (that is, myhost.mycompany.com:9060 rather than just

myhost:9060).

3. Test Java Client BasicAuth with dumpNameSpace by executing the

install_root\bin\dumpNameSpace.bat file. A login panel appears. If a login panel does not appear,

there is a problem. Type in any valid user ID and password in your configured user registry.

4. Thoroughly test all of your applications in secure mode.

5. After enabling security, verify that your system comes up in secure mode.

6. If all tests pass, proceed with more rigorous testing of your secured applications. If you have any

problems, review the output logs in the WebSphere Application Server /logs/nodeagent or WebSphere

Application Server /logs/server_name directories, respectively. Then check the security troubleshooting

article to see if it references any common problems.

The results of these tests, if successful, indicate that security is fully enabled and working properly.

© Copyright IBM Corp. 2004 139

140 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 12. Administering security

Administering secure applications requires access to the WebSphere Application Server administrative

console. Log in with a valid user ID and password that have administrative access. To administer security,

complete these steps:

 1. Configure global security. For more information, see “Configuring global security” on page 142.

 2. Assign users to administrator roles. For more information, see “Assigning users to administrator roles”

on page 153.

 3. Assign users to naming roles. For more information, see “Assigning users to naming roles” on page

156.

 4. Configure authentication mechanisms. For more information, see “Configuring authentication

mechanisms” on page 160.

 5. Configure Lightweight Third Party Authentication. For more information, see “Configuring Lightweight

Third Party Authentication” on page 161.

 6. Configure trust association interceptors. For more information, see “Configuring trust association

interceptors” on page 169.

 7. Configure single signon. For more information, see “Configuring single signon” on page 172.

 8. Configure user registries. For more information, see “Configuring user registries” on page 190.

a. Configure local operating system user registries. For more information, see “Configuring local

operating system user registries” on page 195.

b. Configure Lightweight Directory Access Protocol user registries. For more information, see

“Configuring Lightweight Directory Access Protocol user registries” on page 198.

c. Configure custom user registries. For more information, see “Configuring custom user registries”

on page 213.

 9. Configure Java Authentication and Authorization Service login. For more information, see “Configuring

application logins for Java Authentication and Authorization Service” on page 242.

10. Configure an authorization provider. For more information, see “Configuring a JACC provider” on

page 346. To configure the Tivoli Access Manager Java Authorization Contract for Containers (JACC)

provider, see either “Configuring the JACC provider for Tivoli Access Manager using the wsadmin

utility” on page 356 or “Configuring the JACC provider for Tivoli Access Manager using the

administrative console” on page 358.

11. Configure the Common Secure Interoperability Version 2 and Security Authentication Service

authentication protocols. For more information, see “Configuring Common Secure Interoperability

Version 2 and Security Authentication Service authentication protocols” on page 386.

12. Configure Secure Sockets Layer. For more information, see “Configuring Secure Sockets Layer” on

page 417.

13. Configure Java 2 Security Manager. For more information, see “Configuring Java 2 security” on page

469.

14. Optional: Configure security attribute propagation. For more information, see “Security attribute

propagation” on page 275.

Global security

Global security applies to all applications running in the environment and determines whether security is

used at all, the type of registry against which authentication takes place, and other values, many of which

act as defaults.

The term global security represents the security configuration that is effective for the entire security

domain. A security domain consists of all servers configured with the same user registry realm name. In

some cases, the realm can be the machine name of a Local OS user registry. In this case, all application

servers must reside on the same physical machine. In other cases, the realm can be the machine name of

© Copyright IBM Corp. 2004 141

an Lightweight Directory Access Protocol (LDAP) user registry. Since LDAP is a distributed user registry, a

multiple node configuration is supported, such as the case for a Network Deployment environment. The

basic requirement for a security domain is that the access ID returned by the registry from one server

within the security domain is the same access ID as that returned from the registry on any other server

within the same security domain. The access ID is the unique identification of a user and is used during

authorization to determine if access is permitted to the resource.

Configuration of global security for a security domain consists of configuring the common user registry, the

authentication mechanism, and other security information that defines the behavior of a security domain.

The other security information that you can configure includes Java 2 Security Manager, Java

Authentication and Authorization Service (JAAS), Java 2 Connector authentication data entries, Common

Secure Interoperability Version 2 (CSIv2)/Security Authentication Service (SAS) authentication protocol

(Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) security), and other

miscellaneous attributes. The global security configuration usually applies to every server within the

security domain.

Configuring global security

It is helpful to understand security from an infrastructure standpoint so that you know the advantages of

different authentication mechanisms, user registries, authentication protocols, and so on. Picking the right

security components to meet your needs is a part of configuring global security. The following sections

help you make these decisions. Read the following articles before continuing with the security

configuration.

v “Global security” on page 141

v Introduction: Security

After you understand the security components, you can proceed to configure global security in WebSphere

Application Server.

1. Start the WebSphere Application Server administrative console by clicking

http://yourhost.domain:9060/ibm/console after starting the WebSphere Application Server. If security

is currently disabled, log in with any user ID. If security is currently enabled, log in with a predefined

administrative ID and password (this is typically the server user ID specified when you configured the

user registry).

2. Click Security > Global security and configure the authentication mechanism, user registry, and so

on. The configuration order is not important. However, when you select the Enable global security

flag in the Global security panel, verify that all these tasks are completed. When you click Apply or

OK and the Enable global security option is set, a verification occurs to see if the administrative user

ID and password can be authenticated to the configured user registry. If you do not configure these,

the validation fails.

3. Configure a user registry. For more information, see “Configuring user registries” on page 190. You can

configure a local OS, LDAP, or custom user registry through the links under User registry on the Global

security panel.

One of the details common to all user registries is the server user ID. This ID is a member of the

chosen user registry, but also has special privileges in WebSphere Application Server. The privileges

for this ID and the privileges associated with the administrative role ID are the same. The server user

ID can access all protected administrative methods. On Windows systems, the ID must not be the

same name as the machine name of your system, since the registry sometimes returns

machine-specific information when querying a user of the same name. In LDAP user registries, verify

that the server user ID is a member of the registry and not just the LDAP administrative role ID. The

entry must be searchable.

The server user ID does not run WebSphere Application Server processes. Rather, the process ID

runs the WebSphere Application Server processes.The process ID runs the WebSphere Application

Server processes.

142 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The process ID is determined by the way the process starts. For example, if you use a command line

to start processes, the user ID that is logged into the system is the process ID. If running as a service,

the user ID that is logged into the system is the user ID running the service. If you choose the

LocalOS registry, the process ID requires special privileges to call the operating system APIs.

Specifically, the process ID must have the Act as Part of Operating System privileges on Windows

systems or root privileges on a UNIX system.

4. Configure the authentication mechanism. To get details about configuring authentication mechanisms,

read the “Configuring authentication mechanisms” on page 160 article. There are two authentication

mechanisms to choose from in the Global Security panel: Simple WebSphere Authentication

Mechanism (SWAM) and Lightweight Third-Party Authentication (LTPA). However, only LTPA requires

any additional configuration parameters. Use the SWAM option for single server requirements. Use the

LTPA option for multi-server distributed requirements. SWAM credentials are not forwardable to other

machines and for that reason do not expire. Credentials for LTPA are forwardable to other machines

and for security reasons do expire. This expiration time is configurable. If you choose to go with LTPA,

then “Configuring single signon” on page 172 support. This support permits browsers to visit different

product servers without having to authenticate multiple times.

5. Configure the authentication protocol for special security requirements from Java clients, if needed.

This task entails choosing a protocol, either Common Secure Interoperability Version 2 (CSIv2) or

Security Authentication Service (SAS). The SAS protocol is still provided as a backwards compatibility

to previous product releases, but is being deprecated. For details on configuring CSIv2 or SAS, see

the article, “Configuring Common Secure Interoperability Version 2 and Security Authentication Service

authentication protocols” on page 386.

6. Modify the default Secure Sockets Layer (SSL) keystore and truststore files that are packaged with the

product. This action protects the integrity of the messages sent across the Internet. The product

provides a single location where you can specify SSL configurations that the various WebSphere

Application Server features that use SSL can utilize, including the LDAP user registry, Web container

and the authentication protocol (CSIv2 and SAS). Create a new keystore and truststore, by referring to

the “Creating a keystore file” on page 446 and “Creating truststore files” on page 450 articles. You can

create different keystore files and truststore files for different uses or you can create just one set for

everything that the server uses Secure Sockets Layer (SSL) for. After you create these new keystore

and truststore files, specify them in the SSL Configuration Repertoires. To get to the SSL

Configuration Repertoires, click Security > SSL. See the article, “Configuring Secure Sockets Layer”

on page 417 for more information. To get to the SSL Configuration Repertoire, click Security > SSL.

You can either edit the DefaultSSLConfig file or create a new SSL configuration with a new alias name.

If you create a new alias name for your new keystore and truststore files, change every location that

references the DefaultSSLConfig SSL configuration alias. The following list specifies the locations of

where the SSL configuration repertoire aliases are used in the WebSphere Application Server

configuration.

For any transports that use the new network input/output channel chains, including HTTP and Java

Message Service (JMS), you can modify the SSL configuration repertoire aliases in the following

locations for each server:

v Click Server > Application server > server_name. Under Communications, click Ports. Locate a

transport chain where SSL is enabled and click View associated transports. Click

transport_channel_name. Under Transport Channels, click SSL Inbound Channel (SSL_2).

For the Object Request Broker (ORB) SSL transports, you can modify the SSL configuration repertoire

aliases in the following locations. These configurations are for the server-level for WebSphere

Application Server and WebSphere Application Server Express and the cell level for WebSphere

Application Server Network Deployment.

v Click Security > Global security. Under Authentication, click Authentication protocol > CSIv2

Inbound Transport.

v Click Security > Global security. Under Authentication, click Authentication protocol > CSIv2

Outbound Transport.

v Click Security > Global security. Under Authentication, click Authentication protocol > SAS

Inbound Transport.

Chapter 12. Administering security 143

v Click Security > Global security. Under Authentication, click Authentication protocol > SAS

Outbound Transport.

For the Simple Object Access Protocol (SOAP) Java Management Extensions (JMX) administrative

transports, you can modify the SSL configurations repertoire aliases by clicking Servers > Application

servers >server_name. Under Server infrastructure, click Administration > Administration services.

Under Additional properties, click JMX connectors > SOAPConnector. Under Additional properties,

click Custom properties. If you want to point the sslConfig property to a new alias, click sslConfig

and select an alias in the Value field.

For the Lightweight Directory Access Protocol (LDAP) SSL transport, you can modify the SSL

configuration repertoire aliases by clicking Security > Global security. Under User registries, click

LDAP.

7. Click Security > Global security to configure the rest of the security settings and enable security. This

panel performs a final validation of the security configuration. When you click OK or Apply from this

panel, the security validation routine is performed and any problems are reported at the top of the

page. See the “Global security settings” on page 145 article for detailed information about these fields.

When you complete all of the fields, click OK or Apply to accept the selected settings. Click Save to

persist these settings out to a file. If you see any informational messages in red text color, then a

problem has occurred with the security validation. Typically, the message indicates the problem;

therefore, review your configuration to verify that the user registry settings are accurate and the correct

registry is selected. In some cases the LTPA configuration might not be fully specified.

8. Store the configuration for the server to use after it restarts. Complete this action if you have clicked

OK or Apply on the Security > Global security panel, and there are no validation problems. To save

the configuration, click Save in the menu bar at the top. This action writes the settings out to the

configuration repository. If you do not click Apply or OK in the Global security panel before clicking

Save on the main menu, your changes are not written to the repository.

9. Start the WebSphere Application Server administrative console by typing

http://yourhost.domain:9060/ibm/console after the WebSphere Application Server deployment

manager has been started. If security is currently disabled, log in with any user ID. If security is

currently enabled, log in with a predefined administrative ID and password, which is typically the server

user ID specified when you configure the user registry.

Enabling global security

You can decide whether to enable IBM WebSphere Application Server security. You must enable security

for all other security settings to function.

Note: WebSphere Application Server uses cryptography to protect sensitive data and ensure

confidentiallity and integrity of communications between WebSphere Application Server and other

components in the network. Cryptography is also used by Web Services security when certain

security constraints have been configured for the Web Services application.

WebSphere uses JSSE and JCE libraries in the JDK to enforce this cryptography. The JDK

provides strong but limited jurisdiction policy files. Unrestricted policy files provide the ability to

perform full strength cryptography and improve performance.

IBM’s SDKs ship with strong but limited jurisdiction policy files. For Windows, Linux, HPUX Solaris,

and AIX platforms, the unrestricted policy files can be downloaded from

https://www6.software.ibm.com/dl/jcesdk/jcesdk-p (Use the link near the bottom of the page.) The

ZIP file should be unpacked and the two JAR files placed in the JRE’s jre/lib/security/ directory.

1. Select the unrestricted JCE policy files for SDK 1.4.2.

2. Extract the unlimited jurisdiction policy files that are packaged in the ZIP file that contains two

files:

a. US_export_policy.jar

144 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

https://www6.software.ibm.com/dl/jcesdk/jcesdk-p

b. local_policy.jar

3. Back up the original version of the policy files.

4. Replace the policy files in the $JAVA_HOME/jre/lib/security directory with the two files above.

Global security settings

Use this page to configure security. When you enable security, you are enabling security settings on a

global level.

To view this administrative console page, click Security > Global security.

When security is disabled, WebSphere Application Server performance is increased between 10-20%.

Therefore, consider disabling security when it is not needed.

If you are configuring security for the first time, complete the steps in the ″Configuring server security″

article in the documentation to avoid problems. When security is configured, validate any changes to the

registry or authentication mechanism panels. Click Apply to validate the user registry settings. An attempt

is made to authenticate the server ID to the configured user registry. Validating the user registry settings

after enabling global security can avoid problems when you restart the server for the first time.

Enable global security:

Specifies whether to enable global security for this WebSphere Application Server domain.

 This flag is commonly referred to as the global security flag in WebSphere Application Server information.

When enabling security, set the authentication mechanism configuration and specify a valid user ID and

password in the selected user registry configuration.

 Default: Disable

Enforce Java 2 Security:

Specifies whether to enable or disable Java 2 security permission checking. By default, Java 2 security is

disabled. However, enabling global security automatically enables Java 2 security. You can choose to

disable Java 2 security, even when global security is enabled.

 When the Enforce Java 2 security option is enabled and if an application requires more Java 2 security

permissions than are granted in the default policy, then the application might fail to run properly until the

required permissions are granted in either the app.policy file or the was.policy file of the application.

AccessControl exceptions are generated by applications that do have all the required permissions. Consult

the WebSphere Application Server documentation and review the Java 2 Security and Dynamic Policy

sections if you are unfamiliar with Java 2 security.

If your server does not restart after you enable global security, you can disable security. Go to your

$install_root\bin directory and execute the wsadmin -conntype NONE command. At the wsadmin> prompt,

enter securityoff and then type exit to return to a command prompt. Restart the server with security

disabled to check any incorrect settings through the administrative console.

 Default: Disabled

Enforce fine-grained JCA security:

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping

authentication data.

 Consider enabling this option when both of the following conditions are true:

Chapter 12. Administering security 145

v Java 2 Security is enforced.

v The application code is granted the accessRuntimeClasses WebSphereRuntimePermission in the

was.policy file found within the application enterprise archive (EAR) file. For example, the application

code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission ″accessRuntimeClasses″;

The Enforce fine-grained JCA security option adds fine-grained Java 2 Security permission checking to

the default principal mapping of the WSPrincipalMappingLoginModule implementation. You must grant

explicit permission to Java 2 Platform, Enterprise Edition (J2EE) applications that use the

WSPrincipalMappingLoginModule implementation directly in the Java Authentication and Authorization

Service (JAAS) login when Java 2 Security and the Enforce fine-grained JCA security option is enabled.

 Default: Disabled

Use domain-qualified user IDs:

Specifies that user names returned by methods are qualified with the security domain in which they reside.

 Default: Disabled

Cache timeout:

Specifies the timeout value in seconds for security cache. This value is a relative timeout.

 If WebSphere Application Server security is enabled, the security cache timeout can influence

performance. The timeout setting specifies how often to refresh the security-related caches. Security

information pertaining to beans, permissions, and credentials is cached. When the cache timeout expires,

all cached information becomes invalid. Subsequent requests for the information result in a database

lookup. Sometimes, acquiring the information requires invoking a Lightweight Directory Access Protocol

(LDAP)-bind or native authentication. Both invocations are relatively costly operations for performance.

Determine the best trade off for the application, by looking at usage patterns and security needs for the

site.

In a 20-minute performance test, setting the cache timeout so that a timeout does not occur yields a 40%

performance improvement.

 Data type: Integer

Units: Seconds

Default: 600

Range: Greater than 30 seconds

Issue permission warning:

Specifies that during application deployment and application start, the security run time issues a warning if

applications are granted any custom permissions. Custom permissions are permissions defined by the

user applications, not Java API permissions. Java API permissions are permissions in package java.* and

javax.*.

 WebSphere Application Server provides support for policy file management. A number of policy files are

available in this product, some of them are static and some of them are dynamic. Dynamic policy is a

template of permissions for a particular type of resource. There is no code base defined or relative code

base used in the dynamic policy template. The real code base is dynamically created from the

configuration and run-time data. The filter.policy file contains a list of permissions that an application

146 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

should not have according to the J2EE 1.3 specification. For more information on permissions, see the

″Java 2 security policy files″ article in the documentation.

 Default: Disabled

Active protocol:

Specifies the active authentication protocol for Remote Method Invocation over the Internet Inter-ORB

Protocol (RMI IIOP) requests when security is enabled.

 In previous releases the Security Authentication Service (SAS) protocol was the only available protocol.

An Object Management Group (OMG) protocol called Common Secure Interoperability Version 2 (CSIv2)

supports increased vendor interoperability and additional features. If all of the servers in your security

domain are Version 5 servers, specify CSI as your protocol.

If some servers are version 3.x or version 4.x servers, specify CSI and SAS.

 Default: BOTH

Range: CSI and SAS, CSI

Range:

Active authentication mechanism:

Specifies the active authentication mechanism when security is enabled.

 WebSphere Application Server and WebSphere Application Server Express, Version 6 support the

following authentication mechanisms: Simple WebSphere Authentication Mechanism (SWAM) and

Lightweight Third Party Authentication (LTPA).

 Default: SWAM (WebSphere Application Server)

Default:

Range: SWAM, LTPA

 Default:

Range:

Active User Registry:

Specifies the active user registry, when security is enabled. LDAP or a custom user registry is required

when running as a UNIX nonroot user or running in a multi-node environment.

 You can configure settings for one of the following user registries:

v Local OS

When you enable global security on a UNIX platform and the user registry is the local OS, you must run

the server as root. The local OS user registry is not supported for nonroot users on a UNIX platform.

v LDAP user registry

The LDAP user registry settings are used when users and groups reside in an external LDAP directory.

When security is enabled and any of these properties change, go to the Global Security panel and click

Apply or OK to validate the changes.

v Custom user registry

Chapter 12. Administering security 147

Default: Local OS (single, stand-alone server or sysplex and root

administrator only)

Range: Local OS (single, stand-alone server or sysplex and root

administrator only), LDAP user registry, Custom user

registry

Use the Federal Information Processing Standard (FIPS):

Enables the use of Federal Information Processing Standard (FIPS)-approved cryptographic algorithms.

 When Use the Federal Information Processing Standard (FIPS) is enabled, the Lightweight Third Party

Authentication (LTPA) implementation uses IBMJCEFIPS. IBMJCEFIPS supports the Federal Information

Processing Standard (FIPS)-approved cryptographic algorithms for DES, Triple DES, and AES. Although

the LTPA keys are backwards compatible with prior releases of WebSphere Application Server, the LTPA

token is not compatible with prior releases.

WebSphere Application Server provides a FIPS-approved Java Secure Socket Extension (JSSE) provider

called IBMJSSEFIPS. A FIPS-approved JSSE requires the Transport Layer Security (TLS) protocol

because it is not compatible with the Secure Sockets Layer (SSL) protocol. If you select the Use the

Federal Information Processing Standard (FIPS) option prior to specifying a FIPS-approved JSSE

provider and a TLS protocol, the following error message displays at the top of the Global security panel:

The security policy is set to use only FIPS approved cryptographic algorithms.

However at least one SSL configuration may not be using a FIPS approved JSSE provider.

FIPS approved cryptographic algorithms may not be used in those cases.

To correct this problem, configure your JSSE provider and security protocol on the SSL configuration

repertoires panel by completing one of the following tasks:

v Clicking Security > SSL and modifying an existing configuration

v Clicking New and creating a new configuration

Note:

v The IBMJSSEFIPS provider is not supported on the HP-UX platform.

v In WebSphere Application Server Version 6, the HTTP transport does not support the

FIPS-approved providers because it uses the new IBMJSSE2 provider to support channel

framework. The channel framework supports asynchronous communication that might enhance

performance. The IBMJSSE2 provider is specified for the Secure Sockets Layer (SSL) channel

because it must use the IBMJCE provider for encryption. Currently, an IBMJCEFIPS provider that

works with the IBMJSSE2 provider, is not available.

 Default: Disabled

Custom Properties: For an existing configuration, there are a number of profiles that you must modify.

To modify the profiles, go into the administrative console and click Security > Global security. Under

Additional Properties, click Custom properties.

Configuring server security

You can customize security to some extent at the application server level. You can disable user security on

an application server (administrative security remains enabled when global security is enabled). You can

also modify Java 2 Security Manager, CSIv2 or Secure Authentication Service (SAS), and some of the

other security attributes that are found on the global security (also called cell-level security) panel. You

148 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

cannot configure a different authentication mechanism or user registry on an individual server basis. This

feature is limited to cell-level configuration only. Also, when global security is disabled, you cannot enable

application server security.

By default, server security inherits all of the values that are configured in global security (cell-level

security). To override the security configuration at the server level, click Servers > Application Servers >

server name. Under Security, click Server Security > Additional properties and click any of the following

panels:

v CSIv2 Inbound Authentication

v CSIv2 Inbound Transport

v CSIv2 Outbound Authentication

v CSIv2 Outbound Transport

v SAS Inbound Transport

v SAS Outbound Transport

v Server-level Security

After modifying the configuration in any of these panels and clicking OK or Apply, the security

configuration for that panel or set of panels now overrides cell-level security. Other panels that are not

overridden continue to be inherited at the cell-level. However, you can always revert back to the cell-level

configuration at any time. On the Server Security panel, click to revert back to the global security

configuration on these panels:

v Use cell security

v Use cell CSI

v Use cell SAS

1. Start the administrative console for the deployment manager. To get to the administrative console, go

to http://host.domain:9060/ibm/console. If security is disabled, you can enter any ID. If security is

enabled, you must enter a valid user ID and password, which is either the administrative ID (configured

for the user registry) or a user ID entered as an administrative user. To add a user ID as an

administrative user, click System Administration > Console settings > Console Users.

2. Configure global security if you have not already done so. Go to the “Configuring global security” on

page 142 article for detailed steps. After global security is configured, configure server-level security.

3. To configure server-level security, click Servers > Application Servers > server name. Under Security,

click Server Security. The status of the security level that is in use for this application server is

displayed.

By default, you can see that global security, CSI, and SAS have not been overridden at the server

level. CSI and SAS are authentication protocols for RMI/IIOP requests. The Server Level Security

panel lists attributes that are on the Global Security panel and can be overridden at the server level.

Not all of the attributes on the Global Security panel can be overridden at the server level, including

Active Authentication Mechanism and Active User Registry.

4. To disable security for this application server, go to the Server Level Security panel, clear the Enabled

flag and click OK or Apply. Click Save. By modifying the Server Level Security panel, you can see

that this flag overrides the cell-level security.

5. To configure CSI at the server level, you can change any panel that starts with CSI. By doing so, all

panels that start with CSI will override the CSI settings specified at the cell level. This change includes

all authentication and transport panels for CSI. See the “Configuring Common Secure Interoperability

Version 2 and Security Authentication Service authentication protocols” on page 386 article for more

detailed steps regarding configuring CSI authentication protocol.

Typically server-level security is used to disable user security for a specific application server. However,

this can also be used to disable (or enable) the Java 2 Security Manager, and configure the authentication

requirements for RMI/IIOP requests both incoming and outgoing from this application server.

Chapter 12. Administering security 149

After you modify the configuration for a particular application server, you must restart the application server

for the changes to become effective. To restart the application server, go to Servers > Application

Servers and click the server name that you recently modified. Then, click the Stop button and then the

Start button.

If you disabled security for the application server, you can typically test a URL that is protected when

security is enabled.

Server-level security settings

Use this page to enable server level security and specify other server level security configurations.

To view this administrative console page, click Servers > Application Servers > server_name. Under

Security, click Server Security. Under Additional properties, click Server Level Security.

Enable global security

Use this flag to disable or enable security again for this application server while global security is enabled.

Server security is enabled by default when global security is enabled. You cannot enable security on an

application server while global security is disabled. Administrative (administrative console and wsadmin)

and naming security remain enabled while global security is enabled, regardless of the status of this flag.

 Default Disable

Enforce Java 2 security

Specifies that the server enforces Java 2 Security permission checking at the server level. When cleared,

the Java 2 server-level security manager is not installed and all of the Java 2 Security permission checking

is disabled at the server level.

If your application policy file is not set up correctly, see the documentation on configuring an application

policy in a was.policy file.

 Default Disabled

Enforce fine-grained JCA security

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping

authentication data.

 Default Disabled

Use domain qualified user IDs

Specifies whether user IDs returned by getUserPrincipal()-like calls are qualified with the server level

security domain within which they reside.

 Default Disabled

Cache timeout

Specifies the timeout value for server level security cache in seconds.

 Data type Integer

Units Seconds

Default 600

Range Greater than 30 seconds. Avoid setting cache timeout

value to 30 seconds or less.

150 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Issue permission warning

Specifies whether a warning is issued during application installation when an application requires a Java 2

permission that is normally not granted to an application.

WebSphere Application Server provides support for policy file management. A number of policy files are

included in WebSphere Application Server. Some of these policy files are static and some of them are

dynamic. Dynamic policy is a template of permissions for a particular type of resource. In dynamic policy

files, the code bases are evaluated at run time using configuration data. You can add or remove

permissions, as needed, for each code base. However, do not add, remove, or modify the existing code

bases. The real code base is dynamically created from the configuration and run-time data. The

filter.policy file contains a list of permissions that an application does not have, according to the J2EE

1.3 Specification. For more information on permissions, see the documentation on the Java 2 security

policy files.

 Default Enabled

Active protocol

Specifies the active server level security authentication protocol when server level security is enabled.

You can use an Object Management Group (OMG) protocol called Common Secure Interoperability

Version 2 (CSIv2) for more vendor interoperability and additional features. If all of the servers in your

entire security domain are Version 5.0 servers, it is best to specify CSI as your protocol.

If some servers are Version 3.x or Version 4.x servers, it is best to specify CSI and SAS. However, by

specifying CSI and SAS, you now have two interceptors invoking each request.

 Data type String

Default CSI and SAS

Range CSI, CSI and SAS

Administrative console and naming service authorization

WebSphere Application Server extends the Java 2 Platform, Enterprise Edition (J2EE) security role-based

access control to protect the product administrative and naming subsystems.

Administrative console

Four administrative roles are defined to provide degrees of authority needed to perform certain

WebSphere Application Server administrative functions from either the administrative console or the

system management scripting interface. The authorization policy is only enforced when global security is

enabled. The four administrative security roles are defined in the following table:

 administrative roles

Role Description

monitor Least privileged where a user can view the WebSphere

Application Server configuration and current state.

configurator Monitor privilege plus the ability to change the

WebSphere Application Server configuration.

operator Monitor privilege plus the ability to change the run-time

state, such as starting or stopping services.

administrator Operator plus configuration privilege and the permission

required to access sensitive data including the server

password, LTPA password, LTPA, keys, and so on.

Chapter 12. Administering security 151

When global security is enabled, the administrative subsystem role-based access control is enforced. The

administrative subsystem includes security server, user registry, and all the Java Management Extensions

(JMX) MBeans. When security is enabled, both the administrative console and the administrative scripting

tool require users to provide the required authentication data. Moreover, the administrative console is

designed so the control functions that display on the pages are adjusted according to the security roles

that a user has. For example, a user who has only the monitor role can see only the non-sensitive

configuration data. A user with the operator role can change the system state.

The server identity specified when enabling global security is automatically mapped to the administrative

role. You can add or remove users and groups to or from the administrative roles from the WebSphere

Application Server administrative console. However, a server restart is required for the changes to take

effect. A best practice is to map a group, rather than specific users, to administrative roles because it is

more flexible and easier to administer. By mapping a group to an administrative role, adding or removing

users to or from the group occurs outside of WebSphere Application Server and does not require a server

restart for the change to take effect.

When global security is enabled, WebSphere Application Servers run under the server identity that is

defined under the active user registry configuration. Although it is not shown on the administrative console

and in other tools, a special Server subject is mapped to the administrator role. The WebSphere

Application Server run-time code, which runs under the server identity, requires authorization to runtime

operations. If no other user is assigned administrative roles, you can log into the administrative console or

to the wsadmin scripting tool using the server identity to perform administrative operations and to assign

other users or groups to administrative roles. Because the server identity is assigned to the administrative

role by default, the administrative security policy requires the administrative role to perform the following

operations:

v Change server ID and server password

v Enable or disable WebSphere Application Server global security

v Enforce or disable Java 2 Security

v Change the LTPA password or generate keys

v Assign users and groups to administrative roles

When enabling security, you can assign one or more users and groups to administrative roles. For more

information, see Assigning users to naming roles. However, before assigning users to naming roles,

configure the active user registry. User and group validation depends on the active user registry. For more

information, see Configuring user registries.

Naming service authorization

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming

functions are available on CosNaming servers such as the WebSphere Application Server. They affect the

content of the WebSphere Application Server name space. There are generally two ways in which client

programs result in CosNaming calls. The first is through the JNDI interfaces. The second is with CORBA

clients invoking CosNaming methods directly.

Four security roles are introduced :

v CosNamingRead

v CosNamingWrite

v CosNamingCreate

v CosNamingDelete

The names of the four roles are the same with WebSphere Application Server Advanced Edition Version

4.0.2. The roles now have authority levels from low to high:

CosNamingRead

Users can query of the WebSphere Application Server name space, using, for example, the JNDI

lookup method. The special-subject Everyone is the default policy for this role.

152 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

CosNamingWrite

Users can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead

operations. The special-subject AllAuthenticated is the default policy for this role.

CosNamingCreate

Users can create new objects in the name space through such operations as JNDI

createSubcontext and CosNamingWrite operations. The special subject AllAuthenticated is the

default policy for this role.

CosNamingDelete

Users can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. The special-subject AllAuthenticated is the default

policy for this role.

Additionally, a Server special-subject is assigned to all the four CosNaming roles by default. The Server

special-subject provides a WebSphere Application Server server process, which runs under the server

identity, access to all the CosNaming operations. Note that the Server special-subject does not display and

cannot be modified through the administrative console or other administrative tools.

No special configuration is required to enable the server identity (as specified) when enabling global

security for administrative use because the server identity is automatically mapped to the administrator role

(enabled with PQ81586) .

Users, groups, or the special subjects AllAuthenticated and Everyone can be added or removed to or from

the naming roles from the WebSphere Application Server administrative console at any time. However, a

server restart is required for the changes to take effect. A best practice is to map groups or one of the

special-subjects, rather than specific users, to naming roles because it is more flexible and easier to

administer in the long run. By mapping a group to a naming role, adding or removing users to or from the

group occurs outside of WebSphere Application Server and does not require a server restart for the

change to take effect.

The CosNaming authorization policy is only enforced when global security is enabled. When global

security is enabled, attempts to do CosNaming operations without the proper role assignment result in an

org.omg.CORBA.NO_PERMISSION exception from the CosNaming Server.

In WebSphere Application Server Version 4.0.2, each CosNaming function is assigned to only one role.

Therefore, users who are assigned the CosNamingCreate role cannot query the name space unless they

have also been assigned CosNamingRead. And in most cases a creator needs to be assigned three roles:

CosNamingRead, CosNamingWrite, and CosNamingCreate. The CosNamingRead and CosNamingWrite

roles assignment for the creator example are included in the CosNamingCreate role. In most of the cases,

WebSphere Application Server administrators do not have to change the roles assignment for every user

or group when they move to this release from a previous one.

Although the ability exists to greatly restrict access to the name space by changing the default policy,

unexpected org.omg.CORBA.NO_PERMISSION exceptions can occur at run time. Typically, J2EE applications

access the name space and the identity they use is that of the user that authenticated to WebSphere

Application Server when they access the J2EE application. Unless the J2EE application provider clearly

communicates the expected Naming roles, use caution when changing the default naming authorization

policy.

Assigning users to administrator roles

The following steps are needed to assign users to administrative roles.

In the administrative console, click System Administration > Console settings . Click either Console

Users or Console Groups.

1. To add a user or a group, click Add on the Console users or Console groups panel.

Chapter 12. Administering security 153

2. To add a new administrator user, enter a user identity in the User field, highlight Administrator, and

click OK. If there is no validation error, the specified user is displayed with the assigned security role.

3. To add a new administrative group, either enter a group name in the Specify group field or select

EVERYONE or ALL AUTHENTICATED from the Select from special subject menu, and click OK. If no

validation error exists, the specified group or special subject displays with the assigned security role.

4. To remove a user or group assignment, click Remove on the Console Users or the Console Groups

panel. On the Console Users or the Console Groups panel, select the check box of the user or group

to remove and click OK.

5. To manage the set of users or groups to display, expand the filter folder on the right panel and modify

the filter. For example, setting the filter to user* only displays users with the user prefix.

6. After the modifications are complete, click Save to save the mappings.

7. Restart the server for changes to take effect.

The task of assigning users and groups to administrative roles is performed to identify users for performing

WebSphere Application Server administrative functions. Administrator roles are used to control access to

WebSphere Application Server administrative functions. There are four roles: administrator, configurator,

operator and monitor.

Administrator role

Users and groups assigned to the administrator role can perform all administrative operations and

can set up both J2EE role-based and Java 2 security policy.

Configurator role

 Users assigned to the configurator role can perform all of the day-to-day configuration tasks

including installing and uninstalling applications, assigning users and groups to role mapping for

applications, setting run-as configurations, setting up Java 2 security permissions for applications,

and customizing Common Secure Interoperability Version 2 (CSIv2), Security Authentication

Service (SAS), and Secure Sockets Layer (SSL) configurations.

Operator role

Users assigned to the operator role can view the WebSphere Application Server configuration and

its current state, but also can change the run-time state such as stopping and starting services.

Monitor role

Users assigned the monitor state can view the WebSphere Application server configuration and its

current state only.

Before you assign users to administrative roles (administrator, configurator, operator, and monitor), you

must set up your user registry, which can be LDAP, local OS, or a custom registry. You can set up your

user registries without enabling security.

Once you assign users to administrative roles, you must restart the server for the new roles to take effect.

However, the administrative resources are not protected until you enable security.

Console groups and CORBA naming service groups

Use the Console Groups page to give groups specific authority to administer the WebSphere Application

Server using tools such as the administrative console or wsadmin scripting. The authority requirements are

only effective when global security is enabled. Use the CORBA naming service groups page to manage

CORBA Naming Service groups settings.

To view the Console Groups administrative console page, click System Administration > Console

Groups.

To view the CORBA naming service groups administrative console page, click Environment > Naming >

CORBA Naming Service Groups.

154 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Group (Console groups)

Specifies groups.

The ALL_AUTHENTICATED and the EVERYONE groups can have the following role privileges:

Administrator, Configurator, Operator, and Monitor.

 Data type: String

Range: ALL_AUTHENTICATED, EVERYONE

Group (CORBA naming service groups)

Identifies CORBA naming service groups.

The ALL_AUTHENTICATED group has the following role privileges: CosNamingRead, CosNamingWrite,

CosNamingCreate, and CosNamingDelete. The EVERYONE group indicates that the users in this group

have CosNamingRead privileges only.

 Data type: String

Range: ALL_AUTHENTICATED, EVERYONE

Role (Console group)

Specifies user roles.

The following administrative roles provide different degrees of authority needed to perform certain

WebSphere Application Server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions, and the permission

required to access sensitive data including server password, LTPA password and keys, and so on.

Configurator

The configurator role has monitor permissions and can change the WebSphere Application Server

configuration.

Operator

The operator role has monitor permissions and can change the run-time state. For example, the

operator can start or stop services.

Monitor

The monitor role has the least permissions. This role primarily confines the user to viewing the

WebSphere Application Server configuration and current state.

 Data type: String

Range: Administrator, Configurator, Operator, and Monitor

Role (CORBA naming service users)

Identifies naming service group roles.

A number of naming roles are defined to provide degrees of authority needed to perform certain

WebSphere naming service functions. The authorization policy is only enforced when global security is

enabled.

Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. The names of the four roles are the same with WebSphere Advanced Edition, Version

4.0.2. However, the roles now have authority levels from low to high:

CosNamingRead

Users can query the WebSphere name space using, for example, the Java Naming and Directory

Interface (JNDI) lookup method. The special-subject EVERYONE is the default policy for this role.

Chapter 12. Administering security 155

CosNamingWrite

Users can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead

operations. The special-subject ALL_AUTHENTICATED is the default policy for this role.

CosNamingCreate

Users can create new objects in the name space through operations such as JNDI

createSubcontext and CosNamingWrite operations. The special-subject ALL_AUTHENTICATED is

the default policy for this role.

CosNamingDelete

Users can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. The special-subject ALL_AUTHENTICATED is the

default policy for this role.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate,

and CosNamingDelete

Assigning users to naming roles

The following steps are needed to assign users to naming roles. In the administrative console, expand

Environment > Naming, and click CORBA Naming Service Users or CORBA Naming Service Groups.

1. Click Add on the CORBA Naming Service Users or CORBA Naming Service Groups panel.

2. To add a new naming service user, enter a user identity in the User field, highlight one or more naming

roles, and click OK. If no validation errors occur, the specified user is displayed with the assigned

security role.

3. To add a new naming service group, either select Specify group and enter a group name or select

Select from special subject and then select either EVERYONE or ALL AUTHENTICATED. Click OK.

If no validation errors occur, the specified group or special subject is displayed with the assigned

security role.

4. To remove a user or group assignment, go to the CORBA Naming Service Users or CORBA Naming

Service Groups panel. Select the check box next to the user or group that you want to remove and

click Remove.

5. To manage the set of users or groups to display, expand the Filter folder on the right panel, and

modify the filter text box. For example, setting the filter to user* displays only users with the user

prefix.

6. After modifications are complete, click Save to save the mappings. Restart the server for the changes

to take effect.

The default naming security policy is to grant all users read access to the CosNaming space and to grant

any valid user the privilege to modify the contents of the CosNaming space. You can perform the

previously mentioned steps to restrict user access to the CosNaming space. However, use caution when

changing the naming security policy. Unless a Java 2 Platform, Enterprise Edition (J2EE) application has

clearly specified its naming space access requirements, changing the default policy can result in

unexpected org.omg.CORBA.NO_PERMISSION exceptions at run time.

Console users settings and CORBA naming service user settings

Use the Console users settings page to give users specific authority to administer WebSphere Application

Server using tools such as the administrative console or wsadmin scripting. The authority requirements are

only effective when global security is enabled. Use the common object request broker architecture

(CORBA) naming service users settings page to manage CORBA naming service users settings.

To view the Console users administrative console page, click System Administration > Console Users.

156 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

To view the CORBA naming service users administrative console page, click Environment > Naming >

CORBA Naming Service users.

User (Console users)

Specifies users.

The users entered must exist in the configured active user registry.

 Data type: String

User (CORBA naming service users)

Specifies CORBA naming service users.

The users entered must exist in the configured active user registry.

 Data type: String

Role (Console users)

Specifies user roles.

The following administrative roles provide different degrees of authority needed to perform certain

WebSphere Application Server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions, and the permission

required to access sensitive data including server password, Lightweight Third Party Authentication

(LTPA) password and keys, and so on.

Configurator

The configurator role has monitor permissions and can change the WebSphere Application Server

configuration.

Operator

The operator role has monitor permissions and can change the run-time state. For example, the

operator can start or stop services.

Monitor

The monitor role has the least permissions. This role primarily confines the user to viewing the

WebSphere Application Server configuration and current state.

 Data type: String

Range: Administrator, Configurator, Operator, and Monitor

Role (CORBA naming service users)

Specifies naming service user roles.

A number of naming roles are defined to provide degrees of authority needed to perform certain

WebSphere naming service functions. The authorization policy is only enforced when global security is

enabled. The following roles are valid: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete.

The names of the four roles are the same with WebSphere Application Server, Advanced Edition Version

4.0.2. However, the roles now have authority levels from low to high:

CosNamingRead

Users can query the WebSphere name space using, for example, the Java Naming and Directory

Interface (JNDI) lookup method. The special-subject EVERYONE is the default policy for this role.

Chapter 12. Administering security 157

CosNamingWrite

Users can perform write operations such as JNDI bind, rebind, or unbind, plus CosNamingRead

operations. The special-subject ALL AUTHENTICATED is the default policy for this role.

CosNamingCreate

Users can create new objects in the name space through operations such as JNDI

createSubcontext and CosNamingWrite operations. The special-subject ALL AUTHENTICATED is

the default policy for this role.

CosNamingDelete

Users can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. The special-subject ALL AUTHENTICATED is the

default policy for this role.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate

and CosNamingDelete

Authentication mechanisms

An authentication mechanism defines rules about security information (for example, whether a credential is

forwardable to another Java process), and the format of how security information is stored in both

credentials and tokens.

Authentication is the process of establishing whether a client is valid in a particular context. A client can be

either an end user, a machine, or an application.

An authentication mechanism in WebSphere Application Server typically collaborates closely with a user

registry. The user registry is the user and groups account repository that the authentication mechanism

consults with when performing authentication. The authentication mechanism is responsible for creating a

credential, which is an internal product representation of a successfully authenticated client user. Not all

credentials are created equally. The abilities of the credential are determined by the configured

authentication mechanism.

Although this product provides several authentication mechanisms, you can configure only a single active

authentication mechanism at a time. The active authentication mechanism is selected when configuring

WebSphere Application Server global security.

158 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Authentication Process

The figure demonstrates the authentication process. Basically, authentication is required for enterprise

bean clients and Web clients when they access protected resources. Enterprise bean clients (a servlet or

other enterprise beans or a pure client) send the authentication information to a Web application server

using one of the following protocols:

v Common Secure Interoperability Version 2 (CSIv2)

v Secure Authentication Service (SAS)

Web clients use the HTTP or HTTPS protocol to send the authentication information as shown in the

previous figure.

The authentication information can be BasicAuth (user ID and password), credential token (in case of

Lightweight Third Party Authentication (LTPA) on all platforms), or client certificate. The Web authentication

is performed by the Web Authentication module and the enterprise bean authentication is performed by the

Enterprise JavaBean (EJB) authentication module, which resides in the CSIv2 and SAS layer. The

authentication module is implemented using the Java Authentication and Authorization Service (JAAS)

login module. The Web authenticator and the EJB authenticator pass the authentication data to the login

module (2), which can use any of the following mechanisms to authenticate the data:

v Lightweight Third Party Authentication (LTPA).

v Simple WebSphere Authentication Mechanism (SWAM)

The authentication module uses the registry that is configured on the system to perform the authentication

(4). Three types of registries are supported: LocalOS, Lightweight Directory Access Protocol (LDAP), and

custom registry. External registry implementation following the registry interface specified by IBM can

replace either the LocalOS or the LDAP user registry.

The login module creates a JAAS subject after authentication and stores the Common Object Request

Broker Architecture (CORBA) credential derived from the authentication data in the public credentials list of

the subject. The credential is returned to the Web authenticator or EJB authenticator (5).

The Web authenticator and the EJB authenticator store the received credentials in the Object Request

Broker (ORB) current for the authorization service to use in performing further access control checks.

Authentication

module

WebSphere Application Server

(1)

(1)

(2)

(2)

CSIV2/SAS, TCP/IP,

SSL

Basic or

token credentials

HTTP or HTTPS

Basic, token, or

certificate

SWAM

module

LTPA

module

Login

module

Local OS

user registry

LDAP

user registry

Custom

user registry

Enterprise beans

authenticator

Web

authenticator

ORB

current

Java client

Web client

(6) (3)

(3)

(4)

(4)

Authorization

data

Received

credentials

(6)

Received

credentials

(5)

(5)

Credentials

Credentials

Authorization

data

Authentication

Chapter 12. Administering security 159

WebSphere Application Server provides two authentication mechanisms: SWAM and LTPA. These

authentication mechanisms differ primarily in the distributed security features that each supports.

Configuring authentication mechanisms

Configure authentication mechanisms by clicking Authentication Mechanisms under Security > Global

security in the administrative console.

v If you are using Simple WebSphere Authentication Mechanism (SWAM), no setup is needed. Follow the

instructions in “Configuring Lightweight Third Party Authentication” on page 161 to set up Lightweight

Third Party Authentication (LTPA).

v For LTPA, follow the steps in “Configuring single signon” on page 172 for most situations. If trust

association is required, follow the steps in “Configuring trust association interceptors” on page 169.

Simple WebSphere authentication mechanism

The Simple WebSphere authentication mechanism (SWAM) is intended for simple, non-distributed, single

application server run-time environments. The single application server restriction is due to the fact that

SWAM does not support forwardable credentials. If a servlet or enterprise bean in application server

process 1, invokes a remote method on an enterprise bean living in another application server process 2,

the identity of the caller identity in process 1 is not transmitted to server process 2. What is transmitted is

an unauthenticated credential, which, depending on the security permissions configured on the EJB

methods, can cause authorization failures.

Since SWAM is intended for a single application server process, single signon (SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments, software development

environments, or other environments that do not require a distributed security solution.

Lightweight Third Party Authentication

Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple application server and

machine environments. It supports forwardable credentials and single signon (SSO). LTPA can support

security in a distributed environment through cryptography. This support permits LTPA to encrypt, digitally

sign, and securely transmit authentication-related data, and later decrypt and verify the signature.

The Lightweight Third Party Authentication (LTPA) protocol enables the WebSphere Application Server to

provide security in a distributed environment using cryptography. Application servers distributed in multiple

nodes and cells can securely communicate using this protocol. It also provides the single signon (SSO)

feature wherein a user is required to authenticate only once in a domain name system (DNS) domain and

can access resources in other WebSphere Application Server cells without getting prompted. The realm

names on each system in the SSO domain are case sensitive and must match identically.

For local OS on the Windows platform, the realm name is the domain name, if a domain is in use,

or the machine name.

On the UNIX platform, the realm name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP), the realm name is the host:port of the LDAP server.

The LTPA protocol uses cryptographic keys (LTPA keys) to encrypt and decrypt user data that passes

between the servers. These keys need to be shared between the different cells for the resources in one

cell to access resources in other cells (assuming that all the cells involved use the same LDAP or custom

registry).

160 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

When using LTPA, a token is created with the user information and an expiration time and is signed by the

keys. The LTPA token is time sensitive. All product servers participating in a protection domain must have

their time, date, and time zone synchronized. If not, LTPA tokens appear prematurely expired and cause

authentication or validation failures.

This token passes to other servers, in the same cell or in a different cell through cookies (for Web

resources when SSO is enabled) or through the authentication layer (Security Authentication Service

(SAS) or Common Secure Interoperability Version 2 (CSIv2) for enterprise beans).

If the receiving servers share the same keys as the originating server, the token can be decrypted to

obtain the user information, which then is validated to make sure it has not expired and the user

information in the token is valid in its registry. On successful validation, the resources in the receiving

servers are accessible after the authorization check.

All the WebSphere Application Server processes in a cell (cell, nodes, application servers) share the same

set of keys. If key sharing is required between different cells, export them from one cell and import them to

the other. For security purposes, the exported keys are encrypted with a user-defined password. This

same password is needed when importing the keys into another cell.

In the base version of WebSphere Application Server, LTPA, ICSF, and the Simple WebSphere

Authentication Mechanism (SWAM) protocols are supported.

When security is enabled for the first time with LTPA, configuring LTPA is normally the initial step

performed.

LTPA requires that the configured user registry be a centrally shared repository such as LDAP or a

Windows domain type registry so that users and groups are the same regardless of the machine.

The following table summarizes the authentication mechanism capabilities and user registries with which

LTPA can work.

 Forwardable

Credentials

SSO LocalOS User

Registry

LDAP User

Registry

Custom User

Registry

SWAM No No Yes Yes Yes

LTPA Yes Yes Yes Yes Yes

ICSF Yes Yes Yes Yes Yes

Configuring Lightweight Third Party Authentication

The following steps are needed to configure Lightweight Third Party Authentication (LTPA) when setting up

security for the first time:

1. Access the administrative console by typing http://localhost:port_number/ibm/console in a Web

browser. Port 9060 is the default port number for accessing the administrative console. During

installation, however, you might have specified a different port number. Use the appropriate port

number.

2. Click Security > Global security.

3. Under Authentication mechanisms, click LTPA.

4. Enter the password and confirm it in the password fields. This password is used to encrypt and decrypt

the LTPA keys during export and import of the keys. Remember this password because you enter it

again when the keys from this cell are exported to another cell.

5. Enter a positive integer value in the Timeout field. This timeout value refers to how long an LTPA

token is valid in minutes. The token contains this expiration time so that any server that receives the

token can verify that the token is valid before proceeding further.

Chapter 12. Administering security 161

When the token expires, the user is prompted to log in.

An optimal value for this field depends on your configuration. The default value is 30 minutes.

6. Optional: In the Key file name field, specify the name of the file that is used when you import or

export keys. You can use this field in conjunction with the Import keys and Export keys buttons at the

top of the panel.

7. Click Apply or OK. The LTPA configuration is now set. Do not generate the LTPA keys in this step

because they are automatically generated later. Proceed with the rest of the steps required to enable

security, starting with single signon (SSO) (if SSO is required).

8. Complete the information in the Global Security panel and click OK. The LTPA keys are generated

automatically the first time. Do not generate the keys manually.

The previous steps configure LTPA by setting passwords that generate LTPA keys.

After configuring LTPA, complete the following steps to work with your key files:

1. Generate key files.

2. Export key files.

3. Import key files.

4. If you are enabling security, make sure that you complete the remaining steps starting with enabling

SSO.

5. If you generated a new set of keys or imported a new set of keys, verify that the keys are saved by

clicking Save at the top of the panel. Because LTPA authentication uses time sensitive tokens, verify

that the time, date, and time zone are synchronized among all product servers that are participating in

the protection domain. If the clock skew is too high between servers, the LTPA token appears

prematurely expired and causes authentication or validation failures.

Configuring Lightweight Third Party Authentication keys

Generating keys:

Lightweight Third Party Authentication (LTPA) keys are automatically generated when a password change

is detected. The first time that you set the LTPA password, as part of enabling security, the LTPA keys are

automatically generated after OK or Apply is clicked in the LTPA panel. You do not have to click Generate

Keys in this situation. Complete the following steps in the administrative console to generate a new set of

LTPA keys:

1. Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.

2. Verify that all the WebSphere Application Server processes are running (cell, nodes, and all of the

application servers). If any of the servers are down at the time of key generation and then brought

back up later, these servers might contain old keys. Copy the new set of keys to these servers to bring

them back up.

3. Click Security > Authentication mechanisms > LTPA in the navigation panel on the left.

4. Click Generate Keys if you want to use the existing password. This action generates a new set of

keys that are encrypted with the same password as the old set of keys. Regardless of the password

change, a new set of keys is generated when you click Generate Keys. This new set of keys is not

propagated to the run time unless saved; save the files immediately.

5. Enter the new password and confirm it, to use a new password to generate keys. Click OK or Apply.

A new set of keys is generated. A message indicating that a new set of keys is generated displays on

the console. Do not click Generate Keys. These new keys are propagated to the run time after you

save them.

6. Click Save to save the keys. After a new set of keys is generated and saved, the key propagation is

dynamic. All of the processes running at that time (cells, node agents, application servers) are updated

with the new set of keys. The next sections describe the process of exporting and importing the keys.

Exporting keys:

162 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

To support single signon (SSO) in WebSphere Application Server across multiple WebSphere Application

Server domains or cells, share the LTPA keys and the password among the domains. Make sure that the

time on the domains is similar to prevent the tokens from appearing as expired between the cells. You can

use Export Keys to export the LTPA keys to other domains or cells. Complete the following steps in the

administrative console to export key files for LTPA:

1. Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.

2. Click Security > Authentication mechanisms > LTPA in the navigation panel on the left.

3. In the Key File Name field, enter the full path of a file for key storage. This file needs write

permissions.

4. Click Export Keys. A file is created with the LTPA keys. Exporting keys fails if a new set of keys is

generated or imported and not saved prior to exporting. To avoid failure, make sure that you save the

new set of keys (if any) prior to exporting them.

5. Click Save to save the configuration.

Importing keys:

To support SSO in WebSphere Application Server across multiple WebSphere Application Server domains

or cells, share the LTPA keys and the password among the domains. You can use Import Keys to import

the LTPA keys from other domains. Verify that key files are exported from one of the cells involved, into a

file. Complete the following steps in the administrative console to import key files for LTPA.

Importing keys is a dynamic operation. All of the servers that are running at this time are updated with the

new set of keys. Any back-level tokens signed with the back-level keys fail validation and the user is

prompted to log in again.

1. Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.

2. Click Security > Authentication mechanisms > LTPA in the navigation panel on the left.

3. Change the password in the password fields to match the password in the cell from which you are

importing the keys.

4. Click Save to save the new set of keys in the repository. This step is important to complete before

importing the keys. If the password and the keys do not match, the servers fail. If the servers fail, turn

off security and redo these steps.

5. In the Key File Name field, enter the full path of a file for key storage. This file needs read

permissions.

6. Click Import Keys. The keys are now imported into the system.

7. Click Save to save the new set of keys in the repository. It is important to save the new set of keys to

match the new password so that no problems are encountered starting the servers later.

Lightweight Third Party Authentication settings

Use this page to configure Lightweight Third Party Authentication (LTPA) settings.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Authentication mechanisms > LTPA.

If you are configuring security for the first time, only the password is required. After the password is

entered, click Apply. Under Additional Properties, click Single signon (SSO) and enter the domain name.

Make sure that SSO is enabled. Click Apply.

To complete the security setup, make sure that the appropriate registry is set up and click Apply from the

Global security panel. When security is enabled and any of these properties change, go to the Global

security panel under Security > Global security and click Apply to validate the changes.

Generate Keys:

Chapter 12. Administering security 163

Specifies whether the server generates new Lightweight Third Party Authentication (LTPA) keys.

 When security is turned on for the first time with LTPA as the authentication mechanism, the LTPA keys

are automatically generated with the password entered in the panel. If you need a new set of keys to

generate using the previously set password, click Generate Keys. If a new password is used, do not click

this option. After the new password is entered and OK or Apply is clicked, a new set of keys is generated.

A new set of generated keys is not used until you save them.

Import Keys:

Specifies whether the server imports new LTPA keys.

 To support single signon (SSO) in the WebSphere product across multiple WebSphere domains (cells),

share the LTPA keys and the password among the domains. You can use the Import Keys option to

import the LTPA keys from other domains. The LTPA keys are exported from one of the cells to a file. To

import a new set of LTPA keys, enter the appropriate password, click OK and click Save. Then, enter the

directory location where the LTPA keys are located prior to clicking Import keys. Do not click OK or

Apply, but save the settings.

Export Keys:

Specifies whether the server exports LTPA keys.

 To support single signon (SSO) in the WebSphere product across multiple WebSphere Application Server

domains (cells), share the LTPA keys and the password among the domains. Use the Export Keys option

to export the LTPA keys to other domains.

To export the LTPA keys, make sure that the system is running with security enabled and is using LTPA.

Enter the file name in the Key file name field and click Export Keys. The encrypted keys are stored in

the specified file.

Password:

Specifies the password to encrypt and decrypt the LTPA keys. Use this password when importing these

keys into other WebSphere Application Server administrative domain configurations (if any) and when

configuring SSO for a Lotus Domino server.

 After the keys are generated or imported, they are used to encrypt and decrypt the LTPA token. Whenever

the password is changed, a new set of LTPA keys are automatically generated when you click OK or

Apply. The new set of keys is used after the configuration changes are saved.

 Data type String

Confirm password:

Specifies the confirmed password used to encrypt and decrypt the LTPA keys.

 Use this password when importing these keys into other WebSphere Application Server administrative

domain configurations (if any) and when configuring SSO for a Lotus Domino server.

 Data type String

Timeout:

164 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Specifies the time period in minutes at which an LTPA token expires. Verify that this time period is longer

than the cache timeout configured in the Global security panel.

 Data type Integer

Units Minutes

Default 120

Key file name:

Specifies the name of the file used when importing or exporting keys.

 Enter a fully qualified key file name, and click Import Keys or Export Keys.

 Data type String

Trust associations

Trust association enables the integration of IBM WebSphere Application Server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials passed by the proxy

server.

Demand for such an integrated configuration has become more compelling, especially when a single

product cannot meet all of the customer needs or when migration is not a viable solution. This article

provides a conceptual background behind the approach.

The demand is growing to provide customers with a trust association solution between IBM WebSphere

Application Server and other Web authentication servers that act as a reverse proxy security server (IBM

Tivoli Access Manager for e-business - WebSEAL, Caching Proxy) as an entry point to all service requests

(See the first figure). This implementation design intends to have the proxy server as the only exposed

entry point. The proxy server authenticates all requests that come in and provides coarse, granularity

junction point authorization.

In this setup, the WebSphere Application Server is used as a back-end server to further exploit its

fine-grained access control. The reverse proxy server passes the HTTP request to the WebSphere

Application Server that includes the credentials of the authenticated user. WebSphere Application Server

then uses these credentials to authorize the request.

Trust association model

The idea that WebSphere Application Server can support trust association implies that the product

application security recognizes and processes HTTP requests received from a reverse proxy server.

WebSphere Application Server and the proxy server engage in a contract in which the product gives its full

trust to the proxy server and the proxy server applies its authentication policies on every Web request that

is dispatched to WebSphere Application Server. This trust is validated by the interceptors that reside in the

product environment for every request received. The method of validation is agreed upon by the proxy

server and the interceptor.

Running in trust association mode does not prohibit WebSphere Application Server from accepting

requests that did not pass through the proxy server. In this case, no interceptor is needed for validating

trust. It is possible, however, to configure WebSphere Application Server to strictly require that all HTTP

requests go through a reverse proxy server. In this case, all requests that do not come from a proxy server

are immediately denied by WebSphere Application Server.

WebSphere Application Server supports the following trust association interceptor (TAI) interfaces:

Chapter 12. Administering security 165

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

This Tivoli TAI interceptor that implements WebSphere Application Serve TAI interface is provided

to support WebSEAL Version 4.1. If you plan to use WebSEAL 5.1, it is recommended that you

migrate to use the new com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus interceptor

which implements the new com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface.

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

This TAI interceptor implementation that implements the new WebSphere Application Server

interface supports WebSphere Application Server Version 5.1.1 and later. The interface supports

WebSEAL Version 5.1, but does not support WebSEAL Version 4.1. For an explanation of security

attribute propagation, see “Security attribute propagation” on page 275.

IBM WebSphere Application Server: WebSEAL Integration

The integration of WebSEAL and WebSphere Application Server security is achieved by placing the

WebSEAL server at the front-end as a reverse proxy server. See Figure 2. From a WebSEAL management

perspective, a junction is created with WebSEAL on one end, and the product Web server on the other

end. A junction is a logical connection created to establish a path from the WebSEAL server to another

server.

In this setup, a request for Web resources stored in a protected domain of the product is submitted to the

WebSEAL server where it is authenticated against the WebSEAL security realm. If the requesting user has

access to the junction, the request is transmitted to the WebSphere Application Server HTTP server

through the junction, and then to the application server.

Meanwhile, the WebSphere Application Server validates every request that comes through the junction to

ensure that the source is a trusted party. This process is referenced as validating the trust and it is

performed by a WebSEAL product-designated interceptor. If the validation is successful, the WebSphere

Application Server authorizes the request by checking whether the client user has the required

permissions to access the Web resource. If so, the Web resource is delivered to the WebSEAL server,

through the Web server, which then gives it to the client user.

WebSEAL server

The policy director delegates all of the Web requests to its Web component, the WebSEAL server. One of

the major functions of the server is to perform authentication of the requesting user. The WebSEAL server

Trust association model

User ID and password in basic authentication data

Trusted server ID and password in data

and user ID in the HTTP request header

basic authentication

Web application server

Requested

resource

HTTP

request

Web

client

Reverse

proxy

server

Modified

HTTP

request

Requested

resource

(4)

(1)

(6)

(2)

(5)

(3)

User ID

User ID

or Subject

if trust is valid

(using the old TAI interface)

(using the version 5.1.1

TAI++ interface)

Credentials

Modified HTTP

HTTP Request:

Modified HTTP Request:

Trust

association

interceptor

User

request

Web

authenticator

166 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

consults a Lightweight Directory Access Protocol (LDAP) directory. It can also map the original user ID to

another user ID, such as when global single signon (GSO) is used.

For successful authentication, the server plays the role of a client to WebSphere Application Server when

channeling the request. The server needs its own user ID and password to identify itself to WebSphere

Application Server. This identity must be valid in the security realm of WebSphere Application Server. The

WebSEAL server replaces the basic authentication information in the HTTP request with its own user ID

and password. In addition, WebSphere Application Server must determine the credentials of the requesting

client so that the application server has an identity to use as a basis for its authorization decisions. This

information is transmitted through the HTTP request by creating a header called iv-creds with the Tivoli

Access Manager user credentials as its value.

HTTP server

The junction created in the WebSEAL server must get to the HTTP server that serves as the product front

end. However, the HTTP server is shielded from knowing that trust association is used. As far as it is

concerned, the WebSEAL product is just another HTTP client, and as part of its normal routines, it sends

the HTTP request to the product. The only requirement on the HTTP server is a Secure Sockets Layer

(SSL) configuration using server authentication only. This requirement protects the requests that flow

within the junction.

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

WebSEAL

trust

Security

collaborator

Security

application

Authorization

and delegation

Product

resources

Trust

validation

Requested

resource

HTTP

request with

credentials

Web server

Web server and

WebSphere Application Server

Web server

plug-in

Web server

resource

Requested

resource

HTTP

request

Web

client
WebSEAL

Chapter 12. Administering security 167

Web collaborator

When trust association is enabled, the Web collaborator manages the interceptors that are configured in

the system. It loads and initializes these interceptors when you restart your servers. When a request is

passed to WebSphere Application Server by the Web server, the Web collaborator eventually receives the

request for a security check. Two actions must take place:

1. The request must be authenticated.

2. The request must be authorized.

The Web authenticator is called to authenticate the request by passing the HTTP request. If successful, a

good credential record is returned by the authenticator, which the Web collaborator uses to base its

authorization for the requested resource. If the authorization succeeds, the Web collaborator indicates to

WebSphere Application Server that the security check has succeeded and that the requested resource can

be served.

Web authenticator

The Web authenticator is asked by the Web collaborator to authenticate a given HTTP request. Knowing

that trust association is enabled, the task of the Web authenticator is to find the appropriate trust

association interceptor to direct the request for processing. The Web authenticator queries every available

interceptor. If no target interceptor is found, the Web authenticator processes the request as though trust

association is not enabled.

For an HTTP request sent by the WebSEAL server, the WebSEAL trust association interceptor replies with

a positive response to the Web authenticator. Subsequently, the interceptor is asked to validate its trust

association with the WebSEAL server and retrieve the Subject, using the new trust association interface

(TAI) interface, or user ID, using the old TAI interface, of the original user client.

Note: The new Trust Association Interceptor (TAI) interface,

com.ibm.wsspi.security.tai.TrustAssociationInterceptor, supports several new features and is

HTTP

request

HTTP

request
HTTP

server

WebSphere Application Server

WebSEAL

WebSEAL

trust association

interceptor

HTTP request

HTTP

request

Authorization

policy

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

Web

collaborator

Web

authenticator

168 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

different from the existing com.ibm.websphere.security.TrustAssociationInterceptor interface.

Although the existing interface is still supported, it is being deprecated in a future release. Refer to

X for more information.

WebSphere Application Server Version 4 through WebSphere Application Server Version 5.x

support the com.ibm.websphere.security.TrustAssociationInterceptor.java interface.

WebSphere Application Server Version 6 supports the

com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface

For more information, see“Trust association interceptor support for Subject creation” on page 112.

Trust association interceptor interface

The intent of the trust association interceptor interface is to have reverse proxy security servers (RPSS)

exist as the exposed entry points to perform authentication and coarse-grained authorization, while the

WebSphere Application Server enforces further fine-grained access control. Trust associations improve

security by reducing the scope and risk of exposure.

In a typical e-business infrastructure, the distributed environment of a company consists of Web

application servers, Web servers, legacy systems, and one or more RPSS, such as the Tivoli WebSEAL

product. Such reverse proxy servers, front-end security servers, or security plug-ins registered within Web

servers, guard the HTTP access requests to the Web servers and the Web application servers. While

protecting access to the Uniform Resource Identifiers (URIs), these RPSS perform authentication,

coarse-grained authorization, and request routing to the target application server.

Using the trust association interceptor feature

The following points further describe the benefits of the trust association interceptor (TAI) feature:

v RPSS can authenticate WebSphere Application Server users up front and send credential information

about the authenticated user to the product so that the product can trust the RPSS to perform

authentication and not prompt the end user for authentication data later. The strength of the trust

relationship between RPSS and the product is based on the criteria of trust association that is particular

to a RPSS and enforced through the TAI implementation. This level of trust might need relaxing based

on the environment. Be aware of the vulnerabilities in cases where the RPSS is not trusted, based on a

security technology.

v The end user credentials most likely are sent in a special format as part of the Hypertext Transfer

Protocol (HTTP) headers as in the case of RPSS authentication. The credentials can be a special

header or a cookie. The data that passes is implementation specific, and the TAI feature considers this

fact and accommodates the idea. The TAI implementation works with the credential data and returns a

Subject, using the new TAI interface, or a user ID, using the old TAI interface, that represents the end

user. WebSphere Application Server uses the information to enforce security policies.

Configuring trust association interceptors

These steps are required to use either a WebSEAL trust association interceptor or your own trust

association interceptor with a reverse proxy security server. WebSphere Application Server enables you to

use multiple trust association interceptors. The Application Server uses the first interceptor that can handle

the request.

1. Access the administrative console by typing http://localhost:port_number/ibm/console in a Web

browser. Port 9060 is the default port number for accessing the administrative console. During

installation, however, you might have specified a different port number. Use the appropriate port

number.

2. Click Security > Global security.

3. Under Authentication mechanisms, click LTPA.

4. Under Additional properties, click Trust Association.

Chapter 12. Administering security 169

5. Select the Enable trust association option.

6. Under Additional properties, click Interceptors. The default value appears.

7. Verify that the appropriate trust association interceptors are listed. If you need to use a WebSEAL trust

association interceptor, see “Configuring single signon using the trust association interceptor” on page

181 or “Configuring single signon using trust association interceptor ++” on page 182. If you are not

using WebSEAL and need to use a different interceptor, complete the following steps:

a. Select both the com.ibm.ws.security.web.WebSealTrustAssociationInterceptor and the

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus class name and click Delete.

b. Click New and specify a trust association interceptor.

Enables trust association.

1. If you are enabling security, make sure that you complete the remaining steps for enabling security.

2. Save, stop and restart all of the product servers (deployment managers, nodes and Application

Servers) for the changes to take effect.

Trust association settings

Trust association enables the integration of IBM WebSphere Application Server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials passed by the proxy

server. Use this page to configure trust association settings.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Authentication mechanisms > LTPA.

3. Under Additional properties, click Trust association.

When security is enabled and any of these properties change, go to the Global security panel and click

Apply to validate the changes.

Enable trust association:

Specifies whether trust association is enabled.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Trust association interceptor collection

Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Authentication mechanisms > LTPA.

3. Under Additional Properties, click Trust association > Interceptors.

When security is enabled and any of these properties are changed, go to the Global security panel and

click Apply to validate the changes.

Interceptor class name:

Specifies the trust association interceptor class name.

170 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Data type

String

Default

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

Single signon

With single signon (SSO) support, Web users can authenticate once when accessing both WebSphere

Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,

and Lotus Domino resources, such as documents in a Domino database, or accessing resources in

multiple WebSphere Application Server domains.

Web users can authenticate once to a WebSphere Application Server or to a Domino server. Without

logging in again, Web users can access any other WebSphere Application Servers or Domino servers in

the same Domain Name Service (DNS) domain that are enabled for SSO. This authentication is

accomplished by configuring the WebSphere Application Servers and the Domino servers to share

authentication information.

Enable SSO among WebSphere Application Servers by configuring SSO for WebSphere Application

Server. To enable SSO between WebSphere Application Servers and Domino servers, you must configure

SSO for both WebSphere Application Server and for Domino.

Prerequisites and conditions

To take advantage of support for single signon between WebSphere Application Servers or between

WebSphere Application Server and a Domino server, applications must meet the following prerequisites

and conditions:

v Verify that all servers are configured as part of the same DNS domain. For example, if the DNS domain

is specified as mycompany.com, then SSO is effective with any Domino server or WebSphere Application

Server on a host that is part of the mycompany.com domain, for example, a.mycompany.com and

b.mycompany.com.

v Verify that all servers share the same user registry.

This registry can be either a supported Lightweight Directory Access Protocol (LDAP) directory server

or, if SSO is configured between two WebSphere Application Servers, a custom user registry.Domino

servers do not support custom registries, but you can use a Domino-supported registry as a custom

registry within WebSphere Application Server. For more information on custom registries, see

Introduction to custom registries.

You can use a Domino directory (configured for LDAP access) or other LDAP directory for the user

registry. The LDAP directory product must have WebSphere Application Server support. Supported

products include both Domino and IBM SecureWay LDAP directory servers. Regardless of the choice to

use an LDAP or a custom registry, the SSO configuration is the same. The difference is in the

configuration of the registry.

v Define all users in a single LDAP directory. Using LDAP referrals to connect more than one directory

together is not supported. Using multiple Domino directory assistance documents to access multiple

directories also is not supported.

v Enable HTTP cookies in browsers because the authentication information that is generated by the

server is transported to the browser in a cookie. The cookie is then used to propagate the

authentication information for the user to other servers, exempting the user from entering the

authentication information for every request to a different server.

v For a Domino server:

– Domino Release 5.0.6a for iSeries 400 or later and Domino Release 5.0.5 or later for other platforms

are supported.

– A Lotus Notes client Release 5.0.5 or later is required for configuring the Domino server for SSO.

– You can share authentication information across multiple Domino domains.
v For WebSphere Application Server:

Chapter 12. Administering security 171

– WebSphere Application Server Version 3.5 or later for all platforms is supported.

– You can use any HTTP Web server supported by WebSphere Application Server.

– You can share authentication information across multiple product administrative domains.

– Basic authentication (user ID and password) using the basic and form-login mechanisms is

supported.

– By default, WebSphere Application Server does a case-sensitive comparison for authorization. This

comparison implies that a user who is authenticated by Domino matches the entry exactly (including

the base distinguished name) in the WebSphere Application Server authorization table. If case

sensitivity is not considered for the authorization, enable the Ignore Case property in the LDAP user

registry settings.

Configuring single signon

With single signon (SSO) support, Web users can authenticate once when accessing Web resources

across multiple WebSphere Application Servers. Form login mechanisms for Web applications require that

SSO is enabled.

SSO is supported only when Lightweight Third Party Authentication (LTPA) is the authentication

mechanism.

When SSO is enabled, a cookie is created containing the LTPA token and inserted into the HTTP

response. When the user accesses other Web resources in any other WebSphere Application Server

process in the same domain name service (DNS) domain, the cookie is sent in the request. The LTPA

token is then extracted from the cookie and validated. If the request is between different cells of

WebSphere Application Servers, you must share the LTPA keys and the user registry between the cells for

SSO to work. The realm names on each system in the SSO domain are case sensitive and must match

identically.

For local OS on the Windows platform, the realm name is the domain name if a domain is in use or

the machine name.

On the Linux or UNIX platforms, the release name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP) the realm name is the host:port realm name of the

LDAP server. The LTPA authentication mechanism requires that you enable SSO if any of the Web

applications have form login as the authentication method.

Because single signon is a subset of LTPA, it is recommended that you read “Lightweight Third Party

Authentication” on page 160 for more information.

When you enable security attribute propagation, the following cookies are added to the response:

LtpaToken

The LtpaToken is used for interoperating with previous releases of WebSphere Application Server.

This token contains the authentication identity attribute only.

LtpaToken2

LtpaToken2 contains stronger encryption and enables you to add multiple attributes to the token.

This token contains the authentication identity and additional information such as the attributes

used for contacting the original login server and the unique cache key for looking up the Subject

when considering more than just the identity in determining uniqueness.

172 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

For more information, see “Security attribute propagation” on page 275.

 Token type Purpose How to specify

LtpaToken only This token type is used for the same

SSO behavior existing in WebSphere

Application Server Version 5.1 and

previous releases. Also, this token

type is interoperable with those

previous releases.

Disable the Web inbound security

attribute propagation option located

in the SSO configuration panel in the

administrative console. To access this

panel, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click

Authentication mechanisms >

LTPA.

3. Under Additional properties, click

Single signon (SSO).

LtpaToken2 only This token type is used for Web

inbound security attribute propagation

and uses the AES, CBC, PKCS5

padding encryption strength (128 bit

key size). However, this token type is

not interoperable with releases prior

to WebSphere Application Server

Version 5.1.1. The token type allows

for multiple attributes specified in the

token (mostly containing information

to contact the original login server).

Enable the Web inbound security

attribute propagation option in the

SSO configuration panel within the

administrative console. Disable the

Interoperability mode option in the

SSO configuration panel within the

administrative console. To access this

panel, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click

Authentication mechanisms >

LTPA.

3. Under Additional properties, click

Single signon (SSO).

LtpaToken and LtpaToken2 These tokens together support both

of the previous two options. The

token types are interoperable with

releases prior to WebSphere

Application Server Version 5.1.1

because LtpaToken is present. The

security attribute propagation function

is enabled because the LtpaToken2 is

present.

Enable the Web inbound security

attribute propagation option in the

SSO configuration panel within the

administrative console. Enable the

Interoperability mode option in the

SSO configuration panel within the

administrative console. To access this

panel, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click

Authentication mechanisms >

LTPA.

3. Under Additional properties, click

Single signon (SSO).

The following steps are required to configure SSO for the first time.

 1. Access the administrative console by typing http://localhost:port_number/ibm/console in a Web

browser. Port 9060 is the default port number for accessing the administrative console. During

installation, however, you might have specified a different port number. Use the appropriate port

number.

 2. Click Security > Global security .

 3. Under Authentication, click Authentication mechanisms > LTPA.

 4. Under Additional properties, click Single signon (SSO).

 5. Click the Enabled option if SSO is disabled. After you click Enabled, make sure that you complete

the remaining steps to enable security.

 6. Click the Requires SSL option if all of the requests are expected to use HTTPS.

Chapter 12. Administering security 173

7. Enter the fully-qualified domain names in the Domain name field where SSO is effective. The cookie

is sent for all of the servers that are contained within the domains that you specify in this field. If you

specify domain names, they must be fully qualified. If the domain name is not fully qualified,

WebSphere Application Server does not set a domain name value for the LtpaToken cookie and SSO

is valid only for the server that created the cookie.

You can configure the Domain name field using any of the following values:

 Domain name value type Example

Blank

Single domain name austin.ibm.com

UseDomainFromURL UseDomainFromURL

Multiple domain names austin.ibm.com;raleigh.ibm.com

Multiple domain names and UseDomainFromURL v austin.ibm.com;raleigh.ibm.com

v UseDomainFromURL

If you specify the UseDomainFromURL, WebSphere Application Server sets the SSO domain name

value to the domain of the host that makes the request. For example, if an HTTP request comes from

server1.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to

raleigh.ibm.com.

Tip: The value, UseDomainFromURL, is case insensitive. You can type usedomainfromurl to use this

value.

When you specify multiple domains, you can use the following delimiters: a semicolon (;), a space (),

a comma (,), or a pipe (|). WebSphere Application Server searches the specified domains in order

from left to right. Each domain is compared with the host name of the HTTP request until the first

match is located. For example, if you specify ibm.com; austin.ibm.com and a match is found in the

ibm.com domain first, WebSphere Application server does not continue to search for a match in the

austin.ibm.com domain. However, if a match is not found in either the ibm.com or austin.ibm.com

domains, then WebSphere Application Server does not set a domain for the LtpaToken cookie.

For more information, see “Single signon settings” on page 175.

 8. Optional: Enable the Interoperability mode option if you want to allow SSO connections in

WebSphere Application Server version 5.1.1 or later to interoperate with previous versions of the

application server. This option sets the old-style LtpaToken into the response so it can be sent to

other servers that work only with this token type. However, this option applies only when the Web

inbound security attribute propagation option is enabled. In this case, both the LtpaToken and

LtpaToken2 are added to the response. Otherwise, only the LtpaToken2 is added to the response. If

the Web inbound security attribute propagation option is disabled, then only the LtpaToken is

added to the response.

 9. Optional: Enable the Web inbound security attribute propagation option if you want information

added during the login at a specific front-end server to propagate to other front-end servers. The SSO

token does not contain any sensitive attributes, but does understand where the original login server

exists in cases where it needs to contact that server to retrieve serialized information. It also contains

the cache look up value for finding the serialized information in DynaCache, if both front-end servers

are configured in the same DRS replication domain. For more information, see “Security attribute

propagation” on page 275.

Important: If the following statements are true, it is recommended that you disable the Web

inbound security attribute propagation option for performance reasons:

v You do not have any specific information added to the Subject during a login that

cannot be obtained at a different front-end server.

v You did not add custom attributes to the PropagationToken using WSSecurityHelper

application programming interfaces (APIs).

174 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

If you find you are missing custom information in the Subject, re-enable the Web

inbound security attribute propagation option to see if the information is propagated

successfully to other front-end application servers. If you disable SSO, but use a trust

association interceptor instead, you might still need to enable the Web inbound security

attribute propagation option if you want to retrieve the same Subject generated at

different front-end servers.

10. Click OK.

For the changes to take effect, save, stop, and restart all the product servers (deployment managers,

nodes and Application Servers).

Single signon settings

Use this page to set the configuration values for single signon (SSO).

To view this administrative console page, complete the following steps:

1. Click Security > Global Security.

2. Under Authentication mechanisms, click LTPA.

3. Under Additional properties, click Single signon (SSO).

Enabled:

Specifies that the single signon function is enabled.

 Web applications that use J2EE FormLogin style login pages (such as the WebSphere Application Server

administrative console) require single signon (SSO) enablement. Only disable SSO for certain advanced

configurations where LTPA SSO-type cookies are not required.

 Data type: Boolean

Default: Enabled

Range: Enabled or Disabled

Requires SSL:

Specifies that the single signon function is enabled only when requests are made over HTTPS Secure

Sockets Layer (SSL) connections.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Domain name:

Specifies the domain name (.ibm.com, for example) for all single signon hosts.

 WebSphere Application Server uses all the information after the first period, from left to right, for the

domain names. If this field is not defined, the Web browser defaults the domain name to the host name

where the Web application is running. Also, single signon is then restricted to the application server host

name and does not work with other application server host names in the domain.

You can specify multiple domains separated by a semicolon (;), a space (), a comma (,), or a pipe (|).

Each domain is compared with the host name of the HTTP request until the first match is located. For

example, if you specify ibm.com;austin.ibm.com and a match is found in the ibm.com domain first,

Chapter 12. Administering security 175

WebSphere Application server does not match the austin.ibm.com domain. However, if a match is not

found in either ibm.com or austin.ibm.com, then WebSphere Application Server does not set a domain for

the LtpaToken cookie.

If you specify UseDomainFromURL, WebSphere Application Server sets the SSO domain name value to the

domain of the host used in the URL. For example, if an HTTP request comes from

server1.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to

raleigh.ibm.com.

Tip: The UseDomainFromURL value is case insensitive. You can type usedomainfromurl to use this value.

 Data type: String

Interoperability mode:

Specifies that an interoperable cookie is sent to the browser to support back-level servers.

 In WebSphere Application Server, Version 6 and later, a new cookie format is needed by the security

attribute propagation functionality. When the interoperability mode flag is enabled, the server can send a

maximum of two single signon (SSO) cookies back to the browser. In some cases, the server just sends

the interoperable SSO cookie.

Web inbound security attribute propagation:

When Web inbound security attribution propagation is enabled, security attributes are propagated to

front-end application servers. When this option is disabled, the single signon (SSO) token is used to log in

and recreate the Subject from the user registry. If you disable this option, the Web inbound login module

functions the same as it did in previous releases.

 If the application server is a member of a cluster and the cluster is configured with a distributed replication

service (DRS) domain, then propagation occurs. If DRS is not configured, then the SSO token contains the

originating server information. With this information the receiving server can contact the originating server

using an MBean call to get the original serialized security attributes.

Troubleshooting single signon configurations

This article describes common problems in configuring single signon (SSO) between a WebSphere

Application Server and a Domino server and suggests possible solutions.

v Failure to save the Domino Web SSO configuration document

The client must find Domino server documents for the participating SSO Domino servers. The Web

SSO configuration document is encrypted for the servers that you specify. The home server that is

indicated by the client location record must point to a server in the Domino domain where the

participating servers reside. This pointer ensures that lookups can find the public keys of the servers.

If you receive a message stating that one or more of the participating Domino servers cannot be found,

then those servers cannot decrypt the Web SSO configuration document or perform SSO.

When the Web SSO configuration document is saved, the status bar indicates how many public keys

are used to encrypt the document by finding the listed servers, authors, and administrators in the

document.

v Failure of the Domino server console to load the Web SSO configuration document at Domino HTTP

server startup

During configuration of SSO, the server document is configured for Multi-Server in the Session

Authentication field. The Domino HTTP server tries to find and load a Web SSO configuration

document during startup. The Domino server console reports the following information if a valid

document is found and decrypted: HTTP: Successfully loaded Web SSO Configuration.

176 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

If a server cannot load the Web SSO configuration document, SSO does not work. In this case, a

server reports the following message: HTTP: Error Loading Web SSO configuration. Reverting to

single-server session authentication.

Verify that only one Web SSO Configuration document is in the Web Configurations view of the Domino

directory and in the $WebSSOConfigs hidden view. You cannot create more than one document, but

you can insert additional documents during replication.

If you can verify only one Web SSO Configuration document, consider another condition. When the

public key of the Server document does not match the public key in the ID file, this same error message

can display. In this case, attempts to decrypt the Web SSO configuration document fail and the error

message is generated.

This situation can occur when the ID file is created multiple times but the Server document is not

updated correctly. Usually, an error message is displayed on the Domino server console stating that the

public key does not match the server ID. If this situation occurs, then SSO does not work because the

document is encrypted with a public key for which the server does not possess the corresponding

private key.

To correct a key-mismatch problem:

1. Copy the public key from the server ID file and paste it into the Server document.

2. Create the Web SSO configuration document again.

v Authentication fails when accessing a protected resource.

If a Web user is repeatedly prompted for a user ID and password, SSO is not working because either

the Domino or the WebSphere Application Server security server cannot authenticate the user with the

Lightweight Directory Access Protocol (LDAP) server. Check the following possibilities:

– Verify that the LDAP server is accessible from the Domino server machine. Use the TCP/IP ping

utility to check TCP/IP connectivity and to verify that the host machine is running.

– Verify that the LDAP user is defined in the LDAP directory. Use the ldapsearch utility to confirm that

the user ID exists and that the password is correct. For example, you can run the following

command, entered as a single line:

You can use the OS/400 Qshell, a UNIX shell, or a Windows DOS prompt

 % ldapsearch -D "cn=John Doe, ou=Rochester, o=IBM, c=US" -w mypassword

 -h myhost.mycompany.com -p 389

 -b "ou=Rochester, o=IBM, c=US" (objectclass=*)

(The percent character (%) indicates the prompt and is not part of the command.) A list of directory

entries is expected. Possible error conditions and causes are contained in the following list:

- No such object: This error indicates that the directory entry referenced by either the user’s

distinguished name (DN) value, which is specified after the -D option, or the base DN value, which

is specified after the -b option, does not exist.

- Invalid credentials: This error indicates that the password is invalid.

- Cannot contact the LDAP server: This error indicates that the host name or port specified for the

server is invalid or that the LDAP server is not running.

- An empty list means that the base directory specified by the -b option does not contain any

directory entries.
– If you are using the user’s short name (or user ID) instead of the distinguished name, verify that the

directory entry is configured with the short name. For a Domino directory, verify the Short

name/UserID field of the Person document. For other LDAP directories, verify the userid property of

the directory entry.

– If Domino authentication fails when using an LDAP directory other than a Domino directory, verify the

configuration settings of the LDAP server in the Directory assistance document in the Directory

assistance database. Also verify that the Server document refers to the correct Directory assistance

document. The following LDAP values specified in the Directory Assistance document must match

the values specified for the user registry in the WebSphere administrative domain:

- Domain name

- LDAP host name

- LDAP port

Chapter 12. Administering security 177

- Base DN

Additionally, the rules defined in the Directory assistance document must refer to the base

distinguished name (DN) of the directory containing the directory entries of the users.

You can trace Domino server requests to the LDAP server by adding the following line to the server

notes.ini file:

webauth_verbose_trace=1

After restarting the Domino server, trace messages are displayed in the Domino server console as

Web users attempt to authenticate to the Domino server.

v Authorization failure when accessing a protected resource.

After authenticating successfully, if an authorization error message is displayed, security is not

configured correctly. Check the following possibilities:

– For Domino databases, verify that the user is defined in the access-control settings for the database.

Refer to the Domino Administrative documentation for the correct way to specify the user’s DN. For

example, for the DN cn=John Doe, ou=Rochester, o=IBM, c=US, the value on the access-control list

must be set as John Doe/Rochester/IBM/US.

– For resources protected by WebSphere Application Server, verify that the security permissions are

set correctly.

- If granting permissions to selected groups, make sure that the user attempting to access the

resource is a member of the group. For example, you can verify the members of the groups by

using the following Web site to display the directory contents:

Ldap://myhost.mycompany.com:389/ou=Rochester, o=IBM, c=US??sub

- If you have changed the LDAP configuration information (host, port, and base DN) in a

WebSphere Application Server administrative domain since the permissions were set, the existing

permissions are probably invalid and need to be recreated.

v SSO failure when accessing protected resources.

If a Web user is prompted to authenticate with each resource, SSO is not configured correctly. Check

the following possibilities:

1. Configure both the WebSphere Application Server and the Domino server to use the same LDAP

directory. The HTTP cookie used for SSO stores the full DN of the user, for example, cn=John Doe,

ou=Rochester, o=IBM, c=US, and the domain name service (DNS) domain.

2. Define Web users by hierarchical names if the Domino Directory is used. For example, update the

User name field in the Person document to include names of this format as the first value: John

Doe/Rochester/IBM/US.

3. Specify the full DNS server name, not just the host name or TCP/IP address for Web sites issued to

Domino servers and WebSphere Application Servers configured for SSO. For browsers to send

cookies to a group of servers, the DNS domain must be included in the cookie, and the DNS

domain in the cookie must match the Web address. (This requirement is why you cannot use

cookies across TCP/IP domains.)

4. Configure both Domino and the WebSphere Application Server to use the same DNS domain. Verify

that the DNS domain value is exactly the same, including capitalization. The DNS domain value is

found on the Configure Global Security Settings panel of the WebSphere Application Server

administrative console and in the Web SSO Configuration document of a Domino server. If you

make a change to the Domino Web SSO Configuration document, replicate the modified document

to all of the Domino servers participating in SSO.

5. Verify that the clustered Domino servers have the host name populated with the full DNS server

name in the Server document. By using the full DNS server name, Domino Internet Cluster Manager

(ICM) can redirect to cluster members using SSO. If this field is not populated, by default, ICM

redirects Web addresses to clustered Web servers by using the host name of the server only. It

cannot send the SSO cookie because the DNS domain is not included in the Web address. To

correct the problem:

a. Edit the Server document.

b. Click Internet Protocols > HTTP tab.

c. Enter the full DNS name of the server in the Host names field.

178 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

6. If a port value for an LDAP server was specified for a WebSphere Application Server administrative

domain, edit the Domino Web SSO configuration document and insert a backslash character (\) into

the value of the LDAP Realm field before the colon character (:). For example, replace

myhost.mycompany.com:389 with myhost.mycompany.com\:389.

Single signon using WebSEAL or the Tivoli Access Manager plug-in

for Web servers

Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for Web servers can be used as

reverse proxy servers to provide access management and single signon (SSO) capability to WebSphere

Application Server resources. With such an architecture, either WebSEAL or the plug-in authenticates

users and forwards the collected credentials to WebSphere Application Server in the form of an IV Header.

Two types of single signon are available, the TAI interface and the new TAI interface, so named as both

use WebSphere Application Server trust association interceptors (TAIs). With TAI, the end-user name is

extracted from the HTTP header and forwarded to embedded Tivoli Access Manager where it is used to

construct the client credential information and authorize the user. The difference with the new TAI interface

is that all user credential information is available in the HTTP header (not just user name). The new TAI is

the more efficient of the two solutions as an Lightweight Directory Access Protocol (LDAP) call is not

required as it is with TAI. TAI functionality is retained for backwards compatibility.

The following tasks need to be completed to enable single signon to WebSphere Application Server using

either WebSEAL or the plug-in for Web servers. These tasks assume that embedded Tivoli Access

Manager is configured for use.

1. “Creating a trusted user account in Tivoli Access Manager”

2. “Configuring WebSEAL for use with WebSphere Application Server” or “Configuring Tivoli Access

Manager plug-in for Web servers for use with WebSphere Application Server” on page 180

3. “Configuring single signon using the trust association interceptor” on page 181 or “Configuring single

signon using trust association interceptor ++” on page 182

Creating a trusted user account in Tivoli Access Manager

Tivoli Access Manager Trust Association Interceptors require the creation of a trusted user account in the

shared LDAP user registry. This is the ID and password that WebSEAL uses to identify itself to

WebSphere Application Server. To prevent potential vulnerabilities, do not use sec_master as the trusted

user account and ensure the password you use is unique and generated randomly. The trusted user

account should be used for the TAI or TAI++ only.

Use either the Tivoli Access Manager pdadmin command line utility or Web Portal Manager to create the

trusted user. For example, from the pdadmin command line:

pdadmin> user create webseal_userid webseal_userid_DN firstname surname password

pdadmin> user modify webseal_userid account-valid yes

“Configuring WebSEAL for use with WebSphere Application Server” or “Configuring Tivoli Access Manager

plug-in for Web servers for use with WebSphere Application Server” on page 180

Configuring WebSEAL for use with WebSphere Application Server

A junction must be created between WebSEAL and WebSphere Application Server. This junction will carry

the iv-creds (for TAI++) or iv-user (for TAI) and the HTTP basic authentication headers with the request.

While WebSEAL can be configured to pass the end user identity in other ways, the iv-creds header is the

only one supported by the TAI++ and iv-user the only one supported by TAI.

We recommend that communications over the junction use SSL for increased security. Setting up SSL

across this junction requires that you configure the HTTP Server used by WebSphere Application Server,

and WebSphere Application Server itself, to accept inbound SSL traffic and route it correctly to WebSphere

Chapter 12. Administering security 179

Application Server. This requires importing the necessary signing certificates into the WebSEAL certificate

keystore, and possibly also the HTTP Server certificate keystore.

Create the junction between WebSEAL and the WebSphere Application Server using the -c iv-creds

option for TAI++ and -c iv-user for TAI. For example (commands are entered as one line):

TAI++

server task webseald-server create -t ssl -b supply -c iv-creds

 -h host_name -p websphere_app_port_number junction_name

TAI

server task webseald-server create -t ssl -b supply -c iv-user

 -h host_name -p websphere_app_port_number junction_name

Notes:

1. If warning messages are displayed about the incorrect setup of certificates and key databases,

delete the junction, correct problems with the key databases and re-create the junction.

2. The junction can be created as -t tcp or -t ssl depending on your requirements.

For single signon to WebSphere Application Server the SSO password must be set in WebSEAL. To set

the password, complete the following steps:

1. Edit the WebSEAL configuration file, webseal_install_directory/etc/webseald-default.conf and set

the following parameter, basicauth-dummy-passwd=webseal_userid_passwd. Where

webseal_userid_passwd is the SSO password for the trusted user account set in “Creating a trusted

user account in Tivoli Access Manager” on page 179.

2. Restart WebSEAL.

For more details and options about how to configure junctions between WebSEAL and WebSphere

Application Server, including other options for specifying the WebSEAL server identity, refer to the Tivoli

Access Manager WebSEAL Administration Guide as well as to the documentation for the HTTP Server

you are using with your WebSphere Application Server. Tivoli Access Manager documentation is available

at http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

Configuring Tivoli Access Manager plug-in for Web servers for use

with WebSphere Application Server

Tivoli Access Manager plug-in for Web servers can be used as a security gateway for your protected

WebSphere Application resources. With such an arrangement the plug-in authorizes all user requests

before passing the authorized user’s credentials onto WebSphere Application Server in the form of an

iv-creds header. Trust between the plug-in and WebSphere Application Server is established through use

of basic authentication headers containing the single signon (SSO) user password.

In the following example Tivoli Access Manager plug-in for Web Servers Version 5.1 configuration shows

IV headers configured for post-authorization processing and basic authentication configured as the

authentication mechanism and for post-authorization processing. After a request has been authorized the

basic authentication header is removed from the request (strip-hdr = always) and a new one added

(add-hdr = supply). Included in this new header is the password set when the SSO user was created in

“Creating a trusted user account in Tivoli Access Manager” on page 179. This password needs to be

specified in the supply-password parameter and is passed in the newly created header. This basic

authentication header enables trust between WebSphere Application Server and the plug-in.

An iv-creds header is also added (generate = iv-creds) which contains the credential information of the

user passed onto WebSphere Application Server. Note also that session cookies are used to maintain

session state.

180 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

[common-modules]

authentication = BA

session = session-cookie

post-authzn = BA

post-authzn = iv-headers

[iv-headers]

accept = all

generate = iv-creds

[BA]

strip-hdr = always

add-hdr = supply

supply-password = sso_user_password

“Configuring single signon using the trust association interceptor” or “Configuring single signon using trust

association interceptor ++” on page 182

Configuring single signon using the trust association interceptor

The following steps are required when setting up security for the first time. Ensure that Lightweight Third

Party Authentication (LTPA) is the active authentication mechanism:

1. From the WebSphere Application Server console click Security > Global security.

2. Ensure that the Active authentication mechanism field is set to Lightweight Third Party

Authentication (LTPA). If not, set it and save your changes.

This task is performed to enable single signon using the trust association interceptor. The steps involve

setting up trust association and creating the interceptor properties.

 1. From the WebSphere Application Server console, click Security > Global security.

 2. Under Authentication mechanisms, click LTPA.

 3. Under Additional properties, click Trust association.

 4. Select the Enable trust association option.

 5. Under Additional properties, click the Interceptors link.

 6. Click the com.ibm.ws.security.web.WebSealTrustAssociationInterceptor link to use the WebSEAL

interceptor. This interceptor is the default.

 7. Under Additional properties, click Custom Properties .

 8. Click New to enter the property name and value pairs. Ensure the following parameters are set:

 Option Description

com.ibm.websphere.security.trustassociation.types Ensure webseal is listed.

com.ibm.websphere.security.webseal.loginId The WebSEAL trusted user as created in “Creating a

trusted user account in Tivoli Access Manager” on page

179 The format of the username is the short name

representation. This is a mandatory property. If it is not

set in WebSphere then TAI initialization will fail.

com.ibm.websphere.security.webseal.id The iv-user header. That is;

com.ibm.websphere.security.webseal.id=iv-user

Chapter 12. Administering security 181

Option Description

com.ibm.websphere.security.webseal.hostnames Do not set this property if using Tivoli Access Manager

Plug-in for Web Servers. The host names (case sensitive)

that are trusted and expected in the request header. For

example;com.ibm.websphere.security.webseal.hostnames=host1

This should also include the proxy host names (if any)

unless the

com.ibm.websphere.security.webseal.ignoreProxy is set to

true. A list of servers can be obtained using the server list

pdadmin command.

com.ibm.websphere.security.webseal.ports Do not set this property if using Tivoli Access Manager

Plug-in for Web Servers. The corresponding port number

of the host names that are expected in the request

header. This should also include the proxy ports (if any)

unless the

com.ibm.websphere.security.webseal.ignoreProxy is set to

true. For example:

com.ibm.websphere.security.webseal.ports=80,443

com.ibm.websphere.security.webseal.ignoreProxy An optional property that if set to true or yes ignores the

proxy host names and ports in the IV header. By default

this property is set to false.

 9. Click OK.

10. Save configuration and logout.

11. Restart WebSphere Application Server.

Configuring single signon using trust association interceptor ++

The following steps are required when setting up security for the first time. Ensure that LTPA is the active

authentication mechanism:

1. From the WebSphere Application Server console, click Security > Global Security.

2. Ensure that the Active Authentication Mechanism field is set to Lightweight Third Party

Authentication (LTPA). Save your changes.

This task is performed to enable single signon using trust association interceptor ++. The steps involve

setting up trust association and creating the interceptor properties.

 1. From the WebSphere Application Server console select, click Security > Global security.

 2. Under Authentication, click Authentication mechanisms > LTPA

 3. Under Additional properties, click Trust association.

 4. Select the Enable Trust Association option.

 5. Click the Interceptors link.

 6. Click com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to use the WebSEAL

interceptor. This interceptor is the default.

 7. Click the Custom Properties link.

182 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

8. Click New to enter the property name and value pairs. Ensure the following parameters are set:

 Option Description

com.ibm.websphere.security.webseal.checkViaHeader The TAI can be configured so that the via header can be

ignored when validating trust for a request. Set this

property to false if none of the hosts in the via header

need to be trusted. When set to false the trusted

hostnames and host ports properties do not need to be

set. Therefore the only mandatory property when check

via header is false is

com.ibm.websphere.security.webseal.loginId

The default value of the check via header property is

false. When using Tivoli Access Manager Plug-in for Web

Servers this property should be set to false.

Note: The via header is part of the standard HTTP

header that records the server names the request has

passed through.

com.ibm.websphere.security.webseal.loginId The WebSEAL trusted user as created in “Creating a

trusted user account in Tivoli Access Manager” on page

179 The format of the username is the short name

representation. This is a mandatory property. If it is not

set in WebSphere Application Server, then the TAI

initialization fails.

com.ibm.websphere.security.webseal.id A comma-separated list of headers that should exist in

the request. If not all of the configured headers exist in

the request then trust can not be established. The default

value for the id property is iv-creds. Any other values set

in WebSphere Application Server are added to the list

along with iv-creds, separated by commas.

com.ibm.websphere.security.webseal.hostnames Do not set this property if using Tivoli Access Manager

Plug-in for Web Servers. The property specifies the host

names (case sensitive) that are trusted and expected in

the request header. Requests arriving from un-listed hosts

might not be trusted. If the checkViaHeader property is

not set or is set to false then the trusted host names

property has no influence. If the checkViaHeader property

is set to true and the trusted host names property is not

set then TAI initialization will fail.

com.ibm.websphere.security.webseal.ports Do not set this property if using Tivoli Access Manager

Plug-in for Web Servers. This property is a

comma-separated list of trusted host ports. Requests

arriving from unlisted ports might not be trusted. If the

checkViaHeader property is not set or is set to false then

this property has no influence. If the checkViaHeader

property is set to true and the trusted host ports property

is not set in WebSphere Application Server then the TAI

initialization fails.

Chapter 12. Administering security 183

Option Description

com.ibm.websphere.security.webseal.viaDepth A positive integer specifying the number of source hosts

in the via header to check for trust. By default, every host

in the via header is checked and if any are not trusted

then trust cannot be established. The via depth property

is used when not all hosts in the via header are required

to be trusted. The setting indicates the number of hosts

that are required to be trusted.

As an example, consider the following header:

Via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

If the viaDepth property is not set, is set to 2 or is set to

0, and a request with the previous via header is received

then both webseal1:7002 and webseal2:7001 need to be

trusted. The following configuration applies:

 com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2

com.ibm.websphere.security.webseal.ports = 7002,7001

If the via depth property is set to 1 and the previous

request is received then only the last host in the via

header needs to be trusted. The following configuration

applies:

 com.ibm.websphere.security.webseal.hostnames = webseal2

com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default which means

all hosts in the via header are checked for trust.

com.ibm.websphere.security.webseal.ssoPwdExpiry Once trust has been established for a request the single

signon user password is cached saving the need to have

the TAI re-authenticate the single signon user with Tivoli

Access Manager for every request. The cache timeout

period can be modified by setting the single signon

password expiry property to the required time in seconds.

If the password expiry property is set to 0, the cached

password will never expire. The default value for the

password expiry property is 600.

com.ibm.websphere.security.webseal.ignoreProxy This property can be used to tell the TAI to ignore proxies

as trusted hosts. If set to true the comments field of the

hosts entry in the via header is checked to determine if a

host is a proxy. It must be remembered that not all

proxies insert comments in the via header indicating that

they are proxies. The default value of the ignoreProxy

property is false. If the checkViaHeader property is set to

false then the ignoreProxy property has no influence in

establishing trust.

184 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Option Description

com.ibm.websphere.security.webseal.configURL For the TAI to be able to establish trust for a request it

requires that SvrSslCfg has been run for the WebSphere

Java Virtual Machine resulting in a properties file being

created. If this properties file is not at the default URL

file://java.home/PdPerm.properties then the correct URL

of the properties file must be set in the config URL

property. If this property is not set and the SvrSslCfg

generated properties file is not in the default location, the

TAI initialization fails. The default value for the config URL

property is

file://${WAS_INSTALL_ROOT}/java/jre/PdPerm.properties

 9. Click OK.

10. Save configuration and logout.

11. Restart WebSphere Application Server.

Global signon principal mapping

The Tivoli Access Manager JACC provider can be used to manage authentication to WebSphere

Enterprise Information Systems (EIS) such as databases, transaction processing systems and message

queue systems, located within the WebSphere Application Server security domain. Such authentication is

achieved using the Global single signon (GSO) Principal Mapper JAAS login module for J2EE Connector

Architecture (J2C) resources.

With GSO principal mapping, a special-purpose JAAS login module inserts a credential into the subject

header. This is used by the resource adapter to authenticate to the Enterprise Information System (EIS).

The JAAS login module used is configured on a per-connection factory basis. The default principal

mapping module retrieves the user name and password information from XML configuration files. The

Tivoli Access Manager JACC provider bypasses the credential stored in the XML configuration files and

instead uses the Tivoli Access Manager GSO database to provide the EIS security domain authentication

information.

WebSphere Application Server provides a default principal mapping module that associates user credential

information with EIS resources. The default mapping module is defined in the WebSphere Application

Server administration console on the application login panel. To access the panel, click Security > Global

security. Under JAAS configuration, click Application logins. The mapping module name is

DefaultPrincipalMapping.

The EIS security domain user ID and password are defined under each connection factory by an

authDataAlias attribute. The authDataAlias attribute does not contain the user name and password, it

contains an alias that refers to a user name and password pair defined elsewhere.

The Tivoli Access Manager Principal Mapping module uses the authDataAlias to determine the GSO

resource name and user name required to perform the lookup on the Tivoli Access Manager GSO

database. It is the Tivoli Access Manager Policy Server which retrieves the GSO data from the registry.

Tivoli Access Manager stores authentication information on the Tivoli Access Manager GSO database

against a resource/user name pair.

GSO principal mapping architecture

Chapter 12. Administering security 185

Configuring global signon principal mapping

To create a new application login that uses the Tivoli Access Manager GSO database to store the login

credentials:

1. Select Security > Global security.

2. Under Authentication, click JAAS Configuration > Application logins

3. Click New to create a new JAAS login configuration.

4. Enter the alias name of the new application login. Click Apply.

5. Under Additional properties, click JAAS Login Modules link to define the JAAS Login Modules.

6. Click New and enter the following:

Module class name: com.tivoli.pd.as.gso.AMPrincipalMapper

Use Login Module Proxy: enable

Authentication strategy: REQUIRED

Click Apply

7. In the Additional Properties section, click Custom Properties to define Login Module-specific values

which are passed directly to the underlying Login Modules.

8. Click New.

The Tivoli Access Manager principal mapping module uses the configuration string, authDataAlias, to

retrieve the correct user name and password from the security configuration.

The authDataAlias passed to the module is configured for the J2C ConnectionFactory. Since the

authDataAlias is an arbitrary string entered at configuration time, the following scenarios are possible:

v The authDataAlias contains both the GSO Resource name and the user name. The format of this

string is ″Resource/User″

WebSphere Application Server

User

Application

Java 2 Connector (J2C)

Tivoli Access
Manager Principal
Mapping Module

Resource
adapter

user name/
password

authDataAlias

user name/
password

GSO
resource

name

user user name
password

user name/
password

GSO resource
name and
user name

Security.xml

LDAP
global single signon (GSO)

database

Tivoli Access
Manager

Policy Server

Enterprise
Information

System

186 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v The authDataAlias contains only the GSO Resource name. The user name is determined using the

Subject of the current session.

Which scenario to use is determined by a JAAS configuration option. The details of these options are:

Name: com.tivoli.pd.as.gso.AliasContainsUserName

Value: True if the alias contains the user name, false if the user name should be retrieved from the security

When entering authDataAliases through the WebSphere Application Server console, the node name is

automatically pre-pended to the alias. The JAAS configuration entry is to determine whether this node

name should be removed or included as part of the resource name.

Name: com.tivoli.pd.as.gso.AliasContainsNodeName

Value: True if the alias contains the node name.

Enter each new parameter using the following scenario information as a guide.

Note: If the PdPerm.properties configuration file is not located in the default location,

JAVA_HOME/PdPerm.properties, then you will also need to add the following property:

Name = com.tivoli.pd.as.gso.AMCfgURL

Value = file:///path to PdPerm.properties

Scenario 1

Auth Data Alias - BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 2

Auth Data Alias - BackendEIS

Resource - BackEndEIS

User - Currently authenticated WAS user

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 3

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

Chapter 12. Administering security 187

Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 4

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackEndEIS (notice that node name was not removed)

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 5

Auth Data Alias - BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 6

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackendEIS/eisUser (notice that the Resource is the same as Auth Data Alias).

User - Currently authenticated WAS user

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

188 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

You now need to create the J2C authentication aliases. The user name and password assigned to

these alias entries is irrelevant as Tivoli Access Manager is responsible for providing user names and

passwords. However, the user name and password assigned to the J2C authentication aliases need to

exist so they can be selected for the J2C connection factory in the console.

To create the J2C authentication aliases, from the WebSphere Application Server administrative

console, click Security >Global security. Under JAAS Configuration > J2C Authentication Data

and click New for each entry. Refer to the table above for scenario inputs.

The connection factories for each resource adapter that needs to use the GSO database must be

configured to use the Tivoli Access Manager Principal Mapping module. To do this:

a. From the WebSphere Application Server console, select Applications > Enterprise Applications

> application_name.

b. Under Related items, click the Connector Modules link.

c. Click the .rar link.

d. Under Additional properties, click the Resource Adapter link.

Note: The resource adapter does not need to be packaged with the application. It can be

standalone. For such a scenario the resource adapter is configured from Resources >

Resource Adapters.

e. Under Additional properties, click the J2C Connection Factories link.

f. Click New and enter the connection factory properties.

Note: Configuring custom mapping on connection factory is deprecated in WebSphere Application

Server Version 6. To configure the GSO credential mapping, it is recommended that you use the

Map Resource References to Resources panel on the administrative console. For more

information, refer to “J2EE Connector security” on page 256.

User registries

Information about users and groups reside in a user registry.

With WebSphere Application Server, a user registry authenticates a user and retrieves information about

users and groups to perform security-related functions, including authentication and authorization.

WebSphere Application Server provides several implementations to support multiple types of operating

system base user registries. You can use the custom Lightweight Directory Access Protocol (LDAP)

feature to support any LDAP server by setting up the correct configuration (user and group filters).

However, support is not extended to these custom LDAP servers because many configuration possibilities

exist.

In addition to Local operating system (OS) and LDAP registries, WebSphere Application Server also

provides a plug-in that supports any user registry by using the custom registry feature (also referred to as

a custom user registry). The custom registry feature supports any user registry that is not implemented by

WebSphere Application Server. You can use any registry used in the product environment by implementing

the UserRegistry interface interface.

The UserRegistry interface is very helpful in situations where the current user and group information exists

in some other format (for example, a database) and cannot move to Local OS or LDAP. In such a case,

implement the UserRegistry interface so that WebSphere Application Server can use the existing registry

for all of the security-related operations. Using a custom registry is a software implementation effort; it is

expected that the implementation does not depend on other WebSphere Application Server resources, for

example, data sources, for its operation.

Although WebSphere Application Server supports different types of user registries, only one user registry

can be active. This active registry is shared by all of the product server processes. If the product

Chapter 12. Administering security 189

processes in one node or cell need to communicate with other product processes in other nodes or cells

using Lightweight Third Party Authentication (LTPA) (or Integrated Cryptographic Service Facility (ICSF) on

the z/OS platform), all of the nodes and cells share the same user registry.

Configuring user registries

Before configuring the user registry, decide which registry to use. Though different types of registries are

supported, all of the processes in WebSphere Application Server can use one active registry. Configuring

the correct registry is a prerequisite to assigning users and groups to roles for applications. When no

registry is configured, the LocalOS registry is used by default. So, if your choice of registry is not Local OS

you need to first configure the registry, which is normally done as part of enabling security, restart the

servers, and then assign users and groups to roles for all your applications.

After the applications are assigned users and groups, and you need to change the registries (for example

from Lightweight Directory Access Protocol (LDAP) to Custom), delete all the users and groups (including

any RunAs role) from the applications, and reassign them after changing the registry through the

administrative console or by using wsadmin scripting. The following wsadmin command removes all of the

users and groups (including the RunAs role) from any application:

$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application is advised before

performing this operation. However, if both of the following conditions are true, you might be able to switch

the registries without having to delete the users and groups information:

v All of the user and group names (including the password for the RunAs role users) in all of the

applications match in both registries.

v The application bindings file does not contain the accessIDs, which are unique for each registry even for

the same user or group name.

By default, an application does not contain accessIDs in the bindings file (these IDs are generated when

the applications start). However, if you migrated an existing application from an earlier release, or if you

used the wsadmin script to add accessIDs for the applications to improve performance you have to

remove the existing user and group information and add the information after configuring the new registry.

For more information on updating accessIDs, see updateAccessIDs in the AdminApp object for scripted

administration article.

Complete one of the following steps to configure your user registry:

v Configure the local operating system user registry.

v Configure the LDAP user registry.

v Configure the custom user registry.

This step is required as part of enabling security in WebSphere Application Server.

1. If you are enabling security, make sure that you complete the remaining steps. Verify that the Active

User Registry field in the Global Security panel is set to the appropriate registry. As the final step,

validate the user ID and the password by clicking OK or Apply in the Global Security panel. Save,

stop and start all WebSphere Application Servers.

2. For any changes in user registry panels to be effective, you must validate the changes by clicking OK

or Apply in the Global Security panel. After validation, save the configuration, stop and start all

WebSphere Application Servers (cells, nodes and all the application servers). To avoid inconsistencies

between the WebSphere Application Server processes, make sure that any changes to the registry are

done when all of the processes are running. If any of the processes are down, force synchronization to

make sure that the process can start later.

If the server or servers start without any problems, the setup is correct.

190 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Local operating system user registries

With the local operating system, or Local OS, user registry implementation, the WebSphere Application

Server authentication mechanism can use the user accounts database of the local operating system.

WebSphere Application Server provides implementations for the Windows local accounts registry and

domain registry, as well as implementations for the Linux, Solaris, and AIX user accounts registries.

Windows Active Directory is supported through the Lightweight Directory Access Protocol (LDAP) user

registry implementation discussed later.

Note: For an Active Directory (domain controller), the three group scopes are Domain Local Group, Global

Group, and Universal Group. For an Active Directory (Domain Controller), the two group types are

Security and Distribution.

When a group is created, the default value is Global (and the default type is Security). With

Windows NT domain registry support for Windows 2000 and 20003 domain controllers, WebSphere

Application Server only supports Global groups that are the Security type. It is recommended that

you use the Active Directory registry support (rather than an NT domain registry) if you use

Windows 2000 and 2003 domain controllers because the Active Directory supports all group scopes

and types. The Active Directory also supports a nested group that is not support by NT domain

registry. The Active Directory is a centralized control registry.

WebSphere Application Server does not have to install the member of the domain because it can

be installed on any machine on any platform. Note that the NT domain native call only returns the

support group (with no error).

A Local OS user registry is not a centralized user registry like LDAP

Do not use a Local OS user registry in a WebSphere Application Server environment, where application

servers are dispersed across more than one machine because each machine has its own user registry.

Exceptions include a Windows domain registry, which is a centralized registry and Network Information

Services (NIS), which is not supported by WebSphere Application Server.

As mentioned previously, the access IDs taken from the user registry are used during authorization

checks. Because these IDs are typically unique identifiers, they vary from machine to machine, even if the

exact users and passwords exist on each machine.

Web client certificate authentication is not currently supported when using the local operating system user

registry. However, Java client certificate authentication does function with a local operating user registry.

Java client certificate authentication maps the first attribute of the certificate domain name to the user ID in

the user registry.

Even though Java client certificates function correctly, the following error displays in the SystemOut.log file:

CWSCJ0337E: The mapCertificate method is not supported

The error is intended for Web client certificates; however, it also displays for Java client certificates. Ignore

this error for Java client certificates.

Using Windows operating system registries

When enabling security on Windows operating systems, if the local operating system (LocalOS) is selected

as the registry, consider the following points:

Chapter 12. Administering security 191

Required privileges

The user that is running the WebSphere Application Server process requires enough operating system

privilege to call the Windows systems application programming interface (API) for authenticating and

obtaining user and group information from the Windows operating system. This user logs into the machine,

or if running as a service, is the Log On As user. Depending on the machine and whether the machine is a

stand-alone machine or a machine that is part of a domain or is the domain controller, the access

requirements vary.

v For a stand-alone machine, the user:

– Is a member of the administrative group.

– Has the Act as part of the operating system privilege.

– Has the Log on as a service privilege, if the server is run as a service.
v For a machine that is a member of a domain, only a domain user can start the server process and:

– Is a member of the domain administrative groups in the domain controller.

– Has the Act as part of the operating system privilege in the Domain security policy on the domain

controller.

– Has the Act as part of the operating system privilege in the Local security policy on the local

machine.

– Has the Log on as a service privilege on the local machine, if the server is run as a service.

The user is a domain user and not a local user, which implies that when a machine is part of a

domain, only a domain user can start the server.
v For a domain controller machine, the user:

– Is a member of the domain administrative groups in the domain controller.

– Has the Act as part of the operating system privilege in the Domain security policy on the domain

controller.

– Has the Log on as a service privilege on the domain controller, if the server is run as a service.

To give a user the Act as part of the operating system or Log on as a service on Windows 2000 systems:

1. Click Start > Settings > Control Panel > Administrative Tools > Local Security Policy > Local

Policies > User Rights Assignments > Act as part of the operating system (or Log on as a

service) .

Note: If the machine is a stand-alone machine and not a member of a domain, you must add a

machineName\userID, where the userID is the owner of the process, such as WebSphere

Application Server. If you run WebSphere Application Server as a service, you can log on with

localsystem as the service.

If the machine is a member of a domain, add domainName\userID, where the userID is the

owner of process (such as WebSphere Application Server). Start WebSphere Application Server

as a service with login ID domainName\userID. If WebSphere Application Server is already in

service, go to the service and right-click IBM WebSphere Application Server > properties

>Logon to change the logon ID and password to restart WebSphere Application Server.

2. Add the user name by clicking Add.

3. Restart the machine.

Windows 2000 domain controller users: For a Windows 2000 domain controller, replace Local

Security Policy with Domain Security Policy in the previous step.

Note: In all of the previous configurations, the server can be run as a service using LocalSystem for

the Log On As entry. The LocalSystem entry has the required privileges and there is no need to

give special privileges to any user. However, because the LocalSystem entry has special

privileges, make sure that it is appropriate to use in your environment.

If the user running the server does not have the required privilege, you might see one of the following

exception messages in the log files:

v A required privilege is not held by the client.

192 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v Access is denied.

Domain and local registries

When WebSphere Application Server is started, the security run-time initialization process dynamically

attempts to determine if the local machine is a member of a Windows domain. If the machine is part of a

domain then by default both the local registry users or groups and the domain registry users or groups can

be used for authentication and authorization purposes with the domain registry taking precedence. The list

of users and groups that is presented during the security role mapping includes users and groups from

both the local user registry and the domain user registry. The users and groups can be distinguished by

the associated host names.

WebSphere Application Server does not support trusted domains.

If the machine is not a member of a Windows system domain, the user registry local to that machine is

used.

Using both the domain registry and the local registry

When the machine that hosts the WebSphere Application Server process is a member of a domain, both

the local and the domain registries are used by default. The following section describes more on this topic

and recommends some best practices to avoid unfavorable consequences.

v Best practices

In general, if the local and the domain registries do not contain common users or groups, it is simpler to

administer and it eliminates unfavorable side effects. If possible, give users and groups access to

unique security roles, including the server ID and administrative roles). In this situation, select the users

and groups from either the local registry or the domain registry to map to the roles.

In cases where the same users or groups exist in both the local registry and the domain registry, it is

recommended that at least the server ID and the users and groups that are mapped to the

administrative roles be unique in the registries and exist only in the domain.

If a common set of users exists, set a different password to make sure that the appropriate user is

authenticated.

v How it works

When a machine is part of a domain, the domain user registry takes precedence over the local user

registry. For example, when a user logs into the system, the domain registry tries to authenticate the

user first. If the authentication fails the local registry is used. When a user or a group is mapped to a

role, the user and group information is first obtained from the domain registry. In case of failure, the

local registry is tried. However, when a fully qualified user or a group name (one with an attached

domain or host name) is mapped to a role, then only that registry is used to get the information. Use the

administrative console or scripts to get the fully qualified user and group names, which is the

recommended way to map users and groups to roles.

Note: A user Bob on one machine (the local registry, for example) is not the same as the user Bob on

another machine (say the domain registry) because the uniqueID of Bob (the security identifier

[SID], in this case) is different in different registries.

v Examples

The machine MyMachine is part of the domain MyDomain. MyMachine contains the following users and

groups:

– MyMachine\user2

– MyMachine\user3

– MyMachine\group2

MyDomain contains the following users and groups:

– MyDomain\user1

– MyDomain\user2

Chapter 12. Administering security 193

– MyDomain\group1

– MyDomain\group2

Here are some scenarios that assume the previous set of users and groups.

1. When user2 logs into the system, the domain registry is used for authentication. If the authentication

fails (the password is different) the local registry is used.

2. If the user MyMachine\user2 is mapped to a role, only the user2 in MyMachine has access. So if the

user2 password is the same on both the local and the domain registries, user2 cannot access the

resource, because user2 is always authenticated using the domain registry. Hence, if both registries

have common users, it is recommended that the password be different.

3. If the group2 is mapped to a role, only the users who are members of the MyDomain\group2 can

access the resource because group2 information is first obtained from the domain registry.

4. If the group MyMachine\group2 is mapped to a role, only the users who are members of the

MyMachine\group2 can access the resource. A specific group is mapped to the role

(MyMachine\group2 instead of just group2).

5. Use either user3 or MyMachine\user3 to map to a role, because user3 is unique; it exists in one

registry only.

Authorizing with the domain user registry first can cause problems if a user exists in both the domain

and local user registries with the same password. Role-based authorization can fail in this situation

because the user is first authenticated within the domain user registry. This authentication produces a

unique domain security ID that is used in WebSphere Application Server during the authorization check.

However, the local user registry is used for role assignment. The domain security ID does not match the

unique security ID that is associated with the role. To avoid this problem, map security roles to domain

users instead of local users.

Using either the local or the domain registry. If you want to access users and groups from either the

local registry or the domain registry, instead of both, set the com.ibm.websphere.registry.UseRegistry

property. This property can be set to either localor domain. When this property is set to local(case

insensitive) only the local registry is used. When this property is set to domain, (case insensitive) only the

domain registry is used. Set this property by clicking Custom Properties in the Security > User

Registries > Local OS panel in the administrative console or by using scripts. When the property is set,

the privilege requirement for the user who is running the product process does not change. For example, if

this property is set to local, the user that is running the process requires the same privilege, as if the

property was not set.

Using UNIX system registries

When using UNIX system registries, the process ID that runs the WebSphere Application Server process

needs the root authority to call the local operating system APIs for authentication and for obtaining user or

group information.

Note: In UNIX systems, only the local machine registry is used. Network Information Service (NIS) (Yellow

Pages) is not supported.

Using Linux and Solaris system registries

For WebSphere Application Server Local OS security registry to work on the Linux and Solaris platforms, a

shadow password file must exist. The shadow password file is named shadow and is located in the /etc

directory. If the shadow password file does not exist, an error occurs after enabling global security and

configuring the user registry as Local OS.

To create the shadow file, run the pwconv command (with no parameters). This command creates an

/etc/shadow file from the /etc/passwd file. After creating the shadow file, you can enable local operating

system security successfully.

194 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Remote registries

By default, the registry is local to all of the product processes. The performance is higher, (no need for

remote calls) and the registry also increases availability. Any process failing does not effect other

processes.

When using LocalOS as the registry, every product process must run with privilege access (root in UNIX,

Act as part of operating system in Windows systems).

If this process is not practical in some situations, you can use a remote registry from the node (or in very

rare situations from the cell). Using a remote registry affects performance and creates a single point of

failure. Use remote registries only in rare situations.

The node and the cell processes are meant for manipulating configuration information and for hosting the

registry for all the application servers that create traffic and cause problems.

Using a node agent (instead of the cell) to host the remote registry is preferable because the cell process

is not designed to be highly available. Also, using a node to host the remote registry indicates that only the

application servers in that node are using it. Because the node agent does not contain any application

code, giving it the access required privilege is not a concern.

You can set up a remote registry by setting the WAS_UseRemoteRegistry property in the Global Security

panel using the Custom Properties link at the bottom of the administrative console panel. Use either

theCell or the Node(case insensitive) value. If the value is Cell, the cell registry is used by all of the

product processes including the node agent and all of the application servers. If the cell process is down

for any reason, restart all of the processes after the cell is restarted. If the node agent registry is used for

the remote registry, set the WAS_UseRemoteRegistry value to node. In this case, all the application server

processes use the node agent registry. In this case, if the node agent fails and does not start

automatically, you might need to restart all the application servers after the node agent is started.

Configuring local operating system user registries

For security purposes, the WebSphere Application Server provides and supports the implementation for

Windows operating system registries, AIX, Solaris and multiple versions of Linux operating systems. The

respective operating system APIs are called by the product processes (servers) for authenticating a user

and other security-related tasks (for example, getting user or group information). Access to these APIs are

restricted to users who have special privileges. These privileges depend on the operating system and are

described below.

Before configuring the LocalOS registry you need to know the user name (ID) and password to use here.

This user can be any valid user in the registry. This user is referred to as either a product security server

ID, a server ID or a server user ID in the documentation. Having a server ID means that a user has

special privileges when calling protected internal methods. Normally, this ID and password are used to log

into the administrative console after security is turned on. You can use other users to log in if those users

are part of the administrative roles. When security is enabled in the product, this server ID and password

are authenticated with the registry during product startup. If authentication fails, the server does not come

up. So it is important to choose an ID and password that do not expire or change often. If the product

server user ID or password need to change in the registry, ensure that the changes are performed when

all the product servers are up and running. After the changes are completed in the registry, use the

following steps to change the ID and the password information. Save, stop, and restart all the servers so

that the product can use the new ID or password. If any problem arises after starting the product because

of authentication problems (that cannot be fixed), disable security before the server can start up. To avoid

this step, make sure that the changes are validated in the Global Security panel. After the server is up,

change the ID and password information and enable security.

When using the Windows operating system, consider the following issues:

Chapter 12. Administering security 195

v The server ID needs to be different from the Windows machine name where the product is installed. For

example, if the Windows machine name is vicky and the security server ID is vicky, the Windows

system fails when getting the information (group information, for example) for user vicky.

v WebSphere Application Server dynamically determines whether the machine is a member of a Windows

system domain.

v WebSphere Application Server does not support Windows trusted domains.

v If a machine is a member of a Windows domain, both the domain user registry and the local user

registry of the machine participate in authentication and security role mapping.

v The domain user registry takes precedence over the local user registry of the machine and can have

undesirable implications if users with the same password exist in both user registries.

v The user that the product processes run under requires the Administrative and Act as part of the

operating system privileges to call the Windows operating system APIs that authenticate or collect user

and group information. The process needs special authority, which is given by these privileges. The user

in this example might not be the same as the security server ID (the requirement for which is a valid

user in the registry). This user logs into the machine (if using the command line to start the product

process) or the Log On User setting in the services panel if the product processes have started using

the services. If the machine is also part of a domain, this user is a part of the Domain Admin group in

the domain to call the operating system APIs in the domain in addition to having the Act as part of

operating system privilege in the local machine.

When using the UNIX operating systems (AIX and Solaris) and Linux, consider the following points:

v The user that the product processes run under requires the root privilege. This privilege is needed to

call the UNIX operating system APIs to authenticate or to collect user and group information. The

process needs special authority, which is given by the root privilege. This user might not be the same

as the security server ID (the requirement is that it should be a valid user in the registry). This user logs

into the machine and is running the product processes.

v On a UNIX operating system, the user that enables global security must have the root privilege if you

use the local OS user registry. Otherwise, a failed validation error is displayed.

v When using the Linux operating system, you might need to have the password shadow file in your

system.

The following steps are needed to perform this task initially when setting up security for the first time.

1. Click Security > Global security.

2. Under User registries, click Local OS,

3. Enter a valid user name in the Server user ID field.

4. Enter the user password in the Server user password field.

5. Click OK. Validation of the user and password does not happen in this panel. Validation is only done

when you click OK or Apply in the Global Security panel. If you are enabling security for the first time,

complete the other steps and go to the Global Security panel. Make sure that LocalOS is the Active

User Registry. If security was already enabled and you had changed either the user or the password

information in this panel, make sure to go to the Global Security panel and click OK or Apply to

validate your changes. If your changes are not validated, the server might not come up.

The Local OS user registry has been configured.

1. If you are enabling security, complete the remaining steps. As the final step, ensure that you validate

the user and password by clicking OK or Apply in the Global Security panel. Save, stop, and start all

the product servers.

2. For any changes in this panel to be effective, you need to save, stop and start all the product servers

(deployment managers, nodes and Application Servers).

3. If the server comes up without any problems the setup is correct.

Local operating system user registry settings

Use this page to configure local operating system user registry settings.

196 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

To view this administrative console page, click Security > Global Security. Under User registries, click

Local OS.

Server user ID:

Specifies a valid user ID in the local OS registry.

 This ID is the security server ID, which is only used for WebSphere Application Server security and is not

associated with the system process that runs the server. The server calls the Local OS registry to

authenticate and obtain privilege information about users by calling the native APIs in that particular

registry. Access to native APIs is normally restricted to users having special privileges (for example, root in

UNIX systems and Act as part of operating system in Windows systems). To use security in the

application server, the process ID (not the security server ID) on which WebSphere Application Server runs

requires enough privileges to call the system APIs. The special privilege means that the process running

the WebSphere Application Server needs to be part of the Administrators group and have the Act as

part of operating system privilege on Windows systems, and be root, or have root authority on UNIX

systems.

Note:

If you are configuring Local OS security on Windows and you encounter the A required

privilege is not helped by the client error message, you must follow the procedure

documented to give the user those privileges. To set the privilege, click Start > Settings > Control

Panel > Administrative Tools > Local Security Policy > Local Policies > User Rights

Assignments > Act as part of the operating system.

When using a Windows system registry, this ID cannot match the name of the Windows machine.

Windows systems treat the machine name bob as having an account similar to user bob.

 Data type: String

Units: Alphanumeric characters

Server user password:

Specifies a valid user password that corresponds to a valid user ID in the local OS registry.

 Data type String

Lightweight Directory Access Protocol

Lightweight Directory Access Protocol (LDAP) is a user registry in which authentication is performed using

an LDAP binding.

WebSphere Application Server security provides and supports implementation of most major LDAP

directory servers, which can act as the repository for user and group information. These LDAP servers are

called by the product processes (servers) for authenticating a user and other security-related tasks (for

example, getting user or group information). This support is provided by using different user and group

filters to obtain the user and group information. These filters have default values that you can modify to fit

your needs. The custom LDAP feature enables you to use any other LDAP server (which is not in the

product supported list of LDAP servers) for its user registry by using the appropriate filters.

To use LDAP as the user registry, you need to know a valid user name (ID), the user password, the server

host and port, the base distinguished name (DN) and if necessary the bind DN and the bind password.

You can choose any valid user in the registry that is searchable. In some LDAP servers, the administrative

users are not searchable and cannot be used (for example, cn=root in SecureWay). This user is referred

to as WebSphere Application Server security server ID, server ID, or server user ID in the documentation.

Being a server ID means a user has special privileges when calling some protected internal methods.

Chapter 12. Administering security 197

Normally, this ID and password are used to log into the administrative console after security is turned on.

You can use other users to log in if those users are part of the administrative roles.

When security is enabled in the product, this server ID and password are authenticated with the registry

during the product startup. If authentication fails, the server does not start. Choosing an ID and password

that do not expire or change often is important. If the product server user ID or password need to change

in the registry, make sure that the changes are performed when all the product servers are up and

running.

When the changes are done in the registry, use the steps described in Configuring LDAP user registries.

Change the ID, password, and other configuration information, save, stop, and restart all the servers so

that the new ID or password is used by the product. If any problems occur starting the product when

security is enabled, disable security before the server can start up (to avoid these problems, make sure

that any changes in this panel are validated in the Global Security panel). When the server is up, you can

change the ID, password and other configuration information and then enable security.

Configuring Lightweight Directory Access Protocol user registries

Review the article on Lightweight Directory Access Protocol (LDAP) before beginning this task.

 1. In the administrative console, click Security > Global security.

 2. Under User registries, click LDAP.

 3. Enter a valid user name in the Server user ID field. You can either enter the complete distinguished

name (DN) of the user or the short name of the user as defined by the User Filter in the Advanced

LDAP settings panel. For example, enter the user ID for Netscape.

 4. Enter the password of the user in the Server user password field.

 5. Select the type of LDAP server that is used from the Type list. The type of LDAP server determines

the default filters that are used by the WebSphere Application Server. These default filters change the

Type field to Custom, which indicates that custom filters are used. This action occurs after you click

OK or Apply in the Advanced LDAP settings panel. Choose the Custom type from the list and

modify the user and group filters to use other LDAP servers, if required. If either the IBM Directory

Server or the iPlanet Directory Server is selected, also select the Ignore Case field.

 6. Enter the fully qualified host name of the LDAP server in the Host field.

 7. Enter the LDAP server port number in the Port field. The host name and the port number represent

the realm for this LDAP server in the WebSphere Application Server cell. So, if servers in different

cells are communicating with each other using Lightweight Third Party Authentication (LTPA) tokens,

these realms must match exactly in all the cells.

 8. Enter the Base distinguished name (DN) in the Base distinguished name field. The Base DN indicates

the starting point for searches in this LDAP directory server. For example, for a user with a DN of

cn=John Doe, ou=Rochester, o=IBM, c=US, specify the Base DN as any of the following options

(assuming a suffix of c=us): ou=Rochester, o=IBM, c=us or o=IBM c=us or c=us. This field can be

case sensitive. Match the case in your directory server. This field is required for all LDAP directories

except the Domino Directory. The Base DN field is optional for the Domino server.

 9. Enter the Bind DN name in the Bind distinguished name field, if necessary. The Bind DN is required if

anonymous binds are not possible on the LDAP server to obtain user and group information. If the

LDAP server is set up to use anonymous binds, leave this field blank.

10. Enter the password corresponding to the Bind DN in the Bind password field, if necessary.

11. Modify the Search time out value if required. This timeout value is the maximum amount of time that

the LDAP server waits to send a response to the product client before aborting the request. The

default is 120 seconds.

12. Deselect the Reuse connection option only if you use routers to send requests to multiple LDAP

servers, and if the routers do not support affinity. Leave this field enabled for all other situations.

198 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

13. Select the Ignore case for authorization option, if required. When this flag is enabled, the

authorization check is case insensitive. Normally, an authorization check involves checking the

complete DN of a user, which is unique in the LDAP server and is case sensitive. However, when

using either the IBM Directory Server or the iPlanet Directory Server LDAP servers, this flag needs

enabling because the group information obtained from the LDAP servers is not consistent in case.

This inconsistency only effects the authorization check.

14. Enable Secure Sockets Layer (SSL) if the communication to the LDAP server is through SSL. For

more information on setting up LDAP for SSL, refer to Configuring SSL for LDAP clients.

15. Select the SSL enabled option if you want to use secure sockets layer communications with the

LDAP server. If you select the SSL enabled option, select the appropriate SSL alias configuration

from the list in the SSL configuration field.

16. Click OK. The validation of the user, password, and the setup do not take place in this panel.

Validation is only done when you click OK or Apply in the Global Security panel. If you are enabling

security for the first time, complete the remaining steps and go to the Global Security panel. Select

LDAP as the active user registry. If security is already enabled, but information on this panel

changes, go to the Global Security panel and click OK or Apply to validate your changes. If your

changes are not validated, the server might not come up.

Sets the LDAP registry configuration. This step is required to set up the LDAP registry. This step is

required as part of enabling security in the WebSphere Application Server.

1. If you are enabling security, complete the remaining steps. As the final step, validate this setup by

clicking OK or Apply in the Global Security panel.

2. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect.

3. If the server comes up without any problems the setup is correct.

Lightweight Directory Access Protocol settings

Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups

reside in an external LDAP directory.

To view this administrative console page, click Security > Global security. Under User registries, click

LDAP.

When security is enabled and any of these properties change, go to the Global security panel and click

Apply to validate the changes.

Server user ID:

Specifies the user ID that is used to run the WebSphere Application Server for security purposes.

 Although this ID is not the LDAP administrator user ID, specify a valid entry in the LDAP directory located

under the Base Distinguished Name.

Server user password:

Specifies the password corresponding to the security server ID.

Type:

Specifies the type of LDAP server to which you connect.

 IBM SecureWay Directory Server is not supported.

For a list of supported LDAP servers, see ″Supported directory services.″ in the documentation.

Host:

Chapter 12. Administering security 199

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

 If multiple WebSphere Application Servers are installed and configured to run in the same single signon

domain, or if the WebSphere Application Server interoperates with a previous version of the WebSphere

Application Server, then it is important that the port number match all configurations. For example, if the

LDAP port is explicitly specified as 389 in a Version 4.0.x configuration, and a WebSphere Application

Server at Version 5 is going to interoperate with the Version 4.0.x server, then verify that port 389 is

specified explicitly for the Version 5 server.

 Default: 389

Base distinguished name (DN):

Specifies the base distinguished name of the directory service, indicating the starting point for LDAP

searches of the directory service.

 For example, for a user with a distinguished name (DN) of cn=John Doe, ou=Rochester, o=IBM, c=US, you

can specify the base DN as (assuming a suffix of c=us): ou=Rochester, o=IBM, c=us. For authorization

purposes, this field is case sensitive. This specification implies that if a token is received (for example,

from another cell or Domino) the base DN in the server must match the base DN from the other cell or

Domino server exactly. If case sensitivity is not a consideration for authorization, enable the Ignore case

field. This field is required for all Lightweight Directory Access Protocol (LDAP) directories except for the

Domino Directory, where this field is optional.

If you need to interoperate between WebSphere Application Server Version 5 and a Version 5.0.1 or later

server, you must enter a normalized base distinguished name. A normalized base distinguished name

does not contain spaces before or after commas and equal symbols. An example of a non-normalized

base distinguished name is o = ibm, c = us or o=ibm, c=us. An example of a normalized base

distinguished name is o=ibm,c=us. In WebSphere Application Server, Version 5.0.1 or later, the

normalization occurs automatically during run time

Bind distinguished name (DN):

Specifies the distinguished name for the application server to use when binding to the directory service.

 If no name is specified, the application server binds anonymously. See the Base Distinguished Name field

description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Search timeout:

Specifies the timeout value in seconds for an Lightweight Directory Access Protocol (LDAP) server to

respond before aborting a request.

 Default: 120

Reuse connection:

200 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Specifies whether the server reuses the Lightweight Directory Access Protocol (LDAP) connection. Clear

this option only in rare situations where a router is used to spray requests to multiple LDAP servers and

when the router does not support affinity.

 Default: Enabled

Range: Enabled or Disabled

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when using the default authorization.

 This field is required when IBM Directory Server is selected as the LDAP directory server.

This field is required when Sun ONE Directory Server is selected as the LDAP directory server. For more

information, see ″Using specific directory servers as the LDAP server″ in the documentation.

Otherwise, this field is optional and can be enabled when a case-sensitive authorization check is required.

For example, use this field when the certificates and the certificate contents do not match the case used

for the entry in the LDAP server. You can enable the Ignore case field when using single signon (SSO)

between WebSphere Application Server and Lotus Domino.

 Default: Enabled

Range: Enabled or Disabled

SSL enabled:

Specifies whether secure socket communication is enabled to the Lightweight Directory Access Protocol

(LDAP) server. When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.

SSL configuration:

Specifies the Secure Sockets Layer configuration to use for the Lightweight Directory Access Protocol

(LDAP) connection. This configuration is used only when SSL is enabled for LDAP.

 Default: DefaultSSLSettings

Advanced Lightweight Directory Access Protocol user registry settings

Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry

settings when users and groups reside in an external LDAP directory.

To view this administrative page, complete the following steps:

1. Click Security > Global security.

2. Under User registries, click LDAP.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

Default values for all the user and group related filters are already completed in the appropriate fields. You

can change these values depending on your requirements. These default values are based on the type of

LDAP server selected in the LDAP settings panel. If this type changes (for example from Netscape to

Secureway) the default filters automatically change. When the default filter values change, the LDAP

server type changes to Custom to indicate that custom filters are used. When security is enabled and any

of these properties change, go to the Global security panel and click Apply or OK to validate the

changes.

Chapter 12. Administering security 201

User filter:

Specifies the LDAP user filter that searches the user registry for users.

 This option is typically used for security role to user assignments. It specifies the property by which to look

up users in the directory service. For example, to look up users based on their user IDs, specify

(%(uid=%v)(objectclass=inetOrgPerson)). For more information about this syntax, see the LDAP directory

service documentation.

 Data type: String

Group filter:

Specifies the LDAP group filter that searches the user registry for groups

 This option is typically used for security role to group assignments. It specifies the property by which to

look up groups in the directory service. For more information about this syntax, see the LDAP directory

service documentation.

 Data type: String

User ID map:

Specifies the LDAP filter that maps the short name of a user to an LDAP entry.

 Specifies the piece of information that represents users when users appear. For example, to display

entries of the type object class = inetOrgPerson by their IDs, specify inetOrgPerson:uid. This field takes

multiple objectclass:property pairs delimited by a semicolon (;).

 Data type: String

Group ID Map:

Specifies the LDAP filter that maps the short name of a group to an LDAP entry.

 Specifies the piece of information that represents groups when groups appear. For example, to display

groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches on any object

class in this case. This field takes multiple objectclass:property pairs delimited by a semicolon (;).

 Data type: String

Group member ID map:

Specifies the LDAP filter that identifies user to group relationships.

 For directory types SecureWay, Netscape, and Domino, this field takes multiple objectclass:property pairs,

delimited by a semicolon (;). In an objectclass:property pair, the objectclass value is the same objectclass

that is defined in the Group Filter, and the property is the member attribute. If the objectclass value does

not match the objectclass in Group Filter, authorization might fail if groups are mapped to security roles.

For more information about this syntax, see your LDAP directory service documentation.

For IBM Directory Server, iPlanet Directory Server and Active Directory, this field takes multiple (group

attribute:member attribute) pairs delimited by a semicolon (;). They are used to find the group

memberships of a user by enumerating all the group attributes possessed by a given user. For example,

202 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

attribute pair (memberof:member) is used by Active Directory, and (ibm-allGroup:member) is used by IBM

Directory Server . This field also specifies which property of an objectclass stores the list of members

belonging to the group represented by the objectclass. For supported LDAP directory servers, see

″Supported directory services″.

 Data type: String

Perform a nested group search:

Specifies a recursive nested group search.

 Select this option if the Lightweight Directory Access Protocol (LDAP) server does not support recursive

server-side group member searches (and if recursive group member search is required). It is not

recommended that you select this option to locate recursive group memberships for LDAP servers.

WebSphere security leverages the LDAP server’s recursive search functionality to search a user‘s group

memberships, including recursive group memberships. For example:

v IBM Directory Server is pre-configured by WebSphere Application Server security to recursively

calculate a user‘s group memberships using the ibm-allGroup attribute

v SunONE directory server is pre-configured to calculate nested group memberships using the nsRole

attribute

 Data type: String

Certificate map mode:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or

CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.

 Data type: String

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the

client certificate to entries in the LDAP registry.

 If more than one LDAP entry matches the filter specification at run time, then authentication fails because

it results in an ambiguous match. The syntax or structure of this filter is: LDAP attribute=${Client

certificate attribute} (for example, uid=${SubjectCN}). The left side of the filter specification is an

LDAP attribute that depends on the schema that your LDAP server is configured to use. The right side of

the filter specification is one of the public attributes in your client certificate. The right side must begin with

a dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate

attribute values on the right side of the filter specification. The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

Chapter 12. Administering security 203

v ${Version}

 Data type: String

Configuring Lightweight Directory Access Protocol search filters

WebSphere Application Server uses Lightweight Directory Access Protocol (LDAP) filters to search and

obtain information about users and groups from an LDAP directory server. A default set of filters is

provided for each LDAP server that the product supports. You can modify these filters to fit your LDAP

configuration. After the filters are modified (and you click OK or Apply) the directory type in the LDAP

Registry panel changes to custom, which indicates that custom filters are used. Also, you can develop

filters to support any additional type of LDAP server. The effort to support additional LDAP directories is

optional and other LDAP directory types are not supported.

 1. In the administrative console, click Security > Global security..

 2. Under User registries, click LDAP.

 3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

 4. Modify the User filter, if necessary. The user filter is used for searching the registry for users and is

typically used for the security role to user assignment. Also, the filter is used to authenticate a user

using the attribute that is specified in the filter. The filter specifies the property that is used to look up

users in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the user,

must be a unique key. Two LDAP entries with the same object class cannot have the same short

name. To look up users based on their user IDs (uid) and to use the inetOrgPerson object class,

specify the following syntax:

(&(uid=%v)(objectclass=inetOrgPerson)

For more information about this syntax, see the LDAP directory service documentation.

 5. Modify the Group filter, if necessary. The group filter is used in searching the registry for groups and

is typically used for the security role to group assignment. Also, the filter is used to specify the

property by which to look up groups in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the group,

must be a unique key. Two LDAP entries with the same object class cannot have the same short

name. To look up groups based on their common names (CN) and to use either the groupOfNames

or the groupOfUniqueNames object class, specify the following syntax:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

For more information about this syntax, see the LDAP directory service documentation.

 6. Modify the User ID map, if necessary. This filter maps the short name of a user to an LDAP entry. It

specifies the piece of information that represents users when these users are displayed with their

short names. For example, to display entries of the type object class = inetOrgPerson by their IDs,

specify inetOrgPerson:uid. This field takes multiple objectclass:property pairs delimited by a

semicolon (;). To provide a consistent value for methods like the getCallerPrincipal() method and the

getUserPrincipal() method, the short name that is obtained by using this filter is used. For example,

the user CN=Bob Smith, ou=austin.ibm.com, o=IBM, c=US can log in using any attributes that are

defined (for example, e-mail address, social security number, and so on) but when these methods are

called, the user ID bob is returned no matter how the user logs in.

 7. Modify the Group ID map filter, if necessary. This filter maps the short name of a group to an LDAP

entry. It specifies the piece of information that represents groups when groups display. For example,

to display groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches

on any object class in this case. This field takes multiple objectclass:property pairs delimited by a

semicolon (;).

204 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

8. Modify the Group Member ID Map filter, if necessary. This filter identifies user to group memberships.

For SecureWay, Netscape, and Domino directory types, this field is used to query all the groups that

match the specified object classes to see if the user is contained in the specified attribute. For

example, to get all the users belonging to groups with the groupOfNames object class and the users

that are contained in the member attributes, specify groupOfNames:member. This syntax, which is a

property of an objectclass, stores the list of members that belong to the group that is represented by

the objectclass. This field takes multiple objectclass:property pairs that are delimited by a semicolon

(;). For more information about this syntax, see the LDAP directory service documentation.

For the IBM Directory Server, iPlanet Directory Server, and Active Directory, this field is used to query

all users in a group by using the information that is stored in the user object (instead of querying all

the groups individually to find if the user exists in that group). For example, the memberof:member

filter (for Active Directory) is used to get the memberof attribute of the user object to obtain all the

groups to which the user belongs. The member attribute is used to get all the users in a group that

use the group object. Using the user object to obtain the group information improves performance.

 9. Select the Perform a nested group search option if your LDAP server does not support recursive

server-side searches.

10. Modify the Certificate map mode, if necessary. You can use the X.590 certificates for user

authentication when LDAP is selected as the user registry. This field is used to indicate whether to

map the X.509 certificates into an LDAP directory user by EXACT_DN or CERTIFICATE_FILTER. If

EXACT_DN is selected, the DN in the certificate must exactly match the user entry in the LDAP

server (including case and spaces).

Select the Ignore case for authorization field on the LDAP settings to make the authorization case

insensitive. To access the LDAP setting panel, complete the following steps:

a. Click Security > Global security..

b. Under User registries, click LDAP.

11. If you select CERTIFICATE_FILTER, specify the LDAP filter for mapping attributes in the client

certificate to entries in LDAP. If more than one LDAP entry matches the filter specification at run time,

authentication fails because an ambiguous match results. The syntax or structure of this filter is: LDAP

attribute=${Client certificate attribute} (for example, uid=${SubjectCN}).

The left side of the filter specification is an LDAP attribute that depends on the schema that your

LDAP server is configured to use. The right side of the filter specification is one of the public

attributes in your client certificate. Note that the right side must begin with a dollar sign ($), open

bracket ({), and end with a close bracket (}). Use the following certificate attribute values on the right

side of the filter specification. The case of the strings is important.

v ${UniqueKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectDN}

v ${Version}

To enable this field, select CERTIFICATE_FILTER for the certificate mapping.

12. Click Apply.

When any LDAP user or group filter is modified in the Advanced LDAP Settings panel click Apply.

Clicking OK navigates you to the LDAP User Registry panel, which contains the previous LDAP

directory type, rather than the custom LDAP directory type. Clicking OK or Apply in the LDAP User

Registry panel saves the back-level LDAP directory type and the default filters of that directory. This

action overwrites any changes to the filters that you made. To avoid overwriting changes, you can

take either of the following actions:

Chapter 12. Administering security 205

v Click Apply in the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. To proceed to another panel, use the left navigation. Using the navigation to access the

LDAP User Registry panel changes the directory type to Custom.

v Choose Custom type from the LDAP User Registry panel. Click Apply and then change the filters

by clicking the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. After you complete your changes, click Apply or OK.

The validation of the changes (if any) does not take place in this panel. Validation is done when you

click OK or Apply in the Global Security panel. If you are in the process of enabling security for the

first time, complete the remaining steps and go to the Global Security panel. Select LDAP as the

Active User Registry. If security is already enabled and any information on this panel changes, go to

the Global Security panel and click OK or Apply to validate your changes. If your changes are not

validated, the server might not start.

Setting the LDAP search filters. This step is required to modify existing user and group filters for a

particular LDAP directory type. It is also used to set up certificate filters to map certificates to entries in the

LDAP server.

1. If you are enabling security, complete the remaining steps. As the final step make sure that you

validate this setup by clicking OK or Apply in the Global Security panel.

2. Save, stop, and start all the product servers (cell, nodes and all the application servers) for any

changes in this panel to become effective.

3. After the server starts, go through all the security-related tasks (getting users, getting groups, and so

on) to verify that the changes to the filters function.

Using specific directory servers as the LDAP server

For Using MS Active Directory server as the LDAP server below, note that to use Microsoft Active

Directory as the LDAP server for authentication with WebSphere Application Server you must take specific

steps. By default, Microsoft Active Directory does not permit anonymous LDAP queries. To create LDAP

queries or to browse the directory, an LDAP client must bind to the LDAP server using the distinguished

name (DN) of an account that belongs to the administrator group of the Windows system. A group

membership search in the Active Directory is done by enumerating the memberof attribute possessed by a

given user entry, rather than browsing through the member list in each group. If you change this default

behavior to browse each group, you can change the Group Member ID Map field from memberof:member

to group:member.

Using IBM Tivoli Directory Server as the LDAP server

To use IBM Tivoli Directory Server (formerly IBM Directory Server), choose IBM Tivoli Directory Server

as the directory type.

For supported directory servers, refer to the article, Supported directory services. The difference between

these two types is group membership lookup. It is recommended that you choose the IBM Tivoli Directory

Server for optimum performance during run time. In the IBM Tivoli Directory Server, the group membership

is an operational attribute. With this attribute, a group membership lookup is done by enumerating the

ibm-allGroups attribute for the entry, All group memberships, including the static groups, dynamic groups,

and nested groups, can be returned with the ibm-allGroups attribute. WebSphere Application Server

supports dynamic groups, nested groups, and static groups in IBM Tivoli Directory Server using the

ibm-allGroups attribute. To utilize this attribute in a security authorization application, use a

case-insensitive match so that attribute values returned by the ibm-allGroups attribute are all in uppercase.

Important: It is recommended that you do not install IBM Tivoli Directory Server Version 5.2 on the same

machine that you install WebSphere Application Server, Version 6.x. IBM Tivoli Directory

Server, Version 5.2 includes WebSphere Application Server Express, Version 5.0.2, which the

directory server uses for its administrative console. Install the Web Administration tool Version

5.2 and WebSphere Application Server Express, Version 5.0.2, which are both bundled with

206 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

IBM Tivoli Directory Server, Version 5.2, on a different machine from WebSphere Application

Server, Version 6.x. You cannot use WebSphere Application Server, Version 6.x as the

administrative console for IBM Tivoli Directory Server. If IBM Tivoli Directory Server, Version

5.2 and WebSphere Application Server, Version 6.x are installed on the same machine, you

might encounter port conflicts.

If you must install IBM Tivoli Directory Server Version 5.2 and WebSphere Application Server

Version 6.x on the same machine, consider the following information:

v During the IBM Tivoli Directory Server installation process, you must select both the Web

Administration tool and WebSphere Application Server Express, Version 5.0.2.

v Install WebSphere Application Server, Version 6.x.

v When you install WebSphere Application Server, Version 6.x, change the port number for

the application server.

v You might need to adjust the WebSphere Application Server environment variables on the

version 6.x application server for WAS_HOME and WAS_INSTALL_ROOT. To change the

variables using the administrative console, click Environment > WebSphere Variables.

Using a Lotus Domino Server as the LDAP server

If you choose the Lotus Domino LDAP server Version 6 and the attribute short name is not defined in the

schema, you can take either of the following actions:

v Change the schema to add the short name attribute.

v Change the user ID map filter to replace the short name with any other defined attribute (preferably to

UID). For example, change person:shortname to person:uid.

The userID map filter has been changed to use the uid attribute instead of the shortname attribute as the

current version of Lotus Domino does not create the shortname attribute by default. If you want to use the

shortname attribute, define the attribute in the schema and change the userID map filter to the following:

User ID Map : person:shortname

Using Sun ONE Directory Server as the LDAP server

You can choose Sun ONE Directory Server for your Sun ONE Directory Server system. For supported

directory servers, refer to the article, Supported directory services. In Sun ONE Directory Server, the

default object class is groupOfUniqueName when you create a group. For better performance, WebSphere

Application Server uses the user object to locate the user group membership from the nsRole attribute.

Thus, create the group from the role. If you want to use groupOfUniqueName to search groups, specify your

own filter setting. Roles unify entries. Roles are designed to be more efficient and easier to use for

applications. For example, an application can locate the role of an entry by enumerating all the roles

possessed by a given entry, rather than selecting a group and browsing through the members list. When

using roles, you can create a group could be created using a:

v Managed role

v Filtered role

v Nested role

All of these roles are computable by nsRole attribute.

Using Microsoft Active Directory server as the LDAP server

To set up Microsoft Active Directory as your LDAP server, complete the following steps.

1. Determine the full distinguished name (DN) and password of an account in the administrators group.

Chapter 12. Administering security 207

For example, if the Active Directory administrator creates an account in the Users folder of the Active

Directory Users and Computers Windows control panel and the DNS domain is ibm.com, the resulting

DN has the following structure:

cn=<adminUsername>, cn=users, dc=ibm,

dc=com

2. Determine the short name and password of any account in the Microsoft Active Directory. This

password does not have to be the same account that is used in the previous step.

3. Use the WebSphere Application Server administrative console to set up the information needed to use

Microsoft Active Directory

a. Click Security > Global security.

b. Under Authentication, click Authentication mechanisms > LDAP.

c. Set up LDAP with Active Directory at the directory type. Based on the information determined in the

previous steps, you can specify the following values on the LDAP settings panel:

Server user ID

Specify the short name of the account that was chosen in the second step.

Server user password

Specify the password of the account that was chosen in the second step.

Type Specify Active Directory

Host Specify the domain name service (DNS) name of the machine that is running Microsoft

Active Directory.

Base distinguished name (DN)

Specify the domain components of the DN of the account that was chosen in the first step.

For example: dc=ibm, dc=com Bind

Bind distinguished name (DN)

Specify the full distinguished name of the account that was chosen in the first step. For

example: cn=<adminUsername>, cn=users, dc=ibm, dc=com

Bind password

Specify the password of the account that was chosen in the first step.

d. Click OK to save the changes.

e. Stop and restart the administrative server so that the changes take effect.

4. Optional: Set ObjectCategory as the filter in the Group member ID map field to improve LDAP

performance.

a. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)

user registry settings .

b. Add ;objectCategory:group to the end of the Group member ID map field.

c. Click OK to save the changes

d. Stop and restart the administrative server so that the changes take effect.

Supported directory services

WebSphere Application Server security supports several different LDAP servers. For a list of supported

LDAP servers, refer to the Supported hardware, software and APIs prerequisite Web site in the

“Security: Resources for learning” on page 21 article.

It is expected that other LDAP servers follow the LDAP specification function. Support is limited to these

specific directory servers only. You can use any other directory server by using the custom directory type

in the list and by filling in the filters required for that directory.

208 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

To improve performance for LDAP searches, the default filters for IBM Directory Server, iPlanet Directory

Server, and Active Directory are defined such that when you search for a user, the result contains all the

relevant information about the user (user ID, groups, and so on). As a result, the product does not call the

LDAP server multiple times. This definition is possible only in these directory types, which support

searches where the complete user information is obtained.

If you use the IBM Directory Server, enable the Ignore case flag. This flag is required because when the

group information is obtained from the user object attributes, the case is not the same as when you get

the group information directly. For the authorization to work in this case, perform a case insensitive check

and verify the requirement for the Ignore case flag.

Locating a user’s group memberships in Lightweight Directory Access

Protocol

WebSphere Application Server security can be configured to search group memberships directly or

indirectly. It can also be configured to search only a static group, or it can be configured to search static

groups, recursive (or nested) groups, and dynamic groups for some Lightweight Directory Access Protocol

(LDAP) servers.

Evaluate group memberships from user object directly

Several popular LDAP servers enable user objects to contain information about the groups to

which they belong (such as Microsoft Active Directory Server, or eDirectory). Some user group

memberships can be computable attributes from the user object (such as IBM Directory Server or

Sun ONE directory server). In some LDAP servers, this attribute can be used to include a user’s

dynamic group memberships, nesting group memberships, and static group memberships to locate

all group memberships from a single attribute.

 For example, in IBM Directory Server all group memberships, including the static groups, dynamic

groups, and nested groups, can be returned using the ibm-allGroups attribute. In Sun ONE, all

roles, including managed roles, filtered roles, and nested roles, are calculated using the nsRole

attribute. If an LDAP server has such an attribute in a user object to include dynamic groups,

nested groups, and static groups, WebSphere Application Server security can be configured to use

this attribute to support dynamic groups, nested groups, and static groups.

Evaluate group memberships from a group object indirectly

Some LDAP servers enable only group objects such as the Lotus Domino LDAP server to contain

information about users. The LDAP server does not enable the user object to contain information

about groups. For this type of LDAP server, group membership searches are performed by

locating the user on the member list of groups. The member list evaluation is currently used in the

static group membership search for all of the releases before WebSphere Application Server

Version 5.

Use the direct method for searching group memberships if your LDAP server has such an attribute in user

object to include group information. To use the direct method or the indirect method, enter the appropriate

value in the Group Member ID Map field on the Advanced LDAP Settings panel using:

v objectclass:attribute pairs for the indirect method

v attribute:attribute pairs for the direct method

Sample entries of attribute:attribute pairs in Group Member ID Map fields include:

v ibm-allGroups:member for IBM Directory server

v nsRole:nsRole for Sun ONE directory if groups are created with Role inside Sun ONE

v memberOf:member in Microsoft Active Directory Server

Sample entries of objectClass:attribute pairs in the Group Member ID Map field include:

v dominoGroup:member for Domino

v groupOfNames:member for eDirectory

Chapter 12. Administering security 209

While using the direct method, dynamic groups, recursive groups, and static groups can be returned as

multiple values of a single attribute. For example, in IBM Directory Server all group memberships,

including the static groups, dynamic groups, and nested groups, can be returned using the ibm-allGroups

attribute. In Sun ONE, all roles, including managed roles, filtered roles, and nested roles, are calculated

using the nsRole attribute. If an LDAP server can use the nsRole attribute, dynamic groups, nested

groups, and static groups are all supported by WebSphere Application Server.

Some LDAP servers do not have recursive computing functionality. For example, although Microsoft Active

Directory server has direct group search capability using the memberOf attribute, memberOf lists the

groups beneath which the group is directly nested only and does not contain the recursive list of nested

predecessors. Another example is that the Lotus Domino LDAP server, which only supports the indirect

method to locate the group memberships for a user (you cannot obtain recursive group memberships from

a Domino server directly). For LDAP servers without recursive searching capability, WebSphere Application

Server security provides a recursive function that is enabled by clicking Perform a Nested Group Search

in the Advanced LDAP user registry settings. Select this option only if your LDAP server does not provide

recursive searches and you want a recursive search.

Dynamic groups and nested group support

Dynamic groups contain a group name and membership criteria:

v The group membership information is as current as the information on the user object.

v There is no need to manually maintain members on the group object.

v Dynamic groups are designed such so an application does not need to pull a large amount of

information from the directory to find out if someone is a member of a group.

Nested groups enable the creation of hierarchical relationships that are used to define inherited group

membership. A nested group is defined as a child group entry whose distinguished name (DN) is

referenced by a parent group entry attribute.

Dynamic and nested groups simplify WebSphere Application Server security management and increase its

effectiveness and flexibility. You only need to assign a larger parent group if all nested groups share the

same privilege. Assigning a role to a single parent group simplifies the runtime authorization table.

Dynamic and nested group support for the SunONE or iPlanet

Directory Server

The SunONE or iPlanet Directory Server uses two grouping mechanisms:

Groups

Groups are entries that name other entries as a list of members or as a filter for members.

Roles Roles are also entries that name other entries as a list of members or as a filter for members.

Additional functionality is provided by generating the nsrole attribute on each role member.

Three types of roles are available:

Filtered roles

Entries are members if they match a specified Lightweight Directory Access Protocol (LDAP) filter.

In this way, the role depends upon the attributes that are contained in each entry. This role is

equivalent to a dynamic group.

Nested roles

Creates roles that contain other roles. This role is equivalent to a nested group.

Managed roles

Explicitly assigns a role to member entries. This role is equivalent to a static group.

210 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Refer to “Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server” for

more information.

Configuring dynamic and nested group support for the SunONE or

iPlanet Directory Server

To use dynamic and nested groups with WebSphere Application Server security, you must be running

WebSphere Application Server Version 5.1.1 or later. Refer to “Dynamic and nested group support for the

SunONE or iPlanet Directory Server” on page 210 for more information on this topic.

1. On the LDAP registry panel, select SunONE for the LDAP server.

2. Select the Ignore case option

3. On the LDAP settings panel, change the Group Filter setting to &(cn=%v)(objectclass=ldapsubentry))

4. On the LDAP settings panel, change the Group Member ID Map setting to nsRole:nsRole.

Dynamic groups and nested group support for the IBM Directory

Server

WebSphere Application Server Version 5.x or later supports all Lightweight Directory Access Protocol

(LDAP) dynamic and nested groups when using IBM Directory Server 4.x and later. This function is

enabled by default by taking advantage of a new feature in IBM Directory Server. IBM Directory Server

V4.1 uses the ibm-allGroups forward reference group attribute that automatically calculates all the group

memberships (including dynamic and recursive memberships) for a user. Security directly locates a user

group membership from a user object rather than indirectly search all the groups to match group

members.

Refer to “Configuring dynamic and nested group support for the IBM Directory Server” for more

information.

Configuring dynamic and nested group support for the IBM Directory

Server

When creating groups, ensure that nested and dynamic group memberships work correctly.

1. In the WebSphere Application Server security LDAP user registry configuration panel, select

IBM_Directory_Server for the LDAP server.

2. On the LDAP settings panel change the Group Filter setting. Change the setting to the following value:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)

(objectclass=groupOfURLs))).

3. On the LDAP settings panel change the Group Member ID Map setting. Change the setting to the

following value:

 ibm-allGroups:member;ibm-allGroups:uniqueMember

4. On the Add an LDAP entry panel the Auxiliary object class value is ibm-nestedGroup when creating a

nested group. On the Add an LDAP entry panel, the Auxiliary object class value is ibm-dynamicGroup

when creating a dynamic group.

Custom user registries

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java

interface, as provided by the product. A custom-implemented user registry can support virtually any type of

an account repository from a relational database, flat file, and so on. The custom user registry provides

Chapter 12. Administering security 211

considerable flexibility in adapting product security to various environments where some form of a user

registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System (LocalOS),

already exists in the operational environment.

WebSphere Application Server security provides an implementation that uses various local operating

system-based registries (Windows, AIX, Solaris, Linux) and various Lightweight Directory Access Protocol

(LDAP)-based registries. However, situations can exist where your user and group data resides in other

repositories or custom registries (a database, for example) and moving this information to either a LocalOS

or an LDAP registry implementation might not be feasible. For these situations WebSphere Application

Server security provides a service provider interface (SPI) that you can implement to interact with your

current registry. The SPI is the UserRegistry interface. This interface has a set of methods to implement

for the product security to interact with your registries for all security-related tasks. The LocalOS and LDAP

registry implementations that are provided also implement this interface. Custom user registries are

sometimes called the pluggable user registries or custom registries for short. Your custom user registry

implementation is expected to be thread-safe.

The UserRegistry interface is a collection of methods that are required to authenticate individual users

using either password or certificates and to collect information about the user (privilege attributes) for

authorization purposes. This interface also includes methods that obtain user and group information so

that they can be given access to resources. When implementing the methods in the interface, you must

decide how to map the information that is manipulated by the UserRegistry interface to the information in

your registry.

Make sure that your implementation of the custom registry does not depend on any WebSphere

Application Server components such as data sources, enterprise beans, and so on. Do not have this

dependency because security is initialized and enabled prior to most of the other WebSphere Application

Server components during startup. If your previous implementation used these components, make a

change that eliminates the dependency.

The methods in the UserRegistry interface operate on the following information for users:

User Security Name

The user name, which is similar to the user name in the Windows, Linux and UNIX systems Local

OS registries. This name is used to log in when prompted by a secured application. By default, the

Enterprise JavaBeans (EJB) getCallerPrincipal method and the getRemoteUser and

getUserPrincipal servlet methods return this name. The user security name is also referred to as

userSecurityName, userName, or user name.

Unique ID

This ID represents a unique identifier for the user. The UserRegistry interface requires this

identifier to be unique. The unique ID similar to the system ID (SID) in Windows systems, the

Unique ID (UID) in Linux and UNIX systems, and the distinguished name (DN) in Lightweight

Directory Authentication Protocol (LDAP). This ID is also referred to as uniqueUserId. The unique

ID is used to make the authorization decisions for protected resources.

Display name

This name is an optional string that describes a user, and it is similar to the FullName attribute in

Windows operating systems. The implementation can use display names for informational

purposes only; these names are not required to exist or to be unique. The user interface can use

the display name to present more information about the user.

Group Security name

This name, which represents the security group, is also referred to as groupSecurityName,

groupName and group name.

Unique ID

The unique ID is the identifier for a group. This name is also referred to as uniqueGroupId.

Display name

The display name is an optional string that describes a group.

212 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The article on UserRegistry interface describes each of the methods in the UserRegistry interface that

need implementing. An explanation of each of the methods and their usage in the sample and any

changes from the Version 4 interface are provided. The Related references section provides links to all

other custom user registries documentation, including a file-based registry sample. The Sample provided is

very simple and is intended to familiarize you with this feature. Do not use this sample in an actual

production environment.

Configuring custom user registries

Before you begin this task, implement and build the UserRegistry interface. For more information on

developing custom user registries refer to the article, “Developing custom user registries” on page 104.

The following steps are required to configure custom user registries through the administrative console.

1. Click Security > Global security

2. Under User registries, click Custom.

3. Enter a valid user name in the Server user ID field.

4. Enter the password of the user in the Server user password field.

5. Enter the full name of the location of the implementation class file in the Custom registry class name

field as a dot-separated file name. For the sample, this file name is

com.ibm.websphere.security.FileRegistrySample. The file exists in the WebSphere Application Server

class path (preferably in the install_root/lib/ext directory). This file exists in all the product

processes. So, if you are operating in a Network Deployment environment, this file exists in the cell

class path and in all of the node class paths.

6. Select the Ignore case for authorization option for the authorization to perform a case insensitive

check. Enabling this option is necessary only when your registry is case insensitive and does not

provide a consistent case when queried for users and groups.

7. Click Apply if you have any other additional properties to enter for the registry initialization. Otherwise

click OK and complete the steps required to turn on security.

8. If you need to enter additional properties to initialize your implementation, click Custom properties.

Click New. Enter the property name and value. Click OK. Repeat this step to add other additional

properties. For the sample, enter the following two properties. It is assumed that the users.props and

the groups.props file are in the customer_sample directory under the product installation directory. You

can place these properties in any directory that you chose and reference their location through Custom

properties. However, make sure that the directory has the appropriate access permissions.

 Property name Property value

usersFile $USER_INSTALL_ROOT/customer_sample/users.props

groupsFile $USER_INSTALL_ROOT/customer_sample/groups.props

Samples of these two properties are available in the “users.props file” on page 239 and the

“groups.props file” on page 239 article.

The Description, Required, and Validation Expression fields are not used and you can leave them

blank.

Note: In a Network Deployment environment where multiple WebSphere Application Server processes

exist (cell and multiple nodes in different machines), these properties are available for each

process. Use the relative name USER_INSTALL_ROOT to locate any files, as this name

expands to the product installation directory. If this name is not used, ensure that the files exist

in the same location in all the nodes. To change the value for the USER_INSTALL_ROOT

variable

This step is required to set up the custom user registry and to enable security in WebSphere Application

Server.

1. Complete the remaining steps, if you are enabling security.

Chapter 12. Administering security 213

2. After security is turned on, save, stop, and start all the product servers (cell, nodes and all the

application servers) for any changes in this panel to take effect.

3. If the server comes up without any problems, the setup is correct.

4. Validate the user and password by clicking OK or Apply on the Global security panel. Save,

synchronize (in the cell environment), stop and restart all the product servers.

UserRegistry.java files

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2004

// All Rights Reserved * Licensed Materials - Property of IBM

//

// DESCRIPTION:

//

// This file is the UserRegistry interface that custom registries in WebSphere

// Application Server implement to enable WebSphere security to use the custom

// registry.

//

package com.ibm.websphere.security;

import java.util.*;

import java.rmi.*;

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.cred.WSCredential;/**

 * Implementing this interface enables WebSphere Application Server Security

 * to use custom registries. This interface extends java.rmi.Remote because the

 * registry can be in a remote process.

 *

 * Implementation of this interface must provide implementations for:

*

* initialize(java.util.Properties)

* checkPassword(String,String)

* mapCertificate(X509Certificate[])

* getRealm

* getUsers(String,int)

* getUserDisplayName(String)

* getUniqueUserId(String)

* getUserSecurityName(String)

* isValidUser(String)

* getGroups(String,int)

* getGroupDisplayName(String)

* getUniqueGroupId(String)

* getUniqueGroupIds(String)

* getGroupSecurityName(String)

* isValidGroup(String)

* getGroupsForUser(String)

* getUsersForGroup(String,int)

* createCredential(String)

**/

public interface UserRegistry extends java.rmi.Remote

{

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

 *

 * @param props the registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry specific problem

 * @exception RemoteException

 * as this extends java.rmi.Remote

214 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

**/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException,

 RemoteException; /**

 * Checks the password of the user. This method is called to authenticate a

 * user when the user’s name and password are given.

 *

 * @param userSecurityName the name of user

 * @param password the password of the user

 * @return a valid userSecurityName. Normally this is

 * the name of same user whose password was checked but if the

 * implementation wants to return any other valid

 * userSecurityName in the registry it can do so

 * @exception CheckPasswordFailedException if userSecurityName/

 * password combination does not exist in the registry

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String checkPassword(String userSecurityName, String password)

 throws PasswordCheckFailedException,

 CustomRegistryException,

 RemoteException; /**

 * Maps a certificate (of X509 format) to a valid user in the registry.

 * This is used to map the name in the certificate supplied by a browser

 * to a valid userSecurityName in the registry

 *

 * @param cert the X509 certificate chain

 * @return the mapped name of the user userSecurityName

 * @exception CertificateMapNotSupportedException if the particular

 * certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of the

 * certificate fails.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string indicating

 * the realm or domain for which this registry

 * applies. For example, for OS400 or AIX this would be the

 * host name of the system whose user registry this object

 * represents.

 * If null is returned by this method realm defaults to the

 * value of "customRealm". It is recommended that you use

 * your own value for realm.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getRealm()

 throws CustomRegistryException,

 RemoteException; /**

 * Gets a list of users that match a pattern in the registry.

 * The maximum number of users returned is defined by the limit

 * argument.

 * This method is called by administrative console and by scripting (command

Chapter 12. Administering security 215

* line) to make available the users in the registry for adding them (users)

 * to roles.

 *

 * @parameter pattern the pattern to match. (For example., a* will match all

 * userSecurityNames starting with a)

 * @parameter limit the maximum number of users that should be returned.

 * This is very useful in situations where there are thousands of

 * users in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the users and hence

 * must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException; /**

 * Returns the display name for the user specified by userSecurityName.

 *

 * This method is called only when the user information displays

 * (information purposes only, for example, in the administrative console) and not used

 * in the actual authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server Version 4.0 custom registry, if you had a display

 * name for the user and if it was different from the security name, the display name

 * was returned for the EJB methods getCallerPrincipal() and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5.0 for the same methods the security

 * name is returned by default. This is the recommended way as the display name

 * is not unique and might create security holes.

 * However, for backward compatibility if one needs the display name to

 * be returned set the property WAS_UseDisplayName to true.

 *

 * See the documentation for more information.

 *

 * @parameter userSecurityName the name of the user.

 * @return the display name for the user. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a user. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUserDisplayName(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the unique ID for a userSecurityName. This method is called when

 * creating a credential for a user.

 *

 * @parameter userSecurityName the name of the user.

 * @return the unique ID of the user. The unique ID for an user is

 * the stringified form of some unique, registry-specific, data

 * that serves to represent the user. For example, for the UNIX

 * user registry, the unique ID for a user can be the UID.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

216 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

* @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueUserId(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the name for a user given its unique ID.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return the userSecurityName of the user.

 * @exception EntryNotFoundException if the uniqueUserID does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUserSecurityName(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Determines if the userSecurityName exists in the registry

 *

 * @parameter userSecurityName the name of the user

 * @return true if the user is valid. false otherwise

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of groups that match a pattern in the registy.

 * The maximum number of groups returned is defined by the limit

 * argument.

 * This method is called by the administrative console and scripting

 * (command line) to make available the groups in the registry for adding

 * them (groups) to roles.

 *

 * @parameter pattern the pattern to match. (For e.g., a* will match all

 * groupSecurityNames starting with a)

 * @parameter limit the maximum number of groups to return.

 * This is very useful in situations where there are thousands of

 * groups in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the groups and hence

 * must be used with care.

 * @return a Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the display name for the group specified by groupSecurityName.

 *

 * This method may be called only when the group information displayed

 * (for example, the administrative console) and not used in the actual

Chapter 12. Administering security 217

* authentication or authorization purposes. If there are no display names

 * in the registry return null or empty string.

 *

 * @parameter groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a group. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the unique ID for a group.

 * @parameter groupSecurityName the name of the group.

 * @return the unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent the group.

 * For example, for the UNIX user registry, the unique IDd could

 * be the GID.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueGroupId(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the unique IDs for all the groups that contain the unique ID of

 * a user.

 * Called during creation of a user’s credential.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return a list of all the group unique IDs that the unique user ID

 * belongs to. The unique ID for an entry is the stringified

 * form of some unique, registry-specific, data that serves

 * to represent the entry. For example, for the

 * UNIX user registry, the unique ID for a group could be the GID

 * and the unique ID for the user could be the UID.

 * @exception EntryNotFoundException if unique user ID does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the name for a group given its unique ID.

 *

218 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

* @parameter uniqueGroupId the unique ID of the group.

 * @return the name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Determines if the groupSecurityName exists in the registry

 *

 * @parameter groupSecurityName the name of the group

 * @return true if the groups exists, false otherwise

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by administrative console and scripting

 * (command line) to verify the user entered for RunAsRole mapping belongs

 * to that role in the roles to user mapping. Initially, the check is done

 * to see if the role contains the user. If the role does not contain the user

 * explicitly, this method is called to get the groups that this user

 * belongs to so that checks are made on the groups that the role contains.

 *

 * @parameter userSecurityName the name of the user

 * @return a List of all the group securityNames that the user

 * belongs to.

 * @exception EntryNotFoundException if user does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getGroupsForUser(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the limit

 * argument.

 *

 * This method is used by the WebSphere Business Integration

 * Server Foundation process choreographer when staff assignments

 * are modeled using groups.

 *

 * In rare situations if you are working with a registry where getting all of

 * the users from any of your groups is not practical (for example if

 * a large number of users exist) you can throw the NotImplementedException

 * for that particular groups. Make sure that if the WebSphere Business

Chapter 12. Administering security 219

* Integration Server Foundation Process Choreographer is installed (or

 * if installed later) that are not modeled using these particular groups.

 * If no concern exists about the staff assignments returning the users from

 * groups in the registry it is recommended that this method be implemented

 * without throwing the NotImplemented exception.

 *

 * @parameter groupSecurityName that represents the name of the group

 * @parameter limit the maximum number of users to return.

 * This option is very useful in situations where lots of

 * users are in the registry and getting all of them at

 * once is not practical. A value of 0 means get all of

 * the users and must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in the future.

 * @exception NotImplementedException throw this exception in rare situations

 * if it is not practical to get this information for any of the

 * groups from the registry.

 * @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if any registry-specific

 * problem occurs

 * @exception RemoteException as this extends java.rmi.Remote interface

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * This method is implemented internally by the WebSphere Application Server

 * code in this release. This method is not called for the custom registry

 * implementations for this release. Return null in the implementation.

 *

 * Note that because this method is not called you can also return the

 * NotImplementedException as the previous documentation says.

 *

 **/

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

}

FileRegistrySample.java file

The user and group information required by this sample is contained in the users.props and groups.props

files.

The contents of the FileRegistrySample.java file:

//

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2003

// All Rights Reserved * Licensed Materials - Property of IBM

////--

// This program may be used, executed, copied, modified and distributed

// without royalty for the purpose of developing, using, marketing, or

// distributing.

//--

//

220 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// This sample is for the custom user registry feature in WebSphere

// Application Server.

import java.util.*;

import java.io.*;

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.*;

/**

 * The main purpose of this sample is to demonstrate the use of the

 * custom user registry feature available in WebSphere Application Server. This

 * sample is a file-based registry sample where the users and the groups

 * information is listed in files (users.props and groups.props). As such

 * simplicity and not the performance was a major factor behind this. This

 * sample should be used only to get familiarized with this feature. An

 * actual implementation of a realistic registry should consider various

 * factors like performance, scalability, thread safety, and so on.

 **/

public class FileRegistrySample implements UserRegistry {

 private static String USERFILENAME = null;

 private static String GROUPFILENAME = null;

 /** Default Constructor **/

 public FileRegistrySample() throws java.rmi.RemoteException {

 }

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

 *

 * @param props - The registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry-specific problem

 **/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException {

 try {

 /* try getting the USERFILENAME and the GROUPFILENAME from

 * properties that are passed in (For example, from the

 * administrative console). Set these values in the administrative

 * console. Go to the special custom settings in the custom

 * user registry section of the Authentication panel.

 * For example:

 * usersFile c:/temp/users.props

 * groupsFile c:/temp/groups.props

 */

 if (props != null) {

 USERFILENAME = props.getProperty("usersFile");

 GROUPFILENAME = props.getProperty("groupsFile");

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 }

 if (USERFILENAME == null || GROUPFILENAME == null) {

 throw new CustomRegistryException("users/groups information missing");

 }

 } /**

 * Checks the password of the user. This method is called to authenticate

Chapter 12. Administering security 221

* a user when the user’s name and password are given.

 *

 * @param userSecurityName the name of user

 * @param password the password of the user

 * @return a valid userSecurityName. Normally this is

 * the name of same user whose password was checked

 * but if the implementation wants to return any other

 * valid userSecurityName in the registry it can do so

 * @exception CheckPasswordFailedException if userSecurityName/

 * password combination does not exist

 * in the registry

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String checkPassword(String userSecurityName, String passwd)

 throws PasswordCheckFailedException,

 CustomRegistryException {

 String s,userName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":",index+1);

 // check if the userSecurityName:passwd combination exists

 if ((s.substring(0,index)).equals(userSecurityName) &&

 s.substring(index+1,index1).equals(passwd)) {

 // Authentication successful, return the userId.

 userName = userSecurityName;

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (userName == null) {

 throw new PasswordCheckFailedException("Password check failed for user: "

 + userSecurityName);

 }

 return userName;

 } /**

 * Maps a X.509 format certificate to a valid user in the registry.

 * This is used to map the name in the certificate supplied by a browser

 * to a valid userSecurityName in the registry

 *

 * @param cert the X509 certificate chain

 * @return The mapped name of the user userSecurityName

 * @exception CertificateMapNotSupportedException if the

 * particular certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of

 * the certificate fails.

 * @exception CustomRegistryException if there is any registry

 * -specific problem

 **/

222 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException {

 String name=null;

 X509Certificate cert1 = cert[0];

 try {

 // map the SubjectDN in the certificate to a userID.

 name = cert1.getSubjectDN().getName();

 } catch(Exception ex) {

 throw new CertificateMapNotSupportedException(ex.getMessage(),ex);

 }

 if(!isValidUser(name)) {

 throw new CertificateMapFailedException("user: " + name

 + " is not valid");

 }

 return name;

 } /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string

 * indicating the realm or domain for which this registry

 * applies. For example, for OS/400 or AIX this would be

 * the host name of the system whose user registry this

 * object represents. If null is returned by this method,

 * realm defaults to the value of "customRealm". It is

 * recommended that you use your own value for realm.

 *

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getRealm()

 throws CustomRegistryException {

 String name = "customRealm";

 return name;

 } /**

 * Gets a list of users that match a pattern in the registry.

 * The maximum number of users returned is defined by the limit

 * argument.

 * This method is called by the administrative console and scripting

 * (command line) to make the users in the registry available for

 * adding them (users) to roles.

 *

 * @param pattern the pattern to match. (For example, a* will

 * match all userSecurityNames starting with a)

 * @param limit the maximum number of users that should be

 * returned. This is very useful in situations where

 * there are thousands of users in the registry and

 * getting all of them at once is not practical. The

 * default is 100. A value of 0 implies get all the

 * users and hence must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users

 * exist.

 * @exception CustomRegistryException if there is any registry-

 * specificproblem

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allUsers = new ArrayList();

Chapter 12. Administering security 223

Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String user = s.substring(0,index);

 if (match(user,pattern)) {

 allUsers.add(user);

 if (limit !=0 && ++count == newLimit) {

 allUsers.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(allUsers);

 return result;

 } /**

 * Returns the display name for the user specified by

 * userSecurityName.

 *

 * This method may be called only when the user information

 * is displayed (information purposes only, for example, in

 * the administrative console) and hence not used in the actual

 * authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server 4 custom registry, if you

 * had a display name for the user and if it was different from the

 * security name, the display name was returned for the EJB

 * methods getCallerPrincipal() and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5, for the same

 * methods, the security name will be returned by default. This

 * is the recommended way as the display name is not unique

 * and might create security holes. However, for backward

 * compatibility if one needs the display name to be returned

 * set the property WAS_UseDisplayName to true.

 *

 *See the InfoCenter documentation for more information.

 *

 * @param userSecurityName the name of the user.

 * @return the display name for the user. The display

 * name is a registry-specific string that

 * represents a descriptive, not necessarily

 * unique, name for a user. If a display name

 * does not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName

 * does not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

224 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

public String getUserDisplayName(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidUser(userSecurityName)) {

 EntryNotFoundException nsee = new EntryNotFoundException("user: "

 + userSecurityName + " is not valid");

 throw nsee;

 }

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 return displayName;

 }

 /**

 * Returns the unique ID for a userSecurityName. This method is called

 * when creating a credential for a user.

 *

 * @param userSecurityName - The name of the user.

 * @return The unique ID of the user. The unique ID for an user

 * is the stringified form of some unique, registry-specific,

 * data that serves to represent the user. For example, for

 * the UNIX user registry, the unique ID for a user can be

 * the UID.

 * @exception EntryNotFoundException if userSecurityName does not

 * exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getUniqueUserId(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueUsrId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

Chapter 12. Administering security 225

if ((s.substring(0,index)).equals(userSecurityName)) {

 int index2 = s.indexOf(":", index1+1);

 uniqueUsrId = s.substring(index1+1,index2);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (uniqueUsrId == null) {

 EntryNotFoundException nsee =

 new EntryNotFoundException("Cannot obtain uniqueId for user: "

 + userSecurityName);

 throw nsee;

 }

 return uniqueUsrId;

 } /**

 * Returns the name for a user given its uniqueId.

 *

 * @param uniqueUserId - The unique ID of the user.

 * @return The userSecurityName of the user.

 * @exception EntryNotFoundException if the unique user ID does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public String getUserSecurityName(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,usrSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 usrSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 if (usrSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException("Cannot obtain the

 user securityName for " + uniqueUserId);

 throw ex;

 }

 return usrSecName;

226 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

} /**

 * Determines if the userSecurityName exists in the registry

 *

 * @param userSecurityName - The name of the user

 * @return True if the user is valid; otherwise false

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends java.rmi.Remote

 * interface

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Gets a list of groups that match a pattern in the registry

 * The maximum number of groups returned is defined by the

 * limit argument. This method is called by administrative console

 * and scripting (command line) to make available the groups in

 * the registry for adding them (groups) to roles.

 *

 * @param pattern the pattern to match. (For example, a* matches

 * all groupSecurityNames starting with a)

 * @param Limits the maximum number of groups to return

 * This is very useful in situations where there

 * are thousands of groups in the registry and getting all

 * of them at once is not practical. The default is 100.

 * A value of 0 implies get all the groups and hence must

 * be used with care.

 * @return A Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allGroups = new ArrayList(); Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

Chapter 12. Administering security 227

try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String group = s.substring(0,index);

 if (match(group,pattern)) {

 allGroups.add(group);

 if (limit !=0 && ++count == newLimit) {

 allGroups.remove(group);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(allGroups);

 return result;

 }

 /**

 * Returns the display name for the group specified by groupSecurityName.

 * For this version of WebSphere Application Server, the only usage of

 * this method is by the clients (administrative console and scripting)

 * to present a descriptive name of the user if it exists.

 *

 * @param groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents a

 * descriptive, not necessarily unique, name for a group.

 * If a display name does not exist return null or empty

 * string.

 * @exception EntryNotFoundException if groupSecurityName does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidGroup(groupSecurityName)) {

 EntryNotFoundException nsee = new EntryNotFoundException("group: "

 + groupSecurityName + " is not valid");

 throw nsee;

 }

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

228 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

if ((s.substring(0,index)).equals(groupSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return displayName;

 }

 /**

 * Returns the Unique ID for a group.

 * @param groupSecurityName the name of the group.

 * @return The unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent

 * the group. For example, for the UNIX user registry,

 * the unique ID might be the GID.

 * @exception EntryNotFoundException if groupSecurityName does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueGroupId(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 uniqueGrpId = s.substring(index+1,index1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (uniqueGrpId == null) {

 EntryNotFoundException nsee =

 new EntryNotFoundException("Cannot obtain the uniqueId for group: "

 + groupSecurityName);

 throw nsee;

 }

 return uniqueGrpId;

 }

Chapter 12. Administering security 229

/**

 * Returns the Unique IDs for all the groups that contain the UniqueId

 * of a user. Called during creation of a user’s credential.

 *

 * @param uniqueUserId the unique ID of the user.

 * @return A list of all the group unique IDs that the unique user

 * ID belongs to. The unique ID for an entry is the

 * stringified form of some unique, registry-specific, data

 * that serves to represent the entry. For example, for the

 * UNIX user registry, the unique ID for a group might be

 * the GID and the Unique ID for the user might be the UID.

 * @exception EntryNotFoundException if uniqueUserId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 List uniqueGrpIds=new ArrayList();

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 int lastIndex = s.lastIndexOf(":");

 String subs = s.substring(index2+1,lastIndex);

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens())

 uniqueGrpIds.add(st1.nextToken());

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return uniqueGrpIds;

 }

 /**

 * Returns the name for a group given its uniqueId.

 *

 * @param uniqueGroupId the unique ID of the group.

 * @return The name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,grpSecName = null;

230 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(index+1,index1)).equals(uniqueGroupId)) {

 grpSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (grpSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException("Cannot obtain the group

 security name for: " + uniqueGroupId);

 throw ex;

 }

 return grpSecName;

 }

 /**

 * Determines if the groupSecurityName exists in the registry

 *

 * @param groupSecurityName the name of the group

 * @return True if the groups exists; otherwise false

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return isValid;

Chapter 12. Administering security 231

}

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by the administrative console and scripting

 * (command line) to verify the user entered for RunAsRole mapping

 * belongs to that role in the roles to user mapping. Initially, the

 * check is done to see if the role contains the user. If the role does

 * not contain the user explicitly, this method is called to get the groups

 * that this user belongs to so that check can be made on the groups that

 * the role contains.

 *

 * @param userSecurityName the name of the user

 * @return A list of all the group securityNames that the user

 * belongs to.

 * @exception EntryNotFoundException if user does not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends the java.rmi.Remote

 * interface

 **/

 public List getGroupsForUser(String userName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s;

 List grpsForUser = new ArrayList();

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 if((st1.nextToken()).equals(userName)) {

 int index = s.indexOf(":");

 grpsForUser.add(s.substring(0,index));

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidUser(userName)) {

 throw new EntryNotFoundException("user: " + userName

 + " is not valid");

 }

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return grpsForUser;

 }

 /**

 * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the

232 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

* limit argument.

 *

 * This method is being used by the WebSphere Application

 * Server Enterprise Process Choreographer (Enterprise) when

 * staff assignments are modeled using groups.

 *

 * In rare situations, if you are working with a registry where

 * getting all the users from any of your groups is not practical

 * (for example if there are a large number of users) you can throw

 * the NotImplementedException for that particular group. Make sure

 * that if the process choreographer is installed (or if installed later)

 * the staff assignments are not modeled using these particular groups.

 * If there is no concern about returning the users from groups

 * in the registry it is recommended that this method be implemented

 * without throwing the NotImplemented exception.

 * @param groupSecurityName the name of the group

 * @param Limits the maximum number of users that should be

 * returned. This is very useful in situations where there

 * are lot of users in the registry and getting all of

 * them at once is not practical. A value of 0 implies

 * get all the users and hence must be used with care.

 * @return A result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in future.

 * @exception NotImplementedException throw this exception in rare

 * situations if it is not practical to get this information

 * for any of the group or groups from the registry.

 * @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

 String s, user;

 BufferedReader in = null;

 List usrsForGroup = new ArrayList();

 int count = 0;

 int newLimit = limit+1;

 Result result = new Result();

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName))

 {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 user = st1.nextToken();

 usrsForGroup.add(user);

 if (limit !=0 && ++count == newLimit) {

 usrsForGroup.remove(user);

 result.setHasMore();

Chapter 12. Administering security 233

break;

 }

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidGroup(groupSecurityName)) {

 throw new EntryNotFoundException("group: "

 + groupSecurityName

 + " is not valid");

 }

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(usrsForGroup);

 return result;

 }

 /**

 * This method is implemented internally by the WebSphere Application

 * Server code in this release. This method is not called for the custom

 * registry implementations for this release. Return null in the

 * implementation.

 *

 **/

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

 // This method is not called.

 return null;

 }

 // private methods

 private BufferedReader fileOpen(String fileName)

 throws FileNotFoundException {

 try {

 return new BufferedReader(new FileReader(fileName));

 } catch(FileNotFoundException e) {

 throw e;

 }

 }

 private void fileClose(BufferedReader in) {

 try {

 if (in != null) in.close();

 } catch(Exception e) {

 System.out.println("Error closing file" + e);

 }

 }

 private boolean match(String name, String pattern) {

 RegExpSample regexp = new RegExpSample(pattern);

 boolean matches = false;

 if(regexp.match(name))

 matches = true;

 return matches;

 }

234 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

}

//--

// The program provides the Regular Expression implementation

// used in the sample for the custom user registry (FileRegistrySample).

// The pattern matching in the sample uses this program to search for the

// pattern (for users and groups).

//--

class RegExpSample

{

 private boolean match(String s, int i, int j, int k)

 {

 for(; k < expr.length; k++)

label0:

 {

 Object obj = expr[k];

 if(obj == STAR)

 {

 if(++k >= expr.length)

 return true;

 if(expr[k] instanceof String)

 {

 String s1 = (String)expr[k++];

 int l = s1.length();

 for(; (i = s.indexOf(s1, i)) >= 0; i++)

 if(match(s, i + l, j, k))

 return true;

 return false;

 }

 for(; i < j; i++)

 if(match(s, i, j, k))

 return true;

 return false;

 }

 if(obj == ANY)

 {

 if(++i > j)

 return false;

 break label0;

 }

 if(obj instanceof char[][])

 {

 if(i >= j)

 return false;

 char c = s.charAt(i++);

 char ac[][] = (char[][])obj;

 if(ac[0] == NOT)

 {

 for(int j1 = 1; j1 < ac.length; j1++)

 if(ac[j1][0] <= c && c <= ac[j1][1])

 return false;

 break label0;

 }

 for(int k1 = 0; k1 < ac.length; k1++)

 if(ac[k1][0] <= c && c <= ac[k1][1])

 break label0;

Chapter 12. Administering security 235

return false;

 }

 if(obj instanceof String)

 {

 String s2 = (String)obj;

 int i1 = s2.length();

 if(!s.regionMatches(i, s2, 0, i1))

 return false;

 i += i1;

 }

 }

 return i == j;

 }

 public boolean match(String s)

 {

 return match(s, 0, s.length(), 0);

 }

 public boolean match(String s, int i, int j)

 {

 return match(s, i, j, 0);

 }

 public RegExpSample(String s)

 {

 Vector vector = new Vector();

 int i = s.length();

 StringBuffer stringbuffer = null;

 Object obj = null;

 for(int j = 0; j < i; j++)

 {

 char c = s.charAt(j);

 switch(c)

 {

 case 63: /* ’?’ */

 obj = ANY;

 break;

 case 42: /* ’*’ */

 obj = STAR;

 break;

 case 91: /* ’[’ */

 int k = ++j;

 Vector vector1 = new Vector();

 for(; j < i; j++)

 {

 c = s.charAt(j);

 if(j == k && c == ’^’)

 {

 vector1.addElement(NOT);

 continue;

 }

 if(c == ’\\’)

 {

 if(j + 1 < i)

 c = s.charAt(++j);

 }

 else

 if(c == ’]’)

 break;

236 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

char c1 = c;

 if(j + 2 < i && s.charAt(j + 1) == ’-’)

 c1 = s.charAt(j += 2);

 char ac1[] = {

 c, c1

 };

 vector1.addElement(ac1);

 }

 char ac[][] = new char[vector1.size()][];

 vector1.copyInto(ac);

 obj = ac;

 break;

 case 92: /* ’\\’ */

 if(j + 1 < i)

 c = s.charAt(++j);

 break;

 }

 if(obj != null)

 {

 if(stringbuffer != null)

 {

 vector.addElement(stringbuffer.toString());

 stringbuffer = null;

 }

 vector.addElement(obj);

 obj = null;

 }

 else

 {

 if(stringbuffer == null)

 stringbuffer = new StringBuffer();

 stringbuffer.append(c);

 }

 }

 if(stringbuffer != null)

 vector.addElement(stringbuffer.toString());

 expr = new Object[vector.size()];

 vector.copyInto(expr);

 }

 static final char NOT[] = new char[2];

 static final Integer ANY = new Integer(0);

 static final Integer STAR = new Integer(1);

 Object expr[];

}

Result.java file

This module is used by user registries in WebSphere Application Server when calling the getUsers and

getGroups methods. The user registries use this method to set the list of users and groups and to indicate

if there are more users and groups in the registry than requested.

// @(#) 1.20 src/en/ae/rsec_result.xml, WEBSJAVA.INFO.DOCSRC,

// ASVINFO1 10/17/02 16:43:01 [10/18/02 07:31:30]

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2003

// All Rights Reserved * Licensed Materials - Property of IBM

//

package com.ibm.websphere.security;

Chapter 12. Administering security 237

import java.util.List;

public class Result implements java.io.Serializable {

 /**

 Default constructor

 */

 public Result() {

 }

 /**

 Returns the list of users and groups

 @return the list of users and groups

 */

 public List getList() {

 return list;

 }

 /**

 indicates if there are more users and groups in the registry

 */

 public boolean hasMore() {

 return more;

 }

 /**

 Set the flag to indicate that there are more users and groups

 in the registry to true

 */

 public void setHasMore() {

 more = true;

 }

 /*

 Set the list of users and groups

 @param list list of users/groups

 */

 public void setList(List list) {

 this.list = list;

 }

 private boolean more = false;

 private List list;

}

Custom user registry settings

Use this page to configure the custom user registry.

To view this administrative console page, click Security > Global security. Under User registries, click

Custom.

After the properties are set in this panel, click Apply. Under Additional Properties, click Custom

properties to include additional properties that the custom registry requires. The following property is

predefined by the product; set this property when required only:

WAS_UseDisplayName

When this property is set to true, the getCallerPrincipal(), getUserPrincipal(), and

getRemoteUser() methods return the display name. By default, the securityName of the user is

returned. This property is introduced to support backward compatibility with the version 4 custom

registry.

When security is enabled and any of these custom user registry settings change, go to the Global security

panel and click Apply to validate the changes.

Server user ID:

238 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Specifies the user ID under which the server runs, for security purposes.

 This server ID represents a valid user in the custom registry.

 Data type: String

Server user password:

Specifies the password corresponding to the security server ID.

 Data type: String

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry

interface.

 Put the custom registry class name in the class path. A suggested location is the %install_root%/lib/ext

directory. Although the custom registry implements the com.ibm.websphere.security.UserRegistry interface,

for backward compatibility, a user registry can alternately implement the

com.ibm.websphere.security.CustomRegistry interface.

 Data type: String

Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when you use the default authorization.

 Default: Disabled

Range: Enabled or Disabled

users.props file

Following is the format for the users.props file:

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2004

All Rights Reserved * Licensed Materials - Property of IBM

Format:

name:passwd:uid:gids:display name

where name = userId/userName of the user

passwd = password of the user

uid = uniqueId of the user

gid = groupIds of the groups that the user belongs to

display name = a (optional) display name for the user.

bob:bob1:123:567:bob

dave:dave1:234:678:

jay:jay1:345:678,789:Jay-Jay

ted:ted1:456:678:Teddy G

jeff:jeff1:222:789:Jeff

vikas:vikas1:333:789:vikas

bobby:bobby1:444:789:

groups.props file

The following example illustrates the format for the groups.props file:

Chapter 12. Administering security 239

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2003

All Rights Reserved * Licensed Materials - Property of IBM

Format:

name:gid:users:display name

where name = groupId of the group

gid = uniqueId of the group

users = list of all the userIds that the group contains

display name = a (optional) display name for the group.

admins:567:bob:Administrative group

operators:678:jay,ted,dave:Operators group

users:789:jay,jeff,vikas,bobby:

Java Authentication and Authorization Service

The standard Java 2 security API helps enforce access control, based on the location of the code and the

user. The current principal of the running thread is not considered in the Java 2 security authorization.

Instances where authorization is based on the principal (as opposed to the code base) and the user exist.

The Java Authentication and Authorization Service is a standard Java API that supports the Java 2

security authorization to extend the code base on the principal as well as the code base and users.

The Java Authentication and Authorization Service (JAAS) Version 1.0 extends the Java 2 security

architecture of the Java 2 platform with additional support to authenticate and enforce access control with

principals and users. It implements a Java version of the standard Pluggable Authentication Module (PAM)

framework, and extends the access control architecture of the Java 2 platform in a compatible fashion to

support user-based authorization or principal-based authorization. WebSphere Application Server fully

supports the JAAS architecture and extends the access control architecture to support role-based

authorization for Java 2 Platform, Enterprise Edition (J2EE) resources including servlets, JavaServer

Pages (JSP) files, and Enterprise JavaBeans (EJB) components. Refer to Java 2 security for more

information.

The following sections cover the JAAS implementation and programming model:

v Java Authentication and Authorization Service login configuration

v Programmatic Login

v Java Authentication and Authorization Service authorization

The JAAS documentation can be found at http://www.ibm.com/developerworks/java/jdk/security. Scroll

down to find the JAAS documentation for your platform.

Java Authentication and Authorization Service authorization

Java 2 security architecture uses a security policy to specify which access rights are granted to running

code. This architecture is code-centric. That is, the permissions are granted based on code characteristics

including where the code is coming from, whether it is digitally signed, and by whom. Authorization of the

Java Authentication and Authorization Service (JAAS) augments the existing code-centric access controls

with new user-centric access controls. Permissions are granted based on what code is running and who is

running it.

When using JAAS authentication to authenticate a user, a subject is created to represent the authenticated

user. A subject is comprised of a set of principals, where each principal represents an identity for that user.

You can grant permissions in the policy to specific principals. After the user is authenticated, the

application can associate the subject with the current access control context. For each subsequent

security-checked operation, the Java run time automatically determines whether the policy grants the

required permission to a specific principal only. If so, the operation is supported if the subject associated

with the access control context contains the designated principal only.

240 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security

Associate a subject with the current access control context by calling the static doAs method from the

subject class, passing it an authenticated subject and java.security.PrivilegedAction or

java.security.PrivilegedExceptionAction. The doAs method associates the provided subject with the current

access control context and then invokes the run method from the action. The run method implementation

contains all the code that ran as the specified subject. The action runs as the specified subject.

In the Java 2 Platform, Enterprise Edition (J2EE) programming model, when invoking the EJB method

from an enterprise bean or servlet, the method runs under the user identity that is determined by the

run-as setting. The J2EE Version 1.4 Specification does not indicate which user identity to use when

invoking an enterprise bean from a Subject.doAs action block within either the EJB code or the servlet

code. A logical extension is to use the proper identity specified in the subject when invoking the EJB

method within the Subject doAs action block.

This simple rule of letting Subject.doAs overwrite the run-as identity setting is an ideal way to integrate the

JAAS programming model with the J2EE run-time environment. However, a general JAAS design oversight

was introduced into IBM Software Development Kit (SDK), Java Technology Edition Version 1.3 or later

when integrating the JAAS Version 1.0 or later implementation with the Java 2 security architecture. A

subject, which is associated with the access control context is cut off by a doPrivileged call when a

doPrivileged call occurs within the Subject.doAs action block. Until this problem is corrected, no reliable

and run-time efficient way is available to guarantee the correct behavior of Subject.doAs in a J2EE

run-time environment.

The problem can be explained better with the following example:

Subject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current

 // thread context

 return null;

 }

 });

 // Subject is associated with the current thread context

 return null;

 }

});

At line three, the subject object is associated with the context of the current thread. As indicated on line 7

within the run method of a doPrivileged action block, the subject object is removed from the thread

context. After leaving the doPrivileged block, the subject object is restored to the current thread context.

Because doPrivileged blocks can be placed anywhere along the running path and instrumented quite often

in a server environment, the run-time behavior of a doAs action block becomes difficult to manage.

To resolve this difficulty, WebSphere Application Server provides a WSSubject helper class to extend the

JAAS authorization to a J2EE EJB method invocation as described previously. The WSSubject class

provides static doAs and doAsPrivileged methods that have identical signatures to the subject class. The

WSSubject.doAs method associates the Subject to the currently running thread. The WSSubject.doAs and

WSSubject.doAsPrivileged methods then invoke the corresponding Subject.doAs and

Subject.doAsPrivileged methods. The original credential is restored and associated with the running thread

upon leaving the WSSubject.doAs and WSSubject.doAsPrivileged methods.

Note that the WSSubject class is not a replacement of the subject object, but rather a helper class to

ensure consistent run-time behavior as long as an EJB method invocation is a concern.

Chapter 12. Administering security 241

The following example illustrates the run-time behavior of the WSSubject.doAs method:

WSSubject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current thread

 // context.

 return null;

 }

 });

 // Subject is associated with the current thread context

 return null;

 }

});

The Subject.doAs and Subject.doAsPrivileged methods are not integrated with the J2EE run-time

environment. EJB methods that are invoked within the Subject.doAs and Subject.doAsPrivileged action

blocks run under the identity specified by the run-as setting and not by the subject identity.

v The subject object generated by the WSLoginModuleImpl instance and the WSClientLoginModuleImpl

instance contains a principal that implements the WSPrincipal interface. Using the getCredential()

method for a WSPrincipal object returns an object that implements the WSCredential interface. You can

also find the WSCredential object instance in the PublicCredentials list of the subject instance. Retrieve

the WSCredential object from the PublicCredentials list instead of using the getCredential() method.

v The getCallerPrincipal() method for the WSSubject class returns a string representing the caller security

identity. The return type differs from the getCallerPrincipal method of the EJBContext interface, which is

java.security.Principal.

v The Subject object generated by the J2C DefaultPrincipalMapping module contains a resource principal

and a PasswordCredentials list. The resource principal represents the RunAs identity.

Refer to “J2EE Connector security” on page 256 for more information

Configuring application logins for Java Authentication and

Authorization Service

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server. It

is a collection of WebSphere Application Server strategic authentication APIs and replaces the Common

Object Request Broker Architecture (CORBA) programmatic login APIs.

WebSphere Application Server provides some extensions to JAAS:

v com.ibm.websphere.security.auth.WSSubject. The com.ibm.websphere.security.auth.WSSubject API

extends the JAAS authorization model to Java 2 Platform, Enterprise Edition (J2EE) resources.

v You can configure JAAS login in the administrative console and store this configuration in the

WebSphere configuration application programming interface (API). However, WebSphere Application

Server still supports the default JAAS login configuration format (plain text file) provided by the JAAS

default implementation. If duplicate login configurations are defined in both the WebSphere configuration

API and the plain text file format, the one in the WebSphere configuration API takes precedence.

Advantages to defining the login configuration in the WebSphere configuration API include:

– User interface support in defining JAAS login configuration

– Central management of the JAAS login configuration

– Distribution of the JAAS login configuration in a Network Deployment product installation

242 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Due to a design oversight in the JAAS V1.0, javax.security.auth.Subject.getSubject() method does not

return the subject associated with the running thread inside a

java.security.AccessController.doPrivileged() code block. This problem presents an inconsistent behavior

that is problematic and causes undesirable effort. The com.ibm.websphere.security.auth.WSSubject API

provides a workaround to associate the subject to a running thread.

v Proxy LoginModule. The Proxy LoginModule loads the actual LoginModule. The default JAAS

implementation does not use the thread context class loader to load classes. The LoginModule module

cannot load if the LoginModule class file is not in the application class loader or the Java extension

class loader class path. Due to this class loader visibility problem, WebSphere Application Server

provides a proxy LoginModule module to load the JAAS LoginModule using the thread context class

loader. You do not need to place the LoginModule implementation on the application class loader or the

Java extension class loader class path with this proxy LoginModule module.

If you do not want to use the Proxy LoginModule, you can place the LoginModule in the jre/lib/ext

directory. However, this is not recommended due to the security risks.

Two JAAS login configurations are defined in the WebSphere Configuration API security document for

applications to use. In the left navigation pane, click Security > Global Security > JAAS Configuration >

Application Login >WSLogin and ClientContainer. The following three JAAS login configurations are

available:

WSLogin

Defines a login configuration and a LoginModule implementation that applications can use in

general.

ClientContainer

Defines a login configuration and a LoginModule implementation that is similar to that of the

WSLogin configuration, but enforces the requirements of the WebSphere Application Server client

container. Refer to Configuration entry settings for Java Authentication and Authorization Service

for more information.

DefaultPrincipalMapping,

Defines a special LoginModule module that is typically used by J2EE Connector to map an

authenticated WebSphere user identity to a set of user authentication data (user ID and password)

for the specified back-end enterprise information system (EIS). For more information about J2EE

Connector and the DefaultMappingModule module, refer to the J2EE security section.

A new JAAS login configuration can be added and modified using the administrative console. The changes

are saved in the cell-level security document and are available to all managed application servers. An

application server restart is required for the changes to take effect at run time.

Attention: Do not remove or delete the predefined JAAS login configurations (ClientContainer, WSLogin

and DefaultPrincipalMapping). Deleting or removing them can cause other enterprise applications to fail.

1. Delete a JAAS login configuration.

a. Click Security in the navigation tree and expand the Global Security panel.

b. Click JAAS Configuration > Application Logins. The Application Login Configuration panel

appears.

c. Select the check box for the login configurations to delete and click Delete.

2. Create a new JAAS login configuration.

a. Click Security in the navigation tree and expand the Global Security panel.

b. Click JAAS Configuration > Application Logins.

c. Click New. The Application Login Configuration panel appears.

d. Specify the alias name of the new JAAS login configuration and click Apply. This value is the

name of the login configuration that you pass in the javax.security.auth.login.LoginContext

implementation for creating a new LoginContext.

Chapter 12. Administering security 243

Click Apply to save changes and to add the extra node name that precedes the original alias

name. Clicking OK does not save the new changes in the security.xml file.

e. Click JAAS Login Modules.

f. Click New.

g. Specify the Module Classname. Specify WebSphere Proxy LoginModule because of the limitation

of the class loader visibility problem.

h. Specify the LoginModule implementation as the delegate property of the Proxy LoginModule. The

WebSphere Proxy LoginModule class name is

com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy.

i. Select Authentication Strategy from the list and click Apply.

j. Click Custom Properties. The Custom Properties panel is displayed for the selected

LoginModule.

k. Create a new property with the name delegate and the value of the real LoginModule

implementation. You can specify other properties like debug with the value true. These properties

are passed to the LoginModule class as options to the initialize() method of the LoginModule

instance.

l. Click Save.

There are several locations within the WebSphere Application Server directory structure where you can

place a JAAS login module. The following list provides locations for the JAAS login module in order of

recommendation:

v Within an Enterprise Archive (EAR) file for a specific Java 2 Enterprise Edition (J2EE) application.

If you place the login module within the EAR file, it is accessible to the specific application only.

v In the WebSphere Application Server shared library.

If you place the login module in the shared library, you must specify which applications can access

the module. For more information on shared libraries, see Managing shared libraries.

v In the Java extensions directory (WAS_HOME\jre\lib\ext)

If you place the JAAS login module in the Java extensions directory, the login module is available to

all applications.

Although the Java extensions directory provides the greatest availability for the login module, it is

recommended that you place the login module in an application EAR file. If other applications need to

access the same login module, consider using shared libraries.

3. Change the plain text file. WebSphere Application Server supports the default JAAS login configuration

format (plain text file) provided by the JAAS default implementation. However, a tool is not provided

that edits plain text files in this format. You can define the JAAS login configuration in the plain text file

(install_root/properties/wsjaas.conf). Any syntax errors can cause the incorrect parsing of the

plain JAAS login configuration text file. This problem can cause other applications to fail.

Java client programs that use the Java Authentication and Authorization Service (JAAS) for

authentication must invoke with the JAAS configuration file specified. This configuration file is set in the

/install_root/bin/launchClient.bat file as set JAAS_LOGIN_CONFIG=-
Djava.security.auth.login.config=%install_root%\properties\wsjaas_client.conf. If the

launchClient.bat file is not used to invoke the Java client program, verify that the appropriate JAAS

configuration file is passed to the Java virtual machine with the -Djava.security.auth.login.config

flag.

A new JAAS login configuration is created or an old JAAS login configuration is removed. An enterprise

application can use a newly created JAAS login configuration without restarting the application server

process.

However, new JAAS login configurations defined in the install_root/properties/wsjaas.conf file, do not

refresh automatically. Restart the application servers to validate changes. These JAAS login configurations

are specific to a particular node and are not available for other application servers running on other nodes.

244 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Create new JAAS login configurations used by enterprise applications to perform custom authentication.

Use these newly defined JAAS login configurations to perform programmatic login.

Login configuration for Java Authentication and Authorization Service

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server.

JAAS is WebSphere strategic APIs for authentication and it will replace the CORBA programmatic login

APIs. WebSphere Application Server provides some extensions to JAAS:

v com.ibm.websphere.security.auth.WSSubject: The com.ibm.websphere.security.auth.WSSubject API

extends the JAAS authorization model to J2EE resources. You can configure JAAS login in the

administrative console (or by using the scripting functions) and store this configuration in the

WebSphere configuration application programming interface (API). However, WebSphere Application

Server still supports the default JAAS login configuration format (plain text file) provided by the JAAS

default implementation. If duplicate login configurations are defined in both the WebSphere configuration

API and the plain text file format, the one in the WebSphere configuration API takes precedence.

Advantages to defining the login configuration in the WebSphere configuration API include:

– User interface support in defining JAAS login configuration

– Central management of the JAAS login configuration

– Distribution of the JAAS login configuration in a Network Deployment product installation

Due to a design oversight in the JAAS 1.0, javax.security.auth.Subject.getSubject() does not return the

Subject associated with the thread of execution inside a java.security.AccessController.doPrivileged()

code block. This can present a inconsistent behavior that is problematic and causes undesirable effort.

com.ibm.websphere.security.auth.WSSubject provides a work around to associate Subject to thread of

execution. com.ibm.websphere.security.auth.WSSubject extends the JAAS authorization model to J2EE

resources.

Note: Why WebSphere Application Server has its own subject class: You can retrieve the subjects

in a Subject.doAs() block with the Subject.getSubject() call. However, this procedure does not

work if there is an AccessController.doPrivileged() call within the Subject.doAs() block. In the

following example, s1 is equal to s, but s2 is null:

* AccessController.doPrivileged() not only truncates the Subject propagation,

* but also reduces the permissions. It does not include the JAAS security

* policy defined for the principals in the Subject.

Subject.doAs(s, new PrivilegedAction() {

 public Object run() {

 System.out.println(″Within Subject.doAsPrivileged()″);

 Subject s1 = Subject.getSubject(AccessController.getContext());

 AccessController.doPrivileged(new PrivilegedAction() {

 public Object run() {

 Subject s2 = Subject.getSubject(AccessController.getContext());

 return null;

 }

 });

 return null;

}

});

v JAAS Login Configuration can be configured in administrative console (or by using the scripting

functions) and stored in WebSphere configuration application programming interface (API). An

application can define new JAAS login configuration in the Admin Console and the the data is persisted

in the configuration respository (stored in the WebSphere configuration API). However, WebSphere still

support the default JAAS login configuration format (plan text file) provided by the JAAS default

implementation. But if there are duplication login configurations defined in both the WebSphere

configuration API and the plan text file format, the one in the WebSphere configuration API takes

precedence. There are advantages to define the login configuration in the WebSphere configuration API:

Chapter 12. Administering security 245

– UI support in defining JAAS login configuration.

– The JAAS configuration login configuration can be managed centrally.

– The JAAS configuration login configuration is distributed in a Network Deployment installation.
v Proxy LoginModule: The Proxy.LoginModule API stores login module .jar files. The default JAAS

implementation does not use the thread context class loader to load classes, the LoginModule could not

be loaded if the LoginModule class file is not in the application class loader or the Java extension class

loader classpath. Due to this class loader visibility problem, WebSphere provides a proxy LoginModule

to load JAAS LoginModule using the thread context class loader. The LoginModule implementation does

not have to be placed on the application class loader or the Java extension class loader classpath with

this proxy LoginModule.

Note: Do not remove or delete the pre-defined JAAS Login Configurations (ClientContainer, WSLogin and

DefaultPrincipalMapping). Deleting or removing them could cause other enterprise applications to

fail.

A system administrator determines the authentication technologies, or LoginModules, to be used for each

application and configures them in a login configuration. The source of the configuration information (for

example, a file or a database) is up to the current javax.security.auth.login.Configuration implementation.

The WebSphere Application Server implementation permits the login configuration to be defined in both

the WebSphere configuration API security document and in a JAAS configuration file where the former

takes precedence.

Two JAAS login configurations are defined in the WebSphere configuration API security document for

applications to use. To access the configurations, click Security > JAAS Configuration > Application

Login Config: WSLogin and ClientContainer. The WSLogin defines a login configuration and

LoginModule implementation that may be used by applications in general. The ClientContainer defines a

login configuration and LoginModule implementation that is similar to that of WSLogin but enforces the

requirements of the WebSphere Application Server Client Container. The third entry,

DefaultPrincipalMapping, defines a special LoginModule that is typically used by Java 2 Connector to

map an authenticated WebSphere user identity to a set of user authentication data (user ID and password)

for the specified back end enterprise information system (EIS). For more information about Java 2

Connector and the DefaultMappingModule please refer to the Java 2 Security section.

New JAAS login configuration may be added and modified using Security Center. The changes are saved

in the cell level security document and are available to all managed application servers. An application

server restart is required for the changes to take effect at run time and for the client container login

configuration to be made available.

WebSphere Application Server also reads JAAS Configuration information from the wsjaas.conf file under

the properties sub directory of the root directory under which WebSphere Application Server is installed.

Changes made to the wsjaas.conf file is used only by the local application server and will take effect after

restarting the application server. Note that JAAS configuration in the WebSphere configuration API security

document takes precedence over that defined in the wsjaas.conf file. In other words, a configuration entry

in wsjaas.conf will be overridden by an entry of the same alias name in the WebSphere configuration API

security document.

Note: The Java Authentication and Authorization Service (JAAS) login configuration entries in the Security

Center are propagated to the server run time when they are created, not when the configuration is

saved. However, the deleted JAAS login configuration entries are not removed from the server run

time. To remove the entries, save the new configuration, then stop and restart the server.

The samples gallery provides a JAAS login sample that demonstrates how to use JAAS with WebSphere

Application Server. The sample uses a server-side login with JAAS to authenticate a user with the security

run time for WebSphere Application Server. The sample demonstrates the following technology:

v Java 2 Platform, Enterprise Edition (J2EE) Java Authentication and Authorization Service (JAAS)

246 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v JAAS for WebSphere Application Server

v WebSphere Application Server security

The form login sample is component of the technology samples. For more information on how to access

the form login sample, see Accessing the Samples (Samples Gallery).

Configuration entry settings for Java Authentication and Authorization

Service

Use this page to specify a list of Java Authentication and Authorization Service (JAAS) login configurations

for the application code to use, including J2EE artifacts such as enterprise beans, JavaServer Pages

(JSP) files, servlets, resource adapters, and message data blocks (MDBs).

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS configuration > Application logins.

Read the JAAS documentation before you begin defining additional login modules for authenticating to the

WebSphere Application Server security run time. You can define additional login configurations for your

applications. However, if the WebSphere Application Server LoginModule

(com.ibm.ws.security.common.auth.module.WSLoginModuleImpl) is not used or the LoginModule does not

produce a credential that is recognized by WebSphere Application Server, then the WebSphere Application

Server security run time cannot use the authenticated subject from these login configurations for an

authorization check for resource access.

Note: You must invoke Java client programs that use Java Authentication and Authorization Service

(JAAS) for authentication with a JAAS configuration file specified. The WebSphere product supplies

the default JAAS configuration file, wsjaas_client.conf under the install_root/properties directory.

This configuration file is set in the /install_root/bin/launchClient.bat file as: set

JAAS_LOGIN_CONFIG=-
Djava.security.auth.login.config=%WAS_HOME%\properties\wsjaas_client.conf

If launchClient.bat file is not used to invoke Java client programs, make sure that the appropriate

JAAS configuration file is passed to the Java virtual machine with the

-Djava.security.auth.login.config flag.

ClientContainer

Specifies the login configuration used by the client container application, which uses the CallbackHandler

API defined in the client container deployment descriptor.

The ClientContainer configuration is the default login configuration for the WebSphere Application Server.

Do not remove this default, as other applications that use it fail.

 Default: ClientContainer

DefaultPrincipalMapping

Specifies the login configuration used by Java 2 Connectors to map users to principals that are defined in

the J2C Authentication Data Entries.

ClientContainer is the default login configuration for the WebSphere Application Server. Do not remove this

default, as other applications that use it fail.

 Default: ClientContainer

Chapter 12. Administering security 247

WSLogin

Specifies whether all applications can use the WSLogin configuration to perform authentication for the

WebSphere Application Server security run time.

This login configuration does not honor the CallbackHandler defined in the client container deployment

descriptor. To use this functionality, use the ClientContainer login configuration.

The WSLogin configuration is the default login configuration for the WebSphere Application Server. Do not

remove this default because other administrative applications that use it will fail. This login configuration

authenticates users for the WebSphere Application Server security run time. Use credentials from the

authenticated subject returned from this login configurations as an authorization check for access to

WebSphere Application Server resources.

 Default: ClientContainer

System login configuration entry settings for Java Authentication and

Authorization Service

Use this page to specify a list of Java Authentication and Authorization Service (JAAS) system login

configurations.

To view this administrative console page, click Security > Global security. Under Authentication, click

JAAS configuration > System logins.

Read the Java Authentication and Authorization Service documentation before you begin defining

additional login modules for authenticating to the WebSphere Application Server security run time. Do not

remove the following system login modules:

v RMI_INBOUND

v WEB_INBOUND

v DEFAULT

v RMI_OUTBOUND

v SWAM

v wssecurity.IDAssertion

v wssecurity.signature

v wssecurity.PKCS7

v wssecurity.PkiPath

v wssecurity.UsernameToken

v wssecurity.X509BST

v LTPA

v LTPA_WEB

RMI_INBOUND, WEB_INBOUND, DEFAULT

Processes inbound login requests for Remote Method Invocation (RMI), Web applications, and most of the

other login protocols. These login configurations are used by WebSphere Application Server Version 5.1.1

and later.

RMI_INBOUND

The RMI_INBOUND login configuration handles logins for inbound RMI requests. Typically, these

logins are requests for authenticated access to Enterprise JavaBeans (EJB) files. Also, these

logins might be Java Management Extensions (JMX) requests when using the RMI connector.

WEB_INBOUND

The WEB_INBOUND login configuration handles logins for Web application requests, which

248 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

includes servlets and JavaServer Pages (JSP) files. This login configuration can interact with the

output that is generated from a trust association interceptor (TAI), if configured. The Subject

passed into the WEB_INBOUND login configuration might contain objects generated by the TAI.

DEFAULT

The DEFAULT login configuration handles the logins for inbound requests made by most of the

other protocols and internal authentications.

 These three login configurations can pass in the following callback information, which is handled by the

login modules within these configurations. These callbacks are not passed in at the same time. However,

the combination of these callbacks determines how WebSphere Application Server authenticates the user.

Callback

callbacks[0] = new javax.security.auth.callback.

NameCallback(″Username: ″);

Responsibility

Collects the user name that is provided during a login. This information can be the user name for

the following types of logins:

v User name and password login, which is known as basic authentication.

v User name only for identity assertion.

Callback

callbacks[1] = new javax.security.auth.callback.

PasswordCallback(″Password: ″, false);

Responsibility

Collects the password that is provided during a login.

Callback

callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″Credential Token: ″);

Responsibility

Collects the Lightweight Third Party Authentication (LTPA) token (or other token type) during a

login. Typically, this information is present when a user name and a password are not present.

Callback

callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback(″Authz Token List: ″);

Responsibility

Collects the ArrayList of the TokenHolder objects that are returned from the call to the

WSOpaqueTokenHelper. createTokenHolderListFromOpaqueToken () method using the Common

Secure Interoperability version 2 (CSIv2) authorization token as input.

Restriction: This callback is present only when the Security Attribute Propagation option is

enabled and this login is a propagation login. In a propagation login, sufficient

security attributes are propagated with the request to prevent having to access the

user registry for additional attributes.

 In system login configurations, WebSphere Application Server authenticates the user based upon the

information collected by the callbacks. However, a custom login module does not need to act upon any of

these callbacks. The following list explains the typical combinations of these callbacks:

v The callbacks[0] = new javax.security.auth.callback.NameCallback(″Username: ″); callback only

This callback occurs for CSIv2 Identity Assertion; Web and CSIv2 X509 certificate logins; old-style trust

association interceptor logins, and so on. In Web and CSIv2 X509 certificate logins, WebSphere

Application Server maps the certificate to a user name. This callback is used by any login type that

establishes trust using the user name only.

Chapter 12. Administering security 249

v Both the callbacks[0] = new javax.security.auth.callback.NameCallback(″Username: ″); callback

and the callbacks[1] = new javax.security.auth.callback.PasswordCallback(″Password: ″, false);

callbacks.

This combination of callbacks is typical for basic authentication logins. Most user authentications occur

using these two callbacks.

v The callbacks[2] = new

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(″Credential Token: ″); only

This callback is used to validate a Lightweight Third Party Authentication (LTPA) token. This validation

typically occurs during an single signon (SSO) or downstream login. Any time a request originates from

a WebSphere Application Server, instead of a pure client, the LTPA token typically flows to the target

server. For single signon (SSO), the LTPA token is received in the cookie and the token is used for

login. If a custom login module needs the user name from an LTPA token, the module can use the

following method to retrieve the unique ID from the token:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

validateLTPAToken(byte[])

After retrieving the unique ID, use the following method to get the user name:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

getUserFromUniqueID(uniqueID)

Important: Any time a custom login module is plugged in ahead of the WebSphere Application Server

login modules and it changes the identity using the credential mapping services, it is

important that this login module validates the LTPA token, if present. Calling the following

method is sufficient to validate the trust in the LTPA token:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

validateLTPAToken(byte[])

The receiving server must have the same LTPA keys as the sending server in order for this

to be successful. There is a possible security exposure if you do not validate this LTPA

token, when present.

v A combination of any of the previously mentioned callbacks plus the callbacks[3] = new

com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback(″Authz Token List: ″); callback.

This callback indicates that some propagated attributes arrived at the server. The propagated attributes

still require one of the following authentication methods:

– callbacks[0] = new javax.security.auth.callback.

NameCallback(″Username: ″);

– callbacks[1] = new javax.security.auth.callback.

PasswordCallback(″Password: ″, false);

– callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″Credential Token: ″);

If the attributes are added to the Subject from a pure client, then the NameCallback and

PasswordCallback callbacks authenticate the information and the objects that are serialized in the token

holder are added to the authenticated Subject.

If both CSIv2 identity assertion and propagation are enabled, WebSphere Application Server uses the

NameCallback and the token holder, which contains all of the propagated attributes, to deserialize most

of the objects. WebSphere Application Server uses the NameCallback because trust is established with

the servers that you indicate in the CSIv2 trusted server list. To specify trusted servers, complete the

following steps:

1. Click Security > Global security.

2. Under Authentication, click Authentication protocol > CSIv2 Inbound authentication.

250 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Custom serialization needs to be handled by a custom login module. For more information, see

″Security attribute propagation″.

In addition to the callbacks defined previously, the WEB_INBOUND login configuration only can contain

the following additional callbacks

Callback

callbacks[4] = new com.ibm.websphere.security.auth.callback.

WSServletRequestCallback(″HttpServletRequest: ″);

Responsibility

Collects the HTTP servlet request object, if presented. This callback enables login modules to

retrieve information from the HTTP request to use during a login.

Callback

callbacks[5] = new com.ibm.websphere.security.auth.callback.

WSServletResponseCallback(″HttpServletResponse: ″);

Responsibility

Collects the HTTP servlet response object, if presented. This callback enables login modules to

add information into the HTTP response as a result of the login. For example, login modules might

add the SingleSignonCookie to the response.

Callback

callbacks[6] = new com.ibm.websphere.security.auth.callback.

WSAppContextCallback(″ApplicationContextCallback: ″);

Responsibility

Collects the Web application context used during the login. This callback consists of a Hashtable,

which contains the application name and the redirect Web address, if present.

 The following login modules are predefined for the RMI_INBOUND, WEB_INBOUND, and DEFAULT

system login configurations. You can add custom login modules before, between, or after any of these

login modules, but you cannot remove these predefined login modules.

v com.ibm.ws.security.server.lm.ltpaLoginModule

This login module performs the primary login when attribute propagation is either enabled or disabled. A

primary login uses normal authentication information such as a user ID and password; an LTPA token;

or a trust association interceptor (TAI) and a certificate distinguished name (DN). If any of the following

scenarios are true, this login module is not used and the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule module performs the primary login:

– The java.util.Hashtable object with the required user attributes is contained in the Subject.

– The java.util.Hashtable object with the required user attributes is present in the sharedState

HashMap of the LoginContext.

– The WSTokenHolderCallback callback is present without a specified password. If a user name and a

password are present with a WSTokenHolderCallback, callback, which indicates propagated

information, the request likely originates from either a pure client or a server from a different realm

that mapped the existing identity to a user ID and password.

v com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

This login module performs the primary login using the normal authentication information if any of the

following conditions are true:

– A java.util.Hashtable object with required user attributes is contained in the Subject

– A java.util.Hashtable object with required user attributes is present in the sharedState HashMap of

the LoginContext

– The WSTokenHolderCallback callback is present without a PasswordCallback callback.

When the java.util.Hashtable object is present, the login module maps the object attributes into a valid

Subject. When the WSTokenHolderCallback is present, the login module deserializes the byte token

Chapter 12. Administering security 251

objects and regenerates the serialized Subject contents. The java.util.Hashtable takes precedence over

all of the other forms of login. Be careful to avoid duplicating or overriding what WebSphere Application

Server might have propagated previously. By specifying a java.util.Hashtable to take precedence over

other authentication information, the custom login module must have already verified the LTPA token, if

present, to establish sufficient trust. The custom login module can use the

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.validationLTPAToken(byte[]) method to

validate the LTPA token present in the WSCredTokenCallback. Failure to validate the LTPA token

presents a security risk.

For more information on adding a Hashtable containing well-known and well-formed attributes used by

WebSphere Application Server as sufficient login information, see ″Configuring inbound identity

mapping″.

RMI_OUTBOUND

Processes Remote Method Invocation (RMI) requests that are sent outbound to another server when

either the com.ibm.CSI.rmiOutboundLoginEnabled or the com.ibm.CSIOutboundPropagationEnabled

properties are true.

These properties are set in the CSIv2 authentication panel. To access the panel, click Security > Global

security. Under Authentication protocol, click CSIv2 Outbound authentication. To set the

com.ibm.CSI.rmiOutboundLoginEnabled property, select Custom outbound mapping. To set the

com.ibm.CSIOutboundPropagationEnabled property, select the Security attribute propagation option.

This login configuration determines the security capabilities of the target server and its security domain.

For example, if WebSphere Application Server Version 5.1.1 or later communicates with a version 5.x

Application Server, then the Version 5.1.1 Application Server sends the authentication information only,

using an LTPA token, to the Version 5.x Application Server. However, if WebSphere Application Server

Version 5.1.1 or later communicates with a version 5.1.x Application Server, the authentication and

authorization information is sent to the receiving application server if propagation is enabled at both the

sending and receiving servers. When the application server sends both the authentication and

authorization information downstream, it removes the need to re-access the user registry and look up the

security attributes of the user for authorization purposes. Additionally, any custom objects added at the

sending server should be present in the Subject at the downstream server.

The following callback is available to in the RMI_OUTBOUND login configuration. You can use the

com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy object that is returned by this callback to query the

security policy for this particular outbound request. This query can help determine if the target realm is

different than the current realm and if WebSphere Application Server must map the realm. For more

information, see ″Configuring outbound mapping to a different target realm″.

Callback

callbacks[0] = new WSProtocolPolicyCallback(″Protocol Policy Callback: ″);

Responsibility

 Provides protocol-specific policy information for the login modules on this outbound invocation.

This information is used to determine the level of security, including the target realm, target

security requirements, and coalesced security requirements.

 The following method obtains the CSIv2PerformPolicy from this specific login module:

csiv2PerformPolicy = (CSIv2PerformPolicy)

((WSProtocolPolicyCallback)callbacks[0]).getProtocolPolicy();

 A different protocol other than RMI might have a different type of policy object.

 The following login module is predefined in the RMI_OUTBOUND login configuration. You can add custom

login modules before, between, or after any of these login modules, but you cannot remove these

predefined login modules.

252 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

com.ibm.ws.security.lm.wsMapCSIv2OutboundLoginModule

Retrieves the following tokens and objects before creating an opaque byte that is sent to another

server by using the Common Secure Interoperability version 2 (CSIv2) authorization token layer:

v Forwardable com.ibm.wsspi.security.token.Token implementations from the Subject

v Serializable custom objects from the Subject

v Propagation tokens from the thread

You can use a custom login module prior to this login module to perform credential mapping.

However, it is recommended that the login module change the contents of the Subject that is

passed in during the login phase. If this recommendation is followed, the login modules processed

after this login module act on the new Subject contents.

For more information, see ″ Configuring outbound mapping to a different target realm″.

SWAM

Processes login requests in a single server environment when Simple WebSphere Authentication

Mechanism (SWAM) is used as the authentication method.

SWAM does not support forwardable credentials. When SWAM is the authentication method, WebSphere

Application Server cannot send requests from server to server. In this case, you must use LTPA.

wssecurity.IDAssertion

Processes login configuration requests for Web services security using identity assertion. This login

configuration is for version 5.x systems.

wssecurity.PKCS7

This login configuration is for version 6.x systems.

wssecurity.PkiPath

This login configuration is for version 6.x systems.

wssecurity.signature

Processes login configuration requests for Web services security using digital signature validation. This

login configuration is for version 5.x systems.

wssecurity.UsernameToken

This login configuration is for version 6.x systems.

wssecurity.X509BST

This login configuration is for version 6.x systems.

LTPA_WEB

Processes login requests used by the Web container such as servlets and JavaServer pages (JSP) files.

This login configuration is used by WebSphere Application Server Version 5.1. This login configuration was

introduced in version 5.1 and is no longer used in version 5.1.1.

The com.ibm.ws.security.web.AuthenLoginModule login module is predefined in the LTPA login

configuration. You can add custom login modules before or after this module in the LTPA_WEB login

configuration.

The LTPA_WEB login configuration can process the HttpServletRequest object, the HttpServletResponse

object, and the Web application name that are passed in using a callback handler. For more information,

see ″Customizing a server-side Java Authentication and Authorization Service authentication and login

configuration″ in the documentation.

Chapter 12. Administering security 253

LTPA

Processes login requests that are not handled by the LTPA_WEB login configuration.

This login configuration is used by WebSphere Application Server Version 5.1 and previous versions.

The com.ibm.ws.security.server.lm.ltpaLoginModule login module is predefined in the LTPA login

configuration. You can add custom login modules before or after this module in the LTPA login

configuration. For more information, see ″Customizing a server-side Java Authentication and Authorization

Service authentication and login configuration″ in the documentation.

Login module settings for Java Authentication and Authorization

Service

Use this page to define the login module for a Java Authentication and Authorization Service (JAAS) login

configuration.

You can define the JAAS login modules for application and system logins. To define these login modules in

the administrative console, use one of the following paths:

v To view this administrative console page, click Security > Global security. Under Authentication, click

JAAS configuration > Application logins or System logins > alias_name. Under Additional

properties, click JAAS login modules.

Module class name

Specifies the class name of the given login module.

 Data type: String

Proxy class name

Specifies the name of the proxy login module class.

The default login modules defined by the WebSphere product use the proxy LoginModule class,

com.ibm.ws.security.common.auth.module.WSLoginModuleProxy. This proxy class loads the WebSphere

Application Server login module with the thread context class loader and delegates all the operations to

the real login module implementation. The real login module implementation is specified as the delegate

option in the option configuration. The proxy class is needed because the Developer Kit application class

loaders do not have visibility of the WebSphere Application Server product class loaders.

 Data type: String

Authentication Strategy

Specifies the authentication behavior as authentication proceeds down the list of login modules.

A Java Authentication and Authorization Service (JAAS) authentication provider supplies the authentication

strategy. In JAAS, an authentication strategy is implemented through the LoginModule interface.

 Data type: String

Default: Required

Range: Required, Requisite, Sufficient and Optional

Required

The LoginModule is required to succeed. If it succeeds or fails, authentication still continues to

proceed down the LoginModule list for each realm.

Requisite

The LoginModule is required to succeed. If it succeeds, authentication continues down the

254 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

LoginModule list in the realm entry. If it fails, control immediately returns to the application--that is,

authentication does not proceed down the LoginModule list.

Sufficient

The LoginModule is not required to succeed. If it does succeed, control immediately returns to the

application--again, authentication does not proceed down the LoginModule list. If it fails,

authentication continues down the list.

Optional

The LoginModule is not required to succeed. If it succeeds or fails, authentication still continues to

proceed down the LoginModule list.

Specify additional options by clicking Custom Properties under Additional Properties. These name and

value pairs are passed to the login modules during initialization. This process is one of the mechanisms

that is used to passed information to login modules.

Module order

Specifies the order in which the Java Authentication and Authorization Service (JAAS) login modules are

processed.

Click Set Order to change the processing order of the login modules.

Login module order settings for Java Authentication and Authorization

Service

Use this page to specify the order in which WebSphere Application Server processes the login

configuration modules.

You can specify the order of the login modules for application and system logins. To define these login

modules in the administrative console, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS Configuration > Application logins or System logins >

login_configuration. You can create a new configuration by clicking New.

3. Under Additional properties, click JAAS login modules.

4. Click Set order.

When you select one of the JAAS login module class names, you can move that class name up and down

the list. After you press OK and save the changes, the new order is reflected on either the Application

login configuration or System login configuration panel.

Login configuration settings for Java Authentication and Authorization

Service

Use this page to configure application login configurations.

To view this administrative console page, click Security > Global security. Under Authentication, click

JAAS configuration > Application logins or System logins > alias_name.

Click Apply to save changes and to add the extra node name that precedes the original alias name.

Clicking OK does not save the new changes in the security.xml file.

Alias

Specifies the alias name of the application login.

Do not use the forward slash character (/) in the alias name when defining JAAS login configuration

entries. The JAAS login configuration parser cannot process the forward slash character.

Chapter 12. Administering security 255

Data type: String

J2EE Connector security

The J2EE connector architecture defines a standard architecture for connecting the Java 2 Platform,

Enterprise Edition (J2EE) to heterogeneous enterprise information systems (EIS). Examples of EIS include

Enterprise Resource Planning (ERP), mainframe transaction processing (TP) and database systems.

The connector architecture enables an EIS vendor to provide a standard resource adapter for its EIS. A

resource adapter is a system-level software driver that is used by a Java application to connect to an EIS.

The resource adapter plugs into an application server and provides connectivity between the EIS, the

application server, and the enterprise application. Accessing information in EIS typically requires access

control to prevent unauthorized accesses. J2EE applications must authenticate to the EIS to open a

connection to it.

The J2EE Connector security architecture is designed to extend the end-to-end security model for

J2EE-based applications to include integration with EISs. An application server and an EIS collaborate to

ensure the proper authentication of a resource principal, which establishes a connection to an underlying

EIS. The connector architecture identifies the following mechanisms as the commonly-supported

authentication mechanisms although other mechanisms can be defined:

v BasicPassword: Basic user-password-based authentication mechanism that is specific to an EIS

v Kerbv5: Kerberos Version 5-based authentication mechanism

Applications define whether to use application-managed sign-on or container-managed sign-on in the

resource-ref elements in the deployment descriptor. Each resource-ref element describes a single

connection factory reference binding. The res-auth element in a resource-ref element, whose value is

either Application or Container, indicates whether the enterprise bean code should perform sign-on or

whether it should enable the WebSphere Application Server to sign-on to the resource manager using the

principal mapping configuration. The resource-ref element is defined at application assembly time. Use the

WebSphere Development Toolkit to configure the resource -ref.

Application managed sign-on

To access an EIS system, applications locate a connection factory from the JNDI namespace and invoke

the getConnection method on that connection factory object. The getConnection method might require a

user ID and password argument. A J2EE application can pass in a user ID and password to

getConnection, which subsequently passes the information to the resource adapter. Specifying a user ID

and password in the application code has some security implications, however.

The user ID and password, if coded into the Java source code, are available to developers and testers in

the organization. Also, the user ID and password are visible to users if they de-compile the Java class.

The user ID and password cannot be changed without first requiring a synchronized code change.

Alternatively, application code might retrieve sets of user IDs and passwords from persistent storage or

from an external service. This approach requires that IT administrators configure and manage a user ID

and password using the application-specific mechanism.

WebSphere Application Server allows a component-managed authentication alias to be specified on a

resource. This authentication data is common to all references to the resource. On the Resource

Adapter>Connection Factory configuration panel, select component-managed authentication alias.

With res-auth=Application, the authentication data is taken from, in order:

1. user id and password passed to getConnection(...)

2. component-managed auth alias on the Connection Factory or DataSource

3. Custom Properties UserName and Password on the DataSource

256 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The username and password properties can be initially defined in the RAR file, and can also be defined in

the admininstrative console or wsadmin scripting under custom properties. Do not use the custom

properties, which enable users to connect to the resources.

Container-managed sign-on

The user ID and password for the target EIS can be supplied by the application server. WebSphere

Application Server provides container-managed sign-on functionality. It locates the proper authentication

data for the target EIS to enable the client to establish a connection. Application code does not have to

provide a user ID and password in the getConnection call when it is configured to use container-managed

sign-on, nor does authentication data have to be common to all references to a resource. WebSphere

Application Server uses a Java Authentication and Authorization Service (JAAS) pluggable authentication

mechanism to use a pre-configured JAAS login configuration, and LoginModule(s) to map a client security

identity and credentials on the thread of execution to a pre-configured user ID and password.

WebSphere Application Server ships a default many-to-one credential mapping LoginModule that maps

any client identity on the thread of execution to a pre-configured user ID and password for a specified

target EIS. The default mapping module is a special purpose JAAS LoginModule that returns a

PasswordCredential specified by the configured J2C authentication data entry. The default mapping

LoginModule performs a table lookup, but does not perform actual authentication. The user ID and

password are stored together with an alias in the J2C Authentication data list. The J2C Authentication data

list is located on the Global Security panel under Authentication > JAAS Configuration. The default

principal and credential mapping function is defined by the DefaultPrincipalMapping application JAAS login

configuration.

The DefaultPrincipalMapping login configuration should not be modified since WebSphere Application

Server added performance enhancements to this frequently used default mapping configuration.

WebSphere Application Server does not support modifying the DefaultPrincipalMapping configuration,

changing the default LoginModule, or stacking a custom LoginModule in the configuration.

For most systems, the default configuration with a many-to-one mapping is sufficient. However,

WebSphere Application Server does support custom principal and credential mapping configurations.

Custom mapping modules can be added to the application logins JAAS configuration by creating a new

JAAS login configuration with a unique name. For example, a custom mapping module can provide

one-to-one mapping or Kerberos functionality.

You also can use the WebSphere Application Server administrative console to bind the resource manager

connection factory references to one of the configured resource factories. If the value of the res-auth

element is Container, you must configure the mapping configuration using the Map resource references

to resources link on an enterprise application panel.

Map resource references to references

To map resource references to resources, do the following:

1. Click Applications > Enterprise Applications.

2. Select an application.

3. Under Additional Properties, select Map resource references to resources.

4. Select a connection factory reference binding from the table that has a login configuration of Resource

authorization: Container. You must specify an authentication method for the selected connection factory

reference binding. Choose either Use default method or Use custom login configuration. If you

choose the Use default method option, the WebSphere Application Server DefaultPrincipalMapping

login configuration is selected. You must select an authentication data alias from the drop-down list.

5. After you make a selection, click Apply for the configuration to take effect.

Chapter 12. Administering security 257

6. If you choose Use custom login configuration, you must select a mapping JAAS login configuration

from the drop-down list.

7. Click Apply. The selected login configuration name and an Update button appear in the login

configuration field of the particular connection factory reference binding.

8. Click Update to define mapping properties that you might need to pass to the mapping

LoginModule(s).

J2C mapping modules and mapping properties

Mapping modules are special JAAS login modules that provide principal and credential mapping

functionality. You can define and configure custom mapping modules using the administrative console.

You also can define and pass context data to mapping modules by using login options in each JAAS login

configuration. In WebSphere Application Server Version 6, you also can define context data using mapping

properties on each connection factory reference binding.

Login options that are defined under each JAAS login configuration are shared among all resources that

use the same JAAS login configuration and mapping modules. Mapping properties that are defined for

each connection factory reference binding are used exclusively by that resource reference.

Consider a usage scenario where an external mapping service is used, (such the as Tivoli Access

Manager Global Sign-On (GSO) service). You have two EIS servers: DB2 and MQ.

Use the Tivoli Access Manager GSO to locate authentication data for both backend servers. The

authentication data for DB2 is different from that for MQ, however. Use the login option in a mapping JAAS

login configuration to specify the parameters that are required to establish a connection to the TAM GSO

service. Use the mapping properties in a connection factory reference binding to specify which EIS server

the user ID and password are required for.

For more detailed information about developing a mapping module, see the Developing your own Java 2

security mapping module article.

Note:

v WebSphere Application Server Version 6 configures container-managed sign-on under each

enterprise application. This is different than WebSphere Application Server Version 5, which

configures container-managed sign-on for each connection factory.

v The deprecated way of configuration at the Resource Adapter > Connection factory panel still

works in WebSphere Application Server Version 6. The advantage to configuring at the

connection factory reference level is that the configuration has application scope and is not

visible to other applications. However, the mapping configuration defined at the connection

factory is visible to other applications.

v The mapping configuration at the connection factory has moved to the resource manager

connection factory reference. The mapping LoginModules that were developed using WebSphere

Application Server Version 5 JAAS Callback types can be used by the resource manager

connection factory reference, but the mapping LoginModules cannot take advantage of the

custom mapping properties feature.

v Connection factory reference binding supports mapping properties, and passes those properties

to mapping LoginModules by way of a new WSMappingPropertiesCallback Callback type. In

addition, WSMappingPropertiesCallback and the new WSManagedConnectionFactoryCallback

are defined in the com.ibm.wsspi package. New mapping LoginModules should use the new

Callback types.

258 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Managing J2EE Connector Architecture authentication data entries

Java 2 Platform, Enterprise Edition (J2EE) Connector authentication data entries are used by resource

adapters and Java DataBase Connectivity (JDBC) data sources. A J2EE Connector authentication data

entry contains authentication data, which includes the following information:

Alias An identifier that identifies the authenticated data entry. When configuring resource adapters or

data sources, the administrator can specify which authentication data to choose using the

corresponding alias.

User ID

A user identity of the intended security domain. For example, if a particular authentication data

entry is used to open a new connection to DB2, this entry contains a DB2 user identity.

Password

The password of the user identity is encoded in the configuration respository.

Description

A short text description.

This task creates and deletes Java 2 Connector (J2C) authentication data entries.

1. Delete a J2C authentication data entry.

a. Click Security in the navigation tree and select Global Security, and then click JAAS

Configuration > J2C Authentication Data. The J2C Authentication Data Entries panel is

displayed.

b. Select the check boxes for the entries to delete and click Delete. Before deleting or removing an

authentication data entry, make sure that it is not used or referenced by any resource adapter or

data source. If the deleted authentication data entry is used or referenced by a resource, the

application that uses the resource adapter or the data source fails to connect to the resources.

2. Create a new J2C authentication data entry.

a. Click Security in the navigation tree and select Global Security, and then click JAAS

Configuration > J2C Authentication Data. The J2C Authentication Data Entries panel is

displayed.

b. Click New.

c. Enter a unique alias, a valid user ID, a valid password, and a short description (optional).

d. Click OK or Apply. No validation for the user ID and password is required.

e. Click Save. For a Network Deployment installation, make sure that a file synchronized operation is

performed to propagate the changes to other nodes.

A new J2C authentication data entry is created or an old entry is removed. The newly created entry is

visible without restarting the application server process to use in the data source definition. But the entry is

only in effect after the server is restarted. Specifically, the authentication data is loaded by an application

server when starting an application and is shared among applications in the same application server.

If you create or update a data source that points to a newly created J2C authentication data alias, the test

connection fails to connect until you restart the deployment manager. After you restart the deployment

manager, the J2C authentication data is reflected in the run-time configuration. Any changes to the J2C

authentication data fields require a deployment manager restart for the changes to take effect.

This step defines authentication data that you can share among resource adapters and data sources. Use

the authentication data entry that is defined in the resource adapters or the data sources.

Java 2 Connector authentication data entry settings

Use this page as a central place for administrators to define authentication data, which includes user

identities and passwords. These values can reference authentication data entries by resource adapters,

data sources, and other configurations that require authentication data using an alias.

Chapter 12. Administering security 259

You can display this page directly from the JAAS configuration page or from other pages for resources that

use J2EE Connector (J2C) authentication data entries. For example, to view this administrative page, you

can click either Security > Global security. Under Authentication, click JAAS configuration > J2C

authentication data.

Deleting authentication data entries: Be careful when deleting authentication data entries. If the deleted

authentication data is used by other configurations, the initializing resources process fails.

Define a new authentication data entry by clicking New.

Alias:

Specifies the name of the authentication data entry.

 Data type: String

Units: String

Default: None

User ID:

Specifies the user identity.

 Data type: String

Description:

Specifies an optional description of the authentication data entry. For example, this authentication data

entry is used to connect to DB2.

 Data type: String

Identity mapping

Identity mapping is a one-to-one mapping of a user identity between two servers so that the proper

authorization decisions are made by downstream servers. Identity mapping is necessary when the

integration of servers is needed, but the user registries are different and not shared between the systems.

In most cases, requests flow downstream between two servers that are part of the same security domain.

In WebSphere Application Server, two servers that are members of the same cell are also members of the

same security domain. In the same cell, the two servers have the same user registry and the same

Lightweight Third Party Authentication (LTPA) keys for token encryption. These two commonalities ensure

that the LTPA token (among other user attributes), which flows between the two servers, not only can be

decrypted and validated, but also the user identity in the token can be mapped to attributes that are

recognized by the authorization engine.

The most reliable and recommended configuration involves two servers within the same cell. However,

sometimes you need to integrate multiple systems that cannot use the same user registry. When the user

registries are different between two servers, the security domain or realm of the target server does not

match the security domain of the sending server.

WebSphere Application Server enables mapping to occur either before sending the request outbound or

before enabling the existing security credentials to flow to the target server as-is. The credentials are

mapped inbound with the specification that the target realm is trusted.

260 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

An alternative to mapping is to send the user identity without the token or the password to a target server

without actually mapping the identity. The use of the user identity is based on trust between the two

servers. Use Common Secure Interoperability version 2 (CSIv2) identity assertion. When enabled, it sends

just the X.509 certificate, principal name, or distinguished name (DN) based upon what was used by the

original client to perform the initial authentication. During CSIv2 identity assertion, trust is established

between the WebSphere Application Servers.

The user identity must exist in the target user registry for identity assertion to work. This process can also

enable interoperability between other Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 and higher

compliant application servers. When using identity assertion, if both the sending server and target servers

have identity assertion configured, WebSphere Application Server always uses this method of

authentication, even when both servers are in the same security domain. For more information on CSIv2

identity assertion, see “Identity assertion” on page 382.

When the user identity is not present in the user registry of the target server, identity mapping must occur

either before the request is sent outbound or when the request comes inbound. This decision depends

upon your environment and requirements. However, it is typically easier to map the user identity before the

request is sent outbound for the following reasons:

v You know the user identity of the existing credential as it comes from the user registry of the sending

server.

v You do not have to worry about sharing Lightweight Third Party Authentication (LTPA) keys with the

other target realm because you are not mapping the identity to LTPA credentials. Typically, you are

mapping the identity to a user ID and password that are present in the user registry of the target realm.

When you do perform outbound mapping, in most cases, it is recommended that you use Secure Sockets

Layer (SSL) to protect the integrity and confidentiality of the security information sent across the network.

If LTPA keys are not shared between servers, an LTPA token cannot be validated at the inbound server. In

this case, outbound mapping is necessary because the user identity can not be determined at the inbound

server to do inbound mapping. For more information, see “Configuring outbound mapping to a different

target realm” on page 270.

When you need inbound mapping, potentially due to the mapping capabilities of the inbound server, you

must ensure that both servers have the same LTPA keys so that you can get access to the user identity.

Typically, in secure communications between servers, an LTPA token is passed into the

WSCredTokenCallback of the inbound JAAS login configuration for the purposes of client authentication. A

method is available that enables you to open the LTPA token, if valid, and get access to the user unique

ID so that mapping can be performed. For more information, see “Configuring inbound identity mapping.”

In other cases, such as identity assertion, you might receive a user name in the NameCallback of the

inbound login configuration that enables you to map the identity.

Configuring inbound identity mapping

For inbound identity mapping, it is recommend that you write a custom login module and configure

WebSphere Application Server to run the login module first within the system login configurations.

Consider the following steps when you write your custom login module:

1. Get the inbound user identity from the callbacks and map the identity, if necessary This step occurs in

the login() method of the login module. A valid authentication has either or both of the following

callbacks present: NameCallback and the WSCredTokenCallback. The following code sample shows

you how to determine the user identity:

javax.security.auth.callback.Callback callbacks[] =

 new javax.security.auth.callback.Callback[3];

 callbacks[0] = new javax.security.auth.callback.NameCallback(″″);

 callbacks[1] = new javax.security.auth.callback.PasswordCallback

 (″Password: ″, false);

Chapter 12. Administering security 261

callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl(″″);

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback(″″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Shows which callbacks contain information

 boolean identitySwitched = false;

 String uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 java.util.List authzTokenList = ((WSTokenHolderCallback)

 callbacks[3]).getTokenHolderList();

 if (credToken != null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

 // Now set the string to the UID so that you can use the result for either

 // mapping or logging in.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 }

 else if (uid == null)

 {

 // Throws an except if invalid authentication data exists.

 // You must have either UID or CredToken

 throw new WSLoginFailedException(″invalid authentication data.″);

 }

 else if (uid != null && password != null)

 {

 // This is a typical authentication. You can choose to map this ID to

 // another ID or you can skip it and allow WebSphere Application Server

 // to login for you. When passwords are presented, be very careful to not

 // validate the password because this is the initial authentication.

 return true;

 }

 // If desired, map this uid to something else and set the identitySwitched

 // boolean. If the identity was changed, clear the propagated attributes

262 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// below so they are not used incorrectly.

 uid = myCustomMappingRoutine (uid);

 // Clear the propagated attributes because they no longer applicable to the

 // new identity

 if (identitySwitched)

 {

 ((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);

 }

2. Check to see if attribute propagation occurred and if the attributes for the user are already present

when the identity remains the same. Check to see if the user attributes are already present from the

sending server to avoid duplicate calls to the user registry lookup. To check for the user attributes, use

a method on the WSTokenHolderCallback that analyzes the information present in the callback to

determine if the information is sufficient for WebSphere Application Server to create a Subject. The

following code sample checks for the user attributes:

boolean requiresLogin =

((com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback)

callbacks[2]).requiresLogin();

If sufficient attributes are not present to form the WSCredential and WSPrincipal objects needed to

perform authorization, the previous code sample returns a true result. When the result is false, you can

choose to discontinue processing as the necessary information exists to create the Subject without

performing additional remote user registry calls.

3. Optional: Look up the required attributes from the user registry, put the attributes in hashtable, and

add the hashtable to the shared state. If the identity is switched in this login module, you must

complete the following steps:

a. Create the hashtable of attributes as shown in the following example.

b. Add the hashtable to shared state.

If the identity is not switched, but the value of the requiresLogin code sample shown previously is

true, you can create the hashtable of attributes. However, you are not required to create a hashtable in

this situation as WebSphere Application Server handles the login for you. However, you might consider

creating a hashtable to gather attributes in special cases where you are using your own special user

registry. Creating a UserRegistry implementation, using a hashtable, and letting WebSphere Application

Server gather the user attributes for you might be the easiest solution. The following table shows how

to create a hashtable of user attributes:

if (requiresLogin || identitySwitched)

 {

 // Retrives the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Retrieves the local UserRegistry implementation.

 com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.

 security.UserRegistry)

 ctx.lookup(″UserRegistry″);

 // Retrieves the user registry uniqueID based on the uid specified

 // in the NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 // Retrieves the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

Chapter 12. Administering security 263

// Retrieves the groups associated with the uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information that you gathered

 // from the UserRegistry implementation.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the look up mechanism for

 // the created Subject. The cache key can be an object, but should have

 // an implemented toString() method. Make sure that the cacheKey contains

 // enough information to scope it to the user and any additional attributes

 // that you are using. If you do not specify this property the Subject is

 // scoped to the returned WSCREDENTIAL_UNIQUEID, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY, ″myCustomAttribute″ + uniqueid);

 // Adds the hashtable to the sharedState of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY, hashtable);

 }

The following rules define in more detail how a hashtable login is performed. You must use a

java.util.Hashtable object in either the Subject (public or private credential set) or shared state

HashMap. The com.ibm.wsspi.security.token.AttributeNameConstants class defines the keys that

contain the user information. If the hashtable object is put into the shared state of the login context

using a custom login module that is listed prior to the Lightweight Third Party Authentication (LTPA)

login module, the value of the java.util.Hashtable object is searched using the following key within the

shared state hashMap:

Property

com.ibm.wsspi.security.cred.propertiesObject

Reference to the property

AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

Explanation

This key searches for the hashtable object that contains the required properties in sharedState

of the login context.

Expected result

A java.util.Hashtable object.

If a java.util.Hashtable object is found either inside the Subject or within the sharedState area, verify

that the following properties are present in the hashtable:

Property

com.ibm.wsspi.security.cred.uniqueId

Reference to the property

AttributeNameConstants.WSCREDENTIAL_UNIQUEID

Returns

java.util.String

264 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Explanation

The value of the property must be a unique representation of the user. For the WebSphere

Application Server default implementation, this property represents the information that is

stored in the application authorization table. The information is located in the application

deployment descriptor after it is deployed and user-to-role mapping is performed. See the

expected format examples if the user to role mapping is performed using a lookup to a

WebSphere Application Server user registry implementation. If a third-party authorization

provider overrides the user to role mapping, then the third-party authorization provider defines

the format. To ensure compatibility with the WebSphere Application Server default

implementation for the unique ID value, call the WebSphere Application Server public String

getUniqueUserId(String userSecurityName) UserRegistry method.

Expected format examples

 Realm Format (uniqueUserId)

Lightweight Directory Access

Protocol (LDAP)

ldaphost.austin.ibm.com:389/cn=user,o=ibm,c=us

Windows MYWINHOST/S-1-5-21-963918322-163748893-4247568029-500

UNIX MYUNIXHOST/32

The com.ibm.wsspi.security.cred.uniqueId property is required.

Property

com.ibm.wsspi.security.cred.securityName

Reference to the property

AttributeNameConstants. WSCREDENTIAL_ SECURITYNAME

Returns

java.util.String

Explanation

This property searches for the securityName of the authentication user. This name is

commonly called the display name or short name. WebSphere Application Server uses the

securityName attribute for the getRemoteUser(), getUserPrincipal() and getCallerPrincipal()

application programming interfaces (APIs). To ensure compatibility with the WebSphere

Application Server default implementation for the securityName value, call the WebSphere

Application Server public String getUserSecurityName(String uniqueUserId) UserRegistry

method.

Expected format examples

 Realm Format (uniqueUserId)

LDAP user (LDAP UID)

Windows user (Windows username)

UNIX user (UNIX username)

The com.ibm.wsspi.security.cred.securityName property is required.

Property

com.ibm.wsspi.security.cred.groups

Reference to the property

AttributeNameConstants. WSCREDENTIAL_GROUPS

Returns

java.util.ArrayList

Chapter 12. Administering security 265

Explanation

This key searches for the ArrayList of groups to which the user belongs. The groups are

specified in the realm_name/user_name format. The format of these groups is important as the

groups are used by the WebSphere Application Server authorization engine for group-to-role

mappings in the deployment descriptor. The format provided must match the format expected

by the WebSphere Application Server default implementation. When you use a third-party

authorization provider, you must use the format expected by the third-party provider. To ensure

compatibility with the WebSphere Application Server default implementation for the unique

group IDs value, call the WebSphere Application Server public List

getUniqueGroupIds(String uniqueUserId) UserRegistry method.

Expected format examples for each group in the ArrayList

 Realm Format

LDAP ldap1.austin.ibm.com:389/cn=group1,o=ibm,c=us

Windows MYWINREALM/S-1-5-32-544

UNIX MY/S-1-5-32-544

The com.ibm.wsspi.security.cred.groups property is not required. A user is not required to have

associated groups.

Property

com.ibm.wsspi.security.cred.cacheKey

Reference to the property

AttributeNameConstants. WSCREDENTIAL_CACHE_KEY

Returns

java.lang.Object

Explanation

This key property can specify an Object that represents the unique properties of the login

including the user-specific information and the user dynamic attributes that might affect

uniqueness. For example, when the user logs in from location A, which might affect their

access control, the cacheKey needs to include location A so that the Subject received is the

correct Subject for the current location.

This com.ibm.wsspi.security.cred.cacheKey property is not required. When this property is not

specified, the cache lookup is the value specified for WSCREDENTIAL_UNIQUEID. When this

information is found in the java.util.Hashtable object, WebSphere Application Server creates a Subject

similar to the Subject that goes through the normal login process (at least for LTPA). The new Subject

contains a WSCredential object and a WSPrincipal object that is fully populated with the information

found in the Hashtable object.

4. Add your custom login module into the RMI_INBOUND, WEB_INBOUND, and DEFAULT Java

Authentication and Authorization Service (JAAS) system login configurations. Configure the

RMI_INBOUND login configuration so that WebSphere Application Server loads your new custom login

module first.

a. Click Security > Global security.

b. Under Authentication, click JAAS configuration > System logins > RMI_INBOUND

c. Under Additional Properties, click JAAS login modules > New to add your login module to the

RMI_INBOUND configuration.

d. Return to the JAAS login modules panel for RMI_INBOUND and click Set order to change the

order that the login modules are loaded so that WebSphere Application Server loads your custom

login module first.

e. Repeat the previous three steps for the WEB_INBOUND and DEFAULT login configurations.

This process configures identity mapping for an inbound request.

266 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The “Example: Custom login module for inbound mapping” article shows a custom login module that

creates a java.util.Hashtable based on the specified NameCallback. The java.util.Hashtable is added to the

sharedState java.util.Map so that the WebSphere Application Server login modules can locate the

information in the Hashtable.

Example: Custom login module for inbound mapping

This sample shows a custom login module that creates a java.util.Hashtable hastable that is based on the

specified NameCallback callback. The java.util.Hashtable hash table is added to the sharedState

java.util.Map so that the WebSphere Application Server login modules can locate the information in the

Hashtable.

public customLoginModule()

{

public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

{

 // (For more information on initialization, see

 // “Custom login module development for a system login configuration” on page 78.)

 _sharedState = sharedState;

}

public boolean login() throws LoginException

{

 // (For more information on what to do during login, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 javax.security.auth.callback.Callback callbacks[] =

 new javax.security.auth.callback.Callback[3];

 callbacks[0] = new javax.security.auth.callback.NameCallback(″″);

 callbacks[1] = new javax.security.auth.callback.PasswordCallback(

 ″Password: ″, false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl(″″);

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback(″″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // Determines which callbacks contain information

 boolean identitySwitched = false;

 String uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 java.util.List authzTokenList = ((WSTokenHolderCallback) callbacks[3]).

 getTokenHolderList();

Chapter 12. Administering security 267

if (credToken != null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

 // Set the string to the UID so you can use the information to either

 // map or login.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 }

 catch (Exception e)

 {

 // handle exception

 }

 }

 else if (uid == null)

 {

 // Invalid authentication data. You must have either UID or CredToken

 throw new WSLoginFailedException(″invalid authentication data.″);

 }

 else if (uid != null && password != null)

 {

 // This is a typical authentication. You can choose to map this ID to

 // another ID or you can skip it and allow WebSphere Application Server

 // to login for you. When passwords are presented, be very careful not to

 // validate the password because this is the initial authentication.

 return true;

 }

 // If desired, map this uid to something else and set the identitySwitched

 // boolean. If the identity is changed, clear the propagated attributes below

 // so they are not used incorrectly.

 uid = myCustomMappingRoutine (uid);

 // Clear the propagated attributes because they no longer apply to the new identity

 if (identitySwitched)

 {

 ((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);

 }

 boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback) callbacks[2]).requiresLogin();

 if (requiresLogin || identitySwitched)

 {

 // Retrieves the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Retrieves the local UserRegistry object.

 com.ibm.websphere.security.UserRegistry reg =

 (com.ibm.websphere.security.UserRegistry) ctx.lookup(″UserRegistry″);

 // Retrieves the registry uniqueID based on the uid that is specified

 // in the NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

268 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 // Retrieves the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Retrieves the groups associated with this uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information that you gathered

 // from the UserRegistry.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the look up mechanism for

 // the created Subject. The cache key can be an object, but should have

 // an implemented toString() method. Make sure the cacheKey contains enough

 // information to scope it to the user and any additional attributes you are

 // using. If you do not specify this property, the Subject is scoped to the

 // WSCREDENTIAL_UNIQUEID returned, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY, ″myCustomAttribute″ + uniqueid);

 // Adds the hashtable to the sharedState of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY, hashtable);

 }

 else if (requiresLogin == false)

 {

 // For more information on this section, see

 // “Security attribute propagation” on page 275.

 // If you added a custom Token implementation, you can search through the

 // token holder list for it to deserialize.

 // Note: Any Java objects are automatically deserialized by

 // wsMapDefaultInboundLoginModule

 for (int i=0; i<authzTokenList.size(); i++)

 {

 if (authzTokenList[i].getName().equals(″com.acme.MyCustomTokenImpl″)

 {

 byte[] myTokenBytes = authzTokenList[i].getBytes();

 // Passes these bytes into the constructor of your implementation

 // class for deserialization.

 com.acme.MyCustomTokenImpl myTokenImpl =

 new com.acme.MyCustomTokenImpl(myTokenBytes);

 }

 }

 }

}

public boolean commit() throws LoginException

{

Chapter 12. Administering security 269

// (For more information on what to do during a commit, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Not doing anything here for this specific example

}

// Defines your login module variables

com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;

com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

java.util.Map _sharedState = null;

}

Configuring outbound mapping to a different target realm

By default, when WebSphere Application Server makes an outbound request from one server to another

server in a different security realm, the request is rejected. This request is rejected to protect against a

rogue server reading potentially sensitive information if successfully impersonating the home of the object.

The following alternatives are available to enable one server to send outbound requests to a target server

in a different realm:

v Do not perform mapping, instead, allow the existing security information to flow to a trusted target

server even if the target server resides in a different realm. To allow information to flow to a server in a

different realm, complete the following steps in the administrative console:

1. Click Security > Global security.

2.

3. Specify the target realms in the Trusted target realms field. You can specify each trusted target

realm that is separated by a pipe (|) character. For example, specify

server_name.domain:port_number for a Lightweight Directory Access Protocol (LDAP) server or the

machine name for Local OS. If you want to propagate security attributes to a different target realm,

you must specify that target realm in the Trusted target realms field.

v Use the Java Authentication and Authorization Service (JAAS) WSLogin application login configuration

to create a basic authentication Subject that contains the credentials of the new target realm. This

configuration enables you to log in with a realm, user ID, and password that are specific to the user

registry of the target realm. You can provide the login information from within the Java 2 Platform,

Enterprise Edition (J2EE) application that is making the outbound request or from within the

RMI_OUTBOUND system login configuration. These two login options are described in the following

information:

1. Use the WSLogin application login configuration from within the J2EE application to log in and get a

Subject that contains the user ID and the password of the target realm. The application then can

wrap the remote call with a WSSubject.doAs call. For an example, see “Example: Using the

WSLogin configuration to create a basic authentication subject” on page 271.

2. Use the code sample in “Example: Using the WSLogin configuration to create a basic authentication

subject” on page 271 from this plug point within the RMI_OUTBOUND login configuration. Every

outbound Remote Method Invocation (RMI) request passes through this login configuration when it

is enabled. Complete the following steps to enable and plug in this login configuration:

a. Click Security > Global security.

b. Under Authentication, click Authentication protocol > CSIv2 outbound authentication.

c. Select the Custom outbound mapping option. If the Security Attribute Propagation option is

selected, then WebSphere Application Server is already using this login configuration and you do

not need to enable custom outbound mapping.

d. Write a custom login module. For more information, see “Custom login module development for

a system login configuration” on page 78.

270 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The “Example: Sample login configuration for RMI_OUTBOUND” on page 273 article shows a

custom login module that determines whether the realm names match. In this example, the

realm names do not match so the WSLogin is used to create a basic authentication Subject

based on custom mapping rules. The custom mapping rules are specific to the customer

environment and must be implemented using a realm to user ID and password mapping utility.

e. Configure the RMI_OUTBOUND login configuration so that your new custom login module is first

in the list.

1) Click Security > Global security.

2) Under Authentication, click JAAS configuration > System logins > RMI_OUTBOUND.

3) Under Additional Properties, click JAAS login modules > New to add your login module to

the RMI_OUTBOUND configuration.

4) Return to the JAAS login modules panel for RMI_OUTBOUND and click Set order to

change the order that the login modules are loaded so that your custom login is loaded first.

v Add the use_realm_callback and use_appcontext_callback options to the outbound mapping module for

WSLogin. To add these options, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS Configuration > Application logins > WSLogin.

3. Under Additional Properties, click JAAS Login Modules >

com.ibm.ws.security.common.auth.module.WSLoginModuleImpl.

4. Under Additional Properties, click Custom Properties > New.

5. On the Custom Properties panel, enter use_realm_callback in the Name field and true in the Value

field.

6. Click OK.

7. Click New to enter the second custom property.

8. On the Custom Properties panel, enter use_appcontext_callback in the Name field and true in the

Value field.

9. Click OK.

The following changes are made to the security.xml file:

<entries xmi:id=″JAASConfigurationEntry_2″ alias=″WSLogin″>

 <loginModules xmi:id=″JAASLoginModule_2″

 moduleClassName=″com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy″

 authenticationStrategy=″REQUIRED″>

 <options xmi:id=″Property_2″ name=″delegate″

 value=″com.ibm.ws.security.common.auth.module.WSLoginModuleImpl″/>

 <options xmi:id=″Property_3″ name=″use_realm_callback″ value=″true″/>

 <options xmi:id=″Property_4″ name=″use_appcontext_callback″ value=″true″/>

 </loginModules>

</entries>

Example: Using the WSLogin configuration to create a basic

authentication subject

This example shows how to use the WSLogin application login configuration from within a Java 2 Platform,

Enterprise Edition (J2EE) application to login and get a Subject that contains the user ID and the

password of the target realm

 javax.security.auth.Subject subject = null;

try

{

 // Create a login context using the WSLogin login configuration and specify a

Chapter 12. Administering security 271

// user ID, target realm, and password. Note: If the target_realm_name is the

 // same as the current realm, an authenticated Subject is created. However, if

 // the target_realm_name is different from the current realm, a basic

 // authentication Subject is created that is not validated. This unvalidated

 // Subject is created so that you can send a request to the different target

 // realm with valid security credentials for that realm.

 javax.security.auth.login.LoginContext ctx = new LoginContext(″WSLogin″,

 new WSCallbackHandlerImpl(″userid″, ″target_realm_name″, ″password″));

 // Note: The following is an alternative that validates the user ID and

 // password specified against the target realm. It will perform a remote call

 // to the target server and will return true if the user ID and password are

 // valid and false if the user ID and password are invalid. If false is

 // returned, a WSLoginFailedException is thrown. You can catch that exception and

 // perform a retry or stop the request from flowing by allowing that exception to

 // surface out of this login.

 // ALTERNATIVE LOGIN CONTEXT THAT VALIDATES THE USER ID AND PASSWORD TO THE

 // TARGET REALM

 /**** currently remarked out ****

 java.util.Map appContext = new java.util.HashMap();

 appContext.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

 ″com.ibm.websphere.naming.WsnInitialContextFactory″);

 appContext.put(javax.naming.Context.PROVIDER_URL,

 ″corbaloc:iiop:target_host:2809″);

 javax.security.auth.login.LoginContext ctx = new LoginContext(″WSLogin″,

 new WSCallbackHandlerImpl(″userid″, ″target_realm_name″, ″password″, appContext));

 **** currently remarked out ****/

 // Starts the login

 ctx.login();

 // Gets the Subject from the context

 subject = ctx.getSubject();

 }

 catch (javax.security.auth.login.LoginException e)

 {

 throw new com.ibm.websphere.security.auth.WSLoginFailedException (e.getMessage(), e);

 }

 if (subject != null)

 {

 // Defines a privileged action that encapsulates your remote request.

java.security.PrivilegedAction myAction = java.security.PrivilegedAction()

 {

 public Object run()

 {

 // Assumes a proxy is already defined. This example method returns a String

 return proxy.remoteRequest();

 }

 });

 // Executes this action using the basic authentication Subject needed for

 // the target realm security requirements.

272 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

String myResult = (String) com.ibm.websphere.security.auth.WSSubject.doAs

 (subject, myAction);

 }

Example: Sample login configuration for RMI_OUTBOUND

This example shows a sample login configuration for RMI_OUTBOUND that determines whether the realm

names match between two servers.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // “Custom login module development for a system login configuration” on page 78.)

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Gets the WSProtocolPolicyCallback object

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new com.ibm.wsspi.security.auth.callback.

 WSProtocolPolicyCallback(″Protocol Policy Callback: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // Receives the RMI (CSIv2) policy object for checking the target realm

 // based upon information from the IOR.

 // Note: This object can be used to perform additional security checks.

 // See the Javadoc for more information.

 csiv2PerformPolicy = (CSIv2PerformPolicy) ((WSProtocolPolicyCallback)callbacks[0]).

 getProtocolPolicy();

 // Checks if the realms do not match. If they do not match, then login to

 // perform a mapping

 if (!csiv2PerformPolicy.getTargetSecurityName().equalsIgnoreCase(csiv2PerformPolicy.

 getCurrentSecurityName()))

 {

 try

 {

 // Do some custom realm -> user ID and password mapping

 MyBasicAuthDataObject myBasicAuthData = MyMappingLogin.lookup

 (csiv2PerformPolicy.getTargetSecurityName());

 // Creates the login context with basic authentication data gathered from

Chapter 12. Administering security 273

// custom mapping

 javax.security.auth.login.LoginContext ctx = new LoginContext(″WSLogin″,

 new WSCallbackHandlerImpl(myBasicAuthData.userid,

 csiv2PerformPolicy.getTargetSecurityName(),

 myBasicAuthData.password));

 // Starts the login

 ctx.login();

 // Gets the Subject from the context. This subject is used to replace

 // the passed-in Subject during the commit phase.

 basic_auth_subject = ctx.getSubject();

 }

 catch (javax.security.auth.login.LoginException e)

 {

 throw new com.ibm.websphere.security.auth.

 WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during commit, see

 // “Custom login module development for a system login configuration” on page 78.)

 if (basic_auth_subject != null)

 {

 // Removes everything from the current Subject and adds everything from the

 // basic_auth_subject

 try

 {

 public final Subject basic_auth_subject_priv = basic_auth_subject;

 // Do this in a doPrivileged code block so that application code

 // does not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedExceptionAction()

 {

 public Object run() throws WSLoginFailedException

 {

 // Removes everything user-specific from the current outbound

 // Subject. This a temporary Subject for this specific invocation

 // so you are not affecting the Subject set on the thread. You may

 // keep any custom objects that you want to propagate in the Subject.

 // This example removes everything and adds just the new information

 // back in.

 try

 {

 subject.getPublicCredentials().clear();

 subject.getPrivateCredentials().clear();

 subject.getPrincipals().clear();

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

274 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// Adds everything from basic_auth_subject into the login subject.

 // This completes the mapping to the new user.

 try

 {

 subject.getPublicCredentials().addAll(basic_auth_subject.

 getPublicCredentials());

 subject.getPrivateCredentials().addAll(basic_auth_subject.

 getPrivateCredentials());

 subject.getPrincipals().addAll(basic_auth_subject.

 getPrincipals());

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (PrivilegedActionException e)

 {

 throw new WSLoginFailedException (e.getException().getMessage(),

 e.getException());

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy csiv2PerformPolicy = null;

 javax.security.auth.Subject basic_auth_subject = null;

}

Security attribute propagation

Security attribute propagation enables WebSphere Application Server to transport security attributes

(authenticated Subject contents and security context information) from one server to another in your

configuration. WebSphere Application Server might obtain these security attributes from either an

enterprise user registry, which queries static attributes, or a custom login module, which can query static or

dynamic attributes. Dynamic security attributes, which are custom in nature, might include the

authentication strength used for the connection, the identity of the original caller, the location of the original

caller, the IP address of the original caller, and so on.

Security attribute propagation provides propagation services using Java serialization for any objects that

are contained in the Subject. However, Java code must be able to serialize and de-serialize these objects.

The Java programming language specifies the rules for how Java code can serialize an object. Because

problems can occur when dealing with different platforms and versions of software, WebSphere Application

Server also offers a token framework that enables custom serialization functionality. The token framework

has other benefits that include the ability to identify the uniqueness of the token. This uniqueness

determines how the Subject gets cached and the purpose of the token. The token framework defines four

marker token interfaces that enable the WebSphere Application Server run time to determine how to

propagate the token.

Important: Any custom tokens that are used in this framework are not used by WebSphere Application

Server for authorization or authentication. The framework serves as a way to notify

Chapter 12. Administering security 275

WebSphere Application Server that you want these tokens propagated in a particular way.

WebSphere Application Server handles the propagation details, but does not handle

serialization or deserialization of custom tokens. Serialization and deserialization of these

custom tokens are carried out by the implementation and handled by a custom login module.

With WebSphere Application Server 6.0 and later, a custom Java Authorization Contract for

Container (JACC) provider can be configured to enforce access control for Java 2 Platform,

Enterprise Edition (J2EE) applications. A custom JACC provider can explore the custom

security attributes in the caller JAAS subject in making access control decisions.

When a request is being authenticated, a determination is made by the login modules whether this is an

initial login or a propagation login. An initial login is the process of authenticating the user information,

typically a user ID and password, and then calling the application programming interfaces (APIs) for the

remote user registry to look up secure attributes that represent the user access rights. A propagation login

is the process of validating the user information, typically an Lightweight Third Party Authentication (LTPA)

token, and then deserializing a series of tokens that constitute both custom objects and token framework

objects known to the WebSphere Application Server.

The following marker tokens are introduced in the framework:

Authorization token

The authorization token contains most of the authorization-related security attributes that are

propagated. The default authorization token is used by the WebSphere Application Server

authorization engine to make Java 2 Platform, Enterprise Edition (J2EE) authorization decisions.

Service providers can use custom authorization token implementations to isolate their data in a

different token; perform custom serialization and de-serialization; and make custom authorization

decisions using the information in their token at the appropriate time. For information on how to

use and implement this token type, see “Default PropagationToken” on page 282 and

“Implementing a custom PropagationToken” on page 287.

Single signon (SSO) token

A custom SingleSignonToken token that is added to the Subject is automatically added to the

response as an HTTP cookie and contains the attributes sent back to Web browsers. The token

interface getName() method together with the getVersion method defines the cookie name.

WebSphere Application Server defines a default SingleSignonToken with the LtpaToken name and

version 2. The cookie name added is LtpaToken2. Do not add sensitive information, confidential

information, or unencrypted data to the response cookie.

 It is also recommended that any time that you use cookies, use the Secure Sockets Layer (SSL)

protocol to protect the request. Using an SSO token, Web users can authenticate once when

accessing Web resources across multiple WebSphere Application Servers. A custom SSO token

extends this functionality by adding custom processing to the single signon scenario. For more

information on SSO tokens, see “Configuring single signon” on page 172. For information on how

to use and implement this token type, see “Default SingleSignonToken” on page 309 and

“Implementing a custom SingleSignonToken” on page 310.

Propagation token

The propagation token is not associated with the authenticated user so it is not stored in the

Subject. Instead, the propagation token is stored on the thread and follows the invocation

wherever it goes. When a request is sent outbound to another server, the propagation tokens on

that thread are sent with the request and the tokens are executed by the target server. The

attributes stored on the thread are propagated regardless of the Java 2 Platform, Enterprise

Edition (J2EE) RunAs user switches.

 The default propagation token monitors and logs all user switches and host switches. You can add

additional information to the default propagation token using the WSSecurityHelper application

programming interfaces (APIs). To retrieve and set custom implementations of a propagation

276 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

token, you can use the WSSecurityPropagationHelper class. For information on how to use and

implement this token type, see “Default PropagationToken” on page 282 and “Implementing a

custom PropagationToken” on page 287.

Authentication token

The authentication token flows to downstream servers and contains the identity of the user. This

token type serves the same function as the Lightweight Third Party Authentication (LTPA) token in

previous versions. Although this token type is typically reserved for internal WebSphere Application

Server purposes, you can add this token to the Subject and the token is propagated using the

getBytes method of the token interface.

 A custom authentication token is used solely for the purpose of the service provider that adds it to

the Subject. WebSphere Application Server do not use it for authentication purposes, because a

default authentication token exists that is used for WebSphere Application Server authentication.

This token type is available for the service provider to identify the purpose of the custom data to

use the token to perform custom authentication decisions. For information on how to use and

implement this token type, see “Default AuthenticationToken” on page 321 and “Implementing a

custom AuthenticationToken” on page 322.

Horizontal propagation versus downstream propagation

In WebSphere Application Server, both horizontal propagation, which is uses single signon for Web

requests, and downstream propagation, which uses Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI/IIOP) to access enterprise beans, are available.

Horizontal propagation

In horizontal propagation, security attributes are propagated amongst front-end servers. The serialized

security attributes, which are the Subject contents and the propagation tokens, can contain both static and

dynamic attributes. The single signon (SSO) token stores additional system-specific information that is

needed for horizontal propagation. The information contained in the SSO token tells the receiving server

where the originating server is located and how to communicate with that server. Additionally, the SSO

token also contains the key to look up the serialized attributes. In order to enable horizontal propagation,

you must configure the single signon token and the Web inbound security attribute propagation features.

You can configure both of these features using the administrative console by completing the following

steps:

1. Click Security > Global security.

2. Under Authentication, click Authentication Mechanisms > LTPA.

3. Under Additional properties, click Single signon (SSO)

For more information, see “Enabling security attribute propagation” on page 279.

When front-end servers are configured and in the same distributed replication service (DRS) replication

domain, the application server automatically propagates the serialized information to all of the servers

within the same domain. In figure 1, application 1 is deployed on server 1 and server 2, and both servers

are members of the same DRS replication domain. If a request originates from application 1 on server 1

and then gets redirected to application 1 on server 2, the original login attributes are found on server 2

without additional remote requests. However, if the request originates from application 1 on either server 1

or server 2, but the request is redirected to application 2 on either server 1 or server 2, the serialized

information is not found in the DRS cache because the servers are not configured in the same replication

domain. As a result, a remote Java Management Extensions (JMX) request is sent back to the originating

server that hosts application 1 to obtain the serialized information so that original login information is

available to the application. By getting the serialized information using a single JMX remote call back to

the originating server, the following benefits are realized:

v You gain the function of retrieving login information from the original server.

Chapter 12. Administering security 277

v You do not need to perform any remote user registry calls because the application server can

regenerate the Subject from the serialized information. Without this ability, the application server might

make 5 to 6 separate remote calls.

Figure 1

Initial HTTP

authentication

Later HTTP request

with single signon

Data Replication Service

(DRS)

attribute replication

Application 1 in server 1

Application 1 in server 2

Application 2 in server 3

Application 3 in server 5

Application 2 in server 4

Data Replication Service

(DRS)

attribute replication

Java Management Extensions (JMX)

request for subject

The subject is kept in the

Common Secure Interoperability version 2 (CSIV2) session

Application 1 in server 1

Application 3 in server 5

Application 1 in server 2 Application 2 in server 4

Application 2 in server 3

The Subject is requested from original server

because it is not found in DynaCache

The Subject is replicated

using DynaCache in this cluster.

There is no return to the

original cluster
The Subject and propagation attributes

are sent using RMI/IIOP

1. User authenticates to server 1.

2. Server 1 makes an RMI request to server 5.

3. User accesses another Web application on server 3.

Security

cache

DynaCache

DynaCache

Security

cache

DynaCache

DynaCache

CSIV2 session

cache

Performance implications for horizontal propagation

The performance implications of either the DRS or JMX remote call depends upon your environment. THE

DRS or JMX remote call is used for obtaining the original login attributes. Horizontal propagation reduces

many of the remote user registry calls in cases where these calls cause the most performance problems

for an application. However, the de-serialization of these objects also might cause performance

degradation, but this degradation might be less than the remote user registry calls. It is recommended that

you test your environment with horizontal propagation enabled and disabled. In cases where you must use

horizontal propagation for preserving original login attributes, test whether DRS or JMX provides better

performance in your environment. Typically, it is recommended that you configure DRS both for failover

and performance reasons. However, because DRS propagates the information to all of the servers in the

same replication domain (whether the servers are accessed or not), there might be a performance

degradation if too many servers are in the same replication domain. In this case, either reduce the number

of servers in the replication domain or do not configure the servers in a DRS replication domain. The later

suggestion causes a JMX remote call to retrieve the attributes, when needed, which might be quicker

overall.

Downstream propagation

In downstream propagation, a Subject is generated at the Web front-end server, either by a propagation

login or a user registry login. WebSphere Application Server propagates the security information

278 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

downstream for enterprise bean invocations when both Remote Method Invocation (RMI) outbound and

inbound propagation are enabled.

Benefits of propagating security attributes

The security attribute propagation feature of WebSphere Application Server has the following benefits:

v Enables WebSphere Application Server to use the security attribute information for authentication and

authorization purposes. The propagation of security attributes can eliminate the need for user registry

calls at each remote hop along an invocation. Previous versions of WebSphere Application Server

propagated only the user name of the authenticated user, but ignored other security attribute information

that needed to be regenerated downstream using remote user registry calls. To accentuate the benefits

of this new functionality, consider the following example:

In previous releases, you might use a reverse proxy server (RPSS), such as WebSEAL, to authenticate

the user, gather group information, and gather other security attributes. As stated previously,

WebSphere Application Server accepted the identity of the authenticated user, but disregarded the

additional security attribute information. To create a Java Authentication and Authorization Service

(JAAS) Subject containing the needed WSCredential and WSPrincipal objects, WebSphere Application

Server made 5 to 6 calls to the user registry. The WSCredential object contains various security

information that is required to authorize a J2EE resource. The WSPrincipal object contains the realm

name and the user that represents the principal for the Subject.

In the current release of the Application Server, information that is obtained from the reverse proxy

server can be used by WebSphere Application Server and propagated downstream to other server

resources without additional calls to the user registry. The retaining of the security attribute information

enables you to protect server resources properly by making appropriate authorization and trust-based

decisions User switches that occur because of J2EE RunAs configurations do not cause the application

server to lose the original caller information. This information is stored in the PropagationToken located

on the running thread.

v Enables third-party providers to plug in custom tokens. The token interface contains a getBytes method

that enables the token implementation to define custom serialization, encryption methods, or both.

v Provides the ability to have multiple tokens of the same type within a Subject created by different

providers. WebSphere Application Server can handle multiple tokens for the same purpose. For

example, you might have multiple authorization tokens in the Subject and each token might have

distinct authorization attributes that are generated by different providers.

v Provides the ability to have a unique ID for each token type that is used to formulate a more unique

subject identifier than just the user name in cases where dynamic attributes might change the context of

a user login. The token type has a getUniqueId() method that is used for returning a unique string for

caching purposes. For example, you might need to propagate a location ID, which indicates the location

from which the user logs into the system. This location ID can be generated during the original login

using either an reverse proxy server or the WEB_INBOUND login configuration and added to the

Subject prior to serialization. Other attributes might be added to the Subject as well and use a unique

ID. All of the unique IDs must be considered for the uniqueness of the entire Subject. WebSphere

Application Server has the ability to specify what is unique about the information in the Subject, which

might affect how the user accesses the Subject later.

Enabling security attribute propagation

The security attribute propagation feature of WebSphere Application Server enables you to send security

attribute information regarding the original login to other servers using a token. To fully enable security

attribute propagation, you must configure the single signon (SSO), CSIv2 inbound, and CSIv2 outbound

panels in the WebSphere Application Server Administrative Console. You can enable just the portions of

security attribute propagation relevant to your configuration. For example, you can enable Web

propagation, which is propagation amongst front-end application servers, using either the push technique

(DynaCache) or the pull technique (remote method to originating server). You also can choose whether to

enable Remote Method Invocation (RMI) outbound and inbound propagation, which is commonly called

Chapter 12. Administering security 279

downstream propagation. Typically both types of propagation are enabled for any given cell. In some

cases, you might want to choose a different option for a specific application server using the server

security panel within the specific application server settings. To access the server security panel in the

administrative console, click Servers > Application Servers > server_name. Under Security, click Server

security. Under Additional properties, click Server-level security.

Complete the following steps to configure WebSphere Application Server for security attribute propagation:

 1. Access the WebSphere Application Server administrative console by typing

http://server_name:9060/ibm/console The administrative console address might differ if you have

previously changed the port number.

 2. Click Security > Global security. Under Authentication, click Authentication mechanisms > LTPA.

Under Additional Properties, click Single Signon (SSO).

 3. Optional: Select the Interoperability Mode option if you need to interoperate with servers that do

not support security attribute propagation. Servers that do not support security attribute propagation

receive the Lightweight Third Party Authentication (LTPA) token and the PropagationToken, but ignore

the security attribute information that it does not understand.

 4. Select the Web inbound security attribute propagation option. The Web inbound security

attribute propagation option enables horizontal propagation, which allows the receiving SSO token

to retrieve the login information from the original login server. If you do not enable this option,

downstream propagation can occur if you enable the Security Attribute Propagation option on both

the CSIv2 Inbound authentication and CSIv2 outbound authentication panels.

Typically, you enable the Web inbound security attribute propagation option if you need to gather

dynamic security attributes set at the original login server that cannot be regenerated at the new

front-end server. This attributes include any custom attributes that might be set in the

PropagationToken using the com.ibm.websphere.security.WSSecurityHelper application programming

interfaces (APIs). You must determine whether enabling this option improves or degrades the

performance of your system. While the option prevents some remote user registry calls, the

deserialization and decryption of some tokens might impact performance. In some cases, propagation

is faster especially if your user registry is the bottleneck of your topology. It is recommended that you

measurement the performance of your environment using and not using this option. When you test

the performance, it is recommended that you test in the operating environment of the typical

production environment with the typical number of unique users accessing the system simultaneously.

 5. Click Security > Global security. Under Authentication, click Authentication protocol > CSIv2

inbound authentication. The Login configuration field specifies RMI_INBOUND as the system login

configuration used for inbound requests. To add custom Java Authentication and Authorization

Service (JAAS) login modules, complete the following steps:

a. Click Security > Global security. Under Authentication, click JAAS Configuration > System

logins. A list of the system login configurations is displayed. WebSphere Application Server

provides the following pre-configured system login configurations: DEFAULT, LTPA, LTPA_WEB,

RMI_INBOUND, RMI_OUTBOUND, SWAM, WEB_INBOUND, wssecurity.IDAssertion, and

wssecurity.Signature. Do not delete these predefined configurations.

b. Click the name of the login configuration that you want to modify.

c. Under Additional Properties, click JAAS Login Modules. The JAAS Login Modules panel is

displayed, which lists all of the login modules processed in the login configuration. Do not delete

the required JAAS login modules. Instead, you can add custom login modules before or after the

required login modules. If you add custom login modules, do not begin their names with

com.ibm.ws.security.server because this prefix is reserved for WebSphere Application Server

internal use.

You can specify the order in which the login modules are processed by clicking Set Order.

 6. Select the Security attribute propagation option on the CSIv2 Inbound authentication panel. When

you select Security Attribute Propagation, the server advertises to other application servers that it

can receive propagated security attributes from another server in the same realm over the Common

Secure Interoperability version 2 (CSIv2) protocol.

280 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

7. Click Security. Under Authentication, click Authentication protocol > CSIv2 Outbound

authentication. The CSIv2 outbound authentication panel is displayed. The Login configuration

field specifies RMI_OUTBOUND as JAAS login configuration that is used for outbound configuration. You

cannot change this login configuration. Instead, you can customize this login configuration by

completing the substeps listed previously for CSIv2 Inbound authentication.

 8. Optional: Verify that the Security Attribute Propagation option is selected if you want to enable

outbound Subject and security context token propagation for the Remote Method Invocation (RMI)

protocol. When you select this option, WebSphere Application Server serializes the Subject contents

and the PropagationToken contents. After the contents are serialized, the server uses the Common

Secure Interoperability version 2 (CSIv2) protocol to send the Subject and PropagationToken to the

target servers that support security attribute propagation. If the receiving server does not support

security attribute tokens, WebSphere Application Server sends the Lightweight Third Party

Authentication (LTPA) token only.

Important: WebSphere Application Server propagates only the objects within the Subject that it can

serialize. The server propagates custom objects on a best-effort basis.

When Security Attribute Propagation is enabled, WebSphere Application Server adds marker

tokens to the Subject to enable the target server to add additional attributes during the inbound login.

During the commit phase of the login, the marker tokens and the Subject are marked as read-only

and cannot be modified thereafter.

 9. Optional: Select the Custom Outbound Mapping option if you deselect the Security Attribute

Propagation option and you want to use the RMI_OUTBOUND login configuration. If the Custom

Outbound Mapping option nor the Security Attribute Propagation option is selected, WebSphere

Application Server does not call the RMI_OUTBOUND login configuration. If you need to plug in a

credential mapping login module, you must select the Custom Outbound Mapping option.

10. Optional: Specify trusted target realm names in the Trusted Target Realms field. By specifying

these realm names, information can be sent to servers that reside outside the realm of the sending

server to allow for inbound mapping to occur at these downstream servers. To perform outbound

mapping to a realm different from the current realm, you must specify the realm in this field so that

you can get to this point without the request being rejected due to a realm mismatch. If you need

WebSphere Application Server to propagate security attributes to another realm when a request is

sent, you must specify the realm name in the Trusted Target Realms field. Otherwise, the security

attributes are not propagated to the unspecified realm. You can add multiple target realms by adding

a pipe (|) delimiter between each entry.

11. Optional: Enable propagation for a pure client. For a pure client to propagate attributes added to the

invocation Subject, you must add the following property to the sas.client.props file:

com.ibm.CSI.rmiOutboundPropagationEnabled=true

After completing these steps, you have configured WebSphere Application Server to propagate security

attributes to other servers. After you have configured WebSphere Application Server for security attribute

propagation and need to disable this functionality, you can disable propagation for either the server level or

the cell level. To disable security attribute propagation on the server level, click Server > Application

Servers >server_name. Under Security, click Server security. You can disable security attribute

propagation for inbound requests by clicking CSI inbound authentication under Additional Properties and

deselecting Security attribute propagation. You can disable security attribute propagation for outbound

requests by clicking CSI outbound authentication under Additional Properties and deselecting Security

attribute propagation. To disable security attribute propagation on the cell level, undo each of the steps

that you completed to enable security attribute propagation in this task.

Chapter 12. Administering security 281

Default PropagationToken

A default PropagationToken is located on the thread of execution for applications and the security

infrastructure to use. WebSphere Application Server propagates this default PropagationToken downstream

and the token stays on the thread where the invocation lands at each hop. The data should be available

from within the container of any resource where the PropagationToken lands. Remember that you must

enable the propagation feature at each server where a request is sent in order for propagation to work.

Make sure that you have enabled security attribute propagation for all of the cells in your environment

where you want propagation

There is a WSSecurityHelper class that has application programming interfaces (APIs) for accessing the

PropagationToken attributes. This article documents the usage scenarios and includes examples. A close

relationship exists between PropagationToken and the WorkArea feature. The main difference between

these features is that after you add attributes to the PropagationToken, you cannot change the attributes.

You cannot change these attributes so that the security run time can add auditable information and have

that information remain there for the life of the invocation. Any time that you add an attribute to a specific

key, an ArrayList is stored to hold that attribute. Any new attribute added with the same key is added to the

ArrayList. When you call getAttributes, the ArrayList is converted to a String[] and the order is preserved.

The first element in the String[] is the first attribute added for that specific key.

In the default PropagationToken, a change flag is kept that logs any data changes to the token. These

changes are tracked to enable WebSphere Application Server to know when to re-send the authentication

information downstream so that the downstream server has those changes. Normally, Common Secure

Interoperability Version 2 (CSIv2) maintains a session between servers for an authenticated client. If the

PropagationToken changes, a new session is generated and subsequently a new authentication occurs.

Frequent changes to the PropagationToken during a method causes frequent downstream calls. If you

change the token prior to making many downstream calls, but you change the token between each

downstream call, you might impact security performance.

Getting the server list from the default PropagationToken

Every time the PropagationToken is propagated and used to create the authenticated Subject, either

horizontally or downstream, the name of the receiving application server is logged into the

PropagationToken. The format of the host is ″Cell:Node:Server″, which provides you access to the cell

name, node name, and server name of each application server that receives the invocation. The following

code provides you with this list of names and can be called from a Java 2 Platform, Enterprise Edition

(J2EE) application:

 String[] server_list = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the server_list string array

 server_list = com.ibm.websphere.security.WSSecurityHelper.getServerList();

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 if (server_list != null)

 {

282 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// print out each server in the list, server_list[0] is the first server

 for (int i=0; i<server_list.length; i++)

 {

 System.out.println(″Server[″ + i + ″] = ″ + server_list[i]);

 }

 }

 }

The format of each server in the list is: cell:node:server. The output, for example, is:

myManager:node1:server1

Getting the caller list from the default PropagationToken

A default PropagationToken is generated any time an authenticated user is set on the thread of execution

or any one tries to add attributes to the PropagationToken. Whenever an authenticated user is set on the

thread, the user is logged in the default PropagationToken. There may be some pushing and popping of

Subjects by the authorization code. At times, the same user might be logged in multiple times if the RunAs

user is different from the caller. The following list provides the rules that are used to determine if a user

added to the thread gets logged into the PropagationToken:

v The current Subject must be authenticated. For example, an unauthenticated Subject is not logged.

v The current authenticated Subject is logged if a Subject has not been previously logged.

v The current authenticated Subject is logged if the last authenticated Subject logged does not contain the

same user.

v The current authenticated Subject is logged on each unique application server involved in the

propagation process.

The following code sample shows how to use the getCallerList() API:

 String[] caller_list = null;

 // If security is disabled on this application server, do not check the caller list

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the caller_list string array

 caller_list = com.ibm.websphere.security.WSSecurityHelper.getCallerList();

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 if (caller_list != null)

 {

 // Prints out each caller in the list, caller_list[0] is the first caller

 for (int i=0; i<caller_list.length;i++)

 {

 System.out.println(″Caller[″ + i + ″] = ″ + caller_list[i]);

 }

 }

 }

The format of each caller in the list is: cell:node:server:realm/securityName. The output, for example, is:

myManager:node1:server1:ldap.austin.ibm.com:389/jsmith.

Chapter 12. Administering security 283

Getting the first caller from the default PropagationToken

Whenever you want to know which authenticated caller started the request, you can call the getFirstCaller

method and the caller list is parsed. However, this method returns the securityName of the caller only. If

you need to know more than the securityName, call the getCallerList() method and retrieve the first entry

in the String[]. This entry provides the entire caller information. The following code sample retrieves the

securityName of the first authenticated caller using the getFirstCaller() API:

 String first_caller = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the first caller

 first_caller = com.ibm.websphere.security.WSSecurityHelper.getFirstCaller();

 // Prints out the caller name

 System.out.println(″First caller: ″ + first_caller);

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is: jsmith.

Getting the first host from the default PropagationToken

Whenever you want to know what the first application server is for this request, you can call the

getFirstServer() method directly. The following code sample retrieves the name of the first application

server using the getFirstServer() API:

 String first_server = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the first server

 first_server = com.ibm.websphere.security.WSSecurityHelper.getFirstServer();

 // Prints out the server name

 System.out.println(″First server: ″ + first_server);

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is: myManager:node1:server1.

284 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Adding custom attributes to the default PropagationToken

You can add custom attributes to the default PropagationToken for application usage. This token follows

the request downstream so that the attributes are available when they are needed. When you use the

default PropagationToken to add attributes, you must understand the following issues:

v When you add information to the PropagationToken, it affects CSIv2 session caching. Add information

sparingly between remote requests.

v After you add information with a specific key, the information cannot be removed.

v You can add as many values to a specific key as your need. However, all of the values must be

available from a returned String[] in the order they were added.

v The PropagationToken is available only on servers where propagation and security are enabled.

v The Java 2 Security javax.security.auth.AuthPermission wssecurity.addPropagationAttribute is needed to

add attributes to the default PropagationToken.

v An application cannot use keys that begin with either com.ibm.websphere.security or

com.ibm.wsspi.security. These prefixes are reserved for system usage.

The following code sample shows how to use the addPropagationAttribute API:

 // If security is disabled on this application server,

 // do not check the status of server security

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Specifies the key and values

 String key = ″mykey″;

 String value1 = ″value1″;

 String value2 = ″value2″;

 // Sets key, value1

 com.ibm.websphere.security.WSSecurityHelper.

 addPropagationAttribute (key, value1);

 // Sets key, value2

 String[] previous_values = com.ibm.websphere.security.WSSecurityHelper.

 addPropagationAttribute (key, value2);

 // Note: previous_values should contain value1

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

See “Getting custom attributes from the default PropagationToken” to retrieve attributes using the

getPropagationAttributes application programming interface (API).

Getting custom attributes from the default PropagationToken

Custom attributes are added to the default PropagationToken using the addPropagationAttribute API.

These attributes can be retrieved using the getPropagationAttributes API. This token follows the request

downstream so the attributes are available when they are needed. When you use the default

PropagationToken to retrieve attributes, you must understand the following issues.

Chapter 12. Administering security 285

v The PropagationToken is available only on servers where propagation and security are enabled.

v The Java 2 Security javax.security.auth.AuthPermission wssecurity.getPropagationAttributes is needed

to retrieve attributes from the default PropagationToken.

The following code sample shows how to use the getPropagationAttributes API:

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 String key = ″mykey″;

 String[] values = null;

 // Sets key, value1

 values = com.ibm.websphere.security.WSSecurityHelper.

 getPropagationAttributes (key);

 // Prints the values

 for (int i=0; i<values.length; i++)

 {

 System.out.println(″Value[″ + i + ″] = ″ + values[i]);

 }

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is:

Value[0] = value1

Value[1] = value2

See Adding custom attributes to the default PropagationToken to add attributes using the

addPropagationAttributes API.

Changing the TokenFactory associated with the default PropagationToken

When WebSphere Application Server generates a default PropagationToken, the application server utilizes

the TokenFactory class that is specified using the com.ibm.wsspi.security.token.propagationTokenFactory

property. To modify this property using the administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

The default TokenFactory specified for this property is called

com.ibm.ws.security.ltpa.AuthzPropTokenFactory. This token factory encodes the data in the

PropagationToken and does not encrypt the data. Because the PropagationToken typically flows over

Common Secure Interoperability version 2 (CSIv2) using Secure Sockets Layer (SSL), there is no need to

encrypt the token itself. However, if you need additional security for the PropagationToken, you can

associate a different TokenFactory implementation with this property to get encryption. For example, if you

choose to associate com.ibm.ws.security.ltpa.LTPAToken2Factory with this property, the token is AES

encrypted. However, you need to weigh the performance impacts against your security needs. Adding

286 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

sensitive information to the PropagationToken is a good reason to change the TokenFactory

implementation to something that encrypts rather than just encodes.

If you want to perform your own signing and encryption of the default PropagationToken, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your TokenFactory implementation instantiates and validates your token implementation. You can choose

to use the Lightweight Third Party Authentication (LTPA) keys passed into the initialize method of the

TokenFactory or you can use your own keys. If you use your own keys, they must be the same

everywhere in order to validate the tokens that are generated using those keys. See the Javadoc,

available through a link on the front page of the information center, for more information on implementing

your own custom TokenFactory. To associate your TokenFactory with the default PropagationToken, using

the administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.propagationTokenFactory property and verify that the value of

this property matches your custom TokenFactory implementation.

4. Verify that your implementation classes are put into the install directory/classes directory so that

the WebSphere class loader can load the classes.

Implementing a custom PropagationToken

This task explains how you might create your own PropagationToken implementation, which is set on the

thread of execution and propagated downstream. The default PropagationToken usually is sufficient for

propagating attributes that are not user-specific. Consider writing your own implementation if you want to

accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread by plugging in a custom login module into the inbound system login

configurations. This task also might include encryption and decryption.

To implement a custom Propagation token, you must complete the following steps:

1. Write a custom implementation of the PropagationToken interface. There are many different methods

for implementing the PropagationToken interface. However, make sure that the methods required by

the PropagationToken interface and the token interface are fully implemented. After you implement this

interface, you can place it in the install_dir/classes directory. Alternatively, you can place the class

in any private directory. However, make sure that the WebSphere Application Server class loader can

locate the class and that it is granted the appropriate permissions. You can add the Java archive (JAR)

file or directory that contains this class into the server.policy file so that it has the necessary

permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

PropagationToken, might extend the abstract class and then most of the work is completed.

To see an implementation of PropagationToken, see “Example:

com.ibm.wsspi.security.token.PropagationToken implementation” on page 288

2. Add and receive the custom PropagationToken during WebSphere Application Server logins This task

is typically accomplished by adding a custom login module to the various application and system login

Chapter 12. Administering security 287

configurations. You also can add the implementation from an application. However, in order to

deserialize the information, you will need to plug in a custom login module, which is discussed in

“Propagating a custom Java serializable object” on page 331. The WSSecurityPropagationHelper class

has APIs that are used to set a PropagationToken on the thread and to retrieve it from the thread to

make updates.

The code sample in “Example: custom PropagationToken login module” on page 294 shows how to

determine if the login is an initial login or a propagation login. The difference between these login types

is whether the WSTokenHolderCallback contains propagation data. If the callback does not contain

propagation data, initialize a new custom PropagationToken implementation and set it on the thread. If

the callback contains propagation data, look for your specific custom PropagationToken TokenHolder

instance, convert the byte[] back into your customer PropagationToken object, and set it back on the

thread. The code sample shows both instances.

You can add attributes any time your custom PropagationToken is added to the thread. If you add

attributes between requests and the getUniqueId method changes, then the CSIv2 client session is

invalidated so that it can send the new information downstream. Keep in mind that adding attributes

between requests can affect performance. In many cases, this is the desired behavior so that

downstream requests receive the new PropagationToken information.

To add the custom PropagationToken to the thread, call

WSSecurityPropagationHelper.addPropagationToken. This call requires the following Java 2 Security

permission: WebSphereRuntimePerMission ″setPropagationToken″

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom propagation token Also, you can add this login module to any of the

application logins where you might want to generate your custom PropagationToken on the thread

during the login. Alternatively, you can generate the custom PropagationToken implementation from

within your application. However, to deserialize it, you need to add the implementation to the system

login modules.

For information on how to add your custom login module to the existing login configurations, see

“Custom login module development for a system login configuration” on page 78

After completing these steps, you have implemented a custom PropagationToken.

Example: com.ibm.wsspi.security.token.PropagationToken

implementation

Use this file to see an example of a PropagationToken implementation. The following sample code does

not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.PropagationToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

However, you might choose to implement the interface directly if there are considerable differences

between how you handle the various token implementations.

For information on how to implement a custom PropagationToken, see “Implementing a custom

PropagationToken” on page 287.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

288 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomPropagationTokenImpl implements com.ibm.wsspi.security.

 token.PropagationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 // 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

 private long counter = 0;

/**

 * The constructor that is used to create initial PropagationToken instance

 */

 public CustomAbstractTokenImpl ()

 {

 // set the token version

 addAttribute(″version″, ″1″);

 // set the token expiration

 addAttribute(″expiration″, new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * The constructor that is used to deserialize the token bytes received

 * during a propagation login.

 */

 public CustomAbstractTokenImpl (byte[] token_bytes)

 {

 try

 {

 hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

 WSOpaqueTokenHelper.deserialize(token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it does not expire

 if (expiration != 0)

 {

Chapter 12. Administering security 289

// return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println(″isValid: returning ″ + valid);

 return valid;

 }

 else

 {

 System.out.println(″isValid: returning true by default″);

 return true;

 }

 }

/**

 * Gets the expiration as a long type.

 * @return long

 */

 public long getExpiration()

 {

 // get the expiration value from the hashtable

 String[] expiration = getAttributes(″expiration″);

 if (expiration != null && expiration[0] != null)

 {

 // expiration is the first element (should only be one)

 System.out.println(″getExpiration: returning ″ + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println(″getExpiration: returning 0″);

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated. In some cases

 // you might want the token to be local only.

 return true;

 }

/**

 * Gets the principal that this token belongs to. If this token is an

 * authorization token, this principal string must match the authentication

 * token principal string or the message is rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // It is not necessary for the PropagtionToken to return a principal,

 // because it is not user-centric.

 return ″″;

290 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

}

/**

 * Returns the unique identifier of the token based upon information that

 * the provider considers makes it a unique token. This identifier is used

 * for caching purposes and might be used in combination with other token

 * unique IDs that are part of the same Subject.

 *

 * This method should return null if you want the accessID of the user to

 * represent its uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // If you want to propagate the changes to this token, change the

 // value that this unique ID returns whenever the token is changed.

 // Otherwise, CSIv2 uses an existing session when everything else is

 // the same. This getUniqueID ischecked by CSIv2 to determine the

 // session lookup.

 return counter;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set to read-only during login commit

 // because this guarantees that no new data is set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

 serialize(hashtable);

 // You can deserialize this in the downstream login module using

 // WSOpaqueTokenHelper.deserialize()

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println(″getBytes: returning null″);

 return null;

 }

/**

Chapter 12. Administering security 291

* Gets the name of the token, which is used to identify the byte[] in the

 * protocol message.

 * @return String

 */

 public String getName()

 {

 return this.getClass().getName();

 }

/**

 * Gets the version of the token as an short type. This code also is used

 * to identify the byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes(″version″);

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println(″getVersion: returning default of 1″);

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any setter methods check that this read-only flag has

 * been set.

 */

 public void setReadOnly()

 {

 addAttribute(″readonly″, ″true″);

 }

/**

 * Called internally to see if the token is readonly

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes(″readonly″);

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println(″isReadOnly: returning default of false″);

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

292 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name and value pair. Returns the previous values set

 * for the key, or returns null if the value is not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // Increments the counter to change the uniqueID

 counter++;

 // Copies the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all of the attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

Chapter 12. Administering security 293

return hashtable.keys();

 }

/**

 * Returns a deep clone of this token. This is typically used by the session

 * logic of the CSIv2 server to create a copy of the token as it exists in the

 * session.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomPropagationTokenImpl deep_clone =

 new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: custom PropagationToken login module

This file shows how to determine if the login is an initial login or a propagation login

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // “Custom login module development for a system login configuration” on page 78.)

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Handles the WSTokenHolderCallback to see if this is an initial

 // or propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 try

 {

 callbackHandler.handle(callbacks);

294 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

}

 catch (Exception e)

 {

 // handle exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom PropagationToken implementation

 if (tokenHolder.getName().equals(″

 com.ibm.websphere.security.token.CustomPropagationTokenImpl″) &&

 tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom PropagationToken constructor

 // to deserialize

 customPropToken = new

 com.ibm.websphere.security.token.CustomPropagationTokenImpl(tokenHolder.

 getBytes());

 }

 }

 }

 else // This is not a propagation login. Create a new instance of

 // your PropagationToken implementation

 {

 // Adds a new custom propagation token. This is an initial login

 customPropToken = new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

 // Adds any initial attributes

 if (customPropToken != null)

 {

 customPropToken.addAttribute(″key1″, ″value1″);

 customPropToken.addAttribute(″key1″, ″value2″);

 customPropToken.addAttribute(″key2″, ″value1″);

 customPropToken.addAttribute(″key3″, ″something different″);

 }

 }

 // Note: You can add the token to the thread during commit in case

 // something happens during the login.

 }

 public boolean commit() throws LoginException

 {

 // For more information on what to do during commit, see

 // “Custom login module development for a system login configuration” on page 78

 if (customPropToken != null)

 {

Chapter 12. Administering security 295

// Sets the propagation token on the thread

 try

 {

 System.out.println(tc, ″*** ADDED MY CUSTOM PROPAGATION TOKEN TO THE THREAD ***″);

 // Prints out the values in the deserialized propagation token

 java.util.Enumeration keys = customPropToken.getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) customPropToken.getAttributes(key);

 for (int k=0; k<list.length; k++)

 System.out.println(″Key/Value: ″ + key + ″/″ + list[k]);

 }

 // This sets it on the thread using getName() + getVersion() as the key

 com.ibm.wsspi.security.token.WSSecurityPropagationHelper.addPropagationToken(

 customPropToken);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Now you can verify that you have set it properly by trying to get

 // it back from the thread and print the values.

 try

 {

 // This gets the PropagationToken from the thread using getName()

 // and getVersion() parameters.

 com.ibm.wsspi.security.token.PropagationToken tempPropagationToken =

 com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getPropagationToken

 (″com.ibm.websphere.security.token.CustomPropagationTokenImpl″, 1);

 if (tempPropagationToken != null)

 {

 System.out.println(tc, ″*** RECEIVED MY CUSTOM PROPAGATION

 TOKEN FROM THE THREAD ***″);

 // Prints out the values in the deserialized propagation token

 java.util.Enumeration keys = tempPropagationToken.getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) tempPropagationToken.getAttributes(key);

 for (int k=0; k<list.length; k++)

 System.out.println(″Key/Value: ″ + key + ″/″ + list[k]);

 }

 }

 }

 catch (Exception e)

 {

 // Handles exception

 }

 }

 }

296 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// Defines your login module variables

 com.ibm.wsspi.security.token.PropagationToken customPropToken = null;

}

Default AuthorizationToken

This article explains how WebSphere Application Server uses the default AuthorizationToken. Consider

using the default AuthorizationToken when you are looking for a place to add string attributes that will get

propagated downstream. However, make sure that the attributes that you add to the AuthorizationToken

are specific to the user associated with the authenticated Subject. If they are not specific to a user, the

attributes probably belong in the PropagationToken, which is also propagated with the request. For more

information on the PropagationToken, see “Default PropagationToken” on page 282. To add attributes into

the AuthorizationToken, you must plug in a custom login module into the various system login modules that

are configured. Any login module configuration that has the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule implementation configured can receive

propagated information and can generate propagation information that can be sent outbound to another

server.

If propagated attributes are not presented to the login configuration during an initial login, a default

AuthorizationToken is created in the wsMapDefaultInboundLoginModule after the login occurs in the

ltpaLoginModule. A reference to the default AuthorizationToken can be obtained from the login() method

using the sharedState hashmap. You must plug in the custom login module after the

wsMapDefaultInboundLoginModule implementation for WebSphere Application Server to see the default

AuthorizationToken..

For more information on the Java Authentication and Authorization Service (JAAS) programming model,

see “Security: Resources for learning” on page 21.

Important: Whenever you plug in a custom login module into the WebSphere Application Server login

infrastructure, you must ensure that the code is trusted. When you add the login module into

the install_dir/classes directory, it has Java 2 Security AllPermissions. It is recommended

that you add your login module and other infrastructure classes into a private directory.

However, if you use a private directory, modify the

$(WAS_INSTALL_ROOT)/properties/server.policy file so that the private directory, Java archive

(JAR) file, or both have the permissions needed to execute the application programming

interfaces (API) called from the login module. Because the login module might run after the

application code on the call stack, you might consider adding a doPrivileged code block so

that you do not need to add additional permissions to your applications.

The following sample code shows you how to obtain a reference to the default AuthorizationToken from the

login() method, how to add attributes to the token, and how to read from the existing attributes that are

used for authorization.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on initialization, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Get a reference to the sharedState map that is passed in during initialization.

 _sharedState = sharedState;

Chapter 12. Administering security 297

}

 public boolean login() throws LoginException

 {

 // (For more information on what to during login, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Look for the default AuthorizationToken in the shared state

 defaultAuthzToken = (com.ibm.wsspi.security.token.AuthorizationToken)

 sharedState.get

 (com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

 // Might not always have one of these generated. It depends on the login

 // configuration setup.

 if (defaultAuthzToken != null)

 {

 try

 {

 // Add a custom attribute

 defaultAuthzToken.addAttribute(″key1″, ″value1″);

 // Determine all of the attributes and values that exist in the token.

 java.util.Enumeration listOfAttributes = defaultAuthorizationToken.

 getAttributeNames();

 while (listOfAttributes.hasMoreElements())

 {

 String key = (String) listOfAttributes.nextElement();

 String[] values = (String[]) defaultAuthorizationToken.getAttributes (key);

 for (int i=0; i<values.length; i++)

 {

 System.out.println (″Key: ″ + key + ″, Value[″ + i + ″]: ″

 + values[i]);

 }

 }

 // Read the existing uniqueID attribute.

 String[] uniqueID = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID);

 // Getthe uniqueID from the String[]

 String unique_id = (uniqueID != null &&

 uniqueID[0] != null) ? uniqueID[0] : ″″;

 // Read the existing expiration attribute.

 String[] expiration = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_EXPIRATION);

 // An example of getting a long expiration value from the string array.

 long expire_time = 0;

 if (expiration != null && expiration[0] != null)

 expire_time = Long.parseLong(expiration[0]);

298 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// Read the existing display name attribute.

 String[] securityName = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME);

 // Get the display name from the String[]

 String display_name = (securityName != null &&

 securityName[0] != null) ? securityName[0] : ″″;

 // Read the existing long securityName attribute.

 String[] longSecurityName = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_LONGSECURITYNAME);

 // Get the long security name from the String[]

 String long_security_name = (longSecurityName != null &&

 longSecurityName[0] != null) ? longSecurityName[0] : ″″;

 // Read the existing group attribute.

 String[] groupList = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS);

 // Get the groups from the String[]

 ArrayList groups = new ArrayList();

 if (groupList != null)

 {

 for (int i=0; i<groupList.length; i++)

 {

 System.out.println (″group[″ + i + ″] = ″ + groupList[i]);

 groups.add(groupList[i]);

 }

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during commit, see

 // “Custom login module development for a system login configuration” on page 78.)

 }

 private java.util.Map _sharedState = null;

 private com.ibm.wsspi.security.token.AuthorizationToken defaultAuthzToken = null;

}

Chapter 12. Administering security 299

Changing the TokenFactory associated with the default AuthorizationToken

When WebSphere Application Server generates a default AuthorizationToken, the application server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.authorizationTokenFactory property. To modify this property using the

administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

The default TokenFactory that used is called com.ibm.ws.security.ltpa.AuthzPropTokenFactory. This token

factory encodes the data, but does not encrypt the data in the AuthorizationToken. Because the

AuthorizationToken typically flows over Common Secure Interoperability version 2 (CSIv2) using Secure

Sockets Layer (SSL), there is no need to encrypt the token itself. However, if you need addition security

for the AuthorizationToken, you can associate a different TokenFactory implementation with this property to

get encryption. For example, if you associate com.ibm.ws.security.ltpa.LTPAToken2Factory with this

property, the token uses AES encryption. However, you need to weigh the performance impacts against

your security needs. Adding sensitive information to the AuthorizationToken is one reason to change the

TokenFactory implementation to something that encrypts rather than just encodes.

If you want to perform your own signing and encryption of the default AuthorizationToken you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your TokenFactory implementation instantiates and validates your token implementation. You can use the

Lightweight Third Party Authentication (LTPA) keys that are passed into the initialize method of the

TokenFactory or you can use your own keys. If you use your own keys, they must be the same

everywhere in order to validate the tokens that are generated using those keys. See the Javadoc,

available through a link on the front page of the information center, for more information on implementing

your own custom TokenFactory. To associate your TokenFactory with the default AuthorizationToken, using

the administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authorizationTokenFactory property and verify that the value of

this property matches your custom TokenFactory implementation.

4. Verify that your implementation classes are put into the install directory/classes directory so that

the WebSphere class loader can load the classes.

Implementing a custom AuthorizationToken

This task explains how you might create your own AuthorizationToken implementation, which is set in the

login Subject and propagated downstream. The default AuthorizationToken usually is sufficient for

propagating attributes that are user-specific. Consider writing your own implementation if you want to

accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread. This task also might include encryption and decryption.

v Affect the overall uniqueness of the Subject using the getUniqueID() API.

To implement a custom authorization token, you must complete the following steps:

1. Write a custom implementation of the AuthorizationToken interface. There are many different methods

for implementing the AuthorizationToken interface. However, make sure that the methods required by

300 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

the AuthorizationToken interface and the token interface are fully implemented. After you implement

this interface, you can place it in the install_dir/classes directory. Alternatively, you can place the

class in any private directory. However, make sure that the WebSphere Application Server class loader

can locate the class and that it is granted the appropriate permissions. You can add the Java archive

(JAR) file or directory that contains this class into the server.policy file so that it has the necessary

permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

AuthorizationToken, might extend the abstract class and then most of the work is completed.

To see an implementation of AuthorizationToken, see “Example:

com.ibm.wsspi.security.token.AuthorizationToken implementation”

2. Add and receive the custom AuthorizationToken during WebSphere Application Server logins This task

is typically accomplished by adding a custom login module to the various application and system login

configurations. However, in order to deserialize the information, you must plug in a custom login

module, which is discussed in “Propagating a custom Java serializable object” on page 331. After the

object is instantiated in the login module, you can the object to the Subject during the commit()

method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java

serializable object” on page 331. If you want to ensure that the information is propagated, want to do

you own custom serialization, or want to specify the uniqueness for Subject caching purposes, then

consider writing your own AuthorizationToken implementation.

The code sample in “Example: custom AuthorizationToken login module” on page 306 shows how to

determine if the login is an initial login or a propagation login. The difference between these login types

is whether the WSTokenHolderCallback contains propagation data. If the callback does not contain

propagation data, initialize a new custom AuthorizationToken implementation and set it into the Subject.

If the callback contains propagation data, look for your specific custom AuthorizationToken TokenHolder

instance, convert the byte[] back into your custom AuthorizationToken object, and set it back into the

Subject. The code sample shows both instances.

You can make your AuthorizationToken read-only in the commit phase of the login module. If you do

not make the token read-only, then attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom authorization token

Because this login module relies on information in the sharedState added by the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, add this login module after

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule. For information on how to add your

custom login module to the existing login configurations, see “Custom login module development for a

system login configuration” on page 78

After completing these steps, you have implemented a custom AuthorizationToken.

Example: com.ibm.wsspi.security.token.AuthorizationToken

implementation

Use this file to see an example of a AuthorizationToken implementation. The following sample code does

not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthorizationToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

However, you might choose to implement the interface directly if there are considerable differences

between how you handle the various token implementations.

Chapter 12. Administering security 301

For information on how to implement a custom AuthorizationToken, see “Implementing a custom

AuthorizationToken” on page 300.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomAuthorizationTokenImpl implements com.ibm.wsspi.security.

 token.AuthorizationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 private static long expire_period_in_millis = 2*60*60*1000;

 // 2 hours in millis, by default

/**

 * Constructor used to create initial AuthorizationToken instance

 */

 public CustomAuthorizationTokenImpl (String principal)

 {

 // Sets the principal in the token

 addAttribute("principal", principal);

 // Sets the token version

 addAttribute("version", "1");

 // Sets the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * Constructor used to deserialize the token bytes received during a

 * propagation login.

 */

 public CustomAuthorizationTokenImpl (byte[] token_bytes)

 {

 try

 {

 hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

 WSOpaqueTokenHelper.deserialize(token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

302 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// if you set the expiration to 0, it does not expire

 if (expiration != 0)

 {

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long.

 * @return long

 */

 public long getExpiration()

 {

 // Gets the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // The expiration is the first element. There should be only one expiration.

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated. In some cases,

 // you might want it to be local only.

 return true;

 }

/**

 * Gets the principal that this Token belongs to. If this is an authorization token,

 * this principal string must match the authentication token principal string or the

 * message will be rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // this might be any combination of attributes

 String[] principal = getAttributes("principal");

 if (principal != null && principal[0] != null)

 {

 return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

Chapter 12. Administering security 303

}

/**

 * Returns a unique identifier of the token based upon the information that provider

 * considers makes this a unique token. This will be used for caching purposes

 * and might be used in combination with other token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the accessID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // if you don’t want to affect the cache lookup, just return NULL here.

 // return null;

 String cacheKeyForThisToken = "dynamic attributes";

 // if you do want to affect the cache lookup, return a string of

 // attributes that you want factored into the lookup.

 return cacheKeyForThisToken;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set to read-only during login commit,

 // because this makes sure that no new data gets set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

 serialize(hashtable);

 // You can deserialize this in the downstream login module using

 // WSOpaqueTokenHelper.deserialize()

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token used to identify the byte[] in the protocol message.

 * @return String

 */

 public String getName()

 {

 return this.getClass().getName();

 }

/**

304 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

* Gets the version of the token as an short. This also is used to identify the

 * byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any setter methods check that this flag has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is read-only

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name and value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

Chapter 12. Administering security 305

if (!isReadOnly())

 {

 // Copies the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomAuthorizationTokenImpl deep_clone =

 new com.ibm.websphere.security.token.CustomAuthorizationTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: custom AuthorizationToken login module

This file shows how to determine if the login is an initial login or a propagation login

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

306 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // “Custom login module development for a system login configuration” on page 78.)

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For more information on what do during login, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom AuthorizationToken

 // implementation

 if (tokenHolder.getName().equals(″com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl″) &&

 tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom AuthorizationToken constructor

 // to deserialize

 customAuthzToken = new

 com.ibm.websphere.security.token.CustomAuthorizationTokenImpl(

 tokenHolder.getBytes());

 }

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // AuthorizationToken implementation

 {

Chapter 12. Administering security 307

// Gets the prinicpal from the default AuthenticationToken. This must match

 // all tokens.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom authorization token. This is an initial login. Pass the

 // principal into the constructor

 customAuthzToken = new com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl(principal);

 // Adds any initial attributes

 if (customAuthzToken != null)

 {

 customAuthzToken.addAttribute(″key1″, ″value1″);

 customAuthzToken.addAttribute(″key1″, ″value2″);

 customAuthzToken.addAttribute(″key2″, ″value1″);

 customAuthzToken.addAttribute(″key3″, ″something different″);

 }

 }

 // Note: You can add the token to the Subject during commit in case something

 // happens during the login.

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during a commit, see

 // “Custom login module development for a system login configuration” on page 78.)

 if (customAut // (hzToken != null)

 {

 // sSets the customAuthzToken token into the Subject

 try

 {

 public final AuthorizationToken customAuthzTokenPriv = customAuthzToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom authorization token if it is not null

 // and not already in the Subject

 if ((customAuthzTokenPriv != null) &&

 (!subject.getPrivateCredentials().contains(customAuthzTokenPriv)))

 {

 subject.getPrivateCredentials().add(customAuthzTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

308 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Default SingleSignonToken

Do not use the default SingleSignonToken in service provider code. This default token is used by the

WebSphere Application Server run-time code only. There are size limitations for this token when it is

added as an HTTP cookie. If you need to create an HTTP cookie using this token framework, you can

implement a custom SingleSignonToken. To implement a custom SingleSignonToken, see “Implementing a

custom SingleSignonToken” on page 310 for more information.

Changing the TokenFactory associated with the default SingleSignonToken

When default SingleSignonToken is generated, the application server utilizes the TokenFactory class that

is specified using the com.ibm.wsspi.security.token.singleSignonTokenFactory property. To modify this

property using the administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

The default TokenFactory specified for this property is called com.ibm.ws.security.ltpa.LTPAToken2Factory.

This token factory creates an SSO token called LtpaToken2, which WebSphere Application Server uses for

propagation. This TokenFactory uses the AES/CBC/PKCS5Padding cipher. If you change this

TokenFactory, you lose the interoperability with any servers running a version of WebSphere Application

Server prior to version 5.1.1 that use the default TokenFactory. Only servers running WebSphere

Application Server Version 5.1.1 or later with propagation enabled are aware of the LtpaToken2 cookie.

However, this is not a problem if all of your application servers use WebSphere Application Server Version

5.1.1 or later and all of your servers use your new TokenFactory.

If you need to perform your own signing and encryption of the default SingleSignonToken, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your TokenFactory implementation instantiates (createToken) and validates (validateTokenBytes) your

token implementation. You can use the LTPA keys passed into the initialize method of the TokenFactory or

you can use your own keys. If you use your own keys, they must be the same everywhere in order to

validate the tokens that are generated using those keys. See the Javadoc, available through a link on the

Chapter 12. Administering security 309

front page of the information center, for more information on implementing your own custom TokenFactory.

To associate your TokenFactory with the default SingleSignonToken using the administrative console,

complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.singleSignonTokenFactory property and verify that the value of

this property matches your custom TokenFactory implementation.

4. Verify that your implementation classes are put into the install directory/classes directory so that

the WebSphere class loader can load the classes.

Implementing a custom SingleSignonToken

This task explains how to create your own SingleSignonToken implementation, which is set in the login

Subject and added to the HTTP response as an HTTP cookie. The cookie name is the concatenation of

the SingleSignonToken.getName() application programming interface (API) and the

SingleSignonToken.getVersion() API. There is no delimiter. When you add a SingleSignonToken to the

Subject, it also gets propagated horizontally and downstream in case the Subject is used for other Web

requests. You must deserialize your custom SingleSignonToken when you receive it from a propagation

login. Consider writing your own implementation if you want to accomplish one of the following:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. It is recommended that you encrypt the information

because it is out to the HTTP response and is available on the Internet. You must deserialize or decrypt

the bytes at the target and add that information back into the Subject.

v Affect the overall uniqueness of the Subject using the getUniqueID() API

To implement a custom SingleSignonToken, you must complete the following steps:

1. Write a custom implementation of the SingleSignonToken interface.

There are many different methods for implementing the SingleSignonToken interface. However, make

sure that the methods required by the SingleSignonToken interface and the token interface are fully

implemented. After you implement this interface, you can place it in the install_dir/classes directory.

Alternatively, you can place the class in any private directory. However, make sure that the WebSphere

Application Server class loader can locate the class and that it is granted the appropriate permissions.

You can add the Java archive (JAR) file or directory that contains this class into the server.policy file

so that it has the necessary permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

SingleSignonToken, might extend the abstract class and then most of the work is completed.

To see an implementation of the SingleSignonToken, see “Example:

com.ibm.wsspi.security.token.SingleSignonToken implementation” on page 311

2. Add and receive the custom SingleSignonToken during WebSphere Application Server logins. This task

is typically accomplished by adding a custom login module to the various application and system login

configurations. However, in order to deserialize the information, you will need to plug in a custom login

module, which is discussed in a subsequent step. After the object is instantiated in the login module,

you can add it to the Subject during the commit() method.

The code sample in “Example: custom SingleSignonToken login module” on page 316 shows how to

determine if the login is an initial login or a propagation login. The difference is whether the

WSTokenHolderCallback contains propagation data. If the token does not contain propagation data,

initialize a new custom SingleSignonToken implementation and set it into the Subject. Also, look for the

310 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

HTTP cookie from the HTTP request if the HTTP request object is available in the callback. You can

get your custom SingleSignonToken both from a horizontal propagation login and from the HTTP

request. However, it is recommended that you make the token available in both places because then

the information arrives at any front-end application server even if that server that does not support

propagation.

You can make your SingleSignonToken read-only in the commit phase of the login module. If you

make the token read-only, additional attributes cannot be added within your applications.

Restriction:

v HTTP cookies have a size limitation so do not add too much data to this token.

v The WebSphere Application Server run time does not handle cookies that it does not

generate, so this cookie is not used by the run time.

v The SingleSignonToken object, when in the Subject, does affect the cache lookup of

the Subject if you return something in the getUniqueID() method.

3. Get the HTTP cookie from the HTTP request object during login or from an application. The sample

code, found in “Example: HTTP cookie retrieval” on page 318 shows how you can retrieve the HTTP

cookie from the HTTP request, decode the cookie so that it is back to your original bytes, and create

your custom SingleSignonToken object from the bytes.

4. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom propagation token Because this login module relies on information

in the sharedState added by the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, add

this login module after com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule.

For information on adding your custom login module into the existing login configurations, see “Custom

login module development for a system login configuration” on page 78

After completing these steps, you have implemented a custom AuthorizationToken.

Example: com.ibm.wsspi.security.token.SingleSignonToken

implementation

Use this file to see an example of a SingleSignon implementation. The following sample code does not

extend an abstract class, but rather implements the com.ibm.wsspi.security.token.SingleSignonToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

However, you might choose to implement the interface directly if there are considerable differences

between how you handle the various token implementations.

For information on how to implement a custom SingleSignonToken, see “Implementing a custom

SingleSignonToken” on page 310.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomSingleSignonTokenImpl implements com.ibm.wsspi.security.

 token.SingleSignonToken

Chapter 12. Administering security 311

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 // 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

/**

 * Constructor used to create initial SingleSignonToken instance

 */

 public CustomSingleSignonTokenImpl (String principal)

 {

 // set the principal in the token

 addAttribute("principal", principal);

 // set the token version

 addAttribute("version", "1");

 // set the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * Constructor used to deserialize the token bytes received during a propagation login.

 */

 public CustomSingleSignonTokenImpl (byte[] token_bytes)

 {

 try

 {

 // you should implement a decryption algorithm to decrypt the cookie bytes

 hashtable = (java.util.Hashtable) some_decryption_algorithm (token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it’s does not expire

 if (expiration != 0)

 {

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long.

 * @return long

 */

312 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

public long getExpiration()

 {

 // get the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // expiration will always be the first element (should only be one)

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated or not, in some cases

 // you might want it to be local only.

 return true;

 }

/**

 * Gets the principal that this Token belongs to. If this is an authorization token,

 * this principal string must match the authentication token principal string or the

 * message will be rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // this could be any combination of attributes

 String[] principal = getAttributes("principal");

 if (principal != null && principal[0] != null)

 {

 return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

 }

/**

 * Returns a unique identifier of the token based upon information the provider

 * considers makes this a unique token. This will be used for caching purposes

 * and may be used in combination with outher token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the accessID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // this could be any combination of attributes

 return getPrincipal();

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

Chapter 12. Administering security 313

* @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // do this if the object is set read-only during login commit,

 // since this guarantees no new data gets set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = some_encryption_algorithm (hashtable);

 // you can deserialize the tokenBytes using a similiar decryption algorithm.

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token, used to identify the byte[] in the protocol message.

 * @return String

 */

 public String getName()

 {

 return "myCookieName";

 }

/**

 * Gets the version of the token as an short. This is also used to identify the

 * byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure any setter methods check that this has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is readonly

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

314 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name/value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // get the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // copy the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // allocate a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // add the String to the current array list

 array.add(value);

 // add the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // return the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the List of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

Chapter 12. Administering security 315

{

 return hashtable.keys();

 }

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomSingleSignonImpl deep_clone =

 new com.ibm.websphere.security.token.CustomSingleSignonTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: custom SingleSignonToken login module

This file shows how to determine if the login is an initial login or a propagation login

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on initialization, see

 // “Custom login module development for a system login configuration” on page 78.)

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // handle exception

 }

316 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // iterate through the list looking for your custom token

 for (int i=0; i

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom SingleSignonToken

 // implementation

 if (tokenHolder.getName().equals(″myCookieName″)

 && tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom SingleSignonToken constructor

 // to deserialize

 customSSOToken = new

 com.ibm.websphere.security.token.CustomSingleSignonTokenImpl

 (tokenHolder.getBytes());

 }

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // SingleSignonToken implementation

 {

 // Gets the principal from the default SingleSignonToken. This principal

 // must match all tokens.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom single signon (SSO) token. This is an initial login.

 // Pass the principal into the constructor

 customSSOToken = new com.ibm.websphere.security.token.

 CustomSingleSignonTokenImpl(principal);

 // add any initial attributes

 if (customSSOToken != null)

 {

 customSSOToken.addAttribute(″key1″, ″value1″);

 customSSOToken.addAttribute(″key1″, ″value2″);

 customSSOToken.addAttribute(″key2″, ″value1″);

 customSSOToken.addAttribute(″key3″, ″something different″);

 }

 }

 // Note: You can add the token to the Subject during commit in case something

 // happens during the login.

 }

 public boolean commit() throws LoginException

Chapter 12. Administering security 317

{

 // (For more information on what to do during commit, see

 // “Custom login module development for a system login configuration” on page 78.)

 if (customSSOToken != null)

 {

 // Sets the customSSOToken token into the Subject

 try

 {

 public final SingleSignonToken customSSOTokenPriv = customSSOToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom SSO token if it is not null and

 // not already in the Subject

 if ((customSSOTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customSSOTokenPriv)))

 {

 subject.getPrivateCredentials().

 add(customSSOTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Example: HTTP cookie retrieval

Use this file to see an example of how to retrieve a cookie from an HTTP request, decode the cookie so

that it is back to your original bytes, and create your custom SingleSignonToken object from the bytes.

This example shows how to complete these steps from a login module. However, you also can complete

these steps using a servlet.

318 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

For information on how to implement a custom SingleSignonToken, see “Implementing a custom

SingleSignonToken” on page 310.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // “Custom login module development for a system login configuration” on page 78.)

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Handles the WSTokenHolderCallback to see if this is an

 // initial or propagation login.

 Callback callbacks[] = new Callback[2];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 callbacks[1] = new WSServletRequestCallback(″HttpServletRequest: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // receive the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 javax.servlet.http.HttpServletRequest request =

 ((WSServletRequestCallback) callbacks[1]).getHttpServletRequest();

 if (request != null)

 {

 // Checks if the cookie is present

 javax.servlet.http.Cookie[] cookies = request.getCookies();

 String[] cookieStrings = getCookieValues (cookies, ″myCookeName1″);

 if (cookieStrings != null)

 {

 String cookieVal = null;

 for (int n=0;n<cookieStrings.length;n++)

 {

 cookieVal = cookieStrings[n];

 if (cookieVal.length()>0)

 {

 // Removes the cookie encoding from the cookie to get

 // your custom bytes

 byte[] cookieBytes =

Chapter 12. Administering security 319

com.ibm.websphere.security.WSSecurityHelper.

 convertCookieStringToBytes(cookieVal);

 customSSOToken =

 new com.ibm.websphere.security.token.

 CustomSingleSignonTokenImpl(cookieBytes);

 // Now that you have your cookie from the request,

 // you can do something with it here, or add it

 // to the Subject in the commit() method for use later.

 if (debug || tc.isDebugEnabled())

 {

 Systen.out.println(″*** GOT MY CUSTOM SSO TOKEN FROM

 THE REQUEST ***″);

 }

 }

 }

 }

 }

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to during a commit, see

 // “Custom login module development for a system login configuration” on page 78.)

 if (customSSOToken != null)

 {

 // Sets the customSSOToken token into the Subject

 try

 {

 public final SingleSignonToken customSSOTokenPriv = customSSOToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Add the custom SSO token if it is not null and not

 // already in the Subject

 if ((customSSOTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customSSOTokenPriv)))

 {

 subject.getPrivateCredentials().add(customSSOTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

320 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

});

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Private method to get the specific cookie from the request

 private String[] getCookieValues (Cookie[] cookies, String hdrName)

 {

 Vector retValues = new Vector();

 int numMatches=0;

 if (cookies != null)

 {

 for (int i = 0; i < cookies.length; ++i)

 {

 if (hdrName.equals(cookies[i].getName()))

 {

 retValues.add(cookies[i].getValue());

 numMatches++;

 System.out.println(cookies[i].getValue());

 }

 }

 }

 if (retValues.size()>0)

 return (String[]) retValues.toArray(new String[numMatches]);

 else

 return null;

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Default AuthenticationToken

Do not use the default AuthenticationToken in service provider code. This default token is used by the

WebSphere Application Server run-time code only and is authentication mechanism specific. Any

modifications to this token by service provider code can potentially cause interoperability problems. If you

need to create an authentication token for custom usage, see “Implementing a custom

AuthenticationToken” on page 322 for more information.

Changing the TokenFactory associated with the default AuthenticationToken

When WebSphere Application Server generates a default AuthenticationToken, the application server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.authenticationTokenFactory property. To modify this property using the

administrative console, complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

Chapter 12. Administering security 321

The default TokenFactory specified for this property is called com.ibm.ws.security.ltpa.LTPATokenFactory.

The LTPATokenFactory uses the DESede/ECB/PKCS5Padding cipher. This token factory creates an

interoperable Lightweight Third Party Authentication (LTPA) token. If you change this TokenFactory, you

lose the interoperability with any servers running a version of WebSphere Application Server prior to

version 5.1.1 and any other servers that do not support the new TokenFactory implementation. However,

this is not a problem if all of your application servers use WebSphere Application Server Version 5.1.1 or

later and all of your servers use your new TokenFactory.

If you associate com.ibm.ws.security.ltpa.LTPAToken2Factory with the

com.ibm.wsspi.security.token.authenticationTokenFactory property, the token is AES encrypted. However,

you need to weigh the performance against your security needs. By doing this, you might add additional

attributes to the AuthenticationToken in the Subject during a login that are available downstream.

If you need to perform your own signing and encryption of the default AuthenticationToken, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your TokenFactory implementation instantiates (createToken) and validates (validateTokenBytes) your

token implementation. You can use the LTPA keys passed into the initialize method of the TokenFactory or

you can use your own keys. If you use your own keys, they must be the same everywhere in order to

validate the tokens that are generated using those keys. See the Javadoc, available through a link on the

front page of the information center, for more information on implementing your own custom TokenFactory.

To associate your TokenFactory with the default AuthenticationToken using the administrative console,

complete the following steps:

1. Click Security > Global Security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authenticationTokenFactory property and verify that the value

of this property matches your custom TokenFactory implementation.

4. Verify that your implementation classes are put into the install directory/classes directory so that

the WebSphere class loader can load the classes.

Implementing a custom AuthenticationToken

This task explains how you might create your own AuthenticationToken implementation, which is set in the

login Subject and propagated downstream. This implementation enables you to specify an authentication

token that can be used by a custom login module or application. Consider writing your own implementation

if you want to accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread. This task also might include encryption and decryption.

v Affect the overall uniqueness of the Subject using the getUniqueID() API.

Important: Custom AuthenticationToken implementations are not used by the security run time in

WebSphere Application Server to enforce authentication. WebSphere Application Security run

time uses this token in the following situations only:

v Call the getBytes() method for serialization

v Call the getForwardable() method to determine whether to serialize the AuthenticationToken.

v Call the getUniqueId() method for uniqueness

v Call the getName() and the getVersion() methods for adding serialized bytes to the

TokenHolder that is sent downstream

All of the other uses are custom implementations.

322 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

To implement a custom authentication token, you must complete the following steps:

1. Write a custom implementation of the AuthenticationToken interface. There are many different methods

for implementing the AuthenticationToken interface. However, make sure that the methods required by

the AuthenticationToken interface and the token interface are fully implemented. After you implement

this interface, you can place it in the install_dir/classes directory. Alternatively, you can place the

class in any private directory. However, make sure that the WebSphere Application Server class loader

can locate the class and that it is granted the appropriate permissions. You can add the Java archive

(JAR) file or directory that contains this class into the server.policy file so that it has the necessary

permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

AuthenticationToken, might extend the abstract class and then most of the work is completed.

To see an implementation of AuthenticationToken, see “Example:

com.ibm.wsspi.security.token.AuthorizationToken implementation” on page 301

2. Add and receive the custom AuthenticationToken during WebSphere Application Server logins This

task is typically accomplished by adding a custom login module to the various application and system

login configurations. However, in order to deserialize the information, you must plug in a custom login

module. After the object is instantiated in the login module, you can the object to the Subject during the

commit() method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java

serializable object” on page 331. If you want to ensure that the information is propagated, if you want

to do your own custom serialization, or if you want to specify the uniqueness for Subject caching

purposes, then consider writing your own AuthenticationToken implementation.

The code sample in “Example: custom AuthenticationToken login module” on page 329 shows how to

determine if the login is an initial login or a propagation login. The difference between these login types

is whether the WSTokenHolderCallback contains propagation data. If the callback does not contain

propagation data, initialize a new custom AuthenticationToken implementation and set it into the

Subject. If the callback contains propagation data, look for your specific custom AuthenticationToken

TokenHolder instance, convert the byte[] back into your custom AuthenticationToken object, and set it

back into the Subject. The code sample shows both instances.

You can make your AuthenticationToken read-only in the commit phase of the login module. If you do

not make the token read-only, then attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom authorization token

Because this login module relies on information in the sharedState added by the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, add this login module after

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule. For information on how to add your

custom login module to the existing login configurations, see “Custom login module development for a

system login configuration” on page 78

After completing these steps, you have implemented a custom AuthenticationToken.

Example: com.ibm.wsspi.security.token.AuthenticationToken

implementation

Use this file to see an example of a AuthenticationToken implementation. The following sample code does

not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthenticationToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

Chapter 12. Administering security 323

However, you might choose to implement the interface directly if there are considerable differences

between how you handle the various token implementations.

For information on how to implement a custom AuthenticationToken, see “Implementing a custom

AuthenticationToken” on page 322.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomAuthenticationTokenImpl implements com.ibm.wsspi.security.

 token.AuthenticationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 // 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

 private String oidName = "your_oid_name";

 // This string can really be anything if you do not want to use an OID.

/**

 * Constructor used to create initial AuthenticationToken instance

 */

 public CustomAuthenticationTokenImpl (String principal)

 {

 // Sets the principal in the token

 addAttribute("principal", principal);

 // Sets the token version

 addAttribute("version", "1");

 // Sets the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis()

 + expire_period_in_millis).toString());

 }

/**

 * Constructor used to deserialize the token bytes received during a

 * propagation login.

 */

 public CustomAuthenticationTokenImpl (byte[] token_bytes)

 {

 try

 {

 // The data in token_bytes should be signed and encrypted if the

 // hashtable is acting as an authentication token.

 hashtable = (java.util.Hashtable) custom_decryption_algorithm (token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

324 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

*/

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // If you set the expiration to 0, the token does not expire

 if (expiration != 0)

 {

 // Returns a response that identifies whether this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long type.

 * @return long

 */

 public long getExpiration()

 {

 // Gets the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // The expiration is the first element and there should only be one expiration

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated. In some cases

 // you might want it to be local only.

 return true;

 }

/**

 * Gets the principal to which this token belongs. If this is an

 * authorization token, this principal string must match the

 * authentication token principal string or the message is rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // This value might be any combination of attributes

 String[] principal = getAttributes("principal");

 if (principal != null && principal[0] != null)

 {

Chapter 12. Administering security 325

return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

 }

/**

 * Returns a unique identifier of the token based upon information the provider

 * considers makes this a unique token. This identifier is used for caching purposes

 * and can be used in combination with other token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the accessID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // If you do not want to affect the cache lookup, just return NULL here.

 return null;

 String cacheKeyForThisToken = "dynamic attributes";

 // If you do want to affect the cache lookup, return a string of

 // attributes that you want factored into the lookup.

 return cacheKeyForThisToken;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set read-only during login commit

 // because this ensures that new data is not set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = custom_encryption_algorithm (hashtable);

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token, which is used to identify the byte[] in the

 * protocol message.

 * @return String

 */

 public String getName()

 {

 return oidName;

326 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

}

/**

 * Gets the version of the token as an short type. This also is used

 * to identify the byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any set methods check that this state has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is read-only

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name/value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

Chapter 12. Administering security 327

// Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // Copies the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.wsspi.security.token.AuthenticationToken deep_clone =

 new com.ibm.websphere.security.token.CustomAuthenticationTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

/**

 * This method returns true if this token is storing a user ID and password

 * instead of a token.

 * @return boolean

 */

 public boolean isBasicAuth()

328 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

{

 return false;

 }

}

Example: custom AuthenticationToken login module

This file shows how to determine if the login is an initial login or a propagation login.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // “Custom login module development for a system login configuration” on page 78.)

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For information on what to do during login, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom AuthenticationToken

 // implementation

 if (tokenHolder.getName().equals(″your_oid_name″) && tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom AuthenticationToken constructor

 // to deserialize

 customAuthzToken = new

 com.ibm.websphere.security.token.

 CustomAuthenticationTokenImpl(tokenHolder.getBytes());

Chapter 12. Administering security 329

}

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // AuthenticationToken implementation

 {

 // Gets the principal from the default AuthenticationToken. This principal

 // should match all default tokens.

 // Note: WebSphere Application Server run time only enforces this for

 // default tokens. Thus, you can choose

 // to do this for custom tokens, but it is not required.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom authentication token. This is an initial login. Pass

 // the principal into the constructor

 customAuthToken = new com.ibm.websphere.security.token.

 CustomAuthenticationTokenImpl(principal);

 // Adds any initial attributes

 if (customAuthToken != null)

 {

 customAuthToken.addAttribute(″key1″, ″value1″);

 customAuthToken.addAttribute(″key1″, ″value2″);

 customAuthToken.addAttribute(″key2″, ″value1″);

 customAuthToken.addAttribute(″key3″, ″something different″);

 }

 }

 // Note: You can add the token to the Subject during commit in case

 // something happens during the login.

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what do during commit, see

 // “Custom login module development for a system login configuration” on page 78.)

 if (customAuthToken != null)

 {

 // Sets the customAuthToken token into the Subject

 try

 {

 private final AuthenticationToken customAuthTokenPriv = customAuthToken;

 // Do this in a doPrivileged code block so that application code does

 // not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom Authentication token if it is not

330 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// null and not already in the Subject

 if ((customAuthTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customAuthTokenPriv)))

 {

 subject.getPrivateCredentials().add(customAuthTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthenticationToken customAuthToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Propagating a custom Java serializable object

Prior to completing this task, verify that security propagation is enabled in the administrative console.

With security attribute propagation enabled, you can propagate data either horizontally with single signon

(SSO) enabled or downstream using Common Secure Interoperability version 2 (CSIv2). When a login

occurs, either through an application login configuration or a system login configuration, a custom login

module can be plugged in to add Java serializable objects into the Subject during login. This document

describes how to add an object into the Subject from a login module and describes other infrastructure

considerations to make sure that the Java object gets propagated.

1. Add your custom Java object into the Subject from a custom login module. There is a two-phase

process for each Java Authentication and Authorization Service (JAAS) login module. WebSphere

Application Server completes the following processes for each login module present in the

configuration:

login() method

In this step, the login configuration callbacks are analyzed, if necessary, and the new objects

or credentials are created.

commit() method

In this step, the objects or credentials that are created during login are added into the Subject.

After a custom Java object is added into the Subject, WebSphere Application Server serializes the

object, deserializes the object, and adds the object back into the Subject downstream. However, there

are some requirements for this process to occur successfully. For more information on the JAAS

programming model, see the JAAS information provided in “Security: Resources for learning” on page

21.

Chapter 12. Administering security 331

Important: Whenever you plug a custom login module into the login infrastructure of WebSphere

Application Server, make sure that the code is trusted. When you add the login module

into the install_root/classes directory, the login module has Java 2 Security

AllPermissions. It is recommended that you add your login module and other infrastructure

classes into any private directory. However, you must modify the

install_root/properties/server.policy file to make sure that your private directory, Java

archive (JAR) file, or both have the permissions needed to execute the application

programming interfaces (API) that are called from the login module. Because the login

module might be executed after the application code on the call stack, you might add

doPrivileged code so that you do not need to add additional properties to your

applications.

The following code sample shows how to add doPrivileged:

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // “Custom login module development for a system login configuration” on page 78.)

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login phase, see

 // “Custom login module development for a system login configuration” on page 78.)

 // Construct callback for the WSTokenHolderCallback so that you

 // can determine if

 // your custom object has propagated

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback(″Authz Token List: ″);

 try

 {

 _callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 throw new LoginException (e.getLocalizedMessage());

 }

 // Checks to see if any information is propagated into this login

 List authzTokenList = ((WSTokenHolderCallback) callbacks[1]).

 getTokenHolderList();

 if (authzTokenList != null)

 {

 for (int i = 0; i< authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Look for your custom object. Make sure you use

 // ″startsWith″because there is some data appended

 // to the end of the name indicating in which Subject

 // Set it belongs. Example from getName():

332 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

// ″com.acme.CustomObject (1)″. The class name is

 // generated at the sending side by calling the

 // object.getClass().getName() method. If this object

 // is deserialized by WebSphere Application Server,

 // then return it and you do not need to add it here.

 // Otherwise, you can add it below.

 // Note: If your class appears in this list and does

 // not use custom serialization (for example, an

 // implementation of the Token interface described in

 // the Propagation Token Framework), then WebSphere

 // Application Server automatically deserializes the

 // Java object for you. You might just return here if

 // it is found in the list.

 if (tokenHolder.getName().startsWith(″com.acme.CustomObject″))

 return true;

 }

 }

 // If you get to this point, then your custom object has not propagated

 myCustomObject = new com.acme.CustomObject();

 myCustomObject.put(″mykey″, ″mydata″);

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during the commit phase, see

 // “Custom login module development for a system login configuration” on page 78.)

 try

 {

 // Assigns a reference to a final variable so it can be used in

 // the doPrivileged block

 final com.acme.CustomObject myCustomObjectFinal = myCustomObject;

 // Prevents your applications from needing a JAAS getPrivateCredential

 // permission.

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedExceptionAction()

 {

 public Object run() throws java.lang.Exception

 {

 // Try not to add a null object to the Subject or an object

 // that already exists.

 if (myCustomObjectFinal != null && !subject.getPrivateCredentials().

 contains(myCustomObjectFinal))

 {

 // This call requires a special Java 2 Security permission,

 // see the JAAS Javadoc.

 subject.getPrivateCredentials().add(myCustomObjectFinal);

 }

 return null;

 }

 });

 }

 catch (java.security.PrivilegedActionException e)

 {

 // Wraps the exception in a WSLoginFailedException

Chapter 12. Administering security 333

java.lang.Throwable myException = e.getException();

 throw new WSLoginFailedException (myException.getMessage(), myException);

 }

 }

 // Defines your login module variables

 com.acme.CustomObject myCustomObject = null;

}

2. Verify that your custom Java class implements the java.io.Serializable interface. An object that is

added to the Subject must be serializable if you want the object to propagate. For example, the object

must implement the java.io.Serializable interface. If the object is not serializable, the request does

not fail, but the object does not propagate. To make sure that an object added to the Subject is

propagated, implement one of the token interfaces defined in the “Security attribute propagation” on

page 275 article or add attributes to one of the following existing default token implementations:

AuthorizationToken

Add attributes if they are user-specific. For more information, see “Default AuthorizationToken”

on page 297.

PropagationToken

Add attributes that are specific to an invocation. For more information, see “Default

PropagationToken” on page 282.

If you are careful adding custom objects and follow all the steps to make sure that WebSphere

Application Server can serialize and deserialize the object at each hop, then it is sufficient to use

custom Java objects only.

3. Verify that your custom Java class exists on all of the systems that might receive the request. When

you add a custom object into the Subject and expect WebSphere Application Server to propagate the

object, make sure that the class definition for that custom object exists in the install_root/classes

directory on all of the nodes where serialization or deserialization might occur. Also, verify that the Java

class versions are the same.

4. Verify that your custom login module is configured in all of the login configurations used in your

environment where you would need to add your custom object during a login. Any login configuration

that interacts with WebSphere Application Server generates a Subject that might be propagated

outbound for an EJB request. If you want WebSphere Application Server to propagate a custom object

in all cases, make sure that the custom login module is added to every login configuration that is used

in your environment. For more information, see “Custom login module development for a system login

configuration” on page 78.

5. Verify that security attribute propagation is enabled on all of the downstream servers that receive the

propagated information. When an EJB request is sent to a downstream server and security attribute

propagation is disabled on that server, only the authentication token is sent for backwards compatibility.

Therefore, you must review the configuration to verify that propagation is enabled in all of the cells that

might receive requests. There are several places in the administrative console that you must check to

make sure propagation is fully enabled. For more information, see “Enabling security attribute

propagation” on page 279.

6. Add any custom objects to the propagation exclude list that you do not want to propagate. You can

configure a property to exclude the propagation of objects that match specific class names, package

names, or both. For example, you can have a custom object that is related to a specific process. If the

object is propagated, it does not contain valid information. You must tell WebSphere Application Server

not to propagate this object. Complete the following steps to specify the object in the propagation

exclude list, using the administrative console:

a. Click Security > Global Security.

b. Under Additional Properties, click Custom Properties > New.

c. Add com.ibm.ws.security.propagationExcludeList in the Name field.

334 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

d. Add the name of the custom object in the Value field. You can add a list of custom objects to the

propagation exclude list separated by a colon. For example, you might enter

com.acme.CustomLocalObject:com.acme.private.*. You can enter a class name such as

com.acme.CustomLocalObject or a package name such as com.acme.private.*. In this example,

WebSphere Application Server does not propagate any class that equals

com.acme.CustomLocalObject or begins with com.acme.private..

Although you can add custom objects to the propagation exclude list, you must be aware of a side

effect. WebSphere Application Server stores the opaque token, or the serialized Subject contents,

in a local cache for the life of the single signon (SSO) token. The life of the SSO token, which has

a default of two hours, is configured in the SSO properties on the administrative console. The

information that is added to the opaque token includes only the objects not in the exclude list. If

your authentication cache does not match your SSO token timeout, you might get a Subject on the

local server that is regenerated from the opaque token but does not contain the objects on the

exclude list. The authentication cache, which has a default of ten minutes, is configured on the

Global Security panel on the administrative console. It is recommended that you make your

authentication cache timeout value equal to the SSO token timeout so that the Subject contents

are consistent locally.

As a result of this task, custom Java serializable objects are propagated horizontally or downstream. For

more information on the differences between horizontal and downstream propagation, see “Security

attribute propagation” on page 275.

Authorization in WebSphere Application Server

WebSphere Application Server supports authorization based on the Java Authorization Contract for

Containers (JACC) specification in addition to the default authorization. JACC is a new specification in

Java 2 Platform, Enterprise Edition (J2EE) 1.4. It enables third-party security providers to manage

authorization in the application server. The default JACC provider that is provided by WebSphere

Application Server uses the Tivoli Access Manager as the authorization provider.

When security is enabled in the WebSphere Application Server, the default authorization is used unless a

JACC provider is specified. The default authorization does not require special setup, and the default

authorization engine makes all of the authorization decisions. However, if a JACC provider is configured

and setup to be is used by WebSphere Application Server, all of the Enterprise JavaBeans (EJB) and Web

authorization decisions are then delegated to the JACC provider.

WebSphere Application Server supports security for J2EE applications and also for its administrative

components. J2EE applications such as Web and EJB components are protected and authorized per the

J2EE specification. The administrative components are internal to WebSphere Application Server, and are

protected by the RoleBasedAuthorizer. The administrative components include the adminConsole

application, MBeans, and other components such as naming and security. For more information on

administrative security, see “Role-based authorization” on page 120.

When a JACC provider is used for authorization in WebSphere Application Server, all of the J2EE

application-based authorization decisions are delegated to the provider per the JACC specification.

However, all administrative security authorization decisions are made by the WebSphere Application

Server default authorization engine. The JACC provider is not called to make the authorization decisions

for administrative security.

When a protected J2EE resource is accessed, the authorization decision to give access to the principal is

the same whether using the default authorization engine or a JACC provider. Both of the authorization

models satisfy the J2EE specification, so there should be no differences in function. Choose a JACC

provider only when you want to work with an external security provider such as the Tivoli Access Manager.

In this instance, the security provider must support the JACC specification and be set up to work with the

WebSphere Application Server. Setting up and configuring a JACC provider requires additional

Chapter 12. Administering security 335

configuration steps, depending on the provider. Unless you have an external security provider that you can

use with WebSphere Application Server, use the default authorization.

JACC providers

The Java Authorization Contract for Containers (JACC) is a new specification introduced in Java 2

Platform, Enterprise Edition (J2EE) 1.4 through the Java Specifications Request (JSR) 115 process. This

specification defines a contract between J2EE containers and authorization providers.

The contract enables third-party authorization providers to plug into J2EE 1.4 application servers (such as

WebSphere Application Server) to make the authorization decisions when a J2EE resource is accessed.

The access decisions are made through the standard java.security.Policy object.

In WebSphere Application Server, two authorization contracts are supported using both a native and a

third-party JACC provider implementation. The default (out-of-box) solution is the WebSphere Application

Server default J2EE role based authorization implementation, which does not implement the JACC Policy

provider interface.

To plug-in to WebSphere Application Server, the third-party JACC provider must implement the policy

class, policy configuration factory class, and policy configuration interface. All are required by the JACC

specification.

The JACC specification does not specify how to handle the authorization table (user or group to role)

information between the container and the provider. It is the responsibility of the provider to provide some

management facilities to handle this information. It does not require the container to provide the

authorization table information in the binding file to the provider.

WebSphere Application Server provides two role configuration interfaces (RoleConfigurationFactory and

RoleConfiguration) to help the provider obtain information from the binding file, as well as an initialization

interface (InitializeJACCProvider). The implementation of these interfaces is optional. See “Interfaces used

to support JACC” on page 348 for more information about these interfaces.

Tivoli Access Manager as the default JACC provider for WebSphere Application Server

The JACC provider in WebSphere Application Server is implemented by both the client and the server

pieces of the Tivoli Access Manager server. The client piece of Tivoli Access Manager is embedded in

WebSphere Application Server. The server piece is located on a separate installable CD that is shipped as

part of the WebSphere network deployment (ND) package.

The JACC provider is not an out-of-box solution. You must configure WebSphere Application Server to use

the JACC provider.

Authorization providers settings

Use this page to enable a Java Authorization Contract for Containers (JACC) provider for authorization

decisions.

To view this administrative console page, click Security > Global security. Under Authorization, click

Authorization providers.

WebSphere Application Server provides a default authorization engine that performs all of the authorization

decisions. In addition, WebSphere Application Server also supports an external authorization provider

using the JACC specification to replace the default authorization engine for Java 2 Platform, Enterprise

Edition (J2EE) applications.

336 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

JACC is part of the J2EE specification, which enables third-party security providers such as Tivoli Access

Manager to plug into WebSphere Application Server and make authorization decisions.

Important: Unless you have an external JACC provider or want to use a JACC provider for Tivoli Access

Manager that can handle J2EE authorizations based on JACC, and it is configured and set up

to be used with WebSphere Application Server, do not enable External authorization using

JACC.

Default authorization

This option should be used all the time unless you want an external security provider such as the Tivoli

Access Manager to perform the authorization decision for J2EE applications based on the JACC

specification.

 Default: Enabled

External authorization using a JACC provider

Enable this option only when you plan to use an external security provider such as the Tivoli Access

Manager for performing authorization decisions for J2EE applications using the JACC specification.

To use an external provider, you must complete the following steps:

1. Configure your JACC provider.

2. Verify that the required provider implementation classes are in the class path for each WebSphere

Application Server process.

 Attention: This step is not required when you use Tivoli Access Manager because the application

server already contains the implementation classes.

3. Enable the External authorization using a JACC provider option

4. Enter the appropriate properties for the provider under the External JACC provider link, which is

located under Related Items.

 Default: Disabled

External JACC provider

Use this link to configure WebSphere Application Server to use an external JACC provider. For example to

configure an external JACC provider, the policy class name and the policy configuration factory class

name are required by the JACC specification.

The default settings contained in this link are used by Tivoli Access Manager for authorization decisions. If

you intend to use another provider, modify the settings as appropriate.

JACC support in WebSphere Application Server

WebSphere Application Server supports the Java Contract for Containers (JACC) specification, which

enables third-party security providers to handle the Java 2 Platform, Enterprise Edition (J2EE)

authorization.

The specification requires that both the containers in the application server and the provider satisfy some

requirements. Specifically, the containers are required to propagate the security policy information to the

provider during the application deployment and to call the provider for all authorization decisions. The

providers are required to include the storing of the policy information in their repository during application

deployment. The providers then use this information to make authorization access decisions when called

by the container.

Chapter 12. Administering security 337

JACC access decisions

When security is enabled and an enterprise bean or Web resource is accessed, the Enterprise JavaBean

(EJB) container or Web container calls the security run time to make an authorization decision on whether

to permit access. When using an external provider, the access decision is delegated to that provider.

According to the Java Contract for Containers (JACC) specification, the appropriate permission object is

created, the appropriate policy context handlers are registered, and the appropriate policy context identifier

(contextID) is set. A call is made to the java.security.Policy object method implemented by the provider to

make the access decision.

The following sections describe how the provider is called for both the EJB and the Web resources.

Access decisions for enterprise beans:

When security is enabled, and an EJB method is accessed, the EJB container delegates the authorization

check to the security runtime. If JACC is enabled, the security runtime uses the following process to

perform the authorization check:

1. It creates the EJBMethodPermission object using the bean name, method name, interface name and

the method signature.

2. It creates the contextID and sets it on the thread by using the PolicyContext.setContextID(contextID)

method.

3. It registers the required policy context handlers, including the Subject policy context handler.

4. It creates the ProtectionDomain object with principal in the Subject. If there is no principal, null is

passed for the principal name.

5. The access decision is delegated to the JACC provider by calling the implies() method of the Policy

object, which is implemented by the provider. The EJBMethodPermission and the ProtectionDomain

objects are passed to this method.

6. The isCallerInRole() access check also follows the same process, except that an

EJBRoleRefPermission object is created instead of an EJBMethodPermission.

Access decisions for Web Resources:

When security is enabled and configured to use a JACC provider, and when a Web resource such as a

servlet or a JavaServer pages (JSP) is accessed, the security runtime delegates the authorization decision

to the JACC provider by using the following process:

1. A WebResourcePermission is created to see if the URI is unchecked. If the provider honors the

Everyone subject it should also be checked here.

a. The WebResourcePermission is constructed with urlPattern and the HTTP method accessed.

b. A ProtectionDomain with a null principal name is created.

c. The JACC provider‘s Policy.implies() method is called with the permission and the protection

domain. If the URI access is unchecked (or given access to Everyone subject), the provider should

permit access (return true) in the implies() method. Access is then granted without further checks.

2. If the access was not granted in Step 1, a WebUserDataPermission is created and used to see if the

Uniform Resource Identifier (URI) is precluded or excluded or must be redirected using HTTPS

protocol.

a. The WebUserDataPermission is constructed with the urlPattern accessed, along with the HTTP

method invoked and the transport type of the request. If the request is over HTTPS, the transport

type is set to CONFIDENTIAL; otherwise, null is passed.

b. ProtectionDomain with a null principal name is created.

c. The JACC provider‘s Policy.implies() method is called with the permission and the protection

domain. If the request is using the HTTPS protocol and the implies returns false, the HTTP 403

338 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

error is returned to imply excluded/precluded permission and no further checks are performed. If

the request is not using the HTTPS protocol, and the implies returns false, the request is redirected

over HTTPS.

3. The security runtime attempts to authenticate the user. If the authentication information already exists

(for example, LTPAToken), it is used. Otherwise, the user’s credentials must be entered.

4. After the user credentials are validated, a final authorization check is performed to see if the user has

been granted access privileges to the URI.

a. As in Step 1, the WebResourcePermission is created. The ProtectionDomain now contains the

Principal that is attempting to access the URI. The Subject policy context handler also contains the

user‘s information, which can be used for the access check.

b. The provider‘s implies() method is called using the Permission object and the ProtectionDomain

created above. If the user is granted permission to access the resource, the implies() method

should return true. If the user is not granted access, the implies() method should return false.

Note: Even if the order listed above is changed later (for example, to improve performance) the end result

should be the same. For example, if the resource is precluded or excluded the end result is that the

resource cannot be accessed.

Using information from the Subject for Access Decision:

If the provider relies on the WebSphere Application Server generated Subject for access decision, the

provider can query the public credentials in the Subject to obtain the credential of type WSCredential . The

WSCredential API is used to obtain information about the user, including the name and the groups that the

user belongs to. This information is then used to make the access decision.

If the provider adds information to the Subject (for example, by using the Trust Association Interface

feature or by plugging login modules into the Application Server), that information is available in the

Subject. The provider can then make use of the information added in the Subject to make the access

decision.

The security attribute propagation has more information on how to add information to the Subject. See

“Enabling security attribute propagation” on page 279 for more information.

Dynamic module updates in JACC

WebSphere Application Server supports dynamic updates to Web modules under certain conditions. If a

Web module is updated, deleted or added to an application, only that module is stopped and/or started as

appropriate. The other existing modules in the application are not impacted, and the application itself is not

stopped and then restarted.

When any security policies are modified in the Web modules, the application is stopped and then restarted

when using the default authorization engine. When using the Java Contract for Containers (JACC) based

authorization, the behavior depends on the functionality that a provider supports. If a provider can handle

dynamic changes to the Web modules, then only the Web modules are impacted. Otherwise, the entire

application is stopped and restarted for the new changes in the Web modules to take effect.

A provider can indicate if they will support the dynamic updates by configuring the supports dynamic

module updates option in the JACC configuration model (see “Configuring a JACC provider” on page 346

for more information). This option can be enabled or disabled using the administrative console or by

scripting. It is expected that most providers will store the policy information in their external repository,

which makes it possible for them to support these dynamic updates. This option is enabled by default for

most providers.

When the supports dynamic module updates option is enabled, if a Web module that contains security

roles is dynamically added, modified, or deleted, only the specific Web modules are impacted and

Chapter 12. Administering security 339

restarted. If the option is disabled, the entire application is restarted. When dynamic updates are

performed, the security policy information of the modules impacted are propagated to the provider. For

more information about security policy propagation, see “JACC policy propagation” on page 341.

Initialization of the JACC provider

If a Java Contract for Containers (JACC) provider requires initialization during server startup (for example,

to enable the client code to communicate to the server code), they can implement the

com.ibm.wsspi.security.authorization.InitializeJACCProvider interface. See “Interfaces used to support

JACC” on page 348 for more information.

When this interface is implemented, it is called during server startup. Any custom properties in the JACC

configuration model are propagated to the initialize method of this implementation. The custom properties

can be entered using either the administrative console or by scripting.

During server shutdown, the cleanup method is called for any clean-up work that a provider requires.

Implementation of this interface is strictly optional, and should be used only if the provider requires

initialization during server startup.

Mixed node environment and JACC

Authorization using Java Contract for Containers (JACC) is a new feature in WebSphere Application

Server Version 6. Previous versions of the WebSphere Application Server do not support this feature. Also,

the JACC configuration is set up at the cell level and is applicable for all the nodes and servers in that

cell..

If you are planning to use the JACC-based authorization the cell only contains 6.0 nodes. This implies that

a mixed node environment containing a set of 5.x nodes in a 6.0 cell is not supported.

JACC policy context handlers

WebSphere Application Server supports all of the policy context handlers that are required by the Java

Contract for Containers (JACC) specification. However, due to performance impacts, the Enterprise

JavaBeans (EJB) arguments policy context handler is not activated unless it is specifically required by the

provider. Performance impacts result if objects must be created for each of the arguments for each EJB

method.

If the provider supports and requires this context handler, enable the Requires the EJB arguments

policy context handler for access decisions check box in the External Jacc provider link under the

Authorization providers panel or by using scripting. Any changes to this are effective after the servers has

been restarted . By default this is disabled. When using the Tivoli Access Manager as the JACC provider,

this option should be disabled, since the argument values are not required for access decisions.

JACC policy context identifiers (ContextID) format

A policy context identifier is defined as a unique string that represents a policy context. A policy context

contains all of the security policy statements as defined by the Java Contract for Containers (JACC)

specification that affect access to the resources in a Web or Enterprise JavaBeans (EJB) module. During

policy propagation to the JACC provider, a PolicyConfiguration object is created for each policy context.

The object is populated with the policy statements (represented by the JACC permission objects) that

correspond to the context. The object is then propagated to the JACC provider using the JACC

specification APIs.

WebSphere Application Server makes the contextID unique by using the string

href:cellName/appName/moduleName as the contextID format for the modules. The href part of the string

indicates that a hierarchical name is passed as the contextID.

340 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The cellName represents the name of the deployment manager cell or the base cell where the application

is installed. After an application is installed in one cell (for example, in a base application server where the

cell name is base1) and is added to a deployment manager cell whose name is cell1 by using addNode,

the contextID for the modules in the application contain base1 (not cell1) as the cell name since the

application was initially installed in base1.

The appName part of the string in the contextID represents the application name containing the module. The

moduleName refers to the name of the module.

As an example, the contextID for the module Increment.jar in an application named DefaultApplication that

is installed in cell1 is href:cell1/DefaultApplication/Increment.jar.

JACC policy propagation

When an application is installed or deployed in the WebSphere Application Server, the security policy

information in the application is propagated to the provider when the configuration is saved. The contextID

for that application is saved in its application.xml file, used for propagating the policy to the JACC provider,

and also for access decisions for J2EE resources.

When an application is uninstalled, the security policy information in the application is removed from the

provider when the configuration is saved.

If the provider has implemented the RoleConfiguration interface, the security policy information propagated

to the policy provider also contains the authorization table information. See “Interfaces used to support

JACC” on page 348 for more information about this interface.

If an application does not contain security policy information, the PolicyConfiguration (and the

RoleConfiguration, if implemented) objects do not contain any information. The existence of empty

PolicyConfiguration and RoleConfiguration objects indicates that security policy information for the module

does not exist.

Once an application is installed, it can be updated without first being uninstalled and reinstalled. For

example, a new module can be added to an existing application, or an existing module can be modified. In

this instance, the information in the impacted modules is propagated to the provider by default. A module

is impacted when the deployment descriptor of the module changed as part of the update. If the provider

supports the RoleConfiguration interfaces, the entire authorization table for that application is propagated

to the provider.

If for some reason, the security information should not be propagated to the provider during application

updates, you can set the JVM property com.ibm.websphere.security.jacc.propagateonappupdate to

false in the deployment manager (in ND) or the unmanaged base application server. If this property is set

to false, then any updates to an existing application in the server are not propagated to the provider. You

also can set this property on a per-application basis using the custom properties of an application. The

wsadmin tool can be used to set the custom property of an application. If this property is set at the

application level, any updates to that application are not propagated to the provider. If the update to an

application is a full update, for example a new application ear file is used to replace the existing one, the

provider is then refreshed with the entire application security policy information.

In the network deployment (ND) environment, when an application is installed and saved, the security

policy information in that application is updated in the provider from the deployment manager (dmgr or

cell). However, the application is not propagated to its respective nodes until the sychronization command

is issued and completed. Also, in the ND setup when an application is uninstalled and saved at the

deployment manager, the policy for that application is removed from the JACC provider. However, unless

the synchronization command is issued and completed from the deployment manager to the nodes hosting

the application, the applications are still running in the respective nodes. In this instance, any access to

this application should be denied since the JACC provider does not contain the required information to

Chapter 12. Administering security 341

make the access decision for that application. Note that any updates to the application already installed as

described above are also propagated to the provider from the deployment manager. The changes in the

provider are not in sync with the applications in the nodes until the synchronization is completed.

JACC registration of the provider implementation classes

The JACC specification states that providers can plug in their provider using the system properties

javax.security.jacc.policy.provider and javax.security.jacc.PolicyConfigurationFactory.provider.

The javax.security.jacc.policy.provider property is used to set the policy object of the provider, while

the javax.security.jacc.PolicyConfigurationFactory.provider property is used to set the provider‘s

PolicyConfigurationFactory implementation.

Although both system properties are supported in WebSphere Application Server, it is highly recommended

that you use the configuration model provided. You can set these values using either the JACC

configuration panel (see “Configuring a JACC provider” on page 346 for more information) or by using

wsadmin scripting. One of the advantages of using the configuration model instead of the system

properties is that the information is entered in one place at the cell level, and is propagated to all nodes

during synchronization. Also, as part of the configuration model, additional properties can be entered as

described in the JACC configuration panel.

Enabling an external JACC provider

The Java Contract for Containers (JACC) defines a contract between Java 2 Platform, Enterprise Edition

(J2EE) containers and authorization providers. This contract enables any third-party authorization providers

to plug into a J2EE 1.4 application server such as WebSphere Application Server to make the

authorization decisions when a J2EE resource is accessed.

To enable an external JACC provider using the administrative console:

1. From the WebSphere Application Server administrative console, click Security > Global Security from

the left navigation menu.

2. Under Authorization, click Authorization Providers.

3. Under Related Items, click External JACC provider.

4. The fields are set for Tivoli Access Manager by default. Unless you want to use Tivoli Access Manager

as the JACC provider, replace these fields with the details for your own external JACC provider.

5. If any custom properties are required by the JACC provider, use the Custom properties link to enter

the properties. When using the Tivoli Access Manager, use the Tivoli Access Manager properties link

instead of the Custom properties link.

6. Select the External authorization using a JACC provider option under Security > Global Security

> Authorization Providers and then click OK.

7. Complete the remaining steps to enable global security. If you are using the Tivoli Access Manager you

must select LDAP as the user registry. This same LDAP server should be used by the Tivoli Access

Manager. For more information on configuring LDAP registries, see “Configuring Lightweight Directory

Access Protocol user registries” on page 198.

8. In a multinode environment, start the deployment manager configuration by issuing the following

commands:

install_dir\profiles\profile_name\bin\stopManager.bat -username user_name -password password

install_dir\profiles\profile_name\bin\startManager.bat

9. Restart all servers to make these changes effective.

342 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

External Java Authorization Contract for Containers provider settings

Use this page to configure WebSphere Application Server to use an external Java Authorization Contract

for Containers (JACC) provider. For example, the policy class name and the policy configuration factory

class name are required by the JACC specification.

For more information on JACC support in WebSphere Application Server, refer to the information center

documentation.

Use these settings when you have set up an external security provider to work with WebSphere

Application Server that can support Java 2 Platform, Enterprise Edition (J2EE) authorization based on the

JACC specification. The setup process involves installing and configuring the provider server and

configuring the client of the provider in the application server to communicate with the server. If the JACC

provider is not enabled, which implies the default authorization, these settings are not used.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authorization, click Authorization providers.

3. Under Related items, click External JACC provider.

Use the default settings when you use Tivoli Access Manager as the JACC provider. Install and configure

the Tivoli Access Manager server prior to using it with WebSphere Application Server. Using the Tivoli

Access Manager properties link under Additional properties, configure the Tivoli Access Manager client in

the application server to use the Tivoli Access Manager server. If you intend to use another provider,

modify the settings as appropriate.

Name

Specifies the name used to identify the external JACC provider.

This field is required.

 Data type: String

Description

Provides an optional description for the provider.

 Data type: String

Policy class name

Specifies a fully qualified class name that represents the javax.security.jacc.policy.provider property as per

the JACC specification. The class represents the provider-specific implementation of the

java.security.Policy abstract methods.

The class file must reside in the class path of each WebSphere Application Server process. This class is

used during authorization decisions. The default class name is for Tivoli Access Manager implementation

of the policy file.

This field is required.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMPolicy

Chapter 12. Administering security 343

Policy configuration factory class name

Specifies a fully qualified class name that represents the

javax.security.jacc.PolicyConfigurationFactory.provider property as per the JACC specification. The class

represents the provider-specific implementation of the javax.security.jacc.PolicyConfigurationFactory

abstract methods.

This class represents the provider-specific implementation of the PolicyConfigurationFactory abstract class.

The class file must reside in the class path of each WebSphere Application Server process. This class is

used to propagate the security policy information to the JACC provider during the installation of the J2EE

application. The default class name is for the Tivoli Access Manager implementation of the policy

configuration factory class name.

This field is required.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name

Specifies a fully qualified class name that implements the

com.ibm.wsspi.security.authorization.RoleConfigurationFactory interface.

The class file must reside in the class path of each WebSphere Application Server process. When you

implement this class, the authorization table information in the binding file is propagated to the provider

during the installation of the J2EE application. The default class name is for the Tivoli Access Manager

implementation of the role configuration factory class name.

This field is optional.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

Provider initialization class name

Specifies a fully qualified class name that implements the

com.ibm.wsspi.security.authorization.InitializeJACCProvider interface.

The class file must reside in the class path of each WebSphere Application Server process. When

implemented, this class is called at the start and the stop of all the application server processes. You can

use this class for any required initialization that is needed by the provider client code to communicate with

the provider server. The properties entered in the custom properties link are passed to the provider when

the process starts up. The default class name is for the Tivoli Access Manager implementation of the

provider initialization class name.

This field is optional.

 Data type: String

Default: com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy context handler for access decisions

Specifies whether the JACC provider requires the EJBArgumentsPolicyContextHandler to make access

decisions.

Because this option has an impact on performance, do not set it unless it is required by the provider.

Normally, this handler is required only when the provider supports instance-based authorization. Tivoli

Access Manager does not support this option for J2EE applications.

344 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Default: Disabled

Supports dynamic module updates

Specifies whether you can apply changes, made to security policies of Web modules in a running

application, dynamically without affecting the rest of the application.

If this option is enabled, the security policies of the added or modified Web modules are propagated to the

JACC provider and only the affected Web modules are started.

If this option is disabled, then the security policies of the entire application are propagated to the JACC

provider for any module-level changes. The entire application is restarted for the changes to take effect.

Typically, this option is enabled for an external JACC provider.

 Default: Enabled

Custom properties

Specifies the properties required by the provider.

These properties are propagated to the provider during the start up process when the provider initialization

class name is initialized. If the provider does not implement the provider initialization class name as

described previously, the properties are not used.

Tivoli Access Manager implementation does not require you to enter any properties in this link.

Tivoli Access Manager properties

Specifies properties required by the Tivoli Access Manager implementation.

These properties are used to set up the communication between the application server and the Tivoli

Access Manager server. You must install and configure the Tivoli Access Manager server before entering

these properties.

Propagating security policy of installed applications to a JACC

provider using wsadmin

It is possible that you have applications installed prior to enabling the JACC-based authorization. You can

start with default authorization and then move to an external provider based authorization using JACC later

on. In this case, the security policy of the previously installed applications would not exist in the JACC

provider to make the access decisions. You can reinstall all of the applications once JACC is enabled so

that the JACC provider is updated with this information. However, since reinstallation might not be an

option in some cases, the wsadmin tool can be used to propagate information to the JACC provider

independent of the application install process. The tool eliminates the need for reinstalling the applications.

The tool uses the SecurityAdmin MBean to propagate the policy information in the deployment descriptor

of any installed application to the JACC provider. The wsadmin tool can be used to invoke this method at

the deployment manager level.

Use propagatePolicyToJACCProvider(String appNames) to propagate the policy information in the

deployment descriptor of the enterprise archive (EAR) files to the JACC provider. If the

RoleConfigurationFactory and the RoleConfiguration interfaces are implemented by the JACC provider, the

authorization table information in the binding file of the EAR files is also propagated to the provider. See

“Interfaces used to support JACC” on page 348 for more information about these interfaces.

Chapter 12. Administering security 345

The appNames contains the list of application names, delimited by a colon (:), whose policy information

must be stored in the provider. If a null value is passed, the policy information of the deployed applications

is propagated to the provider.

Also, be aware of the following items:

v Before migrating application(s) to the Tivoli Access Manager JACC provider, please create or import the

users and groups that are in the application(s) to Tivoli Access Manager.

v Depending on the application or the number of applications propagated you might have to increase the

request time-out period either in the soap.client.props (if using SOAP) or the sas.client.props (if using

RMI) for the command to complete. You can set the request time-out value to 0 to avoid the timeout

problem, and change it back to the original value after the command is run.

1. Configure your JACC provider in WebSphere Application Server. See “Configuring a JACC provider”

for more information.

2. Restart the server.

3. Enter the following commands:

// use the SecurityAdmin Mbean at the Deployment Manager or the unmanaged base application server

wsadmin -user serverID -password serverPWD

set secadm [lindex [$AdminControl queryNames type=SecurityAdmin,*] 0]

// to propagate specific applications security policy information

wsadmin>set appNames [list app1:app2]

// or to propagate all applications installed

wsadmin>set appNames [list null]

// Run the command to propagate

wsadmin>$AdminControl invoke $secadm propagatePolicyToJACCProvider $appNames

Configuring a JACC provider

The Java Contract for Containers (JACC) defines a contract between Java 2 Platform, Enterprise Edition

(J2EE) containers and authorization providers. It enables any third party authorization providers to plug

into a J2EE 1.4 application server such as the WebSphere Application Server to make the authorization

decisions when a J2EE resource is accessed. The JACC provider is implemented using the Tivoli Access

Manager.

Read the following articles for more detailed information about JACC before you attempt to configure the

WebSphere Application Server to use a JACC provider:

v “JACC support in WebSphere Application Server” on page 337

v “JACC providers” on page 336

v “Tivoli Access Manager integration as the JACC provider” on page 351

v

1. Start the WebSphere Application Server administrative console by clicking

http://yourhost.domain:9060/ibm/console after starting the WebSphere Application Server. If security

is currently disabled, log in with any user ID. If security is currently enabled, log in with a predefined

administrative ID and password (this is typically the server user ID specified when you configured the

user registry).

2. Click Security > Global Security from the left navigation menu.

3. Under Authorization, click Authorization Providers.

4. Under General Properties, click External JACC provider.

5. Under Additional Properties, click Tivoli Access Manager properties.

6. Enter the following information:

346 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Enable embedded Tivoli Access Manager

Select this option to enable the Tivoli Access Manager.

Ignore errors during embedded Tivoli Access Manager disablement

Select this option when you want to unconfigure the JACC provider. Do not select this option

during configuration.

Client listening point set

WebSphere Application Server must listen using a TCP/IP port for authorization database

updates from the policy server. More than one process can run on a particular node or

machine

 Enter the listening ports used by Tivoli Access Manager clients, separated by a comma. If a

range of ports is specified, separate the lower and higher values by a colon (for example,

7999, 9990:999)..

Policy server

Enter the name of the Tivoli Access Manager policy server and the connection port. Use the

form policy_server:port. The policy communication port is set at the time of the Tivoli Access

Manager configuration, and the default is 7135.

Authorization servers

Enter the name of the Tivoli Access Manager authorization server. Use the form

auth_server:port:priority. The authorization server communication port is set at the time of

the Tivoli Access Manager configuration, and the default is 7136.

 More than one authorization server can be specified by separating the entries with commas.

Specifying more than one authorization server at a time is useful for reasons of failover and

performance.

 The priority value is determined by the order of the authorization server use (for example,

auth_server1:7136:1, and auth_server2:7137:2). A priority value of 1 is required when

configuring against a single authorization server.

Administrator user name

Enter the Tivoli Access Manager administrator user name that was created when Tivoli Access

Manager was configured (it is usually sec_master).

Administrator user password

Enter the Tivoli Access Manager administrator password.

User registry distinguished name suffix

Enter the distinguished name suffix for the user registry that is shared between Tivoli Access

Manager and WebSphere (for example, o=inm, c=us).

Security domain

You can create more than one security domain in Tivoli Access Manager, each with its own

administrative user. Users, groups and other objects are created within a specific domain, and

are not permitted to access resource in another domain.

 Enter the name of the Tivoli Access Manager security domain that is used to store WebSphere

Application Server users and groups.

 If a security domain has not been established at the time of the Tivoli Access Manager

configuration, leave the value as Default.

Administrator user distinguished name

Enter the full distinguished name of the WebSphere security administrator ID (for example,

cn=wasdmin, o=organization, c=country). The ID name must match the Server user ID on the

LDAP User Registry panel in the administrative console. To access the LDAP User Registry

panel, click Security > Global Security. Under User registries, click LDAP.

Chapter 12. Administering security 347

After you have configured a JACC provider, you must enable it in the WebSphere Application Server

administrative console. See “Enabling an external JACC provider” on page 342 for more information.

Interfaces used to support JACC

WebSphere Application Server provides interfaces similar to PolicyConfigurationFactory and

PolicyConfiguration so that the information that is stored in the bindings file can be propagated to the

provider during installation. The interfaces are called RoleConfigurationFactory and RoleConfiguration .

The implementation of these interfaces is optional.

RoleConfiguration

The RoleConfiguration interface is used to propagate the authorization information to the provider. This

interface is similar to the PolicyConfiguration interface found in Java Authorization Contact for Containers

(JACC).

RoleConfiguration

 - com.ibm.wsspi.security.authorization.RoleConfiguration

/**

 * This interface is used to propagate the authorization table information

 * in the binding file during application install. Implementation of this interface is

 * optional. When a JACC provider implements this interface during an application, both

 * the policy and the authorization table information are propagated to the provider.

* If this is not implemented, only the policy information is propagated as per the JACC specification.

 *

 * @ibm-spi

 * @ibm-support-class-A1

 */

public interface RoleConfiguration

/**

 * Add the users to the role in RoleConfiguration.

 * The role is created, if it doesn‘t exist in RoleConfiguration.

 * @param role the role name.

 * @param users the list of the user names.

 * @exception RoleConfigurationException if the users cannot be added.

 */

 public void addUsersToRole(String role, List users)

 throws RoleConfigurationException

/**

 * Remove the users to the role in RoleConfiguration.

 * @param role the role name.

 * @param users the list of the user names.

 * @exception RoleConfigurationException if the users cannot be removed.

 */

 public void removeUsersFromRole(String role, List users)

 throws RoleConfigurationException

/**

 * Add the groups to the role in RoleConfiguration.

 * The role is created if it doesn‘t exist in RoleConfiguration.

 * @param role the role name.

 * @param groups the list of the group names.

 * @exception RoleConfigurationException if the groups cannot be added.

 */

 public void addGroupsToRole(String role, List groups)

 throws RoleConfigurationException

/**

348 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

* Remove the groups to the role in RoleConfiguration.

 * @param role the role name.

 * @param groups the list of the group names.

 * @exception RoleConfigurationException if the groups cannot be removed.

 */

 public void removeGroupsFromRole(String role, List groups)

 throws RoleConfigurationException

/**

 * Add the everyone to the role in RoleConfiguration.

 * The role is created if it doesn‘t exist in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the everyone cannot be added.

 */

 public void addEveryoneToRole(String role)

 throws RoleConfigurationException

/**

 * Remove the everyone to the role in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the everyone cannot be removed.

 */

 public void removeEveryoneFromRole(String role)

 throws RoleConfigurationException

/**

 * Add the all authenticated users to the role in RoleConfiguration.

 * The role is created if it doesn‘t exist in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the authentication users cannot

 * be added.

 */

 public void addAuthenticatedUsersToRole(String role)

 throws RoleConfigurationException

/**

 * Remove the all authenticated users to the role in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the authentication users cannot

 * be removed.

 */

 public void removeAuthenticatedUsersFromRole(String role)

 throws RoleConfigurationException

/**

 * This commits the changes in Roleconfiguration.

 * @exception RoleConfigurationException if the changes cannot be

 * committed.

 */

 public void commit()

 throws RoleConfigurationException

/**

 * This deletes the RoleConfiguration from the RoleConfiguration Factory.

 * @exception RoleConfigurationException if the RoleConfiguration cannot

 * be deleted.

 */

 public void delete()

 throws RoleConfigurationException

/**

 * This returns the contextID of the RoleConfiguration.

 * @exception RoleConfigurationException if the contextID cannot be

Chapter 12. Administering security 349

* obtained.

 */

 public String getContextID()

 throws RoleConfigurationException

RoleConfigurationFactory

The RoleConfigurationFactory interface is similar to the PolicyConfigurationFactory interface introduced by

JACC, and is used to obtain RoleConfiguration objects based on the contextIDs.

RoleConfigurationFactory

 - com.ibm.wsspi.security.authorization.RoleConfigurationFactory

/**

 * This interface is used to instantiate the com.ibm.wsspi.security.authorization.RoleConfiguration

 * objects based on the context identifier similar to the policy context identifier.

 * Implementation of this interface is required only if the RoleConfiguration interface is implemented.

 *

 * @ibm-spi

 * @ibm-support-class-A1

 */

public interface RoleConfigurationFactory

/**

 * This gets a RoleConfiguration with contextID from the

 * RoleConfigurationfactory. If the RoleConfiguration doesn‘t exist

 * for the contextID in the RoleConfigurationFactory, a new

 * RoleConfiguration with contextID is created in the

 * RoleConfigurationFactory. The contextID is similar to

 * PolicyContextID, but it doesn‘t contain the module name.

 * If remove is true, the old RoleConfiguration is removed and a new

 * RoleConfiguration is created, and returns with the contextID.

 * @return the RoleConfiguration object for this contextID

 * @param contextID the context ID of RoleConfiguration

 * @param remove true or false

 * @exception RoleConfigurationException if RoleConfiguration

 * can‘t be obtained.

 **/

public abstract com.ibm.ws.security.policy.RoleConfiguration

 getRoleConfiguration(String contextID, boolean remove)

 throws RoleConfigurationException

InitializeJACCProvider

When implemented by the provider, this interface is called for every process start. All additional properties

that are entered during the authorization check are passed to the provider. For example, the provider can

use this information to initialize their client code to communicate with their server or repository. The

cleanup method is called during server shutdown to clean up the configuration.

Declaration

public interface InitializeJACCProvider

Description

This interface has two methods. The JACC provider can implement it, and WebSphere Application Server

calls it to initialize the JACC provider. The name of the implementation class is obtained from the value of

the initializeJACCProviderClassName system property.

This class must reside in a Java archive (JAR) file on the class path of each server that uses this provider.

InitializeJACCProvider

 - com.ibm.wsspi.security.authorization.InitializeJACCProvider

350 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

/**

 * Initializes the JACC provider

 * @return 0 for success.

 * @param props the custom properties that are included for this provider will

 * pass to the implementation class.

 * @exception Exception for any problems encountered.

 **/

 public int initialize(java.util.Properties props)

 throws Exception

 /**

 * This method is for the JACC provider cleanup and will be called during a process stop.

 **/

 public void cleanup()

Tivoli Access Manager integration as the JACC provider

Tivoli Access Manager uses the Java Authorization Contract for Container (JACC) model in WebSphere

Application Server to perform access checks. It consists of the following components.

v Run time

v Client configuration

v Authorization table support

v Access check

v Authentication using the PDLoginModule module

Tivoli Access Manager run-time changes that are used to support JACC

For the run-time changes, Tivoli Access Manager implements the PolicyConfigurationFactory and the

PolicyConfiguration interfaces, as required by JACC. During the application installation, the security policy

information in the deployment descriptor and the authorization table information in the binding files is

propagated to the Tivoli provider using these interfaces. The Tivoli provider stores the policy and the

authorization table information in the Tivoli Access Manager policy server by calling the respective Tivoli

Access Manager APIs. The information is stored in the security policy database in the Tivoli Access

Manager policy server.

Tivoli Access Manager also implements the RoleConfigurationFactory and the RoleConfiguration

interfaces. These interfaces are used to ensure that the authorization table information is passed to the

provider with the policy information. See “Interfaces used to support JACC” on page 348 for more

information about these interfaces.

Tivoli Access Manager client configuration

The Tivoli Access Manager client can be configured using either the administrative console or wsadmin

scripting. The administrative console panels for the Tivoli Access Manager client configuration are located

under the Security center panel. The Tivoli client must be set up to use the Tivoli JACC provider. The

setup can be done either before (using wsadmin) or during the time of WebSphere Application Server

configuration.

For more information about how to configure the Tivoli Access Manager client, see “Tivoli Access Manager

JACC provider configuration” on page 355.

Authorization table support

Tivoli Access Manager uses the RoleConfiguration interface to ensure that the authorization table

information is passed to the Tivoli Access Manager provider when the application is installed or deployed.

When an application is deployed or edited, the set of users and groups for the user or group-to-role

mapping are obtained from the Tivoli Access Manager server, which shares the same Lightweight Directory

Chapter 12. Administering security 351

Access Protocol (LDAP) server as WebSphere Application Server. This sharing is accomplished by

plugging into the application management users or groups-to-role administrative console panels. The

management APIs are called to obtain users and groups rather than relying on the WebSphere Application

Server-configured LDAP registry.

Access check

When WebSphere Application Server is configured to use the JACC provider for Tivoli Access Manager , it

passes the information to Tivoli Access Manager to make the access decision. The Tivoli Access Manager

policy implementation queries the local replica of the access control list (ACL) database for the access

decision.

Authentication using the PDLoginModule module

The custom login module in WebSphere Application Server can do the authentication. This login module is

plugged in before the WebSphere Application Server-provided login modules. The custom login modules

can provide information that can be stored in the Subject. If the required information is stored, no

additional registry calls are made to obtain that information.

As part of the JACC integration, the Tivoli Access Manager-provided PDLoginModule module is also used

to plug into WebSphere Application Server for both Lightweight Third Party Authentication (LTPA) and

Simple WebSphere Authentication Mechanism (SWAM) authentication. The PDLoginModule module is

modified to authenticate with the user ID or password. The module is also used to fill in the required

attributes in the Subject so that no registry calls are made by the login modules in WebSphere Application

Server. The information that is placed in the Subject is available for the Tivoli Access Manager policy

object to use for access checking.

Tivoli Access Manager security for WebSphere Application Server

WebSphere Application Server Version 6.0 provides embedded IBM Tivoli Access Manager client

technology to secure your WebSphere Application Server managed resources.

The benefits of using Tivoli Access Manager described here are only applicable when Tivoli Access

Manager client code is used with the Tivoli Access Manager server:

Note: Tivoli Access Manager code is not imbedded but bundled in some versions of WebSphere

Application Server.

v Robust container-based authorization

v Centralized policy management

v Management of common identities, user profiles, and authorization mechanisms

v Single-point security management for Java 2 Platform, Enterprise Edition (J2EE) compliant and

non-compliant J2EE resources using the Tivoli Access Manager Web Portal Manager GUI

v No requirements for coding or deployment changes to applications

v Easy management of users, groups, and roles using the WebSphere Application Server administrative

console

WebSphere Application Server Version 6.0 supports the Java Authorization Contract for Containers (JACC)

specification. JACC details the contract requirements for J2EE containers and authorization providers. With

this detail, authorization providers can perform the access decisions for resources in J2EE 1.4 application

servers such as WebSphere Application Server. The Tivoli Access Manager security utility that is

embedded within WebSphere Application Server Version 6.0 is JACC-compliant and is used to:

v Add security policy information when applications are deployed

v Authenticate users

v Authorize access to WebSphere Application Server-secured resources.

352 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

When applications are deployed, the embedded Tivoli Access Manger client takes any policy and or user

and role information that is stored within the application deployment descriptor and stores it within the

Tivoli Access Manager Policy Server.

The Tivoli Access Manager JACC provider is also called when a user requests access to a resource that is

managed by WebSphere Application Server.

Embedded Tivoli Access Manager client architecture

The previous figure illustrates the following sequence of events:

1. Users that access protected resources are authenticated using the Tivoli Access Manager login module

that is configured for use when the embedded Tivoli Access Manager client is enabled.

2. The WebSphere Application Server container uses information from the J2EE application deployment

descriptor to determine the required role membership.

3. WebSphere Application Server uses the embedded Tivoli Access Manager client to request an

authorization decision (granted or denied) from the Tivoli Access Manager authorization server.

Additional context information, when present, is also passed to the authorization server. This context

information is comprised of the cell name, J2EE application name, and J2EE module name. If the

Tivoli Access Manager policy database has policies that are specified for any of the context

information, the authorization server uses this information to make the authorization decision.

4. The authorization server consults the permissions that are defined for the specified user within the

Tivoli Access Manager-protected object space. The protected object space is part of the policy

database.

5. The Tivoli Access Manager authorization server returns the access decision to the embedded Tivoli

Access Manager client.

6. WebSphere Application Server either grants or denies access to the protected method or resource,

based on the decision returned from the Tivoli Access Manager Authorization Server.

At its core, Tivoli Access Manager provides an authentication and authorization framework. You can learn

more about Tivoli Access Manager, including information that is necessary to make deployment decisions,

by reviewing the product documentation. Start with the following guides, available at

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html:

Tivoli Access
Manager

login module

Tivoli Access Manager
JACC provider

Tivoli Access Manager
authorization server

Tivoli Access Manager
policy server

WebSphere Application Server

Policy
database
replication

LDAP
server

Policy
database

Policy
database

Protected object
space

/

SD

Client

Request

Response

Chapter 12. Administering security 353

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

v IBM Tivoli Access Manager Base Installation Guide

This guide describes how to plan, install, and configure a Tivoli Access Manager secure domain. Using

a series of easy installation scripts, you can quickly deploy a fully functional secure domain. These

scripts are very useful when prototyping the deployment of a secure domain.

v IBM Tivoli Access Manager Base Administration Guide

This document presents an overview of the Tivoli Access Manager security model for managing

protected resources. This guide describes how to configure the Tivoli Access Manager servers that

make access control decisions. In addition, detailed instructions describe how to perform important

tasks such as declaring security policies, defining protected object spaces, and administering user and

group profiles.

Tivoli Access Manager provides centralized administration of multiple servers.

Machine C

Tivoli
Access Manager
policy database

Machine A - Cell Manager

Machine D - Node 1

Policy database
replication

Machine B

WebSphere Application Server

Tivoli Access
Manager JACC

provider

Tivoli Access Manager
local policy

database replica

Policy database
replication

WebSphere Application Server

Tivoli Access
Manager JACC

provider

Tivoli Access Manager
local policy

database replica

authorization
decisions

User registry
shared by all
applications

WebSphere Application Server Cell

authorization
decisions

Master Policy
database

Machine E

Tivoli
Access Manager

Authorization
Server

Tivoli Access Manager
local policy

database replica

credential
acquisition

credential
acquisition

The previous figure is an example architecture showing WebSphere Application Servers secured by Tivoli

Access Manager.

The participating WebSphere Application Servers use a local replica of the Tivoli Access Manager policy

database to make authorization decisions for incoming requests. The local policy databases are replicas of

the master policy database that are installed as part of the Tivoli Access Manager installation. Having

policy database replicas on each participating WebSphere Application Server optimizes performance when

making authorization decisions and provides failover capability.

354 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The authorization server can also be installed on the same system as WebSphere Application Server,

although this configuration is not illustrated in the diagram.

All instances of Tivoli Access Manager and WebSphere Application Server in the example architecture

share the Lightweight Directory Access Protocol (LDAP) user registry on Machine E.

The LDAP registries that are supported by WebSphere Application Server are also supported by Tivoli

Access Manager.

Note: It is possible to have separate WebSphere Application Server profiles on the same host configured

against different Tivoli Access Manager servers. Such an architecture requires the profiles to be

configured against separate Java Runtime Environments (JRE) and therefore multiple JREs need to

be installed on the same host.

Creating the security administrative user

Enabling security requires the creation of a WebSphere Application Server administrative user. Use either

the Tivoli Access Manager command-line pdadmin utility (available on the policy server host box) to create

the Tivoli Access Manager administrative user for WebSphere Application Server. To use the pdadmin

utility:

1. From a command line, start the pdadmin utility as the Tivoli Access Manager administrative user,

sec_master:

pdadmin -a sec_master -p sec_master_password

2. Create a WebSphere Application Server security user. For example, the following instructions create a

new user, wasadmin. The command is entered as one continuous line:

pdadmin> user create wasadmin cn=wasadmin,o=organization,

c=country wasadmin wasadmin myPassword

Substitute values for organization and country that are valid for your Lightweight Directory Access

Protocol (LDAP) user registry.

3. Enable the account for the WebSphere Application Server security administrative user by issuing the

following command:

pdadmin> user modify wasadmin account-valid yes

Configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager- “Tivoli

Access Manager JACC provider configuration.”

Tivoli Access Manager JACC provider configuration

The Tivoli Access Manager JACC provider can be configured to deliver authentication and authorization

protection for your applications or authentication only. Most deployments using the Tivoli Access Manager

JACC provider will configure Tivoli Access Manager to provide both authentication and authorization

functionality.

If you want Tivoli Access Manager to provide authentication but leave authorization as part of WebSphere

Application Server’s native security, add the following property to the amwas.amjacc.template.properties

file located on the directory profiles/profileName/cells/cellName.

com.tivoli.pd.as.amwas.DisableAddAuthorizationTableEntry=true

Once this property is set, perform the tasks for setting Tivoli Access Manager Security as documented.

Chapter 12. Administering security 355

You can configure the Tivoli Access Manager JACC provider using either the WebSphere Application

Server administrative console or the wsadmin command line utility.

v For details on configuring the Tivoli Access Manager JACC provider using the administration console,

refer to “Configuring the JACC provider for Tivoli Access Manager using the administrative console” on

page 358

v For details on configuring the Tivoli Access Manager JACC provider using the wsadmin command line

utility, refer to “Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility”

Note:

Tivoli Access Manager JACC configuration files that are common across multiple WebSphere

Application Server profiles are created by default under the java/jre directory. The user installing

WebSphere Application Server will be given permissions to read and write to the files in this

directory. On UNIX platforms, profiles created by users who are different to the user that installed

the application will have read-only permissions for this directory. In addition, all users on the iSeries

platform will have read-only access to this directory. This is not ideal as configuration of the Tivoli

Access Manager JACC provider will fail in these situations.

To avoid this problem read and write permissions can be manually applied to the java/jre

directory. For iSeries installations however, the permissions for this directory cannot be changed. To

avoid this situation the following property can be added to the

etc/amwas.amjacc.template.properties file.

com.tivoli.pd.as.jacc.CommonFileLocation=new location

Where new location is a fully qualified directory name. This property sets the location of the Tivoli

Access Manager JACC provider properties files that are common across profiles.

Note: The wsadmin command is available to reconfigure the Tivoli Access Manager Java Authorization

Contract for Containers (JACC) interface:

$AdminTask reconfigureTAM -interactive

This command effectively prompts you through the process of unconfiguring the interface and then

reconfiguring it.

Configuring the JACC provider for Tivoli Access Manager using the

wsadmin utility

In a network deployment architecture, verify that all the managed servers, including node agents, are

started. The following configuration is performed once on the deployment manager server. The

configuration parameters are forwarded to managed servers, including node agents, when a

synchronization is performed. The managed servers then require their own restart for the configuration

changes to take effect.

You can use the wsadmin utility to configure Tivoli Access Manager security for WebSphere Application

Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the install_dir/bin directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask configureTAM -interactive

356 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

You are prompted to enter the following information:

 Option Description

WebSphere Application Server node name Specify a single node or enter an asterisk (*) to choose

all nodes.

Tivoli Access Manager Policy Server Enter the name of the Tivoli Access Manager policy

server and the connection port. Use the format,

policy_server : port. The policy server communication port

is set at the time of Tivoli Access Manager configuration –

the default port is 7135.

Tivoli Access Manager Authorization Server Enter the name of the Tivoli Access Manager

authorization server. Use the format auth_server : port :

priority. The authorization server communication port is

set at the time of Tivoli Access Manager configuration –

the default port is 7136. More than one authorization

server can be specified by separating the entries with

commas. Having more than one authorization server

configured is useful for failover and performance. The

priority value is the order of authorization server use. For

example: auth_server1:7136:1,auth_server2:7137:2. A

priority (of 1) is still required when configuring against a

single authorization server.

WebSphere Application Server administrator’s

distinguished name

Enter the full distinguished name of the WebSphere

Application Server security administrator ID as created in

“Creating the security administrative user” on page 355.

For example: cn=wasadmin,o=organization,c=country

Tivoli Access Manager user registry distinguished

name suffix

For example: o=organization,c=country

Tivoli Access Manager administrator’s user name Enter the Tivoli Access Manager administration user ID,

as created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Tivoli Access Manager administrator’s user password Enter the password for the Tivoli Access Manager

administrator.

Tivoli Access Manager security domain Enter the name of the Tivoli Access Manager security

domain that is used to store users and groups. If a

security domain is not already established at the time of

Tivoli Access Manager configuration, click Return to

accept the default.

Embedded Tivoli Access Manager listening port set WebSphere Application Server needs to listen on a

TCP/IP port for authorization database updates from the

policy server. More than one process can run on a

particular node and machine so a list of ports is required

for the processes. Enter the ports that are used as

listening ports by Tivoli Access Manager clients,

separated by a comma. If you specify a range of ports,

separate the lower and higher values by a colon. For

example, 7999, 9990:9999.

Defer Set to yes, this option defers the configuration of the

management server until the next restart. Set to no,

configuration of the management server occurs

immediately. Managed servers are configured on their

next restart.

4. When all information is entered, select F to save the configuration properties or C to cancel from the

configuration process and discard entered information.

Chapter 12. Administering security 357

Now enable the JACC provider for Tivoli Access Manager- “Enabling the JACC provider for Tivoli Access

Manager” on page 361.

Configuring the JACC provider for Tivoli Access Manager using the

administrative console

In a Network Deployment architecture, verify that all the managed servers, including node agents, are

started. The following configuration is performed on the management server. When either Apply or OK is

clicked, configuration information is checked for consistency, saved, and applied if successful. In Network

Deployment environments, this configuration information is propagated to nodes when a synchronization is

performed. Restart the nodes for the configuration changes to take effect.

To configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager

using the administrative console:

1. Click Security > Global security.

2. Under Authorization, click Authorization Providers.

3. Under General properties, select External authorization using a JACC provider.

4. Under Related items, click External JACC provider.

5. Under Additional properties, click Tivoli Access Manager Properties. The Tivoli Access Manager

JACC provider configuration screen is displayed.

6. Enter the following information:

 Option Description

Enable embedded Tivoli Access Manager enable

Ignore errors during embedded Tivoli Access

Manager disablement

This option is applicable only when reconfiguring an

embedded Tivoli Access Manager client or when disabling

an embedded Tivoli Access Manager client. When

selected, errors are ignored during disablement of an

embedded Tivoli Access Manager client.

Client listening port set WebSphere Application Server needs to listen on a

TCP/IP port for authorization database updates from the

policy server. More than one process can run on a

particular node and machine so a list of ports is required

for the processes. Enter the ports that are used as

listening ports by Tivoli Access Manager clients, with each

entry on a new line. If you specify a range of ports,

separate the lower and higher values by a colon (:), as

shown in the following example:

 7999

 9990:9999

Policy Server Enter the name, the fully-qualified domain name, or the IP

address of the Tivoli Access Manager policy server.

Include the connection port. Use the form policy_server :

port. The policy server communication port is set at the

time of Tivoli Access Manager configuration – the default

is 7135.

358 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Option Description

Authorization Servers Enter the name, the fully-qualified domain name, or the IP

address of the Tivoli Access Manager authorization

server. Use the form auth_server : port : priority. The

authorization server communication port is set at the time

of Tivoli Access Manager configuration – the default is

7136. More than one authorization server can be

specified by entering each server on a new line. Having

more than one authorization server configured is useful

for failover and performance. The priority value is the

order of authorization server use. For example:

 auth_server1:7136:1

auth_server2:7137:2

A priority (of 1) is still required when configuring against a

single authorization server.

Administrator user name Enter the Tivoli Access Manager administration user ID as

created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Administrator user password Enter the Tivoli Access Manager administration password

for the user ID identified previously.

User registry distinguished name suffix Enter the distinguished name suffix for the user registry

for Tivoli Access Manager and WebSphere Application

Server to share. For example: o=organization,c=country

Security domain More than one security domain can be created in Tivoli

Access Manager with its own administrative user. Users,

groups, and other objects are created within a specific

domain and are not permitted to access resources in

another domain. Enter the name of the Tivoli Access

Manager security domain that is used to store

WebSphere Application Server users and groups. If a

security domain is not yet established at the time of Tivoli

Access Manager configuration, leave the value as

Default.

Administrator user distinguished name Enter the full distinguished name of the WebSphere

Application Server user ID, as created for Tivoli Access

Manager in “Creating the security administrative user” on

page 355. For example,

cn=wasadmin,o=organization,c=country. The name

specified in this field must match the server user ID that

is specified on the Lightweight Directory Access Protocol

setting panel in the WebSphere Application Server

administrative console. To access this panel, click

Security > Global security. Under User registries, click

LDAP.

7. When all information is entered, click OK to save the configuration properties. The configuration

parameters are checked for validity and the configuration is attempted at the host server or cell

manager.

After you click OK, WebSphere Application Server completes the following actions:

v Validate the configuration parameters.

v Configure the host server or cell manager.

These processes might take some time depending on network traffic or the speed of your machine.

Chapter 12. Administering security 359

If the configuration is successful, the parameters are copied to all subordinate servers, including the node

agents. To complete the embedded Tivoli Access Manager client configuration, you must restart all of the

servers, including the host server, and enable WebSphere Application Server security.

Tivoli Access Manager JACC provider settings

Use this page to configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access

Manager.

To view the JACC provider settings for Tivoli Access Manager, complete the following steps:

1. Click Security > Global security.

2. Under Authorization, click Authorization Providers.

3. Under Related items, click External JACC provider.

4. Under Additional properties, click Tivoli Access Manager Properties.

Enable embedded Tivoli Access Manager

Enables or disables the embedded Tivoli Access Manager client configuration.

 Default: Disabled

Range: Enabled or Disabled

Ignore errors during embedded Tivoli Access Manager disablement

When selected, errors are ignored during disablement of the embedded Tivoli Access Manager client.

This option is applicable only when reconfiguring an embedded Tivoli Access Manager client or disabling

an embedded Tivoli Access Manager.

 Default: Disabled

Range: Enabled or Disabled

Client listening port set

Enter the ports that are used as listening ports by Tivoli Access Manager clients.

WebSphere Application Server needs to listen on a TCP/IP port for authorization database updates from

the policy server. More than one process can run on a particular node and machine so a list of ports is

required for use by the processes. If a range of ports is to be specified, separate the lower and higher

values by a colon (:). Single ports and port ranges are specified on separate lines. An example list might

look like the following example:

7999

 9990:9999

Policy server

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager policy server and

the connection port.

Use the form policy_server:port. The policy server communication port was set at the time of Tivoli Access

Manager configuration – the default is 7135.

Authorization servers

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager authorization

server. Use the form auth_server:port:priority.

The authorization server communication port was set at the time of Tivoli Access Manager configuration –

the default is 7136. More than one authorization server can be specified by entering each server on a new

360 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

line. Having more than one authorization server configured is useful for failover and performance. The

priority value is the order of authorization server use. For example:

auth_server1.mycompany.com:7136:1

auth_server2.mycompany.com:7137:2

A priority (of 1) is still required when configuring against a single authorization server.

Administrator user name

Enter the Tivoli Access Manager administration user ID, as created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Administrator user password

Enter the Tivoli Access Manager administration password for the user ID entered in the Administrator user

name field.

User registry distinguished name suffix

Enter the distinguished name suffix for the user registry to share between Tivoli Access Manager and

WebSphere Application Server. For example: o=organization,c=country

Security domain

Enter the name of the Tivoli Access Manager security domain that is used to store WebSphere Application

Server users and groups.

Specification of the Tivoli Access Manager domain is required as more than one security domain can be

created in Tivoli Access Manager with its own administrative user. Users, groups, and other objects are

created within a specific domain and are not permitted to access resources in another domain. If a security

domain is not established at the time of Tivoli Access Manager configuration, leave the value as Default.

 Default: Default

Administrator user distinguished name

Enter the full, distinguished name of the WebSphere Application Server security administrator ID. For

example, cn=wasadmin,o=organization,c=country

Enabling the JACC provider for Tivoli Access Manager

Note: Do not perform this task if you are configuring the Java Authorization Contract for Container (JACC)

provider for Tivoli Access Manager to supply authentication services only. Only perform this task for

installations that require both Tivoli Access Manager authentication and authorization protection.

The JACC provider for Tivoli Access Manager is configured by default. The following list shows the JACC

provider configuration settings for Tivoli Access Manager .

 Field Value

Name Tivoli Access Manager

Description This field is optional and used as a reference.

J2EE policy class name com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

JACC provider initialization class name com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy

context handler for access decisions

false

Chapter 12. Administering security 361

Field Value

Supports dynamic module updates true

To enable the JACC provider for Tivoli Access Manager, use the previous settings and complete the

following steps:

1. Click Security > Global security.

2. Under Authorization, click Authorization providers.

3. Select the External JACC provider option.

4. The JACC provider settings for Tivoli Access Manager are displayed. Click OK.

5. Save the settings by clicking Save at the top of the page; click the Save button.

6. Log out of the WebSphere Application Server administrative console.

7. Restart the WebSphere Application Server. The security configuration is now replicated to managed

servers and node agents. These other servers within a cell also require restarting before the security

changes take effect.

Configuring additional authorization servers

Tivoli Access Manager secure domains can contain more than one authorization server. Having multiple

authorization servers is useful for providing a failover capability as well as improving performance when

the volume of access requests is large.

1. Refer to the Tivoli Access Manager Base Administration Guide for details on installing and configuring

authorization servers. This document is available from

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

2. Reconfigure the Java Authorization Contract for Containers (JACC) provider using the $AdminTask

reconfigureTAM interactive wsadmin command. Enter all new and existing options.

Role-based security with embedded Tivoli Access Manager

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization model uses the concepts of roles

and resources. An example is provided here.

 Methods

Roles getBalance deposit closeAccount

Teller granted granted

Cashier granted

Supervisor granted

In the example of the banking application that is conceptualized in the previous table, three roles are

defined: teller, cashier, and supervisor. Permission to perform the getBalance, deposit, and closeAccount

application methods are mapped to these roles. From the example, you can see that users assigned the

role, Supervisor, can run the closeAccount method, whereas the other two roles are unable to run this

method.

The term, principal, within WebSphere Application Sever security refers to a person or a process that

performs activities. Groups are logical collections of principals that are configured in WebSphere

Application Server to promote the ease of applying security. Roles can be mapped to principals, groups, or

both. The entry invoked in the following table indicates that the principal or group can invoke any methods

that are granted to that role.

362 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

Roles

Principal/Group Teller Cashier Supervisor

TellerGroup Invoke

CashierGroup Invoke

SupervisorGroup

Frank - a principal

who is not a

member of any of

 the previous

 groups

Invoke Invoke

In the previous example, the principal Frank, can invoke the getBalance and the closeAccount methods,

but cannot invoke the deposit method because this method is not granted either the Cashier or the

Supervisor role.

At the time of application deployment, the Java Authorization Contract for Container (JACC) provider of

Tivoli Access Manager populates the Tivoli Access Manager-protected object space with any security

policy information that is contained in the application deployment descriptor. This security information is

used to determine access whenever the WebSphere resource is requested.

By default, the Tivoli Access Manager access check is performed using the role name, the cell name, the

application name, and the module name.

Tivoli Access Manager access control lists (ACLs) determine which application roles are assigned to a

principal. ACLs are attached to the applications in the Tivoli Access Manager-protected object space at the

time of application deployment.

Note: Principal-to-role mappings are managed from the WebSphere Application Server administrative

console and are never modified using Tivoli Access Manager. Direct updates to ACLs are performed

for administrative security users only.

The following sequence of events occur:

1. During application deployment, policy information is sent to the Tivoli Access Manager JACC provider.

This policy information contains permission-to-role mappings and role-to-principal and role-to-group

mapping information.

2. The Tivoli Access Manager JACC provider converts the information into the required format, and

passes this information to the Tivoli Access Manager policy server.

3. The policy server adds entries to the Tivoli Access Manager-protected object space to represent the

roles that are defined for the application and the permission-to-role mappings. A permission is

represented as a Tivoli Access Manager-protected object and the role granted to this object is attached

as an extended attribute.

Administering security users and roles with Tivoli Access Manager

User-to-role mapping and user-to-group mapping for the Tivoli Access Manager JACC provider are

performed using the WebSphere Application Server administrative console. To manage user-to-role

mappings and user-to-group mappings for applications:

1. Click Applications > Enterprise applications >application_name.

2. Under Additional properties, click Map security roles to Tivoli Access Manager users/groups. The

user and groups management screen is displayed.

Chapter 12. Administering security 363

3. Select the role which requires user or group management and use Lookup users or Lookup groups

to manage the users or groups for the selected role. The native role mapping uses the

MapRolesToUsers administrative task. If you are using Tivoli Access Manager, use the

TAMMapRolesToUsers administrative task instead. The syntax and options for the Tivoli version are

the same as those used in the native version.

Configuring Tivoli Access Manager groups

The WebSphere Application Server administrative console can be used to specify security policies for

applications that run in the WebSphere Application Server environment. The WebSphere Application

Server administrative console can also specify security policies for other Web resources, based on the

entities that are stored in the registry.

Tivoli Access Manager adds the accessGroup object class to the registry. Tivoli Access Manager

administrators can use the pdadmin utility (available only on the policy server host in the PD.RTE fileset)

to create new groups. These new groups are added to the registry as the accessGroup object class.

The WebSphere Application Server administrative console is not configured by default to recognize objects

of the accessGroup class as user registry groups. You can configure the WebSphere Application Server

administrative console to add this object class to the list of object classes that represent user registry

groups. To do this configuration, complete the following instructions:

1. From the WebSphere Application Server administrative console, access the advanced settings for

configuring security by clicking Security > Global security.

2. Under User registries, click LDAP.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings

4. Modify the Group Filter field. Add the following entry: (objectclass=accessGroup)

The Group Filter field then looks like the following example:

(&(cn=%w)(|(objectclass=groupOfNames)

(objectclass=groupOfUniqueNames)(objectclass=accessGroup)))

5. Modify the Group Member ID Map field. Add the following entry: accessGroup:member The Group

Member ID Map field then looks like the following example:

groupOfNames:member;groupOfUniqueNames:uniqueMember;

accessGroup:member

6. Stop and restart WebSphere Application Server.

Tivoli Access Manager JACC provider configuration properties

The Java property files are created in the WebSphere Application Server

install_dir/profiles/profiles_name/etc/tam directory.

There are two properties files that may require configuration:

v amwas.node_server.amjacc.properties – contains properties used by the Tivoli Access Manager

JACC provider.

v amwas.node_server.pdjlog.properties – contains logging properties created from the

amwas.pdjlog.template.properties file for the specific node and server combination at the time of

configuration.

Use amwas.node_server.amjacc.properties to configure static role caching, dynamic role caching, object

caching, and role-based policy framework properties.

364 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Static role caching properties

The static role cache holds role memberships that do not expire. These properties are in the file,

amwas.node_server.amjacc.properties, located in the WebSphere Application Server

install_dir/profiles/profile_name/etc/tam directory.

Enabling static role caching

com.tivoli.pd.as.cache.EnableStaticRoleCaching=true

Enables or disables static role caching. Static role caching is enabled by default.

Setting the static role cache

com.tivoli.pd.as.cache.StaticRoleCache=com.tivoli.pd.as.cache.StaticRoleCacheImpl

This property holds the implementation class of the static role cache. You should not need to change this

though the opportunity exists to implement your own cache if considered necessary.

Define static roles

com.tivoli.pd.as.cache.StaticRoleCache.Roles=Administrator,Operator,Monitor,Deployer

Defines the administration roles for WebSphere Application Server.

Note: Application performance can be enhanced by adding the static roles: CosNamingRead,

CosNamingWrite, CosNamingCreate, CosNamingDelete. These roles allow for improved lookup

performance within the application naming service.

Dynamic role caching properties

The dynamic role cache holds role memberships that expire. These properties are in the file,

amwas.node_server.amjacc.properties, located in the WebSphere Application Server

install_dir/profiles/profile_name/etc/tam directory.

Enabling dynamic role caching

com.tivoli.pd.as.cache.EnableDynamicRoleCaching=true

Enables or disables dynamic role caching. Dynamic role caching is enabled by default.

Setting the dynamic role cache

com.tivoli.pd.as.cache.DynamicRoleCache=com.tivoli.pd.as.cache.DynamicRoleCacheImpl

This property holds the implementation class of the dynamic role cache. You should not need to change

this though the opportunity exists to implement your own cache if considered necessary.

Specifying the maximum number of users

com.tivoli.pd.as.cache.DynamicRoleCache.MaxUsers=100000

The maximum number of users that the cache supports before a cache cleanup is performed. The default

number of users is 100000.

Chapter 12. Administering security 365

Specifying the number of cache tables

com.tivoli.pd.as.cache.DynamicRoleCache.NumBuckets=20

The number of tables used internally by the dynamic role cache. The default is 20. When a large number

of threads use the cache, increase the value to tune and optimize cache performance.

Specifying the principal lifetime

com.tivoli.pd.as.cache.DynamicRoleCache.PrincipalLifeTime=10

The period of time in minutes that a principal entry is stored in the cache. The default time is 10 minutes.

The term principal here refers to the Tivoli Access Manager credential returned from a unique LDAP user.

Specifying the role lifetime

com.tivoli.pd.as.cache.DynamicRoleCache.RoleLifetime=20

The period of time in seconds that a role is stored in the role list for a user before it is discarded. The

default is 20 seconds.

Object caching properties

The object cache is used to cache all Tivoli Access Manager objects, including their extended attributes.

This bypasses the need to query the Tivoli Access Manager authorization server for each resource

request.

These properties are in the file, amwas.node_server.amjacc.properties, located in the WebSphere

Application Server install_dir/profiles/profile_name/etc/tam directory.

Enabling object caching

com.tivoli.pd.as.cache.EnableObjectCaching=true

This property enables or disables object caching. The default value is true.

Setting the object cache

com.tivoli.pd.as.cache.ObjectCache=com.tivoli.pd.as.cache.ObjectCacheImpl

This property is the class used to perform object caching. You can implement your own object cache if

required. This can be done by implementing the com.tivoli.pd.as.cache.IObjectCache interface. The default

is com.tivoli.pd.as.cache.ObjectCacheImpl.

Setting the number of cache buckets

com.tivoli.pd.as.cache.ObjectCache.NumBuckets=20

This property specifies the number of buckets used to store object cache entries in the underlying hash

table. The default is 20.

Setting the number of cache bucket entries

com.tivoli.pd.as.cache.ObjectCache.MaxResources=10000

366 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

This property specifies the total number of entries for all buckets in the cache. This figure, divided by

NumBuckets determines the maximum size of each bucket. The default is 10000.

Setting the resource lifetime

com.tivoli.pd.as.cache.ObjectCache.ResourceLifeTime=20

This property specifies the length of time in minutes that objects are kept in the object cache. The default

is 20.

These object cache properties cannot be changed after configuration. If any require changing, it should be

done before configuration of the nodes in the cell. Changes need to be made in the template properties

file before any configuration actions are performed. Properties changed after configuration might cause

access decisions to fail.

Role-based policy framework properties

The role-based policy framework parameters are located in the JACC configuration file and in the

authorization configuration file. They are set at the time of JACC provider configuration and authorization

server configuration. The role-based policy framework settings for the authorization table and the JACC

provider can be modified separately for each WebSphere Application Server instance. The name of the

configuration file generated from the authorization table is, amwas.node_server.authztable.properties.

The name of the configuration file generated from the JACC provider is,

amwas.node_server.amjacc.properties. Both files are stored on the WebSphere Application Server

install_dir/profiles/profile_name/etc/tam directory. It is very unlikely that you will need to change

these properties. They are described here for reference:

Supported properties include :

com.tivoli.pd.as.rbpf.AMAction=i

This property is used to signify that a user is granted access to a role. This value is added to a Tivoli

Access Manager access control list (ACL). It places invoke access on roles for users and groups.

com.tivoli.pd.as.rbpf.AMActionGroup=WebAppServer

This property sets the Tivoli Access Manager action group that serves as a container for the action

specified by the com.tivoli.pd.as.rbpf.AMAction property. The permission set in

com.tivoli.pd.as.rbpf.AMAction goes into this action group.

com.tivoli.pd.as.rbpf.PosRoot=WebAppServer

This property is used to determine where roles are stored in the protected object space.

com.tivoli.pd.as.rbpf.ProductId=deployedResources

This property specifies the location under the root location (specified in the posroot property) to

separate other products in the protected object space. Thus, embedded Tivoli Access Manager objects

are found in the /WebAppServer/deployedResources directory and say AMWLS is in the

/WebAppServer/WLS directory. The default value is deployedResources.

com.tivoli.pd.as.rbpf.ResourceContainerName=Resources

This property specifies the Tivoli Access Manager object space container name for the protected

resources. The default location is the /WebAppServer/deployedResources/Resources directory.

com.tivoli.pd.as.rbpf.RoleContainerName=Roles

This property specifies the Tivoli Access Manager protected object space container name for the

security roles. The default location is the /WebAppServer/deployedResources/Roles directory.

The previous settings cannot be changed after configuration. If any of these properties require changing it

should be done before configuration of the nodes in the cell. Changes need to be made in the template

properties file before any configuration actions are performed. Properties changed after configuration will

cause access decisions to fail.

Chapter 12. Administering security 367

System-dependent configuration properties

These properties are in the amwas.node_server.amjacc.properties file on the install_dir/etc directory.

They should not be changed and are included here for reference only.

The supported arguments include :

com.tivoli.pd.as.rbpf.AmasSession.CfgURL=$WAS_HOME/profiles\profile_Name\etc\tam

Files\\IBM\\WebSphere\\AppServer\\etc\\amwas.node_server.pdperm.properties

This entry is generated by the Java Authorization Contract for Containers (JACC) provider

configuration. It specifies the location of the file containing information about the Tivoli Access

Manager JACC provider. This entry should not be changed nor the properties in the file it points to.

com.tivoli.pd.as.rbpf.AmasSession.LoggingURL=file\:/C\:\\Program

Files\\IBM\\WebSphere\\AppServer\\etc\\amwas.node_server.pdjlog.properties

This entry contains the location of the logging configuration file for the Tivoli Access Manager JACC

provider. The file referenced is generated by the Tivoli Access Manager JACC provider configuration.

This entry should not be changed.

Logging Tivoli Access Manager security

Tivoli Access Manager JACC provider messages are logged to the WebSphere Application Server file,

SystemOut.log . Trace logging is sent to the WebSphere Application Server file, trace.log. When trace is

enabled, all logging, both trace and messaging, is sent to trace.log.

The Tivoli Access Manager JACC provider uses the JLog logging framework as does the Tivoli Access

Manager Java runtime environment. Tracing and messaging can be enabled selectively for specific Tivoli

Access Manager JACC provider components.

Tracing and message logging for the Tivoli Access Manager JACC provider is configured in the properties

file, amwas.node_server.pdjlog.properties, located on the etc directory. This file contains logging

properties taken from the template file, amwas.pdjlog.template.properties, for the specific node and

server combination at the time of Tivoli Access Manager JACC provider configuration.

The contents of this file lets the user control:

v Whether tracing is enabled or disabled for Tivoli Access Manager JACC provider components.

v Whether message logging is enabled or disabled for Tivoli Access Manager JACC provider components.

The amwas.node_server.pdjlog.properties file defines several loggers, each of which is associated with

one Tivoli Access Manager JACC provider component. These loggers include:

 AmasRBPFTraceLogger

AmasRBPFMessageLogger

Used to log messages and trace for the role-based policy framework.

This is an underlying framework used by embedded Tivoli Access

Manager to make access decisions.

AmasCacheTraceLogger

AmasCacheMessageLogger

Used to log messages and trace for the policy caches used by the

role-based policy framework.

AMWASWebTraceLogger

AMWASWebMessageLogger

Used to log messages and trace for the WebSphere Application Server

authorization plug-in.

AMWASConfigTraceLogger

AMWASConfigMessageLogger

Used to log messages and trace for the configuration actions for the

Tivoli Access Manager JACC provider.

JACCTraceLogger JACCMessageLogger Used to log messages and trace for Tivoli Access Manager JACC

provider activity.

368 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Note: Tracing can have a significant impact on system performance and should only be enabled when

diagnosing the cause of a problem.

The implementation of these loggers routes messages to the WebSphere Application Server logging

sub-system. All messages are written to the WebSphere Application Server’s trace.log file.

For each logger, the amwas.node_server.pdjlog.properties file defines an isLogging attribute which,

when set to true, enables logging for the specific component. A value of false disables logging for that

component.

amwas.node_server.pdjlog.properties defines parent loggers called MessageLogger and TraceLogger

that also have an isLogging attribute. If the child loggers do not specify this isLogging attribute, they

inherit the value of their respective parent. When the Tivoli Access Manager JACC provider is enabled, the

isLogging attribute is set to true for the MessageLogger and false for the TraceLogger. Message

logging is therefore enabled for all components and tracing is disabled for all components by default.

To turn on tracing for a Tivoli Access Manager JACC provider component, two operations must occur:

1. The amwas.node_server.pdjlog.properties file must be updated and the isLogging attribute set to

true for the required component. For example, to enable tracing for the Tivoli Access Manager JACC

provider, the following line must be set to true in the

amwas.node_server.pdjlog.properties:baseGroup.AMWASWebTraceLogger.isLogging=true

2. Enable tracing for the Tivoli Access Manager JACC provider components in the WebSphere Application

Server administrative console by completing the following steps:

a. Click Troubleshooting > Logs and Trace > server_name.

b. Under Logs and Trace tasks, click Diagnostic trace.

c. Select the Enable Log check box.

d. Click Apply.

e. Click Troubleshooting > Logs and Trace > server name.

f. Under Logs and Trace tasks, click Change Log Detail Levels.

g. Click Components. Tracing for all components can be enabled using com.tivoli.pd.as.* or tracing

for separate components can be enabled using:

v com.tivoli.pd.as.rbpf.* for role-based policy framework tracing

v com.tivoli.pd.as.jacc.* for JACC provider tracing

v com.tivoli.pd.as.pdwas.* for the authorization table

v com.tivoli.pd.as.cfg.* for configuration

v com.tivoli.pd.as.cache.* for caching

h. Click Apply.

The trace specification should now indicate that tracing is enabled at the required level. Save the

configuration, and restart the server for the changes to take effect.

Enabling embedded Tivoli Access Manager

Embedded Tivoli Access Manager is not enabled by default but needs to be configured for use.

Enabling Tivoli Access Manager security within WebSphere Application Server requires:

v A supported Lightweight Directory Access Protocol (LDAP) installed somewhere on your network. This is

the user registry containing the user and group information for both Tivoli Access Manager and

WebSphere Application Server.

Chapter 12. Administering security 369

v A Tivoli Access Manager Version 5.1 domain exists and is configured to use the user registry. For

details on the installation and configuration of Tivoli Access Manager refer to the: Tivoli Access Manager

Base installation Guide and the Tivoli Access Manager Base Administrator‘s Guide available from

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

v WebSphere Application Server Version 6 is installed either in a single server model or as a network

deployment.

Complete the following steps to enable the embedded Tivoli Access Manager security:

1. Create the security administrative user. For more information, see “Creating the security administrative

user” on page 355.

2. Configure the Tivoli Access Manager Java Authorization Contract for Containers (JACC) provider. For

more information, see “Tivoli Access Manager JACC provider configuration” on page 355.

3. Enable WebSphere Application Server security. When you are using Tivoli Access Manager you must

configure LDAP as the user registry. For more information, see “Configuring Lightweight Directory

Access Protocol user registries” on page 198.

4. Enable the Tivoli Access Manager JACC provider. For more information, see “Enabling the JACC

provider for Tivoli Access Manager” on page 361.

Disabling embedded Tivoli Access Manager client

You can unconfigure Tivoli Access Manager Security in WebSphere Application Server using either the

wsadmin command line utility or the WebSphere Application Server Administrative Console.

v For details on unconfiguring embedded Tivoli Access Manager client using the WebSphere Application

Server Administration console, refer to “Disabling embedded Tivoli Access Manager client using the

Administration Console.”

v For details on unconfiguring embedded Tivoli Access Manager client using the wsadmin command line

utility, refer to “Disabling embedded Tivoli Access Manager client using wsadmin” on page 371.

Disabling embedded Tivoli Access Manager client using the

Administration Console

In a network deployment architecture ensure all managed servers, including node agents, are started then

perform the following process once on the deployment management server. Information from the

unconfigure operation is forwarded to managed servers, including node agents, when the server is

restarted. The managed servers then require their own restart for changes to take effect.

To unconfigure the Tivoli Access Manager JACC provider using the WebSphere Application Server

administration console, complete the following steps:

 1. Disable global security by clicking Security > Global security and deselect the Enable global

security option.

 2. Restart the server or, in a network deployment architecture, restart the deployment manager process.

 3. Select Security > Global security.

 4. Under Authorization, click Authorization Providers.

 5. Under Related items, click External JACC provider.

 6. Under Additional properties, click Tivoli Access Manager Properties. The configuration screen for

the Tivoli Access Manager JACC provider is displayed.

 7. Deselect the Enable embedded Tivoli Access Manager option. If you want to ignore errors when

unconfiguring, select the Ignore errors during embedded Tivoli Access Manager disablement

option. Select this option only when the Tivoli Access Manager domain is in an irreparable state.

 8. Click OK.

 9. Optional: If you want security enabled, without Tivoli Access Manager, re-enable global security.

370 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

10. Optional: In network deployment environments, synchronize all nodes.

11. Restart all WebSphere Application Server instances for the changes to take effect.

Disabling embedded Tivoli Access Manager client using wsadmin

In a network deployment architecture ensure all managed servers, including node agents, are started then

perform the following process once on the deployment management server. Details of the unconfiguration

are forwarded to managed servers, including node agents, when a synchronization is performed. The

managed servers then require their own reboot for the configuration changes to take effect.

To unconfigure the Tivoli Access Manager JACC provider:

1. Disable global security by clicking Security > Global security and deselect the Enable global

security option.

2. Restart the server or, in a network deployment architecture, restart the deployment manager process.

3. Start the wsadmin command line utility. The wsadmin command is found in install_dir\AppServer\bin.

4. From the wsadmin prompt, enter the following command:

WSADMIN>$AdminTask unconfigureTAM -interactive

You are prompted to enter the following information:

 Option Description

WebSphere Application Server node name Enter * to select all nodes.

Tivoli Access Manager administrator’s user name Enter the Tivoli Access Manager administration user ID as

created at the time of Tivoli Access Manager

configuration. This name is usually, sec_master.

Tivoli Access Manager administrator’s user password Enter the password for the Tivoli Access Manager

administrator.

Force Enter yes if you want to ignore errors when unconfiguring

the Tivoli Access Manager Java Authorization Contract for

Containers (JACC) provider. Enter this option as yes only

when the Tivoli Access Manager domain is in an

irreparable state.

Defer Enter no to force the unconfiguration of the connected

server. Enter No for the unconfiguration to proceed

correctly.

5. When all information is entered, enter F to save the properties or C to cancel from the unconfiguration

process and discard entered information.

6. Optional: If you want security enabled, not using Tivoli Access Manager, re-enable global security.

7. Optional: In network deployment environments, synchronize all nodes.

8. Restart all WebSphere Application Server instances for the changes to take effect.

Forcing the unconfiguration of the Tivoli Access Manager JACC

provider

If you find you cannot restart WebSphere Application Server after configuring the Tivoli Access Manager

JACC provider a utility is available to clear the security configuration and return WebSphere Application

Server to an operable state.

Chapter 12. Administering security 371

The utility removes all of the PDLoginModuleWrapper entries as well as the Tivoli Access Manager

authorization table from security.xml and wsjaas.conf. This effectively removes the Tivoli Access

Manager JACC provider.

1. Back-up security.xml and wsjaas.conf.

2. Enter the following command as one continuous line:

WAS_HOME/java/jre/bin/java -classpath ″WAS_HOME/lib/AMJACCProvider.jar:CLASSPATH″ com.tivoli.pd.as.jacc.cfg.

Updating console users and groups

Additions and changes to console users and groups are not automatically added to the Tivoli Access

Manager object space once the Tivoli Access Manager JACC provider is configured. Changes to console

users and groups are saved in the admin-authz.xml file and this file will require migration before any

changes take effect. The Tivoli Access Manger JACC provider includes the migration utility, migrateEAR,

for incorporating console user and group changes into the Tivoli Access Manager object space.

Note: The migrateEAR utility is used to migrate the changes made to console users and groups after the

Tivoli Access Manager JACC provider has been configured. The utility will not need to be run for

changes and additions to console user and groups made prior to the Tivoli Access Manager JACC

provider being configured as the changes (made to admin-authzn.xml) are automatically migrated

at configuration time. Furthermore, the migration tool does not need to be run before deploying

standard J2EE applications, J2EE application policy deployment is also performed automatically.

To migrate admin-authzn.xml:

1. Before executing the migrateEAR utility, setup the environment by running setupCmdLine.bat or

setupCmdLine.sh located in the installation/bin directory.

2. Make sure that the WAS_HOME environment variable is set to the WebSphere Application Server

installation directory.

3. Change to the directory where the migrateEAR utility is located: ${WAS_HOME}/bin/

4. Run the migrateEAR utility to migrate the data contained in admin-authzn.xml. Use the parameter

descriptions listed in The Tivoli Access Manager migrateEAR5 utility. For example:

migrateEAR

\ -j “c:\Program Files\IBM\WebSphere\AppServer\profiles\profileName\config\cells\cellName\admin-authz.xml”

\ -a sec_master

\ -p password

\ -w wsadmin

\ -d o=ibm,c=us

\ -c file:/”c:\Program Files\IBM\WebSphere\AppServer\java\jre\PdPerm.properties”

A status message is displayed when the migration completes. Output of the utility is logged to the file,

pdwas_migrate.log, created on the directory where the utility is run. Check the log file after each

migration. If the log file displays errors, check the last recorded transaction, correct the source of the

error, and rerun the migration utility. If the migration is unsuccessful, verify that you supplied the correct

values for the -c and -j options.

5. WebSphere Application Server does not require a restart for the changes to take effect.

The Tivoli Access Manager migrateEAR utility

Purpose

Migrates changes made to console users and groups in the admin-authzn.xml file into the Tivoli Access

Manager object space.

372 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Syntax

migrateEAR

-j path

-c URI

-a admin_ID

-p admin_pwd

-w Websphere_admin_user

-d user_registry_domain_suffix

[-r root_objectspace_name]

[-t ssl_timeout]

Parameters

-a admin_ID

Specifies the administrative user identifier. The administrative user must have the privileges required to

create users, objects, and access control lists (ACLs). For example, -a sec_master.

 This parameter is optional. When the parameter is not specified, you are prompted to supply it at run

time.

-c URI

Specifies the Uniform Resource Indicator (URI) location of the PdPerm.properties file that is

configured by the pdwascfg utility. When WebSphere Application Server is installed in the default

location, the URI is:

Solaris, Linux and HP-UX -

file:/opt/IBM/WebSphere/AppServer/java/jre/PdPerm.propertiesAIX –

file:/usr/IBM/WebSphere/AppServer/java/jre/PdPerm.properties

Windows –

file:/”c:\Program Files\IBM\WebSphere\AppServer\java\jre\PdPerm.properties”

-d user_registry_domain_suffix

Specifies the domain suffix for the user registry to use. For example, for Lightweight Directory Access

Protocol (LDAP) user registries, this value is the domain suffix, such as: ″o=ibm,c=us″

 Windows platforms require that the domain suffix is enclosed within quotes.

 You can use the pdadmin user show command to display the distinguished name (DN) for a user.

-j path

Specifies the fully qualified path and file name of the Java 2 Platform Enterprise Edition application

archive file. Optionally, this path can also be a directory of an expanded enterprise application. When

WebSphere Application Server is installed in the default location, the paths to data files to migrate

include:

Solaris, Linux and HP-UX -

file:/opt/IBM/WebSphere/AppServer/profiles/profileName/config/cells/cellName/admin-authz.xml

AIX –

file:/usr/IBM/WebSphere/AppServer/profiles/profileName/config/cells/cellName/admin-authz.xml

Windows –

“c:\Program Files\IBM\WebSphere\AppServer\profiles\profileName\config\cells\cellName\admin-authz.xml”

-p admin_pwd

Specifies the password for the Tivoli Access Manager administrative user. The administrative user

must have the privileges required to create users, objects, and access control lists (ACLs). For

example, you can specify the password for the -a sec_master administrative user as -p myPassword.

 This parameter is optional. When it is not specified, the user is prompted to supply the password for

the administrative user name.

Chapter 12. Administering security 373

-r root_objectspace_name

Specifies the space name of the root object. The value is the name of the root of the protected object

namespace hierarchy that is created for WebSphere Application Server policy data. This parameter is

optional.

 The default value for the root object space is WebAppServer.

 The Tivoli Access Manager root object space name is set by modifying the

amwas.amjacc.template.properties prior to configuring the Tivoli Access Manager JACC provider for

the first time. This option should be used if the default object space value is not used in the

configuration of the Tivoli Access Manager JACC provider.

 The Tivoli Access Manager object space name should never be changed after the Tivoli Access

Manager JACC provider has been configured.

-t ssl_timeout

Specifies the number of minutes for the Secure Sockets Layer (SSL) timeout. This parameter is used

to disconnect and reconnect the SSL context between the Tivoli Access Manager authorization server

and policy server before the default connection times out.

 The default is 60 minutes. The minimum is 10 minutes. The maximum value cannot exceed the Tivoli

Access Manager ssl-v3-timeout value. The default value for ssl-v3-timeout is 120 minutes.

 This parameter is optional. If you are not familiar with the administration of this value, you can safely

use the default value.

-w WebSphere_admin_user

Specifies the user name that is configured in the WebSphere Application Server security user registry

field as the administrator. This value matches the account that you created or imported in Creating a

Tivoli Access Manager administrative user for WebSphere Application Server. Access permission for

this user is needed to create or update the Tivoli Access Manager protected object space.

 When the WebSphere Application Server administrative user does not already exist in the protected

object space, it is created or imported. In this case, a random password is generated for the user and

the account is set to not valid. Change this password to a known value and set the account to valid.

 A protected object and access control list (ACL) are created. The administrative user is added to the

pdwas-admin group with the following ACL attributes:

T Traverse permission

i Invoke permission

WebAppServer

Specifies the action group name. WebAppServer is the default name. This action group name

(and the matching root object space) can be overwritten when the migration utility is run with

the -r option.

Comments

This utility migrates security policy information from deployment descriptors (enterprise archive files) to

Tivoli Access Manager for WebSphere Application Server. The script calls the Java class:

com.tivoli.pdwas.migrate.Migrate.

Before invoking the script you must run setupCmdLine.bat or setupCmdLine.sh. These files can be found in

the %WAS_HOME%/bin directory.

The script is dependent on finding the correct environment variables for the location of prerequisite

software. The script calls Java code with the following options:

-Dpdwas.lang.home

The directory containing the native language support libraries that are provided with the Tivoli

374 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Access Manager JACC provider. These libraries are located in a subdirectory under the Tivoli

Access Manager JACC provider installation directory. For example:

-Dpdwas.lang.home=%PDWAS_HOME%\java\nls

-cp %CLASSPATH% com.tivoli.pdwas.migrate.Migrate

The CLASSPATH variable must be set correctly for your Java installation.

On Windows platforms, both the -j option and the -c option can reference the %WAS_HOME% variable to

determine where WebSphere Application Server is installed. This information is used to:

v Build the full path name of the enterprise archive file.

v Build the full URI path name to the location of the PdPerm.properties file.

Return codes

The following exit status codes can be returned:

0 The command completed successfully.

1 The command failed.

Troubleshooting authorization providers

This article describes the issues you might encounter using a Java Contract for Containers (JACC)

authorization provider. Tivoli Access Manager is bundled with WebSphere Application Server as an

authorization provider. However, you also can plug in your own authorization provider.

Using Tivoli Access Manager as a Java Contract for Containers authorization provider

You might encounter the following issues when using Tivoli Access Manager as a JACC authorization

provider:

v The configuration of JACC might fail.

v The server might fail to start after configuring JACC.

v The application might not deploy properly.

v The startServer command might fail after you have configured Tivoli Access Manager or a clean

uninstall did not take place after unconfiguring JACC.

v An ″HPDIA0202w An unknown user name was presented to Access Manager″ error might occur.

v An ″HPDAC0778E The specified user’s account is set to invalid″ error might occur.

v An WASX7017E: Exception received while running file ″InsuranceServicesSingle.jacl″ error might occur.

Using an external provider for Java Contract for Containers authorization

You might encounter the following issues when you use an external provider for JACC authorization:

v An ″HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry″ error might

occur.

The configuration of JACC might fail

If you are having problems configuring JACC, check the following:

v Ensure that the parameters are correct. For example, there should not be a number after

TAM_Policy_server_hostname:7135, but there should be a number after

TAM_Authorization_server_hostname:7136 (for example, TAM_Authorization_server_hostname:7136:1).

v If a message such as “server can‘t be contacted” appears, it is possible that the host names or port

numbers of the Tivoli Access Manager servers are incorrect, or that the Tivoli Access Manager servers

have not been started.

Chapter 12. Administering security 375

v Ensure that the password for sec_master is correct.

v Check the SystemOut.log and search for the string AMAS to see if any error messages are present.

The server might fail to start after configuring JACC

If the server does not start after JACC has been configured, check the following:

v Ensure that the WebSphere Application Server and Tivoli Access Manager use the same Lightweight

Directory Access Protocol (LDAP) server.

v If the message “Policy Director Authentication failed″ appears, ensure that the:

– WebSphere Application Server LDAP serverID is the same as the “Administrator user” in the Tivoli

Access Manager JACC configuration panel.

– Tivoli Access Manager Administrator distinguished name (DN) is correct.

– Password of the Tivoli Access Manager administrator has not expired and is valid.

– Account is valid for the Tivoli Access Manager administrator.

v If a message such as “socket can‘t be opened for xxxx″ (where xxxx is a number) appears, do the

following:

1. Go to $WAS_HOME/profiles/profile_name/etc/tam.

2. Change xxxx to an available port number in amwas.commomconfig.properties, and

amwas*cellName_dmgr.properties if dmgr failed to start. If Node failed to start, change xxx to an

available port number in amwas*cellName_nodeName_.properties. If appSever failed to start,

change xxxx in Amwas*cellname_nodeName_serverName.properties.

The application might not deploy properly

When you click Save, the policy and role information is propagated to the Tivoli Access Manager policy. It

might take some time to finish. If the save fails, you must uninstall the application and then reinstall it.

To access an application after it is installed, you must wait 30 seconds (by default) to start the application

after you save.

The startServer command might fail after you have configured Tivoli Access Manager or a clean

uninstall did not take place after unconfiguring JACC.

If the cleanup for JACC unconfiguration or start server fails after JACC has been configured, do the

following:

v Remove Tivoli Access Manager properties files from WebSphere Application Server. For each

application server in a network deployment (ND) environment with N servers defined (for example,

server1, server2), the following files must be removed:

$WAS_INSTALL/java/jre/PdPerm.properties

$WAS_INSTALL/java/jre/PdPerm.ks

$WAS_INSTALL/profiles/profile_name/etc/tam/*

v Use a utility to clear the security configuration and return the system to the state it was in before Tivoli

Access Manager JACC was configured. The utility removes all of the PDLoginModuleWrapper entries

as well as the Tivoli Access Manager authorization table entry from the security.xml file, effectively

removing the Tivoli Access Manager JACC provider. Backup security.xml before running this utility.

Enter the following commands:

$WAS_HOME/java/jre/bin/java -classpath

 ″$WAS_HOME/lib/AMJACCProvider.jar:CLASSPATH″

com.tivoli.pd.as.jacc.cfg.CleanSecXML fully_qualified_path/security.xml

376 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

An "HPDIA0202w An unknown user name was presented to Access Manager" error might occur

You might encounter the following error message if you are attempting to use an existing user in a Local

Directory Access Protocol (LDAP) user registry with Tivoli Access Manager:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught. Details are:

″HPDIA0202W An unknown user name was presented to Access Manager.″

To correct this error, complete the following steps:

1. On the command line, type the following information to get a Tivoli Access Manager command prompt:

pdadmin -a administrator_name -p administrator_password

The pdadmin administrator_name prompt is displayed. For example:

pdadmin -a administrator1 -p password

2. At the pdadmin command prompt, import the user from the LDAP user registry to Tivoli Access

Manager by typing the following information:

user import user_name cn=user_name,o=organization_name,c=country

For example:

user import jstar cn=jstar,o=ibm,c=us

After importing the user to Tivoli Access Manager, you must use the user modify command to set the user

account to valid. The following syntax shows how to use this command:

user modify user_name account-valid yes

For example:

user modify jstar account-valid yes

For information on how to import a group from LDAP to Tivoli Access Manager, see the Tivoli Access

Manager documentation.

An "HPDAC0778E The specified user’s account is set to invalid" error might occur

You might encounter the following error message after you import a user to Tivoli Access Manager and

restart the client:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught.

Details are: "HPDAC0778E The specified user’s account is set to invalid."

To correct this error, use the user modify command to set the user account to valid. The following syntax

shows how to use this command:

user modify user_name account-valid yes

For example:

user modify jstar account-valid yes

Chapter 12. Administering security 377

An "HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry" error

might occur

You might encounter an error similar to the following message when you propagate the security policy

information from the application to the provider using the wsadmin command

propagatePolicyToJACCProvider:

AWXJR0035E An error occurred while attempting to add member, cn=agent3,o=ibm,c=us, to role AgentRole

HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry

To correct this error, create or import the user, which is mapped to the security role to the Tivoli Access

Manager. For more information on propagating the security policy information, see the documentation for

your authorization provider.

An WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl" error might

occur

After the JACC provider and Tivoli Access Manager are enabled, when attempting to install the application

(which is configured with security roles using the wsadmin command), the following error might occur:

WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl"; exception information:

 com.ibm.ws.scripting.ScriptingException: WASX7111E: Cannot find a match for supplied option:

"[RuleManager, , , cn=mgr3,o=ibm,c=us|cn=agent3,o=ibm,c=us, cn=ManagerGro

up,o=ibm,c=us|cn=AgentGroup,o=ibm,c=us]" for task "MapRolesToUsers

The $AdminApp task option MapRolesToUsers becomes invalid when Tivoli Access Manager is used as

the authorization server. To correct the error, change MapRolesToUsers to TAMMapRolesToUsers.

Authentication protocol for EJB security

In WebSphere Application Server Version 6, two authentication protocols are available to choose from:

Secure Authentication Service (SAS) and Common Secure Interoperability Version 2 (CSIv2). SAS is the

authentication protocol used by all previous releases of WebSphere Application Server and is maintained

for backwards compatibility. The Object Management Group (OMG) has defined the authentication protocol

called CSIv2 so that vendors can interoperate securely. CSIv2 is implemented in WebSphere Application

Server with more features than SAS and it is considered the strategic protocol.

Invoking EJB methods in a secure WebSphere Application Server environment requires an authentication

protocol to determine the level of security and the type of authentication, which occur between any given

client and server for each request. It is the job of the authentication protocol during a method invocation to

merge the server authentication requirements (determined by the object Interoperable Object Reference

(IOR)) with the client authentication requirements (determined by the client configuration) and come up

with an authentication policy specific to that client and server pair.

The authentication policy makes the following decisions, among others, which are all based on the client

and server configurations:

v What kind of connection can you make to this server--SSL or TCP/IP?

v If Secure Sockets Layer (SSL) is chosen, how strong is the encryption of the data?

v If SSL is chosen, do you authenticate the client using client certificates?

v Do you authenticate the client with a user ID and password? Does an existing credential exist?

v Do you assert the client identity to downstream servers?

v Given the configuration of the client and server, can a secure request proceed?

You can configure both protocols (SAS and CSIv2) to work simultaneously. If a server supports both

protocols, it exports an IOR containing tagged components describing the configuration for SAS and

CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the

client supports both and the server supports both, CSIv2 is used. However, if the server supports SAS (for

378 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

example, it is a previous WebSphere Application Server release) and the client supports both, the client

chooses SAS for this request because the SAS protocol is what both have in common.

Choose a protocol by specifying the com.ibm.CSI.protocol property on the client side and configuring

through the administrative console on the server side. More details are included in the SAS and CSIv2

properties articles.

Common Secure Interoperability Specification, Version 2

The Common Secure Interoperability Specification, Version 2 (CSIv2) defines the Security Attribute Service

(SAS) that enables interoperable authentication, delegation and privileges. The CSIv2 SAS and SAS

protocols are entirely different. The CSIv2 SAS is a subcomponent of CSIv2 that supports SSL and

interoperability with the EJB Specification, Version 2.1.

Security Attribute Service

The Common Secure Interoperability Specification, Version 2 Security Attribute Service (CSIv2 SAS)

protocol is designed to exchange its protocol elements in the service context of a General Inter-ORB

Protocol (GIOP) request and reply messages that are communicated over a connection-based transport.

The protocol is intended for use in environments where transport layer security, such as that available

through Secure Sockets Layer (SSL) and Transport Layer Security (TLS), is used to provide message

protection (that is, integrity and or confidentiality) and server-to-client authentication. The protocol provides

client authentication, delegation, and privilege functionality that might be applied to overcome

corresponding deficiencies in an underlying transport. The CSIv2 SAS protocol facilitates interoperability by

serving as the higher-level protocol under which secure transports can be unified.

Connection and request interceptors

The authentication protocols used by WebSphere Application Server are add-on Interoperable Inter-ORB

Protocol (IIOP) services. IIOP is a request-and-reply communications protocol used to send messages

between two Object Request Brokers (ORBs). For each request made by a client ORB to a server ORB,

an associated reply is made by the server ORB back to the client ORB. Prior to any request flowing, a

connection between the client ORB and the server ORB must be established over the TCP/IP transport

(SSL is a secure version of TCP/IP). The client ORB invokes the authentication protocol client connection

interceptor, which is used to read the tagged components in the IOR of the object located on the server.

As mentioned previously, this is where the authentication policy is established for the request. Given the

authentication policy (a coalescing of the server configuration with the client configuration), the strength of

the connection is returned to the ORB. The ORB makes the appropriate connection, usually over SSL.

After the connection is established, the client ORB invokes the authentication protocol client request

interceptor, which is used to send security information other than what is established by the transport. The

security information includes the user ID and password token (authenticated by the server), an

authentication mechanism-specific token (validated by the server), or an identity assertion token. Identity

assertion is a way for one server to trust another server without the need to reauthenticate or revalidate

the originating client. However, some work is required for the server to trust the upstream server. This

additional security information is sent with the message in a service context. A service context has a

registered identifier so that the server ORB can identify which protocol is sending the information. The fact

that a service context contains a unique identity is another way for WebSphere Application Server to

support both SAS or z/SAS and CSIv2 simultaneously because both protocols have different service

context IDs. After the client request interceptor finishes adding the service context to the message, the

message is sent to the server ORB.

When the message is received by the server ORB, the ORB invokes the authentication protocol server

request interceptor. This interceptor looks for the service context ID known by the protocol. When both

SAS or z/SAS and CSIv2 are supported by a server, two different server request interceptors are invoked

and both interceptors look for different service context IDs. However, only one finds a service context for

Chapter 12. Administering security 379

any given request. When the server request interceptor finds a service context, it reads the information in

the service context. A method is invoked to the security server to authenticate or validate client identity.

The security server either rejects the information or returns a credential. A credential contains additional

information about the client, retrieved from the user registry so that authorization can make the appropriate

decision. Authorization is the process of determining if the user can invoke the request based on the roles

applied to the method and the roles given to the user. If the request is rejected by the security server, a

reply is sent back to the client without ever invoking the business method.

If a service context is not found by the CSIv2 server request interceptor, the interceptor then looks at the

transport connection to see if a client certificate chain was sent. This is done when SSL client

authentication is configured between the client and server.

If a client certificate chain is found, the distinguished name (DN) is extracted from the certificate and is

used to map to an identity in the user registry. If the user registry is Lightweight Directory Access Protocol

(LDAP), the search filters defined in the LDAP registry configuration determine how the certificate maps to

an entry in the registry. If the user registry is local OS, the first attribute of the distinguished name (DN)

maps to the user ID of the registry. This attribute is typically the common name.

If the certificate does not map, no credential is created and the request is rejected. When invalid security

information is presented, the method request is rejected and a NO_PERMISSION exception is sent back

with the reply. However, when no security information is presented, an unauthenticated credential is

created for the request and the authorization engine determines if the method gets invoked or not. For an

unauthenticated credential to invoke an Enterprise JavaBean (EJB) method, either no security roles are

defined for the method or a special Everyone role is defined for the method.

When the method invocation is completed in the EJB container, the server request interceptor is invoked

again to complete server authentication and a new reply service context is created to inform the client

request interceptor of the outcome. This process is typically for making the request stateful. When a

stateful request is made, only the first request between a client and server requires that security

information is sent. All subsequent method requests need to send a unique context ID only so that the

server can look up the credential stored in a session table. The context ID is unique within the connection

between a client and server.

Finally, the method request cycle is completed by the client request interceptor receiving a reply from the

server with a reply service context providing information so the client side stateful context ID can be

confirmed and reused.

Specifying a stateful client is done through the property com.ibm.CSI.performStateful (true/false).

Specifying a stateful server is done through the administrative console configuration.

380 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Authentication policy for each request

The authentication policy of a given request determines the security protection between a client and a

server. A client or server authentication protocol configuration can describe required features, supported

features and non-supported features. When a client requires a feature, it can only talk to servers that

either require or support that feature. When a server requires a feature, it can only talk to clients that

either require or support that feature. When a client supports a feature, it can talk to a server that supports

or requires that feature, but can also talk to servers that do not support the feature. When a server

supports a feature, it can talk to a client that supports or requires the feature, but can also talk to clients

that do not support the feature (or chose not to support the feature).

For example, for a client to support client certificate authentication, some setup is required to either

generate a self-signed certificate or to get one from a certificate authority (CA). Some clients might not

need to complete these actions, therefore, you can configure this feature as not supported. By making

this decision, the client cannot communicate with a secure server requiring client certificate authentication.

Instead, this client can choose to use the user ID and password as the method of authenticating itself to

the server.

Typically, supporting a feature is the most common way of configuring features. It is also the most

successful during run time because it is more forgiving than requiring a feature. Knowing how secure

servers are configured in your domain, you can choose the right combination for the client to ensure

successful method invocations and still get the most security. If you know that all of your servers support

both client certificate and user ID and password authentication for the client, you might want to require one

and not support the other. If both the user ID and password and the client certificate are supported on the

client and server, both are performed but user ID and password take precedence at the server. This action

is based on the CSIv2 specification requirements.

Authentication protocol flow

Step 1:

Client ORB calls the connection

interceptor to create the connection.

Step 5:

Client ORB calls the request interceptor

so that the client can clean up and set

the session status as good or bad.

Client request

interceptor -

receive_reply()

Client connection

interceptor

Client request

interceptor -

send_request()

Server request

interceptor -

receive_request()

Server request

interceptor -

send_reply()

Step 3:

Server ORB calls the request interceptor

to receive the security information,

authenticate, and set the received credential.

Step 4:

Server ORB calls the request interceptor

so that security can send information

back to the client with the reply.

Step 2:

Client ORB calls the request

interceptor to get client security

information.

Client ORB Server ORB

Invocation

credential:

user: peter

pass: beans

1

2

Request

Service context

Service context

3

Received

credential:

security

token

45
Reply

User: peter,

Password: beans

foo.getCoffee()

Coffee

Stateful request

valid

Transport connectionfoo.getCoffee() Server enterprise
beans Foo

. Authentication protocol flow

Chapter 12. Administering security 381

Common Secure Interoperability Version 2 features

The following Common Secure Interoperability Version 2 (CSIv2) features are available in IBM WebSphere

Application Server: Secure Sockets Layer (SSL) client certificate authentication, message layer

authentication, identity assertion, and security attribute propagation.

v SSL Client Certificate authentication.

An additional way to authenticate a client to a server using SSL client authentication.

v Message Layer Authentication.

Authenticates credential information and sends that information across the network so that a receiving

server can interpret it.

v Identity Assertion.

Supports a downstream server in accepting the client identity that is established on an upstream server,

without having to authenticate again. The downstream server trusts the upstream server.

v Security attribute propagation

Supports the use of the authorization token to propagate serialized Subject contents and

PropagationToken contents with the request. You can propagate these objects using a pure client or a

server login that adds custom objects to the Subject. Propagating security attributes prevents

downstream logins from having to make UserRegistry calls to look up these attributes.

Propagating security attributes is also useful when the security attributes contain information that is only

available at the time of authentication (meaning this information cannot be located using the

UserRegistry on downstream servers).

Identity assertion

Identity assertion is the invocation credential that is asserted to the downstream server.

When a client authenticates to a server, the received credential is set. When authorization checks the

credential to determine whether access is permitted, it also sets the invocation credential so that if the

Enterprise JavaBeans (EJB) method calls another EJB method that is located on other servers, the

invocation credential can be the identity used to invoke the downstream method. Depending on the RunAs

mode for the enterprise beans, the invocation credential is set as the originating client identity, the server

identity, or a specified different identity. Regardless of the identity that is set, when identity assertion is

enabled, it is the invocation credential that is asserted to the downstream server.

The invocation credential identity is sent to the downstream server in an identity token. In addition, the

sending server identity, including the password or token, is sent in the client authentication token when

basic authentication is enabled. The sending server identity is sent through a Secure Sockets Layer (SSL)

client certification authentication when client certificate authentication is enabled. Basic authentication

takes precedence over client certificate authentication.

Both tokens are needed by the receiving server to accept the asserted identity. The receiving server

completes the following actions to accept the asserted identity:

v The server determines whether the sending server identity, sent with a basic authentication token or

with an SSL client certificate, is on the trusted principal list of the receiving server. The server

determines whether the sending server can send an identity token to the receiving server.

v After it is determined that the sending server is on the trusted list, the server authenticates the sending

server to verify its identity.

v The server is authenticated by comparing the user ID and password from the sending server to the

receiving server, or it might require a real authenticated call. If the credentials of the sending server are

authenticated and on the trusted principal list, then the server proceeds to evaluate the identity token.

Evaluation of the identity token consists of the following four identity formats that exist in an identity token:

v Principal name

v Distinguished name

v Certificate chain

v Anonymous identity

382 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The product servers that receive authentication information typically support all four identity types. The

sending server decides which one is chosen, based on how the original client authenticated. The existing

type depends on how the client originally authenticates to the sending server. For example, if the client

uses Secure Sockets Layer (SSL) client authentication to authenticate to the sending server, then the

identity token sent to the downstream server contains the certificate chain. With this information, the

receiving server can perform its own certificate chain mapping and interoperability is increased with other

vendors and platforms.

After the identity format is understood and parsed, the identity maps to a credential. For an ITTPrincipal

identity token, this identity maps one-to-one with the user ID fields.

For an ITTDistinguishedName identity token, the mapping depends on the user registry. For Lightweight

Directory Access Protocol (LDAP), the configured search filter determines how the mapping occurs. For

LocalOS, the first attribute of the distinguished name (DN), which is typically the same as the common

name, maps to the user ID of the registry. For an ITTCertChain identity token, see the Map certificates to

users section for details on how this action is performed for the LDAP user registry. For LocalOS, the first

attribute of the DN in the certificate is used to map to the user ID in the registry.

Some user registry methods are called to gather additional credential information that is used by

authorization. In a stateful server, this action completes once for the sending server and the receiving

server pair where the identity tokens are the same. Subsequent requests are made through a session ID.

Identity assertion is only available using the Common Secure Interoperability Version 2 (CSIv2) protocol.

Message layer authentication

Defines the credential information and sends that information across the network so that a receiving server

can interpret it.

When you send authentication information across the network using a token (whether the token is a user

ID and password token, that is, Generic Security Services Username Password (GSSUP), or a

mechanism-specific format token, Lightweight Third Party Authentication (LTPA), for example on non-z/OS

platforms), the transmission is considered message layer authentication because the data is sent with the

message inside a service context.

A pure Java client uses basic authentication (GSSUP) as the authentication mechanism to establish client

identity.

However, a servlet can use either basic authentication (GSSUP) or the authentication mechanism of the

server (LTPA) to send security information in the message layer. Use LTPA by authenticating or by

mapping the basic authentication credentials to the security mechanism of the server.

The security token that is contained in a token-based credential is authentication mechanism-specific. The

way that the token is interpreted is only known by the authentication mechanism. Therefore, each

authentication mechanism has an object ID (OID) representing it. The OID and the client token are sent to

the server, so that the server knows which mechanism to use when reading and validating the token. The

following list contains the OIDs for each mechanism:

BasicAuth (GSSUP): oid:2.23.130.1.1.1

LTPA: oid:1.3.18.0.2.30.2

SWAM: No OID because it is not forwardable

On the server, the authentication mechanisms can interpret the token and create a credential, or they can

authenticate basic authentication data from the client, and create a credential. Either way, the created

Chapter 12. Administering security 383

credential is the received credential that the authorization check uses to determine if the user has access

to invoke the method. You can specify the authentication mechanism by using the following property on

the client side:

v com.ibm.CORBA.authenticationTarget

Basic authentication is currently the only valid value. You can configure the server through the

administrative console.

While this property tells you which authentication mechanism to use, you also need to specify whether you

want to perform authentication over the message layer, that is get a BasicAuth or a token-based

credential. To complete this task, specify the com.ibm.CSI.performClientAuthenticationRequired (True or

False) and com.ibm.CSI.performClientAuthenticationSupported (True or False) properties. Indicating that

client authentication is required implies that it must be done for every request. Indicating that the

authentication mechanism is supported implies that it might be done, but is not required. For some

servers, this option is appropriate if no resources are protected. In most cases, it is a best practice to

indicate that this mechanism is supported so that client authentication is performed if both the client and

server support it. Client authentication is not performed when communicating with certain servers that do

not want security, yet the method requests still succeed.

Configuring authentication retries

Situations occur where you want a prompt to display again if you entered your user ID and password

incorrectly or you want a method to retry when a particular error occurs back at the client. If you can

correct the error by information at the client side, the system automatically performs a retry without the

client seeing the failure, if the system is configured appropriately.

Some of these errors include:

v Entering a user ID and password that are not valid

v Having an expired credential on the server

v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before returning the error to the

client. Use the com.ibm.CORBA.authenticationRetryEnabled property (True or False) to enable or disable

authentication retries. Use the com.ibm.CORBA.authenticationRetryCount property to specify the number

of retry attempts.

Immediate validating of a basic authentication login

In WebSphere Application Server Version 6, a behavior is defined during request_login for a BasicAuth

login. In releases prior to Version 5, a BasicAuth login takes the user ID and password entered through the

loginSource method and creates a BasicAuth credential. If either the user ID or the password is not valid,

the client program does not find out until the first method request is attempted. When the user ID or

password is specified during a prompt or programmatic login, the user ID and password are authenticated

by default with the security server, with a True or False returned as the result. If False, an

org.omg.SecurityLevel2.LoginFailed exception is returned to the client indicating that the user ID and

password are not valid. If True, then the BasicAuth credential is returned to the caller of the request_login.

To disable this feature on the pure client, specify com.ibm.CORBA.validateBasicAuth=false. By default, this

feature is set to True. On the server side, specify this property in the security dynamic properties.

Secure Sockets Layer client certificate authentication

An additional way to authenticate a client to a server is using Secure Sockets Layer (SSL) client

authentication.

384 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Using SSL client authentication is another way of authenticating a client to a server. This form of

authentication does not occur at the message layer using a user ID and password or tokens. This

authentication occurs during the connection handshake using SSL certificates.

When the client is configured with a personal certificate in the SSL keystore file, which indicates that SSL

client authentication is required and the server supports SSL client authentication, the following actions

occur to establish the identity on the client side.

v When a method request is invoked in the client code to a remote enterprise bean, the Object Request

Broker (ORB) invokes the client connection interceptor to establish a connection with the server.

Because the configuration specifies SSL and SSL client authentication, the connection type is SSL and

the SSL handshake sends the client certificate to the server to validate. If the client certificate does not

validate, the connection is not established and an exception is sent back to the client code where the

method is invoked, which indicates the failure. If the client certificate is validated, then a connection

opens between the client and the server.

v The ORB proceeds to call the client request interceptor, which might be busy.

If basic authentication is also configured, for example, then the user might be prompted for a user ID

and password. Because this action is not necessary, disable this option in the configuration if the SSL

certificate is the identity against which to invoke the method. If no message layer security exists, then

no security context is created and associated with the request.

v After the server receives the request, the server-side request interceptor checks for a security context.

Because the server does not find a service context, it checks the server socket for a client certificate

chain that contains the client identity. In this case, the server finds the certificate chain from the client.

The identity in the certificate chain is valid because the connection is made. To create a credential, map

the identity from the certificate to the user registry. This action is done differently based on the type of

authentication mechanism. Mapping a certificate to a credential is done differently based on the user

registry type.

See the “Map certificates to users” on page 451 article, for details on how this mapping is performed for

the Lightweight Directory Access Protocol (LDAP) user registry. For local OS, the first attribute of the

distinguished name (DN) in the certificate is used to map to the user ID in the registry.

One benefit of SSL client certificate authentication is that it optimizes authentication performance, because

an SSL connection is typically created anyway. The extra overhead of sending the client certificate is

minimal. While the client-side request interceptor performs no activity, the server-side request interceptor

maps the certificate to a credential.

One disadvantage to this type of authentication is the complexity of setting up the keystore file on each

client system.

To enable SSL client certificate authentication on the client side, you must enable the properties, such as

SSL. This action is completed using the following two properties:

v com.ibm.CSI.performTransportAssocSSLTLSRequired (true or false)

v com.ibm.CSI.performTransportAssocSSLTLSSupported (true or false)

Indicating that SSL is required implies that every request must generate an SSL connection key. If a server

does not support SSL, then the request fails. After you enable SSL by either supporting it or requiring it,

you can enable some of the SSL features.

To enable SSL client authentication, you can specify the following two properties:

v com.ibm.CSI.performTLClientAuthenticationRequired (true or false)

v com.ibm.CSI.performTLClientAuthenticationSupported (true or false)

The TL means transport layer. If you indicate that SSL client authentication is required, then you only limit

the ability to communicate with servers that support SSL client authentication. For a server to support SSL

client authentication, that server must have similarly configured properties through the administrative

Chapter 12. Administering security 385

console, and have an SSL listener port that is open to handle mutual authentication handshakes.

Configuration of server properties are done through the administrative console.

SSL client certificate authentication from a Java client is only available using the Common Secure

Interoperability Version 2 (CSIv2) protocol.

Supported authentication protocols

Two authentication protocols are supported. Secure Authentication Service (SAS) is the authentication

protocol used by all previous releases of the WebSphere Application Server product. Common Secure

Interoperability Version 2 (CSIv2), which is considered the strategic protocol, is implemented in

WebSphere Application Server, Version 5 and later.

You can configure both protocols to work simultaneously. If a server supports both protocols, it exports an

interoperable object reference (IOR) that contains tagged components describing the configuration for SAS

and CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the

client and the server support both protocols, CSIv2 is used. However, if the server supports SAS (for

example, it is a previous WebSphere Application Server release) and the client supports both protocols,

the client chooses SAS for this request.

Choose a protocol using the com.ibm.CSI.protocol property on the client side and configure this protocol

through the administrative console on the server side.

Configuring Common Secure Interoperability Version 2 and Security

Authentication Service authentication protocols

1. Determine how to configure security inbound and outbound at each point in your infrastructure.

For example, you might have a Java client communicating with an Enterprise JavaBeans (EJB)

application server, which in turn communicates to a downstream EJB application server.

The Java client utilizes the sas.client.props file to configure outbound security. Pure clients need to

configure outbound security only.

The upstream EJB application server configures inbound security to handle the right type of

authentication from the Java client. The upstream EJB application server utilizes the outbound security

configuration when going to the downstream EJB application server.

This type of authentication might be different than what you expect from the Java client into the

upstream EJB application server. Security might be tighter between the pure client and the first EJB

server, depending on your infrastructure. The downstream EJB server utilizes the inbound security

configuration to accept requests from the upstream EJB server. These two servers require similar

configuration options as well. If the downstream EJB application server communicates to other

downstream servers, then the outbound security might require a special configuration.

2. Specify the type of authentication.

By default, authentication by a user ID and password is performed.

Both Java client certificate authentication and identity assertion are disabled by default. If you want this

type of basic authentication performed at every tier, use the CSIv2 authentication protocol configuration

as is. However, if you have any special requirements where some servers authenticate differently from

other servers, then consider how to configure CSIv2 to its best advantage.

3. Configure clients and servers.

Configuring a pure Java client is done through the sas.client.props file, where properties are

modified.

Configuring servers is always done from the administrative console, either from the security navigation

for cell-level configurations or from the server security of the application server for server-level

configurations. If you want some servers to authenticate differently from others, modify some of the

server-level configurations. When you modify the server-level configurations, you are overriding the

cell-level configurations.

386 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Common Secure Interoperability Version 2 and Security Authentication

Service client configuration

A secure Java client requires configuration properties to determine how to perform security with a server.

These configuration properties are typically put into a properties file somewhere on the client system and

referenced by specifying the following system property on the command line of the Java client. The syntax

of this property accepts a valid Web address with the protocol type, file.

 -Dcom.ibm.CORBA.ConfigURL=file:/C:/WebSphere/AppServer/properties/sas.client.props

When this file is processed by the Object Request Broker (ORB), security can be enabled between the

Java client and the target server.

If any syntax problems exist with the ConfigURL property and the sas.client.props file is not found, the

Java client proceeds to connect insecurely. Errors display indicating the failure to read the ConfigURL

property. Typically the problem is related to having two slashes after file, which is not valid.

Use the following properties to configure the SAS and CSIv2 authentication protocols:

v “CSIv2 authentication protocol client settings”

v “Security Authentication Service authentication protocol client settings” on page 390

CSIv2 authentication protocol client settings

In addition to the properties that are valid for both Security Authentication Service (SAS) and Common

Secure Interoperability Version 2 (CSIv2), this page documents the properties that are valid for the CSIv2

protocol only.

com.ibm.CSI.performStateful:

Used to determine if the CSIv2 protocol maintains stateful sessions between a client and server after the

initial secure association (authentication between a particular client and server).

 For performance reasons, it is beneficial to enable this property. Considerations for disabling this property

include troubleshooting an authentication protocol session-related problem.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performClientAuthenticationSupported:

Use to determine if message layer client authentication is supported.

 When supported, message layer client authentication is performed when communicating with any server

that supports or requires the authentication. Message layer client authentication involves transmitting either

a user ID and password or a token from an already authenticated credential. If the authenticationTarget

property is BasicAuth, the user ID and password are transmitted to the target server. If the

authenticationTarget password is a token-based mechanism such as Lightweight Third Party Authentication

(LTPA) or Kerberos, then the credential token is transmitted to the server after authenticating the user ID

and password directly to the security server.

 Data type: Boolean

Default: True

Range: True or False

Chapter 12. Administering security 387

com.ibm.CSI.performClientAuthenticationRequired:

Use to determine if message layer client authentication is required.

 When required, message layer client authentication must occur when communicating with any server. If

transport layer client authentication is also enabled, both authentications are performed, but message layer

client authentication takes precedence at the server.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performTransportAssocSSLTLSSupported:

Use to determine if Secure Sockets Layer (SSL) is supported.

 When SSL is supported, this client causes either SSL or TCP/IP to communicate with a server. If SSL is

not supported, then the client must communicate over TCP/IP to the server. Supporting SSL is

recommended so that any sensitive information is encrypted and digitally signed. When the associated

com.ibm.CSI.performTransportAssocSSLTLSRequired property is enabled (set to true), this property is

ignored. In this case, SSL is always required.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performTransportAssocSSLTLSRequired:

Use to determine if SSL is required.

 When SSL is required, this client must use SSL to communicate to a server. If SSL is not supported by a

server, this client does not attempt a connection to that server. When this property is enabled, the

associated com.ibm.CSI.performTransportAssocSSLTLSSupported property is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performTLClientAuthenticationSupported:

Use to determine if transport layer client authentication is supported.

 When performing client authentication using SSL, the client key file must have a personal certificate

configured. Without a personal certificate, the client cannot authenticate to the server over SSL. If the

personal certificate is a self-signed certificate, the server must contain the public key of the client in the

server trust file. If the personal certificate is granted from a certificate authority (CA), the server must

contain the root public key of the CA in the server trust file. This property is only valid when SSL is

supported or required. If the associated com.ibm.CSI.performTLClientAuthenticationRequired property is

enabled, this property is ignored.

 Data type: Boolean

Default: True

Range: True or False

388 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

com.ibm.CSI.performTLClientAuthenticationRequired:

Use to determine if transport layer client authentication is required.

 If required, every secure socket that is opened between a client and server authenticates using SSL

mutual authentication. When performing client authentication using SSL, the client key file must have a

personal certificate configured. Without a personal certificate, the client cannot authenticate to the server

over SSL.

If the personal certificate is a self-signed certificate, the server must contain the public key of the client in

the server trust file. If the personal certificate is granted by a certificate authority (CA), the server must

contain the root public key of the CA in the server trust file. When this property is specified, the associated

com.ibm.CSI.performTLClientAuthenticationSupported property is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageConfidentialitySupported:

Use to determine if 128-bit ciphers are supported to make SSL connections.

 If a target server does not support 128-bit ciphers, you can make a connection at a lower encryption

strength. This property is only valid when SSL is enabled.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageConfidentialityRequired:

Use to determine if 128-bit ciphers must be used to make SSL connections.

 If a target server does not support 128-bit ciphers, a connection to that server fails. This property is only

valid when SSL is enabled. When this property is enabled, the associated

com.ibm.CSI.performMessageConfidentialitySupported property is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageIntegritySupported:

Use to determine if 40-bit ciphers are supported to make SSL connections.

 If a target server does not support 40-bit ciphers, you can make a connection using only digital-signing

ciphers. This property is only valid when SSL is enabled. This property is ignored if the associated

com.ibm.CSI.performMessageIntegrityRequired property is enabled.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageIntegrityRequired:

Chapter 12. Administering security 389

Use to determine if 40-bit ciphers must be used to make SSL connections.

 If a target server does not support 40-bit ciphers, a connection to that server fails. This property is only

valid when SSL is enabled. When this property is enabled, the associated

com.ibm.CSI.performMessageIntegritySupported property is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.rmiOutboundPropagationEnabled: Enables the propagation of custom objects that are

added to the Subject. On a pure client, add this property to the sas.client.props file. For more

information, see Security Attribute Propagation.

Security Authentication Service authentication protocol client settings

In addition to those properties which are valid for both Security Authentication Service (SAS) and Common

Secure Interoperability Version 2 (CSIv2), this article documents properties which are valid only for the

SAS authentication protocol.

com.ibm.CORBA.standardPerformQOPModels:

Specifies the strength of the ciphers when making an Secure Sockets Layer (SSL) connection.

 Data type: String

Default: High

Range Low, Medium, High

Configuring Common Secure Interoperability Version 2 inbound

authentication

Inbound authentication refers to the configuration that determines the type of accepted authentication for

inbound requests. This authentication is advertised in the interoperable object reference (IOR) that the

client retrieves from the name server.

1. Start the administrative console.

2. Click Security > Global security.

3. Under Authentication, click Authentication Protocol > CSI inbound authentication

4. Consider the following three layers of security:

v Identity assertion (attribute layer).

When selected, this server accepts identity tokens from upstream servers. If the server receives an

identity token, the identity is taken from an originating client. For example, the identity is in the same

form that the originating client presented to the first server. An upstream server sends the identity of

the originating client. The format of the identity can be either a principal name, a distinguished

name, or a certificate chain. In some cases, the identity is anonymous. It is important to trust the

upstream server that sends the identity token because the identity is authenticating on this server.

Trust of the upstream server is established either using Secure Sockets Layer (SSL) client certificate

authentication or basic authentication. You must select one of the two layers of authentication in

both inbound and outbound authentication when you choose identity assertion.

The server ID is sent in the client authentication token with the identity token. The server ID is

checked against the trusted server ID list. If the server ID is on the trusted server list, the server ID

is authenticated. If the server ID is valid, the identity token is put into a credential and used for

authorization of the request.

v User ID and password (message layer).

390 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

This type of authentication is the most typical. The user ID and password or authenticated token is

sent from a pure client or from an upstream server. However, the upstream server cannot be a z/OS

server because z/OS does not support a user ID or password from a server acting as a client. When

a user ID and password are received at the server, they are authenticated with the user registry.

Usually, a token is sent from an upstream server and a user ID and password are sent from a client,

including a servlet. When a token is received at the server level, the token is validated to determine

whether tampering has occurred or whether it is expired.

v Secure Sockets Layer client certificate authentication (transport layer).

This type of authentication typically occurs from pure clients using the certificate identity and from

servers trusting the upstream server. Usually, when a server delegates an identity to a downstream

server, the identity comes from either the message layer (a client authentication token) or the

attribute layer (an identity token), not from the transport layer, through the client certificate

authentication.

A client has an SSL client certificate that is stored in the keystore file (or in the key ring file on the

z/OS platform) of the client configuration. When SSL client authentication is enabled on this server,

the server requests that the client send the SSL client certificate when the connection is established.

The certificate chain is available on the socket whenever a request is sent to the server. The server

request interceptor gets the certificate chain from the socket and maps this certificate chain to a

user in the registry. This type of authentication is optimal for communicating directly from a client to

a server. However, when you have to go downstream, the identity typically flows over the message

layer or through identity assertion.

5. Consider the following points when deciding what type of authentication to accept:

v A server can receive multiple layers simultaneously, so an order of precedence rule decides which

identity to use. The identity assertion layer has the highest priority, the message layer follows, and

the transport layer has the lowest priority. The SSL client certificate authentication is used when it is

the only layer provided. If the message layer and the transport layer are provided, the message

layer is used to establish the identity for authorization. The identity assertion layer is used to

establish precedence when provided.

v Does this server usually receive requests from a client, from a server or both? If the server always

receives requests from a client, identity assertion is not needed. You can then choose either the

message layer, the transport layer, or both. You also can decide when authentication is required or

just supported. To select a layer as required, the sending client must supply this layer, or the request

is rejected. However, if the layer is only supported, the layer might not be supplied.

v What kind of client identity is supplied? If the client identity is client certificates authentication and

you want the certificate chain to flow downstream so that it maps to the downstream server user

registries, then identity assertion is the appropriate choice. Identity assertion preserves the format of

the originating client. If the originating client authenticated with a user ID and password, then a

principal identity is sent. If authentication is done with a certificate, then the certificate chain is sent.

In some cases, if the client authenticated with a token and a Lightweight Directory Access Protocol

(LDAP) server is the user registry, then a distinguished name (DN) is sent.

6. Configure a trusted server list. When identity assertion is selected for inbound requests, insert a

pipe-separated (|) list of server administrator IDs to which this server can support identity token

submission. For backwards compatibility, you can still use a comma-delimited list. However, if the

server ID is a distinguished name (DN), then you must use a pipe-delimited (|) list because a comma

delimiter does not work. If you choose to support any server sending an identity token, you can enter

an asterisk (*) in this field. This action is called presumed trust. In this case, use SSL client certificate

authentication between servers to establish the trust.

7. Configure session management. You can choose either stateful or stateless security. Performance is

optimum when choosing stateful sessions. The first method request between a client and server is

authenticated. All subsequent requests (or until the credential token expires) reuse the session

information, including the credential. A client sends a context ID for subsequent requests. The context

ID is scoped to the connection for uniqueness.

Chapter 12. Administering security 391

When you finish configuring this panel, you have configured most of the information that a client coalesces

when determining what to send to this server. A client or server outbound configuration with this server

inbound configuration, determines the security that is applied. When you know what clients send, the

configuration is simple. However, if you have a diverse set of clients with differing security requirements,

your server considers various layers of authentication.

For an enterprise bean server, the authentication choice is usually either identity assertion or message

layer because you want the identity of the originating client delegated downstream. You cannot easily

delegate a client certificate using an SSL connection. It is acceptable to enable the transport layer

because additional server security, as the additional client certificate portion of the SSL handshake, adds

some overhead to the overall SSL connection establishment.

After you determine which type of authentication data this server might receive, you can determine what to

select for outbound security. Refer to the article, Configuring Common Secure Interoperability Version 2

outbound authentication.

Common Secure Interoperability inbound authentication settings

Use this page to specify the features that a server supports for a client accessing its resources.

To view this administrative console page, click Security > Global security. Under Authentication, click

Authentication protocols > CSIv2 inbound authentication.

You can also view this administrative console page, by clicking Servers > Application servers

>server_name. Under Security, click Server security. Under Additional properties, click CSIv2 inbound

authentication.

Use common secure interoperability (CSI) inbound authentication settings for configuring the type of

authentication information that is contained in an incoming request or transport.

Authentication features include three layers of authentication that you can use simultaneously:

v Transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets Layer

(SSL) client certificate as the identity.

v Message layer. The message layer might contain a user ID and password or an authenticated token

with an expiration.

v Attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the

message layer, and then the transport layer. If a client sends all three, only the identity layer is used.

The only way to use the SSL client certificate as the identity is if it is the only information that is

presented during the request. The client picks up the interoperable object reference (IOR) from the

namespace and reads the values from the tagged component to determine what the server needs for

security.

Basic authentication:

Specifies that basic authentication occurs over the message layer.

 In the message layer, basic authentication (user ID and password) takes place. This type of authentication

typically involves sending a user ID and a password from the client to the server for authentication.

This authentication also involves delegating a credential token from an already authenticated credential,

provided the credential type is forwardable (for example, Lightweight Third Party Authentication (LTPA)).

If you select Basic Authentication and LTPA is the configured authentication protocol, user name,

password, and LTPA tokens are accepted.

The following options are available for Basic Authentication:

392 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Never This option indicates that this server cannot accept user ID and password authentication.

Supported

This option indicates that a client communicating with this server can specify a user ID and

password. However, a method might be invoked without this type of authentication. For example,

an anonymous or client certificate might be used instead.

Required

This option indicates that clients communicating with this server must specify a user ID and

password for any method request.

Basic authentication takes precedence over client certificate authentication, if both are performed.

Client certificate authentication:

Specifies that authentication occurs when the initial connection is made between the client and the server

during a method request.

 In the transport layer, Secure Sockets Layer (SSL) client certificate authentication occurs. In the message

layer, basic authentication (user ID and password) is performed. Client certificate authentication typically

performs better than message layer authentication, but requires some additional setup. These additional

steps involve verifying that the server has the signer certificate of each client to which it is connected. If

the client uses a certificate authority (CA) to create its personal certificate, you only need the CA root

certificate in the server signer section of the SSL trust file.

When the certificate is authenticated to a Lightweight Directory Access Protocol (LDAP) user registry, the

distinguished name (DN) is mapped based on the filter that is specified when configuring LDAP. When the

certificate is authenticated to a LocalOS user registry, the first attribute of the distinguished name (DN) in

the certificate, which is typically the common name, is mapped to the user ID in the registry.

The identity from client certificates is used only if no other layer of authentication is presented to the

server.

The following options are available for Client certificate authentication:

Never This option indicates that clients cannot attempt Secure Sockets Layer (SSL) client certificate

authentication with this server.

Supported

This option indicates that clients connecting to this server can authenticate using SSL client

certificates. However, the server can invoke a method without this type of authentication. For

example, anonymous or basic authentication can be used instead.

Required

This option indicates that clients connecting to this server must authenticate using SSL client

certificates before invoking the method.

Identity assertion:

Specifies that identity assertion is a way to assert identities from one server to another during a

downstream Enterprise JavaBeans (EJB) invocation.

 This server does not authenticate the asserted identity again because it trusts the upstream server. Identity

assertion takes precedence over all other types of authentication.

Identity assertion is performed in the attribute layer and is only applicable on servers. The principal

determined at the server is based on precedence rules. If identity assertion is performed, the identity is

always derived from the attribute. If basic authentication is performed without identity assertion, the identity

Chapter 12. Administering security 393

is always derived from the message layer. Finally, if SSL client certificate authentication is performed

without either basic authentication, or identity assertion, then the identity is derived from the transport

layer.

The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise

bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the

identity is the server identity. If the RunAs mode is Specified, the identity is the one specified. The

receiving server receives the identity in an identity token and also receives the sending server identity in a

client authentication token. The receiving server validates the sending server identity as a trusted identity

through the Trusted Server IDs entry box. Enter a list of pipe-separated (|) principal names, for example,

serverid1|serverid2|serverid3.

When authenticating to a LocalOS user registry, all identity token types map to the user ID field of the

active user registry. For an ITTPrincipal identity token, this token maps one-to-one with the user ID fields.

For an ITTDistinguishedName identity token, the value from the first equal sign is mapped to the user ID

field. For an ITTCertChain identity token, the value from the first equal sign of the distinguished name is

mapped to the user ID field.

When authenticating to an LDAP user registry, the LDAP filters determine how an identity of type

ITTCertChain and ITTDistinguishedName get mapped to the registry. If the token type is ITTPrincipal, then

the principal gets mapped to the UID field in the LDAP registry.

 Data type: String

Trusted servers:

 Specifies a pipe-separated (|) list of trusted server IDs, which are trusted to perform identity assertion to

this server. For example, serverid1|serverid2|serverid3. WebSphere Application Server supports the

comma (,) character as the list delimiter for backwards compatibility. WebSphere Application Server checks

the comma character when the pipe character (|) fails to find a valid trusted server ID.

Use this list to decide whether a server is trusted. Even if the server is on the list, the sending server must

still authenticate with the receiving server to accept the identity token of the sending server.

 Data type String

Stateful sessions:

Specifies stateful sessions that are used mostly for performance improvements.

 The first contact between a client and server must fully authenticate. However, all subsequent contacts

with valid sessions reuse the security information. The client passes a context ID to the server, and the ID

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.

Whenever the security session is not valid and the authentication retry is enabled, which is the default, the

client-side security interceptor invalidates the client-side session and submits the request again without

user awareness. This situation might occur if the session does not exist on the server (the server failed

and resumed operation). When this value is disabled, every method invocation must authenticate again.

 Data type String

Login configuration:

Specifies the type of system login configuration to use for inbound authentication.

394 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

You can add custom login modules by clicking Security > Global security. Under Authentication, click

JAAS configuration > System logins.

Security attribute propagation:

Specifies whether to support security attribute propagation during login requests. When you select this

option, WebSphere Application Server retains additional information about the login request, such as the

authentication strength used, and retains the identity and location of the request originator.

 Verify that you are using Lightweight Third Party Authentication (LTPA) as your authentication mechanism.

LTPA is the only authentication mechanism supported when you enable the security attribute propagation

feature. To configure LTPA, click Security > Global security. Under Authentication, click Authentication

mechanisms > LTPA.

If you do not select this option, WebSphere Application Server does not accept any additional login

information to propagate to downstream servers.

Configuring Common Secure Interoperability Version 2 outbound

authentication

Outbound authentication refers to the configuration that determines the type of authentication performed

for outbound requests to downstream servers. Several layers or methods of authentication can occur. The

downstream server inbound authentication configuration must support at least one choice made in this

server outbound authentication configuration. If nothing is supported, the request might go outbound as

unauthenticated. This situation does not create a security problem because the authorization run time is

responsible for preventing access to protected resources. However, if you choose to prevent an

unauthenticated credential to go outbound, you might want to designate one of the authentication layers as

required, rather than supported. If a downstream server does not support authentication, then when

authentication is required, the method request fails to go outbound.

The following choices are available in the Common Secure Interoperability Version 2 (CSIv2) Outbound

Authentication panel. Remember that you are not required to complete these steps in the displayed order.

Rather, these steps are provided to help you understand your choices for configuring outbound

authentication.

1. Select Identity Assertion (attribute layer). When selected, this server submits an identity token to a

downstream server, if the downstream server supports identity assertion. When an originating client

authenticates to this server, the authentication information supplied is preserved in the outbound

identity token. If the client authenticating to this server uses client certificate authentication, then the

identity token format is a certificate chain, containing the exact client certificate chain on the socket.

The same scenario is true for other mechanisms of authentication. Read theIdentity Assertion article

for more information.

2. Select User ID and Password (message layer). This type of authentication is the most typical. The

user ID and password (if BasicAuth credential) or authenticated token (if authenticated credential) are

sent outbound to the downstream server if the downstream server supports message layer

authentication in the inbound authentication panel. Refer to the Message Layer Authentication article

for more information.

3. Select SSL Client certificate authentication (transport layer). The main reason to enable outbound

Secure Sockets Layer (SSL) client authentication from one server to a downstream server is to create

a trusted environment between those servers. For delegating client credentials, use one of the two

layers mentioned previously. However, you might want to create SSL personal certificates for all the

servers in your domain, and only trust those servers in your SSL truststore file. No other servers or

clients can connect to the servers in your domain, except at the tiers where you want them. This

process can protect your enterprise bean servers from access by anything other than your servlet

servers. Refer to the SSL Client Certificate Authentication article for more information.

Chapter 12. Administering security 395

A server can send multiple layers simultaneously, therefore, an order of precedence rule decides which

identity to use. The identity assertion layer has the highest priority, the message layer follows, and the

transport layer has the lowest priority. SSL client certificates are only used as the identity for invoking

method requests, when that is the only layer provided. SSL client certificates are useful for trust

purposes, even if the identity is not used for the request. If only the message layer and transport layer

are provided, the message layer is used to establish the identity for authorization. If the identity

assertion layer is provided (regardless of what is provided), then the identity from the identity token is

always used by the authorization engine as the identity for that request.

Configuring session management

You can choose either stateful or stateless security. Performance is optimum when choosing stateful

sessions. The first method request between this server and the downstream server is authenticated. All

subsequent requests reuse the session information, including the credential. A unique session entry is

defined as the combination of a unique client authentication token and an identity token, scoped to the

connection.

When you finish configuring this panel, you configured the information that this server uses to make

decisions about the type of authentication to perform with downstream servers. If the downstream server is

configured not to support the outbound configuration of the server, the following exception likely occurs:

Exception received: org.omg.CORBA.INITIALIZE:

CWWSA1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH: The client security

configuration (sas.client.props or outbound settings in GUI) does not

support the server security configuration for the following reasons:

ERROR 1: CWWSA0607E: The client requires SSL Confidentiality but the server

does not support it.

ERROR 2: CWWSA0610E: The server requires SSL Integrity but the client does

not support it.

ERROR 3: CWWSA0612E: The client requires client (e.g., userid/password or token),

but the server does not support it.

minor code: 0 completed: No

 at com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.

getConnectionKey(SecurityConnectionInterceptor.java:1770)

 at com.ibm.ws.orbimpl.transport.WSTransport.getConnection(Unknown Source)

 at com.ibm.rmi.iiop.TransportManager.get(TransportManager.java:79)

 at com.ibm.rmi.iiop.GIOPImpl.locate(GIOPImpl.java:167)

 at com.ibm.CORBA.iiop.ClientDelegate._createRequest(ClientDelegate.java:2088)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1264)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1177)

 at com.ibm.CORBA.iiop.ClientDelegate.request(ClientDelegate.java:1726)

 at org.omg.CORBA.portable.ObjectImpl._request(ObjectImpl.java:245)

 at com.ibm.WsnOptimizedNaming._NamingContextStub.get_compatibility_level

(Unknown Source)

 at com.ibm.websphere.naming.DumpNameSpace.getIdlLevel(DumpNameSpace.java:300)

 at com.ibm.websphere.naming.DumpNameSpace.getStartingContext

(DumpNameSpace.java:329)

 at com.ibm.websphere.naming.DumpNameSpace.main(DumpNameSpace.java:268)

 at java.lang.reflect.Method.invoke(Native Method)

 at com.ibm.ws.bootstrap.WSLauncher.main(WSLauncher.java:163)

The reasons for the mismatch are explained in the exception. You can make the corrections when you

configure the outbound configuration for this server, or when you configure the inbound configuration of the

downstream server. If multiple reasons exist for a failure, the reasons are explained as message text in the

exception.

396 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Typically, the outbound authentication configuration is for an upstream server to communicate with a

downstream server. Most likely, the upstream server is a servlet server and the downstream server is an

Enterprise JavaBeans (EJB) server. On a servlet server, the client authentication that is performed to

access the servlet can be one of many different types of authentication, including client certificate and

basic authentication. When receiving basic authentication data, whether through a prompt login or a

form-based login, the basic authentication information is typically authenticated to from a credential of the

mechanism type that is supported by the server, such as Lightweight Third Party Authentication (LTPA) or

LocalOS. When LTPA is the mechanism, a forwardable token exists in the credential. Choose the message

layer (BasicAuth) authentication to propagate the client credentials. If the credential is created using a

certificate login and you want to preserve sending the certificate downstream, you might decide to go

outbound with identity assertion.

Save the configuration and restart the server for the changes to take effect.

Common Secure Interoperability Version 2 outbound authentication settings

Use this page to specify the features that a server supports when acting as a client to another downstream

server.

To view this administrative console page, click Security > Global Security. Under Authentication, click

Authentication protocols > CSIv2 outbound authentication.

You can also view this administrative console page by clicking Servers > Application Servers >

server_name. Under Security, click Server Security. Under Additional properties, click CSIv2 Outbound

Authentication.

Authentication features include the following layers of authentication that you can use simultaneously:

Transport layer

The transport layer, the lowest layer, might contain a Secure Sockets Layer (SSL) client certificate

as the identity.

Message layer

The message layer might contain a user ID and password or authenticated token.

Attribute layer

The attribute layer might contain an identity token, which is an identity from an upstream server

that is already authenticated. The attribute layer has the highest priority, followed by the message

layer and then the transport layer. If this server sends all three, only the attribute layer is used by

the downstream server. The only way to use the SSL client certificate as the identity is if it is the

only information presented during the outbound request.

Basic authentication:

Specifies whether to send a user ID and a password from the client to the server for authentication.

 This type of authentication occurs over the message layer. Basic authentication also involves delegating a

credential token from an already authenticated credential, provided the credential type is forwardable (for

example, Lightweight Third Party Authentication (LTPA)). Basic authentication refers to any authentication

over the message layer and indicates user ID and password as well as token-based authentication.

If you select Basic Authentication, the following options are available:

Never This option indicates that this server does not send user ID and password authentication

information to downstream servers. By selecting never, requests to downstream servers that

require basic authentication fail.

Supported

This option indicates that this server can specify a user ID and password to authenticate with

downstream servers. However, a method might be invoked without this type of authentication. For

example, the server can use anonymous or client certificate instead.

Chapter 12. Administering security 397

Required

This option indicates that this server must specify a user ID and password to authenticate with

downstream servers for any method request. This server cannot initiate requests with servers that

do not support or require basic authentication for inbound requests.

Client certificate authentication:

Specifies whether a client certificate from the configured keystore file is used to authenticate to the server

when the SSL connection is made between this server and a downstream server (provided that the

downstream server supports client certificate authentication).

 Typically, client certificate authentication has a higher performance than message layer authentication, but

requires some additional setup. These additional steps include verifying that this server has a personal

certificate and that the downstream server has the signer certificate of this server.

If you select client certificate authentication, the following options are available:

Never This option indicates that this server does not attempt Secure Sockets Layer (SSL) client

certificate authentication with downstream servers.

Supported

This option indicates that this server can use SSL client certificates to authenticate to downstream

servers. However, a method can be invoked without this type of authentication. For example, the

server can use anonymous or basic authentication instead.

Required

This option indicates that this server must use SSL client certificates to authenticate to

downstream servers.

Identity assertion:

Specifies whether to assert identities from one server to another during a downstream enterprise bean

invocation.

 The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise

bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the

identity is the server identity. If the RunAs mode is Specified, the identity is the identity specified. The

receiving server receives the identity in an identity token and also receives the sending server identity in a

client authentication token. The receiving server validates the identity of the sending server to ensure a

trusted identity.

When specifying identity assertion on the CSIv2 Authentication Outbound panel, you must also select

basic authentication as supported or required on the CSIv2 Authentication Outbound panel. The server

identity can then be submitted with the identity token, so that the receiving server can trust the sending

server. Without specifying basic authentication as supported or required, trust is not established and the

identity assertion fails.

Stateful sessions:

Specifies whether to reuse security information during authentication. This option is usually used to

increase performance.

 The first contact between a client and server must fully authenticate. However, all subsequent contacts

with valid sessions reuse the security information. The client passes a context ID to the server, and that ID

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.

When the security session is not valid and if authentication retry is enabled, which is the default, the

client-side security interceptor invalidates the client-side session and resubmits the request transparently.

For example, if the session does not exist on the server; the server fails and resumes operation.

398 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

When this value is disabled, every method invocation must authenticate again.

Login configuration:

Specifies the type of system login configuration that is used for outbound authentication.

 You can add custom login modules before or after this login module by clicking Security > Global

security. Under Authentication, click JAAS configuration > System login.

Custom outbound mapping:

Enables the use of custom Remote Method Invocation (RMI) outbound login modules.

 The custom login module maps or performs other functions before the predefined RMI outbound call. To

declare a custom outbound mapping, click Security > Global security. Under Authentication, click JAAS

configuration > System logins > New.

Security attribute propagation:

Enables WebSphere Application Server to propagate the Subject and the security content token to other

application servers using the Remote Method Invocation (RMI) protocol.

 Verify that you are using Lightweight Third Party Authentication (LTPA) as your authentication mechanism.

LTPA is the only authentication mechanism that is supported when you enable the security attribute

propagation feature. To configure LTPA, click Security > Global security. Under Authentication,

clickAuthentication mechanisms > LTPA.

By default, the Security attribute propagation option is enabled and outbound login configuration is

invoked. If you clear this option, WebSphere Application Server does not propagate any additional login

information to downstream servers.

Trusted target realms:

Specifies a list of trusted target realms, separated by a pipe character (|), that differ from the current

realm.

 Prior to WebSphere Application Server, Version 5.1.1, if the current realm does not match the target realm,

the authentication request is not sent outbound to other application servers.

Additional Common Secure Interoperability outbound authentication settings:

Use this page to configure additional authentication settings for requests that are received by this server

using the Object Management Group (OMG) Common Secure Interoperability authentication protocol.

 To view this administrative console page, click Global security > CSIv2 Outbound Authentication >

Additional Settings. You can also view this administrative console page by clicking Servers >

Application Servers > server_name > Server Security > CSIv2 Outbound Authentication > Additional

Settings.

Client authentication type:

Specifies the type of client authentication that is supported for outbound requests.

 Data type String

Default SAFUSERIDPASSWORD

Chapter 12. Administering security 399

Configuring inbound transports

Inbound transports refer to the types of listener ports and their attributes that are opened to receive

requests for this server. Both Common Secure Interoperability Specification, Version 2 (CSIv2) and Secure

Authentication Service (SAS) have the ability to configure the transport.

However, the following differences between the two protocols exist:

v CSIv2 is much more flexible than SAS, which requires Secure Sockets Layer (SSL); CSIv2 does not

require SSL.

v SAS does not support SSL client certificate authentication, while CSIv2 does.

v CSIv2 can require SSL connections, while SAS only supports SSL connections.

v SAS always has two listener ports open: TCP/IP and SSL.

v CSIv2 can have as few as one listener port and as many as three listener ports. You can open one port

for just TCP/IP or when SSL is required. You can open two ports when SSL is supported, and open

three ports when SSL and SSL client certificate authentication is supported.

Complete the following steps to configure the Inbound transport panels in the administrative console:

1. Click Security > Global security.

2. Under Authentication, click Authentication Protocol > CSIv2 Inbound Transport to select the type of

transport and the SSL settings. By selecting the type of transport, as noted previously, you choose

which listener ports you want to open. In addition, you disable the SSL client certificate authentication

feature if you choose TCP/IP as the transport.

3. Select the SSL settings that correspond to an SSL transport. These SSL settings are defined in the

Security > SSL panel and define the SSL configuration including the key ring, security level, ciphers,

and so on.

4. Consider fixing the listener ports that you configured.

You complete this action in a different panel, but think about this action now. Most end points are

managed at a single location, which is why they do not display in the Inbound transport panels.

Managing end points at a single location helps you decrease the number of conflicts in your

configuration when you assign the endpoints. The location for SSL end points is at each server. The

following port names are defined in the End points panel and are used for Object Request Broker

(ORB) security:

v CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS - CSIv2 Client Authentication SSL Port

v CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS - CSIv2 SSL Port

v SAS_SSL_SERVERAUTH_LISTENER_ADDRESS - SAS SSL Port

v ORB_LISTENER_PORT - TCP/IP Port

For an application server, click Servers > Application servers >server_name . Under

Communications, click Ports. The Ports panel is displayed for the specified server.

The Object Request Broker (ORB) on WebSphere Application Server uses a listener port for Remote

Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) communications, which is generally

not specified and selected dynamically during run time. If you are working with a firewall, you must

specify a static port for the ORB listener and open that port on the firewall so that communication can

pass through the specified port. The endPoint property for setting the ORB listener port is:

ORB_LISTENER_ADDRESS.

Complete the following steps using the administrative console to specify the

ORB_LISTENER_ADDRESS port or ports.

a. Click Servers > Application Servers > server_name. Under Communications, click Ports > New.

b. Select ORB_LISTENER_ADDRESS from the Port name field in the Configuration panel.

c. Enter the IP address, the fully qualified Domain Name System (DNS) host name, or the DNS host

name by itself in the Host field. For example, if the host name is myhost, the fully qualified DNS

name can be myhost.myco.com and the IP address can be 155.123.88.201.

400 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

d. Enter the port number in the Port field. The port number specifies the port for which the service is

configured to accept client requests. The port value is used with the host name. Using the previous

example, the port number might be 9000.

5. Click Security > Global security. Under Authentication, click Authentication Protocol > SAS

inbound transport to select the SSL settings used for inbound requests from SAS clients. Remember

that the SAS protocol is used to interoperate with previous releases. When configuring the keystore

and truststore files in the SSL configuration, these files need the right information for interoperating

with previous releases of WebSphere Application Server. For example, a previous release has a

different truststore file than the Version 5 release. If you use the Version 5 keystore file, add the signer

to the truststore file of the previous release for those clients connecting to this server.

The inbound transport configuration is complete. With this configuration, you can configure a different

transport for inbound security versus outbound security. For example, if the application server is the first

server that is used by users, the security configuration might be more secure. When requests go to

back-end enterprise bean servers, you might lessen the security for performance reasons when you go

outbound. With this flexibility you can design the right transport infrastructure to meet your needs.

When you finish configuring security, perform the following steps to save, synchronize, and restart the

servers:

1. Click Save in the administrative console to save any modifications to the configuration.

2. Stop and restart all servers, when synchronized.

Common Secure Interoperability Version 2 transport inbound settings

Use this page to specify which listener ports to open and which Secure Sockets Layer (SSL) settings to

use. These specifications determine which transport a client or upstream server uses to communicate with

this server for incoming requests.

To view this administrative console page, click Security > Global security. Under Authentication, click

CSIv2 inbound transport.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

 You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a

server supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL

connections. If you specify SSL-supported, this server can support either TCP/IP or SSL connections. If

you specify SSL-required, then any server communicating with this one must use SSL.

If you specify SSL-supported or SSL-required, decide which set of SSL configuration settings you want to

use for the inbound configuration. This decision determines which key file and trust file are used for

inbound connections to this server.

TCP/IP

If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests

do not have SSL protection.

SSL-required

If you select SSL-required, then the server opens an SSL listener port only and all inbound

requests are received using SSL.

Important: If you set the active authentication protocol to CSI and SAS, then the server opens a

TCP/IP listener port for the Secure Authentication Service (SAS) protocol regardless of

this setting.
Only an SSL listener port is opened, and all requests come through SSL connections. If you

choose SSL-required, you must also choose CSI as the active authentication protocol. If you

Chapter 12. Administering security 401

choose CSI and SAS, SAS requires an open TCP/IP socket for some special requests. You can

select either CSI or CSI and SAS from the Global security panel, which is accessible from

Security > Global Security.

SSL-supported

If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and

most inbound requests are received using SSL.

By default, SSL ports for Common Secure Interoperability Version 2 (CSIv2) and Security Authentication

Service (SAS) are dynamically generated. In cases where you need to fix the SSL ports on application

servers, click Servers > Application Servers > server_name > End Points.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic

assignment is made at run time.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

 Default: SSL-Supported

Range: TCP/IP, SSL Required, SSL-Supported

Secure Authentication Service inbound transport settings

Use this page to specify transport settings for connections that are accepted by this server using the

Secure Authentication Service (SAS) authentication protocol. The SAS protocol is used to communicate

securely to enterprise beans with previous releases of the WebSphere Application Server.

To view this administrative console page, click Security > Global security. Under Authentication, click

Authentication protocol > SAS inbound transport.

SSL Settings:

Specifies a list of predefined SSL settings to choose from for inbound connections. These settings are

configured at the SSL Repertoire panel.

 Data type: String

Default: DefaultSSLSettings

Configuring outbound transports

Outbound transports refers to the transport used to connect to a downstream server. When you configure

the outbound transport, consider the transports that the downstream servers support. If you are

considering Secure Sockets Layer (SSL), also consider including the signers of the downstream servers in

this server truststore file for the handshake to succeed.

When you select an SSL configuration, that configuration points to keystore and truststore files that contain

the necessary signers.

If you configured client certificate authentication for this server by completing the following steps, then the

downstream servers contain the signer certificate belonging to the server personal certificate:

1. Click Security > Global security.

2. Under Authentication, click Authentication protocols > CSIv2 outbound authentication.

Complete the following steps to configure the Outbound Transport panels.

402 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

1. Select the type of transport and the SSL settings by clicking Security > Global security. Under

Authentication, click Authentication Protocol > CSIv2 Outbound Transport. By selecting the type of

transport, you are choosing the transport to use when connecting to downstream servers. The

downstream servers support the transport that you choose. If you choose SSL-Supported, the

transport used is negotiated during the connection. If both the client and server support SSL, always

select the SSL-Supported option unless the request is considered a special request that does not

require SSL, such as if an object request broker (ORB) is a request.

2. Pick the SSL settings that correspond to an SSL transport. Click Security > SSL .

This panel includes the SSL configuration of keystore files, truststore files, file formats, security levels,

ciphers, cryptographic token selections, and so on. Verify that the truststore keyring file in the selected

SSL configuration contains the signers for any downstream servers. Also, verify that the downstream

servers contain the server signer certificates when outbound client certificate authentication is used.

3. Select the SSL settings used for outbound requests to downstream Secure Authentication Service

(SAS) servers. Click Security > Global security. Under Authentication, click Authentication Protocol

> SAS Outbound transport. Remember that the SAS protocol allows interoperability with previous

releases. When configuring the keystore and truststore files in the SSL configuration, these files have

the correct information for interoperating with previous releases of WebSphere Application Server. For

example, a previous release has a different personal certificate than the Version 5 release. If you use

the keystore file from the Version 5.0 release, you must add the signer to the truststore file of the

previous release. Also, you must extract the signer for the Version 5.0 release and import that signer

into the truststore file of the previous release.

The outbound transport configuration is complete. With this configuration you can configure a different

transport for inbound security versus outbound security. For example, if the application server is the first

server used by end users, the security configuration might be more secure. When requests go to back-end

enterprise beans servers, you might consider less security for performance reasons when you go

outbound. With this flexibility you can design a transport infrastructure that meets your needs.

When you finish configuring security, perform the following steps to save, synchronize, and restart the

servers.

v Click Save in the administrative console to save any modifications to the configuration.

v Stop and restart all servers, after synchronization.

Common Secure Interoperability Version 2 outbound transport settings

Use this page to specify which transports and Secure Sockets Layer (SSL) settings this server uses when

communicating with downstream servers for outbound requests.

To view this administrative console page, click Security > Global security. Under Authentication, click

Authentication > Authentication protocol > CSIv2 outbound transport.

Transport:

Specifies whether the client processes connect to the server using one of the server-connected transports.

 You can choose to use either SSL, TCP/IP, or Both as the outbound transport that a server supports. If

you specify TCP/IP, the server supports only TCP/IP and cannot initiate SSL connections with downstream

servers. If you specify SSL-supported, this server can initiate either TCP/IP or SSL connections. If you

specify SSL-required, this server must use SSL to initiate connections to downstream servers. When you

do specify SSL, decide which set of SSL configuration settings you want to use for the outbound

configuration.

This decision determines which keyfile and trustfile to use for outbound connections to downstream

servers.

Consider the following options:

Chapter 12. Administering security 403

TCP/IP

If you select this option, the server opens TCP/IP connections with downstream servers only.

SSL-required

If you select this option, the server opens SSL connections with downstream servers.

SSL-supported

If you select this option, the server opens SSL connections with any downstream server that

supports them and opens TCP/IP connections with any downstream servers that do not support

SSL.

 Default: SSL-supported

Range: TCP/IP, SSL-required, SSL-supported

SSL settings:

Specifies a list of predefined SSL settings for outbound connections. These settings are configured at the

SSL Configuration Repertoires panel. To access the panel, click Security > SSL.

 Data type: String

Default: DefaultSSLSettings

Range: Any SSL settings that are configured in the SSL

Configuration Repertoires panel

Secure Authentication Service outbound transport settings

Use this page to specify transport settings for connections that are accepted by this server using the

Secure Authentication Service (SAS) authentication protocol. Use the SAS protocol to communicate

securely to enterprise beans with previous releases of WebSphere Application Server.

To view this administrative console page, click Security > Global security. Under Authentication, click

Authentication protocol > SAS outbound transport.

SSL settings:

Specifies a list of predefined Secure Sockets Layer (SSL) settings to choose from for outbound

connections. These settings are configured at the SSL Repertoire panel.

 Data type: String

Default: DefaultSSLSettings

Example: Common Secure Interoperability Version 2 scenarios

The articles included in this section are intended to demonstrate how to configure specific Common

Secure Interoperability Version 2 (CSIv2) configuration examples.

Scenario 1: Basic authentication and identity assertion

404 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

This example presents a pure Java client, C, that accesses a secure enterprise bean on server, S1,

through user ″bob.″ The enterprise bean code on S1 accesses another enterprise bean on server, S2.

This configuration uses identity assertion to propagate the identity of ″bob″ to the downstream server, S2.

S2 trusts that ″bob″ already is authenticated by S1 because it trusts S1. To gain this trust, the identity of

S1 also flows to S2 simultaneously and S2 validates the identity by checking the trustedPrincipalList list to

verify that it is a valid server principal. S2 also authenticates S1. The following steps take you through the

configuration of C, S1, and S2.

Configuring client, C

Client C requires message layer authentication with a Secure Sockets Layer (SSL) transport. To

accomplish this task:

1. Point the client to the sas.client.props file using the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property.

All further configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Enable client authentication at the message layer.

In this case, client authentication is supported but not required:

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4. Use all of the remaining defaults in the sas.client.props file.

Configuring server, S1

In the administrative console, server S1 is configured for incoming requests to support message-layer

client authentication and incoming connections to support SSL without client certificate authentication.

Server S1 is configured for outgoing requests to support identity assertion.

1. Configure S1 for incoming connections.

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

2. Configure S1 for outgoing connections.

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Chapter 12. Administering security 405

a. Enable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

Configuring server, S2

In the administrative console, server S2 is configured for incoming requests to support identity assertion

and to accept SSL connections. Complete the following steps to configure incoming connections.

Configuration for outgoing requests and connections are not relevant for this scenario.

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

Scenario 2: Basic authentication, identity assertion, and client certificates

This scenario is the same as Scenario 1, except for the interaction from client C2 to server S2. Therefore,

the configuration of Scenario 1 still is valid, but you have to modify server S2 slightly and add a

configuration for client C2. The configuration is not modified for C1 or S1.

Configuring client C2

Client C2 requires transport layer authentication (Secure Sockets Layer (SSL) client certificates). To

configure transport layer authentication:

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Transport layer

SSL: cn=bob, o=ibm, c=us

C S1

406 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

1. Point the client to the sas.client.props file using the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property.

All further configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Disable client authentication at the message layer.

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4. Enable client authentication at the transport layer where it is supported, but not required:

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

Configuring server, S2

In the administrative console, server S2 is configured for incoming requests to SSL client authentication

and identity assertion. Configuration for outgoing requests is not relevant for this scenario.

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Enable SSL client authentication.

You can mix and match these configuration options. However, a precedence exists as to which

authentication features become the identity in the received credential:

1. Identity assertion

2. Message-layer client authentication (basic authentication or token)

3. Transport-layer client authentication (SSL certificates)

Scenario 3: Client certificate authentication and RunAs system

This example presents a pure Java client, C, accessing a secure enterprise bean on S1. C authenticates

to S1 using Secure Sockets Layer (SSL) client certificates. S1 maps the common name of the

server1/password

Java client Enterprise beans

Invocation credentials: bob

RunAs system

Message layer

Transport layer Transport layer

SSLSSL: cn=bob, o=ibm, c=us

C S1 S2

Received credentials: server1

Enterprise beans

Chapter 12. Administering security 407

distinguished name (DN) in the certificate to a user in the local registry. The user in this case is bob. The

enterprise bean code on S1 accesses another enterprise bean on S2. Because the RunAs mode is

system, the invocation credential is set as server1 for any outbound requests.

Configuring C

C requires transport layer authentication (SSL client certificates):

1. Point the client to the sas.client.props file using the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property.

All further configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Disable client authentication at the message

layer:com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4. Enable client authentication at the transport layer. It is supported, but not required:

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

Configuring S1

In the administrative console, S1 is configured for incoming connections to support SSL with client

certificate authentication. The S1 server is configured for outgoing requests to support message layer

client authentication.

1. Configure S1 for incoming connections:

a. Disable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client certificate authentication.

2. Configure S1 for outgoing connections:

a. Disable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client certificate authentication.

Configuring S2

In the administrative console, the S2 server is configured for incoming requests to support message layer

authentication over SSL. Configuration for outgoing requests is not relevant for this scenario.

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

Scenario 4: TCP/IP transport using a virtual private network

408 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

This scenario illustrates the ability to choose TCP/IP as the transport when it is appropriate. In some

cases, when two servers are on the same virtual private network (VPN), it can be appropriate to select

TCP/IP as the transport for performance reasons because the VPN already encrypts the message.

Configuring C

C requires message layer authentication with an SSL transport:

1. Point the client to the sas.client.props file using the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property. All further

configuration involves setting properties within this file.

2. Enable SSL. In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Enable client authentication at the message layer. In this case, client authentication is supported but

not required: com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4. Use the remaining defaults in the sas.client.props file.

Configuring the S1 server

In the administrative console, the S1 server is configured for incoming requests to support message-layer

client authentication and incoming connections to support SSL without client certificate authentication. The

S1 server is configured for outgoing requests to support identity assertion.

1. Configure S1 for incoming connections:

tom/password
token

Java client Enterprise

beans

Virtual Private Network

Invocation

credentials: tom

Received

credentials: tom

Message layer
Message layer

Transport layer

TCP/IP

C S1 S2

Transport layer

SSL

Enterprise

beans

Chapter 12. Administering security 409

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

2. Configure S1 for outgoing connections:

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Disable SSL.

It is possible to enable SSL for inbound connections and disable SSL for outbound connections. The same

is true in reverse.

Configuring the S2 server

In the administrative console, the S2 server is configured for incoming requests to support identity

assertion and to accept SSL connections. Configuration for outgoing requests and connections are not

relevant for this scenario.

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Disable SSL.

Scenario 5: Interoperability with WebSphere Application Server Version 4.x

S2

WebSphere Application

Server Version 4

(SAS only)

Message layer:

bob/”password”

Message layer:

bob/”password”

Transport layer:

SSL

Transport layer:

SSL

WebSphere Application

Server Version 5.x and later

(CSIv2 and SAS)

S3

Interoperability with WebSphere

Application Server Version 4.x

S1

WebSphere Application

Server Version 5.x and later

(CSIv2 and SAS)

The purpose of this scenario is to show how secure interoperability can occur between different releases

simultaneously while using multiple authentication protocols (Security Authentication Service (SAS) and

Common Secure Interoperability Version 2 (CSIv2)). For WebSphere Application Server Version 5.x or

later to communicate with a WebSphere Application Server Version 4, Version 5.x or later server must

support either SAS or SAS and CSIv2 as the protocol choice. By choosing SAS and CSIv2, the Version

5.x or later server also can communicate with other Version 5.x or later servers that support CSI. If the

only servers in your security domain are version 5.x or later, it is recommended that you choose CSI as

the protocol because this prevents the SAS interceptors from loading. However, a chance exists that any

server has to communicate with a previous release of WebSphere Application Server, select the protocol

choice of SAS and CSIv2.

410 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Configuring the S1 server

The S1 server requires message layer authentication with an SSL transport. The protocol for the S1 server

must be SAS and CSIv2. Configuration for incoming requests for the S1 server is not relevant for this

scenario. To configure the S1 server for outgoing connections:

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Enable Secure Sockets Layer (SSL).

4. Disable SSL client certificate authentication.

5. Set authentication protocol to SAS and CSIv2 in the global security settings.

Configuring the S2 server

All previous releases of WebSphere Application Server support the SAS authentication protocol only. No

special configuration steps are needed other than enabling global security on the server (S2).

Configuring the S3 server

In the administrative console, the S3 server is configured for incoming requests to support message layer

authentication and to accept SSL connections. Configuration for outgoing requests and connections are

not relevant for this scenario.

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

5. Set authentication protocol to either CSI or SAS and CSIv2.

Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol provides transport layer security with authenticity, integrity, and

confidentiality, for a secure connection between a client and server in WebSphere Application Server. The

protocol runs above TCP/IP and below application protocols such as Hypertext Transfer Protocol (HTTP),

Lightweight Directory Access Protocol (LDAP), and Internet Inter-ORB Protocol (IIOP), and provides trust

and privacy for the transport data.

Depending upon the SSL configurations of both the client and server, various levels of trust, data integrity,

and privacy can be established. Understanding the basic operation of SSL is very important to proper

configuration and to achieve the required protection level for both client and application data.

Some of the security features that are provided by SSL are data encryption to prevent the exposure of

sensitive information while data flows. Data signing prevents unauthorized modification of data while data

flows. Client and server authentication ensures that you talk to the appropriate person or machine. SSL

can be effective in securing an enterprise environment.

SSL is used by multiple components within WebSphere Application Server to provide trust and privacy.

These components are the built-in HTTP transport, the Object Request Broker (ORB), and the secure

LDAP client.

Chapter 12. Administering security 411

In this figure:

v The built-in HTTP transport in WebSphere Application Server accepts HTTP requests over SSL from a

Web client like a browser.

v The Object Request Broker used in WebSphere Application Server can perform Internet Inter-ORB

Protocol (IIOP) over SSL to secure the message.

v The secure LDAP client uses LDAP over SSL to securely connect to an LDAP user registry and is

present only when LDAP is configured as the user registry.

WebSphere Application Server and the IBM Java Secure Socket Extension (IBMJSSE and

IBMJSSE2) providers

The SSL implementations used by WebSphere Application Server are the IBM Java Secure Sockets

Extension (IBMJSSE) and the IBM Java Secure Sockets Extension 2 (IBMJSSE2). The IBMJSSE and

IBMJSSE2 providers contain a reference implementation supporting SSL and Transport Layer Security

(TLS) protocols and an application programming interface (API) framework. The IBMJSSE and IBMJSSE2

providers also come with a standard provider, which supplies Rivest Shamir Adleman (RSA) support for

the signature-related J2EE Connector Architecture (JCA) features of the Java 2 platform, common SSL

and TLS cipher suites, hardware cryptographic token device, X.509-based key and trust managers, and

PKCS12 implementation for a JCA keystore. A graphical tool called Key Management Tool (iKeyman) also

is provided to manage digital certificates. With this tool, you can create a new key database or a test

digital certificate, add certificate authority (CA) roots to the database, copy certificates from one database

to another as well as request and receive a digital certificate from a CA.

Note: The HTTP and JMS transports utilize the transport channel service for asynchronous I/O. This

framework requires the use of IBMJSSE2 provider for SSL. Any provider you specify other than the

IBMJSSE2 provider in the SSL repertoire is ignored and the IBMJSSE2 provider is used. Other SSL

transports such as IIOP over SSL and LDAP over SSL utilize the provider you specify in the SSL

repertoire configuration.

Configuring the JSSE provider is very similar to configuring most other SSL implementations (for example,

GSKit); however, a couple of differences are worth noting.

Browser
HTTP

transport

WebSphere

Application Server

ORB

JSSE

ORB

Enterprise

beans client

JSSE

Web server

LDAP

client

LDAP

client
GSkit

(A)

HTTP or HTTPS

request/response

over SSL

(D)

HTTP or HTTPS

request/response

over SSL

(C)

RMI/IIOP

over SSL

(B)

HTTP or HTTPS

request/response

over SSL

IBM HTTP

Server

Plug-in

GSKit

Figure 2. SSL and WebSphere Application Server

412 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v The JSSE provider supports both signer and personal certificate storage in an SSL key file, but it also

supports a separate file called a trust file. A trust file can contain only signer certificates. You can put all

of your personal certificates in an SSL keyfile and your signer certificates in a trustfile. This support

might be helpful, for example, if you have an inexpensive hardware cryptographic device with only

enough memory to hold a personal certificate. In this case, the keyfile refers to the hardware device and

the trustfile refers to a file on a disk that contains all of the signer certificates.

v The JSSE provider does not recognize the proprietary SSL keyfile format, which is used by the plug-in

(.kdb files). Instead, the JSSE provider recognizes standard file formats such as Java Key Standard

(JKS). SSL keyfiles might not be shared between the plug-in and application server. Furthermore, a

different implementation of the key management utility must be used to manage application server key

and trustfiles.

Certain limitations exist with the Java Secure Socket Extension (JSSE) provider:

v Customer code using JSSE and Java Cryptography Extension (JCE) APIs must reside within

WebSphere Application Server environment. This restriction includes applications that are deployed in

WebSphere Application Server and client applications in the J2EE application client environment.

v Only com.ibm.crypto.provider.IBMJCE, com.ibm.jsse.IBMJSSEProvider,

com.ibm.security.cert.IBMCertPath, and com.ibm.crypto.pkcs11.provider.IBMPKCS11 are provided as

the cryptography package providers.

v Interoperability of the IBMJSSE implementation with other SSL implementations by vendors is limited to

tested implementations. The tested implementations include Microsoft Internet Information Services

(IIS), BEA WebLogic Server, IBM AIX, and IBM AS/400.

v Hardware token support is limited to supported cryptographic token devices. .

 Tested for SSL clients Tested for SSL clients or servers

IBM Security Kit Smartcard IBM 4758-23

GemPlus Smartcards IBM 4758-23

Rainbow iKey 1000/2000(USB ″Smartcard″ device) IBM 4758-23

v The SSL protocol of Version 2.0 is not supported. In addition, the JSSE and JCE APIs are not

supported with Java applet applications.

WebSphere Application Server and the Federal Information Processing Standards for Java Secure

Socket Extension and Java Cryptography Extension providers

The Federal Information Processing Standards (FIPS)-approved Java Secure Socket Extension (JSSE)

and Java Cryptography Extension (JCE) providers are optional in WebSphere Application Server. By

default, the FIPS-approved JSSE and JCE providers are disabled. When these providers are enabled,

WebSphere Application Server uses FIPS-approved cryptographic algorithms in the IBMJSSEFIPS and

IBMJCEFIPS provider packages only.

Important: The IBMJSSEFIPS and IBMJCEFIPS modules are undergoing FIPS 140-2 certification. For

more information on the FIPS certification process and to check the status of the IBM

submission, see the Cryptographic Module Validation Program FIPS 140-1 and FIPS 140-2

Pre-validation List Web site.

Authenticity

Authenticity of client and server identities during a Secure Sockets Layer (SSL) connection is validated by

both communicating parties using public key cryptography or asymmetric cryptography, to prove the

claimed identity from each other.

Public key cryptography is a cryptographic method that uses public and private keys to encrypt and

decrypt messages. The public key is distributed as a public key certificate while the private key is kept

private. The public key is also a cryptographic inverse of the private key. Well known public key

Chapter 12. Administering security 413

http://csrc.nist.gov/cryptval/preval.htm
http://csrc.nist.gov/cryptval/preval.htm

cryptographic algorithms such as the Rivest Shamir Adleman (RSA) algorithm and Diffie-Hellman (DH)

algorithm are supported in WebSphere Application Server.

Public key certificates are either issued by a trusted organization like a certificate authority (CA) or

extracted from a self-signed personal certificate by using the IBM Key Management Tool (iKeyman). A

self-signed certificate is less secure and is not recommended for use in a production environment.

The public key certificate includes the following information:

v Issuer of the certificate

v Expiration date

v Subject that the certificate represents

v Public key belonging to the subject

v Signature by the issuer

You can link multiple key certificates into a certificate chain. In a certificate chain, the client is always first,

while the certificate for a root CA is last. In between, each certificate belongs to the authority that issued

the previous one.

During the Secure Sockets Layer (SSL) connection, a digital signature is also applied to avoid forged keys.

The digital signature is an encrypted hash and cannot be reversed. It is very useful for validating the public

keys.

SSL supports reciprocal authentication between the client and the server. This process is optional during

the handshake. By default, a WebSphere Application Server client always authenticates its server during

the SSL connection. For further protection, you can configure a WebSphere Application Server for client

authentication.

Refer to the Transport Layer Security (TLS) specification at http://www.ietf.org/rfc/rfc2246.txt for further

information.

Confidentiality

Secure Sockets Layer (SSL) uses private or secret key cryptography or symmetric cryptography to support

message confidentiality or privacy. After an initial handshake (a negotiation process by message

exchange), the client and server decide on a secret key and a cipher suite. Between the communicating

parties, each message encryption and decryption using the secret key occurs based on the cipher suite.

Private key cryptography requires the two communicating parties to use the same key for encryption and

decryption. Both parties must have the key and keep the key private. Well known secret key cryptographic

algorithms include the Data Encryption Standard (DES), triple-strength DES (3DES), and Rivest Cipher 4

(RC4), which are all supported in WebSphere Application Server. These algorithms provide excellent

security and quick encryption.

A cryptographic algorithm is a cipher, while a set of ciphers is a cipher suite. A cipher suite is a

combination of cryptographic parameters that define the security algorithms and the key sizes used for

authentication, key agreement, encryption strength, and integrity protection.

v SSL_RSA_WITH_RC4_128_MD5

v SSL_RSA_WITH_RC4_128_SHA

v SSL_RSA_WITH_AES_128_CBC_SHA

v SSL_RSA_WITH_AES_256_CBC_SHA

v SSL_RSA_FIPS_WITH_DES_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_AES_128_CBC_SHA

v SSL_DHE_RSA_WITH_AES_256_CBC_SHA

v SSL_DHE_RSA_WITH_DES_CBC_SHA

414 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_AES_128_CBC_SHA

v SSL_DHE_DSS_WITH_AES_256_CBC_SHA

v SSL_DHE_DSS_WITH_RC4_128_SHA

v SSL_DHE_DSS_WITH_DES_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC4_40_MD5

v SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

v SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

v SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_WITH_NULL_MD5

v SSL_RSA_WITH_NULL_SHA

v SSL_DH_anon_WITH_AES_128_CBC_SHA *

v SSL_DH_anon_WITH_AES_256_CBC_SHA *

v SSL_DH_anon_WITH_RC4_128_MD5 *

v SSL_DH_anon_WITH_DES_CBC_SHA *

v SSL_DH_anon_WITH_3DES_EDE_CBC_SHA *

v SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 *

v SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA *

Important: Although anonymous cipher suites are enabled, the IBM version of the Java Secure Sockets

Extension (JSSE) client trust manager does not support anonymous cipher suites. The default

implementation can be overwritten by providing your own trust manager that does support

anonymous cipher suites.

All of the previously mentioned cipher suites provide data integrity protection by using hash algorithms like

MD5 and SHA-1. The cipher suite names ending with _SHA indicate that the SHA-1 algorithm is used. SHA-1

is considered a stronger hash, while MD5 provides better performance.

The SSL_DH_anon_xxx cipher suites (for example, those cipher suites that begin with SSL_DH_anon_, where,

anon is anonymous) are not enabled on the product client side. Because the Java Secure Socket

Extension (JSSE) client trust manager does not support anonymous connections, the JSSE client must

always establish trust in the server. However, the SSL_DH_anon_xxx cipher suites are enabled on the server

side to support another type of client connection. That client might not require trust in the server. These

cipher suites are vulnerable to man-in-the-middle attacks and are strongly discouraged. In a

man-in-the-middle attack, an attacker can intercept and potentially modify communications between two

parties without either party being aware of the attack.

Where:

 Name Description

SSL Secure Sockets Layer

RSA v Public key algorithm developed by Rivest, Shamir and

Adleman

v Requires RSA or DSS key exchange

DH v Diffie-Hellman public key algorithm

v Server certificate contains the Diffie-Hellman

parameters that are signed by the certificate authority

(CA)

DHE v Ephemeral Diffie-Hellman public key algorithm

v Diffie-Hellman parameters are signed by a DSS or an

RSA certificate, which is signed by the certificate

authority (CA)

Chapter 12. Administering security 415

Name Description

DSS Digital Signature Standard, using the Digital Signature

Algorithm for digital signatures

DES v Data Encryption Standard, an symmetric encryption

algorithm

v Block cipher

v Performance cost is high when using software without

the support of a hardware cryptographic device

3DES v Triple DES, increasing the security of DES by

encrypting three times with different keys

v Strongest of the ciphers

v Performance cost is very high when using software

without the support of a hardware cryptographic device

support

RC4 v A stream cipher designed for RSA

v Variable key-size stream cipher with key length from 40

bits to 128 bits

EDE Encrypt-decrypt-encrypt for the triple DES algorithm

CBC v Cipher block chaining

v A mode in which every plain text block that is

encrypted with the block cipher is first exclusive-ORed

with the previous ciphertext block

128 128-bit key size

40 40-bit key size

EXPORT Exportable

MD5 v Secure hashing function that converts an arbitrarily

long data stream into a digest of fixed size

v Produces 128-bit hash

SHA v Secure Hash Algorithm, same as SHA-1

v Produces 160-bit hash

anon For anonymous connections

NULL No encryption

WITH The cryptographic algorithm is defined after this key word

Refer to the Transport Layer Security (TLS) specification at http://www.ietf.org/rfc/rfc2246.txt for further

information.

Integrity

Secure Sockets Layer (SSL) uses a cryptographic hash function similar to checksum, to ensure data

integrity in transit. Use the cryptographic hash function to detect accidental alterations in the data. This

function does not require a cryptographic key. After a cryptographic hash is created, the hash is encrypted

with a secret key. The private key belonging to the sender encrypts the hash for the digital signature of the

message.

When secret key information is included with the cryptographic hash, the resulting hash is known as a

Key-Hashing Message Authentication Code (HMAC) value. HMAC is a mechanism for message

authentication that uses cryptographic hash functions. Use this mechanism with any iterative cryptographic

hash function, in combination with a secret shared key.

In the product, both well known one-way hash algorithms, MD5 and SHA-1, are supported. One-way hash

is an algorithm that converts processing data into a string of bits known as a hash value or a message

416 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

digest. One-way means that it is extremely difficult to turn the fixed string back into the original data. The

following explanation includes both the MD5 and SHA-1 one-way hash algorithms:

v MD5 is a hash algorithm designed for a 32-bit machine. It takes a message of arbitrary length as input

and produces a 128-bit hash value as output. Although this process is less secure than SHA-1, MD5

provides better performance.

v SHA-1 is a secure hash algorithm specified in the Secure Hash Standard. It is designed to produce a

160-bit hash. Although it is slightly slower than MD5, the larger message digest makes it more secure

against attacks like brute-force collision.

Refer to the Transport Layer Security (TLS) specification at http://www.ietf.org/rfc/rfc2246.txt for further

information.

Configuring Secure Sockets Layer

Secure Sockets Layer (SSL) is used by multiple components within WebSphere Application Server to

provide trust and privacy. The following is a listing of these components:

v Built-in HTTP Transport

v Object Request Broker (ORB) for client and server

v Secure Lightweight Directory Access Protocol (LDAP) client.

Configuring SSL is different between client and server with WebSphere Application Server

1. Configure the client (JSSE). Use the sas.client.props file located, by default, in the

install_root/profiles/profile_name/properties directory. The sas.client.props file is a

configuration file that contains lists of property-value pairs, using the syntax <property> = <value>. The

property names are case sensitive, but the values are not; the values are converted to lowercase when

the file is read. Specify the following properties for an SSL connection:

v com.ibm.ssl.protocol

v com.ibm.ssl.keyStoreType

v com.ibm.ssl.keyStore

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStoreType

v com.ibm.ssl.trustStore

v com.ibm.ssl.trustStorePassword

v com.ibm.ssl.enabledCipherSuites

v com.ibm.ssl.contextProvider

v com.ibm.ssl.keyStoreServerAlias

v com.ibm.ssl.keyStoreClientAlias
v For the Secure Authentication Services (SAS) authentication protocol only:

com.ibm.CORBA.standardPerformQOPModels

v For the cryptographic token device:

– com.ibm.ssl.tokenType

– com.ibm.ssl.tokenLibraryFile

– com.ibm.ssl.tokenPassword

– com.ibm.ssl.tokenSlot (added as a custom property)

Note: Although WebSphere Application Server supports the IBM Federal Information Processing

Standard-approved Java Secure Socket Extension (IBMJSSEFIPS), IBMJSSEFIPS is not

supported for the HTTP and JMS transports due to their use of the channel framework which

requires the IBMJSSE2 provider. This provider itself does not need to be FIPS compliant

because it uses IBMJCE for encryption.

2. Configure the server. Use the administrative console to configure an application server that makes SSL

connections. To start the administrative console, specify the following Web address:

http://server_hostname:9060/ibm/console.

Chapter 12. Administering security 417

http://www.ietf.org/rfc/rfc2246.txt

3. Create an SSL configuration repertoires alias or entry. You can select the alias later when a component

is configured for SSL support. An SSL configuration repertoires entry contains the following fields:

v Typical configuration settings:

– Alias

– Key file name

– Key file password

– Key file format

– Trust file name

– Trust file password

– Trust file format

– Client authentication

– Security level

– Cipher suites
v For the cryptographic token device:

– Cryptographic token (Create the alias first so you can configure these fields).

- Token type

- Library file

- Password
v For additional Java properties:

– Custom properties (Create the alias first so you can configure these fields).

- com.ibm.ssl.contextProvider

- com.ibm.ssl.protocol

- com.ibm.ssl.tokenSlot (for crypto slot)

- com.ibm.ssl.keyStoreClientAlias (alias selection for client authentication to servers)

- com.ibm.ssl.keyStoreServerAlias (alias selection for server authentication to clients)

Note: WebSphere Application Server contains IBM Developer Kit for Java Technology Edition Version

1.4.x , which includes changes from IBM Developer Kit for Java Technology Edition Version 1.3.

See Changes to IBM Developer Kit for Java Technology Edition Version 1.4.x for more

information.

Configuring Secure Sockets Layer for Web client authentication

To enable client-side certificate-based authentication, you must modify the authentication method that is

defined on the Java 2 Platform, Enterprise Edition (J2EE) Web module that you want to manage. The Web

module might already be configured to use the basic challenge authentication method. In this case, modify

the challenge type to client certificate. This functionality is delivered to the WebSphere Application

Server administrator in assembly tools. However, developers can use the Rational Web Developer

environment to achieve the same result.

1. Launch the assembly tools. This step can be done either before an enterprise application archive .ear

file is deployed into WebSphere Application Server or after deployment into the product. The latter

option is discouraged in a production environment because it involves opening the expanded archive

correlating to the enterprise application archive, found in the installedApps directory.

2. Locate and expand the Web module package under an application to enable the client-side certificate

authentication method.

3. Select the appropriate Web application, and switch to the Advanced tab. Modify the authentication

method to client certificate. The realm name is the scope of the login operation and is the same for all

participating resources.

4. Click OK, and save the changes you made with the assembly tools.

5. Stop and restart the associated application server containing the resource, so that the security

modification is included in the run time. Complete this action if the modification is made to a resource

that already is deployed in WebSphere Application Server.

Now your enterprise application prompts the user for proof of identity with a certificate.

418 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Note:

The Web server must also be configured to request a client certificate. If the Web server is

external, refer to the appropriate configuration documentation. If the Web server is the Web

container transport (for example, 9043) within WebSphere Application Server, verify that the client

authentication flag is selected in the referenced SSL configuration.

Also, add the browser’s signer certificate to the application server’s keystore. For a self-signed

personal certificate, the signer certificate is the is the public key of the personal certificate. For a

certificate authority-signed server personal certificate, the signer certificate is the root certificate

authority certificate of the certificate authority that signed the personal certificate.

Refer to the Map certificates to users article to determine how a certificate is authenticated within

the product.

Configuring Secure Sockets Layer for the Lightweight Directory

Access Protocol client

This topic describes how to establish a Secure Sockets Layer (SSL) connection between WebSphere

Application Server and a Lightweight Directory Access Protocol (LDAP) server. This page provides an

overview. Refer to the linked pages for more details. To understand SSL concepts, refer to “Secure

Sockets Layer” on page 411.

Setting up an SSL connection between WebSphere Application Server and an LDAP server requires the

following steps:

 1. Set up an LDAP server with users. The server configured in this example is IBM Directory Server.

Other servers are configured differently. Refer to the documentation of the directory server you are

using for details on SSL enablement. For a product-supported LDAP directory server, see the

“Supported directory services” on page 208 article.

 2. Configure certificates for the LDAP server using the key management utility (iKeyman) that is located

in the install_dir\java\jre\bin directory.

 3. Click Key Database File > New.

 4. Type LDAPkey.kdb as the file name and a proper path and click OK.

 5. Specify a password, confirm the password, and click OK.

 6. Under Key database content, select Personal Certificates.

 7. Click New Self-signed. The Create New Self-Signed Certificate panel is displayed. Type the

following required information in the fields and click OK:

Key Label

LDAP_Cert

Version

Select the version of the X.509 certificate.

Key size

Select either a 512 or a 1024 bit size for your key.

Common Name

droplet.austin.ibm.com

 This common name is the host name where the WebSphere Application Server plug-in runs.

Organization

ibm

Country

US

Validity period

Specify the number days in which your certificate is valid.

 8. Return to the Personal Certificates panel and click Extract Certificate.

Chapter 12. Administering security 419

9. Click the Base64-encoded ASCII data data type. Type LDAP_cert.arm as the file name and a proper

path. Click OK.

10. Enable SSL on the LDAP server:

a. Copy the LDAPkey.kdb, LDAPkey.sth, LDAPkey.rdb, and LDAPkey.crl files created previously to the

LDAP server system, for example, the \Program Files\IBM\LDAP\ssl\ directory.

b. Open the LDAP Web administrator from a browser (http://secnt3.austin.ibm.com/ldap, for

example). IBM HTTP Server is running on secnt3.

c. Click SSL properties to open the SSL Settings window.

d. Click SSL On > Server Authentication and type an SSL port (636, for example) and a full path to

the LDAPkey.kdb file.

e. Click Apply, and restart the LDAP server.

11. Manage certificates for WebSphere Application Server using the default SSL key files.

a. Open the install_root\etc\DummyServerTrustFile.jks file using the key management utility that

shipped with WebSphere Application Server. The password is WebAS.

b. Click Personal Certificates > Import. The Import Key panel is displayed. Specify LDAP_cert.arm

for the file name. Complete this step for all the servers including the deployment manager.

12. Establish a connection between the WebSphere Application Server and the LDAP server using the

WebSphere Application Server administrative console.

a. Click Security > Global security.

b. Under User registries, click LDAP.

c. Enter the Server ID, Server Password, Type, Host, Port, and Base Distinguished Name fields.

d. Select the SSL Enabled option. The port is the same port number that the LDAP server is using

for SSL (636, for example).

e. Click Apply.

f. Return to the Global security panel and click Authentication Mechanisms > LTPA > Single

SignOn (SSO).

g. Under Additional properties, click Single signon (SSO).

h. Type in a domain name (austin.ibm.com, for example).

i. Click Apply.

13. Enable global security.

a. Click Security > Global Security.

b. Select the Enable global security option.

c. Select the Lightweight Third Party Authentication (LTPA) option as the active authentication

mechanism and the Lightweight Directory Access Protocol (LDAP) user registry option as the

active user registry.

Note: Verify that the security level for the LDAP server is set to HIGH. The default security level

is HIGH (128-bit).

d. Click Apply and Save.

e. Verify that the ibm-slapdSSLCipherSpecs parameter in the LDAP_install_root\etc\slapd32.conf

file has the value, 15360, instead of 12288.

f. Restart the servers.

Restarting the servers ensures that the security settings are synchronized between the deployment

manager and the application servers.

You can test the configuration by accessing https://fully_qualified_host_name:9443/snoop. You are

presented with a login challenge. This test can be beneficial when using LDAP as your user registry.

Sensitive information can flow between the WebSphere Application Server and the LDAP server, including

passwords. Using SSL to encrypt the data protects this sensitive information.

420 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

1. If you are enabling security, make sure that you complete the remaining steps. As the final step,

validate this configuration by clicking OK or Apply in the Global Security panel. Refer to the

“Configuring global security” on page 142 article for detailed steps on enabling global security.

2. For changes in this panel to become effective, save, stop, and start all WebSphere Application Servers

(cells, nodes and all the application servers).

3. After the server starts up, go through all the security-related tasks (getting users, getting groups, and

so on) to make sure that the changes to the filters are functioning.

Configuring IBM HTTP Server for Secure Sockets Layer mutual

authentication

IBM HTTP Server supports Secure Sockets Layer (SSL) Version 2 and Version 3 and Transport Layer

Security (TLS) Version 1. IBM HTTP Server is based on the Apache Web server, but for SSL configuration

it requires the IBM-supplied SSL modules, rather than the OpenSSL modules. This document describes

configuration of IBM HTTP Server, although it is possible to use another supported Web server.

SSL is disabled by default and it is necessary to modify a configuration file and generate a server-side

certificate using the key management utility (iKeyman) provided with IBM HTTP Server to enable SSL.

 1. For a single server, enable SSL on IBM HTTP Server (port 443,for example).

 2. To set up certificates complete the following steps: Start the key management utility by clicking Start

> Programs > IBM HTTP Server > Start Key Management Utility. Refer to Requesting a

CA-signed personal certificate, Creating a certificate signing request (CSR), Receiving a CA-signed

personal certificate, and Extracting a public certificate for use in a truststore file

 3. Create a key database and click Key Database File > New.

 4. Type a file name, serverkey.kdb, for example, and the location path. Click OK.

 5. Type a password, select the Stash the password to a file check box and click OK.

 6. Obtain a personal certificate for IBM HTTP Server: Click Personal Certificate in the key

management utility menu. Click Create > New Certificate Request. The Create New Key and

Certificate Request panel is displayed. Complete the following information:

Key label

Server_Cert

Key size

Select either a 512 or a 1024 bit size for your key.

Common name

droplet.austin.ibm.com

Organization

IBM

Organization unit

WebSphere

Locality

Austin

State Texas

Zip code

76758

Country

US

File name

Server_certreq.arm

The Verisign Test CA Root Certificate is in the set of signer certificates that ship with the IKeyMan

utility for IBM HTTP Server.

 7. Go to http://www.verisign.com, click Free SSL Trial. Complete the profile information, click Submit,

and click Continue twice.

Chapter 12. Administering security 421

8. Use your favorite text editor to edit the request file Server_certreq.arm, and copy the entire contents

of the file into the browser request panel. Click Continue. VeriSign sends the signed personal

certificate to your e-mail.

 9. Copy and paste this certificate into a file, for example Server_Cert.arm. Click Personal Certificate

from the menu in the key management utility. Click Receive. Specify the file name, Server_Cert.arm,

and click OK. You might need to add VeriSign test root certificate to the signer certificates for the

receive to be successful. Close the serverkey.kdb file.

10. To allow IBM HTTP Server to support HTTPS, port 443, for example, enable SSL on IBM HTTP

Server. Modify the configuration file of IBM HTTP Server, IHS_HOME/conf/httpd.conf. You also can

enable SSL through the IBM HTTP Server administrative console. Open the

IHS_HOME/conf/httpd.conffile and add the following lines to the bottom of the file:

LoadModule ibm_ssl_module modules/mod_ibm_ssl.so

Listen 443

<VirtualHost droplet.austin.ibm.com:443>

ServerName droplet.austin.ibm.com

DocumentRoot <install_root>\htdocs

SSLEnable

#SSLClientAuth required

</VirtualHost>

SSLDisable

Keyfile <IHS_HOME>/serverkey.kdb

Note: Change the host name and the path for the key file accordingly. Modify the Web server to

support client certificates by uncommenting the SSLClientAuth directive shown in the

httpd.conf file.

SSLClientAuth required

11. Restart IBM HTTP Server.

12. Test SSL between a browser and IBM HTTP Server. For more information on the default IBM HTTP

Server port number, see Port number settings in WebSphere Application Server versions.

13. Follow the prompts to select a personal certificate if the SSLClientAuth directive is set to required.

14. To enable the application server to communicate with IBM HTTP Server using port 443, add the host

alias on the default_host. In the administrative console, click Environment > Virtual Hosts

>default_host. Under Additional properties, click Host Aliases > New. Enter the following information

in the appropriate fields:

Host name

*

Port 443

15. Click Apply and Save When you click Save, the information is written to the security.xml file and

the Web server plug-in is automatically updated.

16. Restart WebSphere Application Server.

17. Test your connection.

You can connect to the Snoop servlet.

Enable Secure Sockets Layer communication between IBM HTTP Server and WebSphere Application

Server.

Configuring the Web server plug-in for Secure Sockets Layer

WebSphere has an internal HTTP transport which accepts HTTP requests. If you install an external HTTP

server, the Web server plug-in must forward requests from the external HTTP server to WebSphere’s

422 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

internal HTTP transport. You should follow HTTP vendor’s instruction to install and configure your HTTP

server. Test your HTTP server by accessing http://your-host-URL and https://your-host-URL. You should

also have Web server plugin installed. See ″Installing IBM HTTP Server″ for instructions on installing

HTTP Server and Web server plugin. The connection between external HTTP server and WebSphere is by

default not secured, even when global security is enabled.

This section documents the configuration necessary to instantiate a secure connection between the Web

server plug-in and the internal HTTP transport in the WebSphere Application Server Web container on a

distributed platform. By default, this connection is not secure, even when global security is enabled. This

document discusses the configuration for IBM HTTP Server; however, the Web server-related configuration

in this situation is not specific to any distributed platform Web server.

 1. “Creating self-signed personal certificates” on page 447. The Web server plug-in requires a key ring

file to store its own private and public key files and to store the public certificate from the Web

container key file. The following steps are required to generate a self-signed certificate for the Web

server plug-in.

When you install Web server plugin, a default key ring, plugin-key.kdb, is installed in plugin_root\etc.

Use this file instead of creating a new one. In the following steps, a new file is created, but the steps

are similar if you use an existing file. Create a directory on the Web server host for storing the key

ring file that is referenced by the plug-in and associated files (for example,

IHS_install_root\conf\keys).

a. Create a directory on the Web server host for storing the key ring file that is referenced by the

plug-in and associated files, for example: IHS_install_root\conf\keys.

b. Launch the key management utility (iKeyman), which is available in the WebSphere Application

Server install_root\bin installation directory.

c. From the iKeyman menu, click Key Database File > New.

d. Enter the following settings:

Key database type

CMS Key Database File

File name

WASplugin.kdb

Location

C:\http1324\conf\keys\ or the file of your choice

e. Click OK.

f. Set the password of your choice at the password prompt and confirm the password.

g. Click the Stash the password to a file? option.

h. Click OK.

i. From the iKeyman menu, click Create > New Self-Signed Certificate to create a new self-signed

certificate key pair. Specify the following options. Optionally, you can choose to complete all of the

remaining fields.

Key label

WASplugin

Version

X509 V3

Key size

1024

Common name

droplet.austin.ibm.com

Organization

IBM

Country

US

Validity period

365

Chapter 12. Administering security 423

j. Click OK.

k. Extract the public self-signed certificate key. This key is used later by the embedded HTTP server

peer to authenticate connections that originate from the plug-in.

l. Click Personal Certificates in the menu and select the WASplugin certificate that you just created.

m. Click Extract Certificate. Extract the certificate to a file:

Data type

Base64-encoded ASCII data

Certificate file name

WASpluginPubCert.arm

Location

C:\http1324\conf\keys , or a directory of your choice

n. Click OK.

o. Close the key database and exit the iKeyman utility when you finish.

 2. Generate a self-signed certificate for the Web container.

a. Launch the JKS-capable iKeyman version that is located the product /bin directory.

b. Click Key Database File > New from the iKeyman menu.

c. Enter the following settings:

Key database type

JKS

File name

WASWebContainer.jks

Location

C:\WebSphere\AppServer\etc\ or the directory of your choice

d. Click OK.

e. Set the password of your choice at the password prompt and confirm the password.

f. Click Create > New Self-Signed Certificate from the iKeyman menu. The following values are

used in this example:

Key Label

WASWebContainer

Version

X509 V3

Key size

1024

Common name

droplet.austin.ibm.com

Organization

IBM

Country

US

Validity Period

365

g. Click OK.

h. Extract the public self-signed certificate key. This key is used later by the Web server plug-in peer

to authenticate connections that originate from the embedded HTTP server in the product.

i. Click Personal Certificates from the list. Select the WASWebContainer certificate that you just

created. Click Extract Certificate. Extract the certificate to a file:

Data type

Base64-encoded ASCII data

Certificate file name

WASWebContainerPubCert.arm

Location

C:\WebSphere\AppServer\etc\

424 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

j. Click OK.

k. Close the database and exit the key management utility.

 3. Exchange the public certificates.

a. Copy the WASpluginPubCert.arm file from the Web server machine to the WebSphere Application

Server machine. The source directory in this case is C:\http1324\conf\keys, while the destination

is C:\WebSphere\Appserver\etc.

b. Copy the WASWebContainerPubCert.arm file from the product machine to the Web server machine.

The source directory in this case is C:\WebSphere\Appserver\etc, while the destination is

C:\http1324\conf\keys.

 4. Import the certificate into the Web server plug-in key file.

a. On the Web server machine, launch the iKeyman utility, which supports the CMS key database

format.

b. From the iKeyman menu, click Key Database File > Open and select the previously created key

database file: WASplugin.kdb.

c. In the password prompt window, enter the password. Click OK.

d. Click Signer Certificates from the list and click Add. This action imports the public certificate

previously extracted from the embedded HTTP server (Web container) keystore file.

Data type

Base64-encoded ASCII data

Certificate file name

WASWebContainerPubCert.arm

Location

C:\WebSphere\Appserver\etc\

e. Click OK. You are prompted for a label name that represents the trusted signer public certificate.

f. Enter a label for the certificate: WASWebContainer.

g. Close the key database and exit IKeyman when you finish.

 5. Import the certificate into the Web container keystore file.

a. On the WebSphere Application Server machine, launch the JKS-capable iKeyman version, which

is located in the product /bin directory.

b. From the iKeyman menu, click Key Database File > Open. Select the previously created

WASWebContainer.jks file.

c. In the password prompt window, enter the password. Click OK.

d. Click Signer Certificates from the list. Click Add. This action imports the public certificate

previously extracted from the embedded HTTP server (Web container) keystore file.

Data type

Base64-encoded ASCII data

Certificate file name

WASpluginPubCert.arm

Location

C:\WebSphere\Appserver\etc\

e. Click OK. You are prompted for a label name that represents the trusted signer public certificate.

f. Enter a label for the certificate: WASplugin.

g. Close the key database and exit iKeyman when you finish.

 6. Modify the Web server plug-in file. In a production environment, add the secure transport definition,

port 9443, to the plugin-cfg.xml file. For example, your modified plugin-key.kdb file contains the

following lines:

<Transport Hostname=″hpws07″ Port=″9080″ Protocol=″http″/>

<Transport Hostname=″hpws07″ Port=″9443″ Protocol=″https″/>

Chapter 12. Administering security 425

After you verify that the proper plugin-key.kdb and plugin-key.sth files exist on the Web server,

modify the plugin-cfg.xml file that resides on the Web server. You must specify the local path to

both the plugin-key.kdb and plugin-key.sth files in the plugin-cfg.xml file.

Important: If you manually edit the plugin-cfg.xml file and an automatic regeneration of the file

occurs, you must replace your manual edits.

 7. Modify the Web container to support SSL. To complete the configuration between Web server plug-in

and Web container, modify the WebSphere Application Server Web container to use the previously

created self-signed certificates.

a. Start the WebSphere Application Server administrative console.

b. Click Security > SSL.

c. Click New JSSE repertoire to create a new entry in the repertoire. Provide the following values to

complete the form:

Alias WebContainerSSLSettings

Security level

HIGH

Key file name

C:\WebSphere\Appserver\etc\WASWebContainer.jks

Key file password

<key_file_password>

Key file format

JKS

Trust file name

C:\WebSphere\Appserver\etc\WASWebContainer.jks

Trust file password

<trust_file_password>

Trust file format

JKS

d. Click OK.

e. If you want mutual SSL between the two parties, select the Client authentication option.

f. Save the configuration in the administrative console.

g. Click Servers > Clusters > <cluster_name> > Cluster Members > <server_name>.

h. Under Container settings, click Web container settings > Web container transport chains.

You can either modify the WCInboundDefaultSecure transport chain or click New and create a

new transport chain.

If you are modifying the WCInboundDefaultSecure transport chain, click TCP Inbound Channel

(TCP 4). Under related items, click Ports. Click WC defaulthost secure and modify the

information in the Host and Port fields. Click OK and then Save.

If you create a new transport chain, use the transport chain wizard, and specify a secure port

number. You must add the same port number to the virtual hosts.

i. Add a new virtual host entry by clicking Environment > Virtual hosts > default_host.

j. Under Additional properties, click Host aliases > New.

k. Enter a host name and specify the same port number that you specified for the transport chain.

l. Click OK.

m. Click Save at the top of the panel.

 8. Optional: If you want to access the Web server plug-in from the Web server, click Servers > Web

servers, and then click the Generate Plug-in option.

 9. Test the secure connection. Test the secure connection by accessing a Web application on the

WebSphere Application Server using port 9443. For example,

https://droplet.austin.ibm.com:9443/snoop.

426 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

10. Import the correct certificate with public and private keys into the browser to test the secured

connection, when client-side certification is required.

a. Launch the iKeyman utility that supports the CMS key database file, on the Web server machine.

The iKeyman utility is also bundled with IBM HTTP Server.

b. Open the key file for the plug-in, C:\http1324\conf\keys\WASplugin.kdb. Provide the password

when prompted.

c. Click WASplugin certificate, located under the personal certificates. Click Export.

d. Save the certificate in PKCS12 format to a file, for example

C:\http1324\conf\keys\WASplugin.p12 . Provide a password to secure the PKCS12 certificate

file.

e. Close the key file and exit iKeyman.

f. Copy the saved WASplugin.p12 file to the client machine from where you access the product

server.

g. Import the PKCS12 file into your browser. Then, access

https://your_server_address:9443/snoop.

h. The browser asks which personal certificate to use for the connection. Select the certificate, and

continue connecting.

i. After the browser test with direct product access is successful, test the connection through the

Web server using port 9443. For example, https://your_server_address:9443/snoop.

The IBM HTTP Server plug-in and the internal Web server are configured for SSL.

Configuring Secure Sockets Layer for Java client authentication

WebSphere Application Server supports Java client authentication using a digital certificate when the client

attempts to make a Secure Sockets Layer (SSL) connection. The authentication occurs during an SSL

handshake. The SSL handshake is a series of messages exchanged over the SSL protocol to negotiate

for connection-specific protection. During the handshake, the secure server requests that the client to send

back a certificate or certificate chain for the authentication.

To configure SSL for Java client authentication, consider the following questions:

v Have you enabled security with your WebSphere Application Server?

v Have you configured Common Secure Interoperability (CSI) authentication protocol for your target

application server? Refer to “Configuring global security” on page 142 for more details.

Note: The Security Authentication Service (SAS) authentication protocol does not support Java client

authentication with SSL transport.

v Have you configured your server to support secure transport for the CSIv2 inbound authentication

protocol?

v Have you configured your server to support client authentication at the transport layer for the inbound

CSI authentication protocol?

v If you are using a self-signed personal certificate, have you exported the public certificate from your

client application Java keystore file or cryptographic token device?

v If you are using a certificate authority (CA)-signed personal certificate, have you received the root

certificate of the CA?

v If you are using a self-signed personal certificate, have you imported the public certificate into your

target Java truststore file as a signer certificate?

v If you are using a CA-signed (certificate authority) personal certificate, have you imported the CA root

certificate into your target Java truststore file as a signer certificate?

v Does the common name (CN) specified in your personal certificate name exist in your configured user

registry or is there a SAF mapping for the certificate?

If you answer yes to all of these questions that are appropriate to your product and platform, you can

configure SSL for Java client authentication.

Chapter 12. Administering security 427

Note: Java client authentication using digital certificates is supported only by the Common Secure

Interoperability Version 2 (CSIv2) authentication protocol.

1. “Configuring Common Secure Interoperability Version 2 for Secure Sockets Layer client authentication.”

2. “Adding keystore files” on page 429.

3. “Adding truststore files” on page 430.

4. Save changes.

5. Restart the server if you configured the server.

A secure client connects to a secure Internet InterORB Protocol (IIOP) server that requires client

authentication at the transport layer. If a connection problem occurs, you can set a Java property,

javax.net.debug=true, before you run your client or your server to generate debugging information. See

Chapter 16, “Troubleshooting security configurations,” on page 955 for further information about how to

debug an IBMJSSE problem.

Configuring Common Secure Interoperability Version 2 for Secure Sockets Layer

client authentication

Configure the Secure Sockets Layer (SSL) client authentication using the sas.client.props configuration

file or the administrative console. To configure a Java client application, use the sas.client.props

configuration file. By default, the sas.client.props file is located in the

install_root\profiles\profile_name\properties directory of your WebSphere Application Server

installation.

To configure a WebSphere Application Server, use the administrative console. To start the administrative

console, specify URL: http://server host_name:9060/ibm/console.

To configure a Java client application, complete the following steps, which explain how to edit the

sas.client.props file directly:

1. To require SSL client authentication, set property

com.ibm.CSI.performTLClientAuthenticationRequired=true. Do not set this property unless you know

your target server also supports SSL client authentication for the inbound CSI authentication protocol.

2. To support SSL client authentication, set the property

com.ibm.CSI.performTLClientAuthenticationSupported=true.

3. To specify the CSI protocol, set the property com.ibm.CSI.protocol=csiv2.

4. To match the SSL protocol configured with your server, set the property, com.ibm.ssl.protocol,

accordingly.

5. Specify the com.ibm.CORBA.ConfigURL property with the fully qualified path of your Java property file

when you run your application. For example,

-Dcom.ibm.CORBA.ConfigURL=file:/c:/WebSphere/AppServer/profiles/profile_name/properties/sas.client.props

Using the WebSphere Application Server to edit the sas.client.props file:

To edit the sas.client.props file using the administrative console, complete the following steps:

 1. Start the administrative console.

 2. Expand Security > Global security.

 3. Under Authentication, click Authentication protocol > CSIv2 inbound authentication.

 4. Select Supported or Required for Client certificate authentication.

 5. Click OK.

428 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

6. If you selected Required in step 4, configure the CSIv2 outbound authentication as well to support

the client certificate authentication. Otherwise, you can skip this step. Return to the Global security

panel and under Authentication, click CSIv2 Outbound Authentication. Select either Supported or

Required for Client certificate authentication.

 7. Click CSIv2 Outbound Transport.

 8. Select an SSL setting from the SSLSettings list for keystore, truststore, cryptographic token, SSL

protocol, and ciphers use.

 9. Create an alias from the SSL Configuration Repertoires panel for an SSL setting.

10. Update the SSL setting selected in CSIv2 Inbound Transport accordingly.

11. Save your configuration.

12. Restart the server for the changes to become effective.

Client authentication using digital certificates is performed during SSL connection. A secure client connects

using SSL to a secure Internet InterORB Protocol (IIOP) server with client authentication at the transport

layer.

Specify the keystore and truststore files in your configuration.

Adding keystore files

A keystore file contains both public keys and private keys. Public keys are stored as signer certificates

while private keys are stored in the personal certificates. In WebSphere Application Server, adding

keystore files to the configuration is different between client and server. For the client, a keystore file is

added to a property file like sas.client.props. For the server, a keystore file is added through the

WebSphere Application Server administrative console.

Before you add the keystore file to your configuration, consider the following questions:

v Is a self-signed or a certificate authority (CA)-signed personal certificate created in the keystore file?

v If you configure client authentication using digital certificates, is the public key of the signed personal

certificate imported as a signer certificate into the server truststore file?

1. Add a keystore file into a client configuration by editing the sas.client.props file and setting the

following properties:

v com.ibm.ssl.keyStoreType for the keystore format. Range: JKS (default), PKCS12KS, JCEK

v com.ibm.ssl.keyStore for a fully qualified path to the keystore file. The keystore file contains private

keys and sometimes public keys.

v com.ibm.ssl.keyStorePassword for the password to access the keystore file.

2. Add a keystore file into a server configuration:

a. Start the administrative console by specifying: http://server_hostname:9060/ibm/console.

b. Click Security > SSL Configuration Repertoires.

c. Create a new Secure Sockets Layer (SSL) setting alias if one does not exist.

d. Select the alias that you want to add into the keystore file.

e. Type in the key file name for the path of the keystore file.

f. Type in the key file password for the password to access the keystore file.

g. Select the key file format for the keystore type. Range: JKS (default), PKCS12KS, or JCEK.

h. Click OK and Save to save the configuration.

The SSL configuration alias now has a valid keystore file for an SSL connection.

Note: If the Cryptographic token field is selected and you only want to use cryptographic tokens for your

keystore file, leave the Key file name field and the Key file password field blank.

v SSL connection for Internet InterORB Protocol (IIOP)

v SSL connection for Lightweight Directory Access Protocol (LDAP)

v SSL connection for Hypertext Transfer Protocol (HTTP)

Chapter 12. Administering security 429

Adding truststore files

A truststore file is a key database file that contains public keys. The public key is stored as a signer

certificate. The keys are used for a variety of purposes, including authentication and data integrity. In

WebSphere Application Server, adding truststore files to the configuration is different between client and

server. For the client, a truststore file is added to a property file, like sas.client.props. For the server, a

truststore file is added through the WebSphere Application Server administrative console.

Before you add the truststore file to your configuration, ask the following questions:

v If you configure for client authentication using digital certificate, has the public key of the client personal

certificate been imported as a signer certificate into the server truststore file?

v Does the truststore file contain all the required signer certificates with respect to the keystore files of the

target servers?

1. Add a truststore file into a client configuration, by editing the sas.client.props file and setting the

following properties:

v com.ibm.ssl.trustStoreType for the truststore format. Range: JKS (default), PKCS12KS, JCEK,

JCERACFKS.

v com.ibm.ssl.trustStore for a fully qualified path to the truststore file. The truststore file contains the

public keys.

v com.ibm.ssl.trustStorePassword for the password to access the truststore file.

2. Add a truststore file into a server configuration:

a. Start the administrative console by specifying : http://server_host_name:9060/ibm/console

b. Click Security > SSL.

c. Create a new Secure Sockets Layer (SSL) setting alias if one does not exist.

d. Select the alias that you want to add into the truststore file.

e. Type the trust file name for the path of the truststore file.

f. Type the trust file password for the password to access the truststore file.

g. Select the trust file format for the truststore type. JKS (Default), PKCS12KS, JCEK.

h. Click OK and Save to save the configuration.

The SSL configuration alias now contains a valid truststore file for an SSL connection.

v SSL connection for Internet InterORB Protocol (IIOP)

v SSL connection for Lightweight Directory Access Protocol (LDAP)

v SSL connection for Hypertext Transfer Protocol (HTTP)

Secure Sockets Layer configuration repertoire settings

Use this page to define a new Secure Sockets Layer (SSL) alias. Using the SSL configuration repertoire,

administrators can define any number of SSL settings to use in configuring the Hypertext Transfer Protocol

with SSL (HTTPS), Internet InterORB Protocol with SSL (IIOPS) or Lightweight Directory Access Protocol

with SSL (LDAPS) connections. You can pick one of the SSL settings defined here from any location within

the administrative console that supports SSL connections. This flexibility simplifies the SSL configuration

process because you can reuse many of these SSL configurations by specifying the alias in multiple

places.

To view this administrative console page, click Security > SSL.

Click New to create a new SSL Configuration Repertoire alias.

Click Delete to remove an SSL Configuration Repertoire alias. If an SSL configuration alias is referenced

in the configuration and is deleted here, then an SSL connection fails when the deleted alias is accessed.

430 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Alias

Specifies the name of the specific SSL setting.

Type:

Specifies the type of repertoire configured for the alias listed.

 The value is either SSSL for System Secure Sockets Layer repertoire or JSSE for Java Secure Sockets

Extension repertoire.

New Secure Sockets Layer repertoire

Use this page to specify the list of defined Secure Sockets Layer (SSL) configurations.

To view this administrative console page, click Security > SSL > New JSSE repertoire.

Alias:

Specifies the name of the specific SSL setting.

 Data type: String

This field is used on the System SSL Repertoire and Java Secure Sockets Extension (JSSE) Repertoire

panels.

Key file name:

Specifies the fully qualified path to the SSL key file that contains public keys and private keys.

 Data type: String

For JSSE SSL, the key file specifies the keystore file. The key file might also specify the System

Authorization Facility (SAF) key ring that contains certificates and keys. You can create a JSSE SSL

keystore file by using the keytool utility found in the WebSphere Application Server bindirectory. The key

file contains certificates and keys.

For System SSL or JSSE, you can create an SSL key ring by using the Resource Access Control Facility

(RACF) command, RACDCERT. Issue this command in your MVS environment, such as TSO READY or

ISPF option 6. The key ring contains the private certificate of this server and certificates of trusted

certificate authorities. The certificates for the trusted certificate authorities validate the client certificates

and other server certificates that are exchanged with this server during the SSL handshake. The

repertoires that you define for a server require identical key file names.

Client authentication:

Specifies whether to request a certificate from the client for authentication purposes when making a

connection.

 Data type: Boolean

Default: Disabled

Range: Enabled or Disabled

When performing client authentication with the Internet InterORB Protocol (IIOP) for Enterprise JavaBeans

(EJB) requests, click Security > Global Security > CSIv2 Inbound or Outbound Authentication from

Chapter 12. Administering security 431

the left navigation pane of the administrative console. (You can also click Servers > Application Servers

> server_name > CSIv2 Inbound or Outbound Authentication.) Click SSL Client Certificate

Authentication to enable it for these requests.

Security level:

Specifies whether the server selects from a preconfigured set of security levels.

 Data type: Valid values include Low, Medium or High.

v Low specifies only digital signing ciphers (no

encryption)

v Medium specifies only 40-bit ciphers (including digital

signing)

v High specifies only 128-bit ciphers (including digital

signing).

To specify all ciphers or any particular range, you can set

the com.ibm.ssl.enabledCipherSuites property.

See the SSL documentation for more information.

Default: High

Range: Low, Medium, or High

V3 timeout:

Specifies the length of time that a browser can reuse a System SSL Version 3 session ID without

renegotiating encryption keys with the server.

 The repertoires that you define for a server require the same V3 timeout value.

 Data type integer

Default 100

Range 1 to 86400

Cipher suites:

Specifies a list of supported cipher suites that can be selected during the SSL handshake. If you select

cipher suites individually here, you override the cipher suites set in the Security Level field.

 Data type:

Default:

Range:

Transport channel name:

This name must be unique across all channels in a WebSphere Application Server environment. TCP

transport channels and HTTP transport channels cannot have the same name if they reside within the

same system.

 Data type:

Default:

Range:

432 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Repertoire settings

Use this page to configure Secure Sockets Layer (SSL) or Java Secure Sockets Extension (JSSE) settings

for the server. To configure Secure Sockets Layer (SSL), you need to define an SSL configuration

repertoire. A repertoire contains the details necessary for building an SSL connection, such as the location

of the key files, their type and the available ciphers. WebSphere Application Server provides a default

repertoire called DefaultSSLSettings.

To view this administrative console page, click Security > SSL >alias_name.

Alias:

Specifies the name of the specific SSL setting

 Data type: String

Client authentication:

Specifies whether to request a certificate from the client for authentication purposes when making a

connection.

 This attribute is only valid when it is used by the Web container HTTP transport.

When performing client authentication with the Internet InterORB Protocol (IIOP) for EJB requests, click

Security > Global security. Under Authentication, click Authentication protocol > CSIv2 inbound

authentication or Authentication protocol > CSIv2 outbound authentication. Select the appropriate

option under Client certificate authentication.

 Default: Disabled

Range: Enabled or Disabled

Security level:

Specifies whether the server selects from a preconfigured set of security levels.

 Data type: Valid values include Low, Medium or High.

v Low specifies digital signing ciphers only without

encryption.

v Medium specifies 40-bit ciphers only including digital

signing.

v High specifies 128-bit ciphers only including digital

signing.

To specify all ciphers or any particular range, you can set

the com.ibm.ssl.enabledCipherSuites property.

See the SSL documentation for more information.

Default: High

Range: Low, Medium, or High

Cipher suites:

Specifies a list of supported cipher suites that can be selected during the SSL handshake. If you select

cipher suites individually here, you override the cipher suites set in the Security Level field.

Cryptographic token:

Chapter 12. Administering security 433

Specifies whether the server enables or disables cryptographic hardware and software support. The SOAP

connector does not use hardware cryptography.

 Data type: Boolean

Default: Disabled

Range: Enabled or Disabled

Provider:

Refers to a package that implements a subset of the Java security application programming interface (API)

cryptography aspects.

 If you select Predefined JSSE provider, select a provider from the menu.

WebSphere Application Server has the IBMJSSE, IBMJSSE2, and the IBMJSSEFIPS predefined

providers. IBMJSSEFIPS is the the IBMJSSE provider that is Federal Information Processing Standard

(FIPS) certified. If you select Custom JSSE provider , enter a custom provider. For a custom provider,

you first must enter the cipher suites through Custom properties under Additional Properties. Cipher suites

and protocol values depend on the provider.

Note: You can only specify the IBMJSSE2 provider for transports using the channel framework, including

HTTP and JMS. Any other provider specified causes the server to fail initialization. FIPS is not

supported for these transports in WebSphere Application Server Version 6.

Protocol:

Specifies which SSL protocol to use.

 If you are using a FIPS-approved JSSE such as IBMJSSEFIPS, you must select a TLS protocol. However,

because the FIPS-approved JSSE providers are not backwards-compatible, a server that uses the TLS

protocol cannot communicate with a client that uses an SSL protocol.

 Default SSLv3

Range SSL, SSLv2, SSLv3, TLS, TLSv1

Key file name:

Specifies the fully qualified path to the SSL key file that contains public keys and might contain private

keys.

 You can create an SSL key file with the key management utility, or this file can correspond to a hardware

device if one is available. In either case, this option indicates the source for personal certificates and for

signer certificates unless a trust file is specified. The default SSL key files, DummyClientKeyFile.jks and

DummyServerKeyFile.jks, contais a self-signed personal test certificate expiring on March 17, 2005. The

test certificate is only intended for use in a test environment. The default SSL key files should never be

used in a production environment because the private keys are the same on all the WebSphere

Application Server installations. Refer to the Managing certificates article for information about creating and

managing digital certificates for your WebSphere Application Server domain.

 Data type: String

Key file password:

Specifies the password for accessing the SSL key file.

434 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Data type: String

Key file format:

Specifies the format of the SSL key file.

 You can choose from the following key file formats: JKS, JCEK, PKCS12. The JKS format does not store a

shared key. For more secure key files, use the JCEK format. PKCS12 is the standard file format.

 Data type: String

Default: JKS

Range: JKS, PKCS12, JCEK

Trust file name:

Specifies the fully qualified path to a trust file containing the public keys.

 You can create a trust file with the key management utility included in the WebSphere bin directory. Using

the key management utility from Global Security Kit (GSKit) (another SSL implementation) does not work

with the Java Secure Socket Extension (JSSE) implementation.

Unlike the SSL key file, no personal certificates are referenced; only signer certificates are retrieved. The

default SSL trust files, DummyClientTrustFile.jks and DummyServerTrustFile.jks, contain multiple test

public keys as signer certificates that can expire. The public key for the WebSphere Application Server

Version 4.0 test certificates expires on January 15, 2004, and the public key for the WebSphere

Application Server Version 5 test certificates and WebSphere Application Server CORBA C++ client

expires on March 17, 2005. The test certificate is only intended for use in a test environment.

The public key for the WebSphere Application Server Version 6 test certificates expires on October 13,

2021.

If a trust file is not specified but the SSL key file is specified, then the SSL key file is used for retrieval of

signer certificates as well as personal certificates.

 Data type: String

Trust file password:

Specifies the password for accessing the SSL trust file.

 Data type: String

Trust file format:

Specifies the format of the SSL trust file.

 You can choose from the following trust file formats: JKS, JCEK, PKCS12. The JKS format does not store

a shared key. For more secure key files, use the JCEK format. PKCS12 is the standard file format.

 Data type: String

Default: JKS

Range: JKS, JCEK, PKCS12

Chapter 12. Administering security 435

Secure Sockets Layer settings for custom properties

Use this page to configure additional Secure Sockets Layer (SSL) settings for a defined alias.

To view this administrative console page, click Security > SSL > alias_name > Custom properties.

Custom Properties:

Specifies the name-value pairs that you can use to configure additional SSL settings beyond those

available in the com.ibm.ssl.protocol administrative interface.

 This value is the SSL protocol used (including its version). The possible values are SSL, SSLv2, SSLv3,

TLS, or TLSv1. The default value, SSL, is backward-compatible with the other SSL protocols.

com.ibm.ssl.keyStoreProvider

The name of the key store provider to use. Specify one of the security providers listed in your

java.security file, which has a keystore implementation. The default value is IBMJCE.

com.ibm.ssl.keyManager

The name of the key management algorithm to use. Specify any key management algorithm that

is implemented by one of the security providers listed in your java.security file. The default value

is IbmX509.

com.ibm.ssl.trustStoreProvider

The name of the trust store provider to use. Specify one of the security providers listed in your

java.security file, which has a truststore implementation. The default value is IBMJCE.

com.ibm.ssl.trustManager

The name of the trust management algorithm to use. Specify any trust management algorithm that

is implemented by one of the security providers listed in your java.security file. The default value

is IbmX509.

com.ibm.ssl.trustStoreType

The type or format of the truststore file. The possible values are JKS, PKCS12, JCEK. The default

value is JKS.

com.ibm.ssl.enabledCipherSuites

The list of cipher suites to enable. By default, this is not set and the set of cipher suites used is

determined by the value of the security level (high, medium, or low). A cipher suite is a

combination of cryptographic algorithms used for an SSL connection. Enter a space-separated list

of any of the following cipher suites:

v SSL_RSA_WITH_RC4_128_MD5

v SSL_RSA_WITH_RC4_128_SHA

v SSL_RSA_WITH_DES_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_DES_CBC_SHA

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_DES_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC4_40_MD5

v SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

v SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

v SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_WITH_NULL_MD5

v SSL_RSA_WITH_NULL_SHA

v SSL_DH_anon_WITH_RC4_128_MD5

v SSL_DH_anon_WITH_DES_CBC_SHA

v SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

v SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

v SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

 Data type: String

436 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Cryptographic token:

Specifies information about the cryptographic tokens related to SSL support.

 A cryptographic token is a hardware or software device that has a built-in keystore implementation.

Document the exact values for the following fields found in the literature of your supported cryptographic

device.

Creating a Secure Sockets Layer repertoire configuration entry

The first step in configuring Secure Sockets Layer (SSL) is to define an SSL configuration repertoire. A

repertoire contains the details necessary for building an SSL connection, such as the location of the key

files, their type and the available ciphers. WebSphere Application Server provides a default repertoire

called DefaultSSLSettings. To view this page in the administrative console, click Security > SSL to see

the list of SSL repertoire settings.

The appropriate repertoire is referenced during the configuration of a service that sends and receives

requests encrypted using SSL, such as the Web and enterprise beans containers. If an SSL configuration

alias is referenced elsewhere, but the alias is deleted from the SSL Configuration Repertoires panel, the

SSL connection fails if the deleted alias is accessed.

With the SSL configuration repertoire, administrators can define SSL settings to use for making Hypertext

Transfer Protocol with SSL (HTTPS), Internet InterORB Protocol with SSL (IIOPS) or Lightweight Directory

Access Protocol with SSL (LDAPS) connections. You can pick one of the SSL settings defined here from

any location within the administrative console, which supports SSL connections. This selection simplifies

the SSL configuration process because you can reuse many of these SSL configurations by specifying the

alias in multiple places.

 1. From the SSL Configuration Repertoire window, click New.

 2. Enter the information needed to access the key file.

a. Type the name of the key file, which must include the fully qualified path to the key file, in the Key

File Name field. Type safkeyring:/// if you are using a RACF key ring for the key file.

b. Type the password needed to access the key file in the Key File Password field. Type password if

you are using a RACF key ring for the key store.

c. Select the format of the key file from the Key File Format menu.

 3. Enter the information needed to access the trust file.

a. Type the name of the trust file, which must include the fully qualified path to the trust file, in the

Trust File Name field. Type safkeyring:/// if you are using a RACF key ring as the trust store.

b. Type the password needed to access the trust file in the Trust File Password field. Type password

if you are using a RACF key ring as the trust store.

c. Select the format of the trust file from the Trust File Format menu.

 4. Select the Client Authentication option if this configuration supports client authentication. This

selection only affects HTTP and LDAP requests.

 5. Select the appropriate security level from the Security Level menu. Valid values are low, medium, and

high. Low specifies digital signing ciphers only (no encryption), medium specifies 40-bit ciphers only

(including digital signing), high specifies 128-bit ciphers only (including digital signing).

If you are using a Federal Information Processing Standards (FIPS)-supported Java Secure Socket

Extension (JSSE), you must select High from the Security Level menu.

 6. Select a cipher suite from the Cipher Suites menu. Manually add the cipher suite if the preset security

level does not define the required cipher. Select the Cryptographic Token check box if the RACF

key ring contains keys or certificates that were created using the RACDCERT command with the ICSF

keyword specified.

Chapter 12. Administering security 437

7. Select the Cryptographic Token check box if hardware or software cryptographic support is

available.

See “Configuring to use cryptographic tokens” on page 455 for details regarding cryptographic

support.

 8. Indicate which JSSE provider you are using by either selecting IBMJSSE, IBMJSSE2 (recommended)

or IBMJSSEFIPS from the menu, or by typing the name of the provider. WebSphere Application

Server includes the IBMJSSE, IBMJSSE2 and IBMJSSEFIPS JSSE providers. Use IBMJSSEFIPS

only if you are using the Transport Layer Security (TLS) protocol and not the Secure Sockets Layer

(SSL) protocol. See “Configuring Federal Information Processing Standard Java Secure Socket

Extension files” for more information.

If you are not using the predefined providers, configure the custom provider by clicking Apply, then

Custom Properties > New in the Additional Properties section. After the custom provider is

configured, return to the SSL Configuration Repertoires window and continue with these instructions.

 9. Select an SSL or TLS protocol version.

If you are using a FIPS-approved JSSE, you must select a TLS protocol version.

10. Click Apply to apply the changes.

11. If no errors occur, save the changes to the master configuration and restart the WebSphere

Application Server.

For more information on the FIPS certification process and to check the status of the IBM submission,

see the Cryptographic Module Validation Program FIPS 140-1 and FIPS 140-2 Pre-validation List

Web site.

You included additional SSL configuration repertoires with the default DefaultSSLSettings repertoire.

The appropriate repertoire is referenced during the configuration of a service that sends and receives

requests encrypted using SSL, such as the Web and enterprise bean containers, and Lightweight Directory

Access Protocol (LDAP) servers.

For the changes to take effect, restart the server after saving the configuration.

Configuring Federal Information Processing Standard Java Secure

Socket Extension files

In WebSphere Application Server Version 6, the Java Secure Socket Extension (JSSE) provider used is

the IBMJSSE2 provider. This provider delegates encryption and signature functions to the Java

Cryptography Extension (JCE) provider. Consequently, IBMJSSE2 does not need to be Federal

Information Processing Standard (FIPS)-approved because it does not perform cryptography. However, the

JCE provider requires FIPS-approval.

WebSphere Application Server provides a FIPS-approved IBMJCEFIPS provider that IBMJSSE2 can

utilize. The IBMJCEFIPS provider shipped in WebSphere Application Server Version 6 supports the

following SSL ciphers:

v SSL_RSA_WITH_AES_128_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_AES_128_CBC_SHA

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_AES_128_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

v SSL_DH_anon_WITH_AES_128_CBC_SHA

v SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

438 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://csrc.nist.gov/cryptval/preval.htm
http://csrc.nist.gov/cryptval/preval.htm

Even though the IBMJSSEFIPS provider is still present, the runtime does not use this provider. If

IBMJSSEFIPS is specified as a contextProvider, WebSphere Application Server automatically defaults to

the IBMJSSE2 provider (with the IBMJCEFIPS provider) for supporting FIPS in Version 6. When enabling

FIPS in the server Global Security Panel, the runtime always uses IBMJSSE2. despite whatever

contextProvider you specify for SSL (IBMJSSE, IBMJSSE2 or IBMJSSEFIPS). Also, because FIPS

requires the SSL protocol be TLS, the runtime always uses TLS when FIPS is enabled regardless of the

SSL protocol setting in the SSL repertoire. This simplifies the FIPS configuration in Version 6 because an

administrator only needs to enable the FIPS flag in the Global Security Panel to enable all transports using

SSL.

1. Click Security > Global Security. Select the Use the Federal Information Processing Standard (FIPS)

option and click OK. IBMJSSE2 and IBMJCEFIPS is enabled.

2. If you have a Java client that must access enterprise beans, modify the

install_dir/profiles/profile_name/properties/sas.client.props file and set the property:

#com.ibm.security.useFIPS=false

#com.ibm.security.useFIPS=true

3. If you have an administrative client using the Simple Object Access Protocol (SOAP) connector, modify

the install_dir/profiles/profile_name/properties/soap.client.props file on the administrative

client and set the following property:

#com.ibm.ssl.contextProvider=IBMJSSE2

com.ibm.ssl.contextProvider=IBMJSSEFIPS

Note: Note: Specifying IBMJSSEFIPS indicates that the client wants to be in FIPS mode, and the

runtime uses the IBMJSSE2 provider in combination with the IBMJCEFIPS provider.

After completing these steps, a FIPS-approved JSSE or JCE provider offers increased encryption

capabilities. However, when you use FIPS-approved providers:

v By default, Microsoft Internet Explorer Version 5.5 might not have Transport Layer Security (TLS)

enabled. To enable TLS, open the Internet Explorer browser and click Tools > Internet Options. On the

Advanced tab, select the Use TLS 1.0 option.

Note: Netscape Version 4.7.x and earlier versions might not support TLS.

v IBM Directory Server Version 5.1 (and earlier versions) do not support TLS.

v If you have an administrative client that uses a SOAP connector, and you enable FIPS, add the

following lines to the install_dir/profiles/profile_name/properties/soap.client.props file:

com.ibm.ssl.contextProvider=IBMJSSEFIPS

v When you select the Use the Federal Information Processing Standard (FIPS) option on the Global

Security panel, the Lightweight Third-Party Authentication (LTPA) token format is not

backwards-compatible with previous releases of WebSphere Application Server. However, you can

continue to use the LTPA keys configured using a previous version of WebSphere Application Server.

Note: When enabling FIPS, you cannot configure cryptographic token devices in the SSL repertoires.

IBMJSSE2 must use IBMJCEFIPS when utilizing crytpographic services for FIPS.

Digital certificates

Certificates provide a way of authenticating users. Instead of requiring each participant in an application to

authenticate every user, third-party authentication relies on the use of digital certificates.

A digital certificate is equivalent to an electronic ID card. It serves two purposes:

v Establishes the identity of the owner of the certificate

v Distributes the owner’s public key

Certificates are issued by trusted parties, called certificate authorities (CAs). These authorities can be

commercial ventures or they can be local entities, depending on the requirements of your application.

Regardless, the CA is trusted to adequately authenticate users before issuing certificates. A CA issues

Chapter 12. Administering security 439

certificates with digital signatures. When a user presents a certificate, the recipient of the certificate

validates it by using the digital signature. If the digital signature validates the certificate, the certificate is

recognized as intact and authentic. Participants in an application only need to validate certificates; they do

not need to authenticate users. The fact that a user can present a valid certificate proves that the CA has

authenticated the user. The descriptor, trusted third-party, indicates that the system relies on the

trustworthiness of the CAs.

Contents of a digital certificate

A certificate contains several pieces of information, including information about the owner of the certificate

and the issuing CA. Specifically, a certificate includes:

v The distinguished name (DN) of the owner. A DN is a unique identifier, a fully qualified name including

not only the common name (CN) of the owner but the owner’s organization and other distinguishing

information.

v The public key of the owner.

v The date on which the certificate was issued.

v The date on which the certificate expires.

v The distinguished name of the issuing CA.

v The digital signature of the issuing CA. (The message-digest function is run over all the preceding

fields.)

The core idea of a certificate is that a CA takes the owner’s public key, signs the public key with its own

private key, and returns the information to the owner as a certificate. When the owner distributes the

certificate to another party, it signs the certificate with its private key. The receiver can extract the

certificate (containing the CA signature) with the owner’s public key. By using the CA public key and the

CA signature on the extracted certificate, the receiver can validate the CA signature. If it is valid, the public

key used to extract the certificate is recognized as good. The owner signature is then validated, and if the

validation succeeds, the owner is successfully authenticated to the receiver.

The additional information in a certificate helps an application decide whether to honor the certificate. With

the expiration date, the application can determine if the certificate is still valid. With the name of the

issuing CA, the application can check that the CA is considered trustworthy by the site.

A process that uses certificates must provide its personal certificate, the one containing its public key, and

the certificate of the CA that signed its certificate, called a signer certificate. In cases where chains of trust

are established, several signer certificates can be involved.

Requesting certificates

To get a certificate, send a certificate request to the CA. The certificate request includes:

v The distinguished name of the owner (the user for whom the certificate is requested).

v The public key of the owner.

v The digital signature of the owner.

The message-digest function is run over all these fields.

The CA verifies the signature with the public key in the request to ensure that the request is intact and

authentic. The CA then authenticates the owner. Exactly what the authentication consists of depends on a

prior agreement between the CA and the requesting organization. If the owner in the request is

successfully authenticated, the CA issues a certificate for that owner.

Using certificates: Chain of trust and self-signed certificate

To verify the digital signature on a certificate, you must have the public key of the issuing CA. Because

public keys are distributed in certificates, you must have a certificate for the issuing CA that is signed by

the issuer. One CA can certify other CAs, so a chain of CAs can issue certificates for other CAs, all of

440 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

whose public keys you need. Eventually, you reach a root CA that issues itself a self-signed certificate. To

validate a user’s certificate, you need certificates for all intervening participants, back to the root CA. Then

you have the public keys you need to validate each certificate, including the user’s.

A self-signed certificate contains the public key of the issuer and is signed with the private key. The digital

signature is validated like any other, and if the certificate is valid, the public key it contains is used to

check the validity of other certificates issued by the CA. However, anyone can generate a self-signed

certificate. In fact, you can probably generate self-signed certificates for testing purposes before installing

production certificates. The fact that a self-signed certificate contains a valid public key does not mean that

the issuer is really a trusted certificate authority. To ensure that self-signed certificates are generated by

trusted CAs, such certificates must be distributed by secure means (hand-delivered on floppy disks,

downloaded from secure sites, and so on).

Applications that use certificates store these certificates in a keystore file. This file typically contains the

necessary personal certificates, its signing certificates, and its private key. The private key is used by the

application to create digital signatures. Servers always have personal certificates in their keystore files. A

client requires a personal certificate only if the client must authenticate to the server when mutual

authentication is enabled.

To allow a client to authenticate to a server, a server keystore file contains the private key and the

certificate of the server and the certificates of its CA. A client truststore file must contain the signer

certificates of the CAs of each server to which the client must authenticate.

If mutual authentication is needed, the client keystore file must contain the client private key and

certificate. The server truststore file requires a copy of the certificate of the client CA.

Digital signatures

A digital signature is a number attached to a document. For example, in an authentication system that

uses public-key encryption, digital signatures are used to sign certificates.

This signature establishes the following information:

v The integrity of the message: Is the message intact? That is, has the message been modified between

the time it was digitally signed and now?

v The identity of the signer of the message: Is the message authentic? That is, was the message actually

signed by the user who claims to have signed it?

A digital signature is created in two steps. The first step distills the document into a large number. This

number is the digest code or fingerprint. The digest code is then encrypted, resulting in the digital

signature. The digital signature is appended to the document from which the digest code was generated.

Several options are available for generating the digest code. WebSphere Application Server supports the

MD5 message digest function and the SHA1 secure hash algorithm, but these procedures reduce a

message to a number. This process is not encryption, but a sophisticated checksum. The message cannot

regenerate from the resulting digest code. The crucial aspect of distilling the document to a number is that

if the message changes, even in a trivial way, a different digest code results. When the recipient gets a

message and verifies the digest code by recomputing it, any changes in the document result in a

mismatch between the stated and the computed digest codes.

To stop someone from intercepting a message, changing it, recomputing the digest code, and

retransmitting the modified message and code, you need a way to verify the digest code as well. To verify

the digest code, reverse the use of the public and private keys. For private communication, it makes no

sense to encrypt messages with your private key; these keys can be decrypted by anyone with your public

key. This technique can be useful for proving that a message came from you. No one can create it

because no one else has your private key. If some meaningful message results from decrypting a

document by using someone’s public key, the decryption process verifies that the holder of the

corresponding private key did encrypt the message.

Chapter 12. Administering security 441

The second step in creating a digital signature takes advantage of this reverse application of public and

private keys. After a digest code is computed for a document, the digest code is encrypted with the

sender’s private key. The result is the digital signature, which is attached to the end of the message.

When the message is received, the recipient follows these steps to verify the signature:

1. Recomputes the digest code for the message.

2. Decrypts the signature by using the sender’s public key. This decryption yields the original digest code

for the message.

3. Compares the original and recomputed digest codes. If these codes match, the message is both intact

and authentic. If not, something has changed and the message is not to be trusted.

Public key cryptography

All encryption systems rely on the concept of a key. A key is the basis for a transformation, usually

mathematical, of an ordinary message into an unreadable message. For centuries, most encryption

systems have relied on what is called private key encryption. Only within the last 30 years has a challenge

to private key encryption appeared - public key encryption.

Private key encryption

Private-key encryption systems use a single key that is shared between the sender and the receiver. Both

must have the key; the sender encrypts the message by using the key, and the receiver decrypts the

message with the same key. Both must keep the key private to keep their communication private. This

kind of encryption has characteristics that make it unsuitable for widespread, general use:

v Private key encryption requires a key for every pair of individuals who need to communicate privately.

The necessary number of keys rises dramatically as the number of participants increases.

v The fact that keys must be shared between pairs of communicators means the keys must somehow be

distributed to the participants. The need to transmit secret keys makes them vulnerable to theft.

v Participants can communicate only by prior arrangement. There is no way to send a usable encrypted

message to someone spontaneously. You and the other participant must make arrangements to

communicate by sharing keys.

Private-key encryption is also called symmetric encryption, because the same key is used to encrypt and

decrypt the message.

Public key encryption

Public key encryption uses a pair of mathematically related keys. A message encrypted with the first key

must be decrypted with the second key, and a message encrypted with the second key must be decrypted

with the first key.

Each participant in a public-key system has a pair of keys. The symmetric (private) key is kept secret. The

other key is distributed to anyone who wants it; this key is the public key.

To send an encrypted message to you, the sender encrypts the message by using your public key. When

you receive the message, you decrypt it by using your symmetric key. To send a message to someone,

you encrypt the message by using the recipient’s public key. The message can be decrypted with the

recipient’s symmetric key only. This kind of encryption has characteristics that make it very suitable for

general use:

v Public-key encryption requires only two keys per participant. The increase in the total number of keys is

less dramatic as the number of participants increases, compared to symmetric key encryption.

v The need for secrecy is more easily met. Only the symmetric key needs to be kept symmetric and

because it does not need to be shared, the symmetric key is less vulnerable to theft in transmission

than the shared key in a symmetric key system.

v Public keys can be published, which eliminates the need for prior sharing of a secret key before

communication. Anyone who knows your public key can use it to send you a message that only you can

read.

442 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Public-key encryption is also called asymmetric encryption, because the same key cannot be used to

encrypt and decrypt the message. Instead, one key of a pair is used to undo the work of the other.

WebSphere Application Server uses the Rivest Shamir Adleman (RSA) public and symmetric key

encryption algorithm.

With symmetric key encryption, you have to be careful of stolen or intercepted keys. In public-key

encryption, where anyone can create a key pair and publish the public key, the challenge is in verifying

that the owner of the public key is really the person you think it is. Nothing prevents a user from creating a

key pair and publishing the public key under a false name. The listed owner of the public key cannot read

messages encrypted with that key because the owner does not have the symmetric key. If the creator of

the false public key can intercept these messages, that person can decrypt and read messages intended

for someone else. To counteract the potential for forged keys, public-key systems provide mechanisms for

validating public keys and other information with digital signatures and digital certificates.

Managing digital certificates

Secure Sockets Layer (SSL) connections rely on the existence of digital certificates. A digital certificate

reveals information about its owner, including their identity. During the initialization of an SSL connection,

the server must present its certificate to the client for the client to determine the server identity. The client

can also present the server with its own certificate for the server to determine the client identity. SSL is

therefore, a means of propagating identity between components. Refer to “Configuring Secure Sockets

Layer” on page 417 and “Creating a Secure Sockets Layer repertoire configuration entry” on page 437.

A client can trust the contents of a certificate if that certificate is digitally signed by a trusted third party. A

Certificate Authority (CA) acts as a trusted third party and signs certificates on the basis of its knowledge

of the certificate requestor. Complete the following steps to manage digital certificates using either the key

management utility (iKeyman) or the keytool utility:

v Use the supplied key management utility. Refer to “Starting the key management utility (iKeyman)” on

page 446. There are two options for creating a new certificate.

– Request that a CA generates the certificates on your behalf. The CA creates a new certificate,

digitally signs it, and delivers it to the requester. Popular Web browsers are preconfigured to trust

certificates that are signed by certain CAs. No further client configuration is necessary for a client to

connect to the server through an SSL connection. Therefore, CA signed certificates are useful where

configuration for each and every client that accesses the server is impractical. Refer to “Requesting

certificate authority-signed personal certificates” on page 447, “Creating certificate signing requests”

on page 448, “Receiving certificate authority-signed personal certificates” on page 449, and

“Extracting public certificates for truststore files” on page 449.

– Generate a self-signed certificate. This option might be the quickest and require the fewest details to

create the certificate. However, the certificate is not signed by a CA. Any client that connects to this

server over an SSL connection needs configuration to trust the signer of this certificate. Therefore,

self-signed certificates are only useful when you can configure each of the clients to trust the

certificate. It is possible in some cases to present a self-signed certificate to an untrusting client. In

some Web browsers, when the certificate is received and does not match any of those listed in the

client trust file, a prompt appears asking if the certificate should be trusted for the connection and

added to the trust file. Refer to “Creating a keystore file” on page 446, “Creating truststore files” on

page 450, “Adding keystore files” on page 429, “Adding truststore files” on page 430, “Creating

self-signed personal certificates” on page 447, and “Importing signer certificates” on page 451.

You must configure server-side options. The WebSphere Application Server stores the keystore

information in the repository and the keystore files are referred to in the security.xml file. Therefore,

complete all server-side configuration through the administration console. For Java clients, refer to

“Configuring Secure Sockets Layer for Java client authentication” on page 427.

v Use the command line Java utility called keytool. With keytool, you can create a private and public

self-signed certificate key pair. For this example, the first user is cn=rocaj.

Chapter 12. Administering security 443

1. Specify RSA for the private key to ensure that the MD5 with RSA signature algorithm is used. Not

all Web browsers support the DSA cryptograph algorithm, which is the default when RSA is not

specified. Set a password of at least six characters to protect the private key. Finally, specify the

keystore file and keystore password (the option is storepass):

${WAS_HOME}/java/jre/bin/keytool -genkey -keyalg RSA -dname ″cn=rocaj, ou=users,

u=uk, DC=internetchaos, DC=com″ -alias rocaj -keypass websphere -keystore

testkeyring.jks -storepass websphere

The previous three lines of code belong on one line, but were split onto three lines due to the width

of the page.

 2. Create the second private and public self-signed certificate key pair in the same manner for the

user cn=amorv.

${WAS_HOME}/java/jre/bin/keytool -genkey -keyalg RSA -dname ″cn=amorv, ou=users,

ou=uk, DC=internetchaos, DC=com″ -alias amorv -keypass websphere -keystore

testkeyring.jks -storepass websphere

The previous three lines of code belong on one line, but were split onto three lines due to the width

of the page.

Now the keystore testkeyring.jks contains two self-signed certificates with the owner being the

same as the issuer for each certificate.

 3. Verify the integrity and authenticity of the certificates by getting each certificate signed by the

certificate authority.

a. Generate the Certificate Signing Request, CSR-1 (for the first user cn=rocaj).

${WAS_HOME}/java/jre/bin/keytool -v certreq -alias rocaj -file rocajReq.csr

-keypass websphere -keystore testkeyring.jks -storepass websphere

The previous two lines of code belong on one line, but were split onto two lines due to the

width of the page.

b. On UNIX-based platforms, remove the end of line characters (^M) from the certificate signing

request. To remove the end of line characters, type the following command:

cat rocajReq.csr |tr -d ″\r″

c. Generate the CSR-2 (for the second user cn=amorv).

${WAS_HOME}/java/jre/bin/keytool -v -certreq -alias amorv -file amorvReq.csr

-keypass websphere -keystore testkeyring.jks -storepass websphere

The previous two lines of code belong on one line, but were split onto two lines due to the

width of the page.

d. On UNIX-based platforms, remove the end of line characters (^M) from the certificate signing

request. To remove the end of line characters, type the following command:

cat amoryReq.csr |tr -d ″\r″

 4. Use the free Test SSL certificate program offered by Thawte Consulting to sign the Certificate

Signing Requests (CSRs) for this example. In each case, select the Custom Cert option and set

the certificate format to use the default for your kind of certificate. The example also selects the

Generate an X.509v3 Certificate option and saves the two resulting files as rocajRes.arm and

amorvRes.arm, respectively.

 5. Import the CA trusted root certificate into the keystore. Copy and paste the Thawte test root

certificate in BASE64-encoded ASCII data format to a file called ThawteTestCA.arm. Add the test

root CA certificate into the keystore file with the following command:

${WAS_HOME}/java/jre/bin/keytool -import -alias ″Thawte Test CA Root″ -file ThawteTestCA.arm

-keystore testkeyring.jks -storepass websphere

444 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The previous two lines of code belong on one line, but were split onto two lines due to the width of

the page.

 6. Import the two certificate responses from the CA into the keystore file using the same alias name

that was first given to the self-signed certificates. In this example, these alias names are rocaj and

amorv respectively. Using an alternative alias name generates a new signer certificate and not a

personal certificate chain.

– Import the certificate response -1 (for the first user cn=rocaj).

${WAS_HOME}/java/jre/bin/keytool -import -trustcacerts -alias rocaj -file rocajRec.arm

-keystore testkeyring.jks -storepass websphere.

Certificate reply was installed in keystore

The previous three lines of code belong on one line, but were split onto three lines due to the

width of the page.

– Import the certificate response -2 (for the second user cn=amorv).

${WAS_HOME}/java/jre/bin/keytool -import -trustcacerts -alias amorv -file amorvRec.arm

-keystore testkeyring.jks -storepass websphere.

Certificate reply was installed in keystore

The previous three lines of code belong on one line, but were split onto three lines due to the

width of the page.

 7. Launch the JSSE ikeyman utility, which supports the PKCS12 format and the private key exporting

associated with any certificate (the public key is also exported).

 8. Open the testkeyring.jks keystore file and select the first certificate from the Personal Certificates

menu.

 9. Click Export and name the file, rocajprivate.p12. Export the second personal certificate and name

it amorvprivate.p12.

10. Verify that the same root certificate of the authenticating CA is installed as a trusted authority in the

browser.

11. To install either of the personal certificates into Netscape Communicator, click Communicator >

Tools > Security Info > Certificates > Yours. Use the Import a Certificate option.

12. Enter a password or PIN for the communicator certificate database, when you attempt to import the

certificate. Enter the password used when first initializing your certificate database. Enter the

password protecting the PKCS#12 certificate file, as set when you exported the personal private

and public certificate key pair in iKeyman.

13. Click Verify to check integrity and validity of the certificate. If you did not install the root CA

certificate, your certificate fails the verification.

14. Verify that you modified your Web server to support client side certificate requests.

15. Go to the following URL: https://server_name/snoop; the Web browser prompts you to select a

personal certificate when accessing a resource protected by the SSLClientAuth directive.

16. Select the HTTPS information displayed by the snoop servlet; you see the certificate SubjectDN

matching the following: Subject: CN=amorv, OU=users, OU=uk, DC=internetchaos, DC=com.

v Refer to “Creating a Secure Sockets Layer repertoire configuration entry” on page 437 to create a new

SSL definition entry for WebSphere Application Server using the administrative console. Once a

keystore file is configured, either by creating a self-signed certificate or by creating a certificate request

and importing the reply, you can configure WebSphere Application Server to use the certificates. The

product uses the certificates to establish a secure connection with a client through SSL.

v Set up the appropriate components to use the newly-defined SSL configuration. To ensure a secure

connection, configure some non-WebSphere components, such as a Web server. A digital certificate is

created for each component. The WebSphere Application Server owns a certificate and the Web server

owns another certificate.

Refer to “Configuring IBM HTTP Server for Secure Sockets Layer mutual authentication” on page 421.

Chapter 12. Administering security 445

Setting up SSL communication between the Web browser and WebSphere Application Server. Using digital

signatures, you can communicate securely from the Web browser through the Web server to WebSphere

Application Server. Once you finish configuring security, perform the following steps to save, synchronize,

and restart the servers:

1. Click Save in the administrative console to save any modifications to the configuration.

2. Synchronize the configuration with all node agents (Network Deployment only).

3. Once synchronized, stop all servers and restart them.

Starting the key management utility (iKeyman)

It is recommended to read the documentation located in the

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file for further information.

WebSphere Application Server provides a graphical tool, the key management utility (iKeyman), for

managing keys and certificates. With the key management utility, you can:

v Create a new key database

v Create a self-signed digital certificate

v Add certificate authority (CA) roots to the key database as a signer certificate

v Request and receive a digital certificate from a CA

To start the key management utility, complete the following steps:

1. Move to the install_root/bin directory.

2. Issue one of the following commands:

v On Windows systems, ikeyman.bat

v On UNIX systems, ikeyman.sh

A graphical user interface of the key management utility appears.

Creating a keystore file

The keystore file is a key database file that contains both public keys and private keys. Public keys are

stored as signer certificates while private keys are stored in the personal certificates. The keys are used

for a variety of purposes, including authentication and data integrity. You can use both the key

management utility (iKeyman) and the keytool utility to create keystore files.

Read the documentation located at http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

for further information.

1. Start the iKeyman utility, if it is not already running.

2. Open a new key database file by clicking Key Database File > New from the menu bar.

3. Select the Key Database Type: JKS (default), PKCS12, and JCEKS. This is the key file format (or the

value of com.ibm.ssl.keyStoreType property in the sas.client.props file) when you configure the SSL

setting for your application.

4. Type in the file name and location. The full path of this key database file is used as the key file name

(or the value of the com.ibm.ssl.keyStore property in the sas.client.props file) when you configure

the SSL setting for your application.

5. Click OK to continue.

6. Then, type in password to restrict access to the file. This password is used as the key file password

(or the value of com.ibm.ssl.keyStorePassword property in the sas.client.props file) when you

configure the SSL setting for your application. Do not set an expiration date on the password or save

the password to a file; you must then reset the password when it expires or protect the password file.

This password is used only to release the information stored by the key management utility during run

time.

7. Click OK to continue. The tool displays all of the available default signer certificates. These certificates

are the public keys of the most common certificate authorities (CAs). You can add, view or delete

signer certificates from this panel.

446 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

A new SSL keystore file is created.

Prepare keystore files for an SSL connection.

Specify the keystore file in the configuration of WebSphere Application Server. Create a truststore if one

does not yet exist.

Creating self-signed personal certificates:

A self-signed personal certificate is a temporary digital certificate you issue to yourself, acting as the

certificate authority (CA). Creating a self-signed certificate creates a private key and a public key within the

key database file. The self-signed certificate is created in a keystore file and it is useful when you develop

and test your application. You can also create a self-signed personal certificate from your cryptographic

token device.

 If you want to create a self-signed certificate for a keystore, you must have already created the keystore

file. (Refer to “Creating a keystore file” on page 446 for more information.) You can later extract the public

key and add the key as a signer certificate to other truststore files.

Read the documentation in the http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file

for further information about how to create a self-signed personal certificate within a key database file.

1. Start the key management utility, if it is not already running.

2. Click Key Database file > Open to select an existing file, or click Key Database file > New to select

a new file. Select ″CMS″ for Key database type, select ″key.kdb″ for file name, and enter a directory

for the file location.

3. Click New Self-Signed from the tool bar or click Create > New Self-Signed Certificate.

4. Select the X509 version and the key size that suits your application.

5. Enter the appropriate information for your self-signed certificate:

Key Label

Give the certificate a key label, which is used to uniquely identify the certificate within the

keystore file. If you have only one certificate in each keystore file, you can assign any value to

the label. However, it is good practice to use a unique label related to the server name.

Common Name

Enter the common name. This name is the primary, universal identity for the certificate; it

should uniquely identify the principal that it represents. In a WebSphere environment,

certificates frequently represent server principals, and the common convention is to use

common names of the form host_name and server_name. The common name must be valid in

the configured user registry for the secured WebSphere environment.

Organization

Enter the name of your organization.

Optional fields

Enter the organization unit (a department or division), location (city), state and province (if

applicable), zip code (if applicable), and select the two-letter identifier of the country in which

the server belongs. For a self-signed certificate, these fields are optional. However, commercial

CAs might require them.

Validity period

Specify the lifetime of the certificate in days, or accept the default.

6. Click OK.

Your key database file now contains a self-signed personal certificate.

Create a self-signed test certificate for testing purposes. If you need a test certificate signed by a

certificate authority, follow the procedure in Creating a certification request.

Requesting certificate authority-signed personal certificates:

Chapter 12. Administering security 447

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

In a production environment, use a personal certificate signed by a certificate authority (CA). The principal

or the owner of the CA-signed personal certificate is authenticated by a CA when the CA signs the

principal certificate. Since the certificate authorities (CAs) keep their private keys secure, the signed

certificate is more trustworthy than a self-signed certificate. Certificate authorities are entities that issue

valid certificates for other entities. Well-known CAs include VeriSign, Entrust, and GTE CyberTrust. You

can request a test certificate or a production certificate from some of the CAs like VeriSign.

 The authentication process by a CA can take time. Commercial CAs often require up to a week to

complete their authentication process. Even on-site CAs can take several minutes, if not hours, or even

days, to complete their authentication process. Therefore, you must plan for the certificates that you need.

Considering the following points when you plan for the CA-signed certificate:

v On the certificate signing request that you send to the CA, specify the common name for the certificate.

The common name is the primary, universal identity for the certificate. It should uniquely identify the

principal that it represents. Verify that the common name is valid in the configured user registry for the

WebSphere domain.

v Check the formatting of the address fields that your CA requires when planning the address for a

certificate request.

1. Create and send a certificate signing request (CSR) to the CA.

2. Visit the CA Web site and follow the instructions to request a test or production certificate.

Once the request is accepted, the certificate authority verifies your identity and finally issues a signed

certificate to you. The certificate is usually sent through e-mail.

Request a production certificate from a trusted CA for the production WebSphere Application Server

environment. Once you receive the e-mail from the CA, follow the instructions to store your signed

certificate as a file. Receive or store the certificate into the keystore file as a personal certificate.

Creating certificate signing requests:

To obtain a certificate from a certificate authority, submit a certificate signing request (CSR) using the key

management utility (iKeyman). You can request either production or test certificates from a CA with a CSR.

With the key management utility, generating a certificate signing request also generates a private key for

the application for which the certificate is requested. The private key remains in the application keystore

file, so it stays private. The public key is included in the certificate requested.

 For information on how to create a certificate signing request from a key database file, see the

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file.

1. Start the key management utility, if it is not already running.

2. Open the key database file from which you want to generate the request.

3. Type the password and click OK.

4. Click Create > New Certificate Request. The Create New Key and Certificate Request window

displays.

5. Type a Key Label, a Common Name, and Organization; and select a Country. For the remaining

fields, accept the default value, type a value, or select new values. The common name must be valid

in the configured user registry for the secured WebSphere environment.

6. Type in a name for the file, such as certreq.arm.

7. Click OK to complete.

8. Optional: On UNIX-based platforms, remove the end of line characters (^M) from the certificate

signing request. To remove the end of line characters, type the following command:

cat certreq.arm |tr -d ″\r″ > new_certreq.arm

448 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

9. Send the certreq.arm file to the certificate authority (CA) following the instructions from the CA Web

site for requesting a new certificate.

The Personal Certificate Requests list shows the key label of the new digital certificate request you just

created. Send the file to a CA to request a new digital certificate, or cut and paste the request into the

request forms of the CA Web site.

You need to request a certificate authority-signed digital certificate for your secure WebSphere domain.

Once you submit the certificate signing request, wait for the CA to accept the request. After the CA has

verified your identity, it sends back the signed certificate usually through e-mail. Receive the signed

certificate back to the keystore file from which you generated the CSR.

Receiving certificate authority-signed personal certificates:

Once the certificate signing request (CSR) is accepted, a certificate authority (CA) processes the request

and verifies your identity. Once approved, the CA sends the signed certificate back through e-mail. Store

the signed certificate in a keystore database file. This procedure describes how to receive the CA-signed

certificate into a keystore file using the key management utility (iKeyman). You use this utility the same

way for both test certificates and production certificates. The primary difference between the two certificate

types is the amount of time it takes for the CA to authenticate the principal your certificate represents. Test

certificates are authenticated automatically based on some simple edit checks and returned to you within a

few hours. Production certificates may take several days or a week to authenticate and return to you. If the

CSR request is made for the cryptographic token, the certificate must be received into that token. If the

request is made for the secondary key database of the token, the certificate must be received into that

database.

 Receive the signed certificate from the CA through e-mail. Follow the instructions from the CA to store the

certificate into a file.

Read the http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file for further information

about how to receive a personal certificate into a key database file from the CA.

1. Start IKeyman, if it is not already running.

2. Open the key database file from which you generated the request.

3. Type the password and click OK.

4. Select Personal Certificates from the pull-down list.

5. Click Receive.

6. Click Data type and select the data type of the new digital certificate, such as Base64-encoded ASCII

data. Select the data type that matches the CA-signed certificate. If the CA sends the certificate as part

of an E-mail message, you may first need to cut and paste the certificate into a separate file.

7. Type the certificate file name and location for the new digital certificate, or click Browse to locate the

CA-signed certificate.

8. Click OK.

9. Type a label for the new digital certificate and click OK.

The personal certificate list now displays the label you just gave for the new CA-signed certificate.

Once the CA-signed certificate is successfully received, you can extract or export the public key of the

certificate to a file for distribution to the network.

Extracting public certificates for truststore files:

Use this procedure to extract a public certificate, which includes its public key, from a keystore file. If a

target truststore file already contains the signer certificate of the certificate authority (CA) that signed the

Chapter 12. Administering security 449

certificate, you do not need to extract and add the certificate to the target truststore file. However, in

general, you need to complete this procedure for a self-signed certificate.

 Extracting a certificate from one keystore file and adding it to a truststore file is not the same as exporting

the certificate and then importing it. Exporting a certificate copies all the certificate information, including its

private key, and is normally only used if you want to copy a personal certificate into another keystore file

as a personal certificate.

If a certificate is self-signed, extract the certificate and its public key from the keystore file and add it to the

target truststore file.

If a certificate is CA-signed, verify that the CA certificate used to sign the certificate is listed as a signer

certificate in the target truststore file. The keystore file must already exist and contain the certificate to be

extracted.

Read the http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip file for further information

about how to extract a public certificate from a key database file.

1. Start the key management utility (iKeyman), if it is not already running.

2. Open the keystore file from which the public certificate will be extracted.

3. Select Personal Certificates.

4. Click Extract Certificate.

5. Click Base64-encoded ASCII data under Data type.

6. Enter the Certificate File Name and Location.

7. Click OK to export the public certificate into the specified file.

A certificate file that contains the public key of the signed personal certificate is now available for the target

truststore file.

Prepare truststore files for distributing the public keys to support the secure WebSphere domain using

Secure Sockets Layer (SSL). Once the keystore and truststore files are ready, make them accessible by

specifying them in your client and server configurations.

Creating truststore files

A truststore file is a key database file that contains the public keys for target servers. The public key is

stored as a signer certificate. If the target uses a self-signed certificate, extract the public certificate from

the server keystore file. Add the extracted certificate into the truststore file as a signer certificate. For a

commercial certificate authority (CA), the CA root certificate is added. The truststore file can be a more

publicly accessible key database file that contains all the trusted certificates.

Read the documentation located at http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

for further information.

1. Start the key management utility (iKeyman), if it is not already running.

2. Open a new key database file by clicking Key Database File > New from the menu bar.

3. Click the Key Database Type: JKS(Default), PKCS12, and JCEKS. The key database type is the trust

file format (or the value of the com.ibm.ssl.trustStoreType property in the sas.client.props file)

when you configure the SSL setting for your application.

4. Type in the file name and location. The full path of this key database file is used as the trust file name

(or the value of com.ibm.ssl.trustStore property in the sas.client.props) when you configure the

SSL setting for your application.

5. Click OK to continue.

6. Type in a password to restrict access to the file. This password is used as the trust file password (or

the value of the com.ibm.ssl.trustStorePassword property in the sas.client.props file) when you

configure the SSL setting for your application. Do not set an expiration date on the password or save

450 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

the password to a file. You must reset the password when it expires or protect the password file. This

password is used only to release the information stored by the key management utility during run time.

7. Click OK to continue. The tool now displays all of the available default signer certificates. These are

the public keys of the most common CAs. You can add, view or delete signer certificates from this

screen.

A new SSL truststore file is created.

Prepare truststore files for an SSL connection. Specify the truststore file in the configuration of WebSphere

Application Server. Create a keystore file if one does not exist.

Importing signer certificates:

A signer certificate is the trusted certificate entry that is usually in a truststore file. You can import a

certificate authority (CA) root certificate from the CA, or a public certificate from the self-signed personal

certificate of the target into your truststore file, as a signer certificate.

 Read the documentation located in http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

file for further information.

 1. Start the key management utility (iKeyman), if it is not already running.

 2. Open the truststore file. The Password Prompt window displays.

 3. Type the password and click OK.

 4. Select Signer Certificates from the menu.

 5. Click Add.

 6. Click Data type and select a data type, such as Base64-encoded ASCII data. This data type must

match the data type of the importing certificate.

 7. Type a certificate file name and location for the CA root digital certificate or click Browse to select the

name and location.

 8. Click OK.

 9. Type a label for the importing certificate.

10. Click OK.

The Signer Certificates field now displays the label of the signer certificate you just added. Receive a CA

root certificate or the public key from your secure target.

Map certificates to users

Client-side certificates support access to secured resources from Web or Java clients. A client presents an

X.509-compliant digital certificate to perform mutual authentication with a single sockets layer-enabled

server. The product security run time attempts to map the certificate to a known user in the associated

Lightweight Directory Access Protocol (LDAP) directory or the custom registry. If the certificate successfully

maps to a user, then the holder of the certificate is regarded as the user in the registry and is authorized

as this user. In the case of LocalOS registry, the DN is parsed and the name between the first equals (=)

and comma (,) is used as the mapped name. If the DN does not contain the ″=″, the complete name is

used. If there is no ″,″ in the DN, everything after the ″=″ is used as the name.

After the single sockets layer-enabled server gets the client certificate, the server needs to map the

certificate to a user. WebSphere Application Server supports two techniques for mapping certificates to

entries in LDAP registries:

v By exact distinguished name

v By matching attributes in the certificate to attributes of LDAP entries

1. Map by exact distinguished name (DN).

Chapter 12. Administering security 451

This approach attempts to map the distinguished name (DN) associated with the Subject field in the

certificate to an entry in the LDAP directory. If the mapping is successful, the user is authenticated and

is authorized according to the privileges granted to the identity in the LDAP directory.

The mapping is case insensitive. For example, the following two DNs match on a case-insensitive

comparison:

"cn=Smith, ou=NewUnit, o=NewCompany, c=us"

"cn=smith, ou=newunit, o=NewCompany, c=US"

If a match is found, authentication succeeds; if no match is found, authentication fails.

2. Map by filtering certificate attributes.

This approach maps certificate attributes to attributes of entries in an LDAP directory. For example,

you can specify that the common name (CN) attribute of the Subject field in the certificate must match

the uid attribute of your LDAP entry. If the mapping is successful, the user is authenticated and is

authorized according to the privileges granted to the identity in the LDAP directory.

If you are matching the Subject CN field in the certificate to the uid attribute of the LDAP entry, a

certificate with the Subject DN ″cn=Smith, ou=NewUnit, o=NewCompany, c=us″ matches an LDAP user

entry with uid=Smith.

To use this mapping technique, you must request certificate mapping and set up the certificate filter in

the administrative console.

This specification extracts the CN field from the Subject attribute in the certificate (Smith) and creates a

filter (user ID = Smith) from it. The LDAP directory is searched for a user entry that matches the filter. If an

entry matches the filter, authentication succeeds.

Note: The search and match of the LDAP directory are based in part on how your LDAP directory is

configured.

Changes to IBM Developer Kit for Java Technology Edition Version

1.4.x

WebSphere Application Server, Version 5.1 includes the IBM Developer Kit, Java Technology Edition

Version 1.4.x, which contains changes to the IBM Developer Kit, Java Technology Edition Version 1.3.x.

This document is intended to assist application developers and system administrators in understanding the

changes.

Security packaging changes in IBM Developer Kit, Java Technology Edition Version 1.4.x

In IBM Developer Kit, Java Technology Edition Version 1.4.x, many of the security technologies have been

included in the core of the IBM Developer Kit, Java Technology Edition Version 1.4.x. Because of the

packaging changes, we are supporting specific java.security configurations for each platform. This

document discusses the impact these java.security configuration changes have on each platform.

Security providers for the Windows, Linux, and AIX platforms

The Windows, Linux, and AIX platforms use all of the IBM security provider implementations, which is

similar to how IBM Developer Kit, Java Technology Edition Version 1.3.x shipped. Because the security

technologies in IBM Developer Kit, Java Technology Edition Version 1.3.x, were not part of the core, these

technologies were shipped in the java/jre/lib/ext directory and provided more flexibility in implementing

the technologies. Only those JSSE providers configured by WebSphere Application Server are supported.

The following list shows the providers and sequence of how these providers are supported on the

Windows, Linux, and AIX platforms. Add any additional providers at the end of this list of providers. The

IBMJSSE, IBMJSSE2 and IBMJSSEFIPS providers are the only SSL providers supported on these

platforms. You must configure HTTP and JMS transports to use the IBMJSSE2 providers because they

use the channel framework (asynchronous network I/O (NIO) APIs from Java SDK 1.4.2). The NIO APIs

only work with the IBMJSSE2 provider and the channel framework.

452 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

security.provider.1=com.ibm.crypto.provider.IBMJCE

security.provider.2=com.ibm.jsse.IBMJSSEProvider

security.provider.3=com.ibm.security.jgss.IBMJGSSProvider

security.provider.4=com.ibm.security.cert.IBMCertPath

security.provider.5=com.ibm.crypto.pkcs11.provider.IBMPKCS11

Security providers for the Sun Solaris environment

In the Sun Solaris environment, by default, we are using the IBM JSSE framework classes. These classes

enable you to plug-in the IBMJSSE, IBMJSSE2, and IBMJSSEFIPS providers. You must configure HTTP

and JMS transports to use the IBMJSSE2 providers because they use the channel framework

(asynchronous network I/O (NIO) APIs from Java SDK 1.4.2). The NIO APIs only work with the IBMJSSE2

provider and the channel framework.

The following list shows thee default provider lists for the Sun Solaris environment. Add any additional

providers to the end of this list.

security.provider.1=com.ibm.security.jgss.IBMJGSSProvider

security.provider.2=sun.security.provider.Sun

security.provider.3=com.ibm.crypto.provider.IBMJCE

security.provider.4=com.ibm.jsse.IBMJSSEProvider

security.provider.5=com.ibm.security.cert.IBMCertPath

security.provider.6=com.ibm.crypto.pkcs11.provider.IBMPKCS11

Note: You only need to uncomment the IBMPKCS11 provider when using IKeyMan to access a

cryptographic token device. The WAS runtime now uses the IBMPKCS11Impl provider for

cryptographic token access, instead of the IBMPKCS11 provider. To get more information on this

provider, please see ″Security: Resources for Learning″ for information on this provider.

Security providers for the HP-UX platform

In the HP-UX environment, by default, IBM JSSE framework classes are used. These classes enable you

to plug-in the IBMJSSE, IBMJSSE2 and IBMJSSEFIPS providers. You must configure HTTP and JMS

transports to use the IBMJSSE2 providers because they use the channel framework (asynchronous

network I/O (NIO) APIs from Java SDK 1.4.2). The NIO APIs only work with the IBMJSSE2 provider and

the channel framework.

security.provider.1=com.ibm.security.jgss.IBMJGSSProvider

security.provider.2=sun.security.provider.Sun

security.provider.3=com.ibm.crypto.provider.IBMJCE

security.provider.4=com.ibm.jsse.IBMJSSEProvider

security.provider.5=com.ibm.security.cert.IBMCertPath

security.provider.6=com.ibm.crypto.pkcs11.provider.IBMPKCS11

Note: You must uncomment the IBMPKCS11 provider when using IKeyMan to access a cryptographic

token device. The WAS runtime now uses the IBMPKCS11Impl provider for cryptographic token

access, instead of the IBMPKCS11 provider. To obtain more information about this provider, see the

″Security: Resources for Learning″ article.

Changes to the CertPath API package name

In IBM Developer Kit, Java Technology Edition Version 1.3.x, the package for CertPath APIs was

javax.security.cert.*. However, in IBM Developer Kit, Java Technology Edition Version 1.4.x, the package

has changed to java.security.cert.*. While your applications might still work using javax.security.cert.* due

to the oldcertpath.jar packaged in ${WAS_INSTALL_ROOT}/java/jre/lib/ext/oldcertpath.jar file, change

your applications to use the new package name for CertPath from this point forward. In this release, either

Chapter 12. Administering security 453

package name should work, but it is recommended that you use the correct package, which is

java.security.cert.*.

Known problems with IBM Developer Kit, Java Technology Edition Version 1.4.x

For a list of known problems with the various platforms related to the IBM Developer Kit, Java Technology

Edition Version 1.4.x changes, please review the release notes for WebSphere Application Server, Version

5.1.

There are some known issues with the the IBMJSSE2 provider:

v When configuring a cryptographic token device, you must use the IBMJSSE2 provider. There is a

dependency on the new IBMPKCS11Impl provider for cryptographic token support. This provider can

only be initialized once in a JVM, and is done programmatically by the WebSphere Application Server

runtime when a cryptographic token device is configured. The user of the IBMPKCS11Impl provider in

applications is not supported unless the cryptographic token device is not configured for use by

WebSphere Application Server.

v FIPS support does not exist for the IBMJSSE2 provider because there currently is not an IBMJCEFIPS

that can be used with IBMJSSE2.

v Any transport using the channel framework, including HTTP and JMS, must use the IBMJSSE2

provider.

v Any transport using the channel framework, including HTTP and JMS, must use the IBMJSSE2

provider.

v To use AES_256 ciphers for IBMJSSE2, you must download the JCE Unlimited Strength Jurisdiction

Policy.

v IBMJSSE2 provider’s HTTPS protocol handler is ″com.ibm.net.ssl.www2.protocol.Handler″. The

package to add to the package handler property is ″com.ibm.net.ssl.www2.protocol″.

Cryptographic token support

A cryptographic token is a hardware or software device with a built-in keystore implementation. The

cryptographic device is used to manage certificates stored on the cryptographic tokens (also known as

smartcards).

Both cryptographic accelerators, where the cryptographic hardware device has no persistent key storage,

and secure cryptographic hardware, where a cryptographic token generates and securely stores the

private key used for Secure Sockets Layer (SSL) key exchange, are supported in the product.

Hardware cryptographic token support has changed providers in Version 6. In Version 5 and before,

WebSphere Application Server used com.ibm.crypto.pkcs11.provider.IBMPKCS11 provider for hardware

crypto support along with the old IBMJSSE provider for SSL. The IBMPKCS11 provider is still used when

accessing hardware using IKeyMan. The IBMJSSE provider can still be used, if necessary, for SSL.

Note: To use cryptographic token devices in the Solaris Operating Environment, you must edit the

${WAS_INSTALL_ROOT}/java/jre/lib/security/java.security file. Uncomment the line containing

com.ibm.crypto.pkcs11.provider.IBMPKCS11. By default, the line is commented out because the

algorithm MD4 is not present in the IBMPKCS11 provider.

The WebSphere Application Server runtime in Version 6 now uses the

com.ibm.crypto.pkcs11impl.provider.IBMPKCS11Impl provider for hardware crypto support and the

IBMJSSE2 provider for SSL. Both the IBMPKCS11Impl and IBMJSSE2 providers are initialized

programmatically. The IBMPKCS11Impl provider is only initialized when hardware crypto is configured in

one of the SSL repertoire configurations. Once IBMPKCS11Impl provider is configured, the IBMPKCS11

provider cannot be used in the system since only one provider can initialize a hardware crypto card in the

same process.

454 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Please see the following document for more information on the IBMPKCS11Impl provider:

http://www.ibm.com/developerworks/java/jdk/security/142/pkcs11implDocs.zip

Please see the following document for more information on the IBMJSSE2 provider:

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2docs.zip

Opening a cryptographic token using the key management utility

(iKeyman)

Verify that your cryptographic token device is installed and functions properly. Create a cryptographic

token, following the instructions provided by the manual of the cryptographic device.

From your cryptographic token device documentation, identify the token library. For example, the IBM 4758

PCI Cryptographic Card uses CRYPTOKI.DLL as the PKCS#11-type token library (see

http://www.ibm.com/security/cryptocards/html/library.shtml for details).

Read the documentation located in the

http://www.ibm.com/developerworks/java/jdk/security/142/ikmuserguide.pdf file for further information about

using the key management utility (iKeyman).

Important: To use iKeyMan for key management with a cryptographic token device, you must edit the

${WAS_INSTALL_ROOT}/java/jre/lib/security/java.security file. Uncomment the line containing

com.ibm.crypto.pkcs11.provider.IBMPKCS11.

You can use the key management utility to open a cryptographic token. Once opened, you can manage

your keys and certificates just like you do with keystore and truststore files:

v Create a self-signed digital certificate

v Extract or add both certificate authority (CA) roots and personal certificate signer certificates

v Request and receive a digital certificate from a CA

1. Start the key management utility, if it is not already running.

2. Click Key DataBase File > Open.

3. Click Cryptographic Token from the list of key database types.

4. Fill in the information for File Name and Location, or browse for the cryptographic device library.

5. Click OK to open the library.

6. Type in the slot number in the next panel. This is the number of the slot in which you previously

created the cryptographic token.

7. Enter the password. This is the password configured for the cryptographic token that you created.

All of the personal and signer certificates are stored on the cryptographic token card. With the token open,

you can create or request digital certificates and receive CA-signed certificates.

Use a cryptographic token device as a key database to manage keys and certificates for an SSL

connection. Once the cryptographic token is open, you can add or delete keys and certificates. Configure

the cryptographic token settings in WebSphere Application Server.

Configuring to use cryptographic tokens

You can configure cryptographic token support in both client and server configuration. To configure a Java

client application, use the sas.client.props configuration file. By default, the sas.client.props is located

in the install_root/profiles/profile_name/properties/ directory of your WebSphere Application Server

installation. To configure WebSphere Application Server, start the administrative console by specifying the

following URL: http://server_hostname:9060/ibm/console.

Chapter 12. Administering security 455

http://www.ibm.com/security/cryptocards/html/library.shtml

To understand how to make WebSphere Application Server (both the run time and the key management

utility) work correctly with any cryptographic token device, become familiar with the Java Secure Socket

Extension (JSSE) documentation available in the

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2docs.zip. and

http://www.ibm.com/developerworks/java/jdk/security/142/ikmuserguide.pdf files.

Follow the documentation that accompanies your device to install your cryptographic device. Installation

instructions for IBM cryptographic hardware devices can be found in the Administration section of

“Security: Resources for learning” on page 21.

Note: You cannot use cryptographic token devices when you have Federal Information Processing

Standard (FIPS) enabled.

Important: To use iKeyMan for key management with a cryptographic token device, you must edit the

${WAS_INSTALL_ROOT}/java/jre/lib/security/java.security file. Uncomment the line

containing com.ibm.crypto.pkcs11.provider.IBMPKCS11.

WebSphere Application Server Version 6 and later runtime uses the IBMPKCS11Impl provider

instead of the IBMPKCS11 provider for hardware crypto support. See

http://www.ibm.com/developerworks/java/jdk/security/142/pkcs11implDocs.zip for more

information. Refer to the ″IBM Java PKCS 11 Implementation Provider.htm″ document located

in this zip file.

Note: To use cryptographic token devices in the Solaris Operating Environment, you must edit the

${WAS_INSTALL_ROOT}/java/jre/lib/security/java.security file. Uncomment the line containing

com.ibm.crypto.pkcs11.provider.IBMPKCS11. By default, the line is commented out because the

algorithm MD4 is not present in the IBMPKCS11 provider.

1. To configure a client to use a cryptographic token, edit the sas.client.props file and set the following

properties. Leave the KeyStore File Name, KeyStore File Password, TrustStore File Name,

TrustStore File Password fields in a Secure Sockets Layer (SSL) configuration blank (or comment

out the properties com.ibm.ssl.trustStore, com.ibm.ssl.trustStorePassword, com.ibm.ssl.keyStore, and

com.ibm.ssl.keyStorePassword, using a # in front of the property name) , if you want to use only

cryptographic tokens as your keystore.

com.ibm.ssl.tokenType

Specifies the type of built-in keystore file that is implemented in the cryptographic token. (For

example, com.ibm.ssl.tokenType=PKCS\#11). The valid values are: PKCS\#7, PKCS\#11,

PKCS\#12, and MSCAPI.

com.ibm.ssl.tokenLibraryFile

Specifies the token file name for PKCS#7 tokens, PKCS#12 tokens, and the library name for

PKCS#11, MSCAPI tokens. Make sure the cryptographic token device is installed and

functions properly with a cryptographic token created.

com.ibm.ssl.tokenPassword

Specifies the password to unlock the cryptographic token.

2. Configure your server to use the cryptographic device. Leave the KeyStore File Name, KeyStore File

Password, TrustStore File Name, TrustStore File Password fields in an SSL configuration blank, if

you want to use only cryptographic tokens as your keystore. You can modify an existing configuration if

you click Security > SSL > alias. You must specify an alias and select the Cryptographic token

option. The following directions explain how to configure WebSphere Application Server for a new

cryptographic device.

a. Specify http://server_hostname:9060/ibm/console to start the administrative console.

b. Click Security > SSL to open the SSL Configuration Repertoires panel. You must decide if you

want to modify existing SSL repertoire entries to convert them to use hardware cryptographic

devices, or create new SSL repertoire entries for the new configuration. The former is easiest as

this does not require you to change any of the alias references elsewhere in the configuration.

Each protocol picks up the new configuration since it’s already referencing these existing aliases.

456 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2docs.zip.
http://www.ibm.com/developerworks/java/jdk/security/142/ikmuserguide.pdf

The latter is a little more difficult as you might not change every location that needs to be

referenced by the new aliases. However, you have more control over which protocols actually use

the cryptographic token device. If you want a specific protocol to use the cryptographic token

device, it is best to create a new SSL repertoire for the cryptographic token device, then associate

the alias of the new SSL repertoire with the specific protocol’s SSL configuration.

c. Click New JSSE Repertoire to create a new SSL setting alias if you do not want to use the

default.

d. Specify an alias name in the alias field for the new cryptographic device. After you configure the

cryptographic device, the alias appears on the Secure Sockets Layer (SSL) configuration

repertoires panel. To access the panel, click Security > SSL.

e. Select Cryptographic token check box and click OK. This opens the Cryptographic token -

General Properties panel.

f. Complete the information for Token Type to specify the type of built-in keystore file that is

implemented in the cryptographic token. The valid values are: PKCS#7, PKCS#11, PKCS#12,or

MSCAPI.

g. Complete the information for Library File to specify the path to the cryptographic device driver.

Make sure the cryptographic token device is installed and functions properly with a new

cryptographic token.

h. Complete the information for Password to specify the password for unlocking the cryptographic

device.

i. Click OK. This returns you to the SSL configuration repertoires - General Properties panel for

this alias.

j. Optionally, to configure a specific Token Slot for the cryptographic token device, click Custom

Properties from the SSL configuration repertoires - General Properties panel. Add a new property

name, com.ibm.ssl.tokenSlot, and a property value with the slot number, for example: 0.

Optionally, to configure the selection of a specific inbound certificate alias (the alias selected for

server transports) within the configured slot, add a new property name,

com.ibm.ssl.keyStoreServerAlias, with a property value equal to the certificate alias name as it

appears when viewing the slot through iKeyMan. Optionally, to configure the selection of a specific

outbound certificate alias (the alias selected for client transports) within the configured slot, add a

new property name, com.ibm.ssl.keyStoreClientAlias, with a property value equal to the certificate

alias name as it appears when viewing the slot through iKeyMan, for example. Click OK to exit the

Custom Properties panel and return to the SSL configuration repertoires - General Properties panel.

k. Make sure the SSL configurations when associated with a transport have the appropriate signers

added to the truststore or cryptographic token device so that they can contact all servers for which

they are configured. For example, any CSIv2 outbound transport should have signers for all CSIv2

inbound transports that they are connecting to. This means that all CSIv2 inbound keystores (or

cryptographic token devices) must have the public key of personal certificates extracted, and added

as signers to the CSIv2 outbound truststores (or cryptographic token devices).

l. The following lists the locations of where SSL configuration repertoire aliases are used in the

WebSphere Application Server configuration:

For any transports that use the new NIO channel chains, including HTTP and JMS, you can modify

the aliases from the following location for each server:

v Click Server > Application server >server_name. Under Communications, click Ports. Locate a

transport chain where SSL is enabled and click View associated transports. Click

transport_channel_name. Under Transport Channels, click SSL Inbound Channel (SSL_2).

For the Object Request Broker (ORB) SSL transports, you can modify the SSL configuration

repertoire aliases in the following locations. These configurations are for the server-level for

WebSphere Application Server and WebSphere Application Server Express and the cell level for

WebSphere Application Server Network Deployment.

v Click Security > Global security. Under Authentication, click Authentication protocol > CSIv2

Inbound Transport.

Chapter 12. Administering security 457

v Click Security > Global security. Under Authentication, click Authentication protocol > CSIv2

Outbound Transport.

v Click Security > Global security. Under Authentication, click Authentication protocol > SAS

Inbound Transport.

v Click Security > Global security. Under Authentication, click Authentication protocol > SAS

Outbound Transport.

For the Simple Object Access Protocol (SOAP) Java Management Extensions (JMX) administrative

transports, you can modify the SSL configurations repertoire aliases by clicking Servers >

Application servers >server_name. Under Server infrastructure, click Administration >

Administration services. Under Additional properties, click JMX connectors > SOAPConnector.

Under Additional properties, click Custom properties. If you want to point the sslConfig property to

a new alias, click sslConfig and select an alias in the Value field.

For the Lightweight Directory Access Protocol (LDAP) SSL transport, you can modify the SSL

configuration repertoire aliases by clicking Security > Global security. Under User registries, click

LDAP.

m. Finish configuring the SSL settings for this alias. When using hardware cryptographic tokens, you

must use a JSSE provider of type IBMJSSE2. The IBMPKCS11Impl provider only works with the

IBMJSSE2 provider.

3. Now that you have the aliases configured in the SSL configuration repertoires panel, you must

associate the aliases with each protocol that needs to use them. If you edited existing aliases, you do

not need to make any changes since they are already associated with SSL protocols. However, if you

created new aliases and want to rearrange this existing alias association, then proceed to the next

step.

4. Repeat steps a. through l. to edit existing or create new SSL configuration repertoires for creating a

cryptographic token configuration for use by the IBMJSSE2 provider.

5. Click OK to complete the editing of the SSL configuration repertoire for this alias.

The WebSphere Application Server configuration is configured to take advantage of a cryptographic token

device for cryptographic functions used by SSL This can improve the system performance over software

encryption when SSL is used to protect your data transferred over the network.

WebSphere Application Server uses the cryptographic token as a keystore file for and SSL connection.

If the server configuration has changed, restart the configured server.

Cryptographic token settings

Use this page to configure cryptographic token settings. A cryptographic token is a hardware or software

device with a built-in key store implementation. The cryptographic device is used to manage certificates

stored on the cryptographic tokens. These devices are also known as smartcards.

The following types of cryptographic accelerators are supported by WebSphere Application Server:

v A cryptographic hardware device that is without a persistent key storage.

v Secure cryptographic hardware, where a cryptographic token generates and securely stores the private

key used for Secure Sockets Layer (SSL) key exchange.

To view this administrative console page, click Security > SSL > alias_name. Under Additional Properties,

click Cryptographic token.

Token type

Specifies the type of built-in keystore file that is implemented in the cryptographic token, such as

PKCS#11.

458 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The WebSphere Application Server uses an implementation of Java Secure Socket Extension (JSSE) to

support cryptographic token with Secure Sockets Layer (SSL). Different cryptographic devices are

supported. For an SSL server, the following devices are supported:

v IBM 4758-23

v nCipher nForce

v Rainbow Cryptoswift

For an SSL client, the following devices are supported:

v IBM 4758-23

v nCipher nForce

v Rainbow Cryptoswift

v IBM Security Kit Smartcard

v GemPlus Smartcards

v Rainbow iKey 1000/2000 (USB ″Smartcard″ device)

v Eracom CSA8000

Follow the documentation that accompanies your device to install your cryptographic token.

 Data type: String

Library file

Specifies the dynamic link library (DLL) or shared object that implements the interface to the cryptographic

token device.

 Data type: String

Password

Specifies the password for the cryptographic token device.

 Data type: String

Using Java Secure Socket Extension and Java Cryptography

Extension with Servlets and enterprise bean files

Java Secure Socket Extension

Java Secure Socket Extension (JSSE) provides the transport security for WebSphere Application Server. It

provides application programming interface (API) framework and the implementation of the APIs, for

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols, including functionality for data

encryption, message integrity and authentication.

JSSE APIs are integrated into the Java 2 SDK, Standard Edition (J2SDK), Version 1.4. The API package

for JSSE APIs is javax.net.ssl.*. Documentation for using JSSE APIs can be found in the J2SE 1.4.2

JavaDoc located at http://java.sun.com/j2se/1.4.2/docs/api/index.html.

Several JSSE providers ship with the J2SDK 1.4 that comes with WebSphere Application Server. The

IBMJSSE provider is used in previous WebSphere releases. Associated with the IBMJSSE provider is the

IBMJSSEFIPS provider, which is used when FIPS is enabled on the server. Both of these providers do not

work with the JMS and HTTP transports in WebSphere Application Server Version 6. These transports

take advantage of the J2SDK 1.4 network input/output (NIO) asynchronous channels.

The HTTP and JMS transports use a new IBMJSSE2 provider. All other transports in WebSphere

Application Server Version 6 currently use the IBMJSSE2 provider, but can be switched to the old

Chapter 12. Administering security 459

IBMJSSE provider, if necessary (specified in the SSL repertoire configuraiton). You can specify the

IBMJSSEFIPS provider for all transports with the exception of JMS and HTTP.

For more information on the new IBMJSSE2 provider, please review the documentation located in

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2docs.zip. Once unzipped, the JSSE2

Reference Guide can be found at jsse2Docs/JSSE2RefGuide.html, the JSSE2 API documentation can be

found at jsse2Docs/api/index.html and finally, the JSSE2 samples can be found at jsse2Docs/samples.

Customizing Java Secure Socket Extension

You can customize a number of aspects of JSSE by plugging in different implementations of Cryptography

Package Provider, X509Certificate and HTTPS protocols, or specifying different default keystore files, key

manager factories and trust manager factories. A provided table summarizes which aspects can be

customized, what the defaults are, and which mechanisms are used to provide customization. Some of the

key customizable aspects follow:

 Customizable item Default How to customize

X509Certificate X509Certificate

implementation from IBM

cert.provider.x509v1 security property

HTTPS protocol Implementation from IBM java.protocol.handler.pkgs system property

Cryptography Package Provider IBMJSSE A security.provider.n= line in security properties file.

See description.

Default keystore None * javax.net.ssl.keyStore system property

Default truststore jssecacerts, if it exists.

Otherwise, cacerts

* javax.net.ssl.trustStore system property

Default key manager factory IbmX509 ssl.KeyManagerFactory.algorithm security property

Default trust manager factory IbmX509 ssl.TrustManagerFactory.algorithm security property

For aspects that you can customize by setting a system property, statically set the system property by

using the -D option of the Java command (you can set the system property using the administrative

console), or set the system property dynamically by calling the java.lang.System.setProperty method in

your code: System.setProperty(propertyName,″propertyValue″).

For aspects that you can customize by setting a Java security property, statically specify a security

property value in the java.security properties file located in the install_root/java/jre/lib/security

directory. The security property is propertyName=propertyValue. Dynamically set the Java security property

by calling the java.security.Security.setProperty method in your code.

Application Programming Interface

The JSSE provides a standard application programming interface (API) available in packages of the

javax.net file, javax.net.ssl file, and the javax.security.cert file. The APIs cover:

v Sockets and SSL sockets

v Factories to create the sockets and SSL sockets

v Secure socket context that acts as a factory for secure socket factories

v Key and trust manager interfaces

v Secure HTTP URL connection classes

v Public key certificate API

You can find more information documented for the JSSE APIs if you download and unzip the

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2Docs.zip and look at the

jsse2Docs/api/index.html file.

460 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Samples using Java Secure Socket Extension

The Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. The

Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. Download

and unzip the samples included in the

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2Docs.zip file. Look in the

jsse2Docs/samples/ directory for the following files:

 Files Description

ClientJsse.java Demonstrates a simple client and server interaction using

JSSE. All enabled cipher suites are used.

OldServerJsse.java Back-level samples

ServerPKCS12Jsse.java Demonstrates a simple client and server interaction using

JSSE with the PKCS12 keystore file. All enabled cipher

suites are used.

ClientPKCS12Jsse.java Demonstrates a simple client and server interaction using

JSSE with the PKCS12 keystore file. All enabled cipher

suites are used.

UseHttps.java Demonstrates accessing an SSL or non-SSL Web server

using the Java protocol handler of

thecom.ibm.net.ssl.www.protocol class. The URL is

specified with the http or https prefix. The HTML

returned from this site displays.

See more instructions in the source code. Follow these instructions before you run the samples.

Permissions for Java 2 security

You might need the following permissions to run an application with JSSE: (This is a reference list only.)

v java.util.PropertyPermission ″java.protocol.handler.pkgs″, ″write″

v java.lang.RuntimePermission ″writeFileDescriptor″

v java.lang.RuntimePermission ″readFileDescriptor″

v java.lang.RuntimePermission ″accessClassInPackage.sun.security.x509″

v java.io.FilePermission ″${user.install.root}${/}etc${/}.keystore″, ″read″

v java.io.FilePermission ″${user.install.root}${/}etc${/}.truststore″, ″read″

For the IBMJSSE provider:

v java.security.SecurityPermission ″putProviderProperty.IBMJSSE″

v java.security.SecurityPermission ″insertProvider.IBMJSSE″

For the SUNJSSE provider:

v java.security.SecurityPermission ″putProviderProperty.SunJSSE″

v java.security.SecurityPermission ″insertProvider.SunJSSE″

Debugging

By configuring through the javax.net.debug system property, JSSE provides the following dynamic debug

tracing: -Djavax.net.debug=true.

A value of true turns on the trace facility, provided that the debug version of JSSE is installed.

Documentation

See the “Security: Resources for learning” on page 21 article for documentation references to JSSE.

Chapter 12. Administering security 461

JCE

Java Cryptography Extension (JCE) provides cryptographic, key and hash algorithms for WebSphere

Application Server. It provides a framework and implementations for encryption, key generation, key

agreement, and Message Authentication Code (MAC) algorithms. Support for encryption includes

symmetric, asymmetric, block and stream ciphers.

IBMJCE

The IBM version of the Java Cryptography Extension (IBMJCE) is an implementation of the JCE

cryptographic service provider that is used in WebSphere Application Server. The IBMJCE is similar to

SunJCE, except that the IBMJCE offers more algorithms:

v Cipher algorithm (AES, DES, TripleDES, PBEs, Blowfish, and so on)

v Signature algorithm (SHA1withRSA, MD5withRSA, SHA1withDSA)

v Message digest algorithm (MD5, MD2, SHA1, SHA-256, SHA-384, SHA-512)

v Message authentication code (HmacSHA1, HmacMD5)

v Key agreement algorithm (DiffieHellman)

v Random number generation algorithm (IBMSecureRandom, SHA1PRNG)

v Key store (JKS, JCEKS, PKCS12)

The IBMJCE belongs to the com.ibm.crypto.provider.* packages.

For further information, see the http://www.ibm.com/developerworks/java/jdk/security/142/jceDocs.zip

file.

IBMJCEFIPS

The IBM version of the Java Cryptography Extension Federal Information Processing Standard

(IBMJCEFIPS) is an implementation of the JCE cryptographic service provider that is used in WebSphere

Application Server. The IBMJCEFIPS service provider implements the following:

v Signature algorithms (SHA1withDSA, SHA1withRSA)

v Cipher algorithms (AES, TripleDES, RSA)

v Key agreement algorithm (DiffieHellman)

v Key (pair) generator (DSA, AES, TripleDES, HmacSHA1, RSA, DiffieHellman)

v Message authentication code (MAC) (HmacSHA1)

v Message digest (MD5, SHA-1, SHA-256, SHA-384, SHA-512)

v Algorithm parameter generator (DiffieHellman, DSA)

v Algorithm parameter (AES, DiffieHellman, DES, TripleDES, DSA)

v Key factory (DiffieHellman, DSA, RSA)

v Secret key factory (AES, TripleDES)

v Certificate (X.509)

v Secure random (IBMSecureRandom)

Application Programming Interface

Java Cryptography Extension (JCE) has a provider-based architecture. Providers can be plugged into the

JCE framework by implementing the APIs defined by the JCE. The JCE APIs covers:

v Symmetric bulk encryption, such as DES, RC2, and IDEA

v Symmetric stream encryption, such as RC4

v Asymmetric encryption, such as RSA

v Password-based encryption (PBE)

v Key Agreement

v Message Authentication Codes

462 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

There is more information documented for the JCE APIs in the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip file.

Samples using Java Cryptography Extension

There are samples located in http://www.ibm.com/developerworks/java/jdk/security/142/jceDocs.zip

file. Unzip the file and locate the following samples in thejceDocs/samples directory:

 File Description

SampleDSASignature.java Demonstrates how to generate a pair of DSA keys (a

public key and a private key) and use the key to digitally

sign a message using the SHA1with DSA algorithm

SampleMarsCrypto.java Demonstrates how to generate a Mars secret key, and

how to do Mars encryption and decryption

SampleMessageDigests.java Demonstrates how to use the message digest for MD2

and MD5 algorithms

SampleRSACrypto.java Demonstrates how to generate an RSA key pair, and how

to do RSA encryption and decryption

SampleRSASignatures.java Demonstrates how to generate a pair of RSA keys (a

public key and a private key) and use the key to digitally

sign a message using the SHA1withRSA algorithm

SampleX509Verification.java Demonstrates how to verify X509 Certificates

Documentation

Refer to the “Security: Resources for learning” on page 21 for documentation on JCE.

Java 2 security

Java 2 security provides a policy-based, fine-grain access control mechanism that increases overall

system integrity by checking for permissions before allowing access to certain protected system resources.

Java 2 security guards access to system resources such as file I/O, sockets, and properties. J2EE security

guards access to Web resources such as servlets, JavaServer Pages (JSP) files and EJB methods.

WebSphere global security includes J2EE role-based authorization, the Common Secure Interoperability

Version 2 (CSIv2) authentication protocol, and Secure Sockets Layer (SSL) configuration.

Since Java 2 security is relatively new, many existing or even new applications might not be prepared for

the very fine-grain access control programming model that Java 2 security is capable of enforcing.

Administrators should understand the possible consequences of enabling Java 2 security if applications

are not prepared for Java 2 security. Java 2 security places some new requirements on application

developers and administrators.

Java 2 security for deployers and administrators

Although Java 2 security is supported in WebSphere Application Server Version 5, it is disabled by default.

However, it is enabled automatically if you also enable global security when configuring security. Although

it becomes enabled automatically when you enable WebSphere global security, you can choose to disable

it. You can configure Java 2 security and global security independently of one another. Disabling global

security does not disable Java 2 security automatically. You need to explicitly disable it.

If your applications, or third-party libraries are not ready, having Java 2 security enabled causes problems.

You can identify these problems as Java 2 security AccessControlExceptions in the SystemOut.log file,

Chapter 12. Administering security 463

SystemError.log file, or the trace log files. If you are unsure about the Java 2 security readiness of your

applications, disable Java 2 security initially to get your application installed and verify that it is working

properly.

There are implications if Java 2 Security is enabled; deployers or administrators are required to make sure

that all the applications are granted the required permissions, otherwise, applications might fail to run. By

default, applications are granted the permissions recommended in the J2EE 1.3 Specification. For details

of default permissions granted to applications in the product, refer to the following policy files:

v install_root/java/jre/lib/security/java.policy

v install_root/properties/server.policy

v install_root/config/cells/<cell name>/nodes/<node_name>/app.policy

Note: This policy embodied by these policy files cannot be made more restrictive because the product

might not have the necessary Java 2 security doPrivileged APIs in place. The restrictive policy is

the default policy. You can grant additional permissions, but you cannot make the default more

restrictive because AccessControlExceptions is generated from within WebSphere Application

Server. The product does not support a more restrictive policy than the default defined in the policy

files previously mentioned.

There are several policy files used to define the security policy for the Java process. These policy files are

static (code base is defined in the policy file) and they are in the default policy format provided by the IBM

Developer Kit, Java Technology Edition. For enterprise application resources and utility libraries,

WebSphere Application Server provides dynamic policy support. The code base is dynamically calculated

based on deployment information and permissions are granted based on template policy files during run

time. Refer to the article, Java 2 security policy files for more information.

Note: Syntax errors in the policy files cause the application server process to fail. Edit these policy files

carefully using the Policy Tool provided by the IBM Developer Kit, Java Technology Edition for

editing the policy files (install_root/java/jre/bin/policytool).

If an application is not prepared for Java 2 security, if the application provider does not provide a

was.policy file as part of the application, or if the application provider does not communicate the expected

permissions the application is likely to cause Java 2 security access control exceptions at run time. It

might not be obvious that an application is not prepared for Java 2 security. Several run-time debugging

aids help troubleshoot applications that might have access control exceptions. See the Java 2 security

debugging aids for more details. See Handling applications that are not Java 2 security ready for

information and strategies for dealing with such applications.

It is important to note that when Java 2 Security is enabled in the Global Security settings, the installed

SecurityManager does not currently check modifyThread and modifyThreadGroup permissions for

non-system threads. Allowing Web and EJB application code to create or modify a thread can have a

negative impact on other components of the container and can affect the capability of the container to

manage enterprise bean life cycles and transactions.

Java 2 security for application developers

Application developers must understand the permissions granted in the default WebSphere policy and the

permission requirements of the SDK APIs that their application calls to know whether additional

permissions are required. The ″Permissions in the Java 2 SDK″ reference in the resources section

describes which APIs require which permission.

Application providers can assume that applications have the permissions granted in the default policy

previously mentioned. Applications that access resources not covered by the default WebSphere policy are

required to grant the additional Java 2 security permissions to the application.

464 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

While it is possible to grant the application additional permissions in one of the other dynamic WebSphere

policy files or in one of the more traditional static policy files, such as java.policy, the was.policy (which

is embedded in the EAR file) ensures the additional permissions are scoped to the exact application that

requires them. Scoping the permission beyond the application code that requires it can permit code that

normally does not have permission to access particular resources.

If an application component is being developed, like a library that might actually be included in more than

one .ear file, then the library developer should document the required Java 2 permissions needed by the

application assembler. There is no was.policy file for library type components. The developer must

communicate the required permissions through application programming interface (API) documentation or

some other external documentation.

If the component library is shared by multiple enterprise applications, the permissions can be granted to all

enterprise applications on the node in the app.policy file.

If the permission is only used internally by the component library and the application should never be

granted access to resources protected by the permission, then it might be necessary to mark the code as

privileged (inserting doPrivileged). Refer to the article, AccessControlException, for more details.

However, improperly inserting a doPrivileged might open up security holes. Understand the implication of

doPrivileged to make a correct judgement whether a doPrivileged should be inserted or not.

The section on Dynamic Policy describes how the permissions in the was.policy files are granted at run

time.

Developing an application with Java 2 security in mind might be a new skill and impose a security

awareness not previously required of application developers. Describing the Java 2 security model and the

implications on application development is beyond the scope of this section. The following URL can help

you get started: http://java.sun.com/j2se/1.3/docs/guide/security/index.html.

Debugging Aids

There are two primary aids, the WebSphere SystemOut.log file and the

com.ibm.websphere.java2secman.norethrow property.

The WebSphere SystemOut.log File

The AccessControl exception logged in the SystemOut.log file contains the permission violation that

causes the exception, the exception call stack, and the permissions granted to each stack frame. This

information is usually enough to determine the missing permission and the code requiring the permission.

The com.ibm.websphere.java2secman.norethrow Property

When Java 2 security is enabled in WebSphere Application Server, the security manager component

throws a java.security.AccessControl exception when a permission violation occurs. This exception, if not

handled, often causes a run-time failure. This exception is also logged in the SystemOut.log file.

However, when the JVM com.ibm.websphere.java2secman.norethrow property is set and has a value of

true, the security manager does not throw the AccessControl exception. This information is logged.

To set the com.ibm.websphere.java2secman.norethrow property for the server, go to the WebSphere

Application Server administrative console and click Servers > Application Servers. Under Additional

Properties, click Process Definition > Java Virtual Machine > Custom Properties > New. In the Name

field, type com.ibm.websphere.java2secman.norethrow. In the Value field, type true.

To set the com.ibm.websphere.java2secman.norethrow property for the node agent, go to the WebSphere

Application Server administrative console and click System Administration > Node Agents. Under

Chapter 12. Administering security 465

http://java.sun.com/j2se/1.3/docs/guide/security/index.html

Additional Properties, click Process Definition > Java Virtual Machine > Custom Properties > New. In

the Name field, type com.ibm.websphere.java2secman.norethrow. In the Value field, type true.

Note: This property is intended for a sandbox or debug environment because it instructs the security

manager not to throw the AccessControl exception. Java 2 security is not enforced. This property

should not be used in a production environment where a relaxed Java 2 security environment

weakens the integrity that Java 2 security is intended to produce.

This property is valuable in a sandbox or test environment where the application can be thoroughly tested

and the where the SystemOut.log file can be inspected for AccessControl exceptions. Since this property

does not throw the AccessControl exception , it does not propagate the call stack and does not cause a

failure. Without this property, you have to find and fix AccessControl exceptions one at a time.

Handling applications that are not Java 2 security ready

If the increased system integrity that Java 2 security provides is important, then contact the application

provider to have the application support Java 2 security or at least communicate the required additional

permissions beyond the default WebSphere policy that must be granted.

The easiest way to deal with such applications is to disable Java 2 security in WebSphere Application

Server. The downside is that this solution applies to the entire system and the integrity of the system is not

as strong as it might be. Disabling Java 2 security might not be acceptable depending on the organization

security policies or risk tolerances.

Another approach is to leave Java 2 security enabled, but to grant either just enough additional

permissions or grant all permissions to just the problematic application. Granting permissions however,

might not be a trivial thing to do. If the application provider has not communicated the required

permissions in some way, there is no easy way to determine what the required permissions are and

granting all permissions might be the only choice. You minimize this risk by locating this application on a

different node, which might help isolate it from certain resources. Grant the java.security.AllPermission

permission in the was.policy file embedded in the application’s .ear file, for example:

grant codeBase ″file:${application}″ {

 permission java.security.AllPermission;

 };

install_root/properties/server.policy

This policy defines the policy for the WebSphere classes. At present, all the server processes on the same

installation share the same server.policy file. However, you can configure this file so that each server

process can have a separate server.policy file. Define the desired policy file as the value of the Java

system properties java.security.policy. For details of how to define Java system properties, Refer to the

Process definition section of the Manage application servers file.

The server.policy file is not a configuration file managed by the repository and the file replication service.

Changes to this file are local and do not get replicated to other machines. Use the server.policy file to

define Java 2 security policy for server resources. Use the app.policy file (per node) or was.policy file

(per enterprise application) to define Java 2 security policy for enterprise application resources.

WAS_HOME/java/jre/lib/security/java.policy

The file represents the default permissions granted to all classes. The policy of this file applies to all the

processes launched by the WebSphere Application Server JVM.

466 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Troubleshooting

Symptom:

Error message CWSCJ0314E: Current Java 2 security policy reported a potential violation of Java 2 security

permission. Refer to Problem Determination Guide for further

information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5} Current Java 2 security

policy reported a potential violation of Java 2 Security Permission. Refer to Problem Determination Guide

for further information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

Problem:

The Java security manager checkPermission() reported a SecurityException on the subject permission with

debugging information. The reported information can be different with respect to the system configuration.

This report is enabled by either configuring RAS trace into debug mode or specifying a Java property.

See Enabling trace for information on how to configure RAS trace in debug mode.

Specify the following property in the JVM Settings panel from the administrative console:

java.security.debug. Valid values include:

access

Print all debug information including: required permission, code, stack, and code base location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.

Recommended response:

The reported exception might be critical to the secure system. Turn on security trace to determine the

potential code that might have violated the security policy. Once the violating code is determined, verify if

the attempted operation is permitted with respect to Java 2 security, by examining all applicable Java 2

security policy files and the application code.

Note: If the application is running with Java Mail, this message might be benign. User can update the

was.policy file to grant the following permissions to the application.

permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Messages

 Message: CWSCJ0313E: Java 2 security manager debug message

flags are initialized\: TrDebug: {0}, Access: {1}, Stack: {2},

Failure: {3}

Problem: Configured values of the valid debug message flags for

security manager.

Recommended response: None.

 Message: CWSCJ0307E: Unexpected exception is caught when trying

to determine the code base location. Exception: {0}

Problem: An unexpected exception is caught when the code base

location is determined.

Recommended response: Contact an IBM representative.

Chapter 12. Administering security 467

Access control exception

The Java 2 security behavior is specified by its security policy. The security policy is an access-control

matrix that specifies which system resources certain code bases can access and who must sign them. The

Java 2 security policy is declarative and it is enforced by the

java.security.AccessController.checkPermission method.

The following example depicts the algorithm for the java.security.AccessController.checkPermission

method. For the complete algorithm, refer to the Java 2 security check permission algorithm in Resources

for learning.

i = m;

while (i > 0) {

 if (caller i’s domain does not have the permission)

 throw AccessControlException;

 else if (caller i is marked as privileged)

 return;

 i = i - 1;

};

The algorithm requires that all the classes or callers on the call stack have the permissions when a

java.security.AccessController.checkPermission method is performed or the request is denied and a

java.security.AccessControlException exception is created. However, if the caller is marked as privileged

and the class (caller) is granted these permissions, the algorithm returns and does not traverse the entire

call stack. Subsequent classes (callers) do not need the required permission granted.

A java.security.AccessControlException exception is created when certain classes on the call stack are

missing the required permissions during a java.security.AccessController.checkPermission method. Two

possible resolutions to the java.security.AccessControlException exception are as follows:

v If the application is calling a Java 2 security-protected API, grant the required permission to the

application Java 2 security policy. If the application is not calling a Java 2 security-protected API directly,

the required permission results from the side-effect of the third-party APIs accessing Java 2

security-protected resources.

v If the application is granted the required permission, it gains more access than it needs. In this case, it

is likely that the third party code that accesses the Java 2 security-protected resource is not properly

marked as privileged.

Example call stack

This example of a call stack indicates where application code is using a third-party API utility library to

update the password. The following example is presented to illustrate the point. The decision of where to

mark the code as privileged is application-specific and is unique in every situation. This decision requires

great depth of domain knowledge and security expertise to make the correct judgement. A number of well

written publications and books are available on this topic. Referencing these materials for more detailed

information is recommended.

468 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

You can use the PasswordUtil utility to change the password of a user. The utility types in the old

password and the new password twice to ensure that the correct password is entered. If the old password

matches the one stored in the password file, the new password is stored and the password file updates.

Assume that none of the stack frame is marked as privileged. According to the

java.security.AccessController.checkPermission algorithm, the application fails unless all the classes on the

call stack are granted write permission to the password file. The client application does not have

permission to write to the password file directly and to update the password file at will.

However, if the PasswordUtil.updatePasswordFile method marks the code that accesses the password file

as privileged, then the check permission algorithm does not check for the required permission from

classes that call thePasswordUtil.updatePasswordFile method for the required permission as long as the

PasswordUtil class is granted the permission. The client application can successfully update a password

without granting the permission to write to the password file.

The ability to mark code privileged is very flexible and powerful. If this ability is used incorrectly, the overall

security of the system can be compromised and security holes can be exposed. Use the ability to mark

code privileged carefully.

Resolution to the java.security.AccessControlException exception

As described previously, you have two approaches to resolve a java.security.AccessControlException

exception. Judge these exceptions individually to decide which of the following resolutions is best:

1. Grant the missing permission to the application.

2. Mark some code as privileged, after considering the issues and risks.

Configuring Java 2 security

Java 2 security is a programming model that is very pervasive and has a huge impact on application

development. It is disabled by default, but is enabled automatically when global security is enabled.

However, Java 2 security is orthogonal to J2EE role-based security; you can disable or enable it

independently of Global Security.

However, it does provide an extra level of access control protection on top of the J2EE role-based

authorization. It particularly addresses the protection of system resources and APIs. Administrators should

need to consider the benefits against the risks of disabling Java 2 Security.

The following recommendations are provided to help enable Java 2 security in a test or production

environment:

AccessController.checkPermission()

SecurityManager..checkPermission()

SecurityManager..checkWrite()

java.io.FileOutputStream()

PasswordUtil.updatePasswordFile()

Client Code ...

PasswordUtil.getPassword()

System domain

Application domain

Utility library domain

Chapter 12. Administering security 469

1. Make sure the application is developed with the Java 2 security programming model in mind.

Developers have to know whether or not the APIs used in the applications are protected by Java 2

security. It is very important that the required permissions for the APIs used are declared in the policy

file (was.policy), or the application fails to run when Java 2 security is enabled. Developers can

reference the Web site for Development Kit APIs that are protected by Java 2 security. See the

Programming model and decisions section of the “Security: Resources for learning” on page 21 article

to visit this Web site.

2. Make sure that migrated applications from previous releases are given the required permissions. Since

Java 2 security is not supported or partially supported in previous WebSphere Application Server

releases, applications developed prior to Version 5 most likely are not using the Java 2 security

programming model. There is no easy way to find out all the required permissions for the application.

Following are activities you can perform to determine the extra permissions required by an application:

v Code review and code inspection

v Application documentation review

v Sandbox testing of migrated enterprise applications with Java 2 security enabled in a pre-production

environment. Enable tracing in WebSphere Java 2 security manager to help determine the missing

permissions in the application policy file. The trace specification is

com.ibm.ws.security.core.SecurityManager=all=enabled.

v Use the com.ibm.websphere.java2secman.norethrow system property to aid debuggging. This

property should not be used in a production environment. Refer to “Java 2 security” on page 463.

Note: The default permission set for applications is the recommended permission set defined in the J2EE

1.3 Specification. The default is declared in the

profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy policy file with

permissions defined in the Development Kit (JAVA_HOME/jre/lib/security/java.policy) policy file

that grant permissions to everyone. However, applications are denied permissions declared in the

profiles/profile_name/config/cells/cell_name/filter.policy filter policy file. Permissions

declared in the filter.policy file are filtered for applications during the permission check.

Note: Define the required permissions for an application in a was.policy file and embed the was.policy

file in the application enterprise archive (EAR) file as YOURAPP.ear/META-INF/was.policy (see

“Configuring Java 2 security policy files” on page 476 for details).

The following steps describe how to enforce Java 2 security on the cell level for WebSphere Application

Server Network Deployment and the server level for WebSphere Application Server and WebSphere

Application Server Express:

1. Click Security > Global security. The Global security panel is displayed.

2. Select the Enforce Java 2 security option.

3. Click OK or Apply.

4. Click Save to save the changes.

5. Restart the server for the changes to take effect.

Java 2 security is enabled and enforced for the servers. Java 2 security permission is selected when a

Java 2 security protected API is called.

When to use Java 2 security

1. To enable protection on system resources. For example, when opening or listening to a socket

connection, reading or writing to operating system file systems, reading or writing Java Virtual Machine

system properties, and so on.

2. To prevent application code calling destructive APIs. For example, calling the System.exit() method

brings down the application server.

3. To prevent application code from obtaining privileged information (passwords) or gaining extra

privileges (obtaining server credentials).

470 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The WebSphere Java 2 security manager is enhanced to dump the Java 2 security permissions granted to

all classes on the call stack when an application is denied access to a resource (the

java.security.AccessControlException exception is thrown). However, this tracing capability is disabled

by default. You can enable it by specifying the server trace service with the

com.ibm.ws.security.core.SecurityManager=all=enabled trace specification. When the exception is

thrown, the trace dump provides hints to determine whether the application is missing permissions or the

product run time code or third party libraries used are not properly marked as privileged when accessing

Java 2 protected resources. See the Security Problem Determination Guide for details.

Using PolicyTool to edit policy files

Java 2 security uses several policy files to determine the granted permission for each Java program. See

Dynamic policy for the list of available policy files. The Java Development Kit provides policytool to edit

these policy files. This tool is recommended for editing any policy file to verify the syntax of its contents.

Syntax errors in the policy file cause an AccessControlException during application execution, including

the server start. Identifying the cause of this exception is not easy because the user might not be familiar

with the resource that has an access violation. Be careful when you edit these policy files.

1. Start policytool. Enter %{was.install.root}/java/jre/bin/policytool from a command prompt.

The policytool window opens. The policytool looks for the .java.policy file in your home directory. If it

does not exist, an Error message displays. Click OK.

2. Click File > Open.

3. Navigate the directory tree in the Open window to pick up the policy file that you need to update. After

selecting the policy file, click Open. The code base entries are listed in the window.

4. Create or modify the code base entry.

a. Modify the existing code base entry by double-clicking the code base, or click the code base and

click Edit Policy Entry. The Policy Entry window opens with the permission list defined for the

selected code base.

b. Create a new code base entry by clicking Add Policy Entry. The Policy Entry window opens. At

the code base column, enter the code base information as a URL format, for example,

/WebSphere/AppServer/InstalledApps/testcase.ear.

5. Modify or add the permission specification

a. Modify the permission specification by double-clicking the entry you want to modify, or by selecting

the permission and clicking Edit Permission. The Permissions window opens with the selected

permission information.

b. Add a new permission by clicking Add Permission. The Permissions window opens. In the

Permissions, window there are four rows for Permission, Target Name, Actions, and Signed By.

6. Select the permission from the Permission list. The selected permission displays. After a permission is

selected, the Target Name, Actions, and Signed By fields automatically show the valid choices or

they enable text input in the right text input area.

a. Select Target Name from the list, or enter the target name in the right text input area.

b. Select Actions from the list.

c. Input Signed By if it is needed.

Important: The Signed By keyword is not supported in the following policy files: app.policy,

spi.policy, library.policy, was.policy, and filter.policy files. However, the

Signed By keyword is supported in the following policy files:java.policy,

server.policy, and client.policy files. The Java Authentication and Authorization

Service (JAAS) is not supported in the app.policy, spi.policy, library.policy,

was.policy, and filter.policy files. However, the JAAS principal keyword is

supported in a JAAS policy file when it is specified by the Java Virtual Machine (JVM)

system property, java.security.auth.policy.

Chapter 12. Administering security 471

7. Click OK to close the Permissions window. Modified permission entries of the specified code base

display.

8. Click Done to close the window. Modified code base entries are listed. Repeat steps 4 through 8 until

you complete editing.

9. Click File > Save after you finish editing the file.

A policy file is updated. If any policy files need editing, use the policytool. Do not edit the policy file

manually. Syntax errors in the policy files can potentially cause application servers or enterprise

applications to not start or function incorrectly. For the changes in the updated policy file to take effect,

restart the Java processes.

Java 2 security policy files

The J2EE 1.3 specification has a well-defined programming model of responsibilities between the

container providers and the application code. Using Java 2 security manager to help enforce this

programming model is recommended. Certain operations are not supported in the application code

because such operations interfere with the behavior and operation of the containers. The Java 2 security

manager is used in the product to enforce responsibilities of the container and the application code.

This product provides support for policy file management. A number of policy files in the product are either

static or dynamic. Dynamic policy is a template of permissions for a particular type of resource. No relative

code base is defined in the dynamic policy template. The code base is dynamically calculated from the

deployment and run-time data.

Static policy files

 Policy file Location

java.policy install_root/java/jre/lib/security/java.policy. Default permissions granted to all

classes. The policy of this file applies to all the processes launched by WebSphere

Application Server.

server.policy install_root/profiles/profile_name/properties/server.policy. Default permissions

granted to all the product servers.

client.policy install_root/profiles/profile_name/properties/client.policy. Default permissions for all

of the product client containers and applets on a node.

The static policy files are not managed by configuration and file replication services. Changes made in

these files are local and are not replicated to other nodes in the Network Deployment cell.

Dynamic policy files

 Policy file Location

spi.policy install_root/profiles/profile_name/config/cells/cell_name

/nodes/node_name/spi.policy

This template is for the Service Provider Interface (SPI) or the third-party resources that are

embedded in the product. Examples of SPI are the Java Message Service (JMS) in MQ

Series and JDBC drivers. The code base for the embedded resources are dynamically

determined from the configuration (resources.xml file) and run-time data, and permissions

that are defined in the spi.policy files are automatically applied to these resources and JAR

files specified in the class path of a ResourceAdapter. The default permission of the

spi.policy file is java.security.AllPermissions.

library.policy install_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/library.policy

This template is for the library (Java library classes). You can define a shared library to use in

multiple product applications. The default permission of the library.policy is empty.

472 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Policy file Location

app.policy install_root/profiles/profile_name/config/cells/cell_name

/nodes/node_name/app.policy

The app.policy file defines the default permissions that are granted to all the enterprise

applications running on node_name in cell_name.

was.policy install_root/config/cells/cell_name

/applications/ear_file_name/deployments/

application_name/META-INF/was.policy

This template is for application-specific permissions. The was.policy file is embedded in the

enterprise archive (EAR) file.

ra.xml rar_file_name/META-INF/was.policy.RAR.

This file can have a permission specification that is defined in the ra.xml file. The ra.xml file

is embedded in the RAR file.

Note: Grant entries that are specified in the app.policy and was.policy files must have a code base

defined. If grant entries are specified without a code base, the policy files are not loaded properly

and the application can fail. If the intent is to grant the permissions to all applications, use

file:${application} as a code base in the grant entry.

Syntax of the policy file

A policy file contains several policy entries. The following example depicts each policy entry format:

grant [codebase <Codebase>] {

permission <Permission>;

 permission <Permission>;

permission <Permission>;

};

<CodeBase>: A URL.

 For example, ″file:${java.home}/lib/tools.jar″

 When [codebase <Codebase>] is not specified, listed

 permissions are applied to everything.

 If URL ends with a JAR file name, only the classes in the

 JAR file belong to the codebase.

 If URL ends with ″/″, only the class files in the specified

 directory belong to the codebase.

 If URL ends with ″*″, all JAR and class files in the specified

 directory belong to the codebase.

 If URL ends with ″-″, all JAR and class files in the specified

 directory and its subdirectories belong to the codebase.

<Permissions>: Consists from

 Permission Type : class name of the permission

 Target Name : name specifying the target

 Actions : actions allowed on target

 For example,

 java.io.FilePermission ″/tmp/xxx″, ″read,write″

Refer to developer kit specifications for the details of each permission.

Chapter 12. Administering security 473

Syntax of dynamic policy

You can define permissions for specific types of resources in dynamic policy files for an enterprise

application. This action is achieved by using product-reserved symbols. The reserved symbol scope

depends on where it is defined. If you define the permissions in the app.policy file, the symbol applies to

all the resources on all of the enterprise applications that run on node_name. If you define the permissions

in the META-INF/was.policy file, the symbol applies only to the specific enterprise application. Valid

symbols for the code base are listed in the following table:

 Symbol Meaning

file:${application} Permissions apply to all resources within the application

file:${jars} Permissions apply to all utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to Enterprise JavaBeans (EJB)

resources within the application

file:${webComponent} Permissions apply to Web resources within the

application

file:${connectorComponent} Permissions apply to connector resources within the

application

Other than these entries specified by the code base symbols, you can specify the module name for a

granular setting. For example:

grant codeBase ″file:DefaultWebApplication.war″ {

 permission java.security.SecurityPermission ″printIdentity″;

 };

grant codeBase ″file:IncCMP11.jar″ {

permission java.io.FilePermission

″${user.install.root}${/}bin${/}DefaultDB${/}-″,

″read,write,delete″;

};

The sixth and seventh lines in the previous code sample are one continuous line.

You can use a relative code base only in the META-INF/was.policy file.

Several product-reserved symbols are defined to associate the permission lists to a specific type of

resources.

 Symbol Meaning

file:${application} Permissions apply to all resources within the application

file:${jars} Permissions apply to all utility JAR files within the

application

file:${ejbComponent} Permissions apply to enterprise beans resources within

the application

file:${webComponent} Permissions apply to Web resources within the

application

file:${connectorComponent} Permissions apply to connector resources both within the

application and in stand-alone connector resources.

474 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Five embedded symbols are provided to specify the path and the name for the java.io.FilePermission

permission. These symbols enable flexible permission specification. The absolute file path is fixed after the

installation of the application.

 Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Note: Do not use the ${was.module.path} in the ${application} entry.

Carefully determine where to add a new permission. An incorrectly specified permission causes an

AccessControlException exception. Because dynamic policy resolves the code base at run time,

determining which policy file has a problem is difficult. Add a permission only to the necessary resources.

For example, use ${ejbcomponent}, and etc instead of ${application}, and update the was.policy file

instead of the app.policy file, if possible.

Static policy filtering

Limited static policy filtering support exists. If the app.policy file and the was.policy file have permissions

that are defined in the filter.policy file with the keyword, filterMask, the run time removes the

permissions from the applications and an audit message is logged. However, if the permissions that are

defined in the app.policy and the was.policy files are compound permissions, for example,

java.security.AllPermission, the permission is not removed, but a warning message is written to the log

file. The policy filtering only supports Developer Kit permissions, (the permissions package name begins

with java or javax).

Run-time policy filtering support is provided to force stricter filtering. If the app.policy file and the

was.policy file have permissions that are defined in the filter.policy file with the keyword,

runtimeFilterMask, the run time removes the permissions from the applications no matter what

permissions are granted to the application. For example, even if a was.policy file has the

java.security.AllPermission permission granted to one of its modules, specified permissions such as

runtimeFilterMask are removed from the granted permission during run time.

If the Issue Permission Warning flag in the Global Security panel is enabled and if the app.policy file and

the was.policy file contain custom permissions (non-Developer Kit permissions, where the permissions

package name begins with java or javax), a warning message logs. The permission is not removed. If the

AllPermission permission is listed in the app.policy file and the was.policy file, a warning message logs.

Policy file editing

Using the policy tool that is provided by the Developer Kit (install_root/java/jre/bin/policytool), to

edit the previous policy files is recommended. For Network Deployment, extract the policy files from the

repository before editing. After the policy file is extracted, use the policy tool to edit the file. Check the

modified policy files into the repository and synchronize them with other nodes.

If syntax errors exist in the policy files, the enterprise application or the server process might fail to start.

Be cautious when editing these policy files. For example, if a policy has a trailing space in the policy

permission target name, the policy fails to parse the permission properly in WebSphere Application Server,

Version 5.1 IBM Developer Kit, Java Technology Edition Version 1.4.x. In the following example, note the

space before the last quote: * \″*\″ ″

Chapter 12. Administering security 475

grant {

 permission javax.security.auth.PrivateCredentialPermission

 ″javax.resource.spi.security.PasswordCredential * \″*\″ ″,″read″;

};

If the permission is in a policy file loaded by the IBM Developer Kit, Java Technology Edition Version 1.4.x

policy tool, the following message might display:

Errors have occurred while opening the policy configuration.

View the warning log for more information.

or the following message might display in warning log:

Warning: Invalid argument(s) for constructor:

javax.security.auth.PrivateCredentialPermission.

To fix this problem, edit the permission and remove the trailing space. When the trailing space is removed,

the permission loads properly. The following code sample shows the corrected permission:

grant {

 permission javax.security.auth.PrivateCredentialPermission

 ″javax.resource.spi.security.PasswordCredential * \″*\″″,″read″;

}

Troubleshooting

To debug the dynamic policy, choose one of three ways to generate the detail report of the

AccessControlException exception.

v Trace (Configured by RAS trace). Enables traces with the trace specification:

 Attention: The following command is one continuous line

com.ibm.ws.security.policy.*=all=enabled:

com.ibm.ws.security.core.SecurityManager=all=enabled

v Trace (Configured by property). Specifies a Java java.security.debug property . Valid values for the

java.security.debug property are as follows:

– Access. Print all debug information including required permission, code, stack, and code base

location.

– Stack. Print debug information including, required permission, code, and stack.

– Failure. Print debug information including required permission and code.
v ffdc. Enable ffdc, modify the ffdcRun.properties file by changing Level=4and LAE=true. Look for an

Access Violation keyword in the log file.

Configuring Java 2 security policy files

Java 2 security uses several policy files to determine the granted permissions for each Java programs.

See the “Java 2 security policy files” on page 472 article for the list of available policy files supported by

WebSphere Application Server Version.

There are two types of policy files supported by WebSphere Application Server: dynamic policy files and

static policy files. Static policy files provide the default permissions. Dynamic policy files provide application

permissions. There are six dynamic policy files:

 Policy file name Description

app.policy Contains default permissions for all of the enterprise applications in

the cell.

476 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Policy file name Description

was.policy Contains application-specific permissions for an WebSphere

Application Server enterprise application. This file is packaged in

an enterprise archive (EAR) file.

ra.xml Contains connector application specific permissions for a

WebSphere Application Server enterprise application. This file is

packaged in a resource adapter archive (RAR) file.

spi.policy Contains permissions for Service Provider Interface (SPI) or

third-party resources embedded in WebSphere Application Server.

The default contents grant everything. Update this file carefully

when the cell requires more protection against SPI in the cell. This

file is applied to all of the SPIs defined in the resources.xml file.

library.policy Contains permissions for the shared library of enterprise

applications.

filter.policy Contains the list of permissions that require filtering from the

was.policy file and the app.policy file in the cell. This filtering

mechanism only applies to the was.policy and app.policy files.

In WebSphere Application Server, applications must have the appropriate thread permissions specified in

the was.policy or app.policy file. Without the thread permissions specified, the application cannot

manipulate threads and WebSphere Application Server throws a java.security.AccessControlException. The

app.policy file applies to a specified node. If you change the permissions in one app.policy file, you must

incorporate the new thread policy in the same file on the remaining nodes. Also, if you add the thread

permissions to the app.policy file, you must restart WebSphere Application Server to enforce the new

permissions. However, if you add the permissions to the was.policy file for a specific application, you do

not need to restart WebSphere Application Server. An administrator must add the following code to a

was.policy or app.policy file for an application to manipulate threads:

grant codeBase ″file:${application}″ {

permission java.lang.RuntimePermission ″stopThread″;

permission java.lang.RuntimePermission ″modifyThread″;

permission java.lang.RuntimePermission ″modifyThreadGroup″;

};

Important: The Signed By keyword is not supported in the following policy files: app.policy, spi.policy,

library.policy, was.policy, and filter.policy files. However, the Signed By keyword is

supported in the following policy files:java.policy, server.policy, and client.policy files.

The Java Authentication and Authorization Service (JAAS) is not supported in the app.policy,

spi.policy, library.policy, was.policy, and filter.policy files. However, the JAAS

principal keyword is supported in a JAAS policy file when it is specified by the Java Virtual

Machine (JVM) system property, java.security.auth.policy. You can statically set the

authorization policy files in java.security.auth.policy with auth.policy.url.n=URL where

URL is the location of the authorization policy.

1. Identify the policy file to update.

v If the permission is required by an application, update the static policy file. Refer to Configuring

static policy files.

v If the permission is required by all of the WebSphere Application Server enterprise applications in

the node, refer to Configuring spi.policy files.

v If the permission is required only by specific WebSphere Application Server enterprise applications

and the permission is required only by connector, update the ra.xml file. Refer to Assembling

resource adapter (connector) modules. Otherwise, update the was.policy file. Refer to Configuring

was.policy files and Adding the was.policy file to applications.

v If the permission is required by shared libraries, refer to Configuring library.policy files.

Chapter 12. Administering security 477

v If the permission is required by SPI libraries, refer to Configuring spi.policy files.

Note: It is recommended to pick up the policy file with the smallest scope. You can avoid giving an

extra permission to the Java programs and protect the resources. You can update the ra.xml

file or the was.policy file rather than the app.policy file. Use specific component symbols

($(ejbcomponent), ${webComponent},${connectorComponent} and ${jars}) than ${application}

symbols. Update dynamic policy files than static policy files.

Add any permission that should never be granted to the WebSphere Application Server enterprise

application in the cell to the filter.policy file. Refer to Configuring filter.policy files.

2. Restart the WebSphere Application Server enterprise application.

The required permission is granted for the specified WebSphere Application Server enterprise application.

If an WebSphere Application Server enterprise application in a cell requires permissions, some of the

dynamic policy files need updating. The symptom of the missing permission is the exception,

java.security.AccessControlException. The missing permission is listed in the exception data, for example,

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines were split onto two lines because of the width of the page. However, the

permission should be on one line.

When a Java program receives this exception and adding this permission is justified, add a permission to

an adequate dynamic policy file, for example,

grant codeBase ″file:<user client installed location>″ {

permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″;

};

The previous two lines were split onto two lines because of the width of the page. However, the

permission should be on one line.

To decide whether to add a permission, refer to the article AccessControlException.

Configuring app.policy files:

Java 2 security uses several policy files to determine the granted permissions for each Java program. See

the Dynamic policy article for the list of available policy files supported by WebSphere Application Server.

The app.policy file is a default policy file shared by all of the WebSphere Application Server enterprise

applications. The union of the permissions contained in the following files is applied to the WebSphere

Application Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread

permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the

application cannot manipulate threads and WebSphere Application Server throws a

478 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

java.security.AccessControlException. If an administrator adds thread permissions to the app.policy file, the

permission change requires a restart of the WebSphere Application Server. An administrator must add the

following code to a was.policy or app.policy file for an application to manipulate threads:

grant codeBase ″file:${application}″ {

permission java.lang.RuntimePermission ″stopThread″;

permission java.lang.RuntimePermission ″modifyThread″;

 permission java.lang.RuntimePermission ″modifyThreadGroup″;

};

Important: The Signed By and the Java Authentication and Authorization Service (JAAS) principal

keywords are not supported in the app.policy file. However, the Signed By keyword is

supported in the following files: java.policy, server.policy, and the client.policy files. The

JAAS principal keyword is supported in a JAAS policy file when it is specified by the Java

Virtual Machine (JVM) system property, java.security.auth.policy. You can statically set the

authorization policy files in java.security.auth.policy with auth.policy.url.n=URL where

URL is the location of the authorization policy.

If the default permissions for enterprise applications (the union of the permissions defined in the

java.policy file, the server.policy file and the app.policy file) are enough, no action is required. The

default app.policy file is used automatically. If a specific change is required to all of the enterprise

applications in the cell, update the app.policy file. Syntax errors in the policy files cause start failures in

the application servers. Edit these policy files carefully.

Modify the app.policy file with the Policy Tool. Changes to the app.policy file are local for the node.

The default Java 2 security policies have been changed for the enterprise application.

Several product-reserved symbols are defined to associate the permission lists to a specific type of

resource.

 Symbol Meaning

file:${application} Permissions apply to all resources within the application

file:${jars} Permissions apply to all utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to enterprise bean resources within the

application

file:${webComponent} Permissions apply to Web resources within the

application

file:${connectorComponent} Permissions apply to connector resources both within the

application and within stand-alone connector resources.

There are five embedded symbols provided to specify the path and name for java.io.FilePermission. These

symbols enable flexible permission specifications. The absolute file path is fixed after the installation of the

application.

 Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Chapter 12. Administering security 479

Note: You cannot use the ${was.module.path} in the ${application} entry.

The app.policy file supplied by WebSphere Application Server resides at

install_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy, which

contains the following default permissions:

Attention: In the following code sample, the first two lines related to permission java.io.FilePermission

were split into two lines each due to the width of the printed page.

grant codeBase ″file:${application}″ {

 // The following are required by Java mail

 permission java.io.FilePermission ″${was.install.root}${/}java${/}

 jre${/}lib${/}ext${/}mail.jar″, ″read″;

 permission java.io.FilePermission ″${was.install.root}${/}java${/}

 jre${/}lib${/}ext${/}activation.jar″, ″read″;

};

grant codeBase ″file:${jars}″ {

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

grant codeBase ″file:${connectorComponent}″ {

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

grant codeBase ″file:${webComponent}″ {

 permission java.io.FilePermission ″${was.module.path}${/}-″, ″read, write″;

 permission java.lang.RuntimePermission ″loadLibrary.*″;

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

grant codeBase ″file:${ejbComponent}″ {

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

If all of the WebSphere Application Server enterprise applications in a cell require permissions that are not

defined as defaults in the java.policy file, the server.policy file and the app.policy file, then update the

app.policy file. The symptom of a missing permission is the exception,

java.security.AccessControlException. The missing permission is listed in the exception data, for example,

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read).

When a Java program receives this exception and adding this permission is justified, add a permission to

the server.policy file, for example:

grant codeBase ″file:<user client installed location>″ {

permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };

To decide whether to add a permission, refer to the article AccessControlException.

480 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Restart all WebSphere Application Server enterprise applications to ensure that the updated app.policy

file takes effect.

Configuring filter.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. Java

2 security policy filtering is only in effect when Java 2 security is enabled. Refer to Configuring Java 2

security. The filtering policy defined in the filter.policy file is cell wide. Refer to the article, Dynamic

policy, for the list of available policy files supported by WebSphere Application Server. The filter.policy

file is the only policy file used when restricting the permission instead of granting permission. The

permissions listed in the filter policy file are filtered out from the app.policy file and the was.policy file.

Permissions defined in the other policy files are not affected by the filter.policy file.

When a permission is filtered out, an audit message is logged. However, if the permissions defined in the

app.policy file and the was.policy file are compound permissions like java.security.AllPermission, for

example, the permission is not removed. A warning message is logged. If the Issue Permission Warning

flag is enabled (default) and if the app.policy file and the was.policy file contain custom permissions

(non-Java API permission, the permission package name begins with characters other than java or javax),

then a warning message is logged and the permission is not removed. You can change the value of the

Issue permission warning option on the Global Security panel. It is not recommended that you use

AllPermission for the enterprise application.

There are some default permissions defined in the filter.policy file. These permissions are the minimal

ones recommended by the product. If more permissions are added to the filter.policy file, certain

operations can fail for enterprise applications. Add permissions to the filter.policy file carefully.

An updated filter.policy file is applied to all of the WebSphere Application Server enterprise application

after the servers are restarted.

The filter.policy file is managed by configuration and file replication services. Changes made in the file

are replicated to other nodes in the Network Deployment cell.

The filter.policy file supplied by WebSphere Application Server resides at:

install_root/profiles/profile_name/config/cells/cell_name/filter.policy.

It contains these permissions as defaults:

filterMask {

permission java.lang.RuntimePermission ″exitVM″;

permission java.lang.RuntimePermission ″setSecurityManager″;

permission java.security.SecurityPermission ″setPolicy″;

permission javax.security.auth.AuthPermission ″setLoginConfiguration″; };

runtimeFilterMask {

permission java.lang.RuntimePermission ″exitVM″;

permission java.lang.RuntimePermission ″setSecurityManager″;

permission java.security.SecurityPermission ″setPolicy″;

permission javax.security.auth.AuthPermission ″setLoginConfiguration″; };

The permissions defined in filterMask are for static policy filtering. The security run time tries to remove

the permissions from applications during application startup. Compound permissions are not removed but

are issued with a warning, and application deployment is stopped if applications contain permissions

defined in filterMask, and if scripting was used (wsadmin tool). The runtimeFilterMask defines

permissions used by the security run time to deny access to those permissions to application thread. Do

not add more permissions to the runtimeFilterMask. Application start failure or incorrect functioning might

result. Be careful when adding more permissions to the runtimeFilterMask. Usually, you only need to add

permissions to the filterMask stanza.

Chapter 12. Administering security 481

WebSphere Application Server relies on the filter policy file to restrict or disallow certain permissions that

could compromise the integrity of the system. For instance, WebSphere Application Server considers the

exitVM and setSecurityManager permissions as those permissions that most applications should never

have. If these permissions are granted, then the following scenarios are possible:

v exitVM -- A servlet, JSP file, enterprise bean, or other library used by the aforementioned could call the

System.exit() API and cause the entire WebSphere Application Server process to terminate.

v setSecurityManager -- An application could install its own SecurityManager that could either grant

more permissions or bypass the default policy the WebSphere Application Server SecurityManager

enforces.

For the updated filter.policy file to take effect, restart related Java processes.

Configuring the was.policy file:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 472 for the list of available policy files supported by WebSphere

Application Server Version 5. The was.policy file is an application-specific policy file for WebSphere

Application Server enterprise applications. It is embedded in the enterprise archive (EAR) file

(META-INF/was.policy). The was.policy file is located in:

install_root/profiles/profile_name/config/cells/cell_name/applications/

ear_file_name/deployments/application_name/META-INF/was.policy

The union of the permissions contained in the following files is applied to the WebSphere Application

Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

Changes made in these files are replicated to other nodes in the Network Deployment cell.

Several product-reserved symbols are defined to associate the permission lists to a specific type of

resources.

 Symbol Definition

file:${application} file:${application}

file:${jars} Permissions apply to all utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to enterprise bean resources within the

application

file:${webComponent} Permissions apply to Web resources within the

application

file:${connectorComponent} Permissions apply to connector resources within the

application

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread

permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the

application cannot manipulate threads and WebSphere Application Server throws a

482 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

java.security.AccessControlException. If you add the permissions to the was.policy file for a specific

application, you do not need to restart WebSphere Application Server. An administrator must add the

following code to a was.policy or app.policy file for an application to manipulate threads:

grant codeBase ″file:${application}″ {

permission java.lang.RuntimePermission ″stopThread″;

permission java.lang.RuntimePermission ″modifyThread″;

permission java.lang.RuntimePermission ″modifyThreadGroup″;

};

An administrator can add the thread permissions to the app.policy file, but the permission change requires

a restart of the WebSphere Application Server.

Important: The Signed By and the Java Authentication and Authorization Service (JAAS) principal

keywords are not supported in the was.policy file. The Signed By keyword is supported in

the following policy files: java.policy, server.policy, and client.policy. The JAAS principal

keyword is supported in a JAAS policy file when it is specified by the Java Virtual Machine

(JVM) system property, java.security.auth.policy. You can statically set the authorization

policy files in java.security.auth.policy with auth.policy.url.n=URL where URL is the

location of the authorization policy.

Other than these blocks, you can specify the module name for granular settings. For example,

″file:DefaultWebApplication.war″ {

 permission java.security.SecurityPermission ″printIdentity″;

 };

grant codeBase ″file:IncCMP11.jar″ {

 permission java.io.FilePermission

 ″${user.install.root}${/}bin${/}DefaultDB${/}-″,

 ″read,write,delete″;

};

There are five embedded symbols provided to specify the path and name for the java.io.FilePermission.

These symbols enable flexible permission specification. The absolute file path is fixed after the application

is installed.

 Symbol Definition

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

If the default permissions for the enterprise application (union of the permissions defined in the

java.policy file, the server.policy file and the app.policy file) are enough, no action is required. If an

application has specific resources to access, update the was.policy file. The first two steps assume that

you are creating a new policy file.

Note: Syntax errors in the policy files cause the application server to fail. Use care when editing these

policy files.

1. Create or edit a new was.policy file using the Policy Tool. For more information, see “Using PolicyTool

to edit policy files” on page 471.

Chapter 12. Administering security 483

2. Package the was.policy file into the enterprise archive (EAR) file.

For more information, see “Adding the was.policy file to applications” on page 486.The following

instructions describe how to import a was.policy file.

a. Import the EAR file into an assembly tool. For more information, see Importing enterprise

applications.

b. Open the Project Navigator view.

c. Expand the EAR file and click META-INF. You might find a was.policy file in the META-INF

directory. If you want to delete the file, right-click the file name and select Delete.

d. At the bottom of the Project Navigator view, click J2EE Hierarchy.

e. Import the was.policy file by right-clicking the Modules directory within the deployment descriptor

and clicking Import > Import > File system.

f. Click Next.

g. Enter the path name to the was.policy file in the From directory field or click Browse to locate

the file.

h. Verify that the path directory listed in the Into directory field lists the correct META-INF directory.

i. Click Finish.

j. To validate the EAR file, right-click the EAR file, which contains the Modules directory, and click

Run Validation.

k. To save the new EAR file, right-click the EAR file, and click Export > Export EAR file. If you do

not save the revised EAR file, the EAR file will contain the new was.policy file. However, if the

workspace becomes corrupted, you might lose the revised EAR file.

l. To generate deployment code, right-click the EAR file and click Generate Deployment Code.

3. Update an existing installed application, if one already exists.

a. Modify the was.policy file with the Policy Tool. For more information, see “Using PolicyTool to edit

policy files” on page 471.

The updated was.policy file is applied to the application after the application restarts.

If an application must access a specific resource that is not defined as a default in the java.policy file,

the server.policy file and the app.policy, then delete the was.policy file for that application. The

symptom of the missing permission is that the exception, java.security.AccessControlException. The

missing permission is listed in the exception data, java.security.AccessControlException: access

denied (java.io.FilePermission C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read).

When a Java program receives this exception and adding this permission is justified, add a permission to

the was.policy file: grant codeBase ″file:<user client installed location>″ { permission

java.io.FilePermission ″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };.

To determine whether to add a permission, refer to the article, “Access control exception” on page 468.

Restart all applications for the updated app.policy file to take effect.

Configuring spi.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 472 for the list of available policy files supported by WebSphere

Application Server Version 6.

Since the default permissions for Service Provider Interface (SPI) is AllPermission, the only reason to

update the spi.policy file is a restricted SPI permission. When a change in the spi.policy is required,

complete the following steps.

484 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Important: Do not place the codebase keyword or any other keyword after the filterMask and

runtimeFilterMask keywords. The Signed By and the Java Authentication and Authorization

Service (JAAS) Principal keywords are not supported in the spi.policy file. The Signed By

keyword is supported in the following policy files: java.policy, server.policy, and

client.policy. The JAAS Principal keyword is supported in a JAAS policy file that is specified

by the Java Virtual Machine (JVM) system property, java.security.auth.policy. You can

statically set the authorization policy files in java.security.auth.policy with

auth.policy.url.n=URL where URL is the location of the authorization policy.

Modify the spi.policy file with the Policy Tool.

The updated spi.policy is applied to the SPI libraries after the Java process is restarted.

The spi.policy file is the template for SPIs (Service Provider Interface) or third-party resources embedded

in the product. Example of SPIs are Java Message Services (JMS) (MQSeries) and Java database

connectivity (JDBC) drivers. They are specified in the resources.xml file. The dynamic policy grants the

permissions defined in the spi.policy file to the class paths defined in the resources.xml file. The union

of the permission contained in the java.policy file and the spi.policy file are applied to the SPI libraries.

The spi.policy files are managed by configuration and file replication services. Changes made in these

files are replicated to other nodes in the Network Deployment cell.

The spi.policy file supplied by WebSphere Application Server resides at

install_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/spi.policy. It contains

the following default permission:

grant {

 permission java.security.AllPermission;

};

Restart the related Java processes for the changes in the spi.policy file to become effective.

Configuring library.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 472 for the list of available policy files supported by WebSphere

Application Server Version 5. The library.policy file is the template for shared libraries (Java library

classes). Multiple enterprise applications can define and use shared libraries. Refer to Managing shared

libraries for information on how to define and manage the shared libraries.

If the default permissions for a shared library (union of the permissions defined in the java.policy file, the

app.policy file and the library.policy file) are enough, no action is required. The default library policy is

picked up automatically. If a specific change is required to share a library in the cell, update the

library.policy file.

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Important: Do not place the codebase keyword or any other keyword after the grant keyword. The Signed

By keyword and the Java Authentication and Authorization Service (JAAS) Principal keyword

are not supported in the library.policy file. The Signed By keyword is supported in the

following policy files: java.policy, server.policy, and client.policy. The JAAS Principal

keyword is supported in a JAAS policy file when it is specified by the Java Virtual Machine

(JVM) system property, java.security.auth.policy. You can statically set the authorization

policy files in java.security.auth.policy with auth.policy.url.n=URL where URL is the

location of the authorization policy.

Chapter 12. Administering security 485

An updated library.policy is applied to shared libraries after the servers restart.

The union of the permission contained in the java.policy file, the app.policy file, and the library.policy

file are applied to the shared libraries. The library.policy file is managed by configuration and file

replication services. Changes made in the file are replicated to other nodes in the Network Deployment

cell.

The library.policy file supplied by WebSphere Application Server resides at:

install_root/config/cells/cell_name/nodes/node_name/library.policy, contains an empty permission

entry as a default. For example,

 grant {

 };

If the shared library in a cell requires permissions that are not defined as defaults in the java.policy file,

app.policy file and the library.policy file, update the library.policy file. The missing permission

causes the exception, java.security.AccessControlException. The missing permission is listed in the

exception data, for example:

 java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous lines are one continuous line.

When a Java program receives this exception and adding this permission is justified, add a permission to

the library.policy file, for example: grant codeBase ″file:<user client installed location>″ {

permission java.io.FilePermission ″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };

to decide whether to add a permission, refer to “Access control exception” on page 468.

Restart the related Java processes for the changes in the library.policy file to become effective.

Adding the was.policy file to applications:

When Java 2 security is enabled for a WebSphere Application Server, all the applications that run on that

WebSphere Application Server undergo a security check before accessing system resources. An

application might need a was.policy file if it accesses resources that require more permissions than those

granted in the default app.policy file. By default, the product security reads an app.policy file that is

located in each node and grants the permissions in the app.policy file to all the applications. Include any

additional required permissions in the was.policy file. The was.policy file is only required if an application

requires additional permissions.

The default policy file for all applications is specified in the app.policy file. This file is provided by the

product security, is common to all applications, and should not be changed. Add any new permissions

required for an application in the was.policy file.

The app.policy file is located in the install_root/config/cells/cell_name/nodes/node_name directory.

The contents of the app.policy file follow:

Attention: In the following code sample, the two permissions that are required by JavaMail were split into

two lines each due to the width of the printed page.

// The following permissions apply to all the components under the application.

grant codeBase ″file:${application}″ {

 // The following are required by JavaMail

 permission java.io.FilePermission ″

486 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

${was.install.root}${/}java${/}jre${/}lib${/}ext${/}mail.jar″, ″read″;

 permission java.io.FilePermission ″

 ${was.install.root}${/}java${/}jre${/}lib${/}ext${/}activation.jar″, ″read″;

};

 // The following permissions apply to all utility .jar files (other

 // than enterprise beans JAR files) in the application.

grant codeBase ″file:${jars}″ {

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

// The following permissions apply to connector resources within the application

grant codeBase ″file:${connectorComponent}″ {

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

// The following permissions apply to all the Web modules (.war files)

// within the application.

grant codeBase ″file:${webComponent}″ {

 permission java.io.FilePermission ″${was.module.path}${/}-″, ″read, write″;

 // where ″was.module.path″ is the path where the Web module is

 // installed. Refer to Dynamic policy concepts for other symbols.

 permission java.lang.RuntimePermission ″loadLibrary.*″;

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

// The following permissions apply to all the EJB modules within the application.

grant codeBase ″file:${ejbComponent}″ {

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

If additional permissions are required for an application or for one or more modules of an application, use

the was.policy file for that application. For example, use codeBase of ${application} and add required

permissions to grant additional permissions to the entire application. Similarly, use codeBase of

${webComponent} and ${ejbComponent} to grant additional permissions to all the Web modules and all

the enterprise bean (EJB) modules in the application. You can assign additional permissions to each

module (.war file or .jar file) as shown in the following example.

An example of adding extra permissions for an application in the was.policy file:

Attention: In the following code sample, the permission for the EJB module was split into two lines due to

the width of the printed page.

// grant additional permissions to a Web module

grant codeBase ″ file:aWebModule.war″ {

 permission java.security.SecurityPermission ″printIdentity″;

};

// grant additional permission to an EJB module

Chapter 12. Administering security 487

grant codeBase ″file:aEJBModule.jar″ {

 permission java.io.FilePermission ″

 ${user.install.root}${/}bin${/}DefaultDB${/}-″ .″read.write,delete″;

 // where, ${user.install.root} is the system property whose value is

 // located in the <install_root> directory.

 };

1. Create a was.policy file using the policy tool. For more information on using the policy tool, see “Using

PolicyTool to edit policy files” on page 471

2. Add the required permissions in the was.policy file using the policy tool.

3. Place the was.policy file in the application enterprise archive (EAR) file under the META-INF directory.

Update the application EAR file with the newly created was.policy file by using the jar command.

4. Verify that the was.policy file is inserted, and start an assembly tool. For more information, see

Starting an assembly tool

a. Verify that the was.policy file in the application is syntactically correct. In an assembly tool,

right-click the enterprise application module and click Run Validation.

An application EAR file is now ready to run when Java 2 security is enabled.

This step is required for applications to run properly when Java 2 security is enabled. If the was.policy file

is not created and it does not contain required permissions, the application might not access system

resources.

The symptom of the missing permissions is the exception, java.security.AccessControlException. The

missing permission is listed in the exception data, for example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines are one continuous line.

When an application program receives this exception and adding this permission is justified, include the

permission in the was.policy file, for example,

grant codeBase ″file:${application}″ { permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };

The previous two lines are one continuous line.

Install the application.

Configuring static policy files

Java 2 security uses several policy files to determine the granted permission for each Java program. See

the “Java 2 security policy files” on page 472 article for the list of available policy files supported by

WebSphere Application Server Version 5.

There are two types of policy files supported by WebSphere Application Server Version 5, dynamic policy

files and static policy files. Static policy files provide the default permissions. Dynamic policy files provide

application’s permissions.

 Policy file name Description

java.policy Contains default permissions for all of the Java programs

on the node. This file seldom changes.

488 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Policy file name Description

server.policy Contains default permissions for all of the WebSphere

Application Server programs on the node. This files is

rarely updated.

client.policy Contains default permissions for all of the applets and

client containers on the node.

The static policy file is not a configuration file managed by the repository and the file replication service.

Changes to this file are local and do not get replicated to the other machine.

1. Identify the policy file to update.

v If the permission is required only by an application, update the dynamic policy file. Refer to

“Configuring Java 2 security policy files” on page 476.

v If the permission is required only by applets and client containers, update the client.policy file.

Refer to “Configuring client.policy files” on page 492.

v If the permission is required only by WebSphere Application Server (servers, agents, managers and

application servers), update the server.policy file. Refer to “Configuring server.policy files” on page

491.

v If the permission is required by all of the Java programs running on the Java virtual machine (JVM),

update the java.policy file. Refer to “Configuring java.policy files.”

2. Stop and restart the WebSphere Application Server.

The required permission is granted for all of the Java programs running with the restarted JVM.

If Java programs on a node require permissions, the policy file needs updating. If the Java program that

required the permission is not part of an enterprise application, update the static policy file. The missing

permission causes the exception, java.security.AccessControlException. The missing permission is listed in

the exception data, for example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

When a Java program receives this exception and adding this permission is justified, add a permission to

an adequate policy file, for example:

grant codeBase ″file:<user client installed location>″ {

 permission java.io.FilePermission

 ″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

 ″read″;

};

To decide whether to add a permission, refer to “Access control exception” on page 468.

Configuring java.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 472 for the list of available policy files supported by WebSphere

Application Server Version 5.x or later. The java.policy file is a global default policy file shared by all of

the Java programs running in the Java Virtual Machine (JVM) on the node. Modifying this file is not

recommended.

If a specific change is required to some of the Java programs on a node and the java.policy file requires

updating, modify the java.policy file with policy tool. For more information, see “Using PolicyTool to edit

Chapter 12. Administering security 489

policy files” on page 471. A change to the java.policy file is local for the node. The default Java policy is

picked up automatically. Syntax errors in the policy files cause the application server to fail. Edit these

policy files carefully.

An updated java.policy file is applied to all the Java programs running in all the JVMs on the local node.

Restart the programs for the updates to take effect

The java.policy file is not a configuration file managed by the repository and the file replication service.

Changes to this file are local and do not get replicated to the other machine. The java.policy file supplied

by WebSphere Application Server is located at install_root/java/jre/lib/security/java.policy. It

contains these default permissions.

// Standard extensions get all permissions by default

grant codeBase ″file:${java.home}/lib/ext/*″ {

 permission java.security.AllPermission;

};

// default permissions granted to all domains

grant {

 // Allows any thread to stop itself using the java.lang.Thread.stop()

 // method that takes no argument.

 // Note that this permission is granted by default only to remain

 // backwards compatible.

 // It is strongly recommended that you either remove this permission

 // from this policy file or further restrict it to code sources

 // that you specify, because Thread.stop() is potentially unsafe.

 // See ″http://java.sun.com/notes″ for more information.

 // permission java.lang.RuntimePermission ″stopThread″;

 // allows anyone to listen on un-privileged ports

 permission java.net.SocketPermission ″localhost:1024-″, ″listen″;

 // ″standard″ properties that can be read by anyone

 permission java.util.PropertyPermission ″java.version″, ″read″;

 permission java.util.PropertyPermission ″java.vendor″, ″read″;

 permission java.util.PropertyPermission ″java.vendor.url″, ″read″;

 permission java.util.PropertyPermission ″java.class.version″, ″read″;

 permission java.util.PropertyPermission ″os.name″, ″read″;

 permission java.util.PropertyPermission ″os.version″, ″read″;

 permission java.util.PropertyPermission ″os.arch″, ″read″;

 permission java.util.PropertyPermission ″file.separator″, ″read″;

 permission java.util.PropertyPermission ″path.separator″, ″read″;

 permission java.util.PropertyPermission ″line.separator″, ″read″;

 permission java.util.PropertyPermission ″java.specification.version″, ″read″;

 permission java.util.PropertyPermission ″java.specification.vendor″, ″read″;

 permission java.util.PropertyPermission ″java.specification.name″, ″read″;

 permission java.util.PropertyPermission ″java.vm.specification.version″,″read″;

 permission java.util.PropertyPermission ″java.vm.specification.vendor″,″read″;

 permission java.util.PropertyPermission ″java.vm.specification.name″, ″read″;

 permission java.util.PropertyPermission ″java.vm.version″, ″read″;

 permission java.util.PropertyPermission ″java.vm.vendor″, ″read″;

 permission java.util.PropertyPermission ″java.vm.name″, ″read″;

 };

490 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

If some Java programs on a node require permissions that are not defined as defaults in the java.policy

file, then consider updating the java.policy file. Most of the time, other policy files are updated instead of

the java.policy file. The missing permission causes the exception, java.security.AccessControlException.

The missing permission is listed in the exception data, for example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines are one continuous line.

When a Java program receives this exception and adding this permission is justified, add a permission to

the java.policyfile, for example:

grant codeBase ″file:<user client installed location>″ {

permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };

To decide whether to add a permission, refer to “Access control exception” on page 468.

Restart all of the Java processes for the updated java.policy file to take effect.

Configuring server.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 472 for the list of available policy files supported by WebSphere

Application Server Version 5. The server.policy file is a default policy file shared by all of the WebSphere

servers on a node. The server.policy file is not a configuration file managed by the repository and the file

replication service. Changes to this file are local and do not replicate to the other machine.

If the default permissions for a server (the union of the permissions defined in the java.policy file and the

server.policy file) are enough, no action is required. The default server policy is picked up automatically.

If a specific change is required to some of the server programs on a node, update the server.policy file

with the Policy Tool. Refer to the “Using PolicyTool to edit policy files” on page 471 article to edit policy

files. Changes to the server.policy file are local for the node. Syntax errors in the policy files cause the

application server to fail. Edit these policy files carefully.

An updated server.policy file is applied to all the server programs on the local node. Restart the servers

for the updates to take effect.

If you want to add permissions to an application, use the app.policy file and the was.policy file.

When you do need to modify the server.policy file, locate this file at:

install_root/properties/server.policy. This file contains these default permissions:

// Allow to use sun tools

grant codeBase ″file:${java.home}/../lib/tools.jar″ {

 permission java.security.AllPermission;

};

// WebSphere system classes

grant codeBase ″file:${was.install.root}/lib/-″ {

 permission java.security.AllPermission;

};

grant codeBase ″file:${was.install.root}/classes/-″ {

 permission java.security.AllPermission;

};

Chapter 12. Administering security 491

// Allow the WebSphere deploy tool all permissions

grant codeBase ″file:${was.install.root}/deploytool/-″ {

 permission java.security.AllPermission;

};

If some server programs on a node require permissions that are not defined as defaults in the

server.policy file and the server.policy file, update the server.policy file. The missing permission

causes the exception, java.security.AccessControlException. The missing permission is listed in the

exception data, for example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines are one continuous line.

When a Java program receives this exception and adding this permission is justified, add a permission to

the server.policy file, for example:

grant codeBase ″file:<user client installed location>″ {

permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };

To decide whether to add a permission, refer to “Access control exception” on page 468.

Restart all of the Java processes for the updated server.policy file to take effect.

Configuring client.policy files:

Java 2 security uses several policy files to determine the granted permission for each Java program. See

“Java 2 security policy files” on page 472 for the list of available policy files supported by WebSphere

Application Server Version 5. The client.policy file is a default policy file shared by all of the WebSphere

Application Server client containers and applets on a node. The union of the permissions contained in the

java.policy file and the client.policy file are given to all of the WebSphere client containers and applets

running on the node. The client.policy file is not a configuration file managed by the repository and the

file replication service. Changes to this file are local and do not replicate to the other machine. The

client.policy file supplied by WebSphere Application Server is located at

install_root/profiles/profile_name/properties/client.policy. It contains these default permissions:

grant codeBase ″file:${java.home}/lib/ext/*″ {

 permission java.security.AllPermission;

};

// IBM Developer Kit, Java Technology Edition classes

grant codeBase ″file:${java.home}/lib/ext/-″ {

 permission java.security.AllPermission;

};

grant codeBase ″file:${java.home}/../lib/tools.jar″ {

 permission java.security.AllPermission;

};

// WebSphere system classes

grant codeBase ″file:${was.install.root}/lib/-″ {

 permission java.security.AllPermission;

};

grant codeBase ″file:${was.install.root}/classes/-″ {

 permission java.security.AllPermission;

};

492 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

grant codeBase ″file:${was.install.root}/installedConnectors/-″ {

 permission java.security.AllPermission;

};

// J2EE 1.3 permissions for client container WAS applications

// in $WAS_HOME/installedApps

grant codeBase ″file:${was.install.root}/installedApps/-″ {

 //Application client permissions

 permission java.awt.AWTPermission ″accessClipboard″;

 permission java.awt.AWTPermission ″accessEventQueue″;

 permission java.awt.AWTPermission ″showWindowWithoutWarningBanner″;

 permission java.lang.RuntimePermission ″exitVM″;

 permission java.lang.RuntimePermission ″loadLibrary″;

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.net.SocketPermission ″localhost:1024-″, ″accept,listen″;

 permission java.io.FilePermission ″*″, ″read,write″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

// J2EE 1.3 permissions for client container - expanded ear file code base

grant codeBase ″file:${com.ibm.websphere.client.applicationclient.archivedir}/-″

 {

 permission java.awt.AWTPermission ″accessClipboard″;

 permission java.awt.AWTPermission ″accessEventQueue″;

 permission java.awt.AWTPermission ″showWindowWithoutWarningBanner″;

 permission java.lang.RuntimePermission ″exitVM″;

 permission java.lang.RuntimePermission ″loadLibrary″;

 permission java.lang.RuntimePermission ″queuePrintJob″;

 permission java.net.SocketPermission ″*″, ″connect″;

 permission java.net.SocketPermission ″localhost:1024-″, ″accept,listen″;

 permission java.io.FilePermission ″*″, ″read,write″;

 permission java.util.PropertyPermission ″*″, ″read″;

};

// For MQ Series

grant codeBase ″file:${mq.install.root}/java/*″ {

 permission java.security.AllPermission;

};

1. If the default permissions for a client (union of the permissions defined in the java.policy file and the

client.policy file) are enough, no action is required. The default client policy is picked up

automatically.

2. If a specific change is required to some of the client containers and applets on a node, modify the

client.policy file with the policy tool. Refer to “Using PolicyTool to edit policy files” on page 471, to

edit policy files. Changes to the client.policy file are local for the node.

All of the client containers and applets on the local node are granted the updated permissions at the time

of execution.

If some client containers or applets on a node require permissions that are not defined as defaults in the

java.policy file and the default client.policy file, update the client.policy file. The missing permission

causes the exception, java.security.AccessControlException. The missing permission is listed in the

exception data, for example,

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

Chapter 12. Administering security 493

The previous two lines of sample code are one continuous line, but extended beyond the width of the

page.

When a client program receives this exception and adding this permission is justified, add a permission to

the client.policy file, for example, grant codebase ″file:user_client_installed_location″ { permission

java.io.FilePermission ″C:\WebSphere\AppServer\java\jre\lib\ext\mail.ja″, ″read″; };.

To decide whether to add a permission, refer to “Access control exception” on page 468.

Close and restart the browser. You also must restart the client application if you have one.

Migrating Java 2 security policy

Previous WebSphere Application Server releases

Starting from Version 3.x, WebSphere Application Server installed a Java 2 security manager in the server

run time to prevent enterprise applications from calling the System.exit() and the

System.setSecurityManager() methods. These two Java APIs have undesirable consequences if called by

enterprise applications. The System.exit() API, for example, causes the Java virtual machine (application

server process) to exit prematurely, which is an undesirable operation for an application server.

However, Java 2 security was not a fully supported feature prior to Version 5. To support Java 2 security

properly, all the server run time must be marked as privileged (with doPrivileged() API calls inserted in

the correct places), and identify the default permission sets or policy. Application code is not privileged and

subject to the permissions defined in the policy files. The doPrivileged instrumentation is important and

necessary to support Java 2 security. Without it, the application code must be granted the permissions

required by the server run time. This is due to the design and algorithm used by Java 2 security to enforce

permission checks. Please refer to the Java 2 security check permission algorithm.

The following two permissions are enforced by the WebSphere Java 2 security manager (hard coded):

v java.lang.RuntimePermission(exitVM)

v java.lang.RuntimePermission(setSecurityManager)

Application code is denied access to these permissions regardless of what is in the Java 2 security policy.

However, the server run time is granted these permissions. All the other permission checks are not

enforced.

Partial support was introduced since the version 4.02 product release. Prior to version 4.0.2, Java 2

security was not supported. From version 4.02 and later, only two permissions are supported:

v java.net.SocketPermission

v java.net.NetPermission

However, not all the product server run time is properly marked as privileged. You must grant the

application code all the other permissions besides the two listed previously or the enterprise application

can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

What changed

Java 2 Security is fully supported in version 5.x and later, which means all permissions are enforced. The

default Java 2 security policy for enterprise application is the recommended permission set defined by the

J2EE 1.4 specification. Refer to the

install_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy file for the

default Java 2 security policy granted to enterprise applications. This is a much more stringent policy

compared to previous releases.

494 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

All policy is declarative. The product security manager honors all policy declared in the policy files. There

is an exception to this rule: enterprise applications are denied access to permissions declared in the

install_rootprofiles/profile_name/config/cells/cell_name/filter.policy file.

Note: Enterprise applications that run on Version 4.0.x with Java 2 security enabled are not guaranteed to

run successfully when migrating to Version 5 (when Java 2 security is enabled), even if the Java 2

security policy is migrated properly. The default Java 2 security policy for enterprise applications is

much more stringent and all permissions are enforced in Version 5. It might fail because the

application code does not have the necessary permissions granted where system resources (such

as file I/O for example) can be programmatically accessed and are now subject to the permission

checking.

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:

v java.security.policy. The absolute path of the policy file (action required). It contains both system

permissions (permissions granted to the Java Virtual Machine (JVM) and the product server run time)

and enterprise application permissions. Migrate the Java 2 security policy of the enterprise application to

Version 5. For Java 2 security policy migration, see the steps for migrating Java 2 security policy.

v enableJava2Security. Used to enable Java 2 security enforcement (no action required). This is

deprecated; a flag in the WebSphere configuration application programming interface (API) is used to

control whether to enabled Java 2 security. Enable this option through the administrative console.

v was.home. Expanded to the installation directory of the WebSphere Application Server (action might be

required). This is deprecated; superseded by ${user.install.root} and ${was.install.root}

properties. If the directory contains instance specific data then ${user.install.root} is used; otherwise

${was.install.root} is used. Use these properties interchangeably for the WebSphere Application

Server or the Network Deployment environments. See the steps for migrating Java 2 security policy.

Migrating the Java 2 Security Policy

There is no easy way of migrating the Java policy file from Version 4.0.x automatically because there is a

mixture of system permissions and application permissions in the same policy file. Manually copy the Java

2 security policy for enterprise applications to a was.policy or app.policy file. However, migrating the

Java 2 security policy to a was.policy file is preferable because symbols or relative codebase is used

instead of absolute codebase. There are many advantages to this process. The permissions defined in the

was.policy file should only be granted to the specific enterprise application, while permissions in the

app.policy file apply to all the enterprise applications running on the node where the app.policy file

belongs. Refer to the “Java 2 security policy files” on page 472 article for more details on policy

management.

The following example illustrates the migration of a Java 2 security policy from a previous release. The

contents include the Java 2 security policy file (the default is install_rootprofiles

profile_name/properties/java.policy) for the app1.ear enterprise application and the system

permissions (permissions granted to the JVM and product server run time). Default permissions are

omitted for clarity:

// For product Samples

 grant codeBase ″file:${install_root}/installedApps/app1.ear/-″ {

 permission java.security.SecurityPermission ″printIdentity″;

 permission java.io.FilePermission ″${install_root}${/}temp${/}somefile.txt″,

 ″read″;

 };

Chapter 12. Administering security 495

For clarity of illustration, all the permissions are migrated as the application level permissions in this

example. However, you can grant permissions at a more granular level at the component level (Web,

enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to

a particular component.

1. Ensure that Java 2 security is disabled on the application server.

2. Create a new was.policy file (if one is not present) or update the was.policy for migrated applications

in the configuration repository in

(profiles/profile_nameconfig/cells/cell_name/applications/app.ear/deployments/app/META-
INF/was.policy) with the following contents:

grant codeBase ″file:${application}″ {

 permission java.security.SecurityPermission ″printIdentity″;

 permission java.io.FilePermission ″

 ${user.install.root}${/}temp${/}somefile.txt″, ″read″;

 };

The third and fourth lines in the previous code sample are one continuous line, but extended beyond

the width of the page.

3. Use an assembly tool to attach the was.policy file to the enterprise archive (EAR) file. You also can

use an assembly tool to validate the contents of the was.policy file. For more information, see

“Configuring the was.policy file” on page 482.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2

Security permissions and the default permissions set declared in the

${was.install.root}profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy

file. This requires code review, code inspection, application documentation review, and sandbox testing

of migrated enterprise applications with Java 2 security enabled in a pre-production environment. Refer

to developer kit APIs protected by Java 2 security for information about which APIs are protected by

Java 2 security. If you use third party libraries, consult the vendor documentation for APIs that are

protected by Java 2 security. Verify that the application is granted all the required permissions, or it

might fail to run when Java 2 security is enabled.

5. Perform pre-production testing of the migrated enterprise application with Java 2 security enabled.

Hint: Enable trace for the WebSphere Application Server Java 2 security manager in the

pre-production testing environment (with trace string:

com.ibm.ws.security.core.SecurityManager=all=enabled). This can be helpful in debugging the

AccessControlException exception thrown when an application is not granted the required permission

or some system code is not properly marked as privileged. The trace dumps the stack trace and

permissions granted to the classes on the call stack when the exception is thrown. For more

information, see “Access control exception” on page 468.

Note: Because the Java 2 security policy is much more stringent compared with previous releases, it

is strongly advised that the administrator or deployer review their enterprise applications to see

if extra permissions are required before enabling Java 2 security. If the enterprise applications

are not granted the required permissions, they fail to run.

496 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 13. Configuring security with scripting

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

If you enable security for a WebSphere Application Server cell, supply authentication information to

communicate with servers.

The sas.client.props and the soap.client.props files are located in the properties directory for each

WebSphere Application Server profile, profilePath/properties.

v The nature of the properties file updates required for running in secure mode depend on whether you

connect with a Remote Method Invocation (RMI) connector, or a Simple Object Access Protocol (SOAP)

connector:

– If you use a Remote Method Invocation (RMI) connector, set the following properties in the

sas.client.props file with the appropriate values:

com.ibm.CORBA.loginUserid=

com.ibm.CORBA.loginPassword=

Also, set the following property:

com.ibm.CORBA.loginSource=properties

The default value for this property is prompt in the sas.client.props file. If you leave the default

value, a dialog box appears with a password prompt. If the script is running unattended, it appears to

hang.

– If you use a Simple Object Access Protocol (SOAP) connector, set the following properties in the

soap.client.props file with the appropriate values:

com.ibm.SOAP.securityEnabled=true

com.ibm.SOAP.loginUserid=

com.ibm.SOAP.loginPassword=

v To specify user and password information, choose one of the following methods:

– Specify user name and password on a command line, using the -user and -password commands.

For example:

wsadmin.sh -conntype RMI -port 2809 -user u1 -password secret1

– Specify user name and password in the sas.client.props file for a RMI connector or the

soap.client.props file for a SOAP connector.

If you specify user and password information on a command line and in the sas.client.props file or the

soap.client.props file, the command line information overrides the information in the props file.

Warning: On UNIX system, the use of -password option may result in security exposure as the

password information becomes visible to the system status program such as ps command which can be

invoked by other user to display all the running processes. Do not use this option if security exposure is

a concern. Instead, specify user and password information in the soap.client.props file for SOAP

connector or sas.client.props file for RMI connector. The soap.client.props and sas.client.props files are

located in the properties directory of your WebSphere profile.

Enabling and disabling global security using scripting

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

The default profile sets up procedures so that you can enable and disable global security based on

LocalOS registry.

v You can use the help command to find out the arguments that you need to provide with this call, for

example:

© Copyright IBM Corp. 2004 497

– Using Jacl:

securityon help

Example output:

Syntax: securityon user password

– Using Jython:

securityon()

Example output:

Syntax: securityon(user, password)

v To enable global security based on the LocalOS registry, use the following procedure call and

arguments:

– Using Jacl:

securityon user1 password1

– Using Jython:

securityon(’user1’, ’password1’)

v To disable global security based on the LocalOS registry, use the following procedure call:

– Using Jacl:

securityoff

– Using Jython:

securityoff()

Enabling and disabling Java 2 security using scripting

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to enable or disable Java 2 security:

1. Identify the security configuration object and assign it to the security variable:

v Using Jacl:

set security [$AdminConfig list Security]

v Using Jython:

security = AdminConfig.list(’Security’)

print security

Example output:

(cells/mycell|security.xml#Security_1)

2. Modify the enforceJava2Security attribute to enable or disable Java 2 security. For example:

v To enable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security true}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’true’]])

v To disable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security false}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’false’]])

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

498 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Chapter 13. Configuring security with scripting 499

500 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 14. Learn about WebSphere applications

Use this section as a starting point to investigate the technologies used in and by applications that you

deploy on the application server.

See Learn about WebSphere applications: Overview and new features for an introduction to each

technology.

Web applications How do I?... Overview Samples

EJB applications How do I?... Overview Tutorials Samples

Client applications How do I?... Overview Samples

Web services How do I?... Overview Tutorials Samples

Data access resources How do I?... Overview Tutorials Samples

Messaging resources How do I?... Overview Tutorials Samples

Mail, URLs, and other

J2EE resources

How do I?... Overview

Security How do I?... Overview Tutorials Samples

Naming and directory How do I?... Overview

Object Request Broker How do I?... Overview

Transactions How do I?... Overview Samples

ActivitySessions How do I?... Overview Samples

Application profiling How do I?... Overview Samples

Asynchronous beans How do I?... Overview Samples

Dynamic caching How do I?... Overview

Dynamic query How do I?... Overview Samples

Internationalization How do I?... Overview Samples

Object pools How do I?... Overview

Scheduler How do I?... Overview Samples

Startup beans How do I?... Overview

Work areas How do I?... Overview

Web applications

Security constraints

Security constraints determine how Web content is to be protected.

These properties associate security constraints with one or more Web resource collections. A constraint

consists of a Web resource collection, an authorization constraint and a user data constraint.

v A Web resource collection is a set of resources (URL patterns) and HTTP methods on those resources.

All requests that contain a request path that matches the URL pattern described in the Web resource

collection are subject to the constraint. If no HTTP methods are specified, then the security constraint

applies to all HTTP methods.

© Copyright IBM Corp. 2004 501

v An authorization constraint is a set of roles that users must be granted in order to access the resources

described by the Web resource collection. If a user who requests access to a specified URI is not

granted at least one of the roles specified in the authorization constraint, the user is denied access to

that resource.

v A user data constraint indicates that the transport layer of the client or server communications process

must satisfy the requirement of either guaranteeing content integrity (preventing tampering in transit) or

guaranteeing confidentiality (preventing reading while in transit).

EJB applications

Configuring security for message-driven beans that use listener ports

Use this task to configure resource security and security permissions for EJB 2.0 message-driven beans

deployed to use listener ports.

Messages arriving at a listener port have no client credentials associated with them. The messages are

anonymous.

To call secure enterprise beans from a message-driven bean, the message-driven bean needs to be

configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the

RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see EJB component security. For more information about

configuring security for your application, see Assembling secured applications.

JMS connections used by message-driven beans can benefit from the added security of using J2C

container-managed authentication. To enable the use of J2C container authentication aliases and mapping,

define a J2C container-managed alias on the JMS connection factory definition that the message-driven

bean is using to listen upon (defined by the Connection factory JNDI name property of the listener port).

If defined, the listener uses the container-managed authentication alias for its JMSConnection security

credentials instead of any application-managed alias. To set the container-managed alias, use the

administrative console to complete the following steps:

1. To display the listener port settings, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Listener Ports → listener_port

2. To get the name of the JMS connection factory, look at the Connection factory JNDI name property.

3. Display the JMS connection factory properties. For example, to display the properties of a WebSphere

queue connection factory provided by the default messaging provider, click Resources → JMS

Providers → Default Messaging Provider → → [Content pane] WebSphere Queue Connection

Factories → connection_factory

4. Set the Authentication alias property.

5. Click OK

Configuring security for EJB 2.1 message-driven beans

Use this task to configure resource security and security permissions for EJB 2.1 message-driven beans.

Messages handled by message-driven beans have no client credentials associated with them. The

messages are anonymous.

To call secure enterprise beans from a message-driven bean, the message-driven bean needs to be

configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the

RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see EJB component security. For more information about

configuring security for your application, see Assembling secured applications.

502 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Connections used by message-driven beans can benefit from the added security of using J2C

container-managed authentication. To enable the use of J2C container authentication aliases and mapping,

define an authentication alias on the J2C activation specification that the message-driven bean is

configured with. If defined, the message-driven bean uses the authentication alias for its JMSConnection

security credentials instead of any application-managed alias.

To set the authentication alias, you can use the administrative console to complete one the following steps.

This task description assumes that you have already created an activation specification. If you want to

create a new activation specification, see the related tasks.

v For a message-driven bean listening on a JMS destination of the default messaging provider, set the

authentication alias on a JMS activation specification.

1. To display the JMS activation specification settings, click Resources → JMS Providers → Default

messaging → [Activation Specifications] JMS activation specification

2. If you have already created a JMS activation specification, click its name in the list displayed.

Otherwise, click New to create a new JMS activation specification.

3. Set the Authentication alias property.

4. Click OK

5. Save your changes to the master configuration.

v For a message-driven bean listening on a destination (or endpoint) of another JCA provider, set the

authentication alias on a J2C activation specification.

1. To display the J2C activation specification settings, click Resources → Resource Adapters →

adapter_name → J2C Activation specifications → activation specification_name

2. Set the Authentication alias property.

3. Click OK

4. Save your changes to the master configuration.

Client applications

Accessing secure resources using SSL and applet clients

By default, the applet client is configured to have security enabled. If you have global security turned on at

the server from which you are accessing resources, then you can use secure sockets layer (SSL) when

needed. If you decide that the security requirements for the applet differ from other application client types,

then create a new version of the sas.client.props file.

1. Make a copy of the following file so that you can use it for an applet:

<product_install_directory>/properties/sas.client.props

2. Edit the copy of sas.client.props file that you made with your changes.

3. Click Start > Control panel > select the product Java plug-in to open the Java control panel.

v To use the file you created in step 1, modify the following value:

-Dcom.ibm.CORBA.ConfigURL=file:<product_install_directory>\properties\sas.client.props

For more information on the sas.client.props file and WebSphere Application Server security, see the

Security section of the information center.

Applet client security requirements

When code is loaded, it is assigned permissions based on the security policy in effect. This policy

specifies the permissions that are available for code from various locations. You can initialize this policy

from an external policy file. By default, the client uses the

<product_installation_dir>/properties/client.policy file. You must update this file with the following

permission:

Chapter 14. Learn about WebSphere applications 503

SocketPermission grants permission to open a port and make a connection to a host machine, which is

your WebSphere Application Server. In the following example, yourserver.yourcompany.com is the

complete host name of your WebSphere Application Server:

permission java.util.PropertyPermission "*", "read";

permission java.net.SocketPermission "yourserver.yourcompany.com ,"connect";

Web services

Transport level security

Transport level security is based on Secure Sockets Layer (SSL) or Transport Layer Security (TLS) that

runs beneath HTTP.

Transport level security can be used to secure Web services messages. It is orthogonal to the security

support provided by WS-Security or HTTP Basic Authentication.

SSL and TLS provide security features including authentication, data protection, and cryptographic token

support for secure HTTP connections. To run with HTTPS, the service port address must be in the form

https://.

The integrity and confidentiality of transport data, including SOAP messages and HTTP basic

authentication, is confirmed when you use SSL and TLS. See Secure Sockets Layer for more information.

Web services applications can also use Federal Information Processing Standard (FIPS) approved ciphers

for more secure TLS connections. For information on FIPS, see “Global security settings” on page 145.

WebSphere Application Server uses the Java Secure Sockets Extension (JSSE) package to support SSL

and TLS.

Configuring HTTP outbound transport level security with the

administrative console

This topic explains how to configure HTTP outbound transport level security with the administrative

console.

This task is one of three ways that you can configure the HTTP outbound transport level security for a

Web service acting as a client to another Web service client. You can also configure the HTTP outbound

transport level security with an assembly tool or by using the Java properties.

Configuring the HTTP outbound transport-level security for a Web service is based on the Secured

Sockets Layer (SSL) configuration repertoires of the WebSphere Application Server. Review Configuring

Secure Sockets Layer for more information.

If you choose to configure the HTTP outbound transport level security with the administrative console or

an assembly tool, the Web services security binding information is modified. You can use the

administrative console to configure the Web services client security bindings if you have deployed or

installed the Web services application into WebSphere Application Server. If you have not installed the

Web services application, you can configure the HTTP SSL configuration with an assembly tool. This task

assumes that you have deployed the Web services application into the WebSphere product.

If you configure the HTTP outbound transport level security using Java properties, the properties are

configured as system properties. However, the configuration that is specified in the binding takes

precedence over the Java properties.

Configure the HTTP outbound transport level security with the following steps provided in this task section.

504 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Open the administrative console.

1. Click Applications > Enterprise Applications > application_instance > Web Modules or EJB

Modules > module_instance > Web Services Client Security Bindings.

2. Click HTTP SSL Configuration to access the HTTP SSL configuration panel. Select HTTP SSL

enabled. Select the SSL configuration from the list in the HTTP Basic Authentication panel.

You have configured the HTTP outbound transport level security for a Web service acting as a client to

another Web service with the administrative console.

HTTP SSL Configuration collection

Use this page to configure transport-level Secure Sockets Layer (SSL) security. You can use this

configuration when a Web service is a client to another Web service.

You can use transport-level security to enable HTTP SSL (or HTTPS). Transport-level security can be

enabled or disabled independently from message-level security. Because transport-level security provides

minimal security, use message-level security when security is essential to the Web service application.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications >application_name.

2. Under Related Items, click Web module > URI_file_name > Web Services: Client Security

Bindings.

3. Under HTTP SSL Configuration, click Edit.

HTTP SSL enabled:

Specifies secure socket communications for the HTTP transport for this port. When enabled, WebSphere

Application Server uses the HTTP SSL Configuration setting.

HTTP SSL configuration:

Specifies which alias of the SSL configuration to use with the HTTP transport for this port.

 This option is used if you select HTTP SSL Enabled. SSL aliases are defined in the Secure Sockets Layer

configuration repertoire, which you can configure by clicking Security > SSL.

Configuring HTTP outbound transport level security with an assembly

tool

This topic explains how to configure the HTTP outbound transport level security with an assembly tool.

You can configure HTTP outbound transport level security with assembly tools provided with WebSphere

Application Server.

You must configure the assembly tool before you can use it.

This task is one of three ways that you can configure the HTTP outbound transport level security for a

Web Service acting as a client to another Web service. You can also configure the HTTP outbound

transport level security with the administrative console or by using the Java properties.

The configuration of HTTP outbound transport-level security for a Web service is based on the Secured

Sockets Layer (SSL) configuration repertoires of the WebSphere Application Server. Review Configuring

Secure Sockets Layer for more information.

If you choose to configure the HTTP outbound transport level security with assembly tool or with the

administrative console, the Web services security binding information is modified. If you have not yet

Chapter 14. Learn about WebSphere applications 505

installed the Web services application into WebSphere Application Server, you can configure the HTTP

SSL configuration with an assembly tool. This task assumes that you have not deployed the Web services

application into the WebSphere product.

If you configure the HTTP outbound transport level security using the Java properties, the properties are

configured as system properties. However, the configuration specified in the binding takes precedence

over the Java properties.

Configure the HTTP outbound transport level security with the following steps provided in this task section.

1. Start an assembly tool. The assembly tools, Application Server Toolkit (AST) and Rational Web

Developer, provide a graphical interface for developing code artifacts, assembling the code artifacts

into various archives (modules) and configuring related Java 2 Platform, Enterprise Edition (J2EE)

Version 1.2, 1.3 or 1.4 compliant deployment descriptors.

2. Configure the HTTP outbound transport level security in the Web Services Client Port Binding page for

a Web service client. The Web Services Client Port Binding page is available after double-clicking the

client deployment descriptor file.

You have configured the HTTP outbound transport level security for a Web Service acting as a client to

another Web service with an assembly tool.

Configuring HTTP outbound transport-level security using Java

properties

This topic explains how to configure the HTTP outbound transport level security for a Web service using

Java properties

This task is one of three ways that you can configure HTTP outbound transport-level security for a Web

service that is acting as a client to another Web service. You can also configure the HTTP outbound

transport level security with the administrative console or an assembly tool. However, you can also use

this task to configure the HTTP outbound transport-level security for a Web service client.

If you choose to configure the HTTP outbound transport-level security with the administrative console or

an assembly tool, the Web services security binding information is modified.

If you configure the HTTP outbound transport-level security using Java properties, the properties are

configured as system properties. However, the configuration specified in the binding takes precedence

over the Java properties.

You can configure the HTTP outbound transport-level security using WebSphere SSL properties or JSSE

SSL properties. However, the WebSphere SSL properties take precedence over the JSSE SSL properties.

Configure the HTTP outbound transport-level security with the following steps provided in this task section.

1. Create a property file that includes the following properties:

com.ibm.ssl.protocol

com.ibm.ssl.keyStoreType

com.ibm.ssl.keyStore

com.ibm.ssl.keyStorePassword

com.ibm.ssl.trustStoreType

com.ibm.ssl.trustStore

com.ibm.ssl.trustStorePassword

2. Set the com.ibm.webservices.sslConfigURL Java system property to the absolute path of the created

property file. If no WebSphere SSL properties are defined, the JSSE SSL properties are used. Set the

JSSE SSL properties as JVM custom properties. See Using Java Secure Socket Extension and Java

Cryptography Extension with servlets and enterprise bean files for more information about setting the

JSSE SSL properties.

506 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

You have configured the HTTP outbound transport-level security for a Web service acting as a client to

another Web service.

HTTP basic authentication

HTTP basic authentication uses a user name and password to authenticate a service client to a secure

endpoint.

WebSphere Application Server can have several resources, including Web services, protected by a Java 2

Platform, Enterprise Edition (J2EE) security model.

HTTP basic authentication is orthogonal to the security support provided by WS-Security or HTTP Secure

Sockets Layer (SSL) configuration.

A simple way to provide authentication data for the service client is to authenticate to the protected service

endpoint using HTTP basic authentication. The basic authentication is encoded in the HTTP request that

carries the SOAP message. When the application server receives the HTTP request, the user name and

password are retrieved and verified using the authentication mechanism specific to the server.

Although the basic authentication data is base64-encoded, sending data over HTTPS is recommended.

The integrity and confidentiality of the data can be protected by the SSL protocol.

In some cases, a firewall is present using a pass-thru HTTP proxy server. The HTTP proxy server

forwards the basic authentication data into the J2EE application server. The proxy server can also be

protected. Applications can specify the proxy data by setting properties in a stub object.

Configuring HTTP basic authentication with the administrative console

This topic explains how to configure HTTP basic authentication with the administrative console.

This task is one of three ways that you can configure HTTP basic authentication. You can also configure

HTTP basic authentication with an assembly tool or by modifying the HTTP properties programmatically.

If you choose to configure HTTP basic authentication with the administrative console or an assembly tool,

the Web services security binding information is modified. You can use the administrative console to

configure HTTP basic authentication if you have deployed or installed the Web services application into

WebSphere Application Server. If you have not installed the Web services application, then you can

configure the security bindings with an assembly tool. This task assumes that you have deployed the Web

services application into the WebSphere product.

If you configure HTTP basic authentication programmatically, the properties are configured in the Stub or

Call instance. The values set programmatically take precedence over the values defined in the binding.

However, you only can programmatically configure HTTP proxy authentication.

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct

from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not

HTTP basic authentication.

Configure HTTP basic authentication with the following steps provided in this task section.

1. Open the administrative console.

a. Click Applications > Enterprise Applications > application_instance > Web Modules or EJB

Modules > module_instance > Web Services Client Bindings.

b. Click HTTP Basic Authentication to access the HTTP basic authentication panel. Enter the values

in the HTTP Basic Authentication panel.

2. Click Applications > Enterprise Applications > application_instance. Under Additional Properties,

click Publish WSDL files which brings you to the Publish WSDL zip files panel.

Chapter 14. Learn about WebSphere applications 507

HTTP basic authentication collection

Use this page to specify a user name and password for transport-level basic authentication security for this

port. You can use this configuration when a Web service is a client to another Web service.

You can use transport-level security to enable basic authentication. Transport-level security can be

enabled or disabled independently from message-level security. Because transport-level security provides

minimal security, use message-level security when security is essential to the Web service application.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications >application_name.

2. Under Related Items, click Web module >URI_file_name > Web Services: Client Security Bindings.

3. Under HTTP Basic Authentication, click Edit.

Basic authentication ID:

Specifies the user name for the HTTP basic authentication for this port.

Basic authentication password:

Specifies the password for the HTTP basic authentication for this port.

Configuring HTTP basic authentication with an assembly tool

This topic explains how to configure HTTP basic authentication with an assembly tool.

You can configure HTTP basic authentication with assembly tools provided with WebSphere Application

Server.

You must configure the assembly tool before you can use it.

This task is one of three ways that you can configure HTTP basic authentication. You can also configure

HTTP basic authentication with the administrative console or by modifying the HTTP properties

programmatically.

If you choose to configure the HTTP basic authentication with an assembly tool or with the administrative

console , the Web services security binding information is modified. You can use an assembly tool to

configure HTTP basic authentication before you deploy or install the Web services application into

WebSphere Application Server. This task assumes that you have not deployed the Web services

application into the WebSphere product.

If you configure HTTP basic authentication programmatically, the properties are configured in the Stub or

Call instance. The values set programmatically take precedence over the values defined in the binding.

However, you only can programmatically configure HTTP proxy authentication.

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct

from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not

HTTP basic authentication.

To configure HTTP basic authentication, use the WebSphere Application Server tools to modify the binding

information.

1. Start an assembly tool. The assembly tools, Application Server Toolkit (AST) and Rational Web

Developer, provide a graphical interface for developing code artifacts, assembling the code artifacts

into various archives (modules) and configuring related Java 2 Platform, Enterprise Edition (J2EE)

Version 1.2, 1.3 or 1.4 compliant deployment descriptors.

508 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

2. Configure the HTTP basic authentication in the Web Services Client Port Binding page for a Web

service or a Web service client. The Web Services Client Port Binding page is available after

double-clicking the client deployment descriptor file.

HTTP basic authentication collection

Use this page to specify a user name and password for transport-level basic authentication security for this

port. You can use this configuration when a Web service is a client to another Web service.

You can use transport-level security to enable basic authentication. Transport-level security can be

enabled or disabled independently from message-level security. Because transport-level security provides

minimal security, use message-level security when security is essential to the Web service application.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications >application_name.

2. Under Related Items, click Web module >URI_file_name > Web Services: Client Security Bindings.

3. Under HTTP Basic Authentication, click Edit.

Basic authentication ID:

Specifies the user name for the HTTP basic authentication for this port.

Basic authentication password:

Specifies the password for the HTTP basic authentication for this port.

Configuring HTTP basic authentication programmatically

This topic explains how to configure HTTP basic authentication by programmatically modifying HTTP

properties.

This task is one of three ways that you can configure HTTP basic authentication. You can also configure

HTTP basic authentication with an assembly tool or with the administrative console.

If you programmatically configure HTTP basic authentication, the properties are configured in the Stub or

Call instance. If you choose to configure HTTP basic authentication with the administrative console or an

assembly tool, the Web services security binding information is modified. The values that are set

programmatically take precedence over the values defined in the binding. However, you can only configure

HTTP proxy authentication programmatically.

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct

from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not

HTTP basic authentication.

Configure HTTP basic authentication programmatically with the following steps provided in this task

section.

1. Set the properties in the Stub or Call instance for a Web service or a Web service client You can set

the following properties:

javax.xml.rpc.Call.USERNAME_PROPERTY

javax.xml.rpc.Call.PASSWORD_PROPERTY

javax.xml.rpc.Stub.USERNAME_PROPERTY

javax.xml.rpc.Stub.PASSWORD_PROPERTY

2. Set the properties in the Stub or Call instance to configure the HTTP proxy authentication.

a. You can set the following properties for HTTP:

Chapter 14. Learn about WebSphere applications 509

com.ibm.wsspi.webservices.HTTP_PROXYHOST_PROPERTY

com.ibm.wsspi.webservices.HTTP_PROXYPORT_PROPERTY

com.ibm.wsspi.webservices.HTTP_PROXYUSER_PROPERTY

com.ibm.wsspi.webservices.HTTP_PROXYPASSWORD_PROPERTY

3. You can set the following properties for HTTPS:

com.ibm.wsspi.webservices.HTTPS_PROXYHOST_PROPERTY

com.ibm.wsspi.webservices.HTTPS_PROXYPORT_PROPERTY

com.ibm.wsspi.webservices.HTTPS_PROXYUSER_PROPERTY

com.ibm.wsspi.webservices.HTTPS_PROXYPASSWORD_PROPERTY

HTTP basic authentication collection

Use this page to specify a user name and password for transport-level basic authentication security for this

port. You can use this configuration when a Web service is a client to another Web service.

You can use transport-level security to enable basic authentication. Transport-level security can be

enabled or disabled independently from message-level security. Because transport-level security provides

minimal security, use message-level security when security is essential to the Web service application.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications >application_name.

2. Under Related Items, click Web module >URI_file_name > Web Services: Client Security Bindings.

3. Under HTTP Basic Authentication, click Edit.

Basic authentication ID:

Specifies the user name for the HTTP basic authentication for this port.

Basic authentication password:

Specifies the password for the HTTP basic authentication for this port.

Configuring additional HTTP transport properties using the

administrative console

This topic explains how to configure additional HTTP transport properties with the JVM custom properties

panel in the administrative console.

This task is one of three ways that you can configure additional HTTP transport properties for a Web

Service acting as a client to another Web service. You can also configure the additional HTTP transport

properties in the following ways:

v Configure the properties with an assembly tool

v Configure the properties using the wsadmin command-line tool

If you want to programmatically configure the properties using the Java API XML-based Remote Procedure

Call (JAX-RPC) programming model, review the JAX-RPC specification that is available through Web

services: Resources for learning.

See Additional HTTP transport properties for Web services applications for more information about the

following properties that you can configure:

v com.ibm.websphere.webservices.http.requestContentEncoding

v com.ibm.websphere.webservices.http.responseContentEncoding

v com.ibm.websphere.webservices.http.connectionKeepAlive

v com.ibm.websphere.webservices.http.requestResendEnabled

v http.proxyHost

510 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v http.proxyPort

v https.proxyHost

v https.proxyPort

These additional properties are configured for Web services applications that use the HTTP protocol. The

properties affect the content encoding of the message in the HTTP request, the HTTP response, the HTTP

connection persistence and the behavior of an HTTP request that is resent after a

java.net.ConnectException error occurs when there is a read time-out.

Configure the additional HTTP properties with the administrative console with the following steps provided

in this task section:

1. Open the administrative console.

a. Click Servers > Application Servers > server > Process Definition > Control > Java Virtual

Machine > Custom Properties to define the property in the Control, or click Application Server >

server > Process Definition > Servant > Java Virtual Machine > Custom Properties to define

the property in the Servant.

2. (Optional) If the property is not listed, create a new property name.

3. Enter the name and value.

4. (Optional) Accept the redirection of the HTTP request to a different URI in HTTPS.

A redirection of the HTTP request to a different URI in HTTPS can occur if the transport guarantee of

CONFIDENTIAL or INTEGRAL is configured in the application. To accept the redirection, you can do

either of the following tasks:

v Set the com.ibm.ws.webservices.HttpRedirectEnabled Java system property to true.

v Programmatically set the com.ibm.wsspi.webservices.Constants.HTTP_REDIRECT_ENABLED property to

true in the stub or call object before invoking the service.

You have configured HTTP transport properties for a Web services application.

Configuring additional HTTP transport properties with an assembly

tool

This topic explains how to configure additional HTTP transport properties with an assembly tool. The

assembly tool is used to configure the ibm-webservicesclient-bnd.xmi deployment descriptor binding file.

You can configure additional HTTP transport properties with assembly tools provided with WebSphere

Application Server.

You must configure the assembly tool before you can use it.

This task is one of three ways that you can configure additional HTTP transport properties for a Web

Service acting as a client to another Web service. You can also configure the additional HTTP transport

properties in the following ways:

v Configure the properties the JVM custom property panel in the administrative console.

v Configure the properties using the wsadmin command-line tool.

If you want to programmatically configure the properties using the Java API XML-based Remote Procedure

Call (JAX-RPC) programming model, review the JAX-RPC specification that is available through Web

services: Resources for learning.

See Additional HTTP transport properties for Web services applications for more information about the

following properties that you can configure:

v com.ibm.websphere.webservices.http.requestContentEncoding

v com.ibm.websphere.webservices.http.responseContentEncoding

Chapter 14. Learn about WebSphere applications 511

v com.ibm.websphere.webservices.http.connectionKeepAlive

v com.ibm.websphere.webservices.http.requestResendEnabled

v http.proxyHost

v http.proxyPort

v https.proxyHost

v https.proxyPort

These additional properties are configured for Web services applications that use the HTTP protocol. The

properties affect the content encoding of the message in the HTTP request, the HTTP response, the HTTP

connection persistence and the behavior of an HTTP request that is resent after a

java.net.ConnectException error occurs when there is a read time-out.

Configure the additional HTTP properties with an assembly tool with the following steps provided in this

task section:

1. Start an assembly tool. The assembly tools, Application Server Toolkit (AST) and Rational Web

Developer, provide a graphical interface for developing code artifacts, assembling the code artifacts

into various archives (modules) and configuring related Java 2 Platform, Enterprise Edition (J2EE)

Version 1.2, 1.3 or 1.4 compliant deployment descriptors.

2. Create and specify the name/value pair in the Web Services Client Port Binding page for a Web

service client. The Web Services Client Port Binding page is available after double-clicking the client

deployment descriptor file.

You have configured additional HTTP transport properties for a Web services application.

Configuring additional HTTP transport properties using wsadmin

This topic explains how to configure additional HTTP transport properties with the wsadmin command-line

tool.

The WebSphere Application Server wsadmin tool provides the ability to run scripts. You can use the

wsadmin tool to manage a WebSphere Application Server installation, as well as configuration, application

deployment, and server run-time operations. The WebSphere Application Server only supports the Jacl

and Jython scripting languages. For more information about the wsadmin tool options, review Options for

the AdminApp object install, installInteractive, edit, editInteractive, update, and updateInteractive

commands

This task is one of three ways that you can configure additional HTTP transport properties for a Web

Service acting as a client to another Web service. You can also configure the additional HTTP transport

properties in the following ways:

v Configure the properties with an assembly tool

v Configure the properties using the administrative console

If you want to programmatically configure the properties using the Java API XML-based Remote Procedure

Call (JAX-RPC) programming model, review the JAX-RPC specification that is available through Web

services: Resources for learning.

See Additional HTTP transport properties for Web services applications for more information about the

following properties that you can configure:

v com.ibm.websphere.webservices.http.requestContentEncoding

v com.ibm.websphere.webservices.http.responseContentEncoding

v com.ibm.websphere.webservices.http.connectionKeepAlive

v com.ibm.websphere.webservices.http.requestResendEnabled

v http.proxyHost

512 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v http.proxyPort

v https.proxyHost

v https.proxyPort

These additional properties are configured for Web services applications that use the HTTP protocol. The

properties affect the content encoding of the message in the HTTP request, the HTTP response, the HTTP

connection persistence and the behavior of an HTTP request that is resent after a

java.net.ConnectException error occurs when there is a read time-out.

Configure the additional HTTP properties with the wsadmin tool by following steps provided in this task

section:

1. Launch a scripting command.

2. At the wsadmin command prompt, enter the command syntax. You can use install, installInteractive,

edit, editInteractive, update, and updateInteractive commands.

3. If you are configuring the com.ibm.websphere.webservices.http.responseContentEncoding property,

use the WebServicesServerCustomProperty command option.

4. Configure all other properties using the WebServicesClientCustomProperty command option.

5. Save the configuration changes with the $AdminConfig save command.

You have configured HTTP transport properties for a Web services application.

The following illustrates an example of the Jython script syntax:

AdminApp.edit (’PlantsByWebSphere’, ’[-WebServicesClientCustomProperty [[PlantsByWebSphere.war ""

service/FrontGate_SEIService FrontGate http.proxyHost+http.proxyPort myhost+80]]]’)

AdminConfig.save()

AdminApp.edit (’WebServicesSamples’, ’[-WebServicesServerCustomProperty [[AddressBookW2JE.jarAddressBookService Address
AdminConfig.save()

The following illustrates an example of the Jacly script syntax:

$AdminApp edit PlantsByWebSphere { -WebServicesClientCustomProperty {{PlantsByWebSphere.war {} service/FrontGate_SEIServ
$AdminConfig save

$AdminApp edit WebServicesSamples {-WebServicesServerCustomProperty {{AddressBookW2JE.jar

AddressBookService AddressBook http.proxyHost+http.proxyPort myhost+80}}}

$AdminConfig save

To convert these examples from edit to install, add .ear to form a file name, and add any extra keywords

for deployment, like -usedefaultbindings and -deployejb.

Provide HTTP endpoint URL information

Use this page to specify endpoint URL prefix information for Web services accessed by HTTP. Prefixes are

used to form complete endpoint addresses included in published Web Services Description Language

(WSDL) files.

To view this administrative console page, click Applications >Enterprise Applications >

application_instance > Provide HTTP endpoint URL information.

You can specify a portion of the endpoint URL to be used in each Web service module. In a published

WSDL file, the URL defining the target endpoint address is found in the location attribute of the port’s

soap:address element.

Specify endpoint URL prefixes for Web services

Specifies the protocol (either http or https), host_name, and port_number to be used in the endpoint URL.

Chapter 14. Learn about WebSphere applications 513

You can select a prefix from a predefined list using the HTTP URL prefix or Custom HTTP URL prefix

field.

The URL prefix format is protocol://host_name:port_number, for example, http://myHost:9045. The actual

endpoint URL that appears in a published WSDL file consists of the prefix followed by the module’s

context-root and the Web service url-pattern, for example, http://myHost:9045/services/myService.

Select default HTTP URL prefix

Specifies the drop down list associated with a default list of URL prefixes. This list is the intersection of the

set of ports for the module’s virtual host and the set of ports for the module’s application server. Use items

from this list if the Web services application server is accessed directly.

To set an HTTP endpoint URL prefix, select Select default HTTP URL prefix and select a value from the

drop down list. Select the check box of the modules that are to use the prefix and click Apply. When you

click Apply, the entry in the Select default HTTP URL prefix or Select custom HTTP URL prefix fields,

depending on which is selected, is copied into the HTTP URL prefix field of any module whose check box

is selected.

Select custom HTTP URL prefix

Specifies the protocol, host, and port_number of the intermediate service if the Web services in a module

are accessed through an intermediate node, for example the Web services gateway or an IHS server.

To set a custom HTTP endpoint URL prefix, select Select custom HTTP URL prefix and enter a value.

Select the check box of the modules that are to use the prefix and click Apply. When you click Apply, the

entry in the Select default HTTP URL prefix or Select custom HTTP URL prefix fields, depending on

which is selected, is copied into the HTTP endpoint URL prefix field of any module whose check box is

selected.

Publish WSDL zip files settings

Use this page to publish Web Services Description Language (WSDL) files.

To view this administrative console page, click Applications >Enterprise Applications >

application_instance > Publish WSDL zip files.

When you click OK, a panel showing one or several zip file names displays. Each zip file contains a

WSDL file that represents the Web services-enabled modules in the application. When you select a zip file

to publish, a dialogue displays from which you can choose where to create the zip file. Within the

published zip files, the directory structure is application_name/module_name/[META-INF|WEB-
INF]/wsdl/wsdl_file_name.

In a published WSDL file, the location attribute of a port’s soap:address element contains the endpoint

URL through which the Web service is accessed. Using the Provide HTTP endpoint URL information

and the Provide JMS and EJB endpoint URL information panels, configure the endpoint URLs to be

used for the Web services in each module.

application_name_WSDLFiles.zip

Specifies the application_name_WSDLFiles.zip file containing the WSDL that describes Web services that

are accessible by standard SOAP-based ports.

application_name_ExtendedWSDLFiles.zip

Specifies the application_name_ExtendedWSDLFiles.zip file containing the WSDL file that describes the

Web services available, including SOAP-based and non-SOAP based (for example, EJB) ports.

If there are no Web services configured for direct EJB access, this zip file name does not appear. Do not

use this zip file if you want to produce a WSDL file compliant to standards.

514 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Securing Web services for version 6 applications based on

WS-Security

Web services security for WebSphere Application Server is based on standards included in the

Organization for the Advancement of Structured Information Standards (OASIS) Web services security

(WSS) Version 1.0 specification, the Username token Version 1.0 profile, and the X.509 token Version 1.0

profile. These standards and profiles address how to provide protection for messages exchanged in a Web

service environment. The specification defines the core facilities for protecting the integrity and

confidentiality of a message and provides mechanisms for associating security-related claims with the

message. Web services security is a message-level standard based on securing Simple Object Access

Protocol (SOAP) messages through XML digital signature, confidentiality through XML encryption, and

credential propagation through security tokens.

To secure Web services, you must consider a broad set of security requirements, including authentication,

authorization, privacy, trust, integrity, confidentiality, secure communications channels, federation,

delegation, and auditing across a spectrum of application and business topologies. One of the key

requirements for the security model in today’s business environment is the ability to interoperate between

formerly incompatible security technologies (such as public key infrastructure, Kerberos and so on) in

heterogeneous environments (such as Microsoft .NET and Java 2 Platform, Enterprise Edition (J2EE)).

The complete Web services security protocol stack and technology roadmap is described in Security in a

Web Services World: A Proposed Architecture and Roadmap.

The Web Services Security: SOAP Message Security 1.0 specification outlines a standard set of SOAP

extensions that you can use to build secure Web services. These standards confirm integrity and

confidentiality, which are generally provided with digital signature and encryption technologies. In addition,

Web services security provides a general purpose mechanism for associating security tokens with

messages. A typical example of the security token is a username token, in which a user name and

password are included as text. Web services security defines how to encode binary security tokens using

methods such as X.509 certificates and Kerberos tickets. However, the required security tokens are not

defined in the Web service security Version 1.0 specification. Instead, the tokens are defined in separate

profiles such as the Username token profile, the X.509 token profile, the SAML profile, the Kerberos

profile, the XrML profile and so on.

Web service security is supported in the managed Web service container. To establish a managed

environment and to enforce constraints for Web services security, you must perform a Java Naming and

Directory Interface (JNDI) lookup on the client to resolve the service reference. For more information on

the recommended client programming model, see ″Service lookup″ in the Java Specification Request

(JSR) 109 specification available at: ftp://www-126.ibm.com/pub/jsr109/spec/1.0/websvcs-1_0-fr.pdf.

WebSphere Application Server Version 6 and Version 5.x compatibility

In WebSphere Application Server Version 6, you can run a version 5.x Web services-secured application

on a version 6 application server. However, when you use a Web services-secured application, the client

and the server must use the same version of the application server. For example, a Web services-secured

application does not work properly when the client uses WebSphere Application Server Version 6 and the

server uses version 5.x. Conversely, a Web services-secured application does not work properly when the

client uses WebSphere Application Server Version 5.x and the server uses version 6. This issue occurs

because the SOAP message format is different between a version 5.x application and a version 6

application.

Configurations

To secure Web services with WebSphere Application Server, you must specify several different

configurations. Although there is not a specific sequence in which you must specify these different

configurations, some configurations reference other configurations. The following table shows an example

Chapter 14. Learn about WebSphere applications 515

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
ftp://www-126.ibm.com/pub/jsr109/spec/1.0/websvcs-1_0-fr.pdf

of the relationship between each of the configurations. However, the requirements for the bindings depend

upon the deployment descriptor. Some binding information depends upon other information in the binding

or server and cell-level configuration. For instance, the signing information references the key information.

 Table 3. The relationship between the configurations.

Configuration level Configuration name Configurations it references

Application-level request generator Token generator v Collection certificate store

v Nonce

v Timestamp

v Callback handler

Application-level request generator Key information v Key locator

v Key name

v Token

Application-level request generator Signing information v Key information

Application-level request generator Encryption information v Key information

Application-level request consumer Token consumer v Trust anchor

v Collection certificate store

v Trusted ID evaluators

v Java Authentication and

Authorization Service (JAAS)

configuration

Application-level request consumer Key information v Key locator

v Token

Application-level request consumer Signing information v Key information

Application-level request consumer Encryption information v Key information

Application-level response generator Token generator v Collection certificate store

v Callback handler

Application-level response generator Key information v Key locator

v Token

Application-level response generator Signing information v Key information

Application-level response generator Encryption information v Key information

Application-level response consumer Token consumer v Trust anchor

v Collection certificate store

v JAAS configuration

Application-level response consumer Key information v Key locator

v Key name

v Token

Application-level response consumer Signing information v Key information

Application-level response consumer Encryption information v Key information

Server-level default generator

bindings

Token generator v Collection certificate store

v Callback handler

516 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Table 3. The relationship between the configurations. (continued)

Configuration level Configuration name Configurations it references

Server-level default generator

bindings

Key information v Key locator

v Token

Server-level default generator

bindings

Signing information v Key information

Server-level default generator

bindings

Encryption information v Key information

Server-level default consumer

bindings

Token consumer v Trust anchor

v Collection certificate store

v Trusted ID evaluator

v JAAS configuration

Server-level default consumer

bindings

Key information v Key locator

v Token

Server-level default consumer

bindings

Signing information v Key information

Server-level default consumer

bindings

Encryption information v Key information

Cell-level default generator bindings Token generator v Collection certificate store

v Callback handler

Cell-level default generator bindings Key information v Key locator

v Token

If multiple applications will use the same binding information, consider configuring the binding information

on the server level. For example, you might have a global key locator configuration that is used by multiple

applications.

Because of the relationship between the different Web services security configurations, it is recommended

that you specify the configurations in following order:

v Assemble your Web services security-enabled application using an assembly tool. Prior to modifying an

Web services security-enabled application in the WebSphere Application Server administrative console,

you must assemble your application using an assembly tool. Although you can modify some of the

application settings using the administrative console, you must configure the generator and the

consumer security constraints using an assembly tool such as the Application Server Toolkit or the

Rational Application Developer. For information on the assembly tools, see ″Assembly tools″ in the

″Developing and deploying applications″ PDF. For information on how to add Web services security to

an application using an assembly tool, see “Configuring an application for Web services security with an

assembly tool” on page 567. Return to this article after you have assembled your application and

imported it into the administrative console.

v Optional: Modify the application-level configurations in the administrative console.

 1. Configure the trust anchors for the generator binding. For more information, see “Configuring trust

anchors for the generator binding on the application level” on page 659.

 2. Configure the collection certificate store for the generator binding. For more information, see

“Configuring the collection certificate store for the generator binding on the application level” on

page 663.

 3. Configure the token for the generator binding. For more information, see “Configuring the token

generator on the application level” on page 675.

Chapter 14. Learn about WebSphere applications 517

4. Configure the key locators for the generator binding. For more information, see “Configuring the

key locator for the generator binding on the application level” on page 692.

 5. Configure the key information for the generator binding. For more information, see “Configuring the

key information for the generator binding on the application level” on page 699.

 6. Configure the signing information for the generator binding. For more information, see “Configuring

the signing information for the generator binding on the application level” on page 712.

 7. Configure the encryption information for the generator binding. For more information, see

“Configuring the encryption information for the generator binding on the application level” on page

727.

 8. Configure the trust anchors for the consumer binding. For more information, see “Configuring trust

anchors for the consumer binding on the application level” on page 736.

 9. Configure the collection certificate store for the consumer binding. For more information, see

“Configuring the collection certificate store for the consumer binding on the application level” on

page 738.

10. Configure the token for the consumer binding. For more information, see “Configuring token

consumer on the application level” on page 740

11. Configure the key locators for the consumer binding. For more information, see “Configuring the

key locator for the consumer binding on the application level” on page 749.

12. Configure the key information for the consumer binding. For more information, see “Configuring the

key information for the consumer binding on the application level” on page 750.

13. Configure the signing information for the consumer binding. For more information, see “Configuring

the signing information for the consumer binding on the application level” on page 753.

14. Configure the encryption information for the consumer binding. For more information, see

“Configuring the encryption information for the consumer binding on the application level” on page

757.

v Specify the server-level configurations.

 1. Configure the trust anchors for the server level. For more information, see “Configuring trust

anchors on the server or cell level” on page 761

 2. Configure the collection certificate store for the server level. For more information, see “Configuring

the collection certificate store on the server or cell-level bindings” on page 762

 3. Configure a token generator. For more information, see “Configuring token generators on the

server or cell level” on page 765.

 4. Configure a nonce for the server level. For more information, see “Configuring a nonce on the

server or cell level” on page 764.

 5. Configure the key locators for the generator binding. For more information, see “Configuring the

key locator on the server or cell level” on page 777.

 6. Configure the key information for the generator binding. For more information, see “Configuring the

key locator on the server or cell level” on page 777.

 7. Configure the signing information for the generator binding. For more information, see “Configuring

the signing information for the generator binding on the server or cell level” on page 780.

 8. Configure the encryption information for the generator binding. For more information, see

“Configuring the encryption information for the generator binding on the server or cell level” on

page 783.

 9. Configure the trusted ID evaluators for the server level. For more information, see “Configuring

trusted ID evaluators on the server or cell level” on page 784

10. Configure a token consumer. For more information, see “Configuring token consumers on the

server or cell level” on page 787.

11. Configure the key information for the consumer binding. For more information, see “Configuring the

key information for the consumer binding on the server or cell level” on page 795.

518 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

12. Configure the signing information for the consumer binding. For more information, see “Configuring

the signing information for the consumer binding on the server or cell level” on page 796.

13. Configure the encryption information for the consumer binding. For more information, see

“Configuring the encryption information for the consumer binding on the server or cell level” on

page 799.

After completing these steps on the appropriate level of WebSphere Application Server, you have secured

Web services.

Note: Configuration information for the application-level precedes similar configuration information on the

server-level.

 Related tasks

 “Configuring an application for Web services security with an assembly tool” on page 567

 Importing enterprise applications

Importing an enterprise archive (EAR) file migrates the EAR file to the assembly tool and defines a

new enterprise application project using the tool.

What is new for securing Web services

In WebSphere Application Server Version 6, there are many security enhancements for Web services. The

enhancements include supporting sections of the Web services security specifications and providing

architectural support for plugging in and extending the capabilities of security tokens.

Enhancements from the supported Web services security specifications

Since September 2002, the Organization for the Advancement of Structured Information Standards

(OASIS) has been developing the Web Services Security (WSS) for SOAP message standard. In April

2004, OASIS released the Web Services security Version 1.0 specification, which is a major milestone for

securing Web services. This specification is the foundation for other Web services security specifications

and is also the basis for the Basic Security Profile (WS-I BSP) Version 1.0 work. Web services security

Version 1.0 is a strategic move towards Web services security interoperability and it is the first step in the

Web services security roadmap. For more information on the Web services security roadmap, see Security

in a Web Services World: A Proposed Architecture and Roadmap.

WebSphere Application Server Version 6 supports the following specifications and profiles:

v OASIS: Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

v OASIS: Web Services Security: UsernameToken Profile 1.0

v OASIS: Web Services Security X.509 Certificate Token Profile 1.0

For details on what parts of the previous specifications are supported in WebSphere Application Server

version 6, see “Supported functionality from OASIS specifications” on page 527.

High level features overview in WebSphere Application Server Version 6

The Web Services Security for SOAP message Version 1.0 specification is designed to be flexible and

accommodate the requirements of Web services. For example, the specification does not have a

mandatory security token definition in the Web services security Version 1.0 specification. Rather the

specification defines a generic mechanism to associate the security token with a Simple Object Access

Protocol (SOAP) message. The use of security tokens is defined in the various security token profiles such

as:

v The username token profile

v The X.509 token profile

v The WS-Security Kerberos token profile

v The Security Assertion Markup Language (SAML) token profile

Chapter 14. Learn about WebSphere applications 519

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/1049/WSS-Kerberos-03.pdf
http://www.oasis-open.org/committees/download.php/1048/WSS-SAML-06.pdf

v The Rights Express Language (REL) token profile

For more information on security token profile development at OASIS, see Organization for the

Advancement of Structured Information Standards.

Important: The wire format in the Web services security Version 1.0 specification changed and is not

compatible with the previous drafts of the Web services security specification. It is not possible

to make an implementation of the wire format using a previous draft of the Web services

security specification to interoperate with the Web Services Security Version 1.0 specification.

Support for pluggable security tokens has been available since WebSphere Application Server Version

5.0.2. However, in WebSphere Application Server Version 6, the pluggable architecture is enhanced to

support the Web services security Version 1.0 specification, other profiles, and other Web services security

specifications. WebSphere Application Server Version 6 includes the following key enhancements:

v Support for the client (sender or generator) to send multiple security tokens in a SOAP message.

v Ability to derive keys from a security token for digital signature (verification) and encryption (decryption).

v Support to sign or encrypt any element in a SOAP message. However, some limitations exist. For

example, encrypting some parts of a message might break the SOAP message format. If you encrypt

the SOAP body element, the SOAP message format breaks.

v Support for signing the SOAP Envelope, the SOAP Header, and the Web services security header.

v Ability to configure the order of the digital signature and encryption.

v Support for various mechanisms to reference the security tokens such as direct references, key

identifiers, key names, and embedded references.

v Support for the PKCS#7 format certificate revocation list (CRL) encoding for an X.509 security token.

v Support for CRL verification.

v Ability to insert nonce and time stamps into elements within the Web services security header, into

signed elements, or into encrypted elements.

v Support for identity assertion using the Run As (invocation) identity in the current security context for

WebSphere Application Server.

v Support for a default binding, which is a set of default Web services security bindings for applications.

v Ability to use pluggable digital signature (verification) and encryption (decryption) algorithms.

For more information on some of these enhancements, see “Web services security enhancements” on

page 531.

Configuration

WebSphere Application Server Version 6 uses the deployment model for implementing the Web services

security Version 1.0 specification, the Username token Version 1.0 profile, and the X.509 token Version 1.0

profile. The deployment model is an extension of the Web services deployment model for Java 2 Platform,

Enterprise Edition (J2EE). The Web services security constraints are defined in the IBM extension

deployment descriptor and the binding file based on the Web service port.

The format of the deployment descriptor and the binding file is IBM proprietary material and is not

available. However, WebSphere Application Server provides the following tools that you can use to edit the

deployment descriptor and the binding file:

Rational Application Developer Version 6

You can use Rational Application Developer Version 6 to develop Web services and configure the

deployment descriptor and the binding file for Web services security. The Rational Application

Developer enables you to assemble both Web and EJB modules.

Rational Web Developer Version 6

You can use Rational Web Developer Version 6 to develop Web services and configure the

520 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.oasis-open.org/committees/download.php/7347/oasis-____-wss-REL-token-profile-1.0-draft08-clean.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

deployment descriptor and the binding file for Web services security. However, you cannot

assemble EJB modules using this tool. Instead, use the Application Server Toolkit or the Rational

Application Developer.

Application Server Toolkit

You can use the Application Server Toolkit (AST), which is an assembly tool designer for

WebSphere Application Server Version 6, to specify the deployment descriptor and the binding file

for Web services security.

WebSphere Application Server Administrative Console

You can use the administrative console to configure the Web services security binding of a

deployed application with Web services security constraints defined in the deployment descriptor.

Important: The format of the deployment descriptor and the binding file for Web services security in

WebSphere Application Server Version 6 is different from WebSphere Application Server

Versions 5.0.2, 5.1, and 5.1.1. Web services security support in WebSphere Application Server

Versions 5.0.2, 5.1, and 5.1.1 is based on the Web services security draft 13 specification and

the username token draft 2 profile. Thus, this support is deprecated. However, applications

that you configured using the Web service security Versions 5.0.2, 5.1, and 5.1.1 deployment

descriptor and binding file can work with WebSphere Application Server 6. These applications

use a deployment descriptor and binding file that emit SOAP message security using the draft

13 specification format. The Web services security deployment descriptor and binding file for

WebSphere Application Server Version 6 is available for a J2EE Version 1.4 application only.

Therefore, the Web services security Version 1.0 specification is supported for a J2EE Version

1.4 application only.

To take advantage of implementations associated with the Web services security Version 1.0 specification,

you must:

v Migrate existing applications to J2EE Version 1.4

v Reconfigure the Web services security constraints in the new deployment descriptor and binding format

Important: An automatic process does not exist for migrating the deployment descriptor and the binding

file for Web services security from the version 5.0.2, 5.1, and 5.1.1 format to the new version

6 format using the Rational Web Developer and Application Server Toolkit. You must migrate

the configuration manually.

What is not supported

Web service security is still fairly new and some of the standards are still being defined or standardized.

The following functionality is not supported in WebSphere Application Server Version 6:

v Application programming interfaces (API) do not exist for Web services security in WebSphere

Application Server version 6. The following standards exist for the Java application programming

interface for XML security and Web services security:

– JSR-105 (Java API for XML-Signature XPath Filter Version 2.0

W3C Recommendation, November 2002

– JSR-106 (Java API for XML Encryption Syntax and Processing)

W3C Recommendation, December 2002

– JSR-183 (Java API for Web Services Security: SOAP Message Security 1.0 specification)

v SAML token profile is not supported out of the box.

v WS-SecuredConversation is not supported out of the box.

v WS-Trust is not supported out of the box.

v WS-SecurityKerberos token profile is not supported out of the box.

v REL token profile is not supported.

Chapter 14. Learn about WebSphere applications 521

http://www.w3.org/TR/xmldsig-filter2
http://www.w3.org/TR/xmlenc-core
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

v Web services security SOAP messages with an attachments profile (SwA) is not supported.

v WS-I Basic Security Profile 1.0 is not supported.

v Non-Web services container managed client is not supported out of the box.

For information on what is supported for Web services security in WebSphere Application Server Version

6, see “Supported functionality from OASIS specifications” on page 527.

 Related concepts

 “Web services security enhancements” on page 531

Web services security specification for version 6 - a chronology: This article describes the

development of the Web services security specification. The article provides information on the

Organization for the Advancement of Structured Information Standards (OASIS) Web services security

Version 1.0 specification, which is the specification that serves as a basis for securing Web services in

WebSphere Application Server Version 6.

Non-OASIS activities

Web services is gaining rapid acceptance as a viable technology for interoperability and integration.

However, securing Web services is one of the paramount quality of services that makes the adoption of

Web services a viable industry and commercial solution for businesses. IBM and Microsoft jointly

published a security white paper on Web services entitled Security in a Web Services World: A Proposed

Architecture and Roadmap. The white paper discusses the following initial and subsequent specifications

in the proposed Web services security roadmap:

Web service security

This specification defines how to attach a digital signature, use encryption, and use security tokens

in Simple Object Access Protocol (SOAP) messages.

WS-Policy

This specification defines the language that is used to describe security constraints and the policy

of intermediaries or endpoints.

WS-Trust

This specification defines a framework for trust models to establish trust between Web services.

WS-Privacy

This specification defines a model of how to express a privacy policy for a Web service and a

requester.

WS-SecureConversation

This specification defines how to exchange and establish a secured context, which derives session

keys between Web services.

WS-Federation

This specification defines a model for trust relationships in a heterogeneous, federated

environment, including federated identities management.

WS-Authorization

This specification defines the authorization policy for a Web service.

This following figure shows the relationship between these specifications:

522 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/

WS-SecureConversation

WS-Policy

WS-Federation

WS-Trust

WS-Authorization

WS-Privacy

Web service security: SOAP message security

SOAP messaging

In April 2002, IBM, Microsoft, and VeriSign proposed the Web Services Security (WS-Security)

specification on their Web sites as depicted by the green box in the previous figure. This specification

included the basic ideas of a security token, XML digital signature, and XML encryption. The specification

also defined the format for user name tokens and encoded binary security tokens. After some discussion

and an interoperability test based on the specification, the following issues were noted:

v The specification requires that the Web services security processors understand the schema correctly

so that the processor distinguishes between the ID attribute for XML digital signature and XML

encryption.

v The freshness of the message, which indicates whether the message complies with predefined time

constraints, cannot be determined.

v Digested password strings do not strengthen security.

In August 2002, IBM, Microsoft, and VeriSign published the Web Services Security Addendum, which

attempted to address the previously listed issues. The following solutions were addressed in the

addendum:

v Require a global ID attribute for XML signature and XML encryption.

v Use time stamp header elements that indicate the time of the creation, receipt, or expiration of the

message.

v Use password strings that are digested with a time stamp and nonce, which is a randomly generated

token.

The specifications for the blue boxes in the previous figure have been proposed by various industry

vendors and various interoperability events have been organized by the vendors to verify and refine the

proposed specifications.

OASIS activities

In June 2002, OASIS received a proposed Web services security specification from IBM, Microsoft, and

Verisign. The Web Services Security Technical Committee (WSS TC) was organized at OASIS soon after

the submission. The technical committee included many companies including IBM, Microsoft, VeriSign,

Sun Microsystems, and BEA Systems.

In September 2002, WSS TC published its first specification, Web Services Security Core Specification,

Working Draft 01. This specification included the contents of both the original Web services security

specification and its addendum.

The coverage of the technical committee became larger as the discussion proceeded. Because the Web

Services Security Core Specification allows arbitrary types of security tokens, proposals were published as

profiles. The profiles described the method for embedding tokens, including Security Assertion Markup

Chapter 14. Learn about WebSphere applications 523

Language (SAML) tokens and Kerberos tokens embedded into the Web services security messages.

Subsequently, the definitions of the usage for user name tokens and X.509 binary security tokens, which

were defined in the original Web Services Security Specification, were divided into the profiles.

WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1 support the following specifications:

v Web Services Security: SOAP Message Security Draft 13 (formerly Web Services Security Core

Specification)

v Web Services Security: Username Token Profile Draft 2

In April 2004, the Web service security specification (officially called Web Services Security: SOAP

Message Security Version 1.0) became the Version 1.0 OASIS standard. Also, the Username token and

X.509 token profiles are Version 1.0 specifications.

WebSphere Application Server 6 supports the following Web services security specifications from OASIS:

v Web Services Security: SOAP Message Security 1.0 specification

v Web Services Security: Username Token 1.0 Profile

v Web Services Security: X.509 Token 1.0 Profile

The following figure shows the various Web services security-related specifications.

April 2002 WS-Security

August 2002 WS-
Security Addendum

September 2002 WS-
Core Draft 1

May 2003
Web Services Security:

SOAP Message Security
Draft 13

February 2003
Web Services Security:
Username Token Public

Draft 2

April 2004
Web Services Security:

SOAP Message Security
Version 1.0

April 2004
Web Services Security:
Username Token Public

Version 1.0

April 2004
Web Services Security:

X.509 Token Public
Version 1.0

OASIS activities

WebSphere Application Server Version 6 also extends and provides plug-in capability to enable security

providers to extend the run-time capability and implement some of the higher level specifications in the

Web service security stack. The plug-in points are exposed as Service Provider Programming Interfaces

(SPI). For more information on these SPIs, see “Default implementations of the Web services security

service provider programming interfaces” on page 558.

Web services security specification development

The OASIS Web services security Version 1.0 specification defines the enhancements that are used to

provide message integrity and confidentiality. It also provides a general framework for associating the

security tokens with a Simple Object Access Protocol (SOAP) message. The specification is designed to

be extensible to support multiple security token formats. The particular security token usage is addressed

524 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

with the security token profile. The OASIS Web services security specification is based upon the following

World Wide Web Consortium (W3C) specifications. Most of the W3C specifications are in the standard

body recommended status.

v XML-Signature Syntax and Processing

W3C recommendation, February 2002 (Also, IETF RFC 3275, March 2002)

v Canonical XML Version 1.0

W3C recommendation, March 2001

v Exclusive XML Canonicalization Version 1.0

W3C recommendation, July 2002

v XML-Signature XPath Filter Version 2.0

W3C Recommendation, November 2002

v XML Encryption Syntax and Processing

W3C Recommendation, December 2002

v Decryption Transform for XML Signature

W3C Recommendation, December 2002

These specifications are supported in WebSphere Application Server 6 in the context of Web services

security. For example, you can sign a SOAP message by specifying the integrity option in the deployment

descriptors. However, there is no application programming interface (API) that an application can use for

XML signature on an XML element in a SOAP message.

The OASIS Web services security Version 1.0 specification defines the enhancements that are used to

provide message integrity and confidentiality. It also provides a general framework for associating the

security tokens with a Simple Object Access Protocol (SOAP) message. The specification is designed to

be extensible to support multiple security token formats. The particular security token usage is addressed

with the security token profile.

Specification and profile support in WebSphere Application Server Version 6

OASIS is working on various profiles. For more information, see Organization for the Advancement of

Structured Information Standards Committees. WebSphere Application Server Version 6 does not support

these profiles. The following list is some of the published draft profiles and OASIS Web services security

technical committee work in progress:

v Web Services Security: SAML token profile

v Web Services Security: REL token profile

v Web Services Security: Kerberos token profile

v Web Services Security: SOAP Messages with Attachments (SwA) profile

Because WebSphere Application Server Version 6 supports the following specifications, support for Web

services security draft 13 and Username token profile draft 2 in WebSphere Application 5.0.2, 5.1.0 and

5.1.1 is deprecated:

v OASIS Web Services Security Version 1.0 specification

v Web Services Security Username token profile

v X.509 token profile

The wire format of the SOAP message with Web services security in Web services security Version 1.0

has changed and is not compatible with previous drafts of the OASIS Web services security specification.

Interoperability between OASIS Web services security Version 1.0 and previous Web services security

drafts is not supported. However, it is possible to run an application that is based on Web services security

Chapter 14. Learn about WebSphere applications 525

http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-exc-c14n
http://www.w3.org/TR/xmldsig-filter2
http://www.w3.org/TR/xmlenc-core
http://www.w3.org/TR/xmlenc-decrypt
http://www.oasis-open.org/committees/
http://www.oasis-open.org/committees/

draft 13 on WebSphere Application Server Version 6. The application can interoperate with an application

that is based on Web services security draft 13 on WebSphere Application Server Version 5.0.2, 5.1 or

5.1.1.

WebSphere Application Server Version 6 supports both the OASIS Web services security draft 13 and the

OASIS Web services security 1.0 specification. But in WebSphere Application Server Version 6, the

support of OASIS Web services security draft 13 is deprecated. However, applications that were

developed using OASIS Web services security draft 13 on WebSphere Application Server 5.0.2, 5.1.0 and

5.1.1 can run on WebSphere Application Server Version 6. OASIS Web services security Version 1.0

support is available only for Java 2 Platform, Enterprise Edition (J2EE) Version 1.4 applications. The

configuration format for the deployment descriptor and the binding is different from previous versions of

WebSphere Application Server. You must migrate the existing applications to J2EE 1.4 and migrate the

Web services security configuration to the WebSphere Application Server Version 6 format. For migration

information, see “Migrating Version 5.x applications with Web services security to Version 6 applications”

on page 544.

Web Services Interoperability Organization (WS-I) activities

Web Services Interoperability Organization (WS-I) is an open industry effort to promote Web services

interoperability across vendors, platforms, programming languages and applications. The organization is a

consortium of companies across many industries including IBM, Microsoft, Oracle, Sun, Novell, VeriSign,

and Daimler Chrysler. WS-I began working on the basic security profile (BSP) in the spring of 2003. BSP

consists of a set of non-proprietary Web services specifications that clarifies and amplifies those

specifications to promote Web services security interoperability across different vendor implementations.

As of June 2004, BSP is a public draft. For more information, see the Web Services Interoperability

Organization. Since the spring of 2004, WS-I has been working on sample application work. The BSP

sample application is the testing tool for the BSP. WebSphere Application Server Version 6 does not

support the WS-I BSP and BSP sample application.

 Related concepts

 “Default implementations of the Web services security service provider programming interfaces” on

page 558

 Related tasks

 “Migrating Version 5.x applications with Web services security to Version 6 applications” on page 544

XML token:

XML tokens are offered in two well-known formats called Security Assertion Markup Language (SAML) and

eXtensible rights Markup Language (XrML).

 In WebSphere Application Server Version 6, you can plugin your own implementation. Using extensibility of

the <wsse:Security> header in XML-based security tokens, you can directly insert these security tokens

into the header. SAML assertions are attached to Web services security messages using Web services by

placing assertion elements inside the <wsse:Security> header. The following example illustrates a Web

services security message with a SAML assertion token.

<S:Envelope xmlns:S="...">

<S:Header>

 <wsse:Security xmlns:wsse="...">

 <saml:Assertion

 MajorVersion="1"

 MinorVersion="0"

 AssertionID="SecurityToken-ef375268"

 Issuer="elliotw1"

 IssueInstant="2002-07-23T11:32:05.6228146-07:00"

 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

 ...

 </saml:Assertion>

 </wsse:Security>

526 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ws-i.org
http://www.ws-i.org

</S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

For more information on SAML and XrML, see Web services: Resources for learning.

 Related reference

 Web services: Resources for learning

Supported functionality from OASIS specifications: WebSphere Application Server Version 6 supports

the following Web services security specifications and profiles.

v OASIS: Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

v OASIS: Web Services Security: UsernameToken Profile 1.0

v OASIS: Web Services Security X.509 Certificate Token Profile 1.0

OASIS: Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

The following list shows the aspects of the OASIS: Web Services Security: SOAP Message Security 1.0

(WS-Security 2004) specification that is supported in WebSphere Application Server Version 6.

 Supported topic Specific aspect that is supported

Security header v @S11 :actor (for an intermediary)

v @S11:mustUnderstand

Security tokens v Username token (user name and password)

v Binary security token (X.509 and Lightweight Third Party Authentication (LTPA))

v Custom token

– Other binary security token

– XML token

Note: WebSphere Application Server does not provide an implementation, but you can

use an XML token with plug-in point.

Token references v Direct reference

v Key identifier

v Key name

v Embedded reference

Chapter 14. Learn about WebSphere applications 527

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

Supported topic Specific aspect that is supported

Signature

algorithms

v Digest

SHA1 http://www.w3.org/2000/09/xmldsig#sha1

v MAC

HMAC-SHA1

http://www.w3.org/2000/09/xmldsig#hmac-sha1

v Signature

DSA with SHA1

http://www.w3.org/2000/09/xmldsig#dsa-sha1

RSA with SHA1

http://www.w3.org/2000/09/xmldsig#rsa-sha1

v Canonicalization

Canonical XML (with comments)

http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Canonical XML (without comments)

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Exclusive XML canonicalization (with comments)

http://www.w3.org/2001/10/xml-exc-c14n#WithComments

Exclusive XML canonicalization (without comments)

http://www.w3.org/2001/10/xml-exc-c14n#

v Transform

STR transform

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#STR-Transform

 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soapmessage-

security-1.0#STR-Transform

XPath http://www.w3.org/TR/1999/REC-xpath-19991116

Enveloped signature

http://www.w3.org/2000/09/xmldsig#enveloped-signature

XPath Filter2

http://www.w3.org/2002/06/xmldsig-filter2

Decryption transform

http://www.w3.org/2002/07/decrypt#XML

528 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Supported topic Specific aspect that is supported

Signature signed

parts

v WebSphere Application Server key words:

– body, which signs the Simple Object Access Protocol (SOAP) message body

– timestamp, which signs all of the time stamps

– securitytoken, which signs all of the security tokens

– dsigkey, which signs the signing key

– enckey, which signs the encryption key

– messageid, which signs the wsa :MessageID element in WS-Addressing.

– to, which signs the wsa:To element in WS-Addressing

– action, which signs the wsa:Action element in WS-Addressing

– relatesto, which signs the wsa:RelatesTo element in WS-Addressing

wsa is the namespace prefix of http://schemas.xmlsoap.org/ws/2004/08/addressing

v XPath expression to select an XML element in a Simple Object Access protocol (SOAP)

message. For more information, see http://www.w3.org/TR/1999/REC-xpath-19991116.

Encryption

algorithms

v Block encryption

– Triple DES in CBC: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– AES128 in CBC: http://www.w3.org/2001/04/xmlenc#aes128-cbc

– AES192 in CBC: http://www.w3.org/2001/04/xmlenc#aes192-cbc

This algorithm requires the unrestricted JCE policy file. For more information, see the Key

encryption algorithm description in the “Encryption information configuration settings” on

page 729.

– AES256 in CBC: http://www.w3.org/2001/04/xmlenc#aes256-cbc

This algorithm requires the unrestricted JCE policy file. For more information, see the Key

encryption algorithm description in the “Encryption information configuration settings” on

page 729.

v Key transport

– RSA Version 1.5: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v Symmetric key wrap

– Triple DES key wrap: http://www.w3.org/2001/04/xmlenc#kw-tripledes

– AES key wrap (aes128): http://www.w3.org/2001/04/xmlenc#kw-aes128

– AES key wrap (aes192): http://www.w3.org/2001/04/xmlenc#kw-aes192

This algorithm requires the unrestricted JCE policy file. For more information, see the Key

encryption algorithm description in the “Encryption information configuration settings” on

page 729.

– AES key wrap (aes256): http://www.w3.org/2001/04/xmlenc#kw-aes256

This algorithm requires the unrestricted JCE policy file. For more information, see the Key

encryption algorithm description in the “Encryption information configuration settings” on

page 729.

v Manifests-xenc is the namespace prefix of http://www.w3.org/TR/xmlenc-core

– xenc:ReferenceList

– xenc:EncryptedKey

Advanced Encryption Standard (AES) is designed to provide stronger and better performance

for symmetric key encryption over Triple-DES. Therefore, it is recommended that you use AES,

if possible, for symmetric key encryption.

Chapter 14. Learn about WebSphere applications 529

http://www.w3.org/TR/1999/REC-xpath-19991116

Supported topic Specific aspect that is supported

Encryption

message parts

v WebSphere Application Server keywords

– bodycontent, which is used to encrypt the SOAP body content

– usernametoken, which is used to encrypt the username token

– digestvalue, which is used to encrypt the digest value of the digital signature

v XPath expression to select the XML element in the SOAP message

– XML elements

– XML element contents

Time stamp v Within Web services security header

v WebSphere Application Server is extended to allow you to insert time stamps into other

elements so that the age of those elements can be determined.

Error handling SOAP faults

OASIS: Web Services Security: UsernameToken Profile 1.0

The following list shows the aspects of the OASIS: Web Services Security: UsernameToken Profile 1.0

specification that is supported in WebSphere Application Server Version 6.

 Supported topic Specific aspect that is supported

Password types Text

Token references Direct reference

OASIS: Web Services Security X.509 Certificate Token Profile

The following list shows the aspects of the OASIS: Web Services Security X.509 Certificate Token Profile

specification that is supported in WebSphere Application Server Version 6.

 Supported topic Specific aspect that is supported

Token types v X.509 Version 3: Single certificate

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509v3

v X.509 Version 3: X509PKIPathv1 without certificate revocation lists (CRL)

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-
1.0#X509PKIPathv1

v X.509 Version 3: PKCS7 with or without CRLs. The IBM software development kit (SDK)

supports both. The Sun Java Development Kit (JDK) supports PKCS7 without CRL only.

Token references v Key identifier – subject key identifier

v Direct reference

v Custom reference – issuer name and serial number

Functionality that is not supported

The following list shows the functionality that is supported in the OASIS specifications, OASIS drafts, and

other recommendations, but is not supported by WebSphere Application Server Version 6:

v Non-managed client with Web services security. For example, a Java 2 Platform, Standard Edition

(J2SE) client or a Dynamic Invocation Interface (DII) client

v The Web services security binding is not collected during the application installation process. It can be

configured after the application is deployed.

530 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v Web services security for SOAP attachment

v SAML token profile, WS-SecurityKerberos token profile, and XrML token profile

v Web Services Interoperability Organization (WS-I) basic security profile

v XML enveloping digital signature

v XML enveloping digital encryption

v Security header

– @S12:role

S12 is the namespace prefix of http://www.w3.org/2003/05/soap-envelope

v The following transport algorithms for digital signatures are not supported:

– XSLT: http://www.w3.org/TR/1999/REC-xslt-19991116

– SOAP Message Normalization

For more information, see SOAP Version 1.2 Message Normalization.

v The following key transport algorithm for encryption is not supported:

– RSA-OAEP: http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

v The following key agreement algorithm for encryption is not supported:

– Diffie-Hellman: http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-
DHKeyValue

v The following canonicalization algorithm for encryption, which is optional in the XML encryption

specification, is not supported:

– Canonical XML with or without comments

– Exclusive XML canonicalization with or without comments

v In the Username Token Version 1.0 Profile specification, the digest password type is not supported.

 Related reference

 “Encryption information configuration settings” on page 729
Use this page to configure the encryption and decryption parameters. You can use these parameters to

encrypt and decrypt various parts of the message, including the body and user name token.

Web services security enhancements

WebSphere Application Server Version 6 includes a number of enhancements for securing Web services.

These enhancements are explained in detail within this article.

Building your applications

To assemble your applications and to specify the security constraints for Web services security in the

deployment descriptor and bindings, it is recommended that you use Rational Web Developer and the

Application Server Toolkit. For more information on these tools, see ″Assembly tools″ in the ″Developing

and deploying applications″ PDF. You can also use the WebSphere Application Server administrative

console to edit the application binding file.

Using identity assertion

In a secured environment such as an intranet, a secure sockets layer (SSL) connection or through a

Virtual Private Network (VPN), it is useful to send the requester identity only without credentials, such as

password, with other trusted credentials, such as the server identity. WebSphere Application Server

Version 6 supports the following types of identity assertions:

v A username token without a password

v An X.509 Token for a X.509 certificate

For the X.509 certificate, WebSphere Application Server uses the distinguished name in the certificate as a

requester identity. There are two trust modes for validating the trust of the upstream server:

Chapter 14. Learn about WebSphere applications 531

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue

Basic authentication (username token)

The upstream server sends a username token with a user name and password to a downstream

server. The consumer or receiver of the message authenticates the username token and validates

the trust based upon the TrustedIDEvaluator implementation. The TrustedIDEvaluator

implementation must implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator Java

interface.

Signature

The upstream server signs the message, which can be any message part such as the Simple

Object Access Protocol (SOAP) body. The upstream server sends the X.509 token to a

downstream server. The consumer or receiver of the message verifies the signature and validates

the X.509 token. The identity or the distinguished name from the X.509 token that is used in the

digital signature is validated based on the TrustedIDEvaluator implementation. The

TrustedIDEvaluator implementation must implement the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator Java interface.

The following figure demonstrates the identity assertion trust process.

Server s1

Web services
security run time

Request
generator

Response
consumer

Server s2

Web services
security run time

Request
consumer

Response
generator

Secured SOAP message

JAAS login
configuration Trusted ID evaluator

Identity/Password Identity

bob

Identity (username token): bob
Trust mode (username token):
Identity/Password

Secured SOAP message

Downstream
call

In this figure, server s1 is the upstream server and identity assertion is set up between server s1 and

server s2. The s1 server authenticates the identity called bob. Server s1 wants to send bob to the s2

server with a password. The trust mode is an s1 credential that contains the identity and a password.

Server s2 receives the request, authenticates the user using a Java Authentication and Authorization

Service (JAAS) login module, and uses the trusted ID evaluator to determine whether to trust the identity.

If the identity is trusted, bob is used as the caller that invokes the service. If authorization is required, bob

is the identity that is used for authorization verification.

In WebSphere Application Server Version 6, the identity can be asserted as the RunAs (invocation) identity

of the current security context. For example, the Web services gateway authenticates a requester using a

secure method such as password authentication and then sends the requester identity only to a back-end

server. You might also use identity assertion for interoperability with another Web services security

implementation.

Using the pluggable token framework

The Organization for the Advancement of Structured Information Standards (OASIS) Web Services

Security Version 1.0 specification defines a generic mechanism to associate security tokens with a SOAP

message. In WebSphere Application Server Version 6, the pluggable token framework is enhanced to

handle this flexible mechanism. The following figure shows this pluggable framework.

532 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Client

Web services
security run time

Request
generator

Response
consumer

Server

Web services
security run time

Request
consumer

Response
generator

Secured SOAP message

TokenConsumer user1/password

user1

<wsse:UsernameToken>
<wsse:Username>user1</wsse:Username>
<wsse:Password>password</wsse:Password>

</wsse:UsernameToken>

Secured SOAP message

Downstream
call

JAAS login
configuration

<wsse:UsernameToken>
<wsse:Username>user1</wsse:Username>
<wsse:Password>password</wsse:Password>

</wsse:UsernameToken>

TokenGenerator CallbackHandlerTokenConsumer
JAAS login

configuration

TokenGenerator

CallbackHandler
user1/password

<wsse:UsernameToken>
<wsse:Username>user1</wsse:Username>
<wsse:Password>password</wsse:Password>

</wsse:UsernameToken>

The following terms are used in the previous figure:

TokenGenerator

The token generator, or the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent Java

interface, is responsible for the following actions:

v Marshalling the token into the correct XML representation for the SOAP message. In this case,

marshalling is the process of converting a token to a standardized format before transmitting it

over the network.

v Setting the token to the local JAAS Subject.

v Generating the correct token identifier based on the key information type.

The token generator invokes the CallbackHandler or the

javax.security.auth.callback.CallbackHandler Java interface for token acquisition. The

javax.security.auth.callback.Callback Java interface is used to pass information from the callback

handler to the token generator.

CallbackHandler

The callback handler, or the javax.security.auth.callback.CallbackHandler Java interface, is

responsible for acquiring the token using a method such as GUI prompt, a standard-in prompt,

talking to external token service, and so on.

TokenConsumer

The token consumer, or the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent Java

interface, is responsible for the following actions:

v Un-marshalling the token from the XML format within the SOAP message. In this case,

un-marshalling is the process of converting the token from the standard network format to the

local or native format.

v Calling the JAAS login configuration to validate the token

Chapter 14. Learn about WebSphere applications 533

v Setting the correct WSSToken, or com.ibm.wsspi.wssecurity.auth.token.WSSToken Java

abstract class, to the local JAAS Subject.

At the final stage of Web services security processing, the local JAAS Subject content is used to

create the WebSphere credentials and principals. The Caller Subject is created based on the

content of the local JAAS Subject.

JAAS login configuration

The JAAS login configuration is responsible for validating the token. The validation process might

involve making a call to the WebSphere Application Server authentication module or calling a

third-party token service.

Signing or encrypting data with a custom token

The key locator, or the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator Java interface, is enhanced to

support the flexibility of the specification. The key locator is responsible for locating the key. The local

JAAS Subject is passed into the KeyLocator.getKey() method in the context. The key locator

implementation can derive the key from the token, which is created by the token generator or the token

consumer, to sign a message, to verify the signature within a message, to encrypt a message, or to

decrypt a message.

Important: The com.ibm.wsspi.wssecurity.keyinfo.KeyLocator Java interface is different from the version

in WebSphere Application Server Version 5.x. The com.ibm.wsspi.wssecurity.config.KeyLocator

interface from version 5.x is deprecated. There is no automatic migration for the key locator

from version 5.x to version 6. You must migrate the source code for the version 5.x key locator

implementation to the key locator programming model for version 6.

Signing or encrypting any XML element

The deployment descriptor supports the XPath expression for selecting which XML element to sign or

encrypt. However, an envelope signature is used when you sign the SOAP envelope, SOAP header, or

Web services security header.

Supporting LTPA

Lightweight Third Party Authentication (LTPA) is supported as a binary security token in Web services

security. The token type is http://www.ibm.com/websphere/appserver/tokentype/5.0.2/LTPA.

Extending the support for time stamps

You can insert a time stamp in other elements during the signing process besides the Web services

security header. This time stamp provides a mechanism for adding a time limit to an element. However,

this support is an extension for WebSphere Application Server Version 6. Other vendor implementations

might not have the ability to consume a message that is generated with an additional time stamp that is

inserted in the message.

Extending the support for nonce

You can insert a nonce, which is a randomly generated value, in other elements beside the username

token. The nonce is used to reduce the chance of a replay attack. However, this support is an extension

for WebSphere Application Server Version 6. Other vendor implementations might not have the ability to

consume messages with a nonce that is inserted into elements other than a username token.

Supporting distributed nonce caching

Distributed nonce caching is a new feature for Web services in WebSphere Application Server Version 6

that enables you to replicate nonce data between servers in a cluster. For example, you might have

534 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

application server A and application server B in cluster C. If application server A accepts a nonce with a

value of X, then application server B throws a SoapSecurityException if it receives the nonce with the

same value within a specified period of time. For more information, see the information that explains nonce

cache timeout, nonce maximum age and nonce clock skew in “Web services: Default bindings for the Web

services security collection” on page 811. However, if application server B receives another nonce with a

value of Y, then it does not throw an exception, but caches the nonce and copies it into the other

application servers within the same cluster.

Important: The distributed nonce caching feature uses the WebSphere Application Server Distributed

Replication Service (DRS). The data in the local cache is pushed to the cache in other servers

in the same replication domain. The replication is an out-of-process call and, in some cases, is

a remote call. Therefore, there is a possible delay in replication while the content of the cache

in each application server within the cluster is updated. The delay might be due to network

traffic, network workload, machine workload, and so on.

Caching the X.509 certificate

WebSphere Application Server Version 6 caches the X.509 certificates it receives, by default, to avoid

certificate path validation and improve its performance. However, this change might lead to security

exposure. You can disable X.509 certificate caching using the following steps:

On the cell level:

v Click Security > Web services.

v Under Additional properties, click Properties > New.

v In the Property name field, type com.ibm.ws.wssecurity.config.token.certificate.useCache.

v In the Property value field, type false.

On the server level:

v Click Servers > Application servers > server_name.

v Under Security, click Web services: Default bindings for Web services security.

v Under Additional properties, click Properties > New.

v In the Property name field, type com.ibm.ws.wssecurity.config.token.certificate.useCache.

v In the Property value field, type false.

Providing support for a certificate revocation list

The certificate revocation list (CRL) in WebSphere Application Server Version 6 is used to enhance

certificate path validation. You can specify a CRL in the collection certificate store for validation. You can

also encode a CRL in an X.509 token using PKCS#7 encoding. However, WebSphere Application Server

Version 6 does not support X509PKIPathv1 CRL encoding in a X.509 token.

Important: The PKCS#7 encoding was tested with the IBM certificate path (IBM CertPath) provider only.

The encoding is not supported for other certificate path providers.

 Related concepts

 “Nonce, a randomly generated token” on page 567
Nonce is a randomly generated, cryptographic token used to prevent replay attacks. Although Nonce

can be inserted anywhere in the SOAP message, it is typically inserted in the <UsernameToken>

element.

 “Collection certificate store” on page 585
A collection certificate store is a collection of non-root, certificate authority (CA) certificates and

certificate revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the

signature of a digitally signed Simple Object Access Protocol (SOAP) message.

Chapter 14. Learn about WebSphere applications 535

“Certificate revocation list” on page 585
A certificate revocation list is a time-stamped list of certificates that have been revoked by a certificate

authority (CA).

High-level architecture for Web services security

WebSphere Application Server Version 6 uses the Java 2 Platform, Enterprise Edition (J2EE) Version 1.4

Web services deployment model to implement Web services security. The Web services security

constraints are specified in the IBM extension of the Web services deployments descriptors and bindings.

The Web services security run time enforces the security constraints specified in the deployment

descriptors. One of the advantages of deployment model is that you can define the Web services security

requirements outside of the application business logic. With the separation of roles, the application

developer can focus on the business logic and the security expert can specify the security requirement.

The following figure shows the high-level architecture model that is used to secure Web services in

WebSphere Application Server Version 6.

Client run time

Web services
security run time

Request
generator

Response
consumer

Server run time

Web services
security run time

Request
consumer

Response
generator

Secured
SOAP

message

Secured
SOAP

message

Deployment
descriptor

Deployment
descriptor

Web
service

Client

The deployment descriptor and binding for Web services security is based on Web service ports. Each

Web service port can have its own unique Web services security constraints defined. For example, you

might configure Web service port A to sign the Simple Object Access Protocol (SOAP) body and the

username token. You might configure Web service port B to encrypt the SOAP body content and so on.

As shown in the previous figure, there are 2 sets of configurations on both the client side and the server

side:

Request generator

This client-side configuration defines the Web services security requirements for the outgoing

SOAP message request. These requirements might involve generating a SOAP message request

that uses a digital signature, incorporates encryption, and attaches security tokens. In WebSphere

Application Server Versions 5.0.2, 5.1, and 5.1.1, the request generator was known as the request

sender.

Request consumer

This server-side configuration defines the Web services security requirements for the incoming

SOAP message request. These requirements might involve verifying that the required integrity

parts are digitally signed; verifying the digital signature; verifying that the required confidential parts

were encrypted by the request generator; decrypting the required confidential parts; validating the

536 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

security tokens, and verifying that the security context is set up with the appropriate identity. In

WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1, the request consumer was known as

the request receiver.

Response generator

This server-side configuration defines the Web services security requirements for the outgoing

SOAP message response. These requirements might involve generating the SOAP message

response with Web services security; including digital signature; and encrypting and attaching the

security tokens, if necessary. In WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1, the

response generator was known as the response sender.

Response consumer

This client-side configuration defines the Web services security requirements for the incoming

SOAP response. The requirements might involve verifying that the integrity parts are signed and

the signature is verified; verifying that the required confidential parts are encrypted and that the

parts are decrypted; and validating the security tokens. In WebSphere Application Server Versions

5.0.2, 5.1, and 5.1.1, the response consumer was known as the response receiver.

WebSphere Application Server Version 6 does not include security policy negotiation or exchange between

the client and server. This security policy negotiation is defined by the WS-Policy, WS-PolicyAssertion, and

WS-SecurityPolicy specifications and are not supported in WebSphere Application Server Version 6.

Note: The Web services security requirements that are defined in the request generator must match the

request consumer. The requirements that are defined in the response generator must match the

response consumer. Otherwise, the request or response is rejected because the Web services

security constraints can not be met by the request consumer and response consumer.

The format of the Web services security deployment descriptors and bindings are IBM proprietary.

However, the following tools are available to edit the deployment descriptors and bindings:

Rational Application Developer Version 6

Use this tool to edit the Web services security deployment descriptor and binding. You can use

this tool to assemble both Web and EJB modules.

Rational Web Developer Version 6

Use this tool to edit the Web services security deployment descriptor and binding. You can use

this tool to assemble Web modules only.

Application Server Toolkit

Use this tool to edit the Web services security deployment descriptor and binding.

WebSphere Application Server Version 6 administrative console

Use this tool to edit the Web services security binding of a deployed application.

 Related reference

 “Request generator (sender) binding configuration settings” on page 680
Use this page to specify the binding configuration for the request generator.

 “Request consumer (receiver) binding configuration settings” on page 745
Use this page to specify the binding configuration for the request consumer.

 “Response generator (sender) binding configuration settings” on page 682
Use this page to specify the binding configuration for the response generator or response sender.

 “Response consumer (receiver) binding configuration settings” on page 747
Use this page to specify the binding configuration for the response consumer.

Configuration overview

The Web services security constraints are defined in an IBM extension of the Web services deployment

descriptor for Java 2 Platform, Enterprise Edition (J2EE). The IBM extension deployment descriptor and

binding for Web services security are IBM proprietary. Due to the complexity of these files, it is not

recommended that you edit the deployment descriptor and binding files manually with a text editor

Chapter 14. Learn about WebSphere applications 537

because they might cause errors. It is recommended, however, that you use the tools provided by IBM to

configure the Web services security constraints for an application. These tools are the Rational Application

Developer, Rational Web Developer, the Application Server Toolkit, and the WebSphere Application Server

administrative console.

The following table provides the names of the deployment descriptor and binding files for the client and the

server.

 File type Client side Server side

Deployment descriptor ibm-webservicesclient-ext.xmi ibm-webservices-ext.xmi

Binding file ibm-webservicesclient-bnd.xmi ibm-webservices-bnd.xmi

The ″what″ is specified in the deployment descriptor such as what message part to sign and which token

to encrypt. The ″how″ is specified in the binding file such as how the message is signed, how to generate

and consume the security token.

In addition to the application deployment descriptor and binding files, WebSphere Application Server

Version 6 has a server level WSS configuration. These configurations are global for all applications.

Because WebSphere Application Server Version 6 supports 5.x applications, some of the configurations

are valid for version 5.x applications only and some are valid for version 6 applications only.

The following figure represents the relationship of the application deployment descriptor and binding files

to the cell or server level configuration.

Deployment descriptor:
Signs the body
Encrypts the body content
…..

Binding:
X.509 for signing
Key for encryption
…..

•
•
•

•
•
•

Application A

Platform configuration (cell or server):
Key information (key locator)
Nonce cache timeout
…..

•
•
•

WebSphere Application Server

Platform configuration overview

The following options are available in the administrative console:

Nonce cache timeout

This option, which is found on the cell level (Network Deployment only) and server level, specifies

the cache timeout value for a nonce in seconds.

538 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Nonce maximum age

This option, which is found on the cell level (Network Deployment only) and server level, specifies

the default life span for the nonce in seconds.

Nonce clock skew

This option, which is found on the cell level (Network Deployment only) and server level, specifies

the default clock skew to account for network delay, processing delay, and so on. It is used to

calculate when the nonce expires. Its unit of measurement is seconds.

Distribute nonce caching

This feature enables you to distribute the cache for the nonce to different servers in a cluster. It is

a new feature for WebSphere Application Server Version 6.

The following features can be referenced in the application binding:

Key locator

This feature specifies how the keys are retrieved for signing, encryption, and decryption. The

implementation classes for the key locator are different in WebSphere Application Server Version 6

and Version 5.x.

Collection certificate store

This feature specifies the certificate store for certificate path validation. It is typically used for

validating X.509 tokens during signature verification or constructing the X.509 token with a

certificate revocation list that is encoded in the PKCS#7 format. The certificate revocation list is

supported for WebSphere Application Server Version 6 applications only.

Trust anchors

This feature specifies the trust level for the signer certificate and is typically used in the X.509

token validation during signature verification.

Trusted ID evaluators

This feature specifies how to verify the trust level for the identity. The feature is used with identity

assertion.

Login mappings

This feature specifies the login configuration binding to the authentication methods. This feature is

used by WebSphere Application Server Version 5.x applications only and it is deprecated.

Default bindings

The default bindings specify the default binding so that applications do not have to define the binding in

the application binding files for Web services security. There is only one set of default bindings and they

can be shared by multiple applications. This feature is available for WebSphere Application Server Version

6 applications only.

The following figure shows the relationship between the application enterprise archive (EAR) file and the

ws-security.xml file.

Chapter 14. Learn about WebSphere applications 539

Default consumer binding

Default generator binding

Deployment descriptor

Binding

Deployment descriptor

Binding

Enterprise archive (EAR) 1

EAR 2

Deployment descriptor

EAR 3

Deployment descriptor

EAR 4

ws-security.xml

Application EAR 1 and EAR 2 have specific bindings in the application binding file. However, application

EAR 3 and EAR 4 do not have a binding in the application binding file, but rather use the default binding

defined in the ws-security.xml file. The configuration is resolved by nearest configuration in the hierarchy.

For example, there might be three key locators named “mykeylocator” defined in the application binding

file, the server level, and the cell level. If mykeylocator is referenced in the application binding, then the

key locator defined in the application binding is used. The visibility scope of the data depends upon where

the data is defined. If the data is defined in the application binding, then its visibility is scoped to that

particular application. If the data is defined on the server level, then the visibility scope is all of the

applications deployed on that server. If the data is defined on the cell level, then the visibility scope is all of

the applications deployed on servers in the cell. In general, if data is not meant to be shared by other

applications, define the configuration in the application binding level.

The following figure shows the relationship of the bindings on the application, server, and cell levels.

540 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

ws-security.xml

MyCell

MyNodel

server1l

ws-security.xml

Binding

Enterprise archive (EAR) 2

Deployment descriptor

Overrides

Overrides

Related concepts

 “Nonce, a randomly generated token” on page 567
Nonce is a randomly generated, cryptographic token used to prevent replay attacks. Although Nonce

can be inserted anywhere in the SOAP message, it is typically inserted in the <UsernameToken>

element.

 “Distributed nonce caching” on page 763
The distributed nonce caching feature enables you to distribute the cache for a nonce to different

servers in a cluster.

 “Key locator” on page 592
A key locator or the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator class, is an abstraction of the

mechanism that retrieves the key for digital signature and encryption.

 “Collection certificate store” on page 585
A collection certificate store is a collection of non-root, certificate authority (CA) certificates and

certificate revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the

signature of a digitally signed Simple Object Access Protocol (SOAP) message.

 “Trust anchor” on page 587
A trust anchor specifies the key stores that contain trusted root certificates. These certificates are used

to validate the X.509 certificate that is embedded in the Simple Object Access Protocol (SOAP)

message.

 “Trusted ID evaluator” on page 613
A trusted ID evaluator (com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl) is an abstraction of the

mechanism that evaluates whether the given ID name is trusted.

Security model mixture

There can be multiple protocols and channels in the WebSphere Application Server Version 6

programming environment. For example, you might access a Web-based application through the HTTP

transport. For example, a servlet, JavaServer pages (JSP) file, HTML and so on. You might access an

enterprise application through the Remote Method Invocation over the Internet Inter-ORB (RMI/IIOP)

protocol and a Web service application through the Simple Object Access Protocol (SOAP) over HTTP,

SOAP over the Java Message Service (JMS) or SOAP over RMI/IIOP protocol. Each of these applications

serve different business needs. More importantly, Web services are often implemented as servlets with a

JavaBean or EJB file. Therefore, you can mix and match the Web services security model with the Java 2

Platform, Enterprise Edition (J2EE) security model for Web and EJB components. It is intended that Web

service security compliment the J2EE role-based security and the security run time for WebSphere

Application Server Version 6.

Chapter 14. Learn about WebSphere applications 541

Web services security also can take advantage of the security features in J2EE and the security run time

for WebSphere Application Server Version 6. For example, Web services security can use the following

security features to provide an end-to-end security deployment:

v Use the local OS, Lightweight Directory Access Protocol (LDAP), and custom user registries for

authenticating the username token

v Propagate the Lightweight Third Party Authentication (LTPA) security token in the SOAP message

v Use identity assertion

v Use a trust association interceptor (TAI)

v Enable security attribute propagation

v Use J2EE role-based authorization

v Use a Java Authorization Contract for Containers (JACC) authorization provider such as Tivoli Access

Manager

The following figure shows that different security protocols are used to send authentication information to

the application server. For a Web service, you might use either HTTP basic authentication with Secure

Sockets Layer (SSL) or a Web services security username token with encryption. In the following figure,

when identity bob from Web services security is authenticated and set as the caller identity of the SOAP

message request, the J2EE Enterprise JavaBean (EJB) container performs authorization using bob before

the call is dispatched to the service implementation, which, in this case, is the enterprise bean.

SOAP
run time

Servlet

Enterprise bean

J2EE
container

bob

joe

joe

SOAP

WebSphere
Application
Server

wsse:UsernameToken
<bob:password>

bob

RMI/IIOP request
Authentication by the ORB
is based on CSIv2

Authentication
is based on Web
services security

authentication by HTTP
end point based on HTTP
basic authentication

alice

CSIv2 protocol:
<alice:password>

https://www.fabrikam456.com/travelServices

HTTP request

HTTP basic
authentication:
<joe:password>
with SSL

SOAP

http://www.fabrikam456.com/travelServices

You can secure a Web service using the transport layer security. For example, when you are using SOAP

over HTTP, HTTPs can be used to secure the Web service. However, transport layer security provides

point-to-point security only. This layer of security might be adequate for certain scenarios. However, when

the SOAP message must travel through intermediary servers (multi-hop) before it is consumed by the

target endpoint, you might use SOAP over the Java Message Service (JMS). The usage scenarios and

security requirements dictate how to secure Web services. The requirements depend upon the operating

542 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

environment and the business needs. However, one key advantage of using Web services security is that

it is transport layer independent; the same Web services security constraints can be used for SOAP over

HTTP, SOAP over JMS, or SOAP over RMI/IIOP.

Security considerations for Web services

In WebSphere Application Server Version 6, when you enable integrity, confidentiality, and the associated

tokens within a Simple Object Access Protocol (SOAP) message, security is not guaranteed. When you

configure Web services security, you must make every effort to verify that the result is not vulnerable to a

wide range of attack mechanisms. This article provides some information about the possible security

concerns that arise when you are securing Web services. This list of security concerns is not complete.

You must conduct your own security analysis for your environment.

v Ensuring the message freshness

Message freshness involves protecting resources from a replay attack in which a message is captured

and resent. Digital signatures, by themselves, cannot prevent a replay attack because a signed

message can be captured and resent. It is recommended that you allow message recipients to detect

message replay attacks when messages are exchanged through an open network. You can use the

following elements, which are described in the Web services security specifications, for this purpose:

Timestamp

You can use the timestamp element to keep track of messages and to detect replays of

previous messages. The WS-Security 2004 specification recommends that you cache time

stamps for a given period of time. As a guideline, you can use five minutes as a minimum

period of time to detect replays. Messages that contain an expired timestamp are rejected.

Nonce

A nonce is a child element of UsernameToken in the UsernameToken profile. Because each

Nonce element has a unique value, recipients can detect replay attacks with relative ease.

Important: Both the time stamp and nonce element must be signed. Otherwise, these elements can be

altered easily and therefore cannot prevent replay attacks.

v Using XML digital signature and XML encryption properly to avoid a potential security hole

The WS-Security 2004 specification defines how to use XML digital signature and XML encryption in

Simple Object Access Protocol (SOAP) headers. Therefore, users must understand XML digital

signature and XML encryption in the context of other security mechanisms and their possible threats to

an entity. For XML digital signature, you must be aware of all of the security implications resulting from

the use of digital signatures in general and XML digital signature in particular. When you build trust into

an application based on a digital signature, you must incorporate other technologies such as certification

trust validation based upon the Public Key Infrastructure (PKI). For XML encryption, the combination of

digital signing and encryption over a common data item might introduce some cryptographic

vulnerabilities. For example, when you encrypt digitally signed data, you might leave the digital

signature in plain text and leave your message vulnerable to plain text guessing attacks. As a general

practice, when data is encrypted, encrypt any digest or signature over the data. For more information,

see http://www.w3.org/TR/xmlenc-core/#sec-Sign-with-Encrypt.

v Protecting the integrity of security tokens

The possibility of a token substitution attack exists. In this scenario, a digital signature is verified with a

key that is often derived from a security token and is included in a message. If the token is substituted,

a recipient might accept the message based on the substituted key, which might not be what you

expect. One possible solution to this problem is to sign the security token (or the unique identifying data

from which the signing key is derived) together with the signed data. In some situations, the token that

is issued by a trusted authority is signed. In this case, there might not be an integrity issue. However,

because application semantics and the environment might change over time, the best practice is to

prevent this attack. You must assess the risk assessment based upon the deployed environment.

v Verifying the certificate to leverage the certificate path verification and the certificate revocation list

It is recommended that you verify that the authenticity or validity of the token identity that is used for

digital signature is properly trusted. Especially for an X.509 token, this issue involves verifying the

Chapter 14. Learn about WebSphere applications 543

http://www.w3.org/TR/xmlenc-core/#sec-Sign-with-Encrypt

certificate path and using a certificate revocation list (CRL). In the Web services security implementation

in WebSphere Application Server Version 6, the certificate is verified by the TokenConsumer element.

WebSphere Application Server provides a default implementation for the X.509 certificate that uses the

Java CertPath library to verify and validate the certificate. In the implementation, there is no explicit

concept of a CRL. Rather, proper root certificates and intermediate certificates are prepared in files only.

For a sophisticated solution, you might develop your own TokenConsumer implementation that performs

certificate and CRL verification using the online CRL database or the Online Certificate Status Protocol

(OCSP).

v Protecting the username token with a password

It is recommended that you do not send a password in a UsernameToken to a downstream server

without protection. You can use transport-level security such as SSL (for example, HTTPS) or use XML

encryption within Web services security to protect the password. The preferred method of protection

depends upon your environment. However, you might be able to send a password to a downstream

server as plain text in some special environments where you are positive that you are not vulnerable to

an attack.

Securing Web services involves more work than just enabling XML digital signature and XML encryption.

To properly secure a Web service, you must have knowledge about the Public Key Infrastructure (PKI).

The amount of security that you need depends upon the deployed environment and the usage patterns.

However, there are some basic rules and best practices for securing Web services. It is recommended that

you read some books on PKI and read information on the Web Services Interoperability Organization

(WS-I) Basic Security Profile (BSP).

Migrating Version 5.x applications with Web services security to Version 6

applications

You can install Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 applications that use Web services

security on a WebSphere Application Server Version 6 server. However, if you want J2EE Version 1.3

applications to use the Web services security (WSS) Version 1.0 specification and the other new features

added in Version 6, you must migrate the J2EE Version 1.3 applications to J2EE Version 1.4. This article

provides general information about migrating a J2EE Version 1.3 application that uses Web services

security to a J2EE Version 1.4 application.

Complete the following steps to migrate a Version 5.x application, along with the Web services security

configuration information, to a Version 6 application:

1. Save the original J2EE Version 1.3 application. You need the Web services security configuration files

of the J2EE Version 1.3 application to recreate the configuration in the new format for the J2EE

Version 1.4 application.

2. Use the Java 2 Platform, Enterprise Edition (J2EE) Migration Wizard in an assembly tool to migrate the

J2EE Version 1.3 application to J2EE Version 1.4.

Important: After you migrate to J2EE Version 1.4 using the J2EE Migration Wizard, you cannot view

the J2EE Version 1.3 extension and binding information within an assembly tool. You can

view the J2EE Version 1.3 Web services security extension and binding information using

a text editor. However, do not edit the extension and binding information using a text

editor. The J2EE Migration Wizard does not migrate the Web services security

configuration files to the new format in the J2EE Version 1.4 application. Rather the wizard

is used to migrate your files from J2EE Version 1.3 to Version 1.4.

To access the J2EE Migration Wizard, complete the following steps:

a. Right-click the name of your application.

b. Click Migrate > J2EE Migration Wizard.

3. Manually delete all of the Web services security configuration information from the binding and

extension files of the application that is migrated to J2EE Version 1.4.

544 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

a. Delete the <securityRequestReceiverServiceConfig> and

<securityResponseSenderServiceConfig> sections from the server-side ibm-webservices-ext.xmi

extension file.

b. Delete the <securityRequestReceiverBindingConfig> and

<securityResponseSenderBindingConfig> sections from the server-side ibm-webservices-bnd.xmi

binding file.

c. Delete the <securityRequestSenderServiceConfig> and

<securityResponseReceiverServiceConfig> sections from the client-side ibm-webservicesclient-
ext.xmi extension file.

d. Delete the <securityRequestSenderBindingConfig> and

<securityResponseReceiverBindingConfig> sections from client-side ibm-webservicesclient-
bnd.xmi binding file.

4. Recreate the Web services security configuration information in the new J2EE Version 1.4 format. At

this stage, because the application is already migrated to the J2EE Version 1.4, you can use the

Application Server Toolkit to configure the original Web services security information in the new Version

6 format.

This task provides general information about how to migrate J2EE Version 1.3 applications to J2EE

Version 1.4.

The following articles contain some general scenarios that map some of the basic Web services security

information specified in a J2EE Version 1.3 application to a J2EE Version 1.4 application and specify this

information using the Application Server Toolkit. The Web services security configuration information is

contained in four configuration files: two server-side configuration files and two client-side configuration

files. The migration of all of the configuration information is divided into four sections; one for each

configuration file. When you recreate the Web services security information in the new J2EE Version 1.4

format, it is recommended that you configure the extensions and binding files in the following order:

1. Configure the ibm-webservices-ext.xmi server-side extensions file. For more information, see

“Migrating the server-side extensions configuration.”

2. Configure the ibm-webservicesclient-ext.xmi client-side extensions file. For more information, see

“Migrating the client-side extensions configuration” on page 547.

3. Configure the ibm-webservices-bnd.xmi server-side bindings file. For more information, see “Migrating

the server-side bindings file” on page 548.

4. Configure the ibm-webservicesclient-bnd.xmi client-side bindings file. For more information, see

“Migrating the server-side bindings file” on page 548.

Migrating the server-side extensions configuration:

This article provides general information about migrating the Web services security server-side extensions

configuration for a Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 application to a J2EE Version

1.4 application. The steps are based on typical scenarios, but the steps are not all-inclusive.

The following table lists the mappings for the top-level sections under the server-side Security

Extensions tab within an assembly tool from a J2EE Version 1.3 application to a J2EE Version 1.4

application.

 Table 4. The mapping of the configuration sections

J2EE Version 1.3 extensions configuration J2EE Version 1.4 extensions configuration

Request Receiver Service Configuration Details Request Consumer Service Configuration Details

Response Sender Service Configuration Details Response Generator Service Configuration Details

For information about the assembly tools that are available for WebSphere Application Server Version 6,

see ″Assembly tools″ in the ″Developing and deploying applications″ PDF.

Chapter 14. Learn about WebSphere applications 545

Consider the following steps to migrate the server-side extensions from a J2EE Version 1.3 application to

a J2EE Version 1.4 application. These steps are dependent upon your specific configuration.

v Import the J2EE Version 1.3 application into an assembly tool and identify all the message parts that

are required to be signed and encrypted. The message parts are listed in the Required Integrity and

Required Confidentiality sections under the Request Receiver Service Configuration Details section. In a

J2EE Version 1.4 application, these message parts map to the Message parts field of the Required

integrity and Required confidentiality dialogs windows within the assembly tool. To specify these

message parts within an assembly tool, complete the following steps in the Web Services editor:

1. Click the Extensions tab.

2. Navigate to the Required integrity subsection within the Request Consumer Service Configuration

Details section.

3. Specify each message part to be signed in the Message Parts field.

For example, if the message part in the J2EE Version 1.3 application is body, you need to specify body

in the Message parts keyword field. Similarly, on the Extensions tab, configure the message parts to be

encrypted using the Required Confidentiality dialog. Also, for all the message parts that are migrated

from a J2EE Version 1.3 application, you must select

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was in the Message parts dialect

field and Required in the Usage type field.

v Optional: Configure the Required Security Token and Caller Part sections on the Extensions tab if the

authentication method of BasicAuth is configured under the Login Config section of the J2EE Version

1.3 application. When you configure the Required Security Token section, select Username in the name

field and Required in the Usage type field within the Required Security Token Dialog window. The

following table shows how the authentication method values for a J2EE Version 1.3 application map to

the token type values within the J2EE Version 1.4 application.

 Table 5. Authentication method to token type mappings

Login Config Authentication method values in the

J2EE Version 1.3 extensions configuration

Token type values in the J2EE Version 1.4 extensions

configuration

BasicAuth UsernameToken

Signature X509 certificate

LTPA LTPAToken

If the authentication method value is IDAssertion within the Login Config section, the token type that you

must specify in the J2EE Version 1.4 application depends upon the IDType value within the IDAssertion

section. The following table shows how the IDType values for J2EE Version 1.3 application map to the

token type values in the J2EE Version 1.4 application.

 Table 6. IDType values to token type mappings

IDType values in the J2EE Version 1.3 application

extensions configuration

Token type values in the J2EE Version 1.4 application

extensions configuration

X509Certificate X509 certificate

Username Username

v Select the appropriate token type in the Name field of the Call Part Dialog window based on the

previous two tables. Select the Username token type when you are configuring the caller part for the

basic authentication method. Configuring the other token types in the Caller part dialog is similar to

configuring token types in the Required Security Token dialog. If you need to map the IDAssertion

authentication method from a J2EE Version 1.3 application to a J2EE Version 1.4 application, select the

Use IDAssertion option and configure the ID assertion section of the Caller Part Dialog window. The

Trust Mode field under the IDAssertion section maps to the Trust method name field of the Trust

method property section in the Caller Part Dialog window. If Signature is selected for the Trust method,

specify the Required Integrity part that specifies the signature of the trusted intermediary certificate.

546 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v Configure a nonce in the Version 6 Binding Configurations section if nonce is specified in the Add

Authentication Method dialog under Login Config within the J2EE Version 1.3 application extensions

configuration.

Important: Nonce is configured in the bindings for a J2EE Version 1.4 application and not in the

extensions.

To configure a nonce on the Binding Configurations tab, set the

com.ibm.wsspi.wssecurity.token.Username.verifyNonce property in the Token Consumer configuration

for the Username token.

v Configure the Add Timestamp section to migrate the time stamp information if the

<addReceivedTimestamp> element is configured in the J2EE Version 1.3 extensions. To migrate the

Response Sender Service Configuration Details section in the J2EE Version 1.3 extensions, identify all

of the message parts listed within the Integrity and Confidentiality sections. Configure these message

parts using the Integrity and Confidentiality dialogs under the Response Generator Service

Configuration details section. This configuration is similar to the configuration for Required Integrity and

Required Confidentiality, with the exception of the Order field in the Integrity Dialog. The value of this

Order field specifies the order in which the message parts specified in the Message Parts field are

digitally signed or encrypted in the Simple Object Access Protocol (SOAP) message. For example, the

extensions contain the following information:

– One integrity entry called int_part1 with a value of 1 in the Order field

– One confidentiality entry called conf_part1 with a value of 2 in the Order field

In this example, the message parts that are specified by the int_part1 integrity entry are signed before

the message parts specified by the conf_part1 confidentiality entry are encrypted. The same rule for the

order attribute applies for multiple integrity or confidentiality elements.

This set of steps describe the types of information that you need to migrate the Web services security

server-side extensions for a J2EE Version 1.3 application to a J2EE Version 1.4 application.

Migrate the client-side extensions for a J2EE Version 1.3 application to a J2EE Version 1.4 application. For

more information, see “Migrating the client-side extensions configuration.”

 Related tasks

 “Migrating the client-side extensions configuration”

 “Migrating the server-side bindings file” on page 548

 “Migrating the server-side bindings file” on page 548

Migrating the client-side extensions configuration:

This article provides general information about migrating the Web services security client-side extensions

configuration for a Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 application to a J2EE Version

1.4 application. The steps are based on typical scenarios, but the steps are not all-inclusive.

The following table lists the mappings of the top-level sections under the client-side Security Extensions

tab for Web services security from a J2EE Version 1.3 application to a J2EE Version 1.4 application.

 Table 7. The mapping of the configuration sections

J2EE Version 1.3 security extensions for Web

services security

J2EE Version 1.4 extensions for Web services

security

Request Sender Configuration Request Generator Configuration

Response Receiver Configuration Response Consumer Configuration

Consider the following steps to migrate the client-side extensions configuration from a J2EE Version 1.3

application to a J2EE Version 1.4 application. These steps are dependent upon your specific configuration.

Chapter 14. Learn about WebSphere applications 547

v Migrate the message parts that you need to sign or encrypt from the Integrity and Confidentiality

sections in the J2EE Version 1.3 application to the Integrity and Confidentiality sections on the WS

Extensions tab in an assembly tool for a J2EE Version 1.4 application.

v Configure the Security Token section under the Request Generator Configuration on the WS

Extensions tab if Login Config section is configured in the J2EE Version 1.3 extensions configuration.

When you configure the security token, select the token type in the Token type field that matches the

authentication method value of the Login Config in the J2EE Version 1.3 application. For example, if the

authentication method in the J2EE Version 1.3 extensions configuration is BasicAuth, then select

Username in the Token type field within the assembly tool. For more information on how the

authentication methods for Web services security map from a J2EE Version 1.3 application to a J2EE

Version 1.4 application, see Table 5 on page 546. If the authentication method is IDAssertion, there is

no action required because in a J2EE Version 1.4 application the identity assertion configuration is not

required in the client-side extensions configuration. In a J2EE Version 1.4 application, the identity

assertion configuration is specified in the server-side extensions configuration and in the client-side

bindings configuration.

v Migrate the Required Integrity and Required Confidentiality sections by configuring the Required

Integrity and Required Confidentiality sections in an assembly tool. Migrating the Response Receiver

Configuration section is similar to migrating the Request Receiver Service Configuration Details section

of the server-side extensions configuration. For more information, see “Migrating the server-side

extensions configuration” on page 545.

v Migrate the nonce configuration in the Login Config section in a J2EE Version 1.3 extensions

configuration for Web services security to a J2EE Version 1.4 application.

Important: Nonce is not configured in a J2EE Version 1.4 extension file for Web services security.

Rather, it is configured in the binding file for Web services security.

To configure a nonce in the binding file, define the com.ibm.wsspi.wssecurity.token.username.addNonce

property in the token generator of the username token.

v Configure the Add Timestamp section under the Request Generator Configuration in the assembly tool if

the Add Created Time Stamp option is configured in the J2EE Version 1.3 extensions.

This set of steps describe the types of information that you need to migrate the client-side extensions

configuration for Web services security for a J2EE Version 1.3 application to a J2EE Version 1.4

application.

Migrate the server-side bindings configuration for a J2EE Version 1.3 application to a J2EE Version 1.4

application. For more information, see “Migrating the server-side bindings file.”

 Related tasks

 “Migrating the server-side extensions configuration” on page 545

 “Migrating the server-side bindings file”

 “Migrating the server-side bindings file”

Migrating the server-side bindings file:

This article provides general information about migrating the server-side bindings configuration for a Java

2 Platform, Enterprise Edition (J2EE) Version 1.3 application to a J2EE Version 1.4 application. The steps

are based on typical scenarios, but the steps are not all-inclusive.

The following table lists the mappings of the top-level sections under the server-side Binding

Configurations tab from a J2EE Version 1.3 application to a J2EE Version 1.4 application.

 Table 8. The mapping of the configuration sections

J2EE Version 1.3 Binding Configurations J2EE Version 1.4 Binding Configurations

Request Receiver Binding Configuration Details Request Consumer Service Binding Configuration Details

548 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Table 8. The mapping of the configuration sections (continued)

J2EE Version 1.3 Binding Configurations J2EE Version 1.4 Binding Configurations

Response Sender Binding Configuration Details Response Generator Binding Configuration Details

Consider the following steps to migrate the server-side bindings from J2EE Version 1.3 to J2EE Version

1.4. These steps are dependent upon your specific configuration.

v Migrate the configuration information under the Request Receiver Binding Configuration Details section

of a J2EE Version 1.3 application.

1. Migrate any trust anchor information that is specified in the J2EE Version 1.3 application to J2EE

Version 1.4 using the Trust Anchor dialog.

2. Migrate the information under the certificate store list that is specified in the J2EE Version 1.3

application to J2EE Version 1.4 by configuring the Certificate Store List section in the J2EE Version

1.4 application.

3. Configure the key locator and token consumer information that is referenced from the Key

Information dialog window. The configuration of the key locator and the token consumer depends

upon the key information type. For example, if an X.509 certificate that is embedded in the

<wsse:Security> security header is used for digital signature, complete the following steps:

a. For configuring the key locator, specify the

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator class as the key locator class and do

not specify a key store.

b. For configuring the token consumer, select the

com.ibm.wsspi.wssecurity.token.509TokenConsumer class, specify X509 certificate token for

the value type Uniform Resource Identifier (URI), and specify system.wssecurity.X509BST in the

jaas.config.name field. Also, you must specify the certificate path settings (the trust anchor

reference and the certificate store reference) as part of the token consumer configuration.

4. Explicitly specify the key information type in the Key Information Dialog window. In a J2EE Version

1.3 application, the key information type, such as the security token reference and the key identifier,

is not explicitly specified. The key information type is implied by the configuration. In a J2EE Version

1.4 application, you must specify the key information type explicitly using the Key Information Dialog

when you have digital signature or encryption information in the binding file. Before you configure

the key information, make sure that you have configured the key locator and token consumer

information that is referenced from the Key Information dialog.

When you configure the key information for either digital signature or encryption, you need to specify

the correct key information type. The value of the key information type depends upon the type of

mechanism that is used to reference the security token that is used for digitally signing or

encrypting. The following information describes the Security token reference (or Direct reference)

and the Key identifier, which are the most common, recommended key information types that are

used for digitally signing and encrypting:

Security token reference (or Direct reference)

The security token is directly referenced using the Uniform Resource Identifiers (URIs). The

following <KeyInfo> element is generated in the Simple Object Access Protocol (SOAP)

message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#mytoken" />

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Key identifier

The security token is referenced using an opaque value that uniquely identifies the token.

The algorithm that is used for generating the KeyIdentifier value depends upon the token

Chapter 14. Learn about WebSphere applications 549

type. For example, a hash of the important elements of the security token is used for

generating the KeyIdentifier value. The following <KeyInfo> element is generated in the

SOAP message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="wsse:X509v3">/62wXO...</wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

In the Key Information Dialog window, specify the names of the key locator and the token consumer

that you configured previously. The Key name field is optional for the consumer side.

5. Migrate the information in the Signing Information section by configuring the Signing Information,

Part References, and Transforms sections.

– Specify the Signature method and Canonicalization method algorithms in the Signing Information

Dialog window.

– Specify the Digest method algorithm in the Part Reference Dialog window.

6. Migrate the information under the Encryption Information section. In the Encryption Information

Dialog window, select the name of the Key Information element that is configured for encryption, and

specify the RequiredConfidentiality part. Verify that the value for the selected

RequiredConfidentiality part is the same name as the Required Confidentiality part that is

configured in the extension file.

The Login Mapping section in the J2EE Version 1.3 application maps to the Token Consumer

configuration for the type of token that is specified by the authentication method. For example, to

migrate a Login Mappings configuration that uses the BasicAuth authentication method, configure a

token consumer for the username token. To configure a token consumer for a username token,

complete the following steps:

a. Select the com.ibm.wsspi.wssecurity.UsernameTokenConsumer token consumer class.

b. Specify the name of the Required Security Token configuration from the Extensions within in the

Security Token field.

c. Select Username Token for value type.

d. Specify the system.wssecurity.UsernameToken value in the jaas.config.name field.

v Migrate the configuration information in the Response Sender Binding Configuration Details section of

the J2EE Version 1.3 bindings file to the Response Generator Binding Configuration Details section of

the J2EE Version 1.4 application. Configuring the Response Generator section is very similar to

configuring the Request Consumer section.

1. Migrate the information from the Key Locators section by using the Key Locator Dialog window in an

assembly tool.

2. Configure a token generator, which is referenced in the Key Information Dialog window. You must

configure a token generator for every security token that is generated in the SOAP message. If the

token generator is for an X.509 certificate that is used for digital signature or encryption, complete

the following steps:

a. For configuring the key locator, specify the

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator class as the key locator class and do

not specify a key store.

b. For configuring the token generator, select the com.ibm.wsspi.wssecurity.X509TokenGenerator

class and specify X509 certificate token for the value type Uniform Resource Identifier (URI).

The key store information that is specified for the token generator is the same information that is

used for configuring the key locator. Therefore, the keystore information from the Key Locators

configuration in a J2EE Version 1.3 application is used to configure the key locator and the

token generator in a J2EE Version 1.4 application.

c. In the Token Generator Dialog window, specify the key store information that is required by the

callback handler to obtain the key information that is required for generating the token.

550 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

d. For the callback handler, select the

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler class.

3. Specify the names of the key locator and the token generator in the Key Information Dialog window

that you configured previously. The Key name is required for the generator side. The key that is

specified in the Key Information Dialog window must exist in the list of keys that is specified in the

key locator configuration. Also, migrating the Signing Information and the Encryption Information

configurations is similar to migrating the Signing Information and the Encryption Information

configurations for the Request Receiver Binding Configuration section. Configuring the key

information for the response generator section is similar to configuring the key information for the

request consumer section.

This set of steps describse the types of information that you need to migrate the server-side bindings

configuration for a J2EE Version 1.3 application to a J2EE Version 1.4 application.

Migrate the client-side binding configuration for a J2EE Version 1.3 application to a J2EE Version 1.4

application. For more information, see “Migrating the server-side bindings file” on page 548.

 Related tasks

 “Migrating the server-side extensions configuration” on page 545

 “Migrating the client-side extensions configuration” on page 547

 “Migrating the server-side bindings file” on page 548

Migrating the client-side bindings file:

This article provides general information about migrating the Web services security client-side binding

configuration for a Java 2 Platform, Enterprise Edition Version 1.3 application to a J2EE Version 1.4

application. The steps are based on typical scenarios, but the steps are not all-inclusive.

The following table lists the mapping of the top-level sections under the client-side Port Bindings tab

within a J2EE Version 1.3 application to a J2EE Version 1.4 application.

 Table 9. The mapping of the configuration sections

J2EE Version 1.3 binding configuration for Web

services security

J2EE Version 1.4 binding configuration for Web

services security

Security Request Sender Binding Configuration Security Request Generator Binding Configuration

Security Response Receiver Binding Configuration Security Response Consumer Binding Configuration

Consider the following steps to migrate the client-side binding configuration from a J2EE Version 1.3

application to a J2EE Version 1.4 application. These steps are dependent upon your specific configuration.

v Migrate the information in the Security Request Sender Binding Configuration section in a J2EE Version

1.3 application to a J2EE Version 1.4 application. The migrations process for the Security Request

Sender Binding Configuration section is similar to the process for the Response Sender Binding

Configuration Details section in the server-side binding configuration. For more information, see

“Migrating the server-side bindings file” on page 548.

v Migrate the information in the Key Locators, Signing Information, and the Encryption Information

sections of the J2EE Version 1.3 application to a J2EE Version 1.4 application. The migration process

for these elements on the client side is similar to migration process on the server side. For more

information, see “Migrating the server-side bindings file” on page 548.

v Migrate the information in the Login Bindings section in a J2EE Version 1.3 application to a J2EE

Version 1.4 application. The migration of the Login Bindings section depends upon the value of the

authentication method. If the authentication method is BasicAuth or IDAssertion, configure a token

generator for the username token. If the authentication method is LTPA, select the

com.ibm.wsspi.wssecurity.token.LTPATokenGenerator class as the token generator class. If the

client-side bindings for the Web service uses IDAssertion, complete the following steps:

Chapter 14. Learn about WebSphere applications 551

1. Configure a token generator for the authentication token of the original client.

2. Define the com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed property and set its value to true in

the Token Generator Dialog window within an assembly tool. If the original client is using a

username token for authentication and if the target Web service is using BasicAuth for

authentication, configure the following token generators in the client-side binding file:

– The username token of the original client. You must set the

com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed property in the token generator of the

original client.

– The username token of the intermediary Web service.

v Migrate the Security Response Receiver Binding Configuration section from a J2EE Version 1.3

application to a J2EE Version 1.4 application. Migrating the Security Response Receiver Binding

Configuration section is similar to migrating the Request Receiver Binding Configuration Details section

of the server-side bindings configuration. Migrate this information under the Security Response

Consumer Binding Configuration section. For more information, see “Migrating the server-side bindings

file” on page 548.

To configure a nonce in the binding file, define the com.ibm.wsspi.wssecurity.token.username.addNonce

property in the token generator of the username token.

This set of steps describe the types of information that you need to migrate the Web services security

client-side bindings configuration for a J2EE Version 1.3 application to a J2EE Version 1.4 application.

Verify that you have migrated both the server-side and the client-side extension and binding configurations

for a J2EE Version 1.3 application to a J2EE Version 1.3 application. For more information, see “Migrating

Version 5.x applications with Web services security to Version 6 applications” on page 544.

 Related tasks

 “Migrating the server-side extensions configuration” on page 545

 “Migrating the client-side extensions configuration” on page 547

 “Migrating the server-side bindings file” on page 548

View Web services client deployment descriptor:

Use this page to view your client deployment descriptor.

 Before you begin this task, the Web services application must be installed.

By completing this task, you can gather information that enables your to maintain or configure binding

information. After the Web services application is installed, you can view the Web services deployment

descriptors.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related Items, click EJB modules or Web modules > URI_file_name.

3. Under Additional properties, click View Web services client deployment descriptor extension.

Application-level and server-level bindings are the two levels of bindings that WebSphere Application

Server offers. The information in the following implementation descriptions indicates how to configure your

application-level bindings. If the Web server is acting as a client, the default bindings are used. To

configure the server-level bindings, which are the defaults, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web Services: Default bindings for Web services security.

If you are using any of the following configurations, verify that the deployment descriptor is configured

properly:

552 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v Request signing

v Request encryption

v BasicAuth authentication

v Identity (ID) assertion authentication

v Identity (ID) assertion authentication with the signature TrustMode

v Response digital signature verification

v Response decryption

Request signing

If the integrity constraints (digital signature) are specified, verify that you configured the signing information

in the binding files.

To configure the signing parameters, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related Items, click Web modules > URI_file_name

3. Under Additional properties, click Web Services: Client security bindings.

4. In the Response receiver binding column, click Edit > Signing information > New.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Additional properties, click Web Services: Default bindings for Web services security > Key

locators.

Request encryption

If the confidentiality constraints (encryption) are specified, verify that you configured the encryption

information in the binding files.

To configure the encryption parameters, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related Items, click EJB modules or Web modules >URI_file_name > Web services: Client

security bindings .

3. In the Response receiver binding column, click Edit > Encryption Information > New.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Additional properties, click Web Services: Default bindings for Web services security > Key

locators.

BasicAuth authentication

If BasicAuth authentication is configured as the required security token, specify the callback handler in the

binding file to collect the basic authentication data. The following list contains the CallBack support

implementations:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler

This implementation prompts for basic authentication information, the user name and password, in

an interface.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This implementation reads the basic authentication information from the binding file.

com.ibm.wsspi.wssecurity.auth.callback.StdPromptCallbackHandler

This implementation prompts for a user name and password using the standard in (stdin) prompt.

Chapter 14. Learn about WebSphere applications 553

To configure the login binding information, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules >URI_file_name > Web services: Client

security bindings.

3. Under Request sender bindings, click Edit > Login binding.

Identity (ID) Assertion authentication with BasicAuth TrustMode

Configure a login binding in the bindings file with a

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler implementation. Specify a BasicAuth

user name and password that a trusted ID evaluator on a downstream server trusts.

To configure the login binding information, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules >URI_file_name > Web services: Client

security bindings.

3. Under Request sender bindings, click Edit > Login binding.

Identity (ID) Assertion authentication with the Signature TrustMode

Configure the signing information in the bindings file with a signing key pointing to a key locator. The key

locator contains the X.509 certificate that is trusted by the downstream server.

To configure ID assertion, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Additional properties, click Web services: Default bindings for Web services security >

Login mappings > IDAssertion.

To configure the login binding information, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules >URI_file_name > Web services: Client

security bindings.

3. Under Request sender bindings, click Edit > Login binding.

Response digital signature verification

If the integrity constraints, which require a signature, are defined, verify that you configured the signing

information in the binding files.

To configure the signing parameters, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related Items, click EJB modules or Web modules >URI_file_name > Web services: Client

security bindings.

3. In the Response receiver binding column, click Edit > Signing information > New.

To configure the trust anchors, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Additional properties, click Web Services: Default bindings for Web services security >

Trust anchors > New.

To configure the collection certificate store, complete the following steps:

1. Click Servers > Application servers >server_name.

554 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

2. Under Additional properties, click Web Services: Default bindings for Web services security >

Collection certificate store > New.

Response decryption

If the confidentiality constraints (encryption) are specified, verify that you defined the encryption

information.

To configure the encryption information, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related Items, click EJB modules or Web modules ><URI_file_name > Web services: Client

security bindings.

3. In the Response receiver binding column, click Edit > Encryption information > New.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Additional properties, click Web Services: Default bindings for Web services security > Key

locators.

 Related reference

 “View Web services server deployment descriptor”
Use this page to view your server deployment descriptor settings.

View Web services server deployment descriptor:

Use this page to view your server deployment descriptor settings.

 Before you begin this task, the Web services application must be installed.

By completing this task, you can gather information that enables you to maintain or configure binding

information. After the Web services application is installed, you can view the Web services deployment

descriptors.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules > URI_file_name > View Web services

server deployment descriptor.

WebSphere Application Server has two levels of bindings: application-level and server-level. The

information in the following implementation descriptions indicate how to configure your application-level

bindings. To configure the server-level bindings, which are the defaults, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.
v Request digital signature verification

v Request decryption

v Basic authentication

v Identity (ID) assertion authentication

v Identity (ID) assertion authentication with the signature TrustMode

v Response signing

v Response encryption

Chapter 14. Learn about WebSphere applications 555

Request digital signature verification

If the integrity constraints, which require a signature, are defined, verify that you configured the signing

information in the binding files.

To configure the signing parameters, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules >URI_file_name > Web services: Server

security bindings.

3. Under Request consumer (receiver) binding, click Edit custom > Signing information.

To configure the trust anchor, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trust anchors.

To configure the collection certificate store, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web Services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

Request decryption

If the confidentiality constraints (encryption) are specified, verify that the encryption information is defined.

To configure the encryption information parameters, complete the following steps:

1. Click Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, click Web services: Server security bindings.

4. Under Request consumer (receiver) binding, click Edit custom > Encryption information.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web Services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

Basic authentication

If BasicAuth authentication is configured as the required security token, specify the callback handler in the

binding file to collect the basic authentication data. The following list contains callback support

implementations:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler

The implementation prompts for BasicAuth information (user name and password) in an interface

panel.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This implementation reads the BasicAuth information from the binding file.

556 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

com.ibm.wsspi.wssecurity.auth.callback.StdPromptCallbackHandler

This implementation prompts for a user name and password using the standard in (stdin) prompt.

To configure the login mapping information, complete the following steps:

1. Click Server > Application Servers >server_name.

2. Under Security, click Web Services: Default bindings for Web services security.

3. Under Additional properties, click Login mappings.

Identity (ID) assertion authentication with the BasicAuth TrustMode

Configure a login binding in the bindings file with a

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler implementation. Specify a user name

and password for basic authentication that a TrustedIDEvaluator on a downstream server trusts.

To configure the login mapping information, complete the following steps:

1. Click Server > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Login mappings.

Identity (ID) assertion authentication with the signature TrustMode

Configure the signing information in the bindings file with a signing key that points to a key locator. The

key locator contains the X.509 certificate that is trusted by the downstream server.

To configure the login mapping information, complete the following steps:

1. Click Server > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Login mappings.

The Java Authentication and Authorization Service (JAAS) uses WSLogin as the name of the login

configuration. To configure JAAS, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS configuration >Application logins.

The value of the <TrustedIDEvaluatorRef> tag in the binding must match the value of the

<TrustedIDEvaluator> name.

To configure the trusted ID evaluators, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trusted ID evaluators.

Response signing

If the integrity constraints (digital signature) are defined, verify that you have the signing information

configured in the binding files.

To specify the signing information, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules >URI_file_name > Web services: Server

security bindings.

3. In the Request receiver binding column, click Edit > Signing information.

Chapter 14. Learn about WebSphere applications 557

To configure the key locators, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

Response encryption

If the confidentiality constraints (encryption) are specified, verify that the encryption information is defined.

To specify the encryption information, complete the following steps:

1. Click Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules.

3. Under Additional properties, click Web services: Server security bindings.

4. Under Request consumer (receiver) binding, click Edit custom > Encryption information.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

 Related reference

 “View Web services client deployment descriptor” on page 552
Use this page to view your client deployment descriptor.

Default implementations of the Web services security service provider

programming interfaces

The following information describes the default implementations of the service provider interfaces (SPI) for

Web services security within WebSphere Application Server Version 6. The default implementations of the

service provider interfaces for WebSphere Application Server Version 5.x are not described in this

document. Instead, see “Securing Web services for version 5.x applications based on WS-Security” on

page 801 for the Version 5.x implementations that are deprecated in version 6.

com.ibm.wsspi.wssecurity.token.X509TokenGenerator

This class implements the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. It

is responsible for creating the X.509 token object from the X.509 certificate, which is returned by

the com.ibm.wsspi.wssecurity.auth.callback.{X509,PKCS7,PkiPath}CallbackHandler interface.

Encode the token using the base 64 format and insert its XML representation into the Simple

Object Access Protocol (SOAP) message, if necessary.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This class implements the javax.security.auth.callback.CallbackHandler interface and it retrieves

the X.509 certificate from the keystore file.

com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

This class implements the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. It

is responsible for creating the username token object from user name and password that is

returned by a javax.security.auth.callback.CallbackHandler implementation such as

com.ibm.wsspi.wssecurity.auth.callback.{GUIPrompt,NonPrompt,StdinPrompt}CallbackHandler. It

also inserts the XML representation of the token into the SOAP message, if necessary.

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

This class implements the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface and it retrieves

the keys from the keystore files for digital signature and encryption.

com.ibm.wsspi.wssecurity.token.X509TokenConsumer

This class implements the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface

and processes the X.509 token from the binary security token. This class decodes the Base64

558 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

encryption within the X.509 token and then invokes the system.wssecurity.X509BST Java

Authentication and Authorization Service (JAAS) Login Configuration with the

com.ibm.wsspi.wssecurity.auth.module.X509LoginModule login module to validate the X.509 token.

An object of the com.ibm.wsspi.wssecurity.auth.token.X509Token is created for the validated X.509

token and stored in JAAS Subject.

com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer

This class implements com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface and

processes the username token for identity assertion (IDAssertion), which does not have a

password element. This interface invokes the system.wssecurity.IDAssertionUsernameToken JAAS

login configuration with the

com.ibm.wsspi.wssecurity.auth.module.IDAssertionUsernameLoginModule login module to validate

the IDAssertion username token. An object of the

com.ibm.wsspi.wssecurity.auth.token.UsernameToken class is created for the validated username

token and stored in the JAAS Subject.

com.ibm.wsspi.wssecurity.auth.module.IDAssertionUsernameLoginModule

This class implements the javax.security.auth.spi.LoginModule interface and checks whether the

username value is not empty. The login module assumes that the UsernameToken is valid if the

username value is not empty.

com.ibm.wsspi.wssecurity.token.LTPATokenGenerator

This class implements the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface

and is responsible for Base 64 encoding the LTPA token object obtained from the

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler callback handler. The object is

inserted into the Web services security header within the SOAP message, if necessary.

com.ibm.wsspi.wssecurity.token.LTPATokenConsumer

This class implements the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface,

processes the LTPA token from the binary security token, and decodes the Base64 encoding

within the LTPA token. An object of the com.ibm.wsspi.wssecurity.auth.token.LTPAToken class is

created for the validated LTPA token and stored in the JAAS Subject.

com.ibm.wsspi.wssecurity.auth.module.X509LoginModule

This class implements the javax.security.auth.spi.LoginModule interface and validates the X.509

Certificate based on the trust anchor and the collection certification store configuration.

com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer

This class implements the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface,

processes the username token, extracts the user name and password, and then invokes the

system.wssecurity.UsernameToken JAAS login configuration using the

com.ibm.wsspi.wssecurity.auth.module.UsernameLoginModule login module to validate the user

name and password. An object of the com.ibm.wsspi.wssecurity.auth.token.UsernameToken class

is created for the validated username token and stored in the JAAS Subject.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator

This class implements the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface and it is used to

retrieve a public key from a X.509 certificate. The X.509 certificate is stored in the X.509 token

(com.ibm.wsspi.wssecurity.auth.token.X509Token) in the JAAS Subject. The X.509 token is

created by the X.509 Token Consumer (com.ibm.wsspi.wssecurity.tokenX509TokenConsumer).

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator

This class implements the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface, which is used to

retrieve a public key from the X.509 certificate of the request signer and encrypt the response. You

can use this key locator in the response generator binding configuration only.

Important: This implementation assumes that only one signer certificate is used in the request.

Chapter 14. Learn about WebSphere applications 559

com.ibm.wsspi.wssecurity.auth.token.UsernameToken

This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class to

represent the username token.

com.ibm.wsspi.wssecurity.auth.token.X509Token

This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class to

represent the X.509 binary security token (X.509 certificate).

com.ibm.wsspi.wssecurity.auth.token.LTPAToken

This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class as

a wrapper to the LTPA token that is extracted from the binary security token.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

This class implements the javax.security.auth.callback.CallbackHandler interface and is responsible

for creating a certificate and binary data with or without a certificate revocation list (CRL) using the

PKCS#7 encoding. The certificate and the binary data is passed back to the

com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the

com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

This class implements the javax.security.auth.callback.CallbackHandler interface and it is

responsible for creating a certificate and binary data without a CRL using the PkiPath encoding.

The certificate and binary data is passed back to the

com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the

com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This class implements the javax.security.auth.callback.CallbackHandler interface and it is

responsible for creating a certificate from the key store file. The X.509 token certificate is passed

back to the com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the

com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

This implementation generates a Lightweight Third Party Authentication (LTPA) token in the Web

services security header as a binary security token. If basic authentication data is defined in the

application binding file, it is used to perform a login, to extract the LTPA token from the

WebSphere Application Server credentials, and to insert the token in the Web services security

header. Otherwise, it extracts the LTPA security token from the invocation credentials (run as

identity) and inserts the token in the Web services security header.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This implementation reads the basic authentication data from the application binding file. You

might use this implementation on the server side to generate a username token.

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This implementation presents you with a login prompt to gather the basic authentication data. Use

this implementation on the client side only.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This implementation collects the basic authentication data using a standard in (stdin) prompt. Use

this implementation on the client side only.

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

This interface is used to evaluate the level of trust for identity assertion. The default

implementation is com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl, which enables you to

define a list of trusted identities.

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

This default implementation enables you to define a list of trusted identities for identity assertion.

560 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorException

This exception class is used by an implementation of the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator to communicate the exception and errors to the

Web services security run time.

 Related tasks

 “Securing Web services for version 5.x applications based on WS-Security” on page 801

Default configuration

WebSphere Application Server Version 6 provides a variety of sample configurations that you can

configure through the administrative console. The configurations that you specify are reflected on the cell

or server level. Do not use these configurations in a production environment as they are for sample and

testing purposes only. To make modifications to these sample configurations, it is recommended that you

use the administrative console provided by WebSphere Application Server.

For a Web services security-enabled application, you must correctly configure a deployment descriptor and

a binding. In WebSphere Application Server Version 6, one set of default bindings is shared by the

applications to make application deployment easier. The default binding information for server level can be

overridden by the binding information on the application level. The Application Server searches for binding

information for an application on the application level before searching the server level.

This article contains information on the sample default bindings, keystores, key locators, collection

certificate store, trust anchors, and trusted ID evaluators.

Default generator binding

WebSphere Application Server Version 6 provides a sample set of default generator binding. The default

generator binding contain both signing information and encryption information.

The sample signing information configuration is called gen_signinfo and contains the following

configurations:

v Uses the following algorithms for the gen_signinfo configuration:

– Signature method: http://www.w3.org/2000/09/xmldsig#rsa-sha1

– Canonicalization method: http://www.w3.org/2001/10/xml-exc-c14n#

v References the gen_signkeyinfo signing key information. The following information pertains to the

gen_signkeyinfo configuration:

– Contains a part reference configuration that is called gen_signpart. The part reference is not used in

default binding. The signing information applies to all of the Integrity or Required Integrity elements

within the deployment descriptors and the information is used for naming purposes only. The

following information pertains to the gen_signpart configuration:

- Uses the transform configuration called transform1. The following transforms are configured for

the default signing information:

v Uses the http://www.w3.org/2001/10/xml-exc-c14n# algorithm

v Uses the http://www.w3.org/2000/09/xmldsig#sha1 digest method

– Uses the security token reference, which is the configured default key information.

– Uses the SampleGeneratorSignatureKeyStoreKeyLocator key locator. For more information on this

key locator, see “Sample key locators” on page 564.

– Uses the gen_signtgen token generator, which contains the following configuration:

- Contains the X.509 token generator, which generates the X.509 token of the signer.

- Contains the gen_signtgen_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

Chapter 14. Learn about WebSphere applications 561

– Uses X.509 Callback Handler. The callback handler calls the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/dsig-sender.ks keystore.

- The keystore password is client.

- The alias name of the trusted certificate is soapca.

- The alias name of the personal certificate is soaprequester.

- The key password client issued by intermediary certificate authority Int CA2, which is, in turn,

issued by soapca.

The sample encryption information configuration is called gen_encinfo and contains the following

configurations:

v Uses the following algorithms for the gen_encinfo configuration:

– Data encryption method: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– Key encryption method: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v References the gen_enckeyinfo encryption key information. The following information pertains to the

gen_enckeyinfo configuration:

– Uses the key identifier as the default key information.

– Contains a reference to the SampleGeneratorEncryptionKeyStoreKeyLocator key locator. For more

information on this key locator, see “Sample key locators” on page 564.

– Uses the gen_signtgen token generator, which has the following configuration:

- Contains the X.509 token generator, which generates the X.509 token of the signer.

- Contains the gen_enctgen_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

– Uses X.509 Callback Handler. The callback handler calls the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-sender.jceks keystore.

- The keystore password is storepass.

- The secret key CN=Group1 has an alias name of Group1 and a key password of keypass.

- The public key CN=Bob, O=IBM, C=US has an alias name of bob and a key password of keypass.

- The private key CN=Alice, O=IBM, C=US has an alias name of alice and a key password of

keypass.

Default consumer binding

WebSphere Application Server Version 6 provides a sample set of default consumer binding. The default

consumer binding contain both signing information and encryption information.

The sample signing information configuration is called con_signinfo and contains the following

configurations:

v Uses the following algorithms for the con_signinfo configuration:

– Signature method: http://www.w3.org/2000/09/xmldsig#rsa-sha1

– Canonicalization method: http://www.w3.org/2001/10/xml-exc-c14n#

v Uses the con_signkeyinfo signing key information reference. The following information pertains to the

con_signkeyinfo configuration:

– Contains a part reference configuration that is called con_signpart. The part reference is not used in

default binding. The signing information applies to all of the Integrity or RequiredIntegrity elements

within the deployment descriptors and the information is used for naming purposes only. The

following information pertains to the con_signpart configuration:

- Uses the transform configuration called reqint_body_transform1. The following transforms are

configured for the default signing information:

562 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v Uses the http://www.w3.org/2001/10/xml-exc-c14n# algorithm.

v Uses the http://www.w3.org/2000/09/xmldsig#sha1 digest method.

– Uses the security token reference, which is the configured default key information.

– Uses the SampleX509TokenKeyLocator key locator. For more information on this key locator, see

“Sample key locators” on page 564.

– References the con_signtcon token consumer configuration. The following information pertains to the

con_signtcon configuration:

- Uses the X.509 Token Consumer, which is configured as the consumer for the default signing

information.

- Contains the signtconsumer_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

– Contains a JAAS configuration called system.wssecurity.X509BST that references the following

information:

- Trust anchor: SampleClientTrustAnchor

- Collection certificate store: SampleCollectionCertStore

The encryption information configuration is called con_encinfo and contains the following configurations:

v Uses the following algorithms for the con_encinfo configuration:

– Data encryption method: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– Key encryption method: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v References the con_enckeyinfo encryption key information. This key actually decrypts the message.

The following information pertains to the con_enckeyinfo configuration:

– Uses the key identifier, which is configured as the key information for the default encryption

information.

– Contains a reference to the SampleConsumerEncryptionKeyStoreKeyLocator key locator. For more

information on this key locator, see “Sample key locators” on page 564.

– References the con_enctcon token consumer configuration. The following information pertains to the

con_enctcon configuration:

- Uses the X.509 token consumer, which is configured for the default encryption information.

- Contains the enctconsumer_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

– Contains a JAAS configuration called system.wssecurity.X509BST.

Sample keystore configurations

WebSphere Application Server provides the following keystores. You can work with these keystores

outside of the Application Server by using the iKeyman utility or the key tool.

The iKeyman utility is located in the following directories:

v

install_dir/bin/ikeyman

v

install_dir\bin\ikeyman.sh

The key tool is located in the following directories:

v

install_dir/java/jre/bin/keytool

v

install_dir\java\jre\bin\keytool.sh

The following sample keystores are for testing purposes only; do not use these keystores in a production

environment:

Chapter 14. Learn about WebSphere applications 563

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks

– The keystore format is JKS.

– The keystore password is client.

– The trusted certificate has a soapca alias name.

– The personal certificate has a soaprequester alias name and a client key password that is issued

by the Int CA2 intermediary certificate authority, which is, in turn, issued by soapca.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks

– The keystore format is JKS.

– The keystore password is server.

– The trusted certificate has a soapca alias name.

– The personal certificate has a soapprovider alias name and a server key password that is issued by

the Int CA2 intermediary certificate authority, which is, in turn, issued by soapca.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

– The keystore format is JCEKS.

– The keystore password is storepass.

– The CN=Group1 DES secret key has a Group1 alias name and a keypass key password.

– The CN=Bob, O=IBM, C=US public key has a bob alias name and a keypass key password.

– The CN=Alice, O=IBM, C=US private key has a alice alias name and a keypass key password.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

– The keystore format is JCEKS.

– The keystore password is storepass.

– The CN=Group1 DES secret key has a Group1 alias name and a keypass key password.

– The CN=Bob, O=IBM, C=US private key has a bob alias name and a keypass key password.

– The CN=Alice, O=IBM, C=US public key has a alice alias name and a keypass key password.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer

– The intermediary certificate is signed by soapca and it signs both the soaprequester and the

soapprovider.

Sample key locators

Key locators

Key locators are used to locate the key for digital signature, encryption, and decryption. For information on

how to modify these sample key locator configurations, see the following articles:

v “Configuring the key locator for the generator binding on the application level” on page 692

v “Configuring the key locator for the consumer binding on the application level” on page 749

v “Configuring the key locator on the server or cell level” on page 777

SampleClientSignerKey

This key locator is used by the request sender for a Version 5.x application to sign the Simple

Object Access Protocol (SOAP) message. The signing key name is clientsignerkey, which is

referenced in the signing information as the signing key name.

SampleServerSignerKey

This key locator is used by the response sender for a Version 5.x application to sign the SOAP

message. The signing key name is serversignerkey, which can be referenced in the signing

information as the signing key name.

SampleSenderEncryptionKeyLocator

This key locator is used by the sender for a Version 5.x application to encrypt the SOAP message.

It is configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

564 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

keystore and the com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator keystore key locator. The

implementation is configured for the DES secret key. To use asymmetric encryption (RSA), you

must add the appropriate RSA keys.

SampleReceiverEncryptionKeyLocator

This key locator is used by the receiver for a Version 5.x application to decrypt the encrypted

SOAP message. The implementation is configured to use the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-receiver.jceks keystore and the

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator keystore key locator. The implementation is

configured for symmetric encryption (DES or TRIPLEDES). To use RSA, you must add the private

key CN=Bob, O=IBM, C=US, alias name bob, and key password keypass.

SampleResponseSenderEncryptionKeyLocator

This key locator is used by the response sender for a Version 5.x application to encrypt the SOAP

response message. It is configured to use the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-receiver.jceks keystore and the

com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator keystore key locator. This key

locator maps an authenticated identity (of the current thread) to a public key for encryption. By

default, WebSphere Application Server is configured to map to public key alice, and you must

change WebSphere Application Server to the appropriate user. The

SampleResponseSenderEncryptionKeyLocator key locator also can set a default key for

encryption. By default, this key locator is configured to use public key alice.

SampleGeneratorSignatureKeyStoreKeyLocator

This key locator is used by generator to sign the SOAP message. The signing key name is

SOAPRequester, which is referenced in the signing information as the signing key name. It is

configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks keystore

and the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator keystore key locator.

SampleConsumerSignatureKeyStoreKeyLocator

This key locator is used by the consumer to verify the digital signature in the SOAP message. The

signing key is SOAPProvider, which is referenced in the signing information as the signing key

name. It is configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-
receiver.ks keystore and the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator keystore key

locator.

SampleGeneratorEncryptionKeyStoreKeyLocator

This key locator is used by the generator to encrypt the SOAP message. It is configured to use

the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks keystore and the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator keystore key locator.

SampleConsumerEncryptionKeyStoreKeyLocator

This key locator is used by the consumer to decrypt an encrypted SOAP message. It is configured

to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks keystore and the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator keystore key locator.

SampleX509TokenKeyLocator

This key locator is used by the consumer to verify a digital certificate in an X.509 certificate. It is

configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

keystore and the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator keystore key locator.

Sample collection certificate store

Collection certificate stores are used to validate the certificate path. For information on how to modify this

sample collection certificate store, see the following articles:

v “Configuring the collection certificate store for the generator binding on the application level” on page

663

v “Configuring the collection certificate store for the consumer binding on the application level” on page

738

Chapter 14. Learn about WebSphere applications 565

v “Configuring the collection certificate store on the server or cell-level bindings” on page 762

SampleCollectionCertStore

This collection certificate store is used by the response consumer and the request generator to

validate the signer certificate path.

Sample trust anchors

Trust anchors are used to validate the trust of the signer certificate. For information on how to modify the

sample trust anchor configurations, see the following articles:

v “Configuring trust anchors for the generator binding on the application level” on page 659

v “Configuring trust anchors for the consumer binding on the application level” on page 736

v “Configuring trust anchors on the server or cell level” on page 761

SampleClientTrustAnchor

This trust anchor is used by the response consumer to validate the signer certificate. This trust

anchor is configure to access the {USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks

keystore.

SampleServerTrustAnchor

This trust anchor is used by the request consumer to validate the signer certificate. This trust

anchor is configure to access the {USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks

keystore.

Sample trusted ID evaluators

Trusted ID evaluators are used to establish trust before asserting the identity in identity assertion. For

information on how to modify the sample trusted ID evaluator configuration, see “Configuring trusted ID

evaluators on the server or cell level” on page 784.

SampleTrustedIDEvaluator

This trusted ID evaluator uses the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

implementation. The default implementation of com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

contains a list of trusted identities. This list is defined as properties with trustedId_* as the key and

the value as the trusted identity.

 Complete the following steps to define this information for the server level in the administrative

console:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trusted ID evaluators > SampleTrustedIDEvaluator.

 Related tasks

 “Configuring the key locator for the generator binding on the application level” on page 692

 “Configuring the key locator for the consumer binding on the application level” on page 749

 “Configuring the key locator on the server or cell level” on page 777

 “Configuring the collection certificate store for the generator binding on the application level” on page

663

 “Configuring the collection certificate store for the consumer binding on the application level” on page

738

 “Configuring the collection certificate store on the server or cell-level bindings” on page 762

 “Configuring trust anchors for the generator binding on the application level” on page 659

 “Configuring trust anchors for the consumer binding on the application level” on page 736

 “Configuring trust anchors on the server or cell level” on page 761

 “Configuring trusted ID evaluators on the server or cell level” on page 784

566 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Nonce, a randomly generated token

Nonce is a randomly generated, cryptographic token used to prevent replay attacks. Although Nonce can

be inserted anywhere in the SOAP message, it is typically inserted in the <UsernameToken> element.

Without nonce, when a user name token is passed from one machine to another machine using a

non-secure transport, such as HTTP, the token might be intercepted and used in a replay attack. The

same password might be reused when the username token is transmitted between the client and the

server, which leaves it vulnerable to attack. The user name token can be stolen even if you use XML

digital signature and XML encryption.

To help eliminate these replay attacks, the <wsse:Nonce> and <wsu:Created> elements are generated within

the <wsse:UsernameToken> element and used to validate the message. The server checks the freshness of

the message by verifying that the difference between the nonce creation time, which is specified by the

<wsu:Created> element, and the current time falls within a specified time period. Also, the server checks a

cache of used nonces to verify that the username token in the received Simple Object Access Protocol

(SOAP) message has not been processed within the specified time period. These two features are used to

lessen the chance that a user name token is used for a replay attack.

To add nonce for the username token, you can specify it in the token generator for the username token.

When the token generator for the username token is specified, you can select the Add nonce option if

you want to include nonce in the username token.

 Related concepts

 “Distributed nonce caching” on page 763
The distributed nonce caching feature enables you to distribute the cache for a nonce to different

servers in a cluster.

Configuring an application for Web services security with an assembly tool

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF

There are eight parts of Web services security that you must configure to secure your Simple Object

Access Protocol (SOAP) messages using either digital signature or encryption. Four of these parts involve

the deployment descriptor extensions and four parts involve the bindings that correspond to the

deployment descriptors. The following table illustrates these eight parts that involve both the client and the

server or a server acting as a client. It is recommended that you configure each of these parts in order

from left to right in the table. For example, configure the request generator extensions and then the

request consumer extensions because the configurations must match. After you configure the request

generator and request consumer extensions, configure the request generator and the request consumer

bindings, and so on.

 Table 10. Client and server extensions and bindings relationship

Client Server

1. Request generator extensions 2. Request consumer extensions

3. Request generator bindings 4. Request consumer bindings

5. Response consumer extensions 6. Request generator extensions

7. Response consumer bindings 8. Response generator bindings

In Web services security for WebSphere Application Server Version 6, integrity refers to digital signature

and confidentiality refers to encryption. Integrity decreases the risk of data modification when data is

transmitted across a network. Confidentiality reduces the risk of someone intercepting the message as it

Chapter 14. Learn about WebSphere applications 567

moves across a network. With confidentiality, however, the message is encrypted before it is sent and

decrypted when it is received by its target server. The article provides the steps needed to secure your

Web services using either integrity or confidentiality.

In the generator bindings, you can specify which message parts to sign (integrity) or encrypt

(confidentiality) and what method is used. In the consumer bindings, you specify when the message parts

are signed or encrypted. After you verify the digital signature or encryption in the consumer, the consumer

verifies that the specified message parts are actually signed or encrypted. If the digital signature or

encryption is required and the message is not signed or encrypted, the message is rejected by the

consumer.

There are two different methods to specify what needs to be signed (integrity) or encrypted

(confidentiality). You can use either keywords or an XPath expression to configure message parts, a

nonce, or a time stamp. When you use keywords, you can specify only certain elements within a message.

With an XPath expression, you can specify any part of the message.

In addition to securing Web services for integrity and confidentiality, the assembly tools enable you to

complete the following tasks:

v Configure a stand-alone time stamp for the generator and the consumer extensions. For more

information, see “Adding a stand-alone time stamp to generator security constraints” on page 650 and

“Adding a stand-alone time stamp in consumer security constraints” on page 651.

v Configure the security token in the generator and consumer constraints. For more information, see

“Configuring the security token in generator security constraints” on page 653 and “Configuring the

security token requirement in consumer security constraints” on page 653.

v Configure a caller part for the consumer security constraints. For more information, see “Configuring the

caller in consumer security constraints” on page 654.

v Configure identity assertion. For more information, see “Configuring identity assertion” on page 656.

v Configure the client and the server for integrity. To properly configure Web services security for integrity,

complete the following steps for the request generator and the request consumer and then repeat the

steps for the response generator and the response consumer.

 1. Specify which message elements to sign in the generator security constraints using either

keywords on an XPath expression. For more information, see either “Signing message elements in

generator security constraints with keywords” on page 571 or “Signing message elements in

generator security constraints with an XPath expression” on page 579. When you sign the

message elements, you can also add a nonce or a time stamp configuration. For more information

on these configurations, see:

– “Adding time stamps for integrity to generator security constraints with keywords” on page 574

– “Adding time stamps for integrity to generator security constraints with an XPath expression” on

page 581

– “Adding a nonce for integrity in generator security constraints with keywords” on page 577

– “Adding a nonce for integrity to generator security constraints with an XPath expression” on

page 583

 2. Configure a collection certificate store for the generator security constraints. For more information,

see “Configuring the collection certificate store for the generator binding with an assembly tool” on

page 586.

 3. Configure the token generator. For more information, see “Configuring token generators with an

assembly tool” on page 587.

 4. Configure the key locators in the generator binding. For more information, see “Configuring key

locators for the generator binding with an assembly tool” on page 594.

 5. Configure the key information in the generator binding. For more information, see “Configuring key

information for the generator binding with an assembly tool” on page 596.

568 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

6. Configure the signing information in the generator binding. For more information, see “Configuring

signing information for the generator binding with an assembly tool” on page 598.

 7. Specify which message elements to sign in the consumer security constraints using either

keywords on an XPath expression. For more information, see either “Signing message elements in

consumer security constraints with keywords” on page 600 or “Signing message elements in

consumer security constraints with an XPath expression” on page 606. When you sign the

message elements, you can also add a nonce or a time stamp configuration. For more information

on these configurations, see:

– “Adding time stamps for integrity in consumer security constraints with keywords” on page 602

– “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

– “Adding time stamps for integrity in consumer security constraints with an XPath expression” on

page 608

– “Adding a nonce for integrity in consumer security constraints with an XPath expression” on

page 610

 8. Configure a collection certificate store for the consumer security constraints. For more information,

see “Configuring the collection certificate store for the consumer binding with an assembly tool” on

page 611.

 9. Configure a token consumer. For more information, see “Configuring token consumers with an

assembly tool” on page 613.

10. Configure the key locators in the consumer binding. For more information, see “Configuring the key

locator for the consumer binding with an assembly tool” on page 616.

11. Configure the key information in the consumer bindings. For more information, see “Configuring

key information for the consumer binding with an assembly tool” on page 617.

12. Configure the signing information in the consumer binding. For more information, see “Configuring

signing information for the consumer binding with an assembly tool” on page 620.

v Configure the client and the server for confidentiality. To properly configure Web services security for

confidentiality, complete the following steps for the request generator and the request consumer, and

then repeat the steps for the response generator and the response consumer.

 1. Specify which message elements to encrypt in the generator security constraints using either

keywords on an XPath expression. For more information, see either “Encrypting the message

elements in generator security constraints with keywords” on page 623 or “Encrypting the message

elements in generator security constraints with an XPath expression” on page 629. When you

encrypt the message elements, you can also add a nonce or a time stamp configuration. For more

information on these configurations, see:

– “Adding time stamps for confidentiality to generator security constraints with keywords” on page

624

– “Adding the nonce for confidentiality to generator security constraints with keywords” on page

627

– “Adding time stamps for confidentiality to generator security constraints with an XPath

expression” on page 630

– “Adding the nonce for confidentiality to generator security constraints with an XPath expression”

on page 632

 2. Configure the token generator. For more information, see “Configuring token generators with an

assembly tool” on page 587.

 3. Configure the key locators in the generator binding. For more information, see “Configuring key

locators for the generator binding with an assembly tool” on page 594.

 4. Configure the key information in the generator binding. For more information, see “Configuring key

information for the generator binding with an assembly tool” on page 596.

 5. Configure the encryption information in the generator binding. For more information, see

“Configuring encryption information for the consumer binding with an assembly tool” on page 637.

Chapter 14. Learn about WebSphere applications 569

6. Specify which message elements to encrypt in the consumer security constraints using either

keywords on an XPath expression. For more information, see either “Encrypting message elements

in consumer security constraints with keywords” on page 639 or “Encrypting message elements in

consumer security constraints with an XPath expression” on page 643. When you encrypt the

message elements, you can also add a nonce or a time stamp configuration. For more information

on these configurations, see:

– “Adding time stamps for confidentiality in consumer security constraints with keywords” on page

640

– “Adding a nonce for confidentiality in consumer security constraints with keywords” on page 642

– “Adding time stamps for confidentiality in consumer security constraints with an XPath

expression” on page 645

– “Adding the nonce for confidentiality in consumer security constraints with an XPath expression”

on page 646

 7. Configure a token consumer. For more information, see “Configuring token consumers with an

assembly tool” on page 613.

Also, the token consumer article provides the steps that are needed to optionally configure a trust

anchor.

 8. Configure the key locators in the consumer binding. For more information, see “Configuring the key

locator for the consumer binding with an assembly tool” on page 616.

 9. Configure the key information in the consumer bindings. For more information, see “Configuring

key information for the consumer binding with an assembly tool” on page 617.

10. Configure the encryption information in the consumer binding. For more information, see

“Configuring encryption information for the generator binding with an assembly tool” on page 648.

By completing the previous steps, you have configured your application for either digital signature

(integrity) or encryption (confidentiality).

 Related concepts

 “Nonce, a randomly generated token” on page 567
Nonce is a randomly generated, cryptographic token used to prevent replay attacks. Although Nonce

can be inserted anywhere in the SOAP message, it is typically inserted in the <UsernameToken>

element.

XML digital signature:

XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML syntax

and processing rules to sign and verify digital signatures for digital content. The specification was

developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task Force

(IETF).

 XML digital signature does not introduce new cryptographic algorithms. WebSphere Application Server

uses XML digital signature with existing algorithms such as RSA, HMAC, and SHA1. XML signature

defines many methods for describing key information and enables the definition of a new method.

XML canonicalization (c14n) is often needed when you use XML signature. Information can be represented

in various ways within serialized XML documents. For example, although their octet representations are

different, the following examples are identical:

v <person first="John" last="Smith"/>

v <person last="Smith" first="John"></person>

C14n is a process that is used to canonicalize XML information. Select an appropriate c14n algorithm

because the information that is canonicalized is dependent upon this algorithm. One of the major c14n

570 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

algorithms, Exclusive XML Canonicalization, canonicalizes the character encoding scheme, attribute order,

namespace declarations, and so on. The algorithm does not canonicalize white space outside tags,

namespace prefixes, or data type representation.

XML signature in the Web Services Security-Core specification

The Web Services Security-Core (WSS-Core) specification defines a standard way for Simple Object

Access Protocol (SOAP) messages to incorporate an XML signature. You can use almost all of the XML

signature features in WSS-Core except enveloped signature and enveloping signature. However,

WSS-Core has some recommendations such as exclusive canonicalization for the c14n algorithm and

some additional features such as SecurityTokenReference and KeyIdentifier. The KeyIdentifier is the value

of the SubjectKeyIdentifier field within the X.509 certificate. For more information on the KeyIdentifier, see

″Reference to a Subject Key Identifier″ within the OASIS Web Services Security X.509 Certificate Token

Profile documentation.

By including XML signature in SOAP messages, the following issues are realized:

Message integrity

A message receiver can confirm that attackers or accidents have not altered parts of the message

after these parts are signed by a key.

Authentication

You can assume that a valid signature is proof of possession. A message with a digital certificate

that is issued by a certificate authority and a signature in the message that is validated

successfully by a public key in the certificate, is proof that the signer has the corresponding private

key. The receiver can authenticate the signer by checking the trustworthiness of the certificate.

 Related information

 Exclusive XML Canonicalization

Signing message elements in generator security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

Complete the following steps to specify which message parts to digitally sign when you configure the

generator security constraints for either the request generator or the response generator. The request

generator is configured for the client and the response generator is configured for the server. In the

following steps, you must configure either the client-side extensions in step 2 or the server-side extensions

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

Chapter 14. Learn about WebSphere applications 571

http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

5. Click Add to indicate which parts of the message to sign. The Integrity Dialog window is displayed.

a. Specify a name for the integrity element in the Integrity Name field. For example, you might specify

int_webskey.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the digital signature is processed. An order value of 1 specifies that the signing is

done first.

6. Click Add under the Message Parts section and select the Message parts dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies the message part

that is signed using keywords. If you select this dialect, you can select one of the following keywords

under the Message parts keyword heading:

body Specifies the user data portion of the message. If you select this keyword, the body is signed.

timestamp

Specifies that the stand-alone timestamp element within the message is signed. The

timestamp element determines whether the message is valid based upon the time that the

message is sent and then received. If the timestamp option is selected, make sure that there is

a stand-alone timestamp element in the message. If the element does not exist, see “Adding a

stand-alone time stamp to generator security constraints” on page 650.

securitytoken

Specifies that the UsernameToken in the SOAP message is signed.

dsigkey

Specifies that the key information element, which is used for digital signature, is signed.

enckey

Specifies that the key information element, which is used for encryption, is signed.

messageid

Specifies that the <wsa:MessageID> element within the message is signed.

to Specifies that the <wsa:To> element within the message is signed.

action Specifies that the <wsa:Action> element is signed.

relatesto

Specifies that the <wsa:RelatesTo> element within the message is signed.

7. Click OK to save the configuration changes.

Note: These configurations for the generator and the consumer must match.

In addition to the message parts, you also can specify that WebSphere Application Server sign the

nonce and timestamp elements. For more information, see the following articles:

v “Adding time stamps for integrity to generator security constraints with keywords” on page 574

v “Adding time stamps for integrity to generator security constraints with an XPath expression” on

page 581

v “Adding a nonce for integrity in generator security constraints with keywords” on page 577

v “Adding a nonce for integrity to generator security constraints with an XPath expression” on page

583

The following example is a SOAP message whose body is signed using the body keyword and the

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect:

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/

 2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

572 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

<wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-soap-message-security-1.0#Base64Binary" ValueType=

 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

 wsu:Id="x509bst_956396521418196" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-wssecurity-utility-1.0.xsd"> MA0GCSqGSIb3DQEBBQUAA4GBAHkthdGDgCvdIL9/

 vXUo74xpfOQd/rr1owBmMdb1TWdOyzwbOHC7lkUlnKrkI7SofwSLSDUP571iiMXUx3tRdmAVCoDMMFuDXh9V7212lu

 Xccx0s1S5KN0D3xW97LLNegQC0/b+aFD8XKw2U5ZtwbnFTRgs097dmz09RosDKkLlM

 </wsse:BinarySecurityToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="wsse ds xsi soapenc xsd soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:CanonicalizationMethod>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#wssecurity_signature_id_5945817517184298591">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="p896 xsi soapenc xsd wsu soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:Transform>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>vyu0JwXXSAvRCUCi6TPkeH8yUTU=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>dtbYA609wwAUAA8BmDmJlVHrWShy6OLJB3n4A6ToU0lI9tJrNhBksGqks17cykf+uHTJ

 cgOY18XrRDN4wHTW4zm/tmD5WqQd8K1WpYaGpbwlFoiwKVFNyfQn2K/WbZ2JccmZvJGFaOtqStg6TqSUGLQSA5

 MCSpZUhck545IY2F4=

 </ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#x509bst_956396521418196" ValueType="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </soapenv:Header>

 <soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 wsu:Id="wssecurity_signature_id_5945817517184298591" xmlns:wsu="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <p896:getVersion xmlns:p896="http://msgsec.wssecfvt.ws.ibm.com"/>

 </soapenv:Body>

</soapenv:Envelope>

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the generator binding

with an assembly tool” on page 598.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding a stand-alone time stamp to generator security constraints” on page 650

 “Adding time stamps for integrity to generator security constraints with an XPath expression” on page

581

 “Adding a nonce for integrity to generator security constraints with an XPath expression” on page 583

 “Configuring signing information for the generator binding with an assembly tool” on page 598

Chapter 14. Learn about WebSphere applications 573

Adding time stamps for integrity to generator security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

This task is used to specify that a time stamp is embedded in a particular element and that the element is

signed. Complete the following steps to specify the time stamp for integrity using keywords when you

configure the generator security constraints for either the request generator or the response generator. The

request generator is configured for the client and the response generator is configured for the server. In

the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

 1. Start the assembly tool and click Window > Open Perspective > J2EE.

 2. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you need

to configure. Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

 3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

 4. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

 5. Click Add to specify a time stamp for integrity. The Integrity Dialog window is displayed. Complete the

following steps to specify a configuration:

a. Specify a name for the integrity element in the Integrity Name field.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies

the order in which the digital signature is processed. An order value of 1 specifies that the signing

is done first.

 6. In the Timestamp section, click Add and select the Timestamp dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies the message

element to which the time stamp is added prior to signing the element using the keywords. If you

select this dialect, you can select one of the following keywords under the Timestamp keyword

heading:

body Specifies the user data portion of the message. If you select the body option, a time stamp is

embedded in Simple Object Access Protocol (SOAP) body and the body is signed.

timestamp

Specifies that the time stamp is embedded in the stand-alone timestamp element within the

message and that it is signed. If you select the timestamp option, make sure that there is a

stand-alone timestamp element in the message. If the element does not exist, see “Adding a

stand-alone time stamp to generator security constraints” on page 650.

securitytoken

Specifies that the security token authenticates the client. If you select this option, the

timestamp element is embedded in the securitytoken element and the security token is

signed.

574 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

dsigkey

Specifies that the time stamp is inserted into the key information element, which is used for

digital signature, and the key information element is signed.

enckey

Specifies that the time stamp is inserted into the key information element, which is used for

encryption, and the key information element is signed.

messageid

Specifies that the time stamp is inserted into the <wsa:MessageID> element and the

<wsa:MessageID> element is signed.

to Specifies that the time stamp is inserted into the <wsa:To> element within the message and

that the <wsa:To> element is signed.

action Specifies that the <wsa:Action> element is signed.

relatesto

Specifies that the time stamp is inserted into the <wsa:RelatesTo> element within the

message and the <wsa:RelatesTo> element is signed.

 7. Specify an expiration time for the time stamp in the Timestamp expires field. The time stamp helps

defend against replay attacks. The lexical representation for the duration is the [ISO 8601] extended

format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from 0 to

99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value from 0

to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0 to

30 days.

T Separates the date and time values.

nH Represents the number of hours in which the time stamp is in effect. Select a value from 0 to

23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value from 0

to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to aribrary precision. You can select a value from 0 to 59

for the seconds and from 0 to 9 for tenths of a second.

For example, to indicate 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format is

P1Y2M3DT10H30M. Typically, you might configure a message time stamp for between 10 and 30

minutes. For example, 10 minutes is represented as P0Y0M0DT0H10M0S or PT10M.

 8. In the Message Parts section, click Add and select

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was in the Message parts dialect field.

 9. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in the Message Parts section in order to

specify a time stamp for integrity.

10. Click OK to save the configuration changes.

Note: These configurations for the generator and the consumer must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding a nonce for integrity in generator security constraints with keywords” on page 577

Chapter 14. Learn about WebSphere applications 575

v “Adding a nonce for integrity to generator security constraints with an XPath expression” on page

583

The following example shows a time stamp that is inserted in the SOAP message body and signed:

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/

 2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-soap-message-security-1.0#Base64Binary" ValueType=

 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

 wsu:Id="x509bst_6212871821454005389" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-wssecurity-utility-1.0.xsd"> AgBgkqhkiG9w0BCQEWE21hcnV5YW1hQGpwLmlibS5jb22

 CAgEBMA0GCSqGSIb3DQEBBQUAA4GBAHkthdGDgCvdIL9/vXUo74xpfOQd/rr1owBmMdb1TWdOyzwbOHC7lkUlnKrkI7

 SofwSLSDUP571iiMXUx3tRdmAVCoDMMFuDXh9V7212luXccx0s1S5KN0D3xW97LLNegQC0/b+aFD8XKw2U5ZtwbnFTRgs

 097dmz09RosDKkLlM</wsse:BinarySecurityToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="wsse ds xsi soapenc xsd soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:CanonicalizationMethod>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#wssecurity_signature_id_493518228178200731">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="xsi soapenc xsd wsu soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:Transform>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>kKrcmc8saJ91JCNiE33UECoNYz8=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>XBpPju5+qH4bBFodO1kbBO54kEdBD0Pr5ohnXa3TPrDwXqmr67zDP3ZTk7iBSADnH+dlfKup

 Fhx+NZu2h5/j1/KYWaR2HTTv/KYE6IdqXVz3EFglUIBLzQnJ2Zbn62eBx5Th285Cn2Vrxtdb5BvUa1dt6M6k61CvRlz3

 /nMhQxk=</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#x509bst_6212871821454005389" ValueType="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </soapenv:Header>

 <soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 wsu:Id="wssecurity_signature_id_493518228178200731" xmlns:wsu="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <getVersion/>

 <wsu:Timestamp wasextention="wedsig">

 <wsu:Created>2004-10-12T15:58:19.201Z</wsu:Created>

 </wsu:Timestamp>

 </soapenv:Body>

</soapenv:Envelope>

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the generator binding

with an assembly tool” on page 598.

 Related tasks

 “Adding a stand-alone time stamp to generator security constraints” on page 650

576 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

“Adding a nonce for integrity in generator security constraints with keywords”

 “Adding a nonce for integrity to generator security constraints with an XPath expression” on page 583

 “Configuring signing information for the generator binding with an assembly tool” on page 598

Adding a nonce for integrity in generator security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

Nonce for integrity is used to specify that the nonce is embedded in a particular element and the element

is signed. Nonce is a randomly generated, cryptographic token. When nonce is added to the specific parts

of a message, it might prevent theft and replay attacks because a generated nonce is unique. For

example, without nonce, when a user name token is passed from one machine to another machine using

a non-secure transport, such as HTTP, the token might be intercepted and used in a replay attack. The

user name token can be stolen even if you use XML digital signature and XML encryption. However, it

might be prevented by adding a nonce.

Complete the following steps to specify a nonce for integrity using keywords when you configure the

generator security constraints for either the request generator or the response generator. The request

generator is configured for the client and the response generator is configured for the server. In the

following steps, you must configure either the client-side extensions in step 2 or the server-side extensions

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

5. Click Add to specify a nonce for integrity. The Integrity Dialog window is displayed.

a. Specify a name for the integrity element in the Required Integrity Name field. For example, you

might specify int_nonce.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the digital signature is processed. An order value of 1 specifies that the signing is

done first.

6. Under Nonce, click Add and select the nonce dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies the message part

to which a nonce is added and signed. If you select this dialect, you can select one of the following

keywords under Nonce keyword:

body Specifies the user data portion of the message. If this option is selected, a nonce is embedded

in the Simple Object Access Protocol (SOAP) body element and the body element is signed.

timestamp

Specifies that the nonce is embedded in the stand-alone timestamp element within the

Chapter 14. Learn about WebSphere applications 577

message and the element is signed. If timestamp is selected, make sure that there is a

stand-alone timestamp element in the message. If not, see “Adding a stand-alone time stamp

to generator security constraints” on page 650.

securitytoken

Specifies that the securitytoken element is signed. The security token authenticates the client.

If this option is selected, the nonce element is embedded in the securitytoken element.

dsigkey

Specifies that the nonce is inserted into the key information element, which is used for digital

signature, and the key information element is signed.

enckey

Specifies that the nonce is inserted into the key information element, which is used for

encryption, and the key information element is signed.

messageid

Specifies that the nonce is inserted into the <wsa:MessageID> element and that the

<wsa:MessageID> element is signed.

to Specifies that the nonce is inserted into the <wsa:To> element within the message and that the

<wsa:To> element is signed.

action Specifies that the <wsa:Action> element is signed.

relatesto

Specifies that the nonce is inserted into the <wsa:RelatesTo> element within the message and

that the <wsa:RelatesTo> element is signed.

7. In the Message Parts section, click Add and select

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was in the Message parts dialect field.

8. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in the Message Parts section in order to

specify a nonce for integrity. This message part is signed as well as the parent element of

the nonce.

9. Click OK to save the configuration changes.

Note: These configurations on the consumer side and the generator side must match.

In addition to the nonce, you can specify that the timestamp element is signed. For more information,

see the following articles:

v “Adding time stamps for integrity in consumer security constraints with keywords” on page 602

v “Adding time stamps for integrity in consumer security constraints with an XPath expression” on

page 608

The following example is a SOAP message that has a nonce that is inserted in the SOAP message body

and signed:

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-soap-message-security-1.0#Base64Binary" ValueType=

 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

 wsu:Id="x509bst_1179110083179840266" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-wssecurity-utility-1.0.xsd"> E21hcnV5YW1hQGpwLmlibS5jb22CAgEBMA0GCSqGSIb3

 DQEBBQUAA4GBAHkthdGDgCvdIL9/vXUo74xpfOQd/rr1owBmMdb1TWdOyzwbOHC7lkUlnKrkI7SofwSLSDUP571iiMX

 Ux3tRdmAVCoDMMFuDXh9V7212luXccx0s1S5KN0D3xW97LLNegQC0/b+aFD8XKw2U5ZtwbnFTRgs097dmz09RosDKkLlM

578 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

</wsse:BinarySecurityToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="wsse ds xsi soapenc xsd soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:CanonicalizationMethod>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#wssecurity_signature_id_8451968259110349556">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="xsi soapenc xsd wsu soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:Transform>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>HgfL7FiG/TGECE/L0zg5mJldfgc=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>iE2G53VMwCFBI6BwOWiaOLYvemZUJTXJocXpy8loyW1LiR8bBQcFioDOuDXXzVj3K+ZD2p

 Yhc0krVYqkYY0IZoRx7xpWt+9qn7aSbxKjuHlMFNCdB1Uxp608zCZcSwvuoCffjlO0ltUQ8JTEBnmMB0cfaoiG5bF

 kUOEpkFo2P9c=</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#x509bst_1179110083179840266" ValueType="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </soapenv:Header>

 <soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 wsu:Id="wssecurity_signature_id_8451968259110349556" xmlns:wsu="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <getVersion/>

 <wsse:Nonce wasextention="wedsig" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-wssecurity-secext-1.0.xsd">1u0otbnjkPiCWDhh25yEyBHD/r3VPSbQ1oZTs0Ks1GE/iDL4YbKDT

 wdL+e2Hb7nNZn397nRJQ9ePGgf7PRdEuqATFbfq0/T+6j6Fk/MbSHmZnHHoBscFX8W/dYssyCmWDp99447kRhnJbNg5JxarkFmM

 LqpxKfm1iP3hKP5DpJY=</wsse:Nonce>

 </soapenv:Body>

</soapenv:Envelope>

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the consumer binding

with an assembly tool” on page 620.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding a stand-alone time stamp in consumer security constraints” on page 651

 “Adding time stamps for integrity in consumer security constraints with keywords” on page 602

 “Adding time stamps for integrity in consumer security constraints with an XPath expression” on page

608

 “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page 610

 “Configuring signing information for the consumer binding with an assembly tool” on page 620

Signing message elements in generator security constraints with an XPath expression:

Chapter 14. Learn about WebSphere applications 579

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Complete the following steps to specify which message parts to digitally sign when you configure the

generator security constraints for either the request generator or the response generator. The request

generator is configured for the client and the response generator is configured for the server. In the

following steps, you must configure either the client-side extensions in step 2 or the server-side extensions

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

5. Click Add to indicate which parts of the message to sign. The Integrity Dialog window is displayed.

a. Specify a name for the integrity element in the Integrity Name field. For example, you might specify

int_xpath.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the digital signature is processed. An order value of 1 specifies that the signing is

done first.

6. Click Add under the Message Parts section of the Integrity Dialog window.

a. Select the Message parts dialect from the Message Parts section of the Integrity Dialog window. If

you select the http://www.w3.org/TR/1999/REC-xpath-19991116 dialect, the message part that will

be signed is specified by an XPath expression.

b. Specify the message part to be signed using an XPath expression in the Message parts keyword

field. For example, to specify that the body is signed, you might add the following expression in the

Message parts keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

7. Click OK to save the configuration changes.

Note: These configurations for the generator and the consumer must match.

580 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

In addition to the message parts, you also can specify that WebSphere Application Server sign the

nonce and timestamp elements. For more information, see the following articles:

v “Adding time stamps for integrity to generator security constraints with keywords” on page 574

v “Adding time stamps for integrity to generator security constraints with an XPath expression”

v “Adding a nonce for integrity in generator security constraints with keywords” on page 577

v “Adding a nonce for integrity to generator security constraints with an XPath expression” on page

583

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the generator binding

with an assembly tool” on page 598.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding a stand-alone time stamp to generator security constraints” on page 650

 “Adding time stamps for integrity to generator security constraints with keywords” on page 574

 “Adding a nonce for integrity in generator security constraints with keywords” on page 577

 “Configuring signing information for the generator binding with an assembly tool” on page 598

Adding time stamps for integrity to generator security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

This task is used to specify that a time stamp is embedded in a particular element and that the element is

signed. Complete the following steps to specify the time stamp for integrity using keywords when you

configure the generator security constraints for either the request generator or the response generator. The

request generator is configured for the client and the response generator is configured for the server. In

the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

Chapter 14. Learn about WebSphere applications 581

http://www.w3.org/TR/1999/REC-xpath-19991116

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

5. Click Add to specify a time stamp for integrity. The Integrity Dialog window is displayed. Complete the

following steps to specify a configuration:

a. Specify a name for the integrity element in the Integrity Name field. For example, you might specify

int_tmstmp.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the digital signature is processed. An order value of 1 specifies that the signing is

done first.

6. Click Add in the Timestamp section of the Integrity Dialog window. Complete the following steps to

specify a time stamp configuration:

a. Select the Timestamp dialect from the Timestamp section. The http://www.w3.org/TR/1999/REC-
xpath-19991116 dialect specifies the message part to which the time stamp is added and signed

using the XPath expression.

b. Select the message part in the Timestamp keyword field to which the time stamp is added and

signed using an XPath expression. For example, to specify that the time stamp is added to the

body and is signed, you might specify the following expression for the Timestamp keyword:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

c. Specify an expiration time for the time stamp in the Timestamp expires field. The time stamp helps

defend against replay attacks. The lexical representation for the duration is the [ISO 8601]

extended format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from 0

to 99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value from

0 to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0

to 30 days.

T Separates the date and time values.

nH Represents the number of hours in which the time stamp is in effect. Select a value from 0

to 23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value from

0 to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to arbitrary precision. You can select a value from 0 to

59 for the seconds and from 0 to 9 for tenths of a second.

For example, to indicate 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format is

P1Y2M3DT10H30M. Typically, you might configure a message time stamp for between 10 and 30

minutes. For example, 10 minutes is represented as P0Y0M0DT0H10M0S or PT10M.

582 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

7. In the Message Parts section, click Add and select

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was in the Message parts dialect field.

8. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in the Message Parts section in order to

specify a time stamp for integrity. This message part is signed as well as the parent

element of the time stamp.

9. Click OK to save the configuration changes.

Note: These configurations for the generator and the consumer must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding a nonce for integrity in generator security constraints with keywords” on page 577

v “Adding a nonce for integrity to generator security constraints with an XPath expression”

After you have specified which message parts to digitally sign, you must specify which method is used to

digitally sign the message. For more information, see “Configuring signing information for the generator

binding with an assembly tool” on page 598.

 Related tasks

 “Adding a stand-alone time stamp to generator security constraints” on page 650

 “Adding a nonce for integrity in generator security constraints with keywords” on page 577

 “Adding a nonce for integrity to generator security constraints with an XPath expression”

 “Configuring signing information for the generator binding with an assembly tool” on page 598

Adding a nonce for integrity to generator security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Nonce for integrity is used to specify that the nonce is embedded in a particular element and the element

is signed. Nonce is a randomly generated, cryptographic token. When nonce is added to the specific parts

of a message, it might prevent theft and replay attacks because a generated nonce is unique. For

example, without nonce, when a user name token is passed from one machine to another machine using

a non-secure transport, such as HTTP, the token might be intercepted and used in a replay attack. The

user name token can be stolen even if you use XML digital signature and XML encryption. However, it

might be prevented by adding a nonce.

Complete the following steps to specify a nonce for integrity using an XPath expression when you

configure the generator security constraints for either the request generator or the response generator. The

request generator is configured for the client and the response generator is configured for the server. In

the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

Chapter 14. Learn about WebSphere applications 583

http://www.w3.org/TR/1999/REC-xpath-19991116

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

5. Click Add to specify a nonce for integrity. The Integrity Dialog window is displayed. Complete the

following steps to specify a configuration:

a. Specify a name for the integrity element in the Integrity Name field.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the digital signature is processed. An order value of 1 specifies that the signing is

done first.

6. Click Add in the Nonce section of the Integrity Dialog window. Complete the following steps to specify

a nonce dialect and message part:

a. Select the Nonce dialect from the Nonce section. The http://www.w3.org/TR/1999/REC-xpath-
19991116 dialect specifies the message part to which a nonce is added and signed using an XPath

expression.

b. Select the message part in the Nonce keyword field to which a nonce is added and signed using

an XPath expression. For example, to specify that a nonce is added to the body and that it is

signed, you might specify the following expression for the Nonce keyword:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

7. In the Message Parts section, click Add and select http://www.w3.org/TR/1999/REC-xpath-19991116 in

the Message parts dialect field.

8. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in the Message Parts section in order to

specify a nonce for integrity. This message part is signed as well as the parent element of

the nonce.

9. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the nonce, you can specify that the timestamp element is signed. For more information,

see the following articles:

v “Adding time stamps for integrity to generator security constraints with keywords” on page 574

v “Adding time stamps for integrity to generator security constraints with an XPath expression” on

page 581

After you specify that a nonce is added to the message parts and signed, you must specify which method

is used to digitally sign the message. For more information, see “Configuring signing information for the

generator binding with an assembly tool” on page 598.

584 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding time stamps for integrity to generator security constraints with keywords” on page 574

 “Adding time stamps for integrity to generator security constraints with an XPath expression” on page

581

 “Configuring signing information for the generator binding with an assembly tool” on page 598

Collection certificate store:

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a

digitally signed Simple Object Access Protocol (SOAP) message.

 A collection certificate store is used when WebSphere Application Server is processing a received SOAP

message. This collection is configured in the Request Consumer Service Configuration Details section of

the binding file for servers and in the Response Consumer Configuration section of the binding file for

clients. You can configure these two sections using one of the assembly tools provided by WebSphere

Application Server. For more information on the assembly tools, see ″Assembly tools″ in the ″Developing

and deploying applications″ PDF.

A collection certificate store is one kind of certificate store. A certificate store is defined as

javax.security.cert.CertStore in the Java CertPath application programming interface (API). The Java

CertPath API defines the following types of certificate stores:

Collection certificate store

A collection certificate store accepts the certificates and CRLs as Java collection objects.

Lightweight Directory Access Protocol certificate store

The Lightweight Directory Access Protocol (LDAP) certificate store accepts certificates and CRLs

as LDAP entries.

The CertPath API uses the certificate store and the trust anchor to validate the incoming X.509 certificate

that is embedded in the SOAP message. The Web services security implementation in the WebSphere

Application Server supports the collection certificate store. Each certificate and CRL is passed as an

encoded file.

 Related concepts

 “Trust anchor” on page 587
A trust anchor specifies the key stores that contain trusted root certificates. These certificates are used

to validate the X.509 certificate that is embedded in the Simple Object Access Protocol (SOAP)

message.

Certificate revocation list:

A certificate revocation list is a time-stamped list of certificates that have been revoked by a certificate

authority (CA).

 A certificate that is found in a certificate revocation list (CRL) might not be expired, but is no longer trusted

by the certificate authority that issued the certificate. The certificate authority creates the CRL that contains

the serial number and issuing CA distinguished name of the certificate that has been revoked. The CA

Chapter 14. Learn about WebSphere applications 585

might add the certificate to the certificate revocation list if it believes that the client certificate is

compromised. The certificate revocation list is maintained and issued by the certificate authority.

Configuring the collection certificate store for the generator binding with an assembly tool:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

This task describes the steps to specify the collection certificate store for the generator bindings at the

application level using an assembly tool. A collection certificate store is a collection of non-root certificate

authority (CA) certificates and certificate revocation lists (CRLs) that is used for validating an X.509

certificate embedded within the received SOAP message. The request generator is configured for the

client and the response generator is configured for the server. On the generator side, a configuration for

the collection certificate store is required only when you configure CRLs that are embedded in the

PKCS#7 format. Complete the following steps to configure a collection certificate store for the generator.

Specifying either the client-side bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

4. Expand the Certificate Store List > Collection Certificate Store section and click Add.

5. Specify a unique certificate store name in the Name field. For example, specify cert1. The name of the

collection certificate store must be unique on the level in which it is defined. For example, the name

must be unique at the application level. The name specified in the certificate store name field is used

by other configurations to refer to a predefined collection certificate store. WebSphere Application

Server looks up the collection certificate store based on proximity. For example, if an application

binding refers to certificate store cert1, WebSphere Application Server looks first for cert1 at the

application level. If it is not found, it looks at the server level, and finally at the cell level.

6. Specify a certificate store provider in the Provider field. The IBMCertPath certificate path provider is

supported. To use another certificate path provider, you must define the provider implementation in the

provider list within the java.security file in the Software Development Kit (SDK).

7. Click Add under X509 Certificate to specify a fully qualified path to an X.509 certificate, click the name

of an existing certificate path entry to edit it, or click Remove to delete it. This collection certificate

store is used to validate the certificate path of the incoming X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of the path name. For example, you might specify

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. However, do not use this X.509

certificate path for production use. Obtain your own X.509 certificate from a certificate authority before

putting your WebSphere Application Server environment into production.

In the WebSphere Application Server administrative console, you can click Environment >

WebSphere Variables to configure the USER_INSTALL_ROOT variable.

8. Click Add under CRL to specify the fully qualified path to a certificate revocation list (CRL), click an

existing CRL entry to edit it or click Remove to delete it.

For portability reasons, it is recommended that you use the WebSphere Application Server variables to

specify a relative path to the certificate revocation list. For example, you might use the

586 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

USER_INSTALL_ROOT variable to define a path such as ${USER_INSTALL_ROOT}/mycertstore/mycrl. For a

list of the supported variables in the WebSphere Application Server administrative console, click

Environment > WebSphere Variables.

The following list provides recommendations for using CRLs:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority

and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,

the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the

old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)

build failure.

9. Click OK to save your configuration.

 Related concepts

 “Collection certificate store” on page 585
A collection certificate store is a collection of non-root, certificate authority (CA) certificates and

certificate revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the

signature of a digitally signed Simple Object Access Protocol (SOAP) message.

 Related tasks

 “Configuring token generators with an assembly tool”

Trust anchor:

A trust anchor specifies the key stores that contain trusted root certificates. These certificates are used to

validate the X.509 certificate that is embedded in the Simple Object Access Protocol (SOAP) message.

 These key stores are used by the following message points to validate the X.509 certificate that is used for

digital signature or XML encryption:

v Request consumer, as defined in the ibm-webservices-bnd.xmi file

v Response consumer, as defined in the ibm-webservicesclient-bnd.xmi file when a Web service is

acting as a client to another Web service

The key stores are critical to the integrity of the digital signature validation. If the key stores are tampered

with, the result of the digital signature verification is doubtful and compromised. Therefore, it is

recommended that you secure these key stores. The binding configuration specified for the request

consumer in the ibm-webservices-bnd.xmi file must match the binding configuration for the request

generator in the ibm-webservicesclient-bnd.xmi file.

The trust anchor is defined as java.security.cert.TrustAnchor in the Java CertPath application programming

interface (API). The Java CertPath API uses the trust anchor and the certificate store to validate the

incoming X.509 certificate that is embedded in the Simple Object Access Protocol (SOAP) message. The

Web services security implementation in WebSphere Application Server supports this trust anchor. In

WebSphere Application Server, the trust anchor is represented as a Java key store object. The type, path,

and password of the key store are passed to the implementation through the administrative console or by

scripting.

 Related concepts

 “Collection certificate store” on page 585
A collection certificate store is a collection of non-root, certificate authority (CA) certificates and

certificate revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the

signature of a digitally signed Simple Object Access Protocol (SOAP) message.

Configuring token generators with an assembly tool:

Chapter 14. Learn about WebSphere applications 587

Prior to completing this task, you must complete the following steps:

v Import your application into an assembly tool. For information on how to import your application, see

″Importing enterprise applications″ in the ″Developing and deploying applications″ PDF.

v Configure the security token in the extensions file. For example, if you are configuring a token generator

for a Lightweight Third Party Authentication (LTPA) token, you must first configure the LTPA token under

the Security Token section on the Extensions tab. For more information, see “Configuring the security

token in generator security constraints” on page 653.

v Configure a collection certificate store if the token generator uses the PKCS#7 token type and you want

to package the certificate revocation lists (CRL) in the security token. For more information, see

“Configuring the collection certificate store for the generator binding with an assembly tool” on page

586.

A security token represents a set of claims that are made by a client. This set of claims might include a

name, password, identity, key, certificate, group, privilege, and so on. A security token is embedded in the

Simple Object Access Protocol (SOAP) message within the SOAP header. The security token within the

SOAP header is propagated from the message sender to the intended message receiver.

Complete the following steps to configure either the client-side bindings for the token generator in step 2

or the server-side bindings for the token generator in step 3:

 1. Start the assembly tool and click Window > Open Perspective > J2EE.

 2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Clients section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

 3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

 4. Optional: Configure a trust anchor if you are configuring this token consumer for an X.509 security

token.

a. Expand the Trust anchor section and click Add to add a new entry or click Edit to edit a selected

entry. The Trust anchor dialog window is displayed.

b. Specify a name for the trust anchor configuration in the Trust anchor name field.

c. Specify a keystore password in the Key store storepass field. The keystore storepass is the

password that is required to access the keystore file.

d. Specify the path to the keystore file in the Key store path field. The key store path is the directory

where the keystore resides. Make sure that wherever you deploy your application that can locate

your keystore file.

e. Select a key store type from the Key store type field. The key store type that you select must

match the keystore file that is specified in the Key store path field.

 5. Expand the Token generator section and click Add to add a new entry or click Edit to edit a selected

entry. The Token Generator Dialog window is displayed.

 6. Specify a unique name in the Token generator name field. For example, you might specify

gen_signtgen. If this token generator is for an X.509 certificate and is used for signature generation or

encryption, the token generator name is referenced in the Token field of the Key Information dialog

window.

588 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

7. Select a token generator class in the Token generator class field. Select the token generator class

that matches the type of token that you are configuring. This class must implement the

com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. The following default token

generator implementations are supported:

v com.ibm.wsspi.wssecurity.token.LTPATokenGenerator

v com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

v com.ibm.wsspi.wssecurity.token.X509TokenGenerator

 8. Select a security token reference in the Security token field. The value in this field references the

security token that is configured in the extensions file.

 9. Select the Use value type option and select the value type in the Value type field. Select the value

type of the security token that matches the type of token generator that you are configuring. When

you select the value type, the assembly tool automatically enters the correct values in the Local name

and URI fields depending upon the type of security token that is specified by the value type. If you

select Custom Token, you must specify the local name and the namespace URI of the value type for

the generated token. The following value types are supported:

v Username Token

v X509 certificate token

v X509 certificates in a PKIPath

v A list of X509 certificates and CRLs in a PKCS#7

v LTPA Token

v Custom Token

10. Specify the Callback handler class name in the Call back handler field. This name is the callback

handler implementation class that is used to plug-in a security token framework. The specified

callback handler class must implement the javax.security.auth.callback.CallbackHandler interface. The

implementation of the Java Authentication and Authorization Service (JAAS)

javax.security.auth.callback.CallbackHandler interface must provide a constructor using the following

syntax:

MyCallbackHandler(String username, char[] password, java.util.Map properties)

Where:

v username specifies the user name that is passed into the configuration.

v password specifies the password that is passed into the configuration.

v properties specifies the other configuration properties that are passed into the configuration.

The following default callback handler implementations are supported:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This callback handler uses a login prompt to gather the user name and password information.

However, if you specify the user name and password on this panel, a prompt is not displayed

and WebSphere Application Server returns the user name and password to the token

generator if it is specified on this panel. Use this implementation for a Java 2 Platform,

Enterprise Edition (J2EE) application client only.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This callback handler does not issue a prompt and returns the user name and password if it

is specified on this panel. You can use this callback handler when the Web service is acting

as a client.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This callback handler uses a standard-in prompt to gather the user name and password.

However, if the user name and password is specified on this panel, WebSphere Application

Server does not issue a prompt, but returns the user name and password to the token

generator. Use this implementation for a J2EE application client only.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA)

Chapter 14. Learn about WebSphere applications 589

security token from the Run As invocation Subject. This token is inserted in the Web services

security header within the SOAP message as a binary security token. However, if the user

name and password are specified on this panel, WebSphere Application Server authenticates

the user name and password to obtain the LTPA security token rather than obtaining it from

the Run As Subject. Use this callback handler only when the Web service is acting as a client

on the application server. It is recommended that you do not use this callback handler on a

J2EE application client.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This callback handler is used to create the X.509 certificate that is inserted in the Web

services security header within the SOAP message as a binary security token. A keystore and

a key definition is required for this callback handler.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

This callback handler is used to create X.509 certificates encoded with the PKCS#7 format.

The certificate is inserted in the Web services security header in the SOAP message as a

binary security token. A keystore is required for this callback handler. You must specify a

certificate revocation list (CRL) in the collection certificate store. The CRL is encoded with the

X.509 certificate in the PKCS#7 format.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

This callback handler is used to create X.509 certificates encoded with the PkiPath format.

The certificate is inserted in the Web services security header within the SOAP message as a

binary security token. A keystore is required for this callback handler. A CRL is not supported

by the callback handler; therefore, the collection certificate store is not required or used.

The callback handler implementation obtains the required security token and passes it to the token

generator. The token generator inserts the security token in the Web services security header within

the SOAP message. Also, the token generator is a plug-in point for the pluggable security token

framework. Service providers can provide their own implementation, but the implementation must use

the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface.

11. Specify the basic authentication User ID in the User ID field. This user name is passed to the

constructors of the callback handler implementation. The basic authentication user name and

password are used if you select one of the following default callback handler implementations, as

described in the previous step:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

12. Specify the basic authentication password in the Password field. This password is passed to the

constructors of the callback handler implementation.

13. Optional: Select the Use key store option and complete the following substeps if you previously

selected one of the following callback handlers:

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler, or

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler.

a. Specify the password for the keystore in the Key store storepass field. This password is used to

access the keystore file.

b. Specify the location of the keystore in the Key store path field.

c. Specify the type of keystore in the Key store type field. The following keystore types are

supported:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS

Use this option if the Java Cryptography Extension is configured in the software

590 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

development kit (SDK). The default IBM JCE is configured in WebSphere Application

Server. This option provides stronger protection for stored private keys by using Triple

DES encryption.

PKCS11

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12

Use this option if your keystore uses the PKCS#12 file format.

d. In the Keys section, click Add to add a key. You can also click Remove to remove an existing

key.

e. In the Key section, specify an alias for the key in the Alias field. For example, you might specify

bob. The key alias is used by the key locator to locate the key within the keystore file.

f. In the Keys section, specify a password for the key in the Key pass field. This password is needed

to access the key object within the keystore file.

g. In the Keys section, specify a name in the Key name field. The key name must be a fully

qualified, distinguished name. For example, you might specify CN=Bob,O=IBM,C=US.

14. Optional: Select the Use certificate path settings option if the token generator uses the PKCS#7

token type and you want to package the certificate revocation lists (CRL) in the security token.

a. Select the Certificate path reference option and a certificate store reference. This selection

references a certificate store that is configured in the Certificate Store List section. For more

information, see “Configuring the collection certificate store for the generator binding with an

assembly tool” on page 586.

15. Optional: Click Add and specify additional properties in the Property section.

If the token generator includes a nonce in the user name token, add the following name and value

pair:

Name com.ibm.wsspi.wssecurity.token.username.addNonce

Value true

Nonce is a unique cryptographic number that is embedded in a message to help stop repeat,

unauthorized attacks of user name tokens. A property is valid only when the generated token type is

a user name token. This option is available for the request generator binding only.

If this token generator might include a time stamp in the user name token, add the following name

and value pair:

Name com.ibm.wsspi.wssecurity.token.username.addTimestamp

Value true

This option is valid only when the generated token type is a user name token and it is available for

the request generator binding only.

If you have defined identity assertion in the IBM extended deployment descriptor, add the following

name and value pair:

Name com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed

Value true

This option indicates that only the identity of the initial sender is required and inserted into the Web

services security header within the SOAP message. For example, WebSphere Application Server only

sends the user name of the original caller for a Username token generator. For an X.509 token

generator, the application server sends the original signer certification only.

If you have defined identity assertion in the IBM extended deployment descriptor and you want to use

the Run As identity instead of the initial caller identity for identity assertion for a downstream call, add

the following name and value pair:

Chapter 14. Learn about WebSphere applications 591

Name com.ibm.wsspi.wssecurity.token.IDAssertion.useRunAsIdentity

Value true

This option is valid only when the generated token type is a user name token.

16. Click OK to save your configuration.

Configure the key information if this token generator configuration is for an X.509 security token. For more

information, see “Configuring key information for the generator binding with an assembly tool” on page

596.

 Related concepts

 “Trust anchor” on page 587
A trust anchor specifies the key stores that contain trusted root certificates. These certificates are used

to validate the X.509 certificate that is embedded in the Simple Object Access Protocol (SOAP)

message.

 Related tasks

 “Configuring the security token in generator security constraints” on page 653

 “Configuring key information for the generator binding with an assembly tool” on page 596

 “Configuring the collection certificate store for the generator binding with an assembly tool” on page

586

Key locator:

A key locator or the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator class, is an abstraction of the

mechanism that retrieves the key for digital signature and encryption.

 You can use any of the following infrastructure from which to retrieve the keys depending upon the

implementation:

v Java keystore file

v Database

v Lightweight Third Party Authentication (LTPA) server

Key locators search for the key using some type of a clue. The following types of clues are supported:

v A string label of the key, which is explicitly passed through the application programming interface (API).

The relationship between each key and its name (string label) is maintained inside the key locator.

v The implementation context of the key locator; explicit information is not passed to the key locator. A

key locator determines the appropriate key according to the implementation context.

WebSphere Application Server Version 6 supports a secret key-based signature called HMAC-SHA1. If

you use HMAC-SHA1, the Simple Object Access Protocol (SOAP) message does not contain a binary

security token. In this case, it is assumed that the key information within the message contains the key

name that is used to specify the secret key within the keystore.

Because the key locators support the public key-based signature, the key for verification is embedded in

the X.509 certificate as a <BinarySecurityToken> element in the incoming message. For example, key

locators can obtain the identity of the caller from the context and can retrieve the public key of the caller

for response encryption.

This section describes the usage scenarios for key locators.

Signing

The name of the signing key is specified in the Web services security configuration. This value is passed

to the key locator and the actual key is returned. The corresponding X.509 certificate also can be returned.

592 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Verification

By default, WebSphere Application Server Version 6 supports the following types of key locators:

KeyStoreKeyLocator

Uses the keystore to retrieve the key that is used for digital signature and verification or encryption

and decryption.

X509CertKeyLocator

Uses an X.509 certificate within a message to retrieve the key for verification or decryption.

SignerCertKeyLocator

Uses the X.509 certificate within the request message to retrieve the key that is used for

encryption in the response message.

Encryption

The name of the encryption key is specified in the Web services security configuration. This value is

passed to the key locator and the actual key is returned. On the server side, you can use the

SignerCertKeyLocator to retrieve the key for encryption in the response message from the X.509 certificate

in the request message.

Decryption

The Web services security specification recommends using the key identifier instead of the key name.

However, while the algorithm for computing the identifier for the public keys is defined in Internet

Engineering Task Force (IETF) Request for Comment (RFC) 3280, there is no agreed-upon algorithm for

the secret keys. Therefore, the current implementation of Web services security uses the identifier only

when public key-based encryption is performed. Otherwise, the ordinal key name is used.

When you use public key-based encryption, the value of the key identifier is embedded in the incoming

encrypted message. Then, the Web services security implementation searches for all of the keys managed

by the key locator and decrypts the message using the key whose identifier value matches the one in the

message.

When you use secret key-based encryption, the value of the key name is embedded in the incoming

encrypted message. The Web services security implementation asks the key locator for the key with the

name that matches the name in the message and decrypts the message using the key.

 Related reference

 “Key collection” on page 687
Use this page to view a list of logical names that is mapped to a key alias in the keystore file.

 “Key configuration settings” on page 688
Use this page to define the mapping of a logical name to a key alias in a keystore file.

Keys:

Keys are used for XML digital signature and encryption.

 There are two predominant kinds of keys used in the current Web services security implementation:

v Public key - such as Rivest Shamir Adleman (RSA) encryption and Digital Signature Algorithm (DSA)

encryption

v Secret key - such as triple-strength DES (3DES) encryption

Chapter 14. Learn about WebSphere applications 593

In public key-based signature, a message is signed using the sender private key and is verified using the

sender public key. In public key-based encryption, a message is encrypted using the receiver public key

and is decrypted using the receiver private key. In secret key-based signature and encryption, the same

key is used by both parties.

While the current implementation of Web services security can support both kinds of keys, the format of

the message differs slightly between public key-based encryption and secret key-based encryption.

Configuring key locators for the generator binding with an assembly tool:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF. Before configuring a key locator, you should know which key information configuration

will reference this key locator. For example, if you configure this key locator for the STRREF key

information type, select the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key locator class.

WebSphere Application Server Version 6 provides default key locator implementations that you can choose

or you can write your own implementation. Custom key locators must implement the

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. Using this implementation, you can locate keys

within any data source.

Complete the following steps to configure a key locator for the generator using an assembly tool. The

purpose of the key locators is to retrieve keys from the keystore for digital signature and encryption. The

request generator is configured for the client and the response generator is configured for the server. In

the following steps, you must configure either the client-side bindings in step 2 or the server-side bindings

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

4. Expand the Key locators section and click Add to add a new entry or click Edit to edit a selected

entry.

5. Specify a name for this configuration in the Key locator name field. This configuration name is

referenced in the Key locator field of the Key Information dialog.

6. Select a key locator implementation in the Key locator class field. Select the key locator class that

matches the Key Information configuration that references this key locator. The following default key

locator class implementations are supported for version 6 applications:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator

This implementation uses the public key from the certificate of the signer. This class

implementation is used by the response generator.

594 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator

This implementation uses the X.509 security token from the sender message for digital

signature validation and encryption. This class implementation is used by the request

consumer and the response consumer.

7. Select the Use key store option if you need to configure a key store for this key locator. Whether you

need to configure the key store information for a key locator depends upon the key locator class and

your application configuration. For example, if you select the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key locator class in the previous step, configure

the key store information for this key locator.

a. Specify a keystore password in the Key store storepass field. The keystore storepass is the

password that is required to access the keystore file.

b. Specify the path to the keystore file in the Key store path field. The key store path is the directory

where the keystore resides. Make sure that wherever you deploy your application that can locate

your keystore file. Thus it is recommended that you use ${USER_INSTALL_ROOT} in the path name as

this variable expands to the WebSphere Application Server path on your machine.

c. Select a key store type from the Key store type field. The key store type that you select must

match the keystore file that is specified in the Key store path field. The following keystore types are

supported:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12

Use this option if your keystore uses the PKCS#12 file format.

8. Click Add under the Key field to add a key entry from the keystore file that you specified in the

previous step. This key is used for signature generation or encryption. The key that you specify must

match the key that is used for validation or decryption for the consumer.

a. Specify an alias name for the key in the Alias field. The key alias is used by the key locator to find

the key within the keystore file.

b. Specify the password that is associated with the key in the Key pass field. This password is

needed to access the key object within the keystore file.

c. Specify the key name in the Key name field. For digital signatures, the key name is used in the

signing information for the request generator or response generator to determine which key is used

to digitally sign the message. For encryption, the key name is used to determine which key is used

for encryption. You must specify a fully qualified, distinguished name for the key name. For

example, you might specify CN=Bob,O=IBM,C=US.

9. Click OK to save the configuration.

After you configure the key locator and any token generator that you need to configure, you can configure

the key information that references this key locator. For more information, see “Configuring key information

for the generator binding with an assembly tool” on page 596.

 Related concepts

 “Key locator” on page 592
A key locator or the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator class, is an abstraction of the

mechanism that retrieves the key for digital signature and encryption.

 Related tasks

 “Configuring key information for the generator binding with an assembly tool” on page 596

Chapter 14. Learn about WebSphere applications 595

Configuring key information for the generator binding with an assembly tool:

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool. For information on how to import your application, see

″Importing enterprise applications″ in the ″Developing and deploying applications″ PDF.

2. Configure the key locator that is referenced by the key information configuration. For more information,

see “Configuring key locators for the generator binding with an assembly tool” on page 594.

3. Configure the token generator that is referenced by the key information configuration. For more

information, see “Configuring token generators with an assembly tool” on page 587

Complete the following steps to configure the key information for the server-side and client-side bindings

using an assembly tool. This key information is used to specify the configuration that is needed to

generate the key for digital signature and encryption. The signing information and encryption information

configurations can share the key information. The key information on the consumer side is used for

specifying the information about the key that is used for validating the digital signature in the received

message or for decrypting the encrypted parts of the message. The request generator is configured for the

client and the response generation is configured for the server. In the following steps, you must configure

either the client-side bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

4. Expand the Key Information section and click Add to add a new entry or click Edit to edit a selected

entry.

5. Specify a unique name for this configuration in the Key information name field. For example, you might

specify gen_signkeyinfo. This configuration name is referenced by the Key information element within

the Signing Information and Encryption Information dialog windows. For more information, see

“Configuring signing information for the generator binding with an assembly tool” on page 598 and

“Configuring encryption information for the generator binding with an assembly tool” on page 648.

6. Select a key information type from the Key information type field. The key information types specify

different mechanisms for referencing security tokens. The assembly tools support the following key

information types:

STRREF

This type is the security token reference. The security token is directly referenced using

Universal Resource Identifiers (URIs). The following <KeyInfo> element is generated in the

SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#mytoken" />

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

EMB This type is the embedded token. The security token is directly embedded within the

<SecurityTokenReference> element. The following <KeyInfo> element is generated in the

SOAP message for this key information type:

596 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Embedded wsu:Id="tok1" />

 ...

 </wsse:Embedded>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

KEYID

This type is a key identifier. The security token is referenced using an opaque value that

uniquely identifies the token. The algorithm that is used for generating the key identifier value

depends upon the token type. The following <KeyInfo> element is generated in the Simple

Object Access Protocol (SOAP) message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="wsse:X509v3">/62wXO...</wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

KEYNAME

This type is the key name. The security token is referenced using a name that matches an

asserted identity within the token. The following <KeyInfo> element is generated in the SOAP

message for this key information type:

<ds:KeyInfo>

 <ds:KeyName>CN=Group1</ds:KeyName>

</ds:KeyInfo>

X509ISSUER

This type is the X.509 certificate issuer name and serial number. The security token is

referenced by an issuer name and issuer serial number of an X.509 certificate. The following

<KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <ds:X509Data>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Jones, O=IBM, C=US</ds:X509IssuerName>

 <ds:X509SerialNumber>1040152879</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </ds:X509Data>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

7. Select the Use key locator option.

a. Select the name of a key locator configuration from the Key locator field. The value of this field is a

reference to a key locator that specifies how to find keys or certificates. For more information, see

“Configuring key locators for the generator binding with an assembly tool” on page 594.

b. Specify a key name in the Key name field. The value is the name of a key that is used for

generating the digital signature and for encryption. The list of key names come from the key locator

that you specified previously.

8. Optional: Select the Use token option and a token generator configuration in the Token field if a token

generator is required for the key information configuration. The token that you select specifies a

reference to a token generator that is used for processing the security token within the message.

Before you specify a token reference, you must configure a token generator. For more information on

token generator configurations, see “Configuring token generators with an assembly tool” on page 587.

After completing this task, configure the signing information or encryption information that references the

key information that is specified by this task. For more information, see “Configuring signing information for

the generator binding with an assembly tool” on page 598 or “Configuring encryption information for the

generator binding with an assembly tool” on page 648.

 Related tasks

Chapter 14. Learn about WebSphere applications 597

“Configuring key locators for the generator binding with an assembly tool” on page 594

 “Configuring token generators with an assembly tool” on page 587

 “Configuring signing information for the generator binding with an assembly tool”

 “Configuring encryption information for the generator binding with an assembly tool” on page 648

Configuring signing information for the generator binding with an assembly tool:

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool. For information on how to import your application, see

″Importing enterprise applications″ in the ″Developing and deploying applications″ PDF.

2. Specify which message parts to digitally sign. For more information, see “Signing message elements in

generator security constraints with keywords” on page 571 or “Signing message elements in generator

security constraints with an XPath expression” on page 579.

3. Configure the key information that is referenced by the Key information element within the Signing

information dialog window. For more information, see “Configuring key information for the generator

binding with an assembly tool” on page 596.

Complete the following steps to configure the signing information for the server-side and client-side

bindings using an assembly tool. The request generator is configured for the client and the response

generator is configured for the server. In the following steps, you must configure either the client-side

bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

4. Expand the Signing Information section and click Add to add a new entry or select an existing entry

and click Edit. The Signing Information dialog window is displayed.

a. Specify a name for the signing information configuration in the Signing information name field. For

example, you might specify gen_signinfo.

b. Select a canonicalization method from the Canonicalization method algorithm field. The

canonicalization method algorithm is used to canonicalize the signing information before it is

digested as part of the signature operation. The following pre-configured algorithms are supported:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

You must specify the same canonicalization algorithm for both the generator and the consumer. For

more information on configuring the signing information for the consumer, see “Configuring signing

information for the consumer binding with an assembly tool” on page 620.

c. Select a signature method algorithm from the Signature method algorithm field. The following

pre-configured algorithms are supported:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

598 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

You must specify the same canonicalization algorithm for both the generator and the consumer. For

more information on configuring the signing information for the consumer, see “Configuring signing

information for the consumer binding with an assembly tool” on page 620.

5. Click Add in the Signing Key Information section to add a new key information entry or click Remove

to delete a selected entry. Complete the following substeps if you are adding a new key information

entry.

a. Specify a name in the Key information name field. For example, you might specify gen_skeyinfo.

b. Select a key information reference from the list under the Key information element field. The value

in this field references the key information configuration that you specified previously. If you have a

key information configuration called gen_signkeyinfo that you want to use with this signing

information configuration, specify gen_signkeyinfo in the Key information element field. For more

information, see “Configuring key information for the generator binding with an assembly tool” on

page 596.

c. Optional: Select the Use key information signature option if you want to sign the key information

within the Simple Object Access Protocol (SOAP) message.

d. Optional: Select a key information signature type from the Type field if you select the Use key

information signature option. Select the keyinfo value to specify that the entire KeyInfo element

must be signed within the SOAP message. Select the keyinfochildelements value to specify that

the child elements within the KeyInfo element must be signed, but the KeyInfo element itself does

not need to be signed.

6. Click OK to save your signing information configuration.

7. Expand the Part References subsection and select the signing information configuration from the

Signing Information section.

8. Click Add in the Part References subsection to add a new entry or select an existing entry and click

Edit. The Part References dialog window is displayed.

a. Specify a name for the part reference configuration in the Part reference name field.

b. Select a integrity part configuration in the Integrity part field. For more information on how to

configure the integrity part, see “Signing message elements in generator security constraints with

keywords” on page 571 or “Signing message elements in generator security constraints with an

XPath expression” on page 579.

c. Select the http://www.w3.org/2000/09/xmldsig#sha1 digest method algorithm in the Digest method

algorithm field. This digest method algorithm is used to create the digest for each message part

that is specified by this part reference.

d. Expand the Transforms subsection and the part reference configuration from the Part reference

subsection.

e. Click Add in the Transforms subsection to add a new entry or select an existing entry and click

Edit. The Transform dialog window is displayed.

f. Specify a transform name in the Name field. For example, you might specify

reqint_body_transform1.

g. Select a transform algorithm from the Algorithm field. The following transform algorithms are

supported:

http://www.w3.org/2001/10/xml-exc-c14n#

This algorithm specifies the World Wide Web Consortium (W3C) Exclusive Canonicalization

recommendation.

http://www.w3.org/TR/1999/REC-xpath-19991116

This algorithm specifies the W3C XML path language recommendation. If you specify this

algorithm, you must specify the property name and value by clicking Properties, which is

displayed under Additional properties. For example, you might specify the following

information:

Chapter 14. Learn about WebSphere applications 599

Property

com.ibm.wsspi.wssecurity.dsig.XPathExpression

Value not(ancestor-or-self::*[namespace-
uri()=’http://www.w3.org/2000/09/xmldsig#’ and local-name()=’Signature’])

http://www.w3.org/2002/06/xmldsig-filter2

This algorithm specifies the XML-Signature XPath Filter Version 2.0 proposed

recommendation.

 When you use this algorithm, you must specify a set of properties in the Transform

property fields. You can use multiple property sets for the XPath Filter Version 2. Thus, it is

recommended that your property names end with the number of the property set, which is

denoted by an asterisk in the following examples:

v To specify an XPath expression for the XPath filter2, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Expression_*

v To specify a filter type for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Filter_*

Following this expression, you can have a value, [intersect], [subtract], or [union].

v To specify the processing order for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Order_*

Following this expression, indicate the processing order of the XPath.

The following is a list of complete examples:

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_1 = [intersect]

com.ibm.wsspi.wssecurity.dsign.XPath2Order_1 = [1]

com.ibm.wsspi.wssecurity.dsign.XPath2Expression_2 = [XPath expression#2]

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_2 = [subtract]

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_2 = [1]

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

http://www.w3.org/2002/07/decrypt#XML

This algorithm specifies the W3C decryption transform for XML Signature recommendation.

http://www.w3.org/2000/09/xmldsig#enveloped-signature

This algorithm specifies the W3C recommendation for XML digital signatures.

The transform algorithm that you select for the generator must match the transform algorithm for

the consumer.

After you complete this task for the generator binding, you must configure the signing information for

consumer binding.

 Related tasks

 “Signing message elements in generator security constraints with keywords” on page 571

 “Signing message elements in generator security constraints with an XPath expression” on page 579

 “Configuring key information for the generator binding with an assembly tool” on page 596

 “Configuring signing information for the consumer binding with an assembly tool” on page 620

Signing message elements in consumer security constraints with keywords:

600 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

Complete the following steps to specify which message parts or elements must be signed when you

configure the consumer security constraints for either the response consumer or the request consumer.

The response consumer is configured for the client and the request consumer is configured for the server.

If the required parts are not signed, the request or response is rejected and a Simple Object Access

Protocol (SOAP) fault is returned to the caller. In the following steps, you must configure either the

client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

5. Click Add to indicate which message parts or elements the consumer expects to be signed. The

Required Integrity Dialog window is displayed.

a. Specify a name for the integrity element under Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The following options are available:

Required

If you select Required and the required message parts or elements are not signed, then

the message is rejected with SOAP fault.

Optional

If you select Optional, then the digital signature of the selected message parts or elements

is verified if they are signed. However, the consumer does not reject the message if the

selected message parts or elements are not signed.

6. Click Add under the Message Parts section and select the Message parts dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies which message

parts or elements are expected to be signed using keywords. If you select this dialect, you can select

one of the following keywords under the Message parts keyword heading:

body Specifies the user data portion of the message. If you select this keyword, the body is checked

to see if it is signed.

timestamp

Specifies that the stand-alone timestamp element within the message is checked for a digital

signature. The timestamp element determines whether the message is valid based upon the

time that the message is sent and then received. If the timestamp option is selected, make

sure that there is a stand-alone timestamp element in the message. If the element does not

exist, see “Adding a stand-alone time stamp in consumer security constraints” on page 651.

securitytoken

Specifies that the security token authenticates the client. If this keyword is selected, the

Chapter 14. Learn about WebSphere applications 601

security token or tokens in the SOAP message are checked to determine if they are signed.

For example, if you are sending a UsernameToken element within the message, you can

specify that it is signed using this keyword.

dsigkey

Specifies that the key information element, which is used for digital signature, is checked to

determine if it is signed.

enckey

Specifies that the key information element, which is used for encryption, is checked to

determine if it is signed.

messageid

Specifies that the <wsa:MessageID> element within the message is checked to determine if it is

signed.

to Specifies that the <wsa:To> element within the message is checked to determine if it is signed.

action Specifies that the <wsa:Action> element is checked to determine if it is signed.

relatesto

Specifies that the <wsa:RelatesTo> element within the message is checked to determine if it is

signed.

7. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to specifying the message parts or elements that are expected to be signed, you also can

specify that nonce and timestamp elements are expected to be included in the signed elements. For

more information, see the following articles:

v “Adding time stamps for integrity in consumer security constraints with keywords”

v “Adding time stamps for integrity in consumer security constraints with an XPath expression” on

page 608

v “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

610

After you specify which message parts to check for a digital signature, you must specify which signature

algorithm is used to validate the signature. For more information, see “Configuring signing information for

the consumer binding with an assembly tool” on page 620.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding a stand-alone time stamp in consumer security constraints” on page 651

 “Adding time stamps for integrity in consumer security constraints with an XPath expression” on page

608

 “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page 610

 “Configuring signing information for the consumer binding with an assembly tool” on page 620

Adding time stamps for integrity in consumer security constraints with keywords:

602 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

This task is used to specify that when a time stamp is embedded in a particular element, the parent of the

time stamp is expected to be signed with the message parts. Complete the following steps to specify that

the parent element of the time stamp is expected in the element. Also, the time stamp is included in the

signature for the message parts. Configure the consumer security constraints for either the response

consumer or the request consumer. The response consumer is configured for the client and the request

consumer is configured for the server. In the following steps, you must configure either the client-side

extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

5. Click Add to specify a time stamp that is expected in the parent element of the keyword. The parent

element of the time stamp is also expected to be included in the signature for the message part. The

Required Integrity Dialog window is displayed. Before you configure the time stamp in the Required

Integrity, you must configure at least one message part or element that is expected to be signed.

Complete the following steps to specify a configuration:

a. Specify a name for the integrity element in the Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The value of this attribute is either Required or Optional. The following options are

available:

Required

If you select Required and the required message parts or elements are not signed, then

the message is rejected with SOAP fault.

Optional

If you select Optional, then the digital signature of the selected message parts or elements

is verified if they are signed. However, the consumer does not reject the message if the

selected message parts or elements are not signed.

6. In the Timestamp section, click Add and select the Timestamp dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies the parent element

of the expected time stamp. If you select this dialect, you can select one of the following keywords

under the Timestamp keyword heading:

body Specifies the user data portion of the message. If you select the body option, a time stamp is

embedded in Simple Object Access Protocol (SOAP) body. Also, the parent of the time stamp

(SOAP body) is expected to be signed with the message parts in the Required Integrity.

Chapter 14. Learn about WebSphere applications 603

securitytoken

Specifies that a time stamp is expected to be embedded in the security token element. Also,

the parent of the time stamp (security token) is expected to be signed with the message parts

in the Required Integrity.

dsigkey

Specifies that the time stamp is inserted into the key information element, which is used for

digital signature, and the key information element is signed.

enckey

Specifies that the time stamp is inserted into the key information element, which is used for

encryption, and the key information element is signed.

messageid

Specifies that the time stamp is inserted into the <wsa:MessageID> element and the

<wsa:MessageID> element is signed.

to Specifies that the time stamp is inserted into the <wsa:To> element within the message and

that the <wsa:To> element is signed.

action Specifies that the <wsa:Action> element is signed.

relatesto

Specifies that the times tamp is inserted into the <wsa:RelatesTo> element within the message

and the <wsa:RelatesTo> element is signed.

7. If you have not defined a message part for Required Integrity, you must define at least one message

part to add a time stamp for Required Integrity. Complete the following steps to define a message part:

a. In the Message Parts section, click Add and select

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was in the Message parts dialect

field.

b. In the Message Parts section, select the message parts keyword.

c. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding a nonce for integrity in consumer security constraints with keywords”

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

610

After you have specified which message parts to digitally sign, you must specify which method is used to

digitally sign the message. For more information, see “Configuring signing information for the consumer

binding with an assembly tool” on page 620.

 Related tasks

 “Adding a stand-alone time stamp in consumer security constraints” on page 651

 “Adding a nonce for integrity in consumer security constraints with keywords”

 “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page 610

 “Configuring signing information for the consumer binding with an assembly tool” on page 620

Adding a nonce for integrity in consumer security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

604 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Nonce for integrity is used to specify that a nonce is embedded in a particular element. The parent

element of the nonce is signed with the message parts in the required integrity. Complete the following

steps to specify a nonce for integrity using keywords when you configure the consumer security

constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

5. Click Add to specify a nonce for integrity. The Required Integrity Dialog window is displayed. Complete

the following steps to specify a configuration:

a. Specify a name for the integrity element in the Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The value of this attribute is either Required or Optional.

Required

If you select Required and the required message parts or elements are not signed, then

the consumer rejects the message and issues a SOAP fault.

Optional

If you select Optional and the message parts or elements are signed, then the digital

signature is verified. However, the consumer does not reject the message if the selected

message parts or elements are not signed.

6. Under Nonce, click Add and select the nonce dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies the message part

to which a nonce is added as a child element and signed with the message parts in the required

integrity. If you select this dialect, you can select one of the following keywords under Nonce keyword:

body Specifies the user data portion of the message. If this option is selected, a nonce is embedded

in the Simple Object Access Protocol (SOAP) body element. Also, the parent of the nonce

(SOAP body) is expected to be signed with the message parts in the required integrity.

timestamp

Specifies that the nonce is embedded in the stand-alone timestamp element within the

message. Also, the parent of the nonce (timestamp) is expected to be signed with the

message parts in the required integrity. If timestamp keyword is selected, make sure that there

is a standalone timestamp element in the message. If not, refer to the “Adding a stand-alone

time stamp in consumer security constraints” on page 651 article.

Chapter 14. Learn about WebSphere applications 605

securitytoken

Specifies that the nonce element is expected to exist within the security token element. Also,

the parent of the nonce (securitytoken) is expected to be signed with the message parts in the

required integrity.

dsigkey

Specifies that the nonce is inserted into the key information element, which is used for digital

signature, and the key information element is signed.

enckey

Specifies that the nonce is inserted into the key information element, which is used for

encryption, and the key information element is signed.

messageid

Specifies that the nonce is inserted into the <wsa:MessageID> element and that the

<wsa:MessageID> element is signed.

to Specifies that the nonce is inserted into the <wsa:To> element within the message and that the

<wsa:To> element is signed.

action Specifies that the <wsa:Action> element is signed.

relatesto

Specifies that the nonce is inserted into the <wsa:RelatesTo> element within the message and

that the <wsa:RelatesTo> element is signed.

7. If you have not previously specified message part in required integrity, click Add in the Message Parts

section to add the message parts. You must define at least one message part in required integrity to

specify a nonce in required integrity.

8. In the Message Parts section, select the message parts keyword.

9. Click OK to save the configuration changes.

Note: These configurations on the consumer side and the generator side must match.

In addition to the nonce, you can specify that the timestamp element is signed. For more information,

see the following articles:

v “Adding time stamps for integrity in consumer security constraints with keywords” on page 602

v “Adding time stamps for integrity in consumer security constraints with an XPath expression” on

page 608

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the consumer binding

with an assembly tool” on page 620.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding a stand-alone time stamp in consumer security constraints” on page 651

 “Adding time stamps for integrity in consumer security constraints with keywords” on page 602

 “Adding time stamps for integrity in consumer security constraints with an XPath expression” on page

608

 “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page 610

 “Configuring signing information for the consumer binding with an assembly tool” on page 620

Signing message elements in consumer security constraints with an XPath expression:

606 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Complete the following steps to specify which message parts are expected to be signed using an XPath

expression. In the following steps, you must configure either the client-side extensions in step 2 or the

server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

5. Click Add to indicate which message parts to validate for digital signature. The Required Integrity

Dialog window is displayed. Complete the following steps to specify a configuration:

a. Specify a name for the integrity element under Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The value of this attribute is either Required or Optional.

Required

If you select Required and the required message parts or elements are not signed, then

the message is rejected with SOAP fault.

Optional

If you select Optional, then the digital signature of the selected message parts or elements

is verified if they are signed. However, the consumer does not reject the message if the

selected message parts or elements are not signed.

6. Click Add under the Message Parts section of the Required Integrity Dialog window. Complete the

following steps to specify the message parts dialect and its message part:

a. Select the Message parts dialect from the Message Parts section of the Required Integrity Dialog

window. If you select the http://www.w3.org/TR/1999/REC-xpath-19991116 dialect, the message

part that is validated for digital signature is specified by the XPath expression.

Chapter 14. Learn about WebSphere applications 607

http://www.w3.org/TR/1999/REC-xpath-19991116

b. Specify the message part to be validated for digital signature using an XPath expression in the

Message parts keyword field. For example, to specify that the message body is checked to

determine if it is signed, you might add the following expression in the Message parts keyword field

as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

Important: Verify that your XPath syntax is correct.

7. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the message parts, you also can specify that WebSphere Application Server check the

nonce and timestamp elements for a digital signature. For more information, see the following articles:

v “Adding time stamps for integrity in consumer security constraints with keywords” on page 602

v “Adding time stamps for integrity in consumer security constraints with an XPath expression”

v “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

610

After you specify which message parts to check for a digital signature, you must specify which method is

used to validate the signature. For more information, see “Configuring signing information for the consumer

binding with an assembly tool” on page 620.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding a stand-alone time stamp in consumer security constraints” on page 651

 “Adding time stamps for integrity in consumer security constraints with keywords” on page 602

 “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

 “Configuring signing information for the consumer binding with an assembly tool” on page 620

Adding time stamps for integrity in consumer security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

This task is to specify that a time stamp is expected to be added in an element of the SOAP message that

is specified by the XPath language syntax. The element is expected to be signed with the message part

that is specified in the Required Integrity Dialog window. Complete the following steps to specify the time

608 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

stamp for integrity using an XPath expression when you configure the consumer security constraints for

either the response consumer or the request consumer. The response consumer is configured for the

client and the request consumer is configured for the server. In the following steps, you must configure

either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

5. Click Add to specify a time stamp for integrity. The Required Integrity Dialog window is displayed.

a. Specify a name for the integrity element in the Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The value of this attribute is either Required or Optional.

6. Click Add in the Timestamp section of the Required Integrity Dialog window.

a. Select the Timestamp dialect from the Timestamp section. The http://www.w3.org/TR/1999/REC-
xpath-19991116 dialect specifies the message part to which the time stamp is added and signed

using the XPath expression.

b. Select the message part in the Timestamp keyword field to which the time stamp is added and

signed using an XPath expression. For example, to specify that the time stamp is added to the

body and is signed, you might specify the following expression for the Timestamp keyword:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

Important: Verify that your XPath expression syntax is correct.

7. If you have not previously defined a message part in the Required Integrity Dialog window, click Add

under the Message Parts section and define a message part.

8. In the Message Parts section, select the message parts keyword.

9. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

610

Important: You must define one message part in the required integrity if you want to use the time

stamp feature for required integrity.

After you have specified which message parts to digitally sign, you must specify which method is used to

digitally sign the message. For more information, see “Configuring signing information for the consumer

binding with an assembly tool” on page 620.

 Related tasks

Chapter 14. Learn about WebSphere applications 609

“Adding a stand-alone time stamp in consumer security constraints” on page 651

 “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

 “Adding a nonce for integrity in consumer security constraints with an XPath expression”

 “Configuring signing information for the consumer binding with an assembly tool” on page 620

Adding a nonce for integrity in consumer security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Nonce for integrity is used to specify that a nonce is embedded in a particular element within the message

and that the element is signed. Complete the following steps to specify a nonce for integrity using an

XPath expression when you configure the consumer security constraints for either the response consumer

or the request consumer. The response consumer is configured for the client and the request consumer is

configured for the server. In the following steps, you must configure either the client-side bindings in step 2

or the server-side bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 570.

5. Click Add to specify a nonce for integrity. The Required Integrity Dialog window is displayed. Complete

the following steps to specify a configuration:

a. Specify a name for the integrity element in the Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The value of this attribute is either Required or Optional.

6. Click Add in the Nonce section of the Required Integrity Dialog window. Complete the following steps

to configure the nonce dialect and message part:

610 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

a. Select the Nonce dialect from the Nonce section. The http://www.w3.org/TR/1999/REC-xpath-
19991116 dialect specifies the message part to which a nonce is added and signed using an XPath

expression.

b. Select the message part in the Nonce keyword field to which a nonce is added and signed using

an XPath expression. For example, to specify that a nonce is added to the body and that it is

signed, you might specify the following expression for the Nonce keyword:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

7. In the Message Parts section, click Add and select http://www.w3.org/TR/1999/REC-xpath-19991116 in

the Message parts dialect field.

8. In the Message Parts section, select the message parts keyword.

Important: You must select the same keyword in the Message parts keyword field as the keyword

that you selected in the Nonce keyword field.

9. Click OK to save the configuration changes.

Note: These configurations on the consumer side and the generator side must match.

In addition to the nonce, you can specify that the timestamp element is signed. For more information,

see the following articles:

v “Adding time stamps for integrity in consumer security constraints with keywords” on page 602

v “Adding time stamps for integrity in consumer security constraints with an XPath expression” on

page 608

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the consumer binding

with an assembly tool” on page 620.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding a stand-alone time stamp in consumer security constraints” on page 651

 “Adding time stamps for integrity in consumer security constraints with keywords” on page 602

 “Adding time stamps for integrity in consumer security constraints with an XPath expression” on page

608

 “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

 “Configuring signing information for the consumer binding with an assembly tool” on page 620

Configuring the collection certificate store for the consumer binding with an assembly tool:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

This task describes the steps to specify the collection certificate store for the consumer bindings at the

application level using an assembly tool. A collection certificate store is a collection of non-root certificate

authority (CA) certificates and certificate revocation lists (CRLs) that is used for validating an X.509

certificate embedded within the received SOAP message. The response consumer is configured for the

client and the request consumer is configured for the server. In the following steps, you must configure

either the client-side bindings in step 2 or the server-side bindings in step 3.

Chapter 14. Learn about WebSphere applications 611

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Binding Configuration

section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

4. Expand the Certificate Store List > Collection Certificate Store section and click Add.

5. Specify a unique certificate store name in the Name field. For example, specify cert1. The name of the

collection certificate store must be unique on the level in which it is defined. For example, the name

must be unique at the application level. The name specified in the certificate store name field is used

by other configurations to refer to a predefined collection certificate store. WebSphere Application

Server looks up the collection certificate store based on proximity. For example, if an application

binding refers to certificate store cert1, WebSphere Application Server will look first for cert1 at the

application level. If it is not found, it will look at the server level, and finally at the cell level.

6. Specify a certificate store provider in the Provider field. The IBMCertPath certificate path provider is

supported. To use another certificate path provider, you must define the provider implementation in the

provider list within the java.security file in the Software Development Kit (SDK).

7. Click Add under X509 Certificate to specify a fully qualified path to an X.509 certificate, click the name

of an existing certificate path entry to edit it, or click Remove to delete it. This collection certificate

store is used to validate the certificate path of the incoming X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of the path name. For example you might specify

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. However, do not use this X.509

certificate path for production use. Obtain your own X.509 certificate from a certificate authority before

putting your WebSphere Application Server environment into production.

In the WebSphere Application Server administrative console, you can click Environment >

WebSphere Variables to configure the USER_INSTALL_ROOT variable.

8. Click Add under CRL to specify the fully qualified path to a certificate revocation list (CRL), click an

existing CRL entry to edit it or click Remove to delete it.

For portability reasons, it is recommended that you use the WebSphere Application Server variables to

specify a relative path to the certificate revocation list. For example, you might use the

USER_INSTALL_ROOT variable to define a path such as ${USER_INSTALL_ROOT}/mycertstore/mycrl. For a

list of the supported variables in the WebSphere Application Server administrative console, click

Environment > WebSphere Variables.

The following list provides recommendations for using CRLs:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority

and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,

the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the

old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)

build failure.

9. Click OK to save your configuration.

612 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Related tasks

 “Configuring token consumers with an assembly tool”

Trusted ID evaluator:

A trusted ID evaluator (com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl) is an abstraction of the

mechanism that evaluates whether the given ID name is trusted.

 Depending upon the implementation, you can use various types of infrastructure to store a list of the

trusted IDs, such as:

v Plain text file

v Database

v Lightweight Directory Access Protocol (LDAP) server

The trusted ID evaluator is typically used by the eventual receiver in a multi-hop environment. The Web

services security implementation invokes the trusted ID evaluator and passes the identity name of the

intermediary as a parameter. If the identity is evaluated and deemed trustworthy, the procedure continues.

Otherwise, an exception is created and the procedure is stopped.

 Related reference

 “Trusted ID evaluator collection” on page 784
Use this page to view a list of trusted identity (ID) evaluators. The trusted ID evaluator determines

whether to trust the identity-asserting authority. After the ID is trusted, WebSphere Application Server

issues the proper credentials based on the identity, which are used in a downstream call for invoking

resources. The trusted ID evaluator implements the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

interface.

 “Trusted ID evaluator configuration settings” on page 785
Use this information to configure trust identity (ID) evaluators.

Configuring token consumers with an assembly tool:

Prior to completing this task, you must complete the following steps:

v Import your application into an assembly tool. For information on how to import your application, see

″Importing enterprise applications″ in the ″Developing and deploying applications″ PDF.

v Configure the security token in the extension file. For example, if you are configuring a token consumer

for a Lightweight Third Party Authentication (LTPA) token, you must first configure the LTPA token under

the Required Security Token section on the Extensions tab. For more information, see “Configuring the

security token requirement in consumer security constraints” on page 653

v Configure a collection certificate store if the token consumer uses the PKCS#7 token type and you want

to package the certificate revocation lists (CRL) in the security token. For more information, see

“Configuring the collection certificate store for the consumer binding with an assembly tool” on page

611.

A security token represents a set of claims that are made by a client. This set of claims might include a

name, password, identity, key, certificate, group, privilege, and so on. A security token is embedded in the

Simple Object Access Protocol (SOAP) message within the SOAP header. The security token within the

SOAP header is propagated from the message sender to the intended message receiver. On the receiving

side, the security handler for WebSphere Application Server authenticates the security token and sets up

the caller identity on the running thread.

Complete the following steps to configure a token consumer for either the client-side bindings in step 2 or

the server-side bindings in step 3:

 1. Start the assembly tool and click Window > Open Perspective > J2EE.

Chapter 14. Learn about WebSphere applications 613

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Configuration section.

 3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

 4. Optional: Configure a trust anchor if you are configuring this token consumer for an X.509 security

token. Complete the following steps to configure the trust anchors:

a. Expand the Trust anchor section and click Add to add a new entry or click Edit to edit a selected

entry. The Trust anchor dialog window is displayed.

b. Specify a name for the trust anchor configuration in the Trust anchor name field.

c. Specify a keystore password in the Key store storepass field. The keystore storepass is the

password that is required to access the keystore file.

d. Specify the path to the keystore file in the Key store path field. The key store path is the directory

where the keystore resides. Make sure that wherever you deploy your application that the server

can locate your keystore file.

e. Select a key store type from the Key store type field. The key store type that you select must

match the keystore file that is specified in the Key store path field.

f. Click OK to save the trust anchor configuration.

 5. Expand the Token Consumer section and click Add to add a new entry or click Edit to edit a selected

entry. The Token Consumer Dialog window is displayed.

 6. Specify a name in the Token consumer name field. If this token consumer is for an X.509 certificate

and is used for signature validation or decryption, the token consumer name is referenced in the

Token field of the Key Information dialog window.

 7. Select a token consumer class in the Token consumer class field. Select the token consumer class

that matches the type of token that you are configuring. For example, if you are configuring a token

consumer that processes an X.509 security token in the received message, select the

com.ibm.wsspi.wssecurity.token.X509TokenConsumer token consumer class.

 8. Select a security token reference in the Security token field. The value in this field references the

security token that is configured in the extensions file. If you are configuring this token consumer for

an X.509 security token, where the token consumer class is

com.ibm.wsspi.wssecurity.token.X509tokenConsumer, leave this field blank.

 9. Select the Use value type option and select the value type in the Value type field. Select the value

type of the security token that matches the type of token consumer that you are configuring. When

you select the value type, the assembly tool automatically enters the correct values in the Local name

and URI fields depending upon the type of security token that is specified by the value type.

10. Optional: Select the Use jaas.config option and specify a Java Authentication and Authorization

Service (JAAS) configuration name in the jaas.config.name field if a JAAS configuration is required for

the security token. The JAAS configuration name that you specify must be for the security token that

is specified for this token consumer. The following table lists the JAAS configuration names for the

different security tokens specified by the value type.

 Table 11. JAAS configuration names and the corresponding value type

jaas.config name Value type

system.wssecurity.UsernameToken Username Token

614 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Table 11. JAAS configuration names and the corresponding value type (continued)

jaas.config name Value type

system.wssecurity.IDAssertionUsernameToken Username Token (for IDAssertion)

system.wssecurity.X509BST X509 certificate token

system.wssecurity.PkiPath X509 certificates in a PKIPath

system.wssecurity.PKCS7 X509 certificates and CRLs in a PKCS#7

11. Optional: If a trusted ID evaluator is required for this token consumer, select either the Use trusted

ID evaluator option to define a new trusted ID evaluator or select the Use trusted ID evaluator

reference option to select an existing trusted ID evaluator that is defined in a default binding file. A

trusted ID evaluator is typically used by the target Web service in a multi-hop environment to

determine whether to trust the identity of the intermediary Web service. Complete the following steps

if you select the Use trusted ID evaluator option:

a. Specify a trusted ID evaluator implementation in the Trusted ID evaluator class field. The trusted

ID evaluators are implemented by specifying a class that implements the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface. WebSphere Application Server Version

6 provides the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl default implementation of a

trusted ID evaluator.

The implementation is initialized with a list of trusted identity names. The trusted identities are

specified as trustedIDEvaluator properties in the binding file. When a name is evaluated, it is

checked against a list of trusted identity names. If the name is in the list, it is trusted and if the

name is not in the list, it is not trusted.

b. Click Add under the Trusted ID evaluator property section to add a new entry or click Remove to

delete a selected entry. Each property entry represents a trusted identity.

c. Specify trustedId_trustmode in the Name field and the identity of the intermediary in the Value

field.

If you select the Use trusted ID evaluator reference option, specify the name of an existing Trusted

ID evaluator in the Trusted ID evaluator reference field.

12. Optional: Click Add under Property to add a new property for this token consumer or click Remove

to delete a selected property. If this token consumer needs to process a nonce and a time stamp that

is contained in a username token, define the properties in the following table.

 Table 12. Nonce and time stamp properties

Name Value

com.ibm.wsspi.wssecurity.token.Username.verifyNonce true

com.ibm.wsspi.wssecurity.token.Username.verifyTimestamp true

13. Optional: Select the Use certificate path settings option if you are configuring this token consumer

for an X.509 security token.

14. Select either the Certificate path reference option or the Trust any certificate option if you are

configuring this token consumer for an X.509 security token.

Important: When you configure a token consumer for an X.509 certificate token, use caution when

you select the Trust any certificate option. This option might compromise the security of

your Web service application by allowing the SOAP message to be signed or encrypted

using any certificate. It is recommended that you use the trust anchor and certificate

store list to validate the X.509 certificate embedded in the received SOAP message.

If you select the Certificate path reference option, complete the following steps:

a. Select a trust anchor reference from the list in the Trust anchor reference field. This reference is

the name of the trust anchor that specifies the key store, which contains the trusted root

certificate authority (CA) certificates.

Chapter 14. Learn about WebSphere applications 615

b. Select a certificate store from the Certificate store reference field. A certificate store list contains

both non-root CA certificates (or intermediary certificates) and certificate revocation lists (CRLs).

15. Click OK to save your configuration.

Configure the key information if this token consumer configuration is for an X.509 security token. For more

information, see “Configuring key information for the consumer binding with an assembly tool” on page

617.

 Related concepts

 “Trusted ID evaluator” on page 613
A trusted ID evaluator (com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl) is an abstraction of the

mechanism that evaluates whether the given ID name is trusted.

 Related tasks

 “Configuring the security token requirement in consumer security constraints” on page 653

 “Configuring the security token in generator security constraints” on page 653

 “Configuring key information for the consumer binding with an assembly tool” on page 617

Configuring the key locator for the consumer binding with an assembly tool:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF. Before configuring a key locator, you should know which key information configuration

references this key locator. For example, if you configure this key locator for the STRREF key information

type, select the com.ibm.wsspi.wssecurity.keyinfo.X509TokeyKeyLocator key locator class.

WebSphere Application Server Version 6 provides default key locator implementations that you can choose

or you can write your own implementation. Custom key locators must implement the

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. Using this implementation, you can locate keys

within any data source.

Complete the following steps to configure a key locator for the consumer using an assembly tool. The

purpose of the key locators is to find keys or certificates. The key locator information on the consumer side

is used to find the key for validating the digital signature in the received SOAP message or for decrypting

the encrypted parts of the message. The response consumer is configured for the client and the request

consumer is configured for the server. In the following steps, you must configure either the client-side

bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Binding Configuration

section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

4. Expand the Key locators section and click Add to add a new entry or click Edit to edit a selected

entry.

5. Specify a name for this configuration in the Key locator name field. This configuration name is

referenced in the Key locator field of the Key Information dialog.

616 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

6. Select a key locator implementation in the Key locator class field. Select the key locator class that

matches the Key Information configuration that references this key locator. For example, select the

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator key locator class if the received Simple Object

Access Protocol (SOAP) message contains an X.509 certificate that is needed for signature validation.

Select the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key locator class if the key that is

required for signature validation or decryption needs to be specified using a keystore file. The

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator key locator class is not used on the consumer

side. It is typically used in the response generator configuration for encrypting the response message

using the signer key from the request message.

7. Select the Use key store option if you need to configure a key store for this key locator. Whether you

need to configure the key store information for a key locator depends upon the key locator class and

your application configuration. For example, if you select the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key locator class in the previous step, configure

the key store information for this key locator.

a. Specify a keystore password in the Key store storepass field. The keystore storepass is the

password that is required to access the keystore file.

b. Specify the path to the keystore file in the Key store path field. The key store path is the directory

where the keystore resides. Make sure that wherever you deploy your application that the server

can locate your keystore file.

c. Select a key store type from the Key store type field. The key store type that you select must

match the keystore file that is specified in the Key store path field. The following keystore types are

supported:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12

Use this option if your keystore uses the PKCS#12 file format.

8. Click Add under the Key field to add a key entry from the keystore file that you specified in the

previous step. This key is used for signature validation or decryption. The key that you specify must

match the key that is used for digital signing or encryption for the generator. Complete the following

steps to add a key entry:

a. Specify an alias name for the key in the Alias field.

b. Specify the password that is associated with the key in the Key pass field. This password protects

the private key of the key pair that is specified by this key.

c. Specify the key name in the Key name field. The key name specifies the Distinguished Name (DN)

for the owner of the key.

9. Click OK to save the key locator configuration

After you configure the key locator and any token consumer that you need to configure, you can configure

the key information that references this key locator. For more information, see “Configuring key information

for the consumer binding with an assembly tool.”

 Related tasks

 “Configuring key information for the consumer binding with an assembly tool”

Configuring key information for the consumer binding with an assembly tool:

Chapter 14. Learn about WebSphere applications 617

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool. For information on how to import your application, see

″Importing enterprise applications″ in the ″Developing and deploying applications″ PDF.

2. Configure the key locator that is referenced by the key information configuration. For more information,

see “Configuring the key locator for the consumer binding with an assembly tool” on page 616.

3. Configure the token consumer that is referenced by the key information configuration. For more

information, see “Configuring token consumers with an assembly tool” on page 613

Complete the following steps to configure the key information for the server-side and client-side bindings

using an assembly tool. The key information on the consumer side is used for specifying the information

about the key that is used for validating the digital signature in the received message or for decrypting the

encrypted parts of the message. The response consumer is configured for the client and the request

consumer is configured for the server. In the following steps, you must configure either the client-side

bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Binding Configuration

section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

4. Expand the Key Information section and click Add to add a new entry or click Edit to edit a selected

entry.

5. Specify a name for this configuration in the Key information name field. This configuration name is

referenced by the Key information element within the Signing Information and Encryption Information

Dialog windows. For more information, see “Configuring signing information for the consumer binding

with an assembly tool” on page 620 and “Configuring encryption information for the consumer binding

with an assembly tool” on page 637.

6. Select a key information type from the Key information type field. The key information types specify

different mechanisms for referencing security tokens. The assembly tools support the following key

information types:

STRREF

This type is the security token reference. The security token is directly referenced using

Universal Resource Identifiers (URIs). The following <KeyInfo> element is generated in the

SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#mytoken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

EMB This type is the embedded token. The security token is directly embedded within the

<SecurityTokenReference> element. The following <KeyInfo> element is generated in the

SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Embedded wsu:Id="tok1" />

618 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

...

 </wsse:Embedded>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

KEYID

This type is a key identifier. The security token is referenced using an opaque value that

uniquely identifies the token. The algorithm that is used for generating the key identifier value

depends upon the token type. For example, a hash of the important elements of the security

token is used for generating the KeyIdentifier value. The following <KeyInfo> element is

generated in the SOAP message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="wsse:X509v3">/62wXO...</wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

KEYNAME

This type is the key name. The security token is referenced using a name that matches an

asserted identity within the token.

Note: Do not use this key type as it might result in multiple security tokens that match the

specified name.
The KEYNAME type does not require a token consumer reference. The following <KeyInfo>

element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <ds:KeyName>CN=Group1</ds:KeyName>

</ds:KeyInfo>

X509ISSUER

This type is the X.509 certificate issuer name and serial number. The security token is

referenced by an issuer name and issuer serial number of an X.509 certificate. The following

<KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <ds:X509Data>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Jones, O=IBM, C=US</ds:X509IssuerName>

 <ds:X509SerialNumber>1040152879</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </ds:X509Data>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

7. Select the Use key locator option. Complete the following steps:

a. Select the name of a key locator configuration from the Key locator field. The value of this field is a

reference to a key locator that specifies how to find keys or certificates. For more information, see

“Configuring the key locator for the consumer binding with an assembly tool” on page 616.

b. Optional: Specify a key name in the Key name field. You do not need to specify the key name

when you configure the key information for the consumer.

8. Optional: Select the Use token option and a token consumer configuration in the Token field if a

token consumer is required for the key information configuration. The token that you select specifies a

reference to a token consumer that is used for processing the security token within the message. A

token consumer is required for all key information types except the KEYNAME type. Before you specify

a token reference, you must configure a token consumer. For more information on token consumer

configurations, see “Configuring token consumers with an assembly tool” on page 613.

Chapter 14. Learn about WebSphere applications 619

After completing this task, configure the signing information or encryption information that references the

key information that is specified by this task. For more information, see “Configuring signing information for

the consumer binding with an assembly tool” or “Configuring encryption information for the consumer

binding with an assembly tool” on page 637.

 Related tasks

 “Configuring the key locator for the consumer binding with an assembly tool” on page 616

 “Configuring token consumers with an assembly tool” on page 613

 “Configuring signing information for the consumer binding with an assembly tool”

 “Configuring encryption information for the consumer binding with an assembly tool” on page 637

Configuring signing information for the consumer binding with an assembly tool:

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool. For information on how to import your application, see

″Importing enterprise applications″ in the ″Developing and deploying applications″ PDF.

2. Specify which message parts to digitally sign. For more information, see “Signing message elements in

consumer security constraints with keywords” on page 600 or “Signing message elements in consumer

security constraints with an XPath expression” on page 606.

3. Configure the key information that is referenced by the Key information element within the Signing

information dialog window. For more information, see “Configuring key information for the consumer

binding with an assembly tool” on page 617.

Complete the following steps to configure the signing information for the server-side and client-side

bindings using an assembly tool. The signing information on the consumer side is used to verify the

integrity of the received Simple Object Access Protocol (SOAP) message by validating the message parts

that are signed. The response consumer is configured for the client and the request consumer is

configured for the server. In the following steps, you must configure either the client-side bindings in step 2

or the server-side bindings in step 3.

 1. Start the assembly tool and click Window > Open Perspective > J2EE.

 2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Binding Configuration

section.

 3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

 4. Expand the Signing Information section and click Add to add a new entry or select an existing entry

and click Edit. The Signing Information Dialog window is displayed. Complete the following steps to

specify the signing information:

a. Specify a name for the signing information configuration in the Signing information name field.

b. Select a canonicalization method from the Canonicalization method algorithm field. The

canonicalization method algorithm is used to canonicalize the signing information before it is

integrated as part of the signature operation. The following preconfigured algorithms are

supported:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

620 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

You must specify the same canonicalization algorithm for both the generator and the consumer.

For more information on configuring the signing information for the generator, see “Configuring

signing information for the generator binding with an assembly tool” on page 598.

c. Select a signature method algorithm from the Signature method algorithm field. The following

preconfigured algorithms are supported:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

You must specify the same signature algorithm for both the generator and the consumer. For

more information on configuring the signing information for the generator, see “Configuring signing

information for the generator binding with an assembly tool” on page 598.

 5. Click Add in the Signing Key Information section to add a new key information entry or click Remove

to delete a selected entry. Complete the following substeps if you are adding a new key information

entry.

a. Specify a name in the Key information name field.

b. Select a key information reference from the list under the Key information element field. The value

in this field references the key information configuration that you specified previously. If you have

a key information configuration called con_signkeyinfo that you want to use with this signing

information configuration, specify con_signkeyinfo in the Key information element field. For more

information, see “Configuring key information for the consumer binding with an assembly tool” on

page 617.

 6. Optional: Select the Use key information signature option if you want to sign the key information

within the SOAP message.

 7. Optional: Select a key information signature type from the Type field if you select the Use key

information signature option. Select the keyinfo value to specify that the entire KeyInfo element

must be signed within the SOAP message. Select the keyinfochildelements value to specify that the

child elements within the KeyInfo element must be signed. However, the KeyInfo element itself does

not need to be signed.

 8. Click OK to save your signing information configuration.

 9. Expand the Part References subsection and select the signing information configuration from the

Signing Information section.

10. Click Add in the Part References subsection to add a new entry or select an existing entry and click

Edit. The Part References Dialog window is displayed. Complete the following steps to configure a

part reference:

a. Specify a name for the part reference configuration in the Part reference name field.

b. Select a required integrity part configuration in the RequiredIntegrity part field. The required

integrity part configuration specifies the message parts that are required to be signed. For more

information on how to configure the required integrity, see “Signing message elements in

consumer security constraints with keywords” on page 600 or “Signing message elements in

consumer security constraints with an XPath expression” on page 606.

c. Select the http://www.w3.org/2000/09/xmldsig#sha1 digest method algorithm in the Digest method

algorithm field. This digest method algorithm is used to create the digest for each message part

that is specified by this part reference.

d. Click OK to save your part reference configuration.

11. Expand the Transforms subsection and the part reference configuration from the Part reference

subsection.

12. Click Add in the Transforms subsection to add a new entry or select an existing entry and click Edit.

The Transform dialog window is displayed.

Chapter 14. Learn about WebSphere applications 621

a. Specify a transform name in the Name field.

b. Select a transform algorithm from the Algorithm field. The following transform algorithms are

supported:

http://www.w3.org/2001/10/xml-exc-c14n#

This algorithm specifies the World Wide Web Consortium (W3C) Exclusive

Canonicalization recommendation.

http://www.w3.org/TR/1999/REC-xpath-19991116

This algorithm specifies the W3C XML path language recommendation. If you specify this

algorithm, you must specify the property name and value by clicking Add, which is

displayed under Transform properties. For example, you might specify the following

information:

Name com.ibm.wsspi.wssecurity.dsig.XPathExpression

Value not(ancestor-or-self::*[namespace-
uri()=’http://www.w3.org/2000/09/xmldsig#’ and local-name()=’Signature’])

http://www.w3.org/2002/06/xmldsig-filter2

This algorithm specifies the XML-Signature XPath Filter Version 2.0 proposed

recommendation.

 When you use this algorithm, you must specify a set of properties in the Transform

property fields. You can use multiple property sets for the XPath Filter Version 2.

Note: End your property names with the number of the property set, which is denoted by

an asterisk in the following examples:

v To specify an XPath expression for the XPath filter2, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Expression_*

v To specify a filter type for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Filter_*

Following this expression, you can have a value, [intersect], [subtract], or

[union].

v To specify the processing order for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Order_*

Following this expression, indicate the processing order of the XPath.

 The following is a list of complete examples:

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_1 = [intersect]

com.ibm.wsspi.wssecurity.dsign.XPath2Order_1 = [1]

com.ibm.wsspi.wssecurity.dsign.XPath2Expression_2 = [XPath expression#2]

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_2 = [subtract]

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_2 = [1]

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

http://www.w3.org/2002/07/decrypt#XML

This algorithm specifies the W3C decryption transform for XML Signature

recommendation.

622 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/2000/09/xmldsig#enveloped-signature

This algorithm specifies the W3C recommendation for XML digital signatures.

c. Click OK to save your transforms configuration.

After you complete this task for the consumer binding, you must configure the signing information for

generator binding if this task was not previously completed.

 Related tasks

 “Signing message elements in consumer security constraints with keywords” on page 600

 “Signing message elements in consumer security constraints with an XPath expression” on page 606

 “Configuring key information for the consumer binding with an assembly tool” on page 617

 “Configuring signing information for the generator binding with an assembly tool” on page 598

Encrypting the message elements in generator security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

Complete the following steps to specify which message parts to encrypt when you configure the consumer

security constraints for either the request generator or the response generator. The request generator is

configured for the client and the response generator is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Required Confidentiality section. Confidentiality refers to encryption while integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 634.

5. Click Add to specify which parts of the message to encrypt. The Confidentiality Dialog window is

displayed. Complete the following steps to specify the message parts:

a. Specify a name for the confidentiality element in the Confidentiality Name field. For example, you

might specify conf_webskey.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

6. Click Add under Message parts and select the Message parts dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies which message

part is encrypted using keywords. If you select this dialect, you can select one of the following

keywords under Message parts keyword:

Chapter 14. Learn about WebSphere applications 623

bodycontent

Specifies the user data portion of the message. If you select this keyword, the body is

encrypted.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the the username token element is encrypted.

digestvalue

Specifies a unique digest value. When a part of the SOAP message is signed, a unique digest

value is created and is used by the receiving party to check the integrity of the message. You

can encrypt the digestvalue element to secure the digest value.

Note: You must have a matching configuration for the consumer side.

In addition to the message parts, you also can specify that WebSphere Application Server encrypt the

nonce and timestamp elements. For more information, see the following articles:

v “Adding time stamps for confidentiality to generator security constraints with keywords”

v “Adding time stamps for confidentiality to generator security constraints with an XPath expression”

on page 630

v “Adding the nonce for confidentiality to generator security constraints with keywords” on page 627

v “Adding the nonce for confidentiality to generator security constraints with an XPath expression” on

page 632

7. Click OK to save your configuration.

For example, the following sample is a part of a Simple Object Access Protocol (SOAP) message whose

message content is encrypted using the bodycontent keyword and the

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect:

<soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <EncryptedData Id="wssecurity_encryption_id_8770799378696212005"

 Type="http://www.w3.org/2001/04/xmlenc#Content" xmlns="http://www.w3.org/2001/04/xmlenc#">

 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <CipherData>

 <CipherValue>nIlF+Uthee0H96HbtRrolJ/tBmOazyryNYRwr/reF4nqtbHqGtNuew==</CipherValue>

 </CipherData>

 </EncryptedData>

</soapenv:Body>

After you specify which message parts to encrypt, you must specify which method is used to encrypt the

message parts. For more information, see “Configuring encryption information for the generator binding

with an assembly tool” on page 648.

 Related tasks

 “Adding time stamps for confidentiality to generator security constraints with an XPath expression” on

page 630

 “Adding the nonce for confidentiality to generator security constraints with an XPath expression” on

page 632

 “Configuring encryption information for the generator binding with an assembly tool” on page 648

Adding time stamps for confidentiality to generator security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

This task is used to specify that a time stamp is embedded in a particular element and that the element is

encrypted. Complete the following steps to specify the time stamp for confidentiality using keywords when

624 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

you configure the generator security constraints for either the request generator or the response generator.

The request generator is configured for the client and the response generator is configured for the server.

In the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

 1. Start the assembly tool and click Window > Open Perspective > J2EE.

 2. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you need

to configure. Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

 3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

 4. Expand the Confidentiality section. Confidentiality refers to encryption while integrity refers to digital

signing. Confidentiality reduces the risk of someone intercepting the message as it moves across a

network. With confidentiality specifications, the message is encrypted before it is sent and decrypted

when it is received at the intended target. For more information on encryption, see “XML encryption”

on page 634.

 5. Click Add to specify a time stamp for confidentiality. The Confidentiality Dialog window is displayed.

Complete the following steps to specify a confidentiality configuration:

a. Specify a name for the confidentiality element in the Confidentiality Name field. For example, you

might specify conf_tmstmp.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies

the order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

 6. In the Timestamp section, click Add and select the Timestamp dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies the message part

that is encrypted using the keywords. If you select this dialect, you can select one of the following

keywords under the Timestamp keyword heading:

bodycontent

Specifies the user data portion of the message. If this keyword is selected, the time stamp is

embedded in the Simple Object Access Protocol (SOAP) message body and the body is

encrypted.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the timestamp element is embedded in the username

token element and it is encrypted.

digestvalue

Specifies a unique digest value. When a part of the Simple Object Access Protocol (SOAP)

message is signed, a unique digest value is created and is used by the receiving party to

check the integrity of the message. You can encrypt the digestvalue element to secure the

digest value. If you select this keyword, the time stamp is embedded in the digestvalue

element and the element is encrypted.

 7. Specify an expiration time for the time stamp in the Timestamp expires field. The time stamp helps

defend against replay attacks. The lexical representation for the duration is the [ISO 8601] extended

format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

Chapter 14. Learn about WebSphere applications 625

nY Represents the number of years in which the time stamp is in effect. Select a value from 0 to

99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value from 0

to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0 to

30 days.

T Separates the date and time values.

nH Represents the number of hours in which the time stamp is in effect. Select a value from 0 to

23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value from 0

to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to aribrary precision. You can select a value from 0 to 59

for the seconds and from 0 to 9 for tenths of a second.

For example, 1 year, 2 months, 3 days, 10 hours, and 30 minutes is represented as P1Y2M3DT10H30M.

Typically, you might configure a message time stamp for between 10 and 30 minutes. For example,

10 minutes is represented as P0Y0M0DT0H10M0S.

 8. In the Message Parts section, click Add and select

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was in the Message parts dialect field.

 9. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in Message Parts section in order to specify a

times tamp for confidentiality. When you select the message part, you are encrypting the

message part in addition to the parent element of the time stamp.

10. Click OK to save the configuration changes.

Note: These configurations for the consumer and generator must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding the nonce for confidentiality to generator security constraints with keywords” on page 627

v “Adding the nonce for confidentiality to generator security constraints with an XPath expression” on

page 632

For example, the following example is a part of a SOAP message where a time stamp is inserted into the

bodycontent element and is encrypted using bodycontent keyword and the

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect.

Important: You cannot see the time stamp in the message because it is encrypted.

<soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <EncryptedData Id="wssecurity_encryption_id_4349704672508984224" Type=

 "http://www.w3.org/2001/04/xmlenc#Content" xmlns="http://www.w3.org/2001/04/xmlenc#">

 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <CipherData>

 <CipherValue>IxSuTmF1vAygF/SBLCd8bgu8opPiwHmroIBLzZbENGr9JpxhSFt/0fV0sFun0uxg/

 h/Y+1erE+NaysREuL+E9AQm0lxALNEdBX9zpeVf+ZffUCSzZfXXe9iosQlPe9jG7yTp+rhZGdp/KOp

 26c3DZXCNDr0Wgz31wn3KNm6bGO6RmBzahEOSW8d0wR999DeqSpOY12d8iWJa3HZ8gnGnineCiZ3wr

 Hy9rOC58iijcsNv1fP3lExuA5WkHra6rndhbi8P7jDMhkzf4Odj2yy1M3XURWalOLNYhNJ9YaWACsaY

 CY2ukcKtzw==</CipherValue>

 </CipherData>

 </EncryptedData>

</soapenv:Body>

626 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

After you specify which message parts to encrypt, you must specify which method is used to encrypt sign

the message. For more information, see “Configuring encryption information for the generator binding with

an assembly tool” on page 648.

 Related tasks

 “Adding the nonce for confidentiality to generator security constraints with keywords”

 “Adding the nonce for confidentiality to generator security constraints with an XPath expression” on

page 632

 “Configuring encryption information for the generator binding with an assembly tool” on page 648

Adding the nonce for confidentiality to generator security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

Nonce for confidentiality is used to specify that the nonce is embedded in a particular element within the

message and that the element is encrypted. Nonce is a randomly generated, cryptographic token. When

you add a nonce to a specific part of a message, it can prevent theft and replay attacks because a

generated nonce is unique. For example, without a nonce, the token might be intercepted and used in a

replay attack when a user name token is passed from one machine to another machine using a

non-secure transport, such as HTTP. The user name token can be stolen even if you use XML digital

signature and XML encryption. This situation might be prevented by adding a nonce.

Complete the following steps to specify a nonce for confidentiality using keywords when you configure the

generator security constraints for either the request generator or the response generator. The request

generator is configured for the client and the response generator is configured for the server. In the

following steps, you must configure either the client-side extensions in step 2 or the server-side extensions

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Confidentiality section. Confidentiality refers to encryption while integrity refers to digital

signing. Confidentiality reduces the risk of someone intercepting the message as it moves across a

network. With confidentiality specifications, the message is encrypted before it is sent and decrypted

when it is received at the intended target. For more information on encryption, see “XML encryption”

on page 634.

5. Click Add to specify a nonce for integrity. The Confidentiality Dialog window is displayed. Complete the

following steps to specify a configuration:

a. Specify a name for the confidentiality element in the Confidentiality Name field. For example, you

might specify conf_nonce.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the encryption is processed. An order value of 1 specifies that the encyrption is

done first.

Chapter 14. Learn about WebSphere applications 627

6. Under Nonce, click Add and select the Nonce dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies the message part

to which a nonce is added and encrypted. If you select this dialect, you can select one of the following

keywords under Nonce keyword:

bodycontent

Specifies the user data portion of the message. If this keyword is selected, the nonce is

embedded in the Simple Object Access Protocol (SOAP) message body and the body is

encrypted.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the nonce element is embedded in the username token

element and it is encrypted.

digestvalue

Specifies a unique digest value. When a part of the SOAP message is signed, a unique digest

value is created and is used by the receiving party to check the integrity of the message. You

can encrypt the digestvalue element to secure the digest value. If you select this keyword, the

nonce is embedded in the digestvalue element and the element is encrypted.

7. In the Message Parts section, click Add and select

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was in the Message parts dialect field.

8. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in Message Parts section in order to specify a

nonce for confidentiality. When you select the message part, you are encrypting the

message part in addition to the parent element of the nonce.

9. Click OK to save the configuration changes.

Note: These configurations for the generator and the consumer must match.

In addition to the nonce, you can specify that the timestamp element is encrypted. For more

information, see the following articles:

v “Adding time stamps for confidentiality to generator security constraints with keywords” on page 624

v “Adding time stamps for confidentiality to generator security constraints with an XPath expression”

on page 630

The following example is a part of a SOAP message where a nonce is inserted into the bodycontent

element and it is encrypted using the bodycontent keyword and the

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect.

Important: You cannot see the nonce in the message because it is encrypted.

<soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <EncryptedData Id="wssecurity_encryption_id_1669600751905274321"

 Type="http://www.w3.org/2001/04/xmlenc#Content" xmlns="http://www.w3.org/2001/04/xmlenc#">

 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <CipherData>

 <CipherValue>pZpVL6Rs6zhvu8UrC7TH3BA2zvOdpPpLeHnwH0dCpmdc7ETz1tUHDdXLFxy143nYu91Mxpzsp

 Wt1rWx2Lx9vFGRIfblRSX5lEpV8+0LvezvhJYY/cbTA04mTMUzCfv28v2TI09AZQ4TjII4u+cPeh5f0prBVK1

 E5hLTql4QMcwf/rq9h+tttrJbR7ub3AUgIVo42ucQs5HZbaDijxmdSuFboBql4lv1Ep24ZfeoB/p7aHzyeWy7p

 YtO0bshpks/oBwO/78vxSklVJKu4sUseFvZa+B7sciFneeNnNuRCqB2JXc/vtH83l3AELUZg60ehd4vqvXkyuv

 SLohZ/kKnF/A5c+BP5Bo1pgvwmDEeJItQ5a7LOKkTavLuc2WGtVo1947fnNGm2TN4C6U/cp9ERT7jAB9Lr/1v/8

 ZqPZYmssyME4pGeSWLy232WrPvk6HEu96GHfRt+YXWpVNvSEt/gZw==</CipherValue>

 </CipherData>

 </EncryptedData>

</soapenv:Body>

628 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

After you specify which message parts to encrypt, you must specify which method is used to encrypt the

message. For more information, see “Configuring encryption information for the generator binding with an

assembly tool” on page 648.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding time stamps for confidentiality to generator security constraints with keywords” on page 624

 “Adding time stamps for confidentiality to generator security constraints with an XPath expression” on

page 630

 “Configuring encryption information for the generator binding with an assembly tool” on page 648

Encrypting the message elements in generator security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Complete the following steps to specify which message parts to encrypt using an XPath expression when

you configure the consumer security constraints for either the request generator or the response generator.

The request generator is configured for the client and the response generator is configured for the server.

In the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to configure the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to configure the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Confidentiality section. Confidentiality refers to encryption while integrity refers to digital

signing. Confidentiality reduces the risk of someone intercepting the message as it moves across a

network. With confidentiality specifications, the message is encrypted before it is sent and decrypted

when it is received at the intended target. For more information on encryption, see “XML encryption”

on page 634.

Chapter 14. Learn about WebSphere applications 629

http://www.w3.org/TR/1999/REC-xpath-19991116

5. Click Add to specify which parts of the message to encrypt. The Confidentiality Dialog window is

displayed. Complete the following steps to specify a configuration:

a. Specify a name for the confidentiality element in the Confidentiality Name field. For example, you

might specify conf_xpath.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

6. Click Add under the Message parts section of the Confidentiality Dialog window. Complete the

following steps to specify the message parts:

a. Select the message parts dialect from the Message parts section. The

http://www.w3.org/TR/1999/REC-xpath-19991116 dialect specifies which message part is encrypted

using an XPath expression.

b. Specify the message part to be encrypted using an XPath expression in the Message parts

keyword field. For example, to specify that the body is encrypted, you might add the following

expression in the Message parts keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

Note: These configurations for the generator and the consumer must match.

In addition to the message parts, you also can specify that WebSphere Application Server encrypt the

nonce and timestamp elements. For more information, see the following articles:

v “Adding time stamps for confidentiality to generator security constraints with keywords” on page 624

v “Adding time stamps for confidentiality to generator security constraints with an XPath expression”

v “Adding the nonce for confidentiality to generator security constraints with keywords” on page 627

v “Adding the nonce for confidentiality to generator security constraints with an XPath expression” on

page 632

7. Click OK to save your configuration.

After you specify which message parts to encrypt, you must specify which method is used to encrypt the

message parts. For more information, see “Configuring encryption information for the generator binding

with an assembly tool” on page 648.

 Related tasks

 “Adding time stamps for confidentiality to generator security constraints with keywords” on page 624

 “Adding the nonce for confidentiality to generator security constraints with keywords” on page 627

 “Configuring encryption information for the generator binding with an assembly tool” on page 648

Adding time stamps for confidentiality to generator security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

630 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

This task is used to specify that a time stamp is embedded in a particular element and that the element is

encrypted. Complete the following steps to specify the time stamp for confidentiality using an XPath

expression when you configure the generator security constraints for either the request generator or the

response generator. The request generator is configured for the client and the response generator is

configured for the server. In the following steps, you must configure either the client-side extensions in

step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Confidentiality section. Confidentiality refers to encryption while integrity refers to digital

signing. Confidentiality reduces the risk of someone intercepting the message as it moves across a

network. With confidentiality specifications, the message is encrypted before it is sent and decrypted

when it is received at the intended target. For more information on encryption, see “XML encryption”

on page 634.

5. Click Add to specify a time stamp for confidentiality. The Confidentiality Dialog window is displayed.

Complete the following information to specify a configuration:

a. Specify a name for the confidentiality element in the Confidentiality Name field.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

6. Click Add under the Timestamp section of the Confidentiality Dialog window. Complete the following

steps to configure the time stamp information:

a. Select the timestamp dialect from the Timestamp section. The http://www.w3.org/TR/1999/REC-
xpath-19991116 dialect specifies which message part is encrypted using an XPath expression.

b. Specify the message part to which a time stamp is added and encrypted using an XPath

expression in the Timestamp keyword field. For example, to specify that a time stamp is added to

the bodycontent element and it is encrypted, you might add the following expression in the

Timestamp keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Bodycontent’]

c. Specify an expiration time for the time stamp in the Timestamp expires field. The time stamp helps

defend against replay attacks. The lexical representation for the duration is the [ISO 8601]

extended format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from 0

to 99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value from

0 to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0

to 30 days.

T Separates the date and time values.

Chapter 14. Learn about WebSphere applications 631

nH Represents the number of hours in which the time stamp is in effect. Select a value from 0

to 23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value from

0 to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to aribrary precision. You can select a value from 0 to

59 for the seconds and from 0 to 9 for tenths of a second.

For example, to indicate 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format is

P1Y2M3DT10H30M. Typically, you might configure a message time stamp for between 10 and 30

minutes. For example, 10 minutes is represented as P0Y0M0DT0H10M0S.

7. In the Message Parts section, click Add and select

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was in the Message parts dialect field.

8. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in Message Parts section in order to specify

Timestamp for Confidentiality. The selection of message part here is for encrypting a

message part in addition to the parent element of the timestamp

9. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding the nonce for confidentiality to generator security constraints with keywords” on page 627

v “Adding the nonce for confidentiality to generator security constraints with an XPath expression”

After you specify which message parts to encrypt, you must specify which method is used to encrypt sign

the message. For more information, see “Configuring encryption information for the generator binding with

an assembly tool” on page 648.

 Related tasks

 “Adding the nonce for confidentiality to generator security constraints with keywords” on page 627

 “Adding the nonce for confidentiality to generator security constraints with an XPath expression”

 “Configuring encryption information for the generator binding with an assembly tool” on page 648

Adding the nonce for confidentiality to generator security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Nonce for confidentiality is used to specify that the nonce is embedded in a particular element within the

message and that the element is encrypted. Nonce is a randomly generated, cryptographic token. When

you add a nonce to a specific part of a message, it can prevent theft and replay attacks because a

632 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

generated nonce is unique. For example, without a nonce, the token might be intercepted and used in a

replay attack when a user name token is passed from one machine to another machine using a

non-secure transport, such as HTTP. The user name token can be stolen even if you use XML digital

signature and XML encryption. This situation might be prevented by adding a nonce.

Complete the following steps to specify a nonce for confidentiality using an XPath expression when you

configure the generator security constraints for either the request generator or the response generator. The

request generator is configured for the client and the response generator is configured for the server. In

the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Confidentiality section. Confidentiality refers to encryption while integrity refers to digital

signing. Confidentiality reduces the risk of someone intercepting the message as it moves across a

network. With confidentiality specifications, the message is encrypted before it is sent and decrypted

when it is received at the intended target. For more information on encryption, see “XML encryption”

on page 634.

5. Click Add to specify a nonce for integrity. The Confidentiality Dialog window is displayed. Complete the

following steps to specify a configuration:

a. Specify a name for the confidentiality element in the Confidentiality Name field. For example, you

might specify conf_nonce.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

6. Click Add under the Nonce section of the Confidentiality Dialog window. Complete the following steps

to specify the none dialect and the message part:

a. Select the nonce dialect from the Nonce section. The http://www.w3.org/TR/1999/REC-xpath-
19991116 dialect specifies the message part to which a nonce is added and encrypted using an

XPath expression.

b. Specify the message part to which a nonce is added and encrypted using an XPath expression in

the Nonce keyword field. For example, to specify that a nonce is added to the bodycontent element

and it is encrypted, you might add the following expression in the Nonce keyword field as one

continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Bodycontent’]

7. In the Message Parts section, click Add and select http://www.w3.org/TR/1999/REC-xpath-19991116 in

the Message parts dialect field.

8. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in Message Parts section in order to specify

nonce for Confidentiality. The selection of message part here is for encrypting a message

part in addition to the parent element of the nonce.

Chapter 14. Learn about WebSphere applications 633

9. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the nonce, you can specify that the timestamp element is signed. For more information,

see the following articles:

v “Adding time stamps for confidentiality to generator security constraints with keywords” on page 624

v “Adding time stamps for confidentiality to generator security constraints with an XPath expression”

on page 630

After you specify which message parts to encrypt, you must specify which method is used to encrypt sign

the message. For more information, see “Configuring encryption information for the generator binding with

an assembly tool” on page 648.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding time stamps for confidentiality to generator security constraints with keywords” on page 624

 “Adding time stamps for confidentiality to generator security constraints with an XPath expression” on

page 630

 “Configuring encryption information for the generator binding with an assembly tool” on page 648

XML encryption:

XML encryption is a specification developed by World Wide Web (WWW) Consortium (W3C) in 2002 that

contains the steps to encrypt data, the steps to decrypt encrypted data, the XML syntax to represent

encrypted data, the information used to decrypt the data, and a list of encryption algorithms such as triple

DES, AES, and RSA.

 You can apply XML encryption to an XML element, XML element content, and arbitrary data, including an

XML document. For example, suppose that you need to encrypt the CreditCard element shown in the

example 1.

Example 1: Sample XML document

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <CreditCard Limit=’5,000’ Currency=’USD’>

 <Number>4019 2445 0277 5567</Number>

 <Issuer>Example Bank</Issuer>

 <Expiration>04/02</Expiration>

 </CreditCard>

</PaymentInfo>

Example 2: XML document with a common secret key

Example 2 shows the XML document after encryption. The EncryptedData element represents the

encrypted CreditCard element. The EncryptionMethod element describes the applied encryption algorithm,

which is triple DES in this example. The KeyInfo element contains the information to retrieve a decryption

key, which is a KeyName element in this example. The CipherValue element contains the ciphertext

obtained by serializing and encrypting the CreditCard element.

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’

634 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>John Smith</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

</PaymentInfo>

Example 3: XML document encrypted with the public key of the recipient

In example 2, it is assumed that both the sender and recipient have a common secret key. If the recipient

has a public and private key pair, which is most likely the case, the CreditCard element can be encrypted

as shown in example 3. The EncryptedData element is the same as the EncryptedData element found in

Example 2. However, the KeyInfo element contains an EncryptedKey .

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>Sally Doe</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>yMTEyOTA1M...</CipherValue>

 </CipherData>

 </EncryptedKey>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

</PaymentInfo>

XML Encryption in the WSS-Core

WSS-Core specification is under development by Organization for the Advancement of Structured

Information Standards (OASIS). The specification describes enhancements to Simple Object Access

Protocol (SOAP) messaging to provide quality of protection through message integrity, message

confidentiality, and single message authentication. The message confidentiality is realized by encryption

based on XML Encryption.

The WSS-Core specification supports encryption of any combination of body blocks, header blocks, their

sub-structures, and attachments of a SOAP message. The specification also requires that when you

encrypt parts of a SOAP message, you mprepend a reference from the security header block to the

encrypted parts of the message. The reference can be a clue for a recipient to identify which encrypted

parts of the message to decrypt.

The XML syntax of the reference varies according to what information is encrypted and how it is

encrypted. For example, suppose that the CreditCard element in example 4 is encrypted with either a

common secret key or the public key of the recipient.

Example 4: Sample SOAP message

Chapter 14. Learn about WebSphere applications 635

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <CreditCard Limit=’5,000’ Currency=’USD’>

 <Number>4019 2445 0277 5567</Number>

 <Issuer>Example Bank</Issuer>

 <Expiration>04/02</Expiration>

 </CreditCard>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The resulting SOAP messages are shown in Examples 5 and 6. In these example, the ReferenceList and

EncryptedKey elements are used as references, respectively.

Example 5: SOAP message encrypted with a common secret key

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Header>

 <Security SOAP-ENV:mustUnderstand=’1’

 xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>

 <ReferenceList xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <DataReference URI=’#ed1’/>

 </ReferenceList>

 </Security>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Id=’ed1’

 Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>John Smith</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 6: SOAP message encrypted with the public key of the recipient

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Header>

 <Security SOAP-ENV:mustUnderstand=’1’

 xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>

 <EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>Sally Doe</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>yMTEyOTA1M...</CipherValue>

 </CipherData>

636 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

<ReferenceList>

 <DataReference URI=’#ed1’/>

 </ReferenceList>

 </EncryptedKey>

 </Security>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Id=’ed1’

 Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Relationship to digital signature

The WSS-Core specification also provides message integrity, which is realized by a digital signature based

on the XML-Signature specification.

A combination of encryption and digital signature over common data introduces cryptographic

vulnerabilities.

Configuring encryption information for the consumer binding with an assembly tool:

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool. For information on how to import your application, see

″Importing enterprise applications″ in the ″Developing and deploying applications″ PDF.

2. Specify which message parts to encrypt. For more information, see “Encrypting message elements in

consumer security constraints with keywords” on page 639 or “Encrypting message elements in

consumer security constraints with an XPath expression” on page 643.

3. Configure the key information that is referenced by the Key information element within the Encryption

information dialog window. For more information, see “Configuring key information for the consumer

binding with an assembly tool” on page 617.

Complete the following steps to configure the encryption information for the server-side and client-side

bindings using an assembly tool. The encryption information on the consumer side is used for decrypting

the encrypted message parts in the incoming Simple Object Access Protocol (SOAP) message. The

response consumer is configured for the client and the request consumer is configured for the server. In

the following steps, you must configure either the client-side bindings in step 2 or the server-side bindings

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Binding Configuration

section.

Chapter 14. Learn about WebSphere applications 637

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

4. Expand the Encryption Information section and click Add to add a new entry or select an existing entry

and click Edit. The Encryption Information dialog window is displayed. Complete the following steps to

specify an encryption information configuration:

a. Specify a name for the encryption information configuration in the Encryption name field.

b. Select a data encryption algorithm from the Data encryption method algorithm field. The data

encryption algorithm is used for encrypting or decrypting parts of a SOAP message such as the

SOAP body or the username token. The following pre-configured algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

This algorithm must match the data encryption algorithm that is configured for the generator. For

more information on configuring the encryption information for the generator, see “Configuring

encryption information for the generator binding with an assembly tool” on page 648.

c. Select a key encryption algorithm from the Key encryption method algorithm field. The key

encryption algorithm is used to encrypt the key that is used for encrypting the message parts within

the SOAP message. The following pre-configured algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

Select the blank entry if the data encryption key, which is the (key used for encrypting the message

parts, is not encrypted. This key encryption algorithm for the consumer must match the key

encryption algorithm for the generator. For more information on configuring the encryption

information for the generator, see “Configuring encryption information for the generator binding with

an assembly tool” on page 648.

5. Click Add in the Encryption Key Information section to add a new key information entry or click

Remove to delete a selected entry. Complete the following substeps if you are adding a new key

information entry.

a. Specify a name in the Key information name field.

638 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

b. Select a key information reference from the list under the Encryption key information field. The

value in this field references the key information configuration that you specified previously. If you

have a key information configuration called con_enckeyinfo that you want to use with this

encryption information configuration, specify con_enckeyinfo in the Key information element field.

For more information, see “Configuring key information for the consumer binding with an assembly

tool” on page 617.

6. Select a required confidentiality part from the list in the RequiredConfidentiality part field. The value in

this field specifies a reference to the message parts for encryption.

7. Click OK to save your encryption information configuration.

After you complete this task for the consumer binding, you must configure the encryption information for

generator binding if this task was not previously completed. For more information, see “Configuring

encryption information for the generator binding with an assembly tool” on page 648.

 Related tasks

 “Encrypting message elements in consumer security constraints with keywords”

 “Encrypting message elements in consumer security constraints with an XPath expression” on page

643

 “Configuring encryption information for the generator binding with an assembly tool” on page 648

 “Configuring key information for the consumer binding with an assembly tool” on page 617

Encrypting message elements in consumer security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

Complete the following steps to specify which message parts to check for encryption when you configure

the consumer security constraints for either the response consumer or the request consumer. The

response consumer is configured for the client and the request consumer is configured for the server. In

the following steps, you must configure either the client-side bindings in step 2 or the server-side bindings

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Confidentiality section. Confidentiality refers to encryption while integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 634.

5. Click Add to specify which parts of the message to check for encryption. The Required Confidentiality

Dialog window is displayed. Complete the following steps to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

Chapter 14. Learn about WebSphere applications 639

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

6. Click Add under Message parts and select the message parts dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies which message

part to be checked for encryption using keywords. If you select this dialect, you can select one of the

following keywords under Message parts keyword:

bodycontent

Specifies the user data portion of the message. If you select this keyword, the body is checked

for encryption.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the username token element is checked for encryption.

digestvalue

Specifies a unique digest value. When a part of the Simple Object Access Protocol (SOAP)

message is signed, a unique digest value is created and is used by the receiving party to

check the integrity of the message. You can encrypt the digestvalue element to secure the

digest value. If you select this keyword, the digestvalue is checked for encryption.

Note: You must have a matching configuration for the generator.

In addition to the message parts, you also can specify that WebSphere Application Server check the

encryption of the nonce and timestamp elements. For more information, see the following articles:

v “Adding time stamps for confidentiality in consumer security constraints with keywords”

v “Adding time stamps for confidentiality in consumer security constraints with an XPath expression”

on page 645

v “Adding a nonce for confidentiality in consumer security constraints with keywords” on page 642

v “Adding the nonce for confidentiality in consumer security constraints with an XPath expression” on

page 646

7. Click OK to save your configuration.

After you specify which message parts to check for encryption, you must specify which method is used to

verify the encryption of the message parts. For more information, see “Configuring encryption information

for the consumer binding with an assembly tool” on page 637.

 Related tasks

 “Adding time stamps for confidentiality in consumer security constraints with an XPath expression” on

page 645

 “Adding the nonce for confidentiality in consumer security constraints with an XPath expression” on

page 646

 “Configuring encryption information for the consumer binding with an assembly tool” on page 637

Adding time stamps for confidentiality in consumer security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

This task is used to specify that a time stamp embedded in a particular element and encrypted is checked

for encryption along with the message parts in the Required Integrity . Complete the following steps to

specify the time stamp for confidentiality using keywords when you configure the consumer security

constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

640 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Confidentiality section. Confidentiality refers to encryption while integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 634.

5. Click Add to specify that the element within which a timestamp is added and encrypted, is checked for

confidentiality. The Required Confidentiality Dialog window is displayed. Complete the following steps

to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

6. In the Timestamp section, click Add and select the Timestamp dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies the message part

that is verified for encryption using the keywords. If you select this dialect, you can select one of the

following keywords under the Timestamp keyword heading:

bodycontent

Specifies the user data portion of the message. If this keyword is selected, the body along with

the embedded timestamp is checked for confidentiality.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the username token along with the embedded timestamp

is checked for confidentiality.

digestvalue

Specifies a unique digest value. When a part of the Simple Object Access Protocol (SOAP)

message is signed, a unique digest value is created and is used by the receiving party to

check the integrity of the message. You can encrypt the digestvalue element to secure the

digest value. If you select this keyword, the digestvalue along with the embedded timestamp is

checked for confidentiality.

7. If you have not specified message part(s) in Required Confidentiality, in the Message Parts section

click Add to add message parts. You must define at least one message part in Required Confidentiality

for specifying Timestamp in Required Confidentiality.″

8. In the Message Parts section, select the message parts keyword.

9. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the time stamp, you can specify that the nonce is checked for confidentiality. For more

information, see the following articles:

Chapter 14. Learn about WebSphere applications 641

v “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

610

After you specify which message parts to check for encryption, you must specify which method is used to

check the encryption. For more information, see “Configuring encryption information for the consumer

binding with an assembly tool” on page 637.

 Related tasks

 “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

 “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page 610

 “Configuring encryption information for the consumer binding with an assembly tool” on page 637

Adding a nonce for confidentiality in consumer security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

Nonce for confidentiality is used to specify that the nonce is embedded in a particular element within the

message and that the element is encrypted. Complete the following steps to check the confidentiality of an

element that has nonce embedded in it and is encrypted using keywords when you configure the

consumer security constraints for either the response consumer or the request consumer. The response

consumer is configured for the client and the request consumer is configured for the server. In the

following steps, you must configure either the client-side extensions in step 2 or the server-side extensions

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Confidentiality section. Confidentiality refers to encryption while integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 634.

5. Click Add to specify that the element within which a nonce is added and encrypted, is checked for

confidentiality. The Required Confidentiality Dialog window is displayed. Complete the following steps

to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

6. Under Nonce, click Add and select the Nonce dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies the message part

which has an embedded nonce is verified for encryption. If you select this dialect, you can select one

of the following keywords under Nonce keyword:

642 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

bodycontent

Specifies the user data portion of the message. If this keyword is selected, the nonce is

embedded in the Simple Object Access Protocol (SOAP) message body and the body along

with the embedded nonce is checked for confidentiality.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the username token element along with the embedded

nonce is checked for confidentiality.

digestvalue

Specifies a unique digest value. When a part of the Simple Object Access Protocol (SOAP)

message is signed, a unique digest value is created and is used by the receiving party to

check the integrity of the message. You can encrypt the digestvalue element to secure the

digest value. If you select this keyword, the digestvalue element along with the embedded

nonce is checked for confidentiality.

7. If you have not specified message parts in Required Confidentiality, in the Message Parts section, click

Add to add message parts. You must define at least one message part in Required Confidentiality for

specifying Nonce in Required Confidentiality.

8. In the Message Parts section, select the message parts keyword.

9. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the nonce, you can specify that the timestamp element is checked for confidentiality. For

more information, see the following articles:

v “Adding time stamps for confidentiality in consumer security constraints with keywords” on page 640

v “Adding time stamps for confidentiality in consumer security constraints with an XPath expression”

on page 645

After you specify which message parts to check for confidentiality, you must specify which method is used

to verify the encryption. For more information, see “Configuring encryption information for the consumer

binding with an assembly tool” on page 637.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding a stand-alone time stamp in consumer security constraints” on page 651

 “Adding time stamps for confidentiality in consumer security constraints with keywords” on page 640

 “Adding time stamps for confidentiality in consumer security constraints with an XPath expression” on

page 645

 “Configuring encryption information for the consumer binding with an assembly tool” on page 637

Encrypting message elements in consumer security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

Chapter 14. Learn about WebSphere applications 643

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Complete the following steps to specify which message parts to check for encryption when you configure

the consumer security constraints for either the response consumer or the request consumer. The

response consumer is configured for the client and the request consumer is configured for the server. In

the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Confidentiality section. Confidentiality refers to encryption while integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 634.

5. Click Add to specify which parts of the message to check for encryption. The Required Confidentiality

Dialog window is displayed. Complete the following steps to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

6. Click Add under the Message parts section of the Required Confidentiality Dialog window. Complete

the following steps to specify the message part and its associated message parts dialect:

a. Select the message parts dialect from the Message parts section. The

http://www.w3.org/TR/1999/REC-xpath-19991116 dialect specifies which message part is checked

for encryption using an XPath expression.

b. Specify the message part to be checked for encryption using an XPath expression in the Message

parts keyword field. For example, to specify that the body is checked for encryption, you might add

the following expression in the Message parts keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

Note: These configurations for the consumer and the generator must match.

In addition to the message parts, you also can specify that WebSphere Application Server check the

nonce and timestamp elements for encryption. For more information, see the following articles:

v “Adding time stamps for confidentiality in consumer security constraints with keywords” on page 640

v “Adding time stamps for confidentiality in consumer security constraints with an XPath expression”

on page 645

644 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

v “Adding a nonce for confidentiality in consumer security constraints with keywords” on page 642

v “Adding the nonce for confidentiality in consumer security constraints with an XPath expression” on

page 646

7. Click OK to save your configuration.

After you specify which message parts to check for encryption, you must specify which method is used to

verify the encryption of the message parts. For more information, see “Configuring encryption information

for the consumer binding with an assembly tool” on page 637.

 Related tasks

 “Adding time stamps for confidentiality in consumer security constraints with keywords” on page 640

 “Adding a nonce for confidentiality in consumer security constraints with keywords” on page 642

 “Configuring encryption information for the consumer binding with an assembly tool” on page 637

Adding time stamps for confidentiality in consumer security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

This task is used to specify that a time stamp embedded in a particular element and encrypted on the

generator side is checked for encryption on the consumer side. Complete the following steps to specify the

time stamp for confidentiality using an XPath expression when you configure the consumer security

constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Confidentiality section. Confidentiality refers to encryption while integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 634.

Chapter 14. Learn about WebSphere applications 645

http://www.w3.org/TR/1999/REC-xpath-19991116

5. Click Add to specify that the element within which a timestamp is added and encrypted, is checked for

confidentiality. The Required Confidentiality Dialog window is displayed. Complete the following steps

to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

6. Click Add under the Timestamp section of the Required Confidentiality Dialog window. Complete the

following steps to specify the timestamp dialect and the message part:

a. Select the timestamp dialect from the Timestamp section. The http://www.w3.org/TR/1999/REC-
xpath-19991116 dialect specifies which message part is verified for encryption using an XPath

expression.

b. Specify the message part which has an embedded time stamp and is checked for encryption using

an XPath expression in the Timestamp keyword field. For example, to specify that the bodycontent

element along with the embedded timestamp is checked for encryption, you might add the following

expression in the Timestamp keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Bodycontent’]

If you have not specified message parts in Required Confidentiality, you can click Add in the

Message Parts section to add the message parts. You must define at least one message part in

Required Confidentiality to specify a time stamp in Required Confidentiality.

7. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the time stamp, you can specify that the nonce is checked for encryption. For more

information, see the following articles:

v “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

610

After you specify which message parts to check for encryption, you must specify which method is used to

verify the encryption. For more information, see “Configuring encryption information for the consumer

binding with an assembly tool” on page 637.

 Related tasks

 “Adding a nonce for integrity in consumer security constraints with keywords” on page 604

 “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page 610

 “Configuring encryption information for the consumer binding with an assembly tool” on page 637

Adding the nonce for confidentiality in consumer security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

646 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

Nonce for confidentiality is used to specify that the nonce is embedded in a particular element within the

message and that the element is encrypted. Complete the following steps to check the confidentiality of an

element that has nonce embedded in it and is encrypted using an XPath expression when you configure

the consumer security constraints for either the response consumer or the request consumer. The

response consumer is configured for the client and the request consumer is configured for the server. In

the following steps, you must configure either the client-side bindings in step 2 or the server-side bindings

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Confidentiality section. Confidentiality refers to encryption while integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 634.

5. Click Add to specify that the element within which a nonce is added and encrypted is checked for

confidentiality. The Required Confidentiality Dialog window is displayed. Complete the following steps

to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

6. Click Add under the Nonce section of the Required Confidentiality Dialog window. Complete the

following steps to specify a nonce dialect and its associate message part:

a. Select the nonce dialect from the Nonce section. The http://www.w3.org/TR/1999/REC-xpath-
19991116 dialect specifies the message part which has an embedded nonce is verified for

encryption using an XPath expression.

b. Specify the message part which has an embedded nonce is verified for encryption using an XPath

expression in the Nonce keyword field. For example, to specify that the bodycontent element along

with the embedded nonce is checked for confidentiality, you might add the following expression in

the Nonce keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]/*

[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Bodycontent’]

7. If you have not specify message parts in Required Confidentiality, you can click Add in the Message

Parts section to add message parts. You must define at least one message part in Required

Confidentiality for specifying Nonce in Required Confidentiality.

8. In the Message Parts section, select the message parts keyword.

9. Click OK to save the configuration changes.

Note: These configurations on the consumer side and the generator side must match.

In addition to the nonce, you can specify that the timestamp element is checked for encryption. For

more information, see the following articles:

v “Adding time stamps for confidentiality in consumer security constraints with keywords” on page 640

Chapter 14. Learn about WebSphere applications 647

v “Adding time stamps for confidentiality in consumer security constraints with an XPath expression”

on page 645

After you specify which message parts to check for encryption, you must specify which method is used to

verify the encryption. For more information, see “Configuring encryption information for the consumer

binding with an assembly tool” on page 637.

 Related concepts

 “XML digital signature” on page 570
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML

syntax and processing rules to sign and verify digital signatures for digital content. The specification

was developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task

Force (IETF).

 Related tasks

 “Adding a stand-alone time stamp in consumer security constraints” on page 651

 “Adding time stamps for confidentiality in consumer security constraints with keywords” on page 640

 “Adding time stamps for confidentiality in consumer security constraints with an XPath expression” on

page 645

 “Configuring encryption information for the consumer binding with an assembly tool” on page 637

Configuring encryption information for the generator binding with an assembly tool:

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool. For information on how to import your application, see

″Importing enterprise applications″ in the ″Developing and deploying applications″ PDF.

2. Specify which message parts to encrypt. For more information, see “Encrypting the message elements

in generator security constraints with keywords” on page 623 or “Encrypting the message elements in

generator security constraints with an XPath expression” on page 629.

3. Configure the key information that is referenced by the Key information element within the Encryption

information dialog window. For more information, see “Configuring key information for the generator

binding with an assembly tool” on page 596.

Complete the following steps to configure the encryption information for the server-side and client-side

bindings using an assembly tool. The encryption information on the generator side is used for encrypting

an outgoing Simple Object Access protocol (SOAP) message. The request generator is configured for the

client and the response generator is configured for the server. In the following steps, you must configure

either the client-side bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

4. Expand the Encryption Information section and click Add to add a new entry or select an existing entry

and click Edit. The Encryption Information Dialog window is displayed. Complete the following steps to

specify an encyrption information configuration:

648 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

a. Specify a name for the encryption information configuration in the Encryption name field. For

example, you might specify gen_encinfo.

b. Select a data encryption algorithm from the Data encryption method algorithm field. This specifies

the algorithm used to encrypt parts of the message. The following preconfigured algorithms are

supported:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted JCE policy file from the following Web

site: http://www.ibm.com/developerworks/java/jdk/security/index.html.

This algorithm must match the data encryption algorithm that is configured for the consumer. For

more information on configuring the encryption information for the consumer, see “Configuring

encryption information for the consumer binding with an assembly tool” on page 637.

c. Select a key encryption algorithm from the Key encryption method algorithm field. This algorithm is

used to encrypt the keys. The following pre-configured algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

Select the blank entry if the data encryption key, which is the key that is used for encrypting the

message parts, is not encrypted. The key encryption algorithm for the generator and the consumer

must match. For more information on configuring the encryption information for the generator, see

“Configuring encryption information for the generator binding with an assembly tool” on page 648.

d. Specify a name in the Key information name field. For example, you might specify gen_ekeyinfo.

e. Select a key information element in the Key information element field. The value in this field

references the key information configuration that you specified previously. If you have a key

information configuration called gen_enckeyinfo that you want to use with this encryption

information configuration, specify get_enckeyinfo in the Key information element field. For more

information, see “Configuring key information for the generator binding with an assembly tool” on

page 596.

f. Select a confidentiality part in the Confidentiality part field. The value in this field specifies the name

of the confidentiality element that is encrypted.

5. Click OK to save your encryption information configuration.

After you complete this task for the consumer binding, you must configure the encryption information for

consumer binding. For more information, see “Configuring encryption information for the consumer binding

with an assembly tool” on page 637.

 Related tasks

 “Encrypting the message elements in generator security constraints with keywords” on page 623

Chapter 14. Learn about WebSphere applications 649

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

“Encrypting the message elements in generator security constraints with an XPath expression” on page

629

 “Configuring key information for the generator binding with an assembly tool” on page 596

 “Configuring encryption information for the consumer binding with an assembly tool” on page 637

Adding a stand-alone time stamp to generator security constraints:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The timestamp determines if the message is valid based upon the time that the message is sent by one

machine and then received by another machine.

Complete the following steps to specify a stand-alone time stamp when you configure the generator

security constraints for either the request generator or the response generator. The request generator is

configured for the client and the response generator is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Add Timestamp section and select the Use Add Timestamp option. When you select this

option, a time stamp is added to the message that is sent.

5. Specify an expiration time for the time stamp, which helps defend against replay attacks. Complete the

following steps to configure the time stamp:

a. Expand the Expires subsection within the Add Timestamp section.

b. Select the Use Expires option.

c. Specify an expiration time for the time stamp. The lexical representation for the duration is the [ISO

8601] extended format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from 0

to 99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value from

0 to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0

to 30 days.

T Separates the date and time values.

nH Represents the number of hours in which the time stamp is in effect. Select a value from 0

to 23 hours.

650 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

nM Represents the number of minutes in which the time stamp is in effect. Select a value from

0 to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to arbitrary precision. You can select a value from 0 to

59 for the seconds and from 0 to 9 for tenths of a second.

For example, 1 year, 2 months, 3 days, 10 hours, and 30 minutes is represented as

P1Y2M3DT10H30M. Typically, you might configure a message time stamp for between 10 and 30

minutes. For example, 10 minutes is represented as P0Y0M0DT0H10M0S.

Adding a stand-alone time stamp in consumer security constraints:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

The timestamp determines if the message is valid based upon the time that the message is sent by one

machine and then received by another machine.

Complete the following steps to specify a stand-alone time stamp when you configure the consumer

security constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Add Timestamp section and select Use Add Timestamp option. When you select this

option, a time stamp is added to the message that is sent.

5. Specify an expiration time for the time stamp, which helps defend against replay attacks. Complete the

following steps to configure the time stamp:

a. Expand the Expires subsection within the Add Timestamp section.

b. Select the Use Expires option.

c. Specify an expiration time for the time stamp. The lexical representation for the duration is the [ISO

8601] extended format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from 0

to 99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value from

0 to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0

to 30 days.

T Separates the date and time values.

Chapter 14. Learn about WebSphere applications 651

nH Represents the number of hours in which the time stamp is in effect. Select a value from 0

to 23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value from

0 to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to aribrary precision. You can select a value from 0 to

59 for the seconds and from 0 to 9 for tenths of a second.

For example, 1 year, 2 months, 3 days, 10 hours, and 30 minutes is represented as

P1Y2M3DT10H30M. Typically, you might configure a message time stamp for between 10 and 30

minutes. For example, 10 minutes is represented as P0Y0M0DT0H10M0S.

Security token:

A security token represents a set of claims made by a client that might include a name, password, identity,

key, certificate, group, privilege, and so on.

 Web services security provides a general-purpose mechanism to associate security tokens with messages

for single message authentication. A specific type of security token is not required by Web services

security. Web services security is designed to be extensible and support multiple security token formats to

accommodate a variety of authentication mechanisms. For example, a client might provide proof of

identity and proof of a particular business certification. However, the security token usage for Web services

security is defined in separate profiles such as the Username token profile, the X.509 token profile, the

Security Assertion Markup Language (SAML) token profile, the eXtensible rights Markup Language (XrML)

token profile, the Kerberos token profile and so on.

A security token is embedded in the Simple Object Access Protocol (SOAP) message within the SOAP

header. The security token within the SOAP header is propagated from the message sender to the

intended message receiver. On the receiving side, the WebSphere Application Server security handler

authenticates the security token and sets up the caller identity on the running thread.

WebSphere Application Server Version 6 contains an enhanced security token that has the following

features:

v The client can send multiple tokens to downstream servers.

v The receiver can determine which security token to use for authorization based upon the type or signed

part for X.509 tokens.

v You can use the custom token for digital signing or encryption.

 Related concepts

 “Username token element” on page 673
You can use the UsernameToken element to propagate a user name and, optionally, password

information. Also, you can use this token type to carry basic authentication information. Both a user

name and a password are used to authenticate the message. A UsernameToken containing the user

name is used in identity assertion, which establishes the identity of the user based on the trust

relationship.

 “Binary security token” on page 740
The ValueType attribute identifies the type of the security token, for example, a Lightweight Third Party

Authentication (LTPA) token. The EncodingType type indicates how the security token is encoded, for

example, Base64Binary. The BinarySecurityToken element defines a security token that is binary

encoded. The encoding is specified using the EncodingType attribute. The value type and space are

specified using the ValueType attribute. The Web services security implementation for WebSphere

Application Server, Version 6 supports both LTPA and X.509 certificate binary security tokens.

 “XML token” on page 526
XML tokens are offered in two well-known formats called Security Assertion Markup Language (SAML)

and eXtensible rights Markup Language (XrML).

652 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Configuring the security token in generator security constraints:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

A security token represents a set of claims that are made by a client and might include a name, password,

identity, key, certificate, group, privilege, and so on. It is embedded in the Simple Object Access protocol

(SOAP) message within the SOAP header. WebSphere Application Server propagates the security token

within the SOAP header from the message sender to the intended message receiver. On the receiving

side, the security handler for WebSphere Application Server authenticates the security token and sets up

the caller identity on the thread.

Complete the following steps to specify the security token when you configure the request generator or the

response generator. The request generator is configured for the client and the response generator is

configured for the server. In the following steps, you must configure either the client-side extensions in

step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Security Token section. The Security Token Dialog window is displayed.

5. Click Add to configure the security token. Complete the following steps to configure the security token:

a. Specify a name for the security token in the Name field. For example, you might specify un_token.

b. Select a token type from the Token type field. For example, if you wish to send a username token,

select Username for the token type. If you select a token type other than custom token, you do not

need to specify values in the Uniform Resource Identifier (URI) and Local name fields. These fields

are automatically specified when you select a token type other than custom token.

For a username token or an X.509 token, you do not need to specify a value in the URI field.

c. Optional: Specify a value for the URI and Local name fields if you are configuring a custom token.

For example, you might specify http://www.ibm.com/custom in the URI field and CustomToken in

the Local name field.

6. Click OK to save the configuration changes.

When you configure the token generator, select the security token that you created using these steps. For

more information, see “Configuring token generators with an assembly tool” on page 587.

 Related concepts

 “Security token” on page 652
A security token represents a set of claims made by a client that might include a name, password,

identity, key, certificate, group, privilege, and so on.

 Related tasks

 “Configuring token generators with an assembly tool” on page 587

Configuring the security token requirement in consumer security constraints:

Chapter 14. Learn about WebSphere applications 653

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

A security token represents a set of claims that are made by a client and might include a name, password,

identity, key, certificate, group, privilege, and so on. It is embedded in the Simple Object Access protocol

(SOAP) message within the SOAP header. WebSphere Application Server propagates the security token

within the SOAP header from the message sender to the intended message receiver. On the receiving

side, the security handler for WebSphere Application Server authenticates the security token and sets up

the caller identity on the thread.

Complete the following steps to specify the security token when you configure the response consumer or

the request consumer. The response consumer is configured for the client and the request consumer is

configured for the server. In the following steps, you must configure either the client-side extensions in

step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Security Token section. The Required Security Token Dialog window is displayed.

5. Click Add to configure the security token. Complete the following steps to configure the security token:

a. Specify a name for the security token in the Name field. For example, you might specify un_token.

b. Select a token type from the Token type field. For example, if you want to send a username token,

select Username for the token type. If you select a token type other than custom token, you do not

need to specify values in the Uniform Resource Identifier (URI) and Local name fields. These fields

are automatically specified when you select a token type other than custom token.

For a username token or an X.509 token, you do not need to specify a value in the URI field.

c. Optional: Specify a value for the URI and Local name fields if you are configuring a custom token.

For example, you might specify http://www.ibm.com/custom in the URI field and CustomToken in

the Local name field.

d. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

6. Click OK to save the configuration changes.

When you configure the token consumer, select the security token that you created using these steps. For

more information, see “Configuring token consumers with an assembly tool” on page 613.

 Related tasks

 “Configuring token consumers with an assembly tool” on page 613

Configuring the caller in consumer security constraints:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

654 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The caller is used to identify the token. The run time for Web services security uses this token identity to

create the security credential and principal for WebSphere Application Server. The token identity must be

in the configured user registry so that the Application Server can use the token identity in Java 2 Platform,

Enterprise Edition (J2EE) authorization checks.

Complete the following steps to specify the caller part when you configure the consumer security

constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Caller Part section.

5. Click Add to specify the caller part. The Caller Part Dialog window is displayed. Complete the following

steps to configure the caller part:

a. Specify the name of the caller in the Name field.

b. Optional: Specify the name of an integrity or confidentiality part in the Required Integrity or

Required Confidentiality part field if you want to select the token that used for either digital

signature or encryption as the caller token. For more information on these configurations, see the

following tasks:

v “Signing message elements in consumer security constraints with keywords” on page 600

v “Signing message elements in consumer security constraints with an XPath expression” on page

606

v “Encrypting message elements in consumer security constraints with keywords” on page 639

v “Encrypting message elements in consumer security constraints with an XPath expression” on

page 643

Important: Either complete this step or specify a token type in the Token type field in the next

step.

c. Optional: Specify a token type in the Token type field if you want to select a stand-alone security

token as the caller token.

If a stand-alone security token is used for authentication, then the Uniform Resource Identifier

(URI) and local name attributes must define the type of security token that is used for

authentication. You can select standard or custom security tokens by URI and local name.

If you specify a token type in the Token type field, complete the following steps:

1) Specify the namespace URI of the security token that is used for authentication in the URI field.

2) Specify the local name of the security token that is used for authentication in the Local name

field. The following table shows the URI and local name combinations that are supported:

Chapter 14. Learn about WebSphere applications 655

Table 13. URI and Local name combinations

URI Local name

X.509 certificate token http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7 http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#PKCS7

http://www.ibm.com/websphere/appserver/tokentype/5.0.2 LTPA

The Custom token requires that you specify both the URI and the Local name.

6. Optional: Configure identity assertion. For more information, see “Configuring identity assertion”

7. Optional: Click Add and specify a Trust method property in the Trust method property section, if

necessary.

8. Optional: Click Add and specify an additional property in the Property section, if necessary.

9. Click OK to save the configuration changes.

Note: These configurations on the consumer side and the generator side must match.

 Related tasks

 “Signing message elements in consumer security constraints with keywords” on page 600

 “Signing message elements in consumer security constraints with an XPath expression” on page 606

 “Encrypting message elements in consumer security constraints with keywords” on page 639

 “Encrypting message elements in consumer security constraints with an XPath expression” on page

643

 “Configuring identity assertion”

Configuring identity assertion:

Prior to completing this task, you must import your application into an assembly tool. For information on

how to import your application, see ″Importing enterprise applications″ in the ″Developing and deploying

applications″ PDF.

Identity assertion is one of the WebSphere Application Server Version 6 enhancements, but it must be

used in a secured environment such as a Virtual Private Network (VPN) or HTTPs. In a secure

environment, it is possible to send the requester identity without credentials with other trusted credentials

such as the server identity. With identity assertion, WebSphere Application server supports the following

types of trust modes:

None Specifies that a trusted credential is not attached to the Simple Object Access protocol (SOAP)

message

BasicAuth

Specifies that a username token with a user name and a password is used as a trusted credential

Signature

Specifies that an X.509 certificate security token is used in the digital signature

The specific configuration for identity assertion is necessary on the consumer side in a service

configuration only. On the generator side, you need to configure two token generators in a client

configuration: one for a requester token and one for a token of a trusted party.

Complete the following steps to configure an application for identity assertion. You must configure both the

consumer and the generator to complete the configuration.

656 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

1. Start the assembly tool and click Window > Open Perspective > J2EE.

 2. Expand the Web Services > Services section in the Project Explorer and double-click the name of the

Web service.

 3. Click the Extensions tab and expand the Response Consumer Service Configuration Details > Caller

Part section to configure the caller token.

 4. Configure the caller token for the consumer. Complete the following steps to configure the caller

token for the consumer:

a. Click Add to configure the caller part. The Caller Part Dialog window is displayed. In this window,

configure both a token that is used as a caller (requester) credential and a token for the trusted

party.

b. Specify a name for the caller token in the Name field.

c. Select the type of caller token in Token type field. For example, you can select Username if a

username token is used as the caller token. When you select the token type, the Local name is

automatically specified.

d. Optional: If you select the Custom token in the Token type field, you must specify the Local

name and the Uniform Resource Identifier (URI) of the custom token. The URI field is used only

for a custom token.

e. Optional: If the caller token is also used as a certificate of a required integrity or confidentiality

part, select the name of the part in Integrity or Confidentiality part field. The list contains the

names of the integrity and confidentiality parts that are defined in the Required Integrity and

Required Confidentiality sections for the consumer. For example, when an X.509 certificate token

is used for both a caller token and a signature certificate of the body element, you can select

X.509 certificate token in the Token type field and select reqint_body1 in Integrity or

Confidentiality part field. This example assumes that reqint_body1 is a required integrity

configuration.

 5. Configure a trusted party token for the consumer. Complete the following steps to configure the

trusted party token:

a. Select the Use IDAssertion option to associate a trust method with this caller and to verify an

asserted identity from the intermediary (caller).

b. Select the name of the trust method in the Trust method name field. The following selections are

supported:

None Select this option to specify that a trusted credential is not attached to the SOAP

message.

BasicAuth

Select this option to specify that a username token with a user name and password is

used as a trusted credential.

Signature

Select this option to specify that an X.509 certificate security token is used in the digital

signature.

When you select either BasicAuth or Signature, the URI and the Local name fields are

automatically specified.

c. Optional: Select a name of an integrity or confidentiality part in the Integrity or Confidentiality part

field if you require digital signature or encryption by the trusted party token. For example, if you

select Signature in the Trust method name field and you require that the trusted party token signs

the body element, select reqint_body2 in Integrity and Confidentiality part field. This example

assumed that reqint_body2 is a required integrity configuration.

 6. Optional: If you select BasicAuth or Signature in the Trust method name field, specify a trusted ID

evaluator in Token Consumer Dialog window of the binding configuration. Complete the following

steps to specify a trusted ID evaluator:

a. Click Binding Configurations in the Web services editor.

Chapter 14. Learn about WebSphere applications 657

b. Expand the Token Consumer section and click Add.

c. Click the Use trusted ID evaluator option.

d. Specify a class name in the Trusted ID evaluator class field. The class implements the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface and validates a trusted party token.

WebSphere Application Server provides the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

class, which is a sample implementation of the TrustedIDEvaluator interface. If you use this class,

specify com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl in Trusted ID evaluator class field

and click Add to add the following trusted ID evaluator property:

v In the name field, specify trustedid

v In the value field, specify CN=Alice,O=IBM,C=US

The value of the property is the distinguished name (DN) of the username or X.509 certificate

token of the trusted party token.

e. Click OK to save the configuration.

 7. Expand the Web Services > Client section in the Project Explorer and double-click the name of the

Web service.

 8. Click the WS Extension tab and expand the Request Generator Configuration > Security Token

section.

 9. Specify the caller token for the generator. Do not specify a token in the required token if the token is

used for signing or encryption. However, you must specify a token in the required token for a

stand-alone token. A stand-alone token is a token that is not used for signing or encryption. When the

caller token type is a username token or an X.509 certificate token and it is not used for signing or

encryption, specify a security token for this caller token.

a. Click Add to configure a security token.

b. Specify a name for the caller token in the Name field.

c. Select either the Username or X.509 certificate token option in the Token type field. After you

select one of these two options, a value for the Local name field is automatically defined.

d. Click OK to save the configuration.

e. Click the WS Binding tab and expand the Security Request Generator Binding Configuration >

Token Generator section.

f. Click Add and add the token generator configuration for the caller token.

g. Click OK to save the configuration.

10. Configure the trusted party token. When the trust mode, which was specified previously, is None only

the caller token is attached and you do not need to specify the security token of the trusted party.

When the trust mode is BasicAuth or Signature you need to specify a username token or an X.509

certificate token of the trusted party token. However, if the X.509 certificate token of trusted party is

used for digital signing or encryption as well, you do not need to specify the security token of the

trusted party. Complete the following steps to configure the trusted party token:

a. Expand the Web Services > Client section in the Project Explorer and double-click the name of

the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration > Security Token

section.

c. Click Add to configure a security token.

d. Specify a name for the trusted party token in the Name field.

e. Select either the Username or X.509 certificate token option in the Token type field. After you

select one of these two options, a value for the Local name field is automatically defined.

f. Click OK to save the configuration.

g. Click the WS Binding tab and expand the Security Request Generator Binding Configuration >

Token Generator section.

h. Click Add and add the token generator configuration for the trusted party token.

658 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

i. Click OK to save the configuration.

Your environment is configured for identity assertion.

 Related tasks

 “Configuring token generators with an assembly tool” on page 587

Configuring trust anchors for the generator binding on the application level

This document describes how to configure trust anchors for the generator binding at the application level.

It does not describe how to configure trust anchors at the server or cell level. Trust anchors defined at the

application level have a higher precedence over trust anchors defined at the server or cell level. For more

information on creating and configuring trust anchors on the server or cell level, see “Configuring trust

anchors on the server or cell level” on page 761.

You can configure a trust anchor for the application-level trust anchor using an Application Server Toolkit or

the administrative console. This document describes how to configure the application-level trust anchor

using the administrative console.

A trust anchor specifies key stores that contain trusted root certificates, which validate the signer

certificate. These key stores are used by the request generator and the response generator (when Web

services is acting as client) to generate the signer certificate for the digital signature. The keystores are

critical to the integrity of the digital signature validation. If they are tampered with, the result of the digital

signature verification is doubtful and comprised. Therefore, it is recommended that you secure these

keystores. The binding configuration specified for the request generator must match the binding

configuration for the response generator.

The trust anchor configuration for the request generator on the client must match the configuration for the

request consumer on the server. Also, the trust anchor configuration for the response generator on the

server must match the configuration for the response consumer on the client.

Complete the following steps to configure trust anchors for the generator binding on the application level:

1. Locate the trust anchor panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional Properties you can access the trust anchor configuration for the following

bindings:

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Trust anchors.

e. Click New to create a trust anchor configuration, click Delete to delete an existing configuration, or

click the name of an existing trust anchor configuration to edit its settings. If you are creating a new

configuration, enter a unique name in the Trust anchor name field.

2. Specify the keystore password, the keystore location, and the keystore type. Key store files contain

public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and

so on. Keys retrieved from the keystore are used to sign and validate or encrypt and decrypt

messages or message parts. If you specified the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class

implementation, you must specify a key store password, location, and type.

a. Specify a password in the Key store password field. This password is used to access the keystore

file.

b. Specify the location of the key store file in the Key store path field.

Chapter 14. Learn about WebSphere applications 659

c. Select a keystore type from the Key store type field. The Java Cryptography Extension (JCE) used

by IBM supports the following key store types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the

${USER_INSTALL_ROOT}/etc/ws-security/samples directory. For example, you might use the

enc-receiver.jceks keystore file for encryption keys. The password for this file is Storepass and

the type is JCEKS.

Attention: Do not use these keystore files in a production environment. These samples are

provided for testing purposes only.

This task configures trust anchors for the generator binding at the application level.

You must specify a similar trust anchor configuration for the consumer.

Trust anchor collection:

Use this page to view a list of keystore objects that contain trusted root certificates. These objects are

used for certificate path validation of incoming X.509-formatted security tokens. Keystore objects within

trust anchors contain trusted root certificates that are used by the CertPath API to validate the trust of a

certificate chain.

 To create the keystore file, use the key tool that is located in the install_dir\java\jre\bin\keytool

directory.

To view this administrative console page for trust anchors on the cell level, complete the following steps:

1. Click Security > Web services.

2. Under Additional properties, click Trust anchors.

To view this administrative console page for trust anchors on the server level, complete the following

steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trust anchors.

To view this administrative console page for trust anchors on the application level,

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. 6.x application

Under Additional properties, you can access trust anchors information for the

following bindings:

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

660 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

4. 5.x application

Under Additional properties, you can access the trust anchors information for the

following bindings:

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit.

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit.

5. Under Additional properties, click Trust anchors.

If you click Update runtime, the Web services security run time is updated with the default binding

information, which is contained in the ws-security.xml file that was previously saved. If you make

changes on this panel, you must complete the following steps:

1. Save your changes by clicking Save at the top of the administrative console. When you click Save,

you are returned to the administrative console home panel.

2. Return to the Trust anchors collection panel and click Update runtime. When you click Update

runtime, the configuration changes made to the other Web services also are updated in the Web

services security run time.

 Related reference

 “Trust anchor configuration settings”
Use this information to configure a trust anchor. Trust anchors point to keystores that contain trusted

root or self-signed certificates. This information enables you to specify a name for the trust anchor and

the information that is needed to access a keystore. The application binding uses this name to

reference a predefined trust anchor definition in the binding file (or the default).

Trust anchor name:

Specifies the unique name that is used to identify the trust anchor.

Key store path:

Specifies the location of the keystore file that contains the trust anchors.

Key store type:

Specifies the type of keystore file.

 The value for this field is JKS, JCEKS, PKCS11KS (PKCS11), or PKCS12KS (PKCS12).

Trust anchor configuration settings:

Use this information to configure a trust anchor. Trust anchors point to keystores that contain trusted root

or self-signed certificates. This information enables you to specify a name for the trust anchor and the

information that is needed to access a keystore. The application binding uses this name to reference a

predefined trust anchor definition in the binding file (or the default).

 To view this administrative console page for trust anchors on the cell level, complete the following steps:

1. Click Security > Web services.

2. Under Additional properties, click Trust anchors.

3. Click New to create a trust anchor or click the name of an existing configuration to modify its settings.

To view this administrative console page for trust anchors on the server level, complete the following

steps:

Chapter 14. Learn about WebSphere applications 661

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trust anchors.

4. Click New to create a trust anchor or click the name of an existing configuration to modify its settings.

To view this administrative console page for trust anchors on the application level,

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. 6.x application

Under Additional properties, you can access trust anchors information for the

following bindings:

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

4. 5.x application

Under Additional properties, you can access the trust anchors information for the

following bindings:

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit.

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit.

5. Under Additional properties, click Trust anchors.

6. Click New to create a trust anchor or click the name of an existing configuration to modify its settings.

 Related reference

 “Trust anchor collection” on page 660
Use this page to view a list of keystore objects that contain trusted root certificates. These objects are

used for certificate path validation of incoming X.509-formatted security tokens. Keystore objects within

trust anchors contain trusted root certificates that are used by the CertPath API to validate the trust of

a certificate chain.

Trust anchor name:

Specifies the unique name that is used by the application binding to reference a predefined trust anchor

definition in the default binding.

Key store password:

Specifies the password that is needed to access the key store file.

Key store path:

Specifies the location of the keystore file.

 Use ${USER_INSTALL_ROOT} as this path expands to the WebSphere Application Server path on your

machine.

Key store type:

Specifies the type of keystore file.

 Choose from the following options:

JKS Use this option if you are not using Java Cryptography Extensions (JCE).

662 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)

Use this format if your keystore uses the PKCS#11 file format. Keystores that use this format

might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might encrypt

keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

 Default JKS

Range JKS, JCEKS, PKCS11KS (PKCS11), PKCS12KS

(PKCS12)

Configuring the collection certificate store for the generator binding on the

application level

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs is used to check for a valid signature in

a digitally signed Simple Object Access Protocol (SOAP) message. Complete the following steps to

configure a collection certificate for the generator bindings on the application level:

 1. Locate the collection certificate store configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional Properties you can access the key information for the request generator and

response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store.

 2. Specify the Certificate store name. Click New to create a collection certificate store configuration,

select the box next to the configuration and click Delete to delete an existing configuration, .or click

the name of an existing collection certificate store configuration to edit its settings. If you are creating

a new configuration, enter a name in the Certificate store name field.

The name of the collection certificate store must be unique to the level of the application server. For

example, if you create the collection certificate store for the application level, the store name must be

unique to the application level. The name that is specified in the Certificate store name field is used

by other configurations to refer to a predefined collection certificate store. WebSphere Application

Server searches for the collection certificate store based on proximity.

For example, if an application binding refers to a collection certificate store named cert1, the

Application Server searches for cert1 at the application level before searching the server level.

 3. Specify a certificate store provider in the Certificate store provider field. WebSphere Application

Server supports the IBMCertPath certificate store provider. To use another certificate store provider,

you must define the provider implementation in the provider list within the

install_dir/java/jre/lib/security/java.security file. However, make sure that your provider

supports the same requirements of the certificate path algorithm as WebSphere Application Server.

 4. Click OK and Save to save the configuration.

 5. Click the name of your certificate store configuration. After you specify the certificate store provider,

you must specify either the location of a certificate revocation list or the X.509 certificates. However,

you can specify both a certificate revocation list and the X.509 certificates for your certificate store

configuration.

Chapter 14. Learn about WebSphere applications 663

6. Under Additional properties, click Certificate revocation lists.

 7. Click New to specify a certificate revocation list path, click Delete to delete an existing list reference,

or click the name of an existing reference to edit the path. You must specify the fully qualified path to

the location where WebSphere Application Server can find your list of certificates that are not valid.

For portability reasons, it is recommended that you use the WebSphere Application Server variables

to specify a relative path to the certificate revocation lists (CRL). This recommendation is especially

important when you are working in a WebSphere Application Server Network Deployment

environment. For example, you might use the USER_INSTALL_ROOT variable to define a path such

as $USER_INSTALL_ROOT/mycertstore/mycrl1. For a list of supported variables, click Environment

> WebSphere variables in the administrative console. The following list provides recommendation for

using certificate revocation lists:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority

and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,

the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the

old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)

build failure.

 8. Click OK and Save to save the configuration.

 9. Return to the collection certificate store configuration panel. To access the panel, complete the

following steps:

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional Properties you can access the key information for the request generator and

response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store > certificate_store_name.

10. Under Additional properties, click X.509 certificates.

11. Click New to create a X.509 certificate configuration, click Delete to delete an existing configuration,

or click the name of an existing X.509 certificate configuration to edit its settings. If you are creating a

new configuration, enter a name in the Certificate store name field.

12. Specify a path in the X.509 certificate path field. This entry is the absolute path to the location of the

X.509 certificate. The collection certificate store is used to validate the certificate path of incoming

X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of path name. For example, you might type:

USER_INSTALL_ROOT/etc/ws-security/samples/intca2.cer. Do not use this certificate path for

production use. You must obtain your own X.509 certificate from a certificate authority before putting

your WebSphere Application Server environment into production.

Click Environment > WebSphere variables in the administrative console to configure the

USER_INSTALL_ROOT variable.

13. Click OK and then Save to save your configuration.

You have configured the collection certificate store for the generator binding.

You must specify a similar collection certificate store configuration for the consumer.

 Related tasks

664 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

“Configuring the collection certificate store for the consumer binding on the application level” on page

738

Collection certificate store collection:

Use this page to view a list of certificate stores that contains untrusted, intermediary certificate files

awaiting validation. Validation might consist of checking to see if the certificate is on a certificate

revocation list (CRL), checking that the certificate is not expired, and checking that the certificate is issued

by a trusted signer.

 The following list provides recommendations for using CRLs:

v If CRLs are added to the collection certificate store collection, add the CRLs for the root certificate

authority and each intermediate certificate, if applicable. When the CRL is in the certificate collection

store, the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the old

CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath) build

failure.

To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

To view this administrative console page for the collection certificate store on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. 6.x application

Under Additional properties, you can access collection certificate stores for the

following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4. 5.x application

Under Additional properties, you can access collection certificate stores for the

following bindings:

v For the Request receiver binding, click Web services: Server security bindings. Under Response

receiver binding, click Edit > Collection certificate store.

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Collection certificate store.

Complete the following steps:

1. Click New to specify a new certificate store name and certificate store provider.

2. Click OK and messages display at the top of the administrative console panel.

Chapter 14. Learn about WebSphere applications 665

3. Within the messages at the top of the administrative console panel, click Save.

4. Return to the collection certificate store collection panel and click Update runtime to update the Web

services security run time with the default binding information, which is found in the ws_security.xml

file. When you click Update runtime, the configuration changes made to the other Web services are

also updated in the Web services security run time.

 Related reference

 “Collection certificate store configuration settings”
Use this page to specify the name and the provider for a collection certificate store. A collection

certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate revocation

lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a digitally

signed Simple Object Access Protocol (SOAP) message.

 “X.509 certificates collection” on page 668
Use this page to view a list of untrusted, intermediate certificate files. This collection certificate store is

used for certificate path validation of incoming X.509-formatted security tokens.

 “X.509 certificate configuration settings” on page 669
Use this page to specify a list of untrusted, intermediate certificate files. This collection certificate store

is used for certificate path validation of incoming X.509-formatted security tokens.

 6.x application

“Certificate revocation list collection” on page 671
Use this page to determine the location of the certificate revocation lists (CRL) known to WebSphere

Application Server. The Application Server checks the CRLs to determine the validity of the client

certificate. A certificate that is found in a certificate revocation list might not be expired, but is no longer

trusted by the certificate authority (CA) that issued the certificate. The CA might add the certificate to

the certificate revocation list if it believes that the client authority is compromised.

 6.x application

“Certificate revocation list configuration settings” on page 672
Use this page to specify a list of certificate revocations that check the validity of a certificate. The

application server checks the certificate revocation lists (CRL) to determine the validity of the client

certificate. A certificate that is found in a certificate revocation list might not be expired, but is no longer

trusted by the certificate authority (CA) that issued the certificate. The CA might add the certificate to

the certificate revocation list if it believes that the client authority is compromised.

Certificate store name:

Specifies the name of the certificate store.

Certificate store provider:

Specifies the provider of the certificate store.

Collection certificate store configuration settings:

Use this page to specify the name and the provider for a collection certificate store. A collection certificate

store is a collection of nonroot, certificate authority (CA) certificates and certificate revocation lists (CRLs).

This collection of CA certificates and CRLs is used to check the signature of a digitally signed Simple

Object Access Protocol (SOAP) message.

 To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

4. Specify a new collection certificate store by clicking New or by clicking the collection certificate store

name to modify its settings.

666 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

To view this administrative console page for the collection certificate store on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. 6.x application

Under Additional properties, you can access collection certificate stores for the

following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4. 5.x application

Under Additional properties, you can access collection certificate stores for the

following bindings:

v For the Request receiver binding click Edit > Collection certificate store.

v For the Response receiver binding, click Edit > Collection certificate store.

5. Specify a new collection certificate store by clicking New or by clicking the collection certificate store

name to modify its settings.

After configuring a collection certificate store, you can select the new configuration under Certificate store

on the token generator and token consumer panels. To access these panels, complete the following steps:

1. Click Security > Web services.

2. Under Default generator bindings, click Token generators or under Default consumer bindings, click

Token consumers.

3. Click New to create a new token generator or token consumer, or click the name of an existing

configuration to make modifications.

After you configure your collection certificate store on this panel, you must click Apply before configuring

either the certificate revocation list or an X.509 certificate. The certificate revocation list configuration is not

available for version 5.x applications through the administrative console. After you configure your certificate

revocation list or X.509 certificate, complete the following steps:

1. Click Save, at the top of the administrative console panel, which returns you to the list of the

configured collection certificate stores.

2. Click Update runtime to update the Web services security run time with the default binding

information, which is found in the ws_security.xml file.

 Related reference

 “Collection certificate store collection” on page 665
Use this page to view a list of certificate stores that contains untrusted, intermediary certificate files

awaiting validation. Validation might consist of checking to see if the certificate is on a certificate

revocation list (CRL), checking that the certificate is not expired, and checking that the certificate is

issued by a trusted signer.

 “X.509 certificates collection” on page 668
Use this page to view a list of untrusted, intermediate certificate files. This collection certificate store is

used for certificate path validation of incoming X.509-formatted security tokens.

 “X.509 certificate configuration settings” on page 669
Use this page to specify a list of untrusted, intermediate certificate files. This collection certificate store

is used for certificate path validation of incoming X.509-formatted security tokens.

 “Certificate revocation list collection” on page 671
Use this page to determine the location of the certificate revocation lists (CRL) known to WebSphere

Chapter 14. Learn about WebSphere applications 667

Application Server. The Application Server checks the CRLs to determine the validity of the client

certificate. A certificate that is found in a certificate revocation list might not be expired, but is no longer

trusted by the certificate authority (CA) that issued the certificate. The CA might add the certificate to

the certificate revocation list if it believes that the client authority is compromised.

 “Certificate revocation list configuration settings” on page 672
Use this page to specify a list of certificate revocations that check the validity of a certificate. The

application server checks the certificate revocation lists (CRL) to determine the validity of the client

certificate. A certificate that is found in a certificate revocation list might not be expired, but is no longer

trusted by the certificate authority (CA) that issued the certificate. The CA might add the certificate to

the certificate revocation list if it believes that the client authority is compromised.

Certificate store name:

Specifies the name for the certificate store.

 The name of the collection certificate store must be unique in the scope. For example, the name must be

unique at the server level. The name specified in Certificate store name field is used by other

configurations to refer to a pre-defined collection certificate store. For example, the application binding

refers to a collection certificate store that is defined on the server level. WebSphere Application Server

looks up the collection certificate store based on proximity. For example, if cert1 is defined as the name of

the certificate store on the cell and server levels and cert1 is referenced in the application binding, the

application server uses the server-level collection certificate store.

Certificate Store Provider:

Specifies the provider for the certificate store implementation.

 WebSphere Application Server supports the IBMCertPath certificate path provider. If you need to use

another certificate path provider, define the provider implementation in the provider list within the

java.security file in the Software Development Kit (SDK).

 Data type String

Default IBMCertPath

X.509 certificates collection:

Use this page to view a list of untrusted, intermediate certificate files. This collection certificate store is

used for certificate path validation of incoming X.509-formatted security tokens.

 To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click X.509 certificates.

To view this administrative console page for an X.509 certificate on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

668 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

3. 6.x application

Under Additional properties, you can access collection certificate stores for the

following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4. 5.x application

Under Additional properties, you can access the collection certificate stores for the

following bindings.

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Collection certificate store.

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit > Collection certificate store.

5. Click the name of a configured collection certificate store or create a new collection certificate store

first.

6. Under Additional properties, click X.509 certificates.

 Related reference

 “X.509 certificate configuration settings”
Use this page to specify a list of untrusted, intermediate certificate files. This collection certificate store

is used for certificate path validation of incoming X.509-formatted security tokens.

 “Collection certificate store collection” on page 665
Use this page to view a list of certificate stores that contains untrusted, intermediary certificate files

awaiting validation. Validation might consist of checking to see if the certificate is on a certificate

revocation list (CRL), checking that the certificate is not expired, and checking that the certificate is

issued by a trusted signer.

 “Collection certificate store configuration settings” on page 666
Use this page to specify the name and the provider for a collection certificate store. A collection

certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate revocation

lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a digitally

signed Simple Object Access Protocol (SOAP) message.

X.509 certificate path:

Specifies the location of the X.509 certificate.

X.509 certificate configuration settings:

Use this page to specify a list of untrusted, intermediate certificate files. This collection certificate store is

used for certificate path validation of incoming X.509-formatted security tokens.

 To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click X.509 certificates.

Chapter 14. Learn about WebSphere applications 669

6. Specify a new X.509 certificate path by clicking New or by clicking the X.509 certificate path to modify

its settings.

To view this administrative console page for an X.509 certificate on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. 6.x application

Under Additional properties, you can access collection certificate stores for the

following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4. 5.x application

Under Additional properties, you can access the collection certificate stores for the

following bindings.

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Collection certificate store.

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit > Collection certificate store.

5. Click the name of a configured collection certificate store or create a new collection certificate store

first.

6. Under Additional properties, click X.509 certificates.

7. Specify a new X.509 certificate path by clicking New or click the X.509 certificate path to modify its

settings.

 Related tasks

 “Managing digital certificates” on page 443

 Related reference

 “X.509 certificates collection” on page 668
Use this page to view a list of untrusted, intermediate certificate files. This collection certificate store is

used for certificate path validation of incoming X.509-formatted security tokens.

 “Collection certificate store collection” on page 665
Use this page to view a list of certificate stores that contains untrusted, intermediary certificate files

awaiting validation. Validation might consist of checking to see if the certificate is on a certificate

revocation list (CRL), checking that the certificate is not expired, and checking that the certificate is

issued by a trusted signer.

 “Collection certificate store configuration settings” on page 666
Use this page to specify the name and the provider for a collection certificate store. A collection

certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate revocation

lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a digitally

signed Simple Object Access Protocol (SOAP) message.

X.509 Certificate Path:

Specifies the absolute path to the location of the X.509 certificate.

670 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

As shown in the following example, you can use the USER_INSTALL_ROOT variable as part of the path

name: {USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. This X.509 certificate path is not for

production use. Obtain your own X.509 from a certificate authority before putting your WebSphere

Application Server environment into production.

You can configure the USER_INSTALL_ROOT variable in the administrative console by clicking

Environment > WebSphere Variables.

Certificate revocation list collection:

Use this page to determine the location of the certificate revocation lists (CRL) known to WebSphere

Application Server. The Application Server checks the CRLs to determine the validity of the client

certificate. A certificate that is found in a certificate revocation list might not be expired, but is no longer

trusted by the certificate authority (CA) that issued the certificate. The CA might add the certificate to the

certificate revocation list if it believes that the client authority is compromised.

 To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click Certificate revocation lists.

6.x application

To view this administrative console page for the collection certificate store on the

application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules Web modules > URI_name.

3. Under Additional properties, you can access collection certificate stores for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click Certificate revocation lists.

6. Under Additional properties, you can access collection certificate stores for the following bindings:

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit.

7. Under Additional properties, click Collection certificate store >certificate_store_name.

8. Under Additional properties, click X.509 certificates.

9. Click New and specify the path to the certificate revocation list.

5.x application

To add a certificate revocation list for a version 5.x application, complete the following

steps:

1. Click Applications > Enterprise applications > application_name.

Chapter 14. Learn about WebSphere applications 671

2. Under Related items, click EJB modules Web modules > URI_name.

 Related reference

 “Certificate revocation list configuration settings”
Use this page to specify a list of certificate revocations that check the validity of a certificate. The

application server checks the certificate revocation lists (CRL) to determine the validity of the client

certificate. A certificate that is found in a certificate revocation list might not be expired, but is no longer

trusted by the certificate authority (CA) that issued the certificate. The CA might add the certificate to

the certificate revocation list if it believes that the client authority is compromised.

 “Collection certificate store collection” on page 665
Use this page to view a list of certificate stores that contains untrusted, intermediary certificate files

awaiting validation. Validation might consist of checking to see if the certificate is on a certificate

revocation list (CRL), checking that the certificate is not expired, and checking that the certificate is

issued by a trusted signer.

 “Collection certificate store configuration settings” on page 666
Use this page to specify the name and the provider for a collection certificate store. A collection

certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate revocation

lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a digitally

signed Simple Object Access Protocol (SOAP) message.

Certificate revocation list path:

Specifies the location where you can find the list of certificates that are not valid.

Certificate revocation list configuration settings:

Use this page to specify a list of certificate revocations that check the validity of a certificate. The

application server checks the certificate revocation lists (CRL) to determine the validity of the client

certificate. A certificate that is found in a certificate revocation list might not be expired, but is no longer

trusted by the certificate authority (CA) that issued the certificate. The CA might add the certificate to the

certificate revocation list if it believes that the client authority is compromised.

 To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click Certificate revocation lists > New to specify the path to a new list

or click the name of a certificate revocation list to modify its path.

To view this administrative console page for the collection certificate store on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access collection certificate stores for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

672 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click Certificate revocation lists > New to specify the path to a new list

or click the name of a certificate revocation list to modify its path.

 Related reference

 “Certificate revocation list collection” on page 671
Use this page to determine the location of the certificate revocation lists (CRL) known to WebSphere

Application Server. The Application Server checks the CRLs to determine the validity of the client

certificate. A certificate that is found in a certificate revocation list might not be expired, but is no longer

trusted by the certificate authority (CA) that issued the certificate. The CA might add the certificate to

the certificate revocation list if it believes that the client authority is compromised.

 “Collection certificate store collection” on page 665
Use this page to view a list of certificate stores that contains untrusted, intermediary certificate files

awaiting validation. Validation might consist of checking to see if the certificate is on a certificate

revocation list (CRL), checking that the certificate is not expired, and checking that the certificate is

issued by a trusted signer.

 “Collection certificate store configuration settings” on page 666
Use this page to specify the name and the provider for a collection certificate store. A collection

certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate revocation

lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a digitally

signed Simple Object Access Protocol (SOAP) message.

Certificate revocation list path:

Specifies a fully qualified path to the location where you can find the list of certificates that are not valid.

 For portability reasons, it is recommended that you use the WebSphere Application Server variables to

specify a relative path to the certificate revocation list. This recommendation is especially important when

you are working in a WebSphere Application Server Network Deployment environment. For example, you

might use the USER_INSTALL_ROOT variable to define a path such as

$USER_INSTALL_ROOT/mycertstore/mycrl where mycertstore represents the name of your certificate store

and mycrl represents the certificate revocation list. For a list of the supported variables, click Environment

> WebSphere variables in the administrative console.

The following list provides recommendations for using CRLs:

v If CRLs are added to the collection certificate store collection, add the CRLs for the root certificate

authority and each intermediate certificate, if applicable. When the CRL is in the certificate collection

store, the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the old

CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath) build

failure.

Username token element

You can use the UsernameToken element to propagate a user name and, optionally, password information.

Also, you can use this token type to carry basic authentication information. Both a user name and a

password are used to authenticate the message. A UsernameToken containing the user name is used in

identity assertion, which establishes the identity of the user based on the trust relationship.

The following example shows the syntax of the UsernameToken element:

Chapter 14. Learn about WebSphere applications 673

<wsse:UsernameToken wsu:Id="Example-1">

 <wsse:Username>

 ...

 </wsse:Username>

 <wsse:Password Type="...">

 ...

 </wsse:Password>

 <wsse:Nonce EncodingType="...">

 ...

 </wsse:Nonce>

 <wsu:Created>

 ...

 </wsu:Created>

</wsse:UsernameToken>

The Web services security specification defines the following password types:

wsse:PasswordText (default)

This type is the actual password for the user name.

wsse:PasswordDigest

The type is the digest of the password for the user name. The value is a base64-encoded SHA1

hash value of the UTF8-encoded password.

WebSphere Application Server supports the default PasswordText type. However, it does not support

password digest because most user registry security policies do not expose the password to the

application software.

The following example illustrates the use of the <UsernameToken> element:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <S:Header>

 ...

 <wsse:Security>

 <wsse:UsernameToken>

 <wsse:Username>Joe</wsse:Username>

 <wsse:Password>ILoveJava</wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

 </S:Header>

</S:Envelope>

 Related concepts

 “Nonce, a randomly generated token” on page 567
Nonce is a randomly generated, cryptographic token used to prevent replay attacks. Although Nonce

can be inserted anywhere in the SOAP message, it is typically inserted in the <UsernameToken>

element.

 “Binary security token” on page 740
The ValueType attribute identifies the type of the security token, for example, a Lightweight Third Party

Authentication (LTPA) token. The EncodingType type indicates how the security token is encoded, for

example, Base64Binary. The BinarySecurityToken element defines a security token that is binary

encoded. The encoding is specified using the EncodingType attribute. The value type and space are

specified using the ValueType attribute. The Web services security implementation for WebSphere

Application Server, Version 6 supports both LTPA and X.509 certificate binary security tokens.

 “XML token” on page 526
XML tokens are offered in two well-known formats called Security Assertion Markup Language (SAML)

and eXtensible rights Markup Language (XrML).

 “Security token” on page 652
A security token represents a set of claims made by a client that might include a name, password,

identity, key, certificate, group, privilege, and so on.

674 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Nonce, a randomly generated token

Nonce is a randomly generated, cryptographic token used to prevent replay attacks. Although Nonce can

be inserted anywhere in the SOAP message, it is typically inserted in the <UsernameToken> element.

Without nonce, when a user name token is passed from one machine to another machine using a

non-secure transport, such as HTTP, the token might be intercepted and used in a replay attack. The

same password might be reused when the username token is transmitted between the client and the

server, which leaves it vulnerable to attack. The user name token can be stolen even if you use XML

digital signature and XML encryption.

To help eliminate these replay attacks, the <wsse:Nonce> and <wsu:Created> elements are generated within

the <wsse:UsernameToken> element and used to validate the message. The server checks the freshness of

the message by verifying that the difference between the nonce creation time, which is specified by the

<wsu:Created> element, and the current time falls within a specified time period. Also, the server checks a

cache of used nonces to verify that the username token in the received Simple Object Access Protocol

(SOAP) message has not been processed within the specified time period. These two features are used to

lessen the chance that a user name token is used for a replay attack.

To add nonce for the username token, you can specify it in the token generator for the username token.

When the token generator for the username token is specified, you can select the Add nonce option if

you want to include nonce in the username token.

 Related concepts

 “Distributed nonce caching” on page 763
The distributed nonce caching feature enables you to distribute the cache for a nonce to different

servers in a cluster.

Configuring the token generator on the application level

This task describes the steps that are needed to specify the token generators at the application level. The

information is used on the generator side to generate the security token.

Complete the following steps to configure the token generator on the application level:

 1. Locate the token generator panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional Properties you can access the token generators for the following bindings:

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Token generators.

e. Click New to create a token generator configuration, select the box next to an existing

configuration and click Delete to delete an existing configuration, or click the name of an existing

token generator configuration to edit its settings. If you are creating a new configuration, enter a

unique name in the Token generator name field. For example, you might specify gen_signtgen.

 2. Specify a class name in the Token generator class name field. The token generator class must

implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. The token

generator class name for the request generator and the response generator must be similar to the

token consumer class name for the request consumer and the response consumer. For example, if

your application requires a username token consumer, you can specify the

com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer class name on the token consumer panel

for the application level and the com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator class

name in this field.

Chapter 14. Learn about WebSphere applications 675

3. Optional: Select a part reference in the Part reference field. The part reference indicates the name of

the security token that is defined in the deployment descriptor.

Important: On the application level, if you do not specify a security token in your deployment

descriptor, the Part reference field is not displayed. If you define a security token called

user_tgen in your deployment descriptor, user_tgen is displayed as an option in the Part

reference field. You can specify a security token in the deployment descriptor when you

assemble your application using an assembly tool.

 4. Select either None or Dedicated signing information for the certificate path. Select None when the

token generator does not use the PKCS#7 token type. When the token generator uses the PKCS#7

token type and you want to package certificate revocation lists (CRLs) in the security token, select

Dedicated signing information and select a certificate store. To configure a collection certificate

store and certificate revocation lists for the generator bindings on the application level, complete the

following steps:

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional Properties you can access the collection certificate store configuration for the

following bindings:

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store.

For more information about configuring a collection certificate store, see “Configuring the collection

certificate store for the generator binding on the application level” on page 663.

 5. Optional: Select the Add nonce option. This option indicates whether a nonce is included in the user

name token for the token generator. Nonce is a unique, cryptographic number that is embedded in a

message to help stop repeat, unauthorized attacks of user name tokens. The Add nonce option is

valid only when the generated token type is a user name token and is available only for the request

generator binding.

If you select the Add nonce option, you can specify the following properties under Additional

properties. These properties are used by the request consumer.

 Table 14. Additional nonce properties

Property name

Default

value Explanation

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.cacheTimeout

600

seconds

Specifies the timeout value, in seconds, for the

nonce value that is cached on the server.

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.clockSkew

0 seconds Specifies the time, in seconds, before the nonce

time stamp expires.

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.maxAge

300

seconds

Specifies the clock skew value, in seconds, to

consider when WebSphere Application Server

checks the timeliness of the message.

On the server level, you can specify these additional properties for a nonce on the Default bindings

for Web services security panel within the administrative console. To access the panell, click Servers

> Application servers >server_name. Under Security, click Web services: Default bindings for

Web services security.

 6. Optional: Select the Add timestamp option. This option indicates whether to insert a time stamp into

the user name token. The Add timestamp option is valid only when the generated token type is a

user name token and is available only for the request generator binding.

676 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

7. Specify the value type local name in the Local name field. For a user name token and an X.509

certificate security token, WebSphere Application Server provides predefined local names for the

value type. When you specify any of the following local names, you do not need to specify a value

type URI:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

This local name specifies a user name token.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509

This local name specifies an X.509 certificate token.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

This local name specifies X.509 certificates in a public key infrastructure (PKI) path.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

This local name specifies a list of X.509 certificates and certificate revocation lists in a

PKCS#7 format.

For an LTPA token, you can use LTPA for the value type local name and

http://www.ibm.com/websphere/appserver/tokentype/5.0.2 for the value type Uniform Resource

Identifier (URI).

 8. Optional: Specify the value type URI in the URI field. This entry specifies the namespace URI of the

value type for the generated token.

 9. Click OK and Save to save the configuration.

10. Click the name of your token generator configuration.

11. Under Additional properties, click Callback handler.

12. Specify the settings for the callback handler.

a. Specify a class name in the Callback handler class name field. This class name is the name of

the callback handler implementation class that is used to plug-in a security token framework. The

specified callback handler class must implement the javax.security.auth.callback.CallbackHandler

interface and must provide a constructor using the following syntax:

MyCallbackHandler(String username, char[] password, java.util.Map properties)

Where:

username

Specifies the user name that is passed into the configuration.

password

Specifies the password that is passed into the configuration.

properties

Specifies the other configuration properties that are passed into the configuration.

This constructor is required if the callback handler needs a user name and a password. However,

if the callback handler does not need a user name and a password, such as

X509CallbackHandler, use a constructor with the following syntax:

MyCallbackHandler(java.util.Map properties)

WebSphere Application Server provides the following default callback handler implementations:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This callback handler uses a login prompt to gather the user name and password

information. However, if you specify the user name and password on this panel, a prompt

is not displayed and WebSphere Application Server returns the user name and password

to the token generator. Use this implementation for a Java 2 Platform, Enterprise Edition

(J2EE) application client only. If you use this implementation, you must provide a basic

authentication user ID and password on this panel.

Chapter 14. Learn about WebSphere applications 677

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This callback handler does not issue a prompt and returns the user name and password if

it is specified on this panel. You can use this callback handler when the Web service is

acting as a client. If you use this implementation, you must provide a basic authentication

user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This callback handler uses a standard-in prompt to gather the user name and password.

However, if the user name and password is specified on this panel, WebSphere

Application Server does not issue a prompt, but returns the user name and password to

the token generator. Use this implementation for a Java 2 Platform, Enterprise Edition

(J2EE) application client only. If you use this implementation, you must provide a basic

authentication user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA)

security token from the Run As invocation Subject. This token is inserted in the Web

services security header within the SOAP message as a binary security token. However, if

the user name and password are specified on this panel, WebSphere Application Server

authenticates the user name and password to obtain the LTPA security token rather than

obtaining it from the Run As Subject. Use this callback handler only when the Web

service is acting as a client on the application server. It is recommended that you do not

use this callback handler on a J2EE application client. If you use this implementation, you

must provide a basic authentication user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This callback handler is used to create the X.509 certificate that is inserted in the Web

services security header within the SOAP message as a binary security token. A keystore

and a key definition is required for this callback handler. If you use this implementation,

you must provide a key store password, path, and type on this panel.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

This callback handler is used to create X.509 certificates encoded with the PKCS#7

format. The certificate is inserted in the Web services security header in the SOAP

message as a binary security token. A keystore is required for this callback handler. You

can specify a certificate revocation list (CRL) in the collection certificate store. The CRL is

encoded with the X.509 certificate in the PKCS#7 format. If you use this implementation,

you must provide a key store password, path, and type on this panel.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

This callback handler is used to create X.509 certificates encoded with the PkiPath

format. The certificate is inserted in the Web services security header within the SOAP

message as a binary security token. A keystore is required for this callback handler. A

CRL is not supported by the callback handler; therefore, the collection certificate store is

not required or used. If you use this implementation, you must provide a key store

password, path, and type on this panel.

The callback handler implementation obtains the required security token and passes it to the

token generator. The token generator inserts the security token in the Web services security

header within the SOAP message. Also, the token generator is a plug-in point for the pluggable

security token framework. Service providers can provide their own implementation, but the

implementation must use the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent

interface.

b. Optional: Select the Use identity assertion option. Select this option if you have identity

assertion defined in the IBM extended deployment descriptor. This option indicates that only the

identity of the initial sender is required and inserted into the Web services security header within

the SOAP message. For example, WebSphere Application Server sends only the user name of

the original caller for a username token generator. For an X.509 token generator, the application

server sends the original signer certification only.

678 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

c. Optional: Select the Use RunAs identity option. Select this option if you have identity assertion

defined in the IBM extended deployment descriptor and you want to use the Run As identity

instead of the initial caller identity for identity assertion in a downstream call. This option is valid

only if you have Username TokenGenerator configured as a token generator.

d. Optional: Specify the basic authentication user ID in the Basic authentication user ID field. This

entry specifies the user name that is passed to the constructors of the callback handler

implementation. The basic authentication user name and password are used if you specified one

of the following default callback handler implementations in the Callback handler class name field:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

e. Optional: Specify the basic authentication password in the Basic authentication password field.

This entry specifies the password that is passed to the constructors of the callback handler

implementation.

f. Optional: Specify the key store password in the Key store password field. This entry specifies the

password used to access the key store file. The key store and its configuration are used if you

select on of the following default callback handler implementations that are provided by

WebSphere Application Server:

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

The keystore is used to retrieve the X.509 certificate.

g. Optional: Specify the key store path in the Path field. It is recommended that you use the

${USER_INSTALL_ROOT} in the path name as this variable expands to the WebSphere Application

Server path on your machine. To change the path used by this variable, click Environment >

WebSphere variables, and click USER_INSTALL_ROOT. This field is required when you use the

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler,

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler, or

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler callback handler implementations.

h. Optional: Select the key store type in the Type field. This selection indicates the format used by

the keystore file. You can select one of the following values for this field:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS

Use this option if the Java Cryptography Extension is configured in the software

development kit (SDK). The default IBM JCE is configured in WebSphere Application

Server. This option provides stronger protection for stored private keys by using Triple

DES encryption.

PKCS11KS (PKCS11)

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

13. Click OK and then click Save to save the configuration.

14. Click the name of your token generator configuration.

15. Under Additional properties, click Callback handler > Keys.

Chapter 14. Learn about WebSphere applications 679

16. Specify the key name, key alias, and the key password.

a. Click New to create a key configuration, click Delete to delete an existing configuration, or click

the name of an existing key configuration to edit its settings. If you are creating a new

configuration, enter a unique name in the key name field. For digital signatures, the key name is

used by the request generator or response generator signing information to determine which key

is used to digitally sign the message. For encryption, the key name is used to determine the key

used for encryption. The key name must be a fully qualified, distinguished name. For example,

CN=Bob,O=IBM,C=US.

b. Specify the key alias in the Key alias field. The key alias is used by the key locator to find the key

within the keystore file.

c. Specify the key password in the Key password field. This password is needed to access the key

object within the keystore file.

17. Click OK and Save to save the configuration.

You have configured the token generator for the application level.

You must specify a similar token consumer configuration for the application level.

 Related tasks

 “Configuring the collection certificate store for the generator binding on the application level” on page

663

 “Configuring the token generator on the application level” on page 675

Request generator (sender) binding configuration settings:

Use this page to specify the binding configuration for the request generator.

 To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Additional properties, click Web services: Client security bindings.

5. Under Request generator (sender) binding, click Edit custom.

The security constraints or bindings are defined using the application assembly process before the

application is installed. WebSphere Application Server provides assembly tools to assemble your

application.

(Note that an assembly tool is not available on the z/OS platform.)

If the security constraints are defined in the application, you must either define the corresponding binding

information or select the Use defaults option on this panel and use the default binding information for the

cell or server level. The default binding provided by WebSphere Application Server is a sample. Do not

use this sample in a production environment without modifying the configuration. The security constraints

define what is signed or encrypted in the Web services security message. The bindings define how to

enforce the requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security

constraint (integrity) is defined in the deployment descriptor.

 Information type Required or optional

Signing information Required

680 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Information type Required or optional

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at either the server-level

or the cell-level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint

(confidentiality) is defined in the deployment descriptor.

 Information type Required or optional

Encryption information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at either the server-level

or the cell-level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint

is defined in the deployment descriptor.

 Information type Required or optional

Token generator Required

Collection certificate store Optional

Properties Optional

You can use the collection certificate store that is defined at either the server-level or the cell-level.

 Related reference

 “Request consumer (receiver) binding configuration settings” on page 745
Use this page to specify the binding configuration for the request consumer.

 “Response generator (sender) binding configuration settings” on page 682
Use this page to specify the binding configuration for the response generator or response sender.

 “Response consumer (receiver) binding configuration settings” on page 747
Use this page to specify the binding configuration for the response consumer.

Use defaults:

Select this option if you want to use the default binding information from the server or cell level.

Chapter 14. Learn about WebSphere applications 681

Component:

Specifies the enterprise bean in an assembled EJB module.

Port:

Specifies the port in the Web service that is defined during application assembly.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Response generator (sender) binding configuration settings:

Use this page to specify the binding configuration for the response generator or response sender.

 To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Additional properties, click Web services: Server security bindings.

5. Under Response generator (sender) binding, click Edit custom.

The security constraints or bindings are defined using the application assembly process before the

application is installed. WebSphere Application Server provides assembly tools to assemble your

application.

Note: An assembly tool is not available on the z/OS platform.

If the security constraints are defined in the application, you must either define the corresponding binding

information or select the Use defaults option on this panel and use the default binding information for the

server or cell level. The default binding that is provided by WebSphere Application Server is a sample. Do

not use this sample in a production environment without modifying the configuration. The security

constraints define what is signed or encrypted in the Web services security message. The bindings define

how to enforce the requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security

constraint (integrity) is defined in the deployment descriptor.

 Information type Required or optional

Signing information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at either the server-level

or the cell-level.

682 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint

(confidentiality) is defined in the deployment descriptor.

 Information type Required or optional

Encryption information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at either the server-level

or the cell-level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint

is defined in the deployment descriptor.

 Information type Required or optional

Token generator Required

Collection certificate store Optional

Properties Optional

You can use the collection certificate store that is defined at either the server-level or the cell-level.

 Related reference

 “Request generator (sender) binding configuration settings” on page 680
Use this page to specify the binding configuration for the request generator.

 “Request consumer (receiver) binding configuration settings” on page 745
Use this page to specify the binding configuration for the request consumer.

 “Response consumer (receiver) binding configuration settings” on page 747
Use this page to specify the binding configuration for the response consumer.

Use defaults:

Select this option if you want to use the default binding information from the server or cell level.

Port:

Specifies the port number in the Web service that is defined during application assembly.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Callback handler configuration settings:

Use this page to specify how to acquire the security token that is inserted in the Web services security

header within the Simple Object Access Protocol (SOAP) message. The token acquisition is a pluggable

Chapter 14. Learn about WebSphere applications 683

framework that leverages the Java Authentication and Authorization Service (JAAS)

javax.security.auth.callback.CallbackHandler interface for acquiring the security token.

 To view this administrative console page for the callback handler on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token generators > token_generator_name.

4. Under Additional properties, click Callback handler.

To view this administrative console page for the callback handler on the application level , complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access the callback handler information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom. Under Additional properties, click Token

generator. Click New to create a new token generator configuration or click the name of an existing

configuration to modify its settings. Under Additional properties, click Callback handler.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom. Under Additional properties, click

Token generator. Click New to create a new token generator configuration or click the name of an

existing configuration to modify its settings. Under Additional properties, click Callback handler.

 Related reference

 “Token generator collection” on page 769
Use this page to view the token generators. The information is used on the generator side only to

generate the security token.

 “Token generator configuration settings” on page 769
Use this page to specify the information for the token generator. The information is used at the

generator side only to generate the security token.

Callback handler class name:

Specifies the name of the callback handler implementation class that is used to plug in a security token

framework.

 The specified callback handler class must implement the javax.security.auth.callback.CallbackHandler

class. The implementation of the JAAS javax.security.auth.callback.CallbackHandler interface must provide

a constructor using the following syntax:

MyCallbackHandler(String username, char[] password, java.util.Map properties)

Where:

username

Specifies the user name that is passed into the configuration.

password

Specifies the password that is passed into the configuration.

properties

Specifies the other configuration properties that are passed into the configuration.

WebSphere Application Server provides the following default callback handler implementations:

684 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

5.x and 6.x
application com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This callback handler uses a login prompt to gather user name and password information.

However, if you specify the user name and password on this panel, a prompt is not displayed and

WebSphere Application Server returns the user name and password to the token generator if it is

specified on this panel. However, use this implementation for a Java 2 Platform, Enterprise Edition

(J2EE) application client only.

5.x and 6.x
application

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This callback handler does not issue a prompt and returns the user name and password if it is

specified on this panel. You can use this callback handler when the Web service is acting as a

client.

5.x and 6.x
application

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This callback handler uses a standard-in prompt to gather the user name and password. However,

if the user name and password is specified on this panel, WebSphere Application Server does not

issue a prompt, but returns the user name and password to the token generator. However, use this

implementation for a Java 2 Platform, Enterprise Edition (J2EE) application client only.

5.x and 6.x
application

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA) security

token from the Run As invocation Subject. This token is inserted in the Web services security

header within the SOAP message as a binary security token. However, if the user name and

password are specified on this panel, WebSphere Application Server authenticates the user name

and password to obtain the LTPA security token rather than obtaining it from the Run As Subject.

Use this callback handler only when the Web service is acting as a client on the application server.

It is recommended that you do not use this callback handler on a J2EE application client.

6.x application

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This callback handler is used to create the X.509 certificate that is inserted in the Web services

security header within the SOAP message as a binary security token. A keystore and a key

definition is required for this callback handler.

6.x application

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

This callback handler is used to create X.509 certificates encoded with the PKCS#7 format. The

certificate is inserted in the Web services security header in the SOAP message as a binary

security token. A keystore is required for this callback handler. You must specify a certificate

revocation list (CRL) in the collection certificate store. The CRL is encoded with the X.509

certificate in the PKCS#7 format.

6.x application

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

This callback handler is used to create X.509 certificates encoded with the PkiPath format. The

certificate is inserted in the Web services security header within the SOAP message as a binary

security token. A keystore is required for this callback handler. A CRL is not supported by the

callback handler, hence, the collection certificate store is not required or used.

The callback handler implementation obtains the required security token and passes it to the token

generator. The token generator inserts the security token in the Web services security header within the

SOAP message. Also, the token generator is plug-in point for the pluggable security token framework.

Service providers can provide their own implementation, but the implementation must use the

com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface.

Use identity assertion:

Select this option if you have identity assertion defined in the IBM extended deployment descriptor.

Chapter 14. Learn about WebSphere applications 685

This option indicates that only the identity of the initial sender is required and inserted into the Web

services security header within the SOAP message. For example, WebSphere Application Server only

sends the user name of the original caller for a Username TokenGenerator. For an X.509 token generator,

the application server sends the original signer certification only.

Use RunAs identity:

Select this option if you have identity assertion defined in the IBM extended deployment descriptor and

you want to use the Run As identity instead of the initial caller identity for identity assertion for a

downstream call.

 This option is valid only if you have Username TokenGenerator configured as a token generator.

Basic authentication user ID:

Specifies the user name that is passed to the constructors of the callback handler implementation.

 The basic authentication user name and password are used if you select one of the following default

callback handler implementations provided by WebSphere Application Server:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

These implementations are described in detail under the Callback handler class name field description in

this article.

Basic authentication password:

Specifies the password that is passed to the constructor of the callback handler.

 The keystore and its related configuration are used if you select one of the following default callback

handler implementations provided by WebSphere Application Server:

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

The keystore is used to retrieve the X.509 certificate.

Key store password:

Specifies the password that is used to access the keystore file.

Key store path:

Specifies the location of the keystore file.

 Use ${USER_INSTALL_ROOT} in the path name because this variable expands to the WebSphere

Application Server path on your machine. To change the path used by this variable, click Environment >

WebSphere variables and click USER_INSTALL_ROOT.

Key store type:

686 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Specifies the type of keystore file format

 You can choose one of the following values for this field:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS

Use this option if the Java Cryptography Extension is configured in the software development kit

(SDK). The default IBM JCE is configured in WebSphere Application Server. This option provides

stronger protection for stored private keys by using Triple DES encryption.

PKCS11KS (PKCS11)

Use this option if your keystore file uses the PKCS#11 file format. Keystore files that use this

format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might

encrypt keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore file uses the PKCS#12 file format.

Key collection:

Use this page to view a list of logical names that is mapped to a key alias in the keystore file.

 To view this administrative console page for the key locator collection on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token Generators > token_generator_name.

4. Under Additional properties, click Callback handler > Keys.

Keys are also available by clicking Key locators >key_locator_name. Under Additional properties, click

Keys.

To use this administrative console page for the key locator collection on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules > URI_name.

3. 6.x application

Under Additional properties, you can access key locators for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Key locators.Under Additional properties, click

Keys.

4. 5.x application

Under Additional properties, you can access key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit > Key locators. Under Additional properties, click Keys.

Chapter 14. Learn about WebSphere applications 687

v For the Response sender, click Web services: Server security bindings. Under Response sender

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Key locators. Under Additional properties, click Keys.

 Related reference

 “Key locator collection” on page 694
Use this page to view a list of key locator configurations that retrieve keys from the keystore for digital

signature and encryption. A key locator must implement the

com.ibm.wsspi.wssecurity.config.KeyLocator interface.

 “Key locator configuration settings” on page 695
Use this page to specify the settings for a key locator configuration. The key locators retrieve keys from

the keystore file for digital signature and encryption. WebSphere Application Server enables you to plug

in a custom key locator configuration.

 “Key configuration settings”
Use this page to define the mapping of a logical name to a key alias in a keystore file.

Key name:

Specifies the name of the key object that is found in the keystore file.

Key alias:

Specifies an alias for the key object.

 The alias is used when the key locator searches for the key objects in the keystore file.

Key configuration settings:

Use this page to define the mapping of a logical name to a key alias in a keystore file.

 To view this administrative console page for the key locator collection on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token Generators > token_generator_name.

4. Under Additional properties, click Callback handler > Keys.

5. Specify a new key configuration by clicking New or by clicking the key configuration name to modify

the settings.

Keys are also available by clicking Key locators >key_locator_name. Under Additional properties, click

Keys > New.

To use this administrative console page for the key locator collection on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. 6.x application

Under Additional properties, you can access key locators for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

688 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Key locators.Under Additional properties, click

Keys.

4. 5.x application

Under Additional properties, you can access key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response sender, click Web services: Server security bindings. Under Response sender

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Key locators. Under Additional properties, click Keys.

5. Specify a new key configuration by clicking New or by clicking the key configuration name to modify

the settings.

 Related reference

 “Key collection” on page 687
Use this page to view a list of logical names that is mapped to a key alias in the keystore file.

Key name:

Specifies the name of the key object. For digital signatures, the key name is used by the request sender

or request generator signing information to determine which key is used to digitally sign the message. For

encryption, the key name is used to determine the key used for encryption.

Key alias:

Specifies the alias for the key object, which is used by the key locator to find the key within the keystore

file.

Key password:

Specifies the password that is needed to access the key object within the keystore file.

Web services: Client security bindings collection:

Use this page to view a list of application-level, client-side binding configurations for Web services security.

These bindings are used when a Web service is a client to another Web service.

 To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications >application_name.

The key name must be a fully qualified, distinguished name. For example, CN:Bob,O=IBM,C=US.

Note: If you enter the distinguished name with spaces before or after commas and equal symbols,

WebSphere Application Server normalizes the distinguished names automatically during run time by

removing these extra spaces.

Chapter 14. Learn about WebSphere applications 689

2. Under Related Items, click EJB module or Web Module > URI_file_name.

3. Under Additional properties, click Web services: Client security bindings.

 Related reference

 6.x application

“Request generator (sender) binding configuration settings” on page 680
Use this page to specify the binding configuration for the request generator.

 6.x application

“Response consumer (receiver) binding configuration settings” on page 747
Use this page to specify the binding configuration for the response consumer.

 “Web services: Server security bindings collection” on page 691
Use this page to view a list of server-side binding configurations for Web services security.

Component:

Specifies the enterprise bean in an assembled Enterprise JavaBeans (EJB) module.

Port:

Specifies the port that is used to send messages to a server and receive messages from a server.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Request generator (sender) binding:

Specifies the binding configuration that is used to send request messages to the request consumer.

 Click Edit custom to configure the required and additional properties such as signing information, key

information, token generators, key locators, and collection certificate stores.

The binding information for the request generator that is specified for the client must match the binding

information for the request consumer that is specified for the server.

Response consumer (receiver) binding:

Specifies the binding configuration that is used to receive response messages from the response

generator.

 Click Edit custom to configure the required and additional properties such as signing information, key

information, token consumers, key locators, collection certificate stores, and trust anchors.

The binding information for the response consumer that is specified for the client must match the binding

information for the response generator that is specified for the server.

Request sender binding:

Specifies the binding configuration that is used to send request messages to the request receiver.

 Click Edit to configure the additional properties for the request sender such as signing information, key

information, encryption information, key locators, and the login binding.

The binding information for the request sender that is specified for the client must match the binding

information for the request receiver that is specified for the server.

Response receiver binding:

690 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Specifies the binding configuration that is used to receive response messages from the response sender.

 Click Edit to configure the additional properties for the response receiver such as signing information,

encryption information, trust anchors, collection certificate stores, and key locators.

The binding information for the response receiver that is specified for the client must match the binding

information for the response sender that is specified for the server.

HTTP basic authentication:

Specifies the user name and password to use for this port with HTTP transport-level basic authentication.

You can enable transport-level authentication security independently of message-level security.

 Click Edit to configure the basic authentication ID and password for transport-level authentication.

HTTP SSL configuration:

Enables and configures transport-level Secure Sockets Layer (SSL) security for this port. You can enable

transport-level SSL security independently of message-level security.

 Click Edit to specify the settings for transport-level HTTP SSL configuration for this port.

Web services: Server security bindings collection:

Use this page to view a list of server-side binding configurations for Web services security.

 To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related Items, click EJB modules or Web modules >URI_file_name.

3. Under Additional properties, click Web services: Server security bindings.

 Related reference

 6.x application

“Request consumer (receiver) binding configuration settings” on page 745
Use this page to specify the binding configuration for the request consumer.

 6.x application

“Response generator (sender) binding configuration settings” on page 682
Use this page to specify the binding configuration for the response generator or response sender.

 “Web services: Client security bindings collection” on page 689
Use this page to view a list of application-level, client-side binding configurations for Web services

security. These bindings are used when a Web service is a client to another Web service.

Port:

Specifies the port in which messages are received from the request generator.

Port:

Specifies the port in which messages are received from the request sender.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Request consumer (receiver) binding:

Specifies the binding configuration that is used to receive request messages from the request generator

(sender) binding.

Chapter 14. Learn about WebSphere applications 691

Click Edit custom to configure the required and additional information such as signing information, key

information, token consumers, key locators, intermediate certificates in the collection certificate store, and

trust anchors.

The binding information for the request consumer that is specified for the server must match the binding

information for the request generator that is specified for the client.

Response generator (sender) binding:

Specifies the binding configuration that is used to send request messages to the response consumer.

 Click Edit custom to configure the required and additional information such as signing information, key

information, token generators, key locators, and intermediate certificates in the collection certificate store.

The binding information for the response generator that is specified for the server must match the binding

information for the response consumer that is specified for the client.

Request receiver binding:

Specifies the binding configuration that is used to receive request messages from the request sender

binding.

 Click Edit to configure additional properties for the request receiver such as signing information, encryption

information, trust anchors, collection certificate stores, key locators, trusted ID evaluators, and login

mappings.

The binding information for the request receiver that is specified for the server must match the binding

information for the request sender that is specified for the client.

Response sender binding:

Specifies the binding configuration that is used to send request messages to the response receiver.

 Click Edit to configure additional properties for the response sender such as signing information,

encryption information, and key locators.

The binding information for the response sender that is specified for the server must match the binding

information for the response receiver that is specified for the client.

Configuring the key locator for the generator binding on the application level

The key locator information for the default generator specifies which key locator implementation is used to

locate the key used for signature and encryption information. The key locator information for the generator

specifies which key locator implementation is used to locate the key that is used for signature validation or

encryption. WebSphere Application Server provides default values for the bindings. However, you must

modify the defaults for a production environment.

Complete the following steps to configure the key locator for the generator binding on the application level:

1. Locate the encryption information configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional Properties you can access the key information for the request generator and

response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

692 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Key locators.

e. Click New to create a key locator configuration, select the box next to the configuration and click

Delete to delete an existing configuration, or click the name of an existing key locator configuration

to edit its settings. If you are creating a new configuration, enter a unique name in the Key locator

name field. For example, you might specify gen_keyloc.

2. Specify a class name for the key locator class implementation in the Key locator class name field. Key

locators associated with version 6 applications must implement the

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. Specify a class name according to the

requirements of the application. For example, if the application requires that the key is read from a

keystore file, specify the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation.

WebSphere Application Server supports the following default key locator class implementations for

version 6 applications that are available to use with the request generator or response generator:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator

This implementation uses the public key from the signer certificate and is used by the

response generator.

3. Specify the keystore password, the keystore location, and the keystore type. Key store files contain

public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and

so on. Keys retrieved from the keystore are used to sign and validate or encrypt and decrypt

messages or message parts. If you specified the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class

implementation, you must specify a key store password, location, and type.

a. Specify a password in the Key store password field. This password is used to access the keystore

file.

b. Specify the location of the key store file in the Key store path field.

c. Select a keystore type from the Type field. The Java Cryptography Extension (JCE) used by IBM

supports the following key store types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the

${USER_INSTALL_ROOT}/etc/ws-security/samples directory. For example, you might use the

enc-receiver.jceks keystore file for encryption keys. The password for this file is Storepass and

the type is JCEKS.

Important: Do not use the sample keystore files in a production environment. These samples are

provided for testing purposes only.

4. Click OK and then click Save to save the configuration.

5. Under Additional properties, click Keys.

Chapter 14. Learn about WebSphere applications 693

6. Click New to create a key configuration, select the box next to the configuration and click Delete to

delete an existing configuration, or click the name of an existing key configuration to edit its settings.

This entry specifies the name of the key object within the keystore file. If you are creating a new

configuration, enter a unique name in the Key name field. For digital signatures, the key name is used

by the request generator or the response generator signing information to determine which key is used

to digitally sign the message.

You must use a fully qualified distinguished name for the key name. For example, you might use

CN=Bob,O=IBM,C=US.

Important: Do not use the sample key files in a production environment. These samples are provided

for testing purposes only.

7. Specify an alias in the Key alias field. The key alias is used by the key locator to search for key

objects in the keystore.

8. Specify a password in the Key password field. The password is used to access the key object within

the keystore file.

9. Click OK and then click Save to save the configuration.

You have configured the key locator for the generator binding at the application level.

You must specify a similar key information configuration for the consumer.

 Related tasks

 “Configuring the key locator for the consumer binding on the application level” on page 749

Key locator collection:

Use this page to view a list of key locator configurations that retrieve keys from the keystore for digital

signature and encryption. A key locator must implement the com.ibm.wsspi.wssecurity.config.KeyLocator

interface.

 To view this administrative console page for the key locator collection on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

To use this administrative console page for the key locator collection on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. 6.x application

Under Additional properties, you can access key locators for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Key locators.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Key locators.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Key locators.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Key locators.

4. 5.x application

Under Additional properties, you can access key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender

binding, click Edit > Key locators.

694 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit > Key locators.

v For the Response sender, click Web services: Server security bindings. Under Response sender

binding, click Edit > Key locators.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Key locators.

Tip: The bindings for a version 5.x application has a link that says Edit and the bindings for a version 6.x

application has a link that says Edit custom. This is quick reference to determine which application

version you are configuring.

Using this Key locator collection panel, complete the following steps:

1. Specify a key locator name and a key locator class name on the panel.

2. Save your changes by clicking Save in the messages section at the top of the administrative console.

The administrative console home panel is displayed.

3. After saving your changes, update the Web services security run time with the default binding

information by clicking Update runtime. When you click Update runtime, the configuration changes

made to the other Web services also are updated in the Web services security run time.

4. After you define key locators, click the key locator name to specify additional properties and keys

under Additional Properties.

 Related reference

 “Key locator configuration settings”
Use this page to specify the settings for a key locator configuration. The key locators retrieve keys from

the keystore file for digital signature and encryption. WebSphere Application Server enables you to plug

in a custom key locator configuration.

Key locator name:

Specifies the unique name of the key locator.

Key locator class name:

Specifies the class name of the key locator, which retrieves the key that is used for digital signing and

encryption.

Key locator configuration settings:

Use this page to specify the settings for a key locator configuration. The key locators retrieve keys from

the keystore file for digital signature and encryption. WebSphere Application Server enables you to plug in

a custom key locator configuration.

 To view this administrative console page for the key locator collection on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

4. Click New to create a new configuration or click the name of a configuration to modify its settings.

To use this administrative console page for the key locator collection on the application level, complete the

following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules >URI_name.

Chapter 14. Learn about WebSphere applications 695

3. 6.x application

Under Additional properties, you can access key locators for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Key locators.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Key locators.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Key locators.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Key locators.

4. 5.x application

Under Additional properties, you can access key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender

binding, click Edit > Key locators.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit > Key locators.

v For the Response sender, click Web services: Server security bindings. Under Response sender

binding, click Edit > Key locators.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Key locators.

5. Click New to create a new configuration or click the name of a configuration to modify its settings.

 Related reference

 “Key locator collection” on page 694
Use this page to view a list of key locator configurations that retrieve keys from the keystore for digital

signature and encryption. A key locator must implement the

com.ibm.wsspi.wssecurity.config.KeyLocator interface.

 “Key collection” on page 687
Use this page to view a list of logical names that is mapped to a key alias in the keystore file.

 “Key configuration settings” on page 688
Use this page to define the mapping of a logical name to a key alias in a keystore file.

Key locator name:

Specifies the name of the key locator.

 Data type String

Key locator class name:

Specifies the name for the key locator class implementation.

 6.x application

Key locators that are associated with version 6.x applications must implement the

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. WebSphere Application Server provides the

following default key locator class implementations for version 6.x applications:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator

This implementation uses the public key from the certificate of the signer. This class

implementation is used by the response generator.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator

This implementation uses the X.509 security token from the sender message for digital signature

validation and encryption. This class implementation is used by the request consumer and the

response consumer.

696 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

5.x application Key locators that are associated with version 5.x applications must implement the

com.ibm.wsspi.wssecurity.config.KeyLocator interface. WebSphere Application Server provides the

following default key locator class implementations for version 5.x applications

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

This implementation maps an authenticated identity to a key and is used by the response sender.

If encryption is used, this class is used to locate a key to encrypt the response message. The

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator class can map an authenticated

identity from the invocation credential of the current thread to a key that is used to encrypt the

message. If an authenticated identity is present on the current thread, the class maps the ID to the

mapped name. For example, user1 is mapped to mappedName_1. Otherwise, name=″default″.

When a matching key is not found, the authenticated identity is mapped to the default key that is

specified in the binding file. This implementation supports the following formats: JKS, JCEKS, and

PKCS12.

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

This implementation maps a name to an alias and is used by the response receiver, request

sender, and request receiver. The encryption process uses this class to obtain a key to encrypt a

message, and the digital signature process uses this class to obtain a key to sign a message. The

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator class maps a logical name to a key alias in

the keystore file. For example, key #105115176771 is mapped to CN=Alice, O=IBM, c=US.

com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator

This implementation uses the signer certificate to encrypt the response. This class implementation

is used by the response sender and response receiver.

 Data type String

Key store password:

Specifies the password that is used to access the keystore file.

Key store path:

Specifies the location of the keystore file.

Key store type:

Specifies the type of keystore file.

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your keystore file

uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)

Use this format if your keystore file uses the PKCS#11 file format. Keystores files that use this

format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might

encrypt keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore file uses the PKCS#12 file format.

 Default JKS

Range JKS, JCEKS, PKCS11KS (PKCS11), PKCS12KS

(PKCS12)

Web services security property collection:

Chapter 14. Learn about WebSphere applications 697

Use this page to a view a list of additional properties for the configuration.

 You can view a Web services security property collection panel in several ways. Complete the following

steps to view one of these administrative console pages:

1. Click Security > Web services.

2. Under Default generator bindings or Default consumer bindings, click Properties.

3. Click New to create a new property.

4. Click Delete to a delete a property that you specified previously.

 Related reference

 “Web services security property configuration settings”
Use this page to configure additional properties.

Property name:

Specifies the name of the property.

Property value:

Specifies the value for the property.

Web services security property configuration settings:

Use this page to configure additional properties.

 You can view a Web services security property configuration settings panel in several wasys. Complete the

following steps to view one of these administrative console pages:

1. Click Security > Web services.

2. Under Default generator bindings or Default consumer bindings, click Properties > New.

 Related reference

 “Web services security property collection” on page 697
Use this page to a view a list of additional properties for the configuration.

Property Name:

Specifies the name of the property.

 Data type: String

Property Value:

Specifies the value for the property.

 Data type: String

The following table lists the properties that you can configure using the Web services security property

panels.

 Configuration

panel name

Property name Property value Description

JAAS

configuration

com.ibm.wsspi.wssecurity.

token.X509.issuerName

Specify the SubjectDN or

the IssuerDN of the issuer

for the X.509 certificate.

This property is used to specify the

issuer of the certificate in the token

consumer component.

698 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Configuration

panel name

Property name Property value Description

JAAS

configuration

com.ibm.wsspi.wssecurity.

token.X509.issuerSerial

Specify the serial number

of the X.509 certificate.

This property is used to specify the

serial number of the certificate in the

token consumer component.

Key information com.ibm.wsspi.wssecurity.

keyinfo.EncodingNS

Specify the namespace

Uniform Resource

Identifier (URI) for the

qualified name (QName).

This property is used to specify the

namespace URI part of the QName

that represents the encoding

method.

Request

generator and

Response

generator

com.ibm.wsspi.wssecurity.

timestamp.SOAPHeaderElement

Specify 1 or true. This property is used with the Add

nonce option to set the

mustUnderstand flag in the

deployment descriptor.

Request

generator and

Response

generator

com.ibm.wsspi.wssecurity.

timestamp.dialect

Signing

information

com.ibm.wsspi.wssecurity.

dsig.dumpPath

Specify the path used to

locate the output file.

This property is used to specify an

output file for dumping the target

UTF-8 binary data before signing

and verifying messages.

Token generator com.ibm.wsspi.wssecurity.

token.username.

timestampExpires

Specify 1 or true. This property is used to specify an

expiration date for the user name

token.

Transform

algorithms

com.ibm.wsspi.wssecurity.

dsig.XPathExpression

not(ancestor-or-self::

*[namespace-uri()=

’http://www.w3.org/2000

/09/xmldsig#’

and local-name()=

’Signature’])

This property is used with the

http://www.w3.org/TR/1999/REC-
xpath-19991116 algorithm.

Configuring the key information for the generator binding on the application level

Before you begin this task, configure the key locators and the token consumers that are referenced by the

Key locator reference and Token reference fields within the key information panel.

This task provides the steps needed for configuring the key information for the request generator (client

side) and the response generator (server side) bindings at the application level. The key information is

used to specify the configuration needed to generate the key for digital signature and encryption. The

signing information and the encryption information configurations can share the key information, which is

why they are both defined at the same level.

Complete the following information to configure the key information for the generator binding on the

application level:

1. Locate the key information configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional Properties you can access the key information for the request generator and

response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

Chapter 14. Learn about WebSphere applications 699

d. Under Required properties, click Key information.

e. Click New to create a key information configuration, select the box next to an existing configuration

and click Delete to delete the configuration, or click the name of an existing signing information

configuration to edit its settings. If you are creating a new configuration, enter a name in the Key

information name field. For example, you might specify gen_signkeyinfo.

2. Select a key information type from the Key information type field. The key information type specifies

how to reference the security tokens. WebSphere Application Server supports the following key

information types:

Key identifier

The security token is referenced using an opaque value that uniquely identifies the token. The

algorithm that is used for generating the <KeyIdentifier> element value depends upon the

token type. For example, a hash of the important elements of the security token is used for

generating the <KeyIdentifier> element value. The following <KeyInfo> element is generated in

the Simple Object Access Protocol (SOAP) message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="wsse:X509v3">/62wXO...</wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Key name

The security token is referenced using a name that matches an identity assertion within the

token. It is recommended that you do not use this key type as it might result in multiple

security tokens that match the specified name. The following <KeyInfo> element is generated

in the SOAP message for this key information type:

<ds:KeyInfo>

 <ds:KeyName>CN=Group1</ds:KeyName>

</ds:KeyInfo>

Security token reference

The security token is directly referenced using Universal Resource Identifiers (URIs). The

following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#mytoken" />

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Embedded token

The security token is directly embedded within the <SecurityTokenReference> element. The

following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Embedded wsu:Id=”tok1” />

 ...

 </wsse:Embedded>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

X509 issuer name and issuer serial

The security token is referenced by an issuer name and an issuer serial number of an X.509

certificate. The following <KeyInfo> element is generated in the SOAP message for this key

information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <ds:X509Data>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Jones, O=IBM, C=US</ds:X509IssuerName>

 <ds:X509SerialNumber>1040152879</ds:X509SerialNumber>

700 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

</ds:X509IssuerSerial>

 </ds:X509Data>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Each type of key information is described in the Web Services Security: SOAP Message Security 1.0

(WS-Security 2004) OASIS standard, which is located at: http://www.oasis-open.org/home/index.php

under Web services security.

3. Select a key locator reference from the Key locator reference field. This reference specifies a key

locator that WebSphere Application Server uses to locate the keys that are used for digital signature

and encryption. Before you can select a key locator, you must have configured a key locator. For more

information on configuring a key locator, see the following articles:

v “Configuring the key locator for the generator binding on the application level” on page 692

v “Configuring the key locator for the consumer binding on the application level” on page 749

4. Click Get keys to view a list of key name references. After you click Get keys, the key names that are

defined in the sig_klocator element are shown in the key name reference menu. If you change the key

locator reference, you must click Get keys again to display the list of key names associated with the

new key locator.

5. Select a key name reference from the Key name reference field. This reference specifies the name of

a key that is used for generating a digital signature and for encryption. The list of key names provided

comes from the key locator specified with the key locator reference.

6. Select a token reference from the Token reference field. This token reference specifies the name of

token generator that is used for processing the security token. However, WebSphere Application

Server requires this field only when you select Security token reference or Embedded token in the Key

information type field. Before specifying a token reference, you must configure a token generator. For

more information on configuring a token generator, see “Configuring the token generator on the

application level” on page 675.

7. Optional: If you select Key identifier as the key information type on this panel, you must specify an

encoding method, calculation method, value type namespace URI, and a value type local name.

a. Select an encoding method from the Encoding method field. The encoding method specifies the

encoding format for the key identifier. WebSphere Application Server supports the following

encoding methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#HexBinary

b. Select a calculation method from the Calculation method field. WebSphere Application Server

supports the following calculation methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#ITSHA1

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#IT60SHA1

c. Specify a value type namespace Uniform Resource Identifier (URI) in the Namespace URI field. In

this field, specify the namespace URI of the value type for a security token that is referenced by

the key identifier. When you specify the X.509 certificate token, you do not need to specify this

option. If you want to specify another token, you must specify the URI of the qualified name

(QName) for value type.

d. Specify a value type local name. This name is the local name of the value type for a security token

that is referenced by the key identifier. When this local name is used in conjunction with the

corresponding namespace URI, the information is called the value type qualified name or QName.

When you specify the X.509 certificate token, it is recommended that you use the predefined local

names. When you specify the predefined local names, you do not need to specify the namespace

URI of the value type. However, if you do not use one of the predefined local names, you must

specify both the uniform resource identifier (URI) and the local name. WebSphere Application

Server provides the following predefined local names:

Chapter 14. Learn about WebSphere applications 701

http://www.oasis-open.org/home/index.php

X.509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA http://www.ibm.com/websphere/appserver/tokentype/5.0.2

8. Click OK and then click Save to save the configuration.

You have configured the key information for the generator binding at the application level

You must specify a similar key information configuration for the consumer.

 Related tasks

 “Configuring the key information for the consumer binding on the application level” on page 750

 “Configuring the signing information for the generator binding on the application level” on page 712

 “Configuring the key locator for the generator binding on the application level” on page 692

 “Configuring the token generator on the application level” on page 675

Key information collection:

Use this page to view the configurations that are currently available for generating or consuming the key

for XML digital signatures and XML encryption.

 To view this administrative console page on the cell level for the key information references, complete the

following steps:

1. Click Security > Web services.

2. Under Default generator bindings or the Default consumer bindings, click Key information.

To view this administrative console page on the server level for the key information references, complete

the following steps:

1. Click Servers > Application Servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or the Default consumer bindings, click Key information.

To view this administrative console page on the application level for the key information references,

complete the following steps. This option is available on the application level for version 6.x applications.

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules >URI_name.

3. Under Additional properties, you can access the signing information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Key information.

 Related reference

702 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

“Token generator collection” on page 769
Use this page to view the token generators. The information is used on the generator side only to

generate the security token.

 “Token consumer collection” on page 791
Use this page to view the token consumer. The information is used on the consumer side only to

process the security token.

 “Key information configuration settings”
Use this page to specify the related configuration need to specify the key for XML digital signature or

XML encryption.

Key information name:

Specifies the name that is given for the key configuration.

Key information class name:

Specifies the class name that is used for the key information type.

Key information type:

Specifies the type of mechanism used to reference the security token. The type corresponds to the class

name that is specified in the Key information class name field.

Key information configuration settings:

Use this page to specify the related configuration need to specify the key for XML digital signature or XML

encryption.

 To view this administrative console page on the cell level for the key information references, complete the

following steps:

1. Click Security > Web services.

2. Under Default generator bindings or the Default consumer bindings, click Key information.

To view this administrative console page on the server level for the key information references, complete

the following steps:

1. Click Servers > Application Servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or the Default consumer bindings, click Key information.

4. Click New to create a new configuration or click the configuration name to modify its contents.

To view this administrative console page on the application level for the key information references,

complete the following steps. This option is available on the application level for version 6.x applications.

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access the signing information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

Chapter 14. Learn about WebSphere applications 703

4. Under Required properties, click Key information.

5. Click New to create a new configuration or click the configuration name to modify its contents.

Before clicking Properties under Additional properties, you must enter a value in the Key information

name field and select an option for the Key information type and Key locator reference options.

 Related reference

 “Token generator collection” on page 769
Use this page to view the token generators. The information is used on the generator side only to

generate the security token.

 “Token consumer collection” on page 791
Use this page to view the token consumer. The information is used on the consumer side only to

process the security token.

 “Key information collection” on page 702
Use this page to view the configurations that are currently available for generating or consuming the

key for XML digital signatures and XML encryption.

Key information name:

Specifies a name for the key information configuration.

Key information type:

Specifies the type of key information. The key information type specifies how to reference security tokens.

 WebSphere Application Server supports the following types of key information. Each type of key

information is described in the Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

OASIS standard, which is located at: http://www.oasis-open.org/home/index.php under Web services

security.

 Type Description

Key identifier The security token is referenced using an opaque value that

uniquely identifies the token.

Key name The security token is referenced using a name that matches an

identity assertion within the token.

Security token reference With this type, the security token is directly referenced.

Embedded token With this type, the security token reference is embedded.

X509 issuer name and issuer serial With this type, the security token is referenced by an issuer and

serial number of an X.509 certificate

The X.509 issuer name and issuer serial is described in Web Services Security: X509 Token Profile

Version 1.0 located at: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0.pdf. The other types are described in Web Services Security: SOAP Message Security Version 1.0

located at: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

If you select Key identifier for the key information type, you can specify values in the following fields on

this panel:

v Encoding method

v Calculation method

v Value type namespace URI

v Value type local name

Key locator reference:

704 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.oasis-open.org/home/index.php
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Specifies the reference that is used to retrieve the key for digital signature and encryption.

 Before specifying a key locator reference, you must configure a key locator. You can specify a signing key

configuration for the following bindings:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application

servers >server_name.

2. Under Security, click Web services:

Default bindings for Web services

security.

3. Under Additional properties, click

Key locators.

4. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Default consumer binding Server level 1. Click Servers > Application

servers >server_name.

2. Under Security, click Web services:

Default bindings for Web services

security.

3. Under Additional properties, click

Key locators.

4. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Request sender binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Client security

bindings. Under Request sender

binding, click Edit.

4. Under Additional properties, click

Key locators.

5. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Chapter 14. Learn about WebSphere applications 705

Binding name Cell level, server level, or

application level

Path

Response receiver binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Client security

bindings. Under Response receiver

binding, click Edit.

4. Under Additional properties, click

Key locators.

5. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Request receiver binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Server

security bindings. Under Request

receiver binding, click Edit.

4. Under Additional properties, click

Key locators.

5. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Response sender binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Server

security bindings. Under Response

sender binding, click Edit.

4. Under Additional properties, click

Key locators.

5. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

706 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Binding name Cell level, server level, or

application level

Path

Request generator (sender) binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Client security

bindings. Under Request generator

(sender) binding, click Edit.

4. Under Additional properties, click

Key locators.

5. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Response consumer (receiver) binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Client security

bindings. Under Response

consumer (receiver) binding, click

Edit custom.

4. Under Additional properties, click

Key locators.

5. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Request consumer (receiver) binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Server

security bindings. Under Request

consumer (receiver) binding, click

Edit custom.

4. Under Additional properties, click

Key locators.

5. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Chapter 14. Learn about WebSphere applications 707

Binding name Cell level, server level, or

application level

Path

Response generator (sender) binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Server

security bindings. Under Response

generator (sender) binding, click

Edit custom.

4. Under Additional properties, click

Key locators.

5. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Key name reference:

Specifies the name of the key that is used for generating digital signature and encryption.

 This field is displayed for the default generator and is also displayed for the request generator and

response generator for Version 6.x applications.

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application

servers >server_name.

2. Under Security, click Web services:

Default bindings for Web services

security.

3. Under Additional properties, click

Key locators.

4. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Request generator (sender) binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Client security

bindings. Under Request generator

(sender) binding, click Edit.

4. Under Additional properties, click

Key locators.

5. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

708 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Binding name Cell level, server level, or

application level

Path

Response generator (sender) binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Server

security bindings. Under Response

generator (sender) binding, click

Edit custom.

4. Under Additional properties, click

Key locators.

5. Click New to create a new key

locator or click the name of a

configured key locator to modify its

configuration.

Token reference:

Specifies the name of a token generator or token consumer that is used for processing a security token.

 WebSphere Application Server requires this field only when you specify Security token reference or

Embedded token in the Key information type field. The Token reference field is also required when you

specify a key identifier type for the consumer. Before specifying a token reference, you must configure a

token generator or token consumer. You can specify a token configuration for the following bindings on the

following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application

servers >server_name.

2. Under Security, click Web services:

Default bindings for Web services

security.

3. Under Default generator bindings,

click Token generator.

4. Click New to create a new token

generator or click the name of a

configured token generator to modify

its configuration.

Default consumer binding Server level 1. Click Servers > Application

servers >server_name.

2. Under Security, click Web services:

Default bindings for Web services

security.

3. Under Default consumer bindings,

click Token consumer.

4. Click New to create a new token

consumer or click the name of a

configured token consumer to

modify its configuration.

Chapter 14. Learn about WebSphere applications 709

Binding name Cell level, server level, or

application level

Path

Request generator (sender) binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Client security

bindings. Under Request generator

(sender) binding, click Edit custom.

4. Under Additional properties, click

Token generators.

5. Click New to create a new token

consumer or click the name of a

configured token consumer to

modify its configuration.

Response consumer (receiver) binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Client security

bindings. Under Response

consumer (receiver) binding, click

Edit custom.

4. Under Required properties, click

Token consumers.

5. Click New to create a new token

consumer or click the name of a

configured token consumer to

modify its configuration.

Request consumer (receiver) binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Sender

security bindings. Under Request

consumer (receiver) binding, click

Edit custom.

4. Under Required properties, click

Token consumers.

5. Click New to create a new token

consumer or click the name of a

configured token consumer to

modify its configuration.

710 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Binding name Cell level, server level, or

application level

Path

Response generator (sender) binding Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB

modules or Web modules >

URI_name.

3. Click Web services: Server

security bindings. Under Response

generator (sender) binding, click

Edit custom.

4. Under Additional properties, click

Token generators.

5. Click New to create a new token

consumer or click the name of a

configured token consumer to

modify its configuration.

Encoding method:

Specifies the encoding method that indicates the encoding format for the key identifier.

 This field is valid when you specify Key identifier in the Key information type field. WebSphere Application

Server supports the following encoding methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#HexBinary

This field is available for the default generator binding only.

Calculation method:

 This field is valid when you specify Key identifier in the Key information type field. WebSphere Application

Server supports the following calculation methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#ITSHA1

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#IT60SHA1

This field is available for the generator binding only.

Value type namespace URI:

Specifies the namespace Uniform Resource Identifier (URI) of the value type for a security token that is

referenced by the key identifier.

 This field is valid when you specify Key identifier in the Key information type field. When you specify the

X.509 certificate token, you do not need to specify this option. If you want to specify another token, specify

the URI of QName for value type.

WebSphere Application Server provides the following predefined value type URI for the Lightweight Third

Party Authentication (LTPA) token: http://www.ibm.com/websphere/appserver/tokentype/5.0.2

This field is available for the generator binding only.

Value type local name:

Chapter 14. Learn about WebSphere applications 711

Specifies the local name of the value type for a security token that is referenced by the key identifier.

 When this local name is used with the corresponding namespace URI, the information is called the value

type qualified name or QName.

This field is valid when you specify Key identifier in the Key information type field. When you specify the

X.509 certificate token, it is recommended that you use the predefined local names. When you specify the

predefined local names, you do not need to specify the URI of the value type. WebSphere Application

Server provides the following predefined local names:

X.509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA

Attention: For LTPA, the value type local name is LTPA. If you enter LTPA for the local name, you must

specify the http://www.ibm.com/websphere/appserver/tokentype/5.0.2 URI value in the Value

type URI field as well. For the other predefined value types (User name token, X509 certificate

token, X509 certificates in a PKIPath, and a list of X509 certificates and CRLs in a PKCS#7),

the value for the local name field begins with http://. For example, if you are specifying the

user name token for the value type, enter http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#UsernameToken in the value type local name field and

then you do not need to enter a value in the value type URI field.

When you specify a custom value type for custom tokens, you can specify the local name and the URI of

the quality name (QName) of the value type. For example, you might specify Custom for the local name

and http://www.ibm.com/custom for the URI.

This field is also available for the generator binding only.

Configuring the signing information for the generator binding on the application

level

In the server-side extensions file (ibm-webservices-ext.xmi) and the client-side deployment descriptor

extensions file (ibm-webservicesclient-ext.xmi), you must specify which parts of the message are

signed. Also, you need to configure the key information that is referenced by the key information

references on the signing information panel within the administrative console.

This task explains the required steps to configure the signing information for the client-side request

generator and the server-side response generator bindings at the application level. WebSphere Application

Server uses the signing information for the default generator to sign parts of the message including the

body, time stamp, and user name token. The Application Server provides default values for bindings.

However, an administrator must modify the defaults for a production environment. Complete the following

steps to configure the signing information for the generator sections of the bindings files on the application

level:

 1. Locate the signing information configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional properties, you can access the signing information for the request generator and

the response generator bindings.

712 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Required properties, click Signing information.

e. Click New to create a signing information configuration, select the box next to the configuration

and click Delete to delete an existing configuration, or click the name of an existing signing

information configuration to edit its settings. If you are creating a new configuration, enter a name

in the Signing information name field. For example, you might specify gen_signinfo.

 2. Select a signature method algorithm from the Signature method field. The algorithm that is specified

for the generator, which is either the request generator or the response generator configuration, must

match the algorithm that is specified for the consumer, which is either the request consumer or

response consumer configuration. WebSphere Application Server supports the following

pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

 3. Select a canonicalization method from the Canonicalization method field. The canonicalization

algorithm that you specify for the generator must match the algorithm for the consumer. WebSphere

Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

 4. Select a key information signature type from the Key information signature type field. WebSphere

Application Server supports the following signature types:

None Specifies that the KeyInfo element is not signed.

Keyinfo

Specifies that the entire KeyInfo element is signed.

Keyinfochildelements

Specifies that the child elements of the KeyInfo element are signed.

The key information signature type for the generator must match the signature type for the consumer.

You might encounter the following situations:

v If you do not specify one of the previous signature types, WebSphere Application Server uses

keyinfo, by default.

v If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform as the

transform algorithm in a subsequent step, WebSphere Application Server also signs the referenced

token.

 5. Select a signing key information reference from the Signing key information field. This selection is a

reference to the signing key that the Application Server uses to generate digital signatures.

 6. Click OK and Save to save the configuration.

 7. Click the name of the new signing information configuration. This configuration is the one that you

specified in a previous step.

 8. Specify the part reference, digest algorithm, and transform algorithm. The part reference specifies

which parts of the message to digitally sign.

a. Under Additional properties, click Part references > New to create a new part reference, click

Part references > Delete to delete an existing part reference, or click a part name to edit an

existing part reference.

Chapter 14. Learn about WebSphere applications 713

b. Specify a unique part name for this part reference. For example, you might specify reqint.

c. Select a part reference from the Part reference field.

The part reference refers to the message part that is digitally signed. The part attribute refers to

the name of the <Integrity> element in the deployment descriptor when the <PartReference>

element is specified for the signature. You can specify multiple <PartReference> elements within

the <SigningInfo> element. The <PartReference> element has two child elements when it is

specified for the signature: <DigestTransform> and <Transform>.

d. Select a digest method algorithm from the menu. The digest method algorithm specified within the

<DigestMethod> element is used in the <SigningInfo> element. WebSphere Application Server

supports the http://www.w3.org/2000/09/xmldsig#sha1 algorithm.

e. Click OK to save the configuration.

f. Click the name of the new part reference configuration. This configuration is the one that you

specified in a previous step.

g. Under Additional Properties, click Transforms > New to create a new transform, click

Transforms > Delete to delete a transform, or click a transform name to edit an existing

transform. If you create a new transform configuration, specify a unique name. For example, you

might specify reqint_body_transform1.

h. Select a transform algorithm from the menu. The transform algorithm is that is specified within the

<Transform> element and specifies the transform algorithm for the signature. WebSphere

Application Server supports the following algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the generator must match the transform algorithm that

you select for the consumer.

Important: If both of the following conditions are true, WebSphere Application Server signs the

referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option from the

Key information signature type field on the signing information panel.

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#STR-Transform as the transform algorithm.

 9. Click OK.

10. Click Save at the top of the panel to save your configuration.

After completing these steps, the signing information is configured for the generator on the application

level.

You must specify a similar signing information configuration for the consumer.

 Related tasks

 “Configuring the signing information for the consumer binding on the application level” on page 753

Signing information collection:

Use this page to view a list of signing parameters. Signing information is used to sign and validate parts of

a message including the body, time stamp, and user name token. You can also use these parameters for

714 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

X.509 validation when the authentication method is IDAssertion and the ID type is X509Certificate in the

server-level configuration. In such cases, you must fill in the certificate path fields only.

Note: Use Internet Explorer if you experience difficulties in the Signing Information panel using Netscape

4.7.9.

To view this administrative console page on the cell level for signing information, complete the following

steps:

To view this administrative console page on the server level for signing information, complete the following

steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or Default consumer bindings, click Signing information.

4. Click New to create a signing parameter. Click Delete to delete a signing parameter.

To view this administrative console page on the application level for signing information, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. 6.x application

Under Additional properties, you can access the signing information for the following

bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under

Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

4. 6.x application

Under Required properties, click Signing information.

5. 5.x application

Under Additional properties, you can use this panel to configure the following

bindings:

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit.

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit.

6. 5.x application

Under Additional properties, click Signing information.

7. Click New to create a signing parameter. Click Delete to delete a signing parameter.

 Related reference

 “Signing information configuration settings” on page 716
Use this page to configure new signing parameters.

Signing information name:

Specifies the unique name that is assigned to the signing configuration.

Signature method:

Specifies the signature method algorithm that is chosen for the signing configuration.

Chapter 14. Learn about WebSphere applications 715

Canonicalization method:

Specifies the canonicalization method algorithm that is chosen for the signing configuration.

Signing information configuration settings:

Use this page to configure new signing parameters.

 The specifications that are listed on this page for the signature method, digest method, and

canonicalization method are located in the World Wide Web Consortium (W3C) document entitled, XML

Signature Syntax and Specification: W3C Recommendation 12 Feb 2002.

To view this administrative console page on the cell level for signing information, complete the following

steps:

To view this administrative console page on the server level for signing information, complete the following

steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or Default consumer bindings, click Signing information.

4. Click New to create a signing parameter or click the name of an existing configuration to modify its

settings.

To view this administrative console page on the application level for signing information, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules >URI_name.

3. 6.x application

Under Additional properties, you can access the signing information for the following

bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under

Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

4. 6.x application

Under Required properties, click Signing information.

5. 5.x application

Under Additional properties, you can access the signing information for the following

bindings:

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit.

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit.

6. 5.x application

Under Additional properties, click Signing information.

7. Click New to create a signing parameter or click the name of an existing configuration to modify its

settings.

 Related reference

 “Signing information collection” on page 714
Use this page to view a list of signing parameters. Signing information is used to sign and validate

parts of a message including the body, time stamp, and user name token. You can also use these

716 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

parameters for X.509 validation when the authentication method is IDAssertion and the ID type is

X509Certificate in the server-level configuration. In such cases, you must fill in the certificate path fields

only.

 “Trust anchor configuration settings” on page 661
Use this information to configure a trust anchor. Trust anchors point to keystores that contain trusted

root or self-signed certificates. This information enables you to specify a name for the trust anchor and

the information that is needed to access a keystore. The application binding uses this name to

reference a predefined trust anchor definition in the binding file (or the default).

 “Collection certificate store configuration settings” on page 666
Use this page to specify the name and the provider for a collection certificate store. A collection

certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate revocation

lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a digitally

signed Simple Object Access Protocol (SOAP) message.

Signing information name:

Specifies the name that is assigned to the signing configuration.

Signature method:

Specifies the algorithm Uniform Resource Identifiers (URI) of the signature method.

 The following pre-configured algorithms are supported:

v

5.x and 6.x
application

http://www.w3.org/2000/09/xmldsig#rsa-sha1

v

5.x and 6.x
application

http://www.w3.org/2000/09/xmldsig#dsa-sha1

v 6.x application

http://www.w3.org/2000/09/xmldsig#hmac-sha1

For Version 6.x applications, you can specify additional signature methods on the Algorithm URI panel. To

access the Algorithm URI panel, complete the following steps:

1. Click Security > Web services.

2. Under Additional properties, click Algorithm mappings > algorithm_factory_engine_class_name >

Algorithm URI > New.

When you specify the Algorithm URI, you also must specify an algorithm type. To have the algorithm

display as a selection in the Signature method field on the Signing information panel, you must select

Signature as the algorithm type.

This field is available for Version 6.x applications and for the request receiver and response receiver

bindings for Version 5.x applications.

Digest method:

Specifies the algorithm URI of the digest method.

 The http://www.w3.org/2000/09/xmldsig#sha1 algorithm is supported.

This field is available for the request receiver and response receiver bindings for Version 5.x applications.

Canonicalization method:

Specifies the algorithm URI of the canonicalization method.

 The following pre-configured algorithms are supported:

Chapter 14. Learn about WebSphere applications 717

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

This field is for Version 6.x applications and for the request receiver and response receiver bindings for

Version 5.x applications.

Key information signature type:

Specifies how to sign a KeyInfo element if dsigkey or enckey is specified for the signing part in the

deployment descriptor.

 WebSphere Application Server supports the following keywords:

keyinfo (default)

Specifies that the entire KeyInfo element is signed.

keyinfochildelements

Specifies that the child elements of the KeyInfo element is signed.

If you do not specify a keyword, WebSphere Application Server uses the keyinfo value, by default.

The Key information signature type field is available for the token consumer binding.

6.x application

For Version 6.x applications, the field is also available for the default consumer, request

consumer, and response consumer bindings.

Signing key information:

Specifies a reference to the key information that WebSphere Application Server uses to generate the

digital signature.

 You can specify one signing key only for the default generator binding on the server level. However, you

can specify multiple signing keys for the default consumer bindings. The signing keys for the default

consumer bindings are specified using the Key Information references link under Additional properties on

the Signing information panel.

On the application level, you can specify only one signing key for the request generator and the response

generator. You can specify multiple signing keys for the request consumer and response generator. The

signing keys for the request consumer and the response consumer are specified using the Key information

references link under Additional properties.

You can specify a signing key configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application Servers

>server_name.

2. Under Security, click Web services: Default

bindings for Web services security .

3. Under Default generator binding, click Key

information.

718 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Binding name Cell level, server level, or

application level

Path

Default consumer binding Server level 1. Click Servers > Application Servers

>server_name.

2. Under Security, click Web services: Default

bindings for Web services security .

3. Under Default consumer binding, click Key

information.

Certificate path:

Specifies the settings for the certificate path validation. When you select Trust any, this validation is

skipped and all incoming certificates are trusted.

 The certificate path options are available on the application level.

Trust anchor

WebSphere Application Server searches for trust anchor configurations on the application and server

levels and lists the configurations in this menu.

5.x application

You can specify trust anchors as an additional property for the response receiver

binding and the request receiver binding.

You can specify a trust anchor configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application servers

>server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Trust

anchors > New.

Default consumer binding Server level 1. Click Servers > Application servers

>server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Trust

anchors > New.

Response receiver Application level for Version 5.x

applications

1. Click Applications > Enterprise

applications >application_name.

2. Under Related items, click Web modules or

EJB modules >URI_name.

3. Click Web services: Client security

bindings.

4. Under the Response receiver binding, click

Edit.

5. Under Additional properties, click Trust

anchors > New.

Chapter 14. Learn about WebSphere applications 719

Binding name Cell level, server level, or

application level

Path

Request receiver Application level for Version 5.x

applications

1. Click Applications > Enterprise

applications >application_name.

2. Under Related items, click Web modules or

EJB modules >URI_name.

3. Click Web services: Server security

bindings.

4. Under the Request receiver binding, click

Edit.

5. Under Additional properties, click Trust

anchors > New.

For an explanation of the fields on the trust anchor panel, see “Trust anchor configuration settings” on

page 661.

Certificate store

WebSphere Application Server searches for certificate store configurations on the application and server

levels and lists the configurations in this menu.

You can specify a certificate store configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application servers

>server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Collection

certificate store > New.

Default consumer binding Server level 1. Click Servers > Application servers

>server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Collection

certificate store > New.

Response receiver Application level for Version 5.x

applications

1. Click Applications > Enterprise

applications >application_name.

2. Under Related items, click Web modules or

EJB modules >URI_name.

3. Click Web services: Client security

bindings.

4. Under the Response receiver binding, click

Edit.

5. Under Additional properties, click Collection

certificate store > New.

720 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Binding name Cell level, server level, or

application level

Path

Request receiver Application level for Version 5.x

applications

1. Click Applications > Enterprise

applications >application_name.

2. Under Related items, click Web modules or

EJB modules >URI_name.

3. Click Web services: Server security

bindings.

4. Under the Request receiver binding, click

Edit.

5. Under Additional properties, click Collection

certificate store > New.

For an explanation of the fields on the collection certificate store panel, see “Collection certificate store

configuration settings” on page 666.

Part reference collection:

Use this page to view the message part references for signature and encryption that are defined in the

deployment descriptors.

 To view this administrative console page on the cell level for signing information, complete the following

steps:

1. Click Security > Web services.

2. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

3. Under Additional properties, click Part references.

To view this administrative console page on the server level for signing information, complete the following

steps:

1. Click Servers > Application Servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

4. Under Additional properties, click Part references.

To view this administrative console page on the application level for signing information, complete the

following steps. Part references are available through the administrative console using Version 6.x

applications only.

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access the signing information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sending) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under

Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

Chapter 14. Learn about WebSphere applications 721

4. Under Required properties, click Signing information >signing_information_name.

5. Under Additional properties, click Part references.

 Related reference

 “Part reference configuration settings”
Use this page to specify a reference to the message parts for signature and encryption that are defined

in the deployment descriptors.

 “Transforms collection” on page 724
Use this page to view the transform algorithm that is used for processing the Web services security

message.

 “Transforms configuration settings” on page 725
Use this page to specify the transform algorithm that is used for processing the Web services security

message.

Part name:

Specifies the name that is assigned to the part reference configuration.

Part reference:

Specifies the name of the signed part that is defined in the deployment descriptor.

 The Part reference field is specified in the application binding configuration only.

Digest method algorithm:

Specifies the algorithm URI of the digest method that is used for the signed part that is specified by the

part reference.

Part reference configuration settings:

Use this page to specify a reference to the message parts for signature and encryption that are defined in

the deployment descriptors.

 To view this administrative console page on the cell level for signing information, complete the following

steps:

1. Click Security > Web services.

2. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

3. Under Additional properties, click Part references.

4. Click New to create a part reference or click the name of an existing configuration to modify its

settings.

To view this administrative console page on the server level for signing information, complete the following

steps:

1. Click Servers > Application Servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

4. Under Additional properties, click Part references.

5. Click New to create a part reference or click the name of an existing configuration to modify its

settings.

722 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

To view this administrative console page on the application level for signing information, complete the

following steps. Part references are available through the administrative console using Version 6.x

applications only.

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access the signing information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sending) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under

Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

4. Under Required properties, click Signing information >signing_information_name.

5. Under Additional properties, click Part references.

6. Click New to create a part reference or click the name of an existing configuration to modify its

settings.

You must specify a part name and select a part reference before specifying additional properties. Before

specifying the digest method properties that are accessible under Additional properties, specify a digest

method algorithm on this panel. If you specify none and click Digest method, an error message is

displayed.

 Related reference

 “Part reference collection” on page 721
Use this page to view the message part references for signature and encryption that are defined in the

deployment descriptors.

 “Transforms collection” on page 724
Use this page to view the transform algorithm that is used for processing the Web services security

message.

 “Transforms configuration settings” on page 725
Use this page to specify the transform algorithm that is used for processing the Web services security

message.

Part name:

Specifies the name that is assigned to the part reference configuration.

Part reference:

Specifies the name of the <integrity> or <requiredIntegrity> element for the signed part of the message or

it specifies the name of the <confidentiality> or <requiredConfidentiality> element for the encrypted part of

the message in the deployment descriptor.

 The part names that are defined in the deployment descriptor are listed as options in this field. This field is

displayed for the binding configuration on the application level only.

Digest method algorithm:

Specifies the algorithm URI of the digest method that is used for the signed part that is specified by the

part reference.

Chapter 14. Learn about WebSphere applications 723

WebSphere Application Server provides the following predefined algorithm URI:

http://www.w3.org/2000/09/xmldsig#sha1. If you want to specify a custom algorithm, you must configure

the custom algorithm in the Algorithm URI panel before setting the digest method algorithm.

To access the Algorithm URI panel, complete the following steps for the server level:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings > algorithm_factory_engine_class_name >

Algorithm URI > New.

The specified algorithms are listed as options for this field.

When you specify the Algorithm URI, you also must specify an algorithm type. To have the algorithm

display as a selection in the Digest method algorithm field on the Part reference panel, you must select

Digest value calculation (Message digest) as the algorithm type.

Transforms collection:

Use this page to view the transform algorithm that is used for processing the Web services security

message.

 To view this administrative console page for the cell level, complete the following steps:

1. Click Security > Web services.

2. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

3. Under Additional properties, click Part references >part_reference_name.

4. Under Additional properties, click Transforms.

To view this administrative console page for the server level, complete the following steps:

1. Click Application Servers > Servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

4. Under Additional properties, click Part references >part_reference_name.

5. Under Additional properties, click Transforms.

6.x application

To view this administrative console page for the application level, complete the following

steps. This option is available for Version 6.x applications only.

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB Modules or Web modules >URI_name.

3. Under Additional properties, you can access the transforms information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Request consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Signing information >signing_information_name.

5. Under Additional properties, click Part references >part_name > Transforms.

724 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Related reference

 “Transforms configuration settings”
Use this page to specify the transform algorithm that is used for processing the Web services security

message.

 “Part reference collection” on page 721
Use this page to view the message part references for signature and encryption that are defined in the

deployment descriptors.

 “Part reference configuration settings” on page 722
Use this page to specify a reference to the message parts for signature and encryption that are defined

in the deployment descriptors.

Transform name:

Specifies the name that is assigned to the transform algorithm.

Transform algorithm:

Specifies the algorithm URI of the transform algorithm.

Transforms configuration settings:

Use this page to specify the transform algorithm that is used for processing the Web services security

message.

 To view this administrative console page for the cell level, complete the following steps:

1. Click Security > Web services.

2. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

3. Under Additional properties, click Part references >part_reference_name.

4. Under Additional properties, click Transforms.

5. Click New to create a transform configuration or click the name of an existing configuration to modify

its settings.

To view this administrative console page for the server level, complete the following steps:

1. Click Application Servers > Servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

4. Under Additional properties, click Part references >part_reference_name.

5. Under Additional properties, click Transforms.

6. Click New to create a transform configuration or click the name of an existing configuration to modify

its settings.

6.x application

To view this administrative console page for the application level, complete the following

steps. This option is available for version 6.x applications only.

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules >URI_name.

3. Under Additional properties, you can access the transforms information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

Chapter 14. Learn about WebSphere applications 725

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Request consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Signing information >signing_information_name.

5. Under Additional properties, click Part references >part_name > Transforms.

6. Click New to create a transform configuration or click the name of an existing configuration to modify

its settings.

You must specify a transform name and select a transform algorithm before specifying additional

properties.

 Related reference

 “Transforms collection” on page 724
Use this page to view the transform algorithm that is used for processing the Web services security

message.

Transform name:

Specifies the name that is assigned to the transform algorithm.

Transform algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the transform algorithm.

 WebSphere Application Server supports the following algorithms:

http://www.w3.org/2001/10/xml-exc-c14n#

This algorithm specifies the World Wide Web Consortium (W3C) Exclusive Canonicalization

recommendation.

http://www.w3.org/TR/1999/REC-xpath-19991116

This algorithm specifies the W3C XML path language recommendation. If you specify this

algorithm, you must specify the property name and value by clicking Properties, which is

displayed under Additional properties. For example, you might specify the following information:

Property

com.ibm.wsspi.wssecurity.dsig.XPathExpression

Value not(ancestor-or-self::*[namespace-uri()=’http://www.w3.org/2000/09/xmldsig#’ and

local-name()=’Signature’])

http://www.w3.org/2002/06/xmldsig-filter2

This algorithm specifies the XML-Signature XPath Filter Version 2.0 proposed recommendation.

 When you use this algorithm, you must specify a set of properties. You can use multiple property

sets for the XPath Filter Version 2. Therefore, it is recommended that your property names end

with the number of the property set, which is denoted by an asterisk in the following examples:

v To specify an XPath expression for the XPath filter2, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Expression_*

v To specify a filter type for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Filter_*

Following this expression, you can have a value, [intersect], [subtract], or [union].

726 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v To specify the processing order for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Order_*

Following this expression, indicate the processing order of the XPath.

The following is a list of complete examples:

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_1 = [intersect]

com.ibm.wsspi.wssecurity.dsign.XPath2Order_1 = [1]

com.ibm.wsspi.wssecurity.dsign.XPath2Expression_2 = [XPath expression#2]

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_2 = [subtract]

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_2 = [1]

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

http://www.w3.org/2002/07/decrypt#XML

This algorithm specifies the W3C decryption transform for XML Signature recommendation.

http://www.w3.org/2000/09/xmldsig#enveloped-signature

This algorithm specifies the W3C recommendation for XML digital signatures.

Configuring the encryption information for the generator binding on the

application level

Before you begin this task, you must configure the key information that is referenced by the key

information references in the encryption information panel.

This task provides the steps that are needed for configuring encryption information for the request

generator (client side) and the response generator (server side) bindings at the application level. This

encryption information is used to specify how the generators (senders) encrypt outgoing messages.

Complete the following steps to configure the encryption information for the request generator or response

generator section of the bindings file on the application level:

1. Locate the encryption information configuration panel in the administrative console.

a. Click Applications > Enterprise applications >application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional properties, you can access the key information for the request generator and

response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Required properties, click Encryption information.

e. Click New to create an encryption information configuration. Click Delete to delete an existing

configuration or click the name of an existing encryption information configuration to edit its

settings. If you are creating a new configuration, enter a name in the Encryption information name

field. For example, you might specify gen_encinfo.

2. Select a data encryption algorithm from the Data encryption algorithm field. The selection specifies the

algorithm that is used to encrypt parts of the message. WebSphere Application Server supports the

following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

Chapter 14. Learn about WebSphere applications 727

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

The data encryption algorithm that you select for the generator side must match the data encryption

method that you select for the consumer side.

3. Select a key encryption algorithm from the Key encryption algorithm field. This selection specifies the

algorithm that is used to encrypt keys. WebSphere Application Server supports the following

pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

The key encryption algorithm that you select for the generator side must match the key encryption

method that you select for the consumer side.

4. Select an encryption key information reference from the Encryption key information menu. This

selection is a reference to the encryption key that is used to encrypt parts of the message. To

configure the key information, see “Configuring the key information for the generator binding on the

application level” on page 699.

5. Select a part reference from the Part reference field. This field specifies the name of the part reference

for the generator binding element in the deployment descriptor.

6. Click OK and then click Save to save the configuration.

The encryption information is configured for the generator binding at the application level

You must specify a similar encryption information configuration for the consumer.

 Related tasks

 “Configuring the encryption information for the consumer binding on the application level” on page 757

 “Configuring the key information for the generator binding on the application level” on page 699

 Related information

 IBM developer kit: Security information

 Web Services Security: SOAP Message Security Version 1.0

Encryption information collection:

Use this page to specify the configuration for the encrypting and decrypting parameters. This configuration

is used to encrypt and decrypt parts of the message, including the body and user name token.

 To view the administrative console panel for the encryption information on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

728 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

2. Under Security, click Web services: Default bindings for Web services security.

3. Under either Default generator bindings or Default consumer bindings, click Encryption information.

To view this administrative console page for the collection certificate store on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access encryption information for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom. Under Required properties, click Encryption

information.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption

information.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom. Under Required properties, click Encryption

information.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption

information.

4. 5.x application

Under Additional properties, you can access encryption information for the following

bindings:

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit. Under Additional properties, click Encryption information.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit. Under Additional properties, click Encryption information.

 Related reference

 “Encryption information configuration settings”
Use this page to configure the encryption and decryption parameters. You can use these parameters to

encrypt and decrypt various parts of the message, including the body and user name token.

 “Web services: Server security bindings collection” on page 691
Use this page to view a list of server-side binding configurations for Web services security.

Encryption information name:

Specifies the name of the encryption information.

Key locator reference:

Specifies the name of the key locator configuration that retrieves the key for XML digital signature and

XML encryption.

Key encryption algorithm: Specifies the algorithm that is used to encrypt and decrypt keys.

Data encryption algorithm: Specifies the algorithm that is used to encrypt and decrypt data.

Encryption information configuration settings:

Use this page to configure the encryption and decryption parameters. You can use these parameters to

encrypt and decrypt various parts of the message, including the body and user name token.

 To view the administrative console panel for the encryption information on the server level, complete the

following steps:

Chapter 14. Learn about WebSphere applications 729

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under either Default generator bindings or Default consumer bindings, click Encryption information.

4. Click either New to create a new encryption configuration or click the name of an existing encryption

configuration.

To view this administrative console page for the collection certificate store on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access encryption information for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom. Under Required properties, click Encryption

information.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption

information.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom. Under Required properties, click Encryption

information.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption

information.

4. 5.x application

Under Additional properties, you can access encryption information for the following

bindings:

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit. Under Additional properties, click Encryption information.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit. Under Additional properties, click Encryption information.

5. Click either New to create a new encryption configuration or click the name of an existing encryption

configuration.

 Related reference

 “Encryption information collection” on page 728
Use this page to specify the configuration for the encrypting and decrypting parameters. This

configuration is used to encrypt and decrypt parts of the message, including the body and user name

token.

 “Key locator collection” on page 694
Use this page to view a list of key locator configurations that retrieve keys from the keystore for digital

signature and encryption. A key locator must implement the

com.ibm.wsspi.wssecurity.config.KeyLocator interface.

 “Encryption information configuration settings” on page 734
Use this page to configure the encryption and decryption parameters.

Encryption information name:

Specifies the name for the encryption information.

 Data type String

Data encryption algorithm:

730 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Specifies the algorithm URI of the data encryption method.

 The following algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc. To use this algorithm, you must download the

unrestricted Java Cryptography Extension (JCE) policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html. For more information, see “Encryption

information configuration settings” on page 734.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc. To use this algorithm, you must download the

unrestricted Java Cryptography Extension (JCE) policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html. For more information, see “Encryption

information configuration settings” on page 734.

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To

use 192-bit and 256- bit Advanced Encryption Standard (AES) encryption algorithms, you must apply

unlimited jurisdiction policy files. For more information, see the Key encryption algorithm field description.

Key locator reference:

Specifies the name of the key locator configuration that retrieves the key for XML digital signature and

XML encryption.

 The Key locator reference field is displayed for the request receiver and response receiver bindings, which

are used by Version 5.x applications.

You can configure these key locator reference options on the server level and the application level. The

configurations that are listed in the field are a combination of the configurations on these two levels.

You can specify an encryption key configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application servers

>server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Key

locators.

Default consumer binding Server level 1. Click Servers > Application servers

>server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Key

locators.

Request sender Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB modules or

Web modules > URI_name.

3. Click Web services: Client security

bindings. Under Request sender binding,

click Edit.

4. Under Additional properties, click Key

locators.

Chapter 14. Learn about WebSphere applications 731

http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.w3.org/2001/04/xmlenc#aes192-cbc

Binding name Cell level, server level, or

application level

Path

Request receiver Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB modules or

Web modules > URI_name.

3. Click Web services: Server security

bindings. Under Request receiver binding,

click Edit.

4. Under Additional properties, click Key

locators.

Response sender Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB modules or

Web modules > URI_name.

3. Click Web services: Server security

bindings. Under Response sender binding,

click Edit.

4. Under Additional properties, click Key

locators.

Response receiver Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB modules or

Web modules > URI_name.

3. Click Web services: Client security

bindings. Under Response receiver

binding, click Edit.

4. Under Additional properties, click Key

locators.

Key encryption algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the key encryption method.

 The following algorithms are provided by WebSphere Application Server:

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes192

v http://www.w3.org/2001/04/xmlenc#kw-aes256

By default, the Java Cryptography Extension (JCE) ships with restricted or limited strength ciphers. To use

192-bit and 256- bit Advanced Encryption Standard (AES) encryption algorithms, you must apply unlimited

jurisdiction policy files. Before downloading these policy files, back up the existing policy files

(local_policy.jar and US_export_policy.jar in the WAS_HOME/jre/lib/security/ directory) prior to

overwriting them in case you want to restore the original files later. To download the policy files, complete

either of the following sets of steps:

v For WebSphere Application Server platforms using IBM Developer Kit, Java Technology Edition Version

1.4.2, including the AIX, Linux, and Windows platforms, you can obtain unlimited jurisdiction policy files

by completing the following steps:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

732 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click JAVA 1.4.2 material > IBM SDK Policy files.

3. Register, if necessary, and log into the Web site.

4. Locate the correct version of the Java Cryptography Extension (JCE) policy file and click Download

now.

The unrestrict.zip file is downloaded onto your machine.

After following either of these sets of steps, two Java archive (JAR) files are placed in the Java virtual

machine (JVM) jre/lib/security/ directory.

To specify custom algorithms on the server level, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings.

4. Click New to specify a new algorithm mapping or click the name of an existing configuration to modify

its settings.

5. Under Additional properties, click Algorithm URI.

6. Click New to create a new algorithm URI. You must specify Key encryption in the Algorithm type

field to have the configuration display in the Key encryption algorithm field on the Encryption

information configuration settings panel.

Encryption key information:

Specifies the name of the key information reference that is used for encryption. This reference is resolved

to the actual key by the specified key locator and defined in the key information.

 6.x application

You must specify either one or no encryption key configurations for the request

generator and response generator bindings.

6.x application

For the response consumer and the request consumer bindings, you can configure

multiple encryption key references. To create a new encryption key reference, under Additional properties,

click Key information references.

You can specify an encryption key configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Default generator binding, click Key

information.

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Default consumer binding, click Key

information.

Chapter 14. Learn about WebSphere applications 733

Binding name Cell level, server level, or

application level

Path

Request generator (sender)

binding

Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB modules or

Web modules > URI_name.

3. Under Additional properties, click Web

services: Client security bindings.

4. Under Request generator (sender) binding,

click Edit custom.

5. Under Required properties, click Key

information.

Response generator (sender)

binding

Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB modules or

Web modules > URI_name.

3. Under Additional properties, click Web

services: Server security bindings.

4. Under Response generator (sender)

binding, click Edit custom.

5. Under Required properties, click Key

information.

Part Reference:

Specifies the name of the <confidentiality> element for the generator binding or the

<requiredConfidentiality> element for the consumer binding element in the deployment descriptor.

 This field is available on the application level only.

Encryption information configuration settings:

Use this page to configure the encryption and decryption parameters.

 The specifications that are listed on this page for the signature method, digest method, and

canonicalization method are located in the World Wide Web Consortium (W3C) document entitled, XML

Encryption Syntax and Processing: W3C Recommendation 10 Dec 2002.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications >application_name and complete one of the following

steps:

v Under Related Items, click EJB modules or Web modules >URI_file_name > Web Services:

Client Security Bindings. Under Request sender binding, click Edit. Under Additional properties,

click Encryption Information.

v Under Related Items, click EJB modules or Web modules >URI_file_name > Web Services:

Server Security Bindings. Under Response sender binding, click Edit. Under Additional properties,

click Encryption Information.

2. Select None or Dedicated encryption information. WebSphere Application Server can have either

one or no encryption configurations for the request sender and the response sender bindings. If you

are not using encryption, select None. To configure encryption for either of these two bindings, select

Dedicated encryption information and specify the configuration settings using the fields that are

described in this article.

734 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Related reference

 “Encryption information collection” on page 728
Use this page to specify the configuration for the encrypting and decrypting parameters. This

configuration is used to encrypt and decrypt parts of the message, including the body and user name

token.

 “Key locator collection” on page 694
Use this page to view a list of key locator configurations that retrieve keys from the keystore for digital

signature and encryption. A key locator must implement the

com.ibm.wsspi.wssecurity.config.KeyLocator interface.

Encryption information name:

Specifies the name of the key locator configuration that retrieves the key for XML digital signature and

XML encryption.

Key locator reference:

Specifies the name that is used to reference the key locator.

 You can configure these key locator reference options on the server level and the application level. The

configurations that are listed in the field are a combination of the configurations on these two levels.

To configure the key locators on the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

To configure the key locators on the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules > URI_name.

3. Under Additional properties, you can access the key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender

binding, click Edit. Under Additional properties, click Key locators.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit. Under Additional properties, click Key locators.

v For the Response sender, click Web services: Server security bindings. Under Response sender

binding, click Edit. Under Additional properties, click Key locators.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit. Under Additional properties, click Key locators.

Encryption key name:

Specifies the name of the encryption key that is resolved to the actual key by the specified key locator.

 Data type String

Key encryption algorithm:

Specifies the algorithm uniform resource identifier (URI) of the key encryption method.

 The following algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#rsa-1_5.

v http://www.w3.org/2001/04/xmlenc#kw-tripledes.

Chapter 14. Learn about WebSphere applications 735

http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128.

v http://www.w3.org/2001/04/xmlenc#kw-aes192.

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE) policy

file.

v http://www.w3.org/2001/04/xmlenc#kw-aes256.

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE) policy

file.

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To

use 192-bit and 256- bit Advanced Encryption Standard (AES) encryption algorithms, you must apply

unlimited jurisdiction policy files. Before downloading these policy files, back up the existing policy files

(local_policy.jar and US_export_policy.jar in the WAS_HOME/jre/lib/security/ directory) prior to

overwriting them in case you want to restore the original files later. To download the policy files, complete

either of the following sets of steps:

v For WebSphere Application Server platforms using IBM Developer Kit, Java Technology Edition Version

1.4.2, including the AIX, Linux, and Windows platforms, you can obtain unlimited jurisdiction policy files

by completing the following steps:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java 1.4.2 material

3. Click IBM SDK Policy files.

4. Select Unrestricted JCE Policy files for SDK 1.4.2

5. Enter your user ID and password or register with IBM to download the policy files. The policy files

are downloaded onto your machine.

v For WebSphere Application Server platforms using the Sun-based Java Development Kit (JDK) Version

1.4.2, including the Solaris environments and the HP-UX platform, you can obtain unlimited jurisdiction

policy files by completing the following steps:

1. Go to the following Web site: http://java.sun.com/j2se/1.4.2/download.html

2. Click Archive area.

3. Locate the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 1.4.2

information and click Download. The jce_policy-1_4_1.zip file is downloaded onto your machine.

After following either of these sets of steps, two Java archive (JAR) files are placed in the Java virtual

machine (JVM) jre/lib/security/ directory.

Data encryption algorithm:

Specifies the algorithm Uniform Resource Identifiers (URI) of the data encryption method.

 The following algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

By default, the JCE ships with restricted or limited strength ciphers. To use 192-bit and 256- bit AES

encryption algorithms, you must apply unlimited jurisdiction policy files. For more information, see the Key

encryption algorithm field description.

Configuring trust anchors for the consumer binding on the application level

This document describes how to configure trust anchors for the consumer binding at the application level.

It does not describe how to configure trust anchors at the server or cell level. Trust anchors that are

736 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.4.2/download.html
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc

defined at the application level have a higher precedence over trust anchors that are defined at the server

or cell level. For more information on creating and configuring trust anchors on the server or cell level, see

“Configuring trust anchors on the server or cell level” on page 761.

You can configure a trust anchor for the trust anchor using an assembly tool or the administrative console.

This document describes how to configure the application-level trust anchor using the administrative

console.

A trust anchor specifies key stores that contain trusted root Certificate Authority (CA) certificates, which

validate the signer certificate. These keystores are used by the request consumer (as defined in the

ibm-webservices-bnd.xmi file) and the response consumer (as defined in the ibm-webservicesclient-
bnd.xmi file when a Web service is acting as a client) to validate the X.509 certificate in the Simple Object

Access protocol (SOAP) message. The keystores are critical to the integrity of the digital signature

validation. If the keystores are tampered with, the result of the digital signature verification is doubtful and

comprised. Therefore, it is recommended that you secure these keystores. The binding configuration

specified for the request consumer in the ibm-webservices-bnd.xmi file must match the binding

configuration for the response consumer in the ibm-webservicesclient-bnd.xmi file. The trust anchor

configuration for the request consumer on the server side must match the request generator configuration

on the client side. Also, the trust anchor configuration for the response consumer on the client side must

match the response generator configuration on the server side.

Complete the following steps to configure trust anchors for the consumer binding on the application level:

1. Locate the trust anchor panel in the administrative console.

a. Click Applications > Enterprise applications >application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional properties you can access the trust anchor configuration for the following bindings:

v For the request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

d. Under Additional properties, click Trust anchors.

e. Click New to create a trust anchor configuration. Select the box next to a configuration and click

Delete to delete an existing configuration or click the name of an existing trust anchor configuration

to edit its settings. If you are creating a new configuration, enter a unique name in the Trust anchor

name field.

2. Specify the keystore password, the keystore location, and the keystore type. A trust anchor keystore

file contains the trusted root Certificate Authority (CA) certificates that are used for validating the X.509

certificate that is used in digital signature or XML encryption.

a. Specify a password in the Key store password field. This password is used to access the keystore

file.

b. Specify the location of the keystore file in the Key store path field.

c. Select a keystore type from the Key store type field. The Java Cryptography Extension (JCE) that

is used by IBM supports the following keystore types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)

Use this format if your keystore file uses the PKCS#11 file format. Keystore files that use

this format might contain RSA keys on cryptographic hardware or might encrypt keys that

use cryptographic hardware to ensure protection.

Chapter 14. Learn about WebSphere applications 737

PKCS12KS (PKCS12)

Use this option if your keystore file uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the

${USER_INSTALL_ROOT}/etc/ws-security/samples directory. For example, you might use the

enc-receiver.jceks keystore file for encryption keys. The password for this file is storepass and

the type is JCEKS.

Attention: Do not use these keystore files in a production environment. These samples are

provided for testing purposes only.

This task configures trust anchors for the consumer binding at the application level

You must specify a similar trust anchor information for the generator.

 Related tasks

 “Configuring trust anchors for the generator binding on the application level” on page 659

 “Configuring trust anchors on the server or cell level” on page 761

 Related reference

 “Trust anchor collection” on page 660
Use this page to view a list of keystore objects that contain trusted root certificates. These objects are

used for certificate path validation of incoming X.509-formatted security tokens. Keystore objects within

trust anchors contain trusted root certificates that are used by the CertPath API to validate the trust of

a certificate chain.

 “Trust anchor configuration settings” on page 661
Use this information to configure a trust anchor. Trust anchors point to keystores that contain trusted

root or self-signed certificates. This information enables you to specify a name for the trust anchor and

the information that is needed to access a keystore. The application binding uses this name to

reference a predefined trust anchor definition in the binding file (or the default).

Configuring the collection certificate store for the consumer binding on the

application level

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs is used to check for a valid signature in

a digitally signed Simple Object Access Protocol (SOAP) message. Complete the following steps to

configure a collection certificate for the consumer bindings on the application level:

 1. Locate the collection certificate store configuration panel in the administrative console.

a. Click Applications > Enterprise applications >application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional properties, click Collection certificate store.

 2. Click New to create a collection certificate store configuration, click Delete to delete an existing

configuration, or click the name of an existing collection certificate store configuration to edit its

settings. If you are creating a new configuration, enter a name in the Certificate store name field.

The name of the collection certificate store must be unique to the level of the application server. For

example, if you create the collection certificate store for the application level, the store name must be

unique to the application level. The name that is specified in the Certificate store name field is used

by other configurations to refer to a predefined collection certificate store. WebSphere Application

Server searches for the collection certificate store based on proximity.

For example, if an application binding refers to a collection certificate store named cert1, the

Application Server searches for cert1 at the application level before searching the server level.

 3. Specify a certificate store provider in the Certificate store provider field. WebSphere Application

Server supports the IBMCertPath certificate store provider. To use another certificate store provider,

you must define the provider implementation in the provider list within the

738 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

install_dir/java/jre/lib/security/java.security file. However, make sure that your provider

supports the same requirements of the certificate path algorithm as WebSphere Application Server.

 4. Click OK and Save to save the configuration.

 5. Click the name of your certificate store configuration. After you specify the certificate store provider,

you must specify either the location of a certificate revocation list or the X.509 certificates. However,

you can specify both a certificate revocation list and the X.509 certificates for your certificate store

configuration.

 6. Under Additional properties, click Certificate revocation lists.

 7. Click New to specify a certificate revocation list path, click Delete to delete an existing list reference,

or click the name of an existing reference to edit the path. You must specify the fully qualified path to

the location where WebSphere Application Server can find your list of certificates that are not valid.

For portability reasons, it is recommended that you use the WebSphere Application Server variables

to specify a relative path to the certificate revocation lists (CRL). This recommendation is especially

important when you are working in a WebSphere Application Server Network Deployment

environment. For example, you might use the USER_INSTALL_ROOT variable to define a path such

as $USER_INSTALL_ROOT/mycertstore/mycrl1. For a list of supported variables, click Environment

> WebSphere variables in the administrative console. The following list provides recommendation for

using certificate revocation lists:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority

and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,

the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the

old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)

build failure.

 8. Click OK and Save to save the configuration.

 9. Return to the Collection certificate store configuration panel. See the first few steps of this article to

locate the collection certificate store panel.

10. Under Additional properties, click X.509 certificates.

11. Click New to create a new configuration for X.509 certificates, click Delete to delete an existing

configuration, or click the name of an existing X.509 certificate configuration to edit its settings. If you

are creating a new configuration, enter a name in the Certificate store name field.

12. Specify a path in the X.509 certificate path field. This entry is the absolute path to the location of the

X.509 certificates. The collection certificate store is used to validate the certificate path of incoming

X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of the path name. For example, you might

type: USER_INSTALL_ROOT/etc/ws-security/samples/intca2.cer. Do not use this certificate path for

production use. You must obtain your own X.509 certificate from a certificate authority before putting

your WebSphere Application Server environment into production.

Click Environment > WebSphere variables in the administrative console to configure the

USER_INSTALL_ROOT variable.

13. Click OK and then Save to save your configuration.

You have configured the collection certificate store for the consumer binding.

You must configure a token consumer configuration that references this certificate store configuration.

 Related tasks

 “Configuring the collection certificate store for the generator binding on the application level” on page

663

Chapter 14. Learn about WebSphere applications 739

Binary security token

The ValueType attribute identifies the type of the security token, for example, a Lightweight Third Party

Authentication (LTPA) token. The EncodingType type indicates how the security token is encoded, for

example, Base64Binary. The BinarySecurityToken element defines a security token that is binary encoded.

The encoding is specified using the EncodingType attribute. The value type and space are specified using

the ValueType attribute. The Web services security implementation for WebSphere Application Server,

Version 6 supports both LTPA and X.509 certificate binary security tokens.

A binary security token has the following attributes that are used for interpretation:

v Value type

v Encoding type

The following example depicts an LTPA binary security token in a Web services security message header:

<wsse:BinarySecurityToken xmlns:ns7902342339871340177=

 "http://www.ibm.com/websphere/appserver/tokentype/5.0.2"

 EncodingType="wsse:Base64Binary"

 ValueType="ns7902342339871340177:LTPA">

 MIZ6LGPt2CzXBQfio9wZTo1VotWov0NW3Za6lU5K7Li78DSnIK6iHj3hxXgrUn6p4wZI

 8Xg26havepvmSJ8XxiACMihTJuh1t3ufsrjbFQJOqh5VcRvI+AKEaNmnEgEV65jUYAC9

 C/iwBBWk5U/6DIk7LfXcTT0ZPAd+3D3nCS0f+6tnqMou8EG9mtMeTKccz/pJVTZjaRSo

 msu0sewsOKfl/WPsjW0bR/2g3NaVvBy18VlTFBpUbGFVGgzHRjBKAGo+ctkl80nlVLIk

 TUjt/XdYvEpOr6QoddGi4okjDGPyyoDxcvKZnReXww5UsoqlpfXwN4KG9as=

</wsse:BinarySecurityToken>

</wsse:Security>

</soapenv:Header>

As shown in the example, the token is Base64Binary encoded.

Configuring token consumer on the application level

This task describes the steps that are needed to specify the token consumer on the application level. The

information is used on the consumer side to incorporate the security token.

Complete the following steps to configure the token consumer on the application level:

 1. Locate the token consumer panel in the administrative console.

a. Click Applications > Enterprise applications >application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional properties you can access the token consumer for the following bindings:

v For the request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

d. Under Required properties, click Token consumer.

e. Click New to create a token consumer configuration, click Delete to delete an existing

configuration, or click the name of an existing token consumer configuration to edit its settings. If

you are creating a new configuration, enter a unique name in the Token consumer name field. For

example, you might specify con_signtgen.

 2. Specify a class name in the Token consumer class name field. The token consumer class must

implement the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface. The token

consumer class name for the request consumer and the response consumer must be similar to the

token generator class name for the request generator and the response generator. For example, if

your application requires a user name token consumer, you can specify the

740 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator class name on the Token generator panel

for application level and the com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer class name in

this field.

 3. Optional: Select a part reference in the Part reference field. The part reference indicates the name of

the security token that is defined in the deployment descriptor. For example, if you receive a

username token in your request message, you might want to reference the token in the username

token consumer.

Important: On the application level, if you do not specify a security token in your deployment

descriptor, the Part reference field is not displayed. If you define a security token called

user_tcon in your deployment descriptor, user_tcon is displayed as an option in the Part

reference field.

 4. Optional: In the certificate path section of the panel, select a certificate store type and indicate the

trust anchor and certificate store name, if necessary. These options and fields are necessary when

you specify com.ibm.wsspi.wssecurity.token.X509TokenConsumer as the token consumer class name.

The names of the trust anchor and the collection certificate store are created in the certificate path

under your token consumer. You can select one of the following options:

None If you select this option, the certificate path is not specified.

Trust any

If you select this option, any certificate is trusted. When the received token is consumed, the

Application Server does not validate the certificate path.

Dedicated signing information

If you select this option, you can select a trust anchor and a certificate store configuration.

When you select the trust anchor or the certificate store of a trusted certificate, you must

configure the trust anchor and the certificate store before setting the certificate path.

Trust anchor

A trust anchor specifies a list of key store configurations that contain trusted root

certificates. These configurations are used to validate the certificate path of incoming

X.509-formatted security tokens. Keystore objects within trust anchors contain trusted

root certificates that are used by the CertPath API to validate the trustworthiness of a

certificate chain. You must create the keystore file using the key tool utility, which is

located in the install_dir/java/jre/bin/keytool file.

 You can configure trust anchors for the application level by completing the following

steps:

a. Click Applications > Enterprise applications >application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Access the token consumer from the following bindings:

v For the request consumer (receiver) binding, click Web services: Server

security bindings. Under Request consumer (receiver) binding, click Edit

custom.

v For the response consumer (receiver) binding, click Web services: Client

security bindings. Under Response consumer (receiver) binding, click Edit

custom.

d. Under Additional properties, click Trust anchors.

Collection certificate store

A collection certificate store includes a list of untrusted, intermediary certificates and

certificate revocation lists (CRLs). The collection certificate store is used to validate

the certificate path of the incoming X.509-formatted security tokens. You can

configure the collection certificate store for the application level by completing the

following steps:

a. Click Applications > Enterprise applications >application_name.

Chapter 14. Learn about WebSphere applications 741

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Access the token consumer from the following bindings:

v For the request consumer (receiver) binding, click Web services: Server

security bindings. Under Request consumer (receiver) binding, click Edit

custom.

v For the response consumer (receiver) binding, click Web services: Client

security bindings. Under Response consumer (receiver) binding, click Edit

custom.

d. Under Additional properties, click Collection certificate store.

 5. Optional: Specify a trusted ID evaluator. The trusted ID evaluator is used to determine whether to

trust the received ID. You can select one of the following options:

None If you select this option, the trusted ID evaluator is not specified.

Existing evaluator definition

If you select this option, you can select one of the configured trusted ID evaluators. For

example, you can select the SampleTrustedIDEvaluator, which is provided by WebSphere

Application Server as an example.

Binding evaluator definition

If you select this option, you can configure a new trusted ID evaluator by specifying a trusted

ID evaluator name and class name.

Trusted ID evaluator name

Specifies the name that is used by the application binding to refer to a trusted identity

(ID) evaluator that is defined in the default bindings.

Trusted ID evaluator class name

Species the class name of the trusted ID evaluator. The specified trusted ID evaluator

class name must implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

interface. The default TrustedIDEvaluator class is

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. When you use this default

TrustedIDEvaluator class, you must specify the name and value properties for the

default trusted ID evaluator to create the trusted ID list for evaluation. To specify the

name and value properties, complete the following steps:

a. Under Additional properties, click Properties > New.

b. Specify the trusted ID evaluator name in the Property field. You must specify the

name in the the form, trustedId_n where _n is an integer from 0 to n.

c. Specify the trusted ID in the Value field.

For example:

property name="trustedId_0", value="CN=Bob,O=ACME,C=US"

property name="trustedId_1, value="user1"

If the distinguished name (DN) is used, the space is removed for comparison. See

the programming model information in the documentation for an explanation of how to

implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface. For more

information, see “Default implementations of the Web services security service

provider programming interfaces” on page 558.

Note: Define the trusted ID evaluator on the server level instead of the application

level. To define the trusted ID evaluator on the server level, complete the

following steps:

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services

security.

742 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

c. Under Additional properties, click Trusted ID evaluators.

d. Click New to define a new trusted ID evaluator.

The trusted ID evaluator configuration is available only for the token consumer on the server-side

application level.

 6. Optional: Select the Verify nonce option. This option indicates whether to verify a nonce in the user

name token if it is specified for the token consumer. Nonce is a unique, cryptographic number that is

embedded in a message to help stop repeat, unauthorized attacks of user name tokens. The Verify

nonce option is valid only when the incorporated token type is a user name token.

 7. Optional: Select the Verify timestamp option. This option indicates whether to verify a time stamp in

the user name token. The Verify nonce option is valid only when the incorporated token type is a

user name token.

 8. Specify the value type local name in the Local name field. This field specifies the local name of the

value type for the consumed token. For a user name token and an X.509 certificate security token,

WebSphere Application Server provides predefined local names for the value type. When you specify

any of the following local names, you do not need to specify a value type URI:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

This local name specifies a user name token.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509

This local name specifies an X.509 certificate token.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

This local name specifies X.509 certificates in a public key infrastructure (PKI) path.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

This local name specifies a list of X.509 certificates and certificate revocation lists in a

PKCS#7 format.

LTPA This local name specifies a Lightweight Third Party Authentication (LTPA) token.

Important: When you specify LTPA for the value type local name, you do not need to specify

the value type Uniform Resource Identifier (URI), which is

http://www.ibm.com/websphere/appserver/tokentype/5.0.2.

 9. Optional: Specify the value type URI in the URI field. This entry specifies the namespace URI of the

value type for the consumed token.

Remember: If you specify the token consumer for a username token or an X.509 certificate security

token, you do not need to specify a value type URI.

If you want to specify another token, you must specify both the local name and the URI. For example,

if you have an implementation of your own custom token, you can specify CustomToken in the Local

name field and http://www.ibm.com/custom

10. Click OK and Save to save the configuration.

11. Click the name of your token consumer configuration.

12. Under Additional properties, click JAAS configuration. The Java Authentication and Authorization

Service (JAAS) configuration specifies the name of the JAAS configuration that is defined in the JAAS

login panel. The JAAS configuration specifies how the token logs in on the consumer side.

13. Select a JAAS configuration from the JAAS configuration name field. The field specifies the name of

the JAAS system of application login configuration. You can specify additional JAAS system and

application configurations by clicking Security > Global security. Under Authentication, click JAAS

configuration and either Application logins > New or System logins > New. Do not remove the

predefined system or application login configurations. However, within these configurations, you can

add module class names and specify the order in which WebSphere Application Server loads each

module. WebSphere Application Server provides the following predefined JAAS configurations:

Chapter 14. Learn about WebSphere applications 743

ClientContainer

This selection specifies the login configuration that is used by the client container

applications. The configuration uses the CallbackHandler application programming interface

(API) that is defined in the deployment descriptor for the client container. To modify this

configuration, see the JAAS configuration panel for application logins.

WSLogin

This selection specifies whether all of the applications can use the WSLogin configuration to

perform authentication for the security run time. To modify this configuration, see the JAAS

configuration panel for application logins.

DefaultPrincipalMapping

This selection specifies the login configuration that is used by Java 2 Connectors (J2C) to

map users to principals that are defined in the J2C authentication data entries. To modify this

configuration, see the JAAS configuration panel for application logins.

system.wssecurity.IDAssertion

This selection enables a Version 5.x application to use identity assertion to map a user name

to a WebSphere Application Server credential principal. To modify this configuration, see the

JAAS configuration panel for system logins.

system.wssecurity.Signature

This selection enables a Version 5.x application to map a distinguished name (DN) in a

signed certificate to a WebSphere Application Server credential principal. To modify this

configuration, see the JAAS configuration panel for system logins.

system.LTPA_WEB

This selection processes login requests that are used by the Web container such as servlets

and JavaServer Pages (JSPs) files. To modify this configuration, see the JAAS configuration

panel for system logins.

system.WEB_INBOUND

This selection handles login requests for Web applications, which include servlets and

JavaServer Pages (JSP) files. This login configuration is used by WebSphere Application

Server Version 5.1.1. To modify this configuration, see the JAAS configuration panel for

system logins.

system.RMI_INBOUND

This selection handles logins for inbound Remote Method Invocation (RMI) requests. This

login configuration is used by WebSphere Application Server Version 5.1.1. To modify this

configuration, see the JAAS configuration panel for system logins.

system.DEFAULT

This selection handles the logins for inbound requests that are made by internal

authentications and most of the other protocols except Web applications and RMI requests.

This login configuration is used by WebSphere Application Server Version 5.1.1. To modify

this configuration, see the JAAS configuration panel for system logins.

system.RMI_OUTBOUND

This selection processes RMI requests that are sent outbound to another server when either

the com.ibm.CSI.rmiOutboundLoginEnabled or the com.ibm.CSIOutboundPropagationEnabled

properties are true. These properties are set in the CSIv2 authentication panel.

 To access the panel, click Security > Global security. Under Authentication, click

Authentication protocol > CSIv2 outbound authentication. To set the

com.ibm.CSI.rmiOutboundLoginEnabled property, select the Custom outbound mapping

option. To set the com.ibm.CSIOutboundPropagationEnabled property, select the Security

attribute propagation option. To modify this JAAS login configuration, see the JAAS

configuration panel for system logins.

744 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

system.wssecurity.X509BST

This selection verifies an X.509 binary security token (BST) by checking the validity of the

certificate and the certificate path. To modify this configuration, see the JAAS configuration

panel for system logins.

system.wssecurity.PKCS7

This selection verifies an X.509 certificate within a PKCS7 object that might include a

certificate chain, a certificate revocation list, or both. To modify this configuration, see the

JAAS configuration panel for system logins.

system.wssecurity.PkiPath

This section verifies an X.509 certificate with a public key infrastructure (PKI) path. To modify

this configuration, see the JAAS configuration panel for system logins.

system.wssecurity.UsernameToken

This selection verifies the basic authentication (user name and password) data. To modify this

configuration, see the JAAS configuration panel for system logins.

system.wssecurity.IDAssertionUsernameToken

This selection supports the use of identity assertion in Version 6 applications to map a user

name to a WebSphere Application Server credential principal. To modify this configuration,

see the JAAS configuration panel for system logins.

None With this selection, you do not specify a JAAS login configuration.

14. Click OK and then click Save to save the configuration.

You have configured the token consumer for the application level.

You must specify a similar token generator configuration for the application level.

 Related concepts

 “Default implementations of the Web services security service provider programming interfaces” on

page 558

 Related tasks

 “Configuring the collection certificate store for the consumer binding on the application level” on page

738

 “Configuring token consumer on the application level” on page 740

Request consumer (receiver) binding configuration settings:

Use this page to specify the binding configuration for the request consumer.

 To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Additional properties, click Web services: Server security bindings.

5. Under Request consumer (receiver) binding, click Edit custom.

The security constraints or bindings are defined using the application assembly process before the

application is installed. WebSphere Application Server provides assembly tools to assemble your

application.

If the security constraints are defined in the application, you must either define the corresponding binding

information or select the Use defaults option on this panel and use the default binding information for the

cell or server level. The default binding that is provided by WebSphere Application Server is a sample. Do

Chapter 14. Learn about WebSphere applications 745

not use this sample in a production environment without modifying the configuration. The security

constraints define what is signed or encrypted in the Web services security message. The bindings define

how to enforce the requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security

constraint (integrity) is defined in the deployment descriptor.

 Information type Required or optional

Signing information Required

Key information Required

Token consumer Required

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate stores, and trust anchors that are defined at either the

server level or the cell level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint

(confidentiality) is defined in the deployment descriptor.

 Information type Required or optional

Encryption information Required

Key information Required

Token consumer Required

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate store, and trust anchors that are defined at either the

server level or the cell level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint

is defined in the deployment descriptor.

 Information type Required or optional

Token consumer Required

Collection certificate store Optional

Trust anchors Optional

Properties Optional

746 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

You can use the collection certificate store and trust anchors that are defined at the server level or the cell

level.

 Related reference

 “Request generator (sender) binding configuration settings” on page 680
Use this page to specify the binding configuration for the request generator.

 “Response generator (sender) binding configuration settings” on page 682
Use this page to specify the binding configuration for the response generator or response sender.

 “Response consumer (receiver) binding configuration settings”
Use this page to specify the binding configuration for the response consumer.

Use defaults:

Select this option if you want to use the default binding information from the server or cell level.

Port:

Specifies the port in the Web service that is defined during application assembly.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Response consumer (receiver) binding configuration settings:

Use this page to specify the binding configuration for the response consumer.

 To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Additional properties, click Web services: Client security bindings.

5. Under Response consumer (receiver) binding, click Edit custom.

The security constraints or bindings are defined using the application assembly process before the

application is installed. WebSphere Application Server provides assembly tools to assemble your

application.

If the security constraints are defined in the application, you must either define the corresponding binding

information or select the Use defaults option on this panel and use the default binding information for the

server or cell level. The default binding that is provided by WebSphere Application Server is a sample. Do

not use this sample in a production environment without modifying the configuration. The security

constraints define what is signed or encrypted in the Web services security message. The bindings define

how to enforce the requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security

constraint (integrity) is defined in the deployment descriptor.

 Information type Required or optional

Signing information Required

Key information Required

Token consumer Optional

Chapter 14. Learn about WebSphere applications 747

Information type Required or optional

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate stores, and trust anchors that are defined at either the

server level or the cell level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint

(confidentiality) is defined in the deployment descriptor.

 Information type Required or optional

Encryption information Required

Key information Required

Token consumer Optional

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate store, and trust anchors that are defined at the

application level, server level, or the cell level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint

is defined in the deployment descriptor.

 Information type Required or optional

Token consumer Required

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the collection certificate store and trust anchors that are defined at the application level,

server level, or the cell level.

 Related reference

 “Request generator (sender) binding configuration settings” on page 680
Use this page to specify the binding configuration for the request generator.

 “Request consumer (receiver) binding configuration settings” on page 745
Use this page to specify the binding configuration for the request consumer.

 “Response generator (sender) binding configuration settings” on page 682
Use this page to specify the binding configuration for the response generator or response sender.

Use defaults:

748 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Select this option if you want to use the default binding information from the cell or server level.

Component:

Specifies the enterprise bean in an assembled Enterprise JavaBeans (EJB) module.

Port:

Specifies the port in the Web service that is defined during application assembly.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Configuring the key locator for the consumer binding on the application level

The key locator information for the consumer at the application level specifies which key locator

implementation is used to locate the key that is used to validate the digital signature or the encryption

information by the application. Complete the following steps to configure the key locator for the consumer

binding on the application level:

1. Locate the key locator configuration panel in the administrative console.

a. Click Applications > Enterprise applications >application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional properties, you can access the key information for the request consumer and

response consumer bindings.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Server security bindings.

Under Response consumer (receiver) binding, click Edit custom.

d. Under Additional properties, click Key locators.

e. Click New to create a key locator configuration, click Delete and select the box next to the

configuration to delete an existing configuration, or click the name of an existing key locator

configuration to edit its settings. If you are creating a new configuration, enter a unique name in the

Key locator name field. For example, you might specify klocator.

2. Specify a name for the key locator class implementation. Key locators that are associated with Version

6 applications must implement the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. Specify a

class name according to the requirements of the application. For example, if the application requires

that the key is read from a keystore file, specify the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation. WebSphere Application Server

provides the following default key locator class implementations for Version 6 applications that are

available to use with the request consumer or response consumer:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator

This implementation uses the X.509 security token from the sender message for digital

signature validation and encryption. This class implementation is used by the request

consumer and the response consumer.

3. Specify the keystore password, the keystore location, and the keystore type. Keystore files contain

public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and

so on. Keys that are retrieved from the keystore files are used to sign and validate or encrypt and

decrypt messages or message parts. If you specified the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class

implementation, you must specify a keystore password, location, and type.

Chapter 14. Learn about WebSphere applications 749

a. Specify a password in the Key store password field. This password is used to access the keystore

file.

b. Specify the location of the keystore file in the Key store path field.

c. Select a keystore type from the Key store type field. The Java Cryptography Extension (JCE) that

is used by IBM supports the following keystore types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)

Use this format if your keystore file uses the PKCS#11 file format. Keystore files that use

this format might contain RSA keys on cryptographic hardware or might encrypt keys that

use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the

${USER_INSTALL_ROOT}/etc/ws-security/samples directory. For example, you might use the

enc-receiver.jceks keystore file for encryption keys. The password for this file is Storepass and

the type is JCEKS.

Attention: Do not use these keystore files in a production environment. These samples are

provided for testing purposes only.

4. Click OK and Save to save the configuration.

5. Under Additional properties, click Keys.

6. Click New to create a key configuration, click Delete and select the box next to the configuration to

delete an existing configuration, or click the name of an existing key configuration to edit its settings.

This entry specifies the name of the key object within the keystore file. If you are creating a new

configuration, enter a unique name in the Key name field.

It is recommended that you use a fully qualified distinguished name for the key name. For example,

you might use CN=Bob,O=IBM,C=US.

7. Specify an alias in the Key alias field. The key alias is used by the key locator to search for key

objects in the keystore file.

8. Specify a password in the Key password field. The password is used to access the key object within

the keystore file.

9. Click OK and then click Save to save the configuration.

You have configured the key locator for the consumer binding at the application level.

You must specify a similar key information configuration for the generator.

 Related tasks

 “Configuring the key locator for the generator binding on the application level” on page 692

Configuring the key information for the consumer binding on the application level

Configure the key locators and the token consumers that are referenced by the Key locator reference and

the Token reference fields within the key information panel.

This task provides the steps that are needed for configuring the key information for the request consumer

(server side) and the response consumer (client side) bindings at the application level. The key information

on the consumer side is used for specifying the information about the key, which is used for validating the

750 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

digital signature in the received message or for decrypting the encrypted parts of the message. Complete

the following steps to configure the key information for consumer binding on the application level.

1. Locate the key information configuration panel in the administrative console.

a. Click Applications > Enterprise applications >application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional properties, you can access the key information for the request consumer and

response consumer bindings.

v For the request consumer (receiver) binding, click Web services: Server security bindings.

Under request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under response consumer (receiver) binding, click Edit custom.

d. Under Required properties, click Key information.

e. Click New to create a key information configuration, click Delete and select the box next to the

configuration to delete an existing configuration, or click the name of an existing key information

configuration to edit its settings. If you are creating a new configuration, enter a name in the Key

information name field. For example, you might specify con_signkeyinfo.

2. Select a key information type from the Key information type field. The key information types specify

different mechanisms for referencing security tokens using the <wsse:SecurityTokenReference>

element within the <ds:KeyInfo> element. WebSphere Application Server supports the following key

information types:

Key identifier

The security token is referenced using an opaque value that uniquely identifies the token. The

algorithm that is used for generating the <KeyIdentifier> element value depends upon the

token type. For example, you can use the identifier for the public keys that are defined in the

Internet Engineering Task Force (IETF) Request for Comment (RFC) 3280. The following

<KeyInfo> element is generated in the Simple Object Access Protocol (SOAP) message for

this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/2004/01

 /oasis-200401-wss-x509-token-profile-1.0#X509v3SubjectKeyIdentifier">/62wXO...

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Key name

The security token is referenced using a name that matches an identity assertion within the

token. It is recommended that you do not use this key type as it might result in multiple

security tokens that match the specified name. The following <KeyInfo> element is generated

in the SOAP message for this key information type:

<ds:KeyInfo>

 <ds:KeyName>CN=Group1</ds:KeyName>

</ds:KeyInfo>

In general, use a key name when you use a Key-Hashing Message Authentication Code

(HMAC) digital signature algorithm, such as http://www.w3.org/2000/09/xmldsig#hmac-sha1.

Security token reference

The security token is directly referenced using Universal Resource Identifiers (URIs). The

following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI=’#SomeCert’

Chapter 14. Learn about WebSphere applications 751

http://www.ietf.org/rfc/rfc3280.txt

ValueType="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-x509-token-profile-1.0#X509v3" />

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Attention: As stated in the Web services Interoperability Organization (WS-I) Basic Security

Profile Version 1 draft and shown in the previous example, the wsse:Reference element in a

SECURE_ENVELOPE must have a ValueType attribute.

Embedded token

The security token is directly embedded within the <SecurityTokenReference> element. The

following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Embedded wsu:Id=”tok1” />

 ...

 </wsse:Embedded>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

X509 issuer name and issuer serial

The security token is referenced by an issuer name and an issuer serial number of an X.509

certificate. The following <KeyInfo> element is generated in the SOAP message for this key

information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <ds:X509Data>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Jones, O=IBM, C=US</ds:X509IssuerName>

 <ds:X509SerialNumber>1040152879</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </ds:X509Data>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Each type of key information is described in the Web Services Security: SOAP Message Security 1.0

(WS-Security 2004) OASIS standard, which is located at: http://www.oasis-open.org/home/index.php

under Web services security.

3. Select a key locator reference from the Key locator reference field. The value of this field is a

reference to a key locator that WebSphere Application Server uses to locate the keys that are used for

digital signature and encryption. Before you can select a key locator, you must configure a key locator.

For more information on configuring a key locator, see “Configuring the key locator for the consumer

binding on the application level” on page 749.

4. Select a token reference from the Token reference field. The token reference specifies a reference to a

token consumer that is used for processing the security token in the message. However, WebSphere

Application Server requires this field only when you select Security token reference or Embedded

token in the Key information type field. Before specifying a token reference, you must configure a

token consumer. For more information on configuring a token consumer, see “Configuring token

consumer on the application level” on page 740.

Select (none) if a token consumer is not required for this key information configuration.

5. Click OK and Save to save this configuration.

You have configured the key information for the generator binding at the application level

If you have not configured the key information for the generator binding. You must specify a similar key

information configuration for the generator. After you configure the key information for both the consumer

and the generator, configure the signing information or encryption information, which references the key

information that is specified in this key information task.

752 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
http://www.oasis-open.org/home/index.php

Related tasks

 “Configuring the key information for the generator binding on the application level” on page 699

 “Configuring the signing information for the consumer binding on the application level”

 “Configuring the key locator for the consumer binding on the application level” on page 749

 “Configuring token consumer on the application level” on page 740

Configuring the signing information for the consumer binding on the application

level

In the server-side extensions file and the client-side deployment descriptor extensions file, you must

specify which parts of the message are signed. Also, you need to configure the key information that is

referenced by the key information references on the signing information panel within the administrative

console.

This task explains the steps that are needed for you to configure the signing information for the server-side

request consumer and the client-side response consumer bindings at the application level. WebSphere

Application Server uses the signing information on the consumer side to verify the integrity of the received

Simple Object Access Protocol (SOAP) message by validating that the message parts are signed.

Complete the following steps to configure the signing information for the server-side request consumer and

client-side response consumer sections of the bindings files on the application level:

 1. Access the administrative console. To access the administrative console, enter

http://localhost:9060/ibm/console in your Web browser unless you have changed the port number.

 2. Click Applications > Enterprise applications >application_name.

 3. Under Related Items, click either Web modules or EJB Modules >URI_name.

 4. Access the server security bindings or the client security bindings.

v To configure the request consumer signing information, click Web services: Server security

bindings. Under Request consumer (receiver) binding, click Edit custom.

v To configure the response consumer signing information, click Web services: Client security

bindings. Under Response consumer (receiver) binding, click Edit custom.

 5. Under Required properties, click Signing information.

 6. Click New to create a signing information configuration, click Delete to delete an existing

configuration, or click the name of an existing signing information configuration to edit its settings. If

you are creating a new configuration, enter a name in the Signing information name field.

 7. Select a signature method algorithm from the Signature method field. The signature method is the

algorithm that is used to convert the canonicalized <SignedInfo> element in the binding file into the

<SignatureValue> element. The algorithm that is specified for the consumer, which is either the

request consumer or the response consumer configuration, must match the algorithm specified for the

generator, which is either the request generator or response generator configuration. WebSphere

Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

 8. Select a canonicalization method from the Canonicalization method field. The canonicalization method

algorithm is used to canonicalize the <SignedInfo> element before it is incorporated as part of the

digital signature operation. The canonicalization algorithm that you specify for the generator must

match the algorithm for the consumer. WebSphere Application Server supports the following

pre-configured algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Chapter 14. Learn about WebSphere applications 753

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

9. Select a key information signature type from the Key information signature type field. The key

information signature type specifies how the <KeyInfo> element in the SOAP message is digitally

signed. WebSphere Application Server supports the following signature types:

None Specifies that the key is not signed.

Keyinfo

Specifies that the entire KeyInfo element is signed.

Keyinfochildelements

Specifies that the child elements of the KeyInfo element are signed.

If you do not specify one of the previous signature types, WebSphere Application Server uses

keyinfo, by default. The key information signature type for the consumer must match the signature

type for the generator.

10. Under Additional properties, click Key information references.

a. Click New to create a key information reference or click the name of an existing entry to edit its

configuration. The Key information references panel is displayed.

b. Enter a name in the Name field.

c. Select a key information reference in the Key information reference field. This reference is the key

information configuration name that specifies the key information that is used by this signing

information configuration.

11. Return to the Signing information panel. Under Additional properties, click Part references. On the

Part references panel, you can specify references to the message parts that are defined in the

deployment descriptor extensions file.

a. Click New to create a new Part reference or click the name of an existing part reference to edit its

configuration. The Part reference panel is displayed.

b. Enter a name in the Part name field. This name is the name of the required integrity configuration

in the deployment descriptor extensions file and specifies the message parts that must be digitally

signed.

c. Select a digest method algorithm from the Digest method algorithm field. WebSphere Application

Server supports the following pre-configured algorithm: http://www.w3.org/200/09/xmldsig#sha1

12. Under Additional properties, click Transforms.

a. Click New to create a new transform or click the name of an existing transform to edit its

configuration.

b. Enter a name in the Transform name field.

c. Select a transform algorithm from the Transform algorithm field. WebSphere Application Server

supports the following pre-configured algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the consumer must match the transform algorithm that

you select for the generator. For each part reference in the signing information, specify both a

digest method algorithm and a transform algorithm.

13. Click OK.

14. Click Save at the top of the panel to save your configuration.

After completing these steps, you have configured the signing information for the consumer.

754 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

You must specify a similar signing information configuration for the generator.

 Related tasks

 “Configuring the signing information for the generator binding on the application level” on page 712

Key information references collection:

Use this page to view the key information references that are needed for encryption or signing.

 To view this administrative console page on the cell level, complete the following steps. On the cell level,

you can configure the key information references for the default consumer bindings only.

1. Click Security > Web services.

2. Under Default consumer bindings, click either of the following links:

v Click Encryption information > encryption_information_name.

v Click Signing information > signing_information_name.

3. Under Additional properties, click Key information references.

To view this administrative console page on the server level, complete the following steps. On the server

level, you can configure the key information references for the default consumer bindings only.

1. Click Servers > Application Servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default consumer bindings, click either of the following links:

v Click Encryption information > encryption_information_name.

v Click Signing information > signing_information_name.

4. Under Additional properties, click Key information references.

To view this administrative console page on the application level, complete the following steps. On the

application level, you can configure the key information reference for the consumer bindings only.

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Required properties, you can access the signing information for the following bindings:

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom. Under Required properties, click

Encryption information. Click New to create a new encryption configuration or click the name of a

configuration to modify its settings.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom. Under Required properties, click

Encryption information. Click New to create a new encryption configuration or click the name of a

configuration to modify its settings.

 Related reference

 “Key information configuration settings” on page 703
Use this page to specify the related configuration need to specify the key for XML digital signature or

XML encryption.

Name:

Specifies the name of the Key information reference.

Key information reference:

Specifies a reference to the message parts that are signed or encrypted.

Chapter 14. Learn about WebSphere applications 755

The value of this field is the name of the <requiredIntegrity> or the <requiredConfidentiality> element in the

deployment descriptor.

Key information reference configuration settings:

Use this page to specify a reference to the message parts for signature and encryption that is defined in

the deployment descriptors.

 To view this administrative console page on the cell level for the key information references, complete the

following steps. On the cell level, you can configure the key information references for the default

consumer bindings only.

1. Click Security > Web services.

2. Under Default consumer bindings, click either of the following links:

v Click Encryption information >encryption_information_name.

v Click Signing information > signing_information_name.

3. Under Additional properties, click Key information references.

4. Click New to create a key information reference or click the name of an existing configuration to modify

its settings.

To view this administrative console page on the server level for the key information references, complete

the following steps. On the server level, you can configure the key information references for the default

consumer bindings only.

1. Click Servers > Application Servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default consumer bindings, click either of the following links:

v Click Encryption information >encryption_information_name.

v Click Signing information > signing_information_name.

4. Under Additional properties, click Key information references.

5. Click New to create a key information reference or click the name of an existing configuration to modify

its settings.

To view this administrative console page on the application level, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access the key information references for the following bindings:

v For the Response consumer (sender) binding, click Web services: Client security bindings. Under

Response consumer (sender) binding, click Edit custom. Under Required properties, click

Encryption information >encryption_information_name. Under Additional properties, click Key

information references.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom. Under Required properties, click

Encryption information >encryption_information_name. Under Additional properties, click Key

information references.

4. Click New to create a key information reference or click the name of an existing configuration to modify

its settings.

 Related reference

 “Key information references collection” on page 755
Use this page to view the key information references that are needed for encryption or signing.

Name:

756 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Specifies the name of the key information reference.

Key information reference:

Specifies a reference to the message parts that are signed or encrypted.

 The value of this field is the name of the <requiredIntegrity> or the <requiredConfidentiality> element in the

deployment descriptor. You can specify a signing key configuration for the following bindings:

 Binding name Cell level, Server level, or

application level

Path

Default consumer binding Server level 1. Click Servers > Application Servers

>server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Default consumer binding, click Key

information.

Response consumer (receiver)

binding

Application level 1. Click Applications > Enterprise

applications >application_name.

2. Under Related items, click EJB modules or

Web modules > URI_name.

3. Under Additional properties, click Web

services: Client security bindings.

4. Under Response consumer (receiver)

binding, click Edit custom.

5. Under Required properties, click Key

information.

Request consumer (receiver)

binding

Application level 1. Click Applications > Enterprise

applications >application_name.

2. Under Related items, click EJB modules or

Web modules > URI_name.

3. Under Additional properties, click Web

services: Server security bindings.

4. Under Resquest consumer (receiver)

binding, click Edit custom.

5. Under Required properties, click Key

information.

Configuring the encryption information for the consumer binding on the

application level

Before you begin this task, you must configure the key information that is referenced by the key

information references in the encryption information panel. For more information, see “Configuring the key

information for the consumer binding on the application level” on page 750.

This task provides the steps that are needed for configuring the encryption information for the request

consumer (server side) and response consumer (client side) bindings at the application level. The

encryption information on the consumer side is used for decrypting the encrypted message parts in the

incoming Simple Object Access Protocol (SOAP) message.

Complete the following steps to configure the encryption information for the request consumer or response

consumer section of the bindings file on the application level:

1. Locate the Encryption information configuration panel in the administrative console.

Chapter 14. Learn about WebSphere applications 757

a. Click Applications > Enterprise applications >application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional properties you can access the encryption information for the request consumer

and response consumer bindings.

v For the request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

d. Under Required properties, click Encryption information.

e. Click New to create an encryption information configuration, click Delete to delete an existing

configuration, or click the name of an existing encryption information configuration to edit its

settings. If you are creating a new configuration, enter a name in the Encryption information name

field. For example, you might specify cons_encinfo.

2. Select a data encryption algorithm from the Data encryption algorithm field. The data encryption

algorithm is used for encrypting or decrypting parts of a SOAP message such as the SOAP body or

the username token. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

The data encryption algorithm that you select for the consumer side must match the data encryption

method that you select for the generator side.

3. Select a key encryption algorithm from the Key encryption algorithm field. The key encryption algorithm

is used for encrypting the key that is used for encrypting the message parts within the SOAP message.

Select (none) if the data encryption key, which is the key that is used for encrypting the message

parts, is not encrypted. WebSphere Application Server supports the following pre-configured

algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use the http://www.w3.org/2001/04/xmlenc#aes256-cbc algorithm, you must download the

unrestricted Java Cryptography Extension (JCE) policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use the http://www.w3.org/2001/04/xmlenc#kw-aes192 algorithm, you must download the

unrestricted Java Cryptography Extension (JCE) policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

The key encryption algorithm that you select for the consumer side must match the key encryption

method that you select for the generator side.

4. Optional: Select a part reference in the Part reference field. The part reference specifies the name of

the message part that is encrypted and is defined in the deployment descriptor. For example, you can

encrypt the bodycontent message part in the deployment descriptor. The name of this Required

Confidentiality part is conf_con. This message part is shown as an option in the Part reference field.

758 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

5. Under Additional properties, click Key information references.

6. Click New to create a key information configuration, click Delete to delete an existing configuration, or

click the name of an existing key information configuration to edit its settings. If you are creating a new

configuration, enter a name in the name field. For example, you might specify con_ekeyinfo. This entry

is the name of the <encryptionKeyInfo> element in the binding file.

7. Select a key information reference from the Key information reference field. This reference is the value

of the keyinfoRef attribute of the <encryptionKeyInfo> element and it is the name of the <keyInfo>

element that is referenced by this key information reference. Each key information reference entry

generates an <encryptionKeyInfo> element under the <encryptionInfo> element in the binding

configuration file. For example, if you enter con_ekeyinfo in the Name field and dec_keyinfo in the Key

information reference field, the following <encryptionKeyInfo> element is generated in the binding file:

<encryptionKeyInfo xmi:id="EncryptionKeyInfo_1085092248843"

keyinfoRef="dec_keyinfo” name="con_ekeyinfo"/>

8. Click OK and then click Save to save the configuration.

You have configured the encryption information for the consumer binding at the application level

You must specify a similar encryption information configuration for the generator.

 Related tasks

 “Configuring the encryption information for the generator binding on the application level” on page 727

 “Configuring the key information for the consumer binding on the application level” on page 750

Retrieving tokens from the JAAS Subject in a server application

In WebSphere Application Server Version 6, the security handlers are responsible for propagating security

tokens. These security tokens are embedded in the Simple Object Access Protocol (SOAP) security

header and passed to downstream servers. The security tokens are encapsulated in the implementation

classes for the com.ibm.wsspi.wssecurity.auth.token.Token interface. You can retrieve the security token

data from either a server application or a client application.

With a server application, the application acts as the request consumer and the response generator, is

deployed, and runs in the Java 2 Platform, Enterprise Edition (J2EE) container. The consumer component

for Web services security stores the security tokens that it receives in the Java Authentication and

Authorization Service (JAAS) Subject of the current thread. You can retrieve the security tokens from the

JAAS Subject that is maintained as a local thread in the container. Complete the following steps to retrieve

the security token data from a server application:

1. Obtain the JAAS Subject of the current thread using the WSSubject utility class. If you enable Java 2

security on the Global security panel in the administrative console, access to the JAAS Subject is

denied if the application code is not granted the

javax.security.auth.AuthPermission(″wssecurity.getCallerAsSubject″) permission. The following code

sample shows how to obtain the JAAS subject:

javax.security.auth.Subject subj;

try {

subj = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

} catch (com.ibm.websphere.security.WSSecurityException e) {

 ...

}

2. Obtain a set of private credentials from the Subject. For more information, see the application

programming interface (API) com.ibm.websphere.security.auth.WSSubject class through the

information center . To access this information within the information center, click Reference >

Developer > API Documentation > Application Programming Interfaces. In the Application

Programming Interfaces article, click com.ibm.websphere.security.auth > WSSubject.

 Attention: When Java 2 security is enabled, you might need to use the AccessController class to

avoid a security violation that is caused by operating the security objects in the J2EE container.

Chapter 14. Learn about WebSphere applications 759

The following code sample shows how to set the AccessController class and obtain the private

credentials:

Set s = (Set) AccessController.doPrivileged(

new PrivilegedAction() {

public Object run() {

return subj.getPrivateCredentials();

}

 });

3. Search the targeting token class in the private credentials. You can search the targeting token class by

using the java.util.Iterator interface. The following example shows how to retrieve a username token

with a certain token ID value in the security header. You can also use other method calls to retrieve

security tokens. For more information, see the application programming interface (API) documents for

the com.ibm.wsspi.wssecurity.auth.token.Token interface or custom token classes.

com.ibm.wsspi.wssecurity.auth.token.UsernameToken unt;

Iterator it = s.iterator();

while (it.hasNext()) {

 Object obj = it.next();

 if (obj != null &&

obj instanceOf com.ibm.wsspi.wssecurity.auth.token.UsernameToken) {

 unt =(com.ibm.wsspi.wssecurity.auth.token.UsernameToken) obj;

if (unt.getId().equals(“...”)) break;

else continue;

 }

}

After completing these steps, you have retrieved the security tokens from the JAAS Subject in a server

application

 Related concepts

 “Security token” on page 652
A security token represents a set of claims made by a client that might include a name, password,

identity, key, certificate, group, privilege, and so on.

Retrieving tokens from the JAAS Subject in a client application

In WebSphere Application Server Version 6, the security handlers are responsible for propagating security

tokens. These security tokens are embedded in the Simple Object Access Protocol (SOAP) security

header and passed to downstream servers. The security tokens are encapsulated in the implementation

classes for the com.ibm.wsspi.wssecurity.auth.token.Token interface. You can retrieve the security token

data from either a server application or a client application.

With a client application, the application serves as the request generator and the response consumer and

runs as the Java 2 Platform, Enterprise Edition (J2EE) client application. The consumer component for

Web services security stores the security tokens that it receives in one of the properties of the

MessageContext object for the current Web services call. You can retrieve a set of token objects through

the javax.xml.rpc.Stub interface of that Web Services call. You must know which security tokens to retrieve

and their token IDs in case multiple security tokens are included in the SOAP security header. Complete

the following steps to retrieve the security token data from a client application:

1. Use the com.ibm.wsspi.wssecurity.token.tokenPropergation key string to obtain the Hashtable for the

tokens through a property value in the javax.xml.rpc.Stub interface. The following example shows how

to obtain the Hashtable:

java.util.Hashtable t;

javax.xml.rpc.Service serv = ...;

MyWSPortType pt = (MyWSPortType)serv.getPort(MyWSPortType.class);

t = (Hashtable)((javax.xml.rpc.Stub)pt)._getProperty(

com.ibm.wsspi.wssecurity.Constants.WSSECURITY_TOKEN_PROPERGATION);

760 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

2. Search the targeting token objects in the Hashtable. Each token object in the Hashtable is set with its

token ID as a key. You must have prior knowledge of the security token IDs to retrieve the security

tokens. The following example shows how to retrieve a username token from the security header with

a certain token ID value:

com.ibm.wsspi.wssecurity.auth.token.UsernameToken unt;

if (t != null) {

 unt = (com.ibm.wsspi.wssecuty.auth.token.UsernameToken)t.get(“...”);

}

After completing these steps, you have retrieved the security tokens from the JAAS Subject in a client

application

 Related concepts

 “Security token” on page 652
A security token represents a set of claims made by a client that might include a name, password,

identity, key, certificate, group, privilege, and so on.

Configuring trust anchors on the server or cell level

Prior to completing the steps to configure trust anchors, you must create the keystore file using the key

tool. WebSphere Application Server provides the key tool in the install_dir/java/jre/bin/keytool file.

This task provides the steps that are needed to configure a list of keystore objects that contain trusted root

certificates. These objects are used for certificate path validation of incoming X.509-formatted security

tokens. Keystore objects within trust anchors contain trusted root certificates that are used by the CertPath

application programming interface (API) to determine whether to trust a certificate chain.

Complete the following steps to configure the trust anchors on the server level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Under Additional properties, click Trust anchors.

3. Click New to create a trust anchor configuration, click Delete to delete an existing configuration, or

click the name of an existing trust anchor configuration to edit its settings. If you are creating a new

configuration, enter a unique name for the trust anchor in the Trust anchor name field.

4. Specify a password in the Key store password field that is used to access the keystore file.

5. Specify the absolute location of the keystore file in the Key store path field. It is recommended that you

use the USER_INSTALL_ROOT variable as a portion of the keystore path. To change this predefined

variable, click Environment > WebSphere variables. The USER_INSTALL_ROOT variable might

display on the second page of variables.

6. Specify the type of keystore file in the key store type field. WebSphere Application Server supports the

following keystore types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and your keystore file

uses the Java Key Store (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)

Use this option if your keystore file uses the PKCS#11 file format. Keystore files that use this

format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might

encrypt keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore file uses the PKCS#12 file format.

7. Click OK and Save to save your configuration.

Chapter 14. Learn about WebSphere applications 761

You have configured trust anchors at the server or cell level.

Configuring the collection certificate store on the server or cell-level bindings

Collection certificate stores contain untrusted, intermediary certificate files awaiting validation. Validation

might consist of checking for a valid signature in a digitally signed Simple Object Access Protocol (SOAP)

message to see if the certificate is on a certificate revocation list (CRLs), checking that the certificate is not

expired, and checking that the certificate is issued by a trusted signer.

Complete the following steps to configure a collection certificate on the server level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Additional properties, click Collection certificate store.

 3. Click New to create a collection certificate store configuration, click Delete to delete an existing

configuration, or click the name of an existing collection certificate store configuration to edit its

settings. If you are creating a new configuration, enter a name in the Certificate store name field. For

example, you might name your certificate store sig_certstore.

The name of the collection certificate store must be unique to the level of the application server. For

example, if you create the collection certificate store for the server level, the store name must be

unique to the server level. The name that is specified in the Certificate store name field is used by

other configurations to refer to a predefined collection certificate store. WebSphere Application Server

searches for the collection certificate store based on proximity.

For example, if an application binding refers to a collection certificate store named cert1, the

Application Server searches for cert1 at the application level before searching the server level.

 4. Specify a certificate store provider in the Certificate store provider field. WebSphere Application

Server supports the IBMCertPath certificate store provider. To use another certificate store provider,

you must define the provider implementation in the provider list within the

install_dir/java/jre/lib/security/java.security file. However, make sure that your provider

supports the same requirements of the certificate path algorithm as WebSphere Application Server.

 5. Click OK and Save to save the configuration.

 6. Click the name of your certificate store configuration. After you specify the certificate store provider,

you must specify either the location of a certificate revocation list or the X.509 certificates. However,

you can specify both a certificate revocation list and the X.509 certificates for your certificate store

configuration.

 7. Under Additional properties, click Certificate revocation lists. For the generator binding, a certificate

revocation list (CRL) is used when it is included in a generated security token. For example, a

security token might be wrapped in a PKCS#7 format with a CRL. For more information on certificate

revocation lists, see “Certificate revocation list” on page 585.

 8. Click New to specify a certificate revocation list path, click Delete to delete an existing list reference,

or click the name of an existing reference to edit the path. You must specify the fully qualified path to

the location where WebSphere Application Server can find your list of certificates that are not valid.

WebSphere Application Server uses the certificate revocation list to check the validity of the sender

certificate.

For portability reasons, it is recommended that you use the WebSphere Application Server variables

to specify a relative path to the certificate revocation lists. This recommendation is especially

important when you are working in a WebSphere Application Server Network Deployment

environment.

For example, you might use the USER_INSTALL_ROOT variable to define a path such as

$USER_INSTALL_ROOT/mycertstore/mycrl1 where mycertstore represents the name of your

certificate store and mycrl1 represents the certificate revocation list. For a list of supported variables,

click Environment > WebSphere variables in the administrative console. The following list provides

recommendations for using certificate revocation lists:

762 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority

and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,

the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the

old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)

build failure.

 9. Click OK and then Save to save the configuration.

10. Return to the Collection certificate store configuration panel. To access the panel, complete the

following steps:

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

c. Under Additional properties, click Collection certificate store >certificate_store_name.

11. Under Additional properties, click X.509 certificates. The X.509 certificate configuration specifies

intermediate certificate files that are used for certificate path validation of incoming X.509-formatted

security tokens.

12. Click New to create an X.509 certificate configuration, click Delete to delete an existing configuration,

or click the name of an existing X.509 certificate configuration to edit its settings. If you are creating a

new configuration, enter a name in the Certificate store name field.

13. Specify a path in the X.509 certificate path field. This entry is the absolute path to the location of the

X.509 certificate. The collection certificate store is used to validate the certificate path of the incoming

X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of path name. For example, you might type:

$USER_INSTALL_ROOT/etc/ws-security/samples/intca2.cer. Do not use this certificate path for

production use. You must obtain your own X.509 certificate from a certificate authority before putting

your WebSphere Application Server environment into production.

Click Environment > WebSphere variables in the administrative console to configure the

USER_INSTALL_ROOT variable.

14. Click OK and then Save to save your configuration.

15. Return to the Collection certificate store collection panel and click Update run time to update the

Web services security run time with the default binding information, which is located in the

ws-security.xml file. When you click Update run time, the configuration changes made to other Web

services are also updated in the run time for Web services security.

You have configured the collection certificate store for the server or cell level.

 Related concepts

 “Certificate revocation list” on page 585
A certificate revocation list is a time-stamped list of certificates that have been revoked by a certificate

authority (CA).

Distributed nonce caching

The distributed nonce caching feature enables you to distribute the cache for a nonce to different servers

in a cluster.

In previous releases of WebSphere Application Server, the nonce was cached locally. To use this feature,

you must complete the following actions:

v Configure cache replication.

v Verify that you created an appropriate domain setting when you form a cluster.

Chapter 14. Learn about WebSphere applications 763

v Verify that replication domain is properly secured. The nonce cache is crucial to the integrity of the

nonce validation process. If the nonce cache is compromised, then you cannot trust the result of the

validation process.

v In the administrative console for the server level, select the Distribute nonce caching option. You can

enable the option by completing the following steps:

1. Click Security > Web services.

2. Select the Distribute nonce caching option.

v Restart the servers within your cluster.

When you select the Distribute nonce caching option in the administrative console, the nonce is

propagated to other servers in your environment. However, the nonce might be subject to a one-second

delay in propagation and subject to any network congestion.

For more information on distributed nonce caching, see “Web services security enhancements” on page

531.

 Related concepts

 “Nonce, a randomly generated token” on page 567
Nonce is a randomly generated, cryptographic token used to prevent replay attacks. Although Nonce

can be inserted anywhere in the SOAP message, it is typically inserted in the <UsernameToken>

element.

 “Web services security enhancements” on page 531

Configuring a nonce on the server or cell level

Nonce is a randomly generated, cryptographic token that is used to prevent replay attacks of user name

tokens that are used with Simple Object Access Protocol (SOAP) messages. Typically, nonce is used with

the user name token.

This task provides instructions on how to configure nonce for the cell level using the WebSphere

Application Server administrative console. You can configure nonce at the application level, the server

level, and the cell level. However, you must consider the order of precedence. The following list shows the

order of precedence:

1. Application level

The application level settings for the nonce maximum age and nonce clock skew fields are specified

through the additional properties.

2. Server level

If you configure nonce on the application level and the server level, the values that are specified for the

application level take precedence over the values that are specified for the server level. Likewise, the

values that are specified for the application level take precedence over the values specified for the server

level. Complete the following steps to configure nonce on the server level:

Complete the following steps to configure a nonce on the server or cell level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Specify a value, in seconds, for the Nonce cache timeout field. The value that is specified for the

Nonce cache timeout field indicates how long the nonce remains cached before it is discarded. You

must specify a minimum of 300 seconds. However, if you do not specify a value, the default is 600

seconds. This field is optional on the server level, but required on the cell level.

3. Specify a value, in seconds, for the Nonce maximum age field. The value that is specified for the

Nonce maximum age field indicates how long the nonce is valid. You must specify a minimum of 300

764 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

seconds, but the value cannot exceed the number of seconds that is specified for the Nonce cache

timeout field in the previous step. If you do not specify a value, the default is 300 seconds.

In a Network Deployment environment, this field is optional on the server level, but it is required on the

cell level.

4. Specify a value, in seconds, for the Nonce clock skew field. The value that is specified for the Nonce

clock skew field specifies the amount of time, in seconds, to consider when the message receiver

checks the freshness of the value. Consider the following information when you set this value:

v Difference in time between the message sender and the message receiver, if the clocks are not

synchronized.

v Time that is needed to encrypt and transmit the message.

v Time that is needed to get through network congestion.

At a minimum, you must specify 0 seconds in this field. However, the maximum value cannot exceed

the number of seconds indicated in the Nonce maximum age field. If you do not specify a value, the

default is 0 seconds. This field is optional on the server level, but required on the cell level.

5. Select the Distribute nonce caching option. This option enables you to distribute the caching for a

nonce using a Data Replication Service (DRS). In previous releases of WebSphere Application Server,

the nonce was cached locally. By selecting this option, the nonce is propagated to other servers in

your environment. However, the nonce might be subject to a one-second delay in propagation and

subject to any network congestion.

6. Restart the server. If you change the Nonce cache timeout value and do not restart the server, the

change is not recognized by the server.

Configuring token generators on the server or cell level

The token generator on the server or cell level is used to specify the information for the token generator if

these bindings are not defined at the application level. The signing information and the encryption

information can share the token generator information, which is why they are all defined at the same level.

WebSphere Application Server provides default values for bindings. You must modify the defaults for a

production environment.

Complete the following steps to configure the token generators on the server level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Default generator bindings, click Token generators.

 3. Click New to create a token generator configuration, click Delete to delete an existing configuration,

or click the name of an existing token generator configuration to edit its settings. If you are creating a

new configuration, enter a unique name for the token generator configuration in the Token generator

name field. For example, you might specify sig_tgen. This field specifies the name of the token

generator element.

 4. Specify a class name in the Token generator class name field. The token generator class must

implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. The token

generator class name must be similar to the token consumer class name. For example, if your

application requires an X.509 certificate token consumer, you can specify the

com.ibm.wsspi.wssecurity.token.X509TokenConsumer class name on the Token consumer panel and

the com.ibm.wsspi.wssecurity.token.X509TokenGenerator class name in this field. WebSphere

Application Server provides the following default token generator class implementations:

com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

This implementation generates a username token.

com.ibm.wsspi.wssecurity.token.X509TokenGenerator

This implementation generates an X.509 certificate token.

Chapter 14. Learn about WebSphere applications 765

com.ibm.wsspi.wssecurity.token.LTPATokenGenerator

This implementation generates a Lightweight Third Party Authentication (LTPA) token.

 5. Select a certificate path option. The certificate path specifies the certificate revocation list (CRL),

which is used for generating a security token that is wrapped in a PKCS#7 with a CRL. WebSphere

Application Server provides the following certificate path options:

None Select this option in case the CRL is not used for generating a security token. You must

select this option when the token generator does not use the PKCS#7 token type.

Dedicated signing information

If the CRL is wrapped in a security token, select Dedicated signing information and select

a collection certificate store name from the Certificate store field. The Certificate store field

shows the names of collection certificate stores already defined. To define a collection

certificate store on the cell level, see “Configuring the collection certificate store on the server

or cell-level bindings” on page 762.

 6. Select the Add nonce option to include a nonce in the user name token for the token generator.

Nonce is a unique cryptographic number that is embedded in a message to help stop repeat,

unauthorized attacks of user name tokens. The Add nonce option is available if you specify a user

name token for the token generator.

 7. Select the Add timestamp option to include a time stamp in the user name token for the token

generator.

 8. Specify a value type local name in the Local name field. This entry specifies the local name of the

value type for a security token that is referenced by the key identifier. This attribute is valid when Key

identifier is selected as Key information type. To specify the Key information type, see “Configuring

the key information for the generator binding on the server or cell level” on page 778. WebSphere

Application Server provides the following predefined X.509 certificate token configurations:

X.509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X.509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA For LTPA, the value type local name is LTPA. If you enter LTPA for the local name, you must

specify the http://www.ibm.com/websphere/appserver/tokentype/5.0.2 URI value in the Value

type URI field as well.

For example, when an X.509 certificate token is specified, you can use http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3 for the local name.

 9. Specify the value type uniform resource identifier (URI) in the URI field. This entry specifies the

namespace URI of the value type for a security token that is referenced by the key identifier. This

attribute is valid when Key identifier is selected as Key information type on the Key information

panel for the default generator. When the X.509 certificate token is specified, you do not need to

specify the namespace URI. If another token is specified, you must specify the namespace URI of the

value type.

10. Click OK and then Save to save the configuration.

11. Click the name of your token generator configuration.

12. Under Additional properties, click Callback handler to configure the callback handler properties. The

callback handler specifies how to acquire the security token that is inserted in the Web services

security header within the Simple Object Access Protocol (SOAP) message. The token acquisition is

a pluggable framework that leverages the Java Authentication and Authorization Service (JAAS)

javax.security.auth.callback.CallbackHandler interface for acquiring the security token.

766 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

a. Specify a callback handler class implementation in the Callback handler class name field. This

attribute specifies the name of the Callback handler class implementation that is used to plugin a

security token framework. The specified callback handler class must implement the

javax.security.auth.callback.CallbackHandler class. WebSphere Application Server provides the

following default callback handler implementations:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This callback handler uses a login prompt to gather the user name and password

information. However, if you specify the user name and password on this panel, a prompt

is not displayed and WebSphere Application Server returns the user name and password

to the token generator. Use this implementation for a Java 2 Platform, Enterprise Edition

(J2EE) application client only.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This callback handler does not issue a prompt and returns the user name and password if

it is specified in the basic authentication section of this panel. You can use this callback

handler when the Web service is acting as a client.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This callback handler uses a standard-in prompt to gather the user name and password.

However, if the user name and password is specified in the basic authentication section of

this panel, WebSphere Application Server does not issue a prompt, but returns the user

name and password to the token generator. Use this implementation for a Java 2

Platform, Enterprise Edition (J2EE) application client only.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA)

security token from the Run As invocation Subject. This token is inserted in the Web

services security header within the SOAP message as a binary security token. However, if

the user name and password are specified in the basic authentication section of this

panel, WebSphere Application Server authenticates the user name and password to

obtain the LTPA security token. It obtains the security token this way rather than obtaining

it from the Run As Subject. Use this callback handler only when the Web service is acting

as a client on the application server. It is recommended that you do not use this callback

handler on a J2EE application client.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This callback handler is used to create the X.509 certificate that is inserted in the Web

services security header within the SOAP message as a binary security token. A keystore

file and a key definition are required for this callback handler.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

This callback handler is used to create X.509 certificates that are encoded with the

PKCS#7 format. The certificate is inserted in the Web services security header in the

SOAP message as a binary security token. A keystore file is required for this callback

handler. You must specify a certificate revocation list (CRL) in the collection certificate

store. The CRL is encoded with the X.509 certificate in the PKCS#7 format. For more

information on configuring the collection certificate store, see “Configuring the collection

certificate store on the server or cell-level bindings” on page 762.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

This callback handler is used to create X.509 certificates that are encoded with the

PkiPath format. The certificate is inserted in the Web services security header within the

SOAP message as a binary security token. A keystore file is required for this callback

handler. A CRL is not supported by the callback handler; therefore, the collection

certificate store is not required or used.

For an X.509 certificate token, you might specify the

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler implementation.

Chapter 14. Learn about WebSphere applications 767

b. Optional: Select the Use identity assertion option. Select this option if you have identity

assertion that is defined in the IBM extended deployment descriptor. This option indicates that

only the identity of the initial sender is required and inserted into the Web services security

header within the SOAP message. For example, WebSphere Application Server sends only the

user name of the original caller for a user name token generator. For an X.509 token generator,

the application server sends the original signer certification only.

c. Optional: Select the Use RunAs identity option. Select this option if the following conditions are

true:

v You have identity assertion defined in the IBM extended deployment descriptor.

v You want to use the Run As identity instead of the initial caller identity for identity assertion for

a downstream call.

d. Optional: Specify a basic authentication user ID and password in the User ID and password fields.

This entry specifies the user name and password that is passed to the constructors of the

callback handler implementation. The basic authentication user ID and password are used if you

specify one of the following default callback handler implementations that are provided by

WebSphere Application Server:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

e. Optional: Specify a keystore password and path. The keystore and its related information are

necessary when the key or certificate is used for generating a token. For example, the keystore

information is required if you select one of the following default callback handler implementations

that are provided by WebSphere Application Server:

v com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

The keystore files contain public and private keys, root certificate authority (CA) certificates,

intermediate CA certificates, and so on. Keys that are retrieved from the keystore file are used to

sign and validate or encrypt and decrypt messages or message parts. To retrieve a key from a

keystore file, you must specify the keystore password, the keystore path, and the keystore type.

13. Select a keystore type from the type field. WebSphere Application Server provides the following

options:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your keystore

file uses the Java Key Store (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)

Use this format if your keystore file uses the PKCS#11 file format. Key store files using this

format might contain RSA keys on cryptographic hardware or might encrypt the keys that use

cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore file uses the PKCS#12 file format.

14. Click OK and then Save to save the configuration.

15. Click the name of your token generator configuration.

16. Under Additional properties, click Callback handler > Keys.

768 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

17. Click New to create a key configuration, click Delete to delete an existing configuration, or click the

name of an existing key configuration to edit its settings. If you are creating a new configuration, enter

a unique name for the key configuration in the Key name field. This name refers to the name of the

key object that is stored within the keystore file.

18. Specify an alias for the key object in the Key alias field. The alias is used when the key locator

searches for the key objects in the keystore.

19. Specify the password that is associated with the key in the Key password field.

20. Click OK and Save to save the configuration.

You have configured the token generators at the server or the cell level.

You must specify a similar token consumer configuration.

 Related tasks

 “Configuring the collection certificate store on the server or cell-level bindings” on page 762

Token generator collection:

Use this page to view the token generators. The information is used on the generator side only to

generate the security token.

 To view this administrative console page for the cell level, complete the following steps:

1. Click Security > Web services.

2. Under Default generator bindings, click Token generators.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token generators.

 Related reference

 “Token consumer collection” on page 791
Use this page to view the token consumer. The information is used on the consumer side only to

process the security token.

 “Token consumer configuration settings” on page 792
Use this page to specify the information for the token consumer. The information is used at the

consumer side only to process the security token.

 “Token generator configuration settings”
Use this page to specify the information for the token generator. The information is used at the

generator side only to generate the security token.

Token generator name:

Specifies the name of the token generator configuration.

Token generator class name:

Specifies the name of the token generator implementation class.

 This class must implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface.

Token generator configuration settings:

Use this page to specify the information for the token generator. The information is used at the generator

side only to generate the security token.

Chapter 14. Learn about WebSphere applications 769

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token generators >token_generator_name or click New to

create a new token generator.

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access the token generator information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

4. Click New to create a new token generator or click the name of an existing token generator name to

specify its settings.

To view this administrative console page for the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, click Web services: Client security bindings.

4. Under Request generator (sender) binding, click Edit custom.

5. Under Additional properties, click Token generators > New.

Before specifying additional properties, specify a value in the Token generator name and the Token

generator class name fields.

 Related reference

 “Token consumer collection” on page 791
Use this page to view the token consumer. The information is used on the consumer side only to

process the security token.

 “Token consumer configuration settings” on page 792
Use this page to specify the information for the token consumer. The information is used at the

consumer side only to process the security token.

 “Token generator collection” on page 769
Use this page to view the token generators. The information is used on the generator side only to

generate the security token.

Token generator name:

Specifies the name of the token generator configuration.

Token generator class name:

Specifies the name of the token generator implementation class.

 This class must implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface.

Certificate path:

Specifies the certificate revocation list (CRL) that is used for generating a security token wrapped in a

PKCS#7 token type with CRL.

770 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

When the token generator is not for a PKCS#7 token type, you must select None. When the token

generator is for the PKCS#7 token type and you want to package CRL in the security token, select

Dedicated signing information and specify the CRL for the collection certificate store.

You can specify a certificate store configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator bindings Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Collection

certificate store.

Using the collection certificate store, you can configure a related certificate revocation list by clicking

Certificate revocation list under Additional properties.

Add nonce:

Indicates whether nonce is included in the user name token for the token generator. Nonce is a unique

cryptographic number that is embedded in a message to help stop repeat, unauthorized attacks of user

name tokens.

 On the application level, if you select the Add nonce option, you can specify the following properties

under Additional properties:

 Table 15. Additional nonce properties

Property name

Default

value Explanation

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.cacheTimeout

600

seconds

Specifies the timeout value, in seconds, for the

nonce value that is cached on the server.

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.clockSkew

0 seconds Specifies the time, in seconds, before the nonce

time stamp expires.

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.maxAge

300

seconds

Specifies the clock skew value, in seconds, to

consider when WebSphere Application Server

checks the timeliness of the message.

These properties are available on the administrative console at the cell and server level. However, on the

application level, you can configure the properties under Additional properties.

This option is displayed on the cell, server, and application levels. This option is valid only when the

generated token type is a user name token.

Add timestamp:

Specifies whether to insert the time stamp into the user name token.

 This option is displayed on the cell, server, and application levels. This option is valid only when the

generated token type is a user name token.

Value type local name:

Specifies the local name of the value type for the generated token.

Chapter 14. Learn about WebSphere applications 771

For a user name token and an X.509 certificate security token, WebSphere Application Server provides

predefined value types. When you specify the following local names, you do not need to specify the URI of

value type.

Username token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509

X509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA

Important: For LTPA, the value type local name is LTPA. If you enter LTPA for the local name, you must

specify the http://www.ibm.com/websphere/appserver/tokentype/5.0.2 URI value in the Value

type URI field as well. For the other predefined value types (Username token, X509 certificate

token, X509 certificates in a PKIPath, and a list of X509 certificates and CRLs in a PKCS#7),

the value for the local name field begins with http://. For example, if you are specifying the

user name token for the value type, enter http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#UsernameToken in the Value type local name field

and then you do not need to enter a value in the Value type URI field.

When you specify a custom value type for custom tokens, you can specify the local name and the URI of

the quality name (QName) of the value type. For example, you might specify Custom for the local name

and http://www.ibm.com/custom for the URI.

Value type URI:

Specifies the namespace URI of the value type for the generated token.

 When you specify the token generator for the user name token or the X.509 certificate security token, you

do not need to specify this option. If you want to specify another token, specify the URI of the QName of

the value type.

WebSphere Application Server provides the following predefined value type URI for the LTPA token:

http://www.ibm.com/websphere/appserver/tokentype/5.0.2

Algorithm URI collection:

Use this page to view a list of uniform resource identifier (URI) algorithms for XML digital signature or XML

encryption that are mapped to an algorithm factory engine class. With algorithm mappings, service

providers can use other cryptographic algorithms for digest value calculation, digital signature signing and

verification, data encryption and decryption, and key encryption and decryption.

 To view this administrative console page on the cell level, complete the following steps:

1. Click Security > Web services.

2. Under Additional properties, click Algorithm mappings.

3. Under Additional properties, click Algorithm URI.

To view administrative console page on the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

772 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings.

4. Under Additional properties, click Algorithm URI.

 Related reference

 “Algorithm URI configuration settings”
Use this page to specify the algorithm uniform resource identifier (URI) and its usage type.

 “Algorithm mapping collection” on page 775
Use this page to view a list of custom uniform resource identifier (URI) algorithms for digest value

calculation, signature, key encryption, and data encryption. WebSphere Application Server maps these

algorithms to an implementation of the algorithm factory engine interface. With algorithm mappings,

service providers can extend the cryptographic algorithms for XML digital signature and XML

encryption.

 “Algorithm mapping collection” on page 775
Use this page to view a list of custom uniform resource identifier (URI) algorithms for digest value

calculation, signature, key encryption, and data encryption. WebSphere Application Server maps these

algorithms to an implementation of the algorithm factory engine interface. With algorithm mappings,

service providers can extend the cryptographic algorithms for XML digital signature and XML

encryption.

Algorithm URI:

Specifies the algorithm uniform resource identifier (URI) for the specified algorithm type.

Algorithm type:

Specifies the algorithm type.

Algorithm URI configuration settings:

Use this page to specify the algorithm uniform resource identifier (URI) and its usage type.

 WebSphere Application Server supports the following algorithm URI types:

Message digest

Specifies the algorithm URI that is used for digest value calculation.

Signature

Specifies the algorithm URI that is used for digital signature, including both signature and signing

verification.

Data encryption

Specifies the algorithm URI that is used for both encrypting and decrypting data.

Key encryption

Specifies the algorithm URI that is used for encrypting and decrypting the encryption key.

If the URI is used for multiple usage types, then you must define a mapping of the URI to each usage

type.

To view this administrative console page on the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings.

4. Under Additional properties, click Algorithm URI > algorithm_URI_name or click New.

 Related reference

Chapter 14. Learn about WebSphere applications 773

“Algorithm URI collection” on page 772
Use this page to view a list of uniform resource identifier (URI) algorithms for XML digital signature or

XML encryption that are mapped to an algorithm factory engine class. With algorithm mappings,

service providers can use other cryptographic algorithms for digest value calculation, digital signature

signing and verification, data encryption and decryption, and key encryption and decryption.

 “Algorithm mapping collection” on page 775
Use this page to view a list of custom uniform resource identifier (URI) algorithms for digest value

calculation, signature, key encryption, and data encryption. WebSphere Application Server maps these

algorithms to an implementation of the algorithm factory engine interface. With algorithm mappings,

service providers can extend the cryptographic algorithms for XML digital signature and XML

encryption.

 “Algorithm mapping collection” on page 775
Use this page to view a list of custom uniform resource identifier (URI) algorithms for digest value

calculation, signature, key encryption, and data encryption. WebSphere Application Server maps these

algorithms to an implementation of the algorithm factory engine interface. With algorithm mappings,

service providers can extend the cryptographic algorithms for XML digital signature and XML

encryption.

 “Signing information configuration settings” on page 716
Use this page to configure new signing parameters.

 “Part reference configuration settings” on page 722
Use this page to specify a reference to the message parts for signature and encryption that are defined

in the deployment descriptors.

 “Encryption information configuration settings” on page 729
Use this page to configure the encryption and decryption parameters. You can use these parameters to

encrypt and decrypt various parts of the message, including the body and user name token.

Algorithm URI:

Specifies the algorithm uniform resource identifier (URI) for the specified algorithm type.

 The algorithm URI that is defined on this page is available to the various binding configurations. For

example, if you specify an algorithm URI and select Signature from the Algorithm type field, the URI

displays in the Signature method field on the signing information panel.

Algorithm type:

Specifies the type of algorithm that is specified in the Algorithm URI field.

 The following types of algorithms are supported by WebSphere Application Server. The following list shows

where configurations that are specified on this panel are displayed for a binding configuration:

 Algorithm type Explanation Location of the configuration

Signature This algorithm type is used for digital

signatures.

This configuration displays in the Signature

method field on the Signing information panel.

For information on how to access the Signing

information panel, see “Signing information

configuration settings” on page 716.

Digest value

calculation

(message digest)

This algorithm type is used for calculating the

digest value.

This configuration displays in the Digest

method algorithm field on the Part references

panel. For information on how to access the

Part references panel, see “Part reference

configuration settings” on page 722.

774 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Algorithm type Explanation Location of the configuration

Data encryption This algorithm type is used for encrypting data. This configuration displays in the Data

encryption algorithm field on the Encryption

information panel. For information on how to

access the Encryption information panel, see

“Encryption information configuration settings”

on page 729.

Key encryption This algorithm type is used for encrypting the

key that is used for data encryption.

This configuration displays in the Key

encryption algorithm field on the Encryption

information panel. For information on how to

access the Encryption information panel, see

“Encryption information configuration settings”

on page 729.

The actual implementation of the algorithm is done in the implementation class for the engine factory.

Algorithm mapping collection:

Use this page to view a list of custom uniform resource identifier (URI) algorithms for digest value

calculation, signature, key encryption, and data encryption. WebSphere Application Server maps these

algorithms to an implementation of the algorithm factory engine interface. With algorithm mappings, service

providers can extend the cryptographic algorithms for XML digital signature and XML encryption.

 To view this administrative console page on the cell level, complete the following steps:

1. Click Security > Web services.

2. Under Additional properties, click Algorithm mappings.

To view this administrative console page on the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings.

 Related reference

 “Algorithm URI collection” on page 772
Use this page to view a list of uniform resource identifier (URI) algorithms for XML digital signature or

XML encryption that are mapped to an algorithm factory engine class. With algorithm mappings,

service providers can use other cryptographic algorithms for digest value calculation, digital signature

signing and verification, data encryption and decryption, and key encryption and decryption.

 “Algorithm URI configuration settings” on page 773
Use this page to specify the algorithm uniform resource identifier (URI) and its usage type.

 “Algorithm mapping collection”
Use this page to view a list of custom uniform resource identifier (URI) algorithms for digest value

calculation, signature, key encryption, and data encryption. WebSphere Application Server maps these

algorithms to an implementation of the algorithm factory engine interface. With algorithm mappings,

service providers can extend the cryptographic algorithms for XML digital signature and XML

encryption.

Algorithm factory engine class:

Specifies the custom class that implements the engine factory implementation class for the algorithm

factory engine.

 The implementation class for the engine factory implements the cryptographic functions of the defined

uniform resource identifier (URI).

Chapter 14. Learn about WebSphere applications 775

Algorithm mapping configuration settings:

Use this page to view a list of custom uniform resource identifier (URI) algorithms for digest value

calculation, signature, key encryption, and data encryption. WebSphere Application Server maps these

algorithms to an implementation of the algorithm factory engine interface. With algorithm mappings, service

providers can extend the cryptographic algorithms for XML digital signature and XML encryption.

 To view this administrative console page on the cell level, complete the following steps:

To view this administrative console page on the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings > algorithm_factory_engine_class_name or

click New.

 Related reference

 “Algorithm URI collection” on page 772
Use this page to view a list of uniform resource identifier (URI) algorithms for XML digital signature or

XML encryption that are mapped to an algorithm factory engine class. With algorithm mappings,

service providers can use other cryptographic algorithms for digest value calculation, digital signature

signing and verification, data encryption and decryption, and key encryption and decryption.

 “Algorithm URI configuration settings” on page 773
Use this page to specify the algorithm uniform resource identifier (URI) and its usage type.

 “Algorithm mapping collection” on page 775
Use this page to view a list of custom uniform resource identifier (URI) algorithms for digest value

calculation, signature, key encryption, and data encryption. WebSphere Application Server maps these

algorithms to an implementation of the algorithm factory engine interface. With algorithm mappings,

service providers can extend the cryptographic algorithms for XML digital signature and XML

encryption.

Algorithm factory engine class:

Specifies the custom class that implements the engine factory interface.

 To use this algorithm mapping feature, you must specify a custom algorithm class in the Algorithm factory

engine class field for digital signature, data encryption, digest value calculation, and key encryption. The

algorithm factory engine provides a plug-in point for service providers to provide their implementation for

digest value calculation, digital signature, key encryption, and data encryption that is based on a specified

algorithm uniform resource identifier (URI). By clicking Algorithm URI under Additional properties, you can

specify the algorithm URI and its usage type. WebSphere Application Server supports the following

algorithm types:

Message digest

Specifies the algorithm URI that is used for digest value calculation.

Signature

Specifies the algorithm URI that is used for digital signatures including both signing and signature

verification.

Data encryption

Specifies the algorithm URI that is used for both encrypting and decrypting data.

Key encryption

Specifies the algorithm URI that is used for both encrypting and decrypting the encryption key.

776 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

If the URI is used for multiple usage types, then you must define a mapping of the URI to each usage

type. The actual implementation of the algorithm is provided by the custom class that implements the

engine factory interface. For more information, refer to the information center documentation on how to

implement a factory class.

Configuring the key locator on the server or cell level

The key locator information for the default generator bindings specifies which key locator implementation is

used to locate the key that is used for signature and encryption information if these bindings are not

defined at the application level. The key locator information for the default consumer bindings specifies

which key locator implementation is used to locate the key that is used for signature validation or

decryption if these bindings are not defined at the application level. WebSphere Application Server

provides default values for the bindings. However, you must modify the defaults for a production

environment.

Complete the following steps to configure the key locator on the server or cell level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Additional properties, click Key locator. You can configure the key locator configurations for

both the default generator and the default consumer in this location.

 3. Click New to create a key locator configuration, click Delete to delete an existing configuration, or

click the name of an existing key locator configuration to edit its settings. If you are creating a new

configuration, enter a unique name for the key locator configuration in the Key locator name field. For

example, you might specify sig_klocator.

 4. Specify a name for the key locator class implementation in the Key locator class name field. The key

locators that are associated with Version 6 applications must implement the

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. WebSphere Application Server provides the

following default key locator class implementations for Version 6 applications:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreLeyLocator

This implementation locates and obtains the key from a specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator

This implementation uses the public key from the certificate of the signer. This class

implementation is used by the response generator.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator

This implementation uses the X.509 security token from the sender message for digital

signature validation and encryption. This class implementation is used by the request

consumer and the response consumer.

For example, you might specify the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreLeyLocator

implementation if you need the configuration to be the key locator for signing information.

 5. Specify the keystore password, the keystore location, and the keystore type. Keystore files contain

public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and

so on. Keys that are retrieved from the keystore file are used to sign and validate or encrypt and

decrypt messages or message parts. If you specified the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class

implementation, you must specify a key store password, location, and type.

a. Specify a password in the Key store password field. This password is used to access the keystore

file.

b. Specify the location of the keystore file in the Key store path field.

c. Select a keystore type from the Key store type field. The Java Cryptography Extension (JCE) that

is used supports the following key store types:

Chapter 14. Learn about WebSphere applications 777

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

PKCS11

Use this format if your keystore file uses the PKCS#11 file format. Keystore files that use

this format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware

or might encrypt keys that use cryptographic hardware to ensure protection.

PKCS12

Use this option if your keystore file uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the

${USER_INSTALL_ROOT}/etc/ws-security/samples directory. For example, you might use the

enc-receiver.jceks keystore file for encryption keys. The password for this file is storepass and

the type is JCEKS.

Attention: Do not use these keystore files in a production environment. These samples are

provided for testing purposes only.

 6. Click OK and Save to save the configuration.

 7. Under Additional properties, click Keys.

 8. Click New to create a key configuration, click Delete to delete an existing configuration, or click the

name of an existing key configuration to edit the settings. This entry specifies the name of the key

object within the keystore file. If you are creating a new configuration, enter a unique name in the Key

name field.

You must use a fully qualified distinguished name for the key name. For example, you might use

CN=Bob,O=IBM,C=US.

 9. Specify an alias in the Key alias field. The key alias is used by the key locator to search for key

objects in the keystore file.

10. Specify a password in the Key password field. The password is used to access the key object within

the keystore file.

11. Click OK and then click Save to save the configuration.

You have configured the key locator for the server or cell level.

Configure the key information for the default generator and the default consumer bindings that reference

this key locator.

Configuring the key information for the generator binding on the server or cell

level

Use the key information for the default generator to specify the key that is used by the signing or the

encryption information configurations if these bindings are not defined at the application level. The signing

and encryption information configurations can share the same key information, which is why they are both

defined on the same level. WebSphere Application Server provides default values for these bindings.

However, an administrator must modify these values for a production environment.

Complete the following steps to configure the key information for the generator binding on the server or

cell level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Default generator bindings, click Key information.

778 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

3. Click New to create a key information configuration, click Delete to delete an existing configuration, or

click the name of an existing key information configuration to edit the settings. If you are creating a

new configuration, enter a unique name for the key configuration in the Key information name field.

For example, you might specify sig_keyinfo.

 4. Select a key information type from the Key information type field. WebSphere Application Server

supports the following types of key information:

Key identifier

This key information type is used when two parties agree on how to create a key identifier.

For example, a field of X.509 certificates can be used for the key identifier according to the

X.509 profile.

Key name

This key information type is used when the sender and receiver agree on the name of the

key.

Security token reference

This key information type is typically used when an X.509 certificate is used for digital

signature.

Embedded token

This key information type is used to embed a security token in an embedded element.

X509 issuer name and issuer serial

This key information type specifies an X.509 certificate with its issuer name and serial

number.

Select Security token reference if you are using an X.509 certificate for the digital signature. In

these steps, it is assumed that Security token reference is selected for this field.

Important: This key information type must match the key information type that is specified for the

consumer.

 5. Select a key locator reference from the Key locator reference menu. In these steps, assume that the

key locator reference is called sig_klocator. The key locator reference is the name of the key locator

that is used to generate the key for digital signature. You must configure a key locator before you can

select it in this field. For more information on configuring the key locator, see “Configuring the key

locator on the server or cell level” on page 777.

 6. Click Get keys to view a list of key name references. After you click Get keys, the key names that

are defined in the sig_klocator element are shown in the key name reference menu. If you change

the key locator reference, you must click Get keys again to display the list of key names that are

associated with the new key locator.

 7. Select a key name reference from the Key name reference menu. The key name reference specifies

the name of the key that is used for generating the digital signature or for encryption. The Key name

reference menu displays a list of key names that are defined for the selected key locator in the Key

locator reference field. For example, select signerkey. It is assumed that signerkey is a key name

that is defined for the sig_klocator key locator.

 8. Select a token reference from the Token reference field. The token reference refers to the name of a

configured token generator. When a security token is required in the deployment descriptor, the token

reference attribute is required. If you select Security token reference in the Key information type

field, the token reference is required and you can specify an X.509 token generator. To specify an

X.509 token generator, you must have an X.509 token generator configured. To configure an X.509

token generator, see “Configuring token generators on the server or cell level” on page 765. For the

remaining steps, it is assumed that an X.509 token generator that is named gen_tcon is already

configured.

 9. Optional: Select an encoding method from the Encoding method field This field specifies the

encoding format for the key identifier. The encoding method attribute is valid when you select Key

identifer as the key information type. WebSphere Application Server supports the following encoding

methods:

Chapter 14. Learn about WebSphere applications 779

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#HexBinary

10. Optional: Select a calculation method from the Calculation method field. The calculation method

specifies the calculation algorithm that is used for the key identifier. This attribute is valid when you

select Key identifier as the key information type. WebSphere Application Server supports the

following calculation methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#ITSHA1

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#IT60SHA1

11. Optional: Specify a URI of the value type for a security token from the Namespace URI field. The

namespace URI is referenced by the key identifier. This attribute is valid when you select Key

identifier as the key information type. When you specify the X.509 certificate token, you do not need

to specify the namespace URI. If another token is specified, you must specify the namespace URI.

For example, you can specify http://www.ibm.com/websphere/appserver/tokentype/5.0.2 for the

Lightweight Third Party Authentication (LTPA) token.

12. Optional: Specify the local name of the value type for a security token in the Local name field. The

local name is referenced by the key identifier. This attribute is valid when you select Key identifier as

the key information type. WebSphere Application Server supports the following local names:

For an X.509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

For X.509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

For a list of X.509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

For LTPA

LTPA

13. Click OK and Save to save the configuration.

You have configured the key information for the generator binding at the server or cell level.

You must specify a similar key information configuration for the consumer.

 Related tasks

 “Configuring the key information for the consumer binding on the server or cell level” on page 795

 “Configuring the key locator on the server or cell level” on page 777

 “Configuring token generators on the server or cell level” on page 765

Configuring the signing information for the generator binding on the server or cell

level

In the server-side extensions file (ibm-webservices-ext.xmi) and the client-side deployment descriptor

extensions file (ibm-webservicesclient-ext.xmi), you must specify which parts of the message are

signed. Also, you need to configure the key information that is referenced by the key information

references on the Signing information panel within the administrative console.

This task explains the steps that are needed for you to configure the signing information for the client-side

request generator and the server-side response generator bindings at the server or cell level. WebSphere

Application Server uses the signing information for the default generator to sign parts of the message that

include the body, time stamp, and user name token if these bindings are not defined at the application

level. The Application Server provides default values for bindings. However, an administrator must modify

the defaults for a production environment.

780 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Default generator bindings, click Signing information.

 3. Click New to create a signing information configuration, click Delete to delete an existing

configuration, or click the name of an existing signing information configuration to edit the settings. If

you are creating a new configuration, enter a unique name for the signing configuration in the Signing

information name field. For example, you might specify gen_signinfo.

 4. Select a signature method algorithm from the Signature method field. The algorithm that is specified

for the default generator must match the algorithm that is specified for the default consumer.

WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

 5. Select a canonicalization method from the Canonicalization method field. The canonicalization

algorithm that you specify for the generator must match the algorithm for the consumer. WebSphere

Application Server supports the following pre-configured canonical XML and exclusive XML

canonicalization algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

 6. Select a key information signature type from the Key information signature type field. The key

information signature type determines how to digitally sign the key. WebSphere Application server

supports the following signature types:

None Specifies that the KeyInfo element is not signed.

Keyinfo

Specifies that the entire KeyInfo element is signed.

Keyinfochildelements

Specifies that the child elements of the KeyInfo element are signed.

The key information signature type for the generator must match the signature type for the consumer.

You might encounter the following situations:

v If you do not specify one of the previous signature types, WebSphere Application Server uses

keyinfo, by default.

v If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform as the

transform algorithm in a subsequent step, WebSphere Application Server also signs the referenced

token.

 7. Select a signing key information reference from the Signing key information field. This selection is a

reference to the signing key that the Application Server uses to generate digital signatures. In the

binding files, this information is specified within the <signingKeyInfo> tag. The key that is used for

signing is specified by the key information element, which is defined at the same level as the signing

information. For more information, see “Configuring the key information for the generator binding on

the server or cell level” on page 778.

 8. Click OK to save the configuration.

 9. Click the name of the new signing information configuration. This configuration is the one that you

specified in the previous steps.

10. Specify the part reference, digest algorithm, and transform algorithm. The part reference specifies

which parts of the message to digitally sign.

Chapter 14. Learn about WebSphere applications 781

a. Under Additional Properties, click Part references > New to create a new part reference, click

Part references > Delete to delete an existing part reference, or click a part name to edit an

existing part reference.

b. Specify a unique part name for the message part that needs signing. This message part is

specified on both the server side and the client side. You must specify an identical part name for

both the server side and the client side. For example, you might specify reqint for both the

generator and the consumer.

Important: You do not need to specify a value for the Part reference in the default bindings like

you specify on the application level because the part reference on the application

level points to a particular part of the message that is signed. Because the default

bindings for the server level is applicable to all of the services that are defined on a

particular server, you cannot specify this value.

c. Select a digest method algorithm in the Digest method algorithm field. The digest method

algorithm that is specified in the binding files within the <DigestMethod> element is used in the

<SigningInfo> element. WebSphere Application Server supports the

http://www.w3.org/2000/09/xmldsig#sha1 algorithm.

d. Click OK and Save to save the configuration.

e. Click the name of the new part reference configuration. This configuration is the one that you

specified in the previous steps.

f. Under Additional properties, click Transforms > New to create a new transform, click Transforms

> Delete to delete a transform, or click a transform name to edit an existing transform. If you

create a new transform configuration, specify a unique name. For example, you might specify

reqint_body_transform1.

g. Select a transform algorithm from the menu. The transform algorithm is specified within the

<Transform> element. This algorithm element specifies the transform algorithm for the digital

signature. WebSphere Application Server supports the following algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the generator must match the transform algorithm that

you select for the consumer.

Important: If both of the following conditions are true, WebSphere Application Server signs the

referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option from the

Key information signature type field on the signing information panel.

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#STR-Transform as the transform algorithm.

11. Click OK.

12. Click Save at the top of the panel to save your configuration.

After completing these steps, you have configured the signing information for the generator on the server

level.

You must specify a similar signing information configuration for the consumer.

 Related tasks

782 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

“Configuring the signing information for the consumer binding on the server or cell level” on page 796

Configuring the encryption information for the generator binding on the server or

cell level

The encryption information for the default generator specifies how to encrypt the information on the sender

side if these bindings are not defined at the application level. WebSphere Application Server provides

default values for the bindings. However, an administrator must modify the defaults for a production

environment.

Complete the following steps to configure the encryption information for the generator binding on the

server level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Under Default generator bindings, click Encryption information.

3. Click New to create an encryption information configuration, click Delete to delete an existing

configuration, or click the name of an existing encryption information configuration to edit the settings.

If you are creating a new configuration, enter a unique name for the encryption configuration in the

Encryption information name field. For example, you might specify gen_encinfo.

4. Select a data encryption algorithm from the Data encryption algorithm field. This algorithm is used to

encrypt the data. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

The data encryption algorithm that you select for the generator side must match the data encryption

algorithm that you select for the consumer side.

5. Select a key encryption algorithm from the Key encryption algorithm field. This algorithm is used to

encrypt the key. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

If you select None, the key is not encrypted.

The key encryption algorithm that you select for the generator side must match the key encryption

algorithm that you select for the consumer side.

Chapter 14. Learn about WebSphere applications 783

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

6. Select a encryption key configuration from the Encryption key information field. This attribute specifies

the name of the key that is used to encrypt the message. To configure the key information, see

“Configuring the key information for the generator binding on the server or cell level” on page 778.

7. Click OK and then click Save to save the configuration.

You have configured the encryption information for the generator binding at the server or cell level.

You must specify a similar encryption information configuration for the consumer.

 Related tasks

 “Configuring the encryption information for the consumer binding on the server or cell level” on page

799

 “Configuring the key information for the generator binding on the server or cell level” on page 778

Configuring trusted ID evaluators on the server or cell level

This task provides the steps that are needed to configure trusted identity (ID) evaluators. The trusted ID

evaluator determines whether to trust the identity-asserting authority. After the ID is trusted, the

WebSphere Application Server issues the proper credentials based on the identity, which are used in a

downstream call to another server for invoking resources. The trusted ID evaluator implements the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

Complete the following steps to configure the trusted ID evaluators on the server level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Under Additional properties, click Trusted ID evaluators.

3. Click New to create a trusted ID evaluator configuration, click Delete to delete an existing

configuration, or click the name of an existing configuration to edit the settings. If you are creating a

new configuration, enter a unique name for the trusted ID evaluator configuration in the Trusted ID

evaluator name field. This field specifies the name that is used by the application binding to refer to a

trusted identity (ID) evaluator that is defined in the default binding.

4. Specify a class name in the Trusted ID evaluator class name field. The default class name is

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. The specified trusted ID evaluator class name

must implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator class. When you use the default

TrustedIDEvaluator class, you must specify the name and value properties for the default trusted ID

evaluator to create the trusted ID list for evaluation.

5. Under Additional properties, click Properties > New.

6. Specify the trusted ID evaluator name as a property name. You must specify the trusted ID evaluator

name in the form, trustedId_n, where _n is an integer from zero (0) to n.

7. Specify the trusted ID as a property value.

property name="trustedId_0", value="CN=Bob,O=ACME,C=US"

property name="trustedId_1, value="user1"

If a distinguished name (DN) is used, the space is removed for comparison.

8. Click OK and then Save.

You have configured the trusted ID evaluators at the server or cell level.

Trusted ID evaluator collection:

Use this page to view a list of trusted identity (ID) evaluators. The trusted ID evaluator determines whether

to trust the identity-asserting authority. After the ID is trusted, WebSphere Application Server issues the

proper credentials based on the identity, which are used in a downstream call for invoking resources. The

trusted ID evaluator implements the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

784 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

To view this administrative console page for trusted ID evaluators on the server level, complete the

following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trusted ID evaluators.

4. Click New to create a trusted ID evaluator or click Delete to a delete a trusted ID evaluator.

6.x application

To view this administrative console page for trusted ID evaluators on the application

level, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules.

3. Click URI_name.

4. Under Additional properties, click Web services: Server security bindings.

5. Under Request consumer (receiver) binding, click Edit custom.

6. Click Trusted ID evaluators.

7. Click New to create a trusted ID evaluator or click Delete to delete a trusted ID evaluator.

5.x application

To view this administrative console page for trusted ID evaluators on the application

level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, click Web services: Server security bindings.

4. Click Edit under Request receiver binding.

5. Click Trusted ID evaluators.

6. Click New to create a trusted ID evaluator or click Delete to delete a trusted ID evaluator.

Important: Trusted ID evaluators are only required for the request receiver (Version 5.x applications) and

the request consumer (Version 6.x applications), if identity assertion is configured.

Using this trusted ID evaluator collection panel, complete the following steps:

1. Specify a trusted ID evaluator name and a trusted ID evaluator class name.

2. Save your changes by clicking Save in the messages section at the top of the administrative console.

3. Click Update run time to update the Web services security run time with the default binding

information, which is found in the ws_security.xml file. The configuration changes made to the other

Web services also are updated in the Web services security run time.

 Related reference

 “Trusted ID evaluator configuration settings”
Use this information to configure trust identity (ID) evaluators.

Trusted ID evaluator name:

Specifies the unique name of the trusted ID evaluator.

Trusted ID evaluator class name:

Specifies the class name of the trusted ID evaluator.

Trusted ID evaluator configuration settings:

Use this information to configure trust identity (ID) evaluators.

Chapter 14. Learn about WebSphere applications 785

To view this administrative console page for trusted ID evaluators on the server level, complete the

following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trusted ID evaluators.

4. Click New to create a trusted ID evaluator or click the name of an existing configuration to modify the

settings.

6.x application

To view this administrative console page for trusted ID evaluators on the application

level, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules.

3. Click the URI_name.

4. Under Additional properties, click Web services: Server security bindings.

5. Under Request consumer (receiver) binding, click Edit custom.

6. Click Trusted ID evaluators.

7. Click New to create a trusted ID evaluator or click Delete to delete a trusted ID evaluator.

5.x application

To view this administrative console page for trusted ID evaluators on the application

level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, click Web services: Server security bindings.

4. Click Edit under Request receiver binding.

5. Click Trusted ID evaluators.

6. Click New to create a trusted ID evaluator or click Delete to delete a trusted ID evaluator.

Important: Trusted ID evaluators are only required for the request receiver (Version 5.x applications) and

the request consumer (Version 6.x applications), if identity assertion is configured.

You can specify one of the following options:

None Choose this option if you are not specifying a trusted ID evaluator.

Existing evaluator definition

Choose this option to specify a currently defined trusted ID evaluator.

Binding evaluator definition

Choose this option to specify a new trusted ID evaluator. A description of the required fields

follows.

 Related reference

 “Trusted ID evaluator collection” on page 784
Use this page to view a list of trusted identity (ID) evaluators. The trusted ID evaluator determines

whether to trust the identity-asserting authority. After the ID is trusted, WebSphere Application Server

issues the proper credentials based on the identity, which are used in a downstream call for invoking

resources. The trusted ID evaluator implements the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

interface.

Trusted ID evaluator name:

Specifies the name that is used by the application binding to refer to a trusted identity (ID) evaluator that is

defined in the default binding.

786 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Trusted ID evaluator class name:

Specifies the class name of the trusted ID evaluator.

 The specified trusted ID evaluator class name must implement the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface. The default TrustedIDEvaluator class is

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. When you use this default TrustedIDEvaluator class,

you must specify the name and the value properties for the default trusted ID evaluator to create the

trusted ID list for evaluation.

To specify the name and value properties, complete the following steps:

1. Under Additional properties, click Properties > New.

2. Specify the trusted ID evaluator name as a property name. You must specify the trusted ID evaluator

name in the form, trustedId_n, where_n is an integer from zero (0) to n.

3. Specify the trusted ID as a property value.

For example:

property name=″trustedId_0″, value=″CN=Bob,O=ACME,C=US″

property name=″trustedId_1″, value=″user1″

If a distinguished name (DN) is used, the space is removed for comparison.

 Default com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

See the programming model information in the documentation for an explanation of how to implement the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

Configuring token consumers on the server or cell level

The token consumer on the server or cell level is used to specify the information that is needed to process

the security token if it is not defined at the application level. WebSphere Application Server provides

default values for bindings. You must modify the defaults for a production environment.

Complete the following steps to configure the token consumers on the server level.

 1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Default consumer bindings, click Token consumers.

 3. Click New to create a token consumer configuration, click Delete to delete an existing configuration,

or click the name of an existing token consumer configuration to edit its settings. If you are creating a

new configuration, enter a unique name for the token consumer configuration in the Token consumer

name field. For example, you might specify sig_cgen. This field specifies the name of the token

consumer element.

 4. Specify a class name in the Token consumer class name field. The token consumer class must

implement the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface. The token

consumer class name must be similar to the token generator class name.

For example, if your application requires an X.509 certificate token consumer, you can specify the

com.ibm.wsspi.wssecurity.token.X509TokenGenerator class name on the Token generator panel and

the com.ibm.wsspi.wssecurity.token.X509TokenConsumer class name in this field. WebSphere

Application Server provides the following default token consumer class implementations:

com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer

This implementation integrates a user name token.

Chapter 14. Learn about WebSphere applications 787

com.ibm.wsspi.wssecurity.token.X509TokenConsumer

This implementation integrates an X.509 certificate token.

com.ibm.wsspi.wssecurity.token.LTPATokenConsumer

This implementation integrates a Lightweight Third Party Authentication (LTPA) token.

com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer

This implementation integrates an IDAssertionUsername token.

 A corresponding token generator class does not exist for this implementation.

 5. Select a certificate path option. The certificate path specifies the certificate revocation list (CRL) that

is used for generating a security token wrapped in a PKCS#7 with a CRL. WebSphere Application

Server provides the following certificate path options:

None If you select this option, the certificate path is not specified.

Trust any

If you select this option, any certificate is trusted. When the received token is consumed, the

certificate path validation is not processed.

Dedicated signing information

If you select this option, you can specify a trust anchor and a certificate store. When you

select the trust anchor or the certificate store of a trusted certificate, you must configure the

collection certificate store before setting the certificate path. To define a collection certificate

store on the server or cell level, see “Configuring the collection certificate store on the server

or cell-level bindings” on page 762.

a. Select a trust anchor in the Trust anchor field. WebSphere Application Server provides two

sample trust anchors. However, it is recommended that you configure your own trust anchors for

a production environment. For information on configuring a trust anchor, see “Configuring trust

anchors on the server or cell level” on page 761.

b. Select a collection certificate store in the Certificate store field. WebSphere Application Server

provides a sample collection certificate store. If you select None, the collection certificate store is

not specified. For information on specifying a list of certificate stores that contain untrusted,

intermediary certificate files awaiting validation, see “Configuring trusted ID evaluators on the

server or cell level” on page 784.

 6. Select a trusted ID evaluator from the Trusted ID evaluation reference field. This field specifies a

reference to the Trusted ID evaluator class name that is defined in Trusted ID evaluators panel. The

trusted ID evaluator is used for evaluating whether the received ID is trusted. If you select None, the

trusted ID evaluator is not referenced in this token consumer configuration. To configure a trusted ID

evaluator, see “Configuring trusted ID evaluators on the server or cell level” on page 784.

 7. Select the Verify nonce option if a nonce is included in a user name token on the generator side.

Nonce is a unique cryptographic number that is embedded in a message to help stop repeat,

unauthorized attacks of user name tokens. The Verify nonce option is available if you specify a user

name token for the token consumer and nonce is added to the user name token on the generator

side.

 8. Select the Verify timestamp option if a time stamp is included in the user name token on the

generator side. The Verify Timestamp option is available if you specify a user name token for the

token consumer and a time stamp is added to the user name token on the generator side.

 9. Specify the local name of the value type for the integrated token. This entry specifies the local name

of the value type for a security token that is referenced by the key identifier. This attribute is valid

when Key identifier is selected as the key information type. To specify the key information type, see

“Configuring the key information for the consumer binding on the server or cell level” on page 795.

WebSphere Application Server has predefined value type local names for the user name token and

the X.509 certificate security token. Enter one of the following local names for the user name token

and the X.509 certificate security token. When you specify the following local names, you do not need

to specify the URI of the value type:

788 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Username token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X.509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X.509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

Note: To specify Lightweith Third Party Authentication (LTPA), you must specify both the value type

local name and the Uniform Resource Identifier (URI). Specify LTPA for the local name and

http://www.ibm.com/websphere/appserver/tokentype/5.0.2 for the URI.
For example, when an X.509 certificate token is specified, you can use http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3 for the local name. When

you specify the local name of another token, you must specify a value type Qname. For example:

uri=http://www.ibm.com/custom, localName=CustomToken

10. Specify the value type uniform resource identifier (URI) in the URI field. This entry specifies the

namespace URI of the value type for a security token that is referenced by the key identifier. This

attribute is valid when Key identifier is selected as the key information type on the Key information

panel for the default generator. When you specify the token consumer for the user name token or an

X.509 certificate security token, you do not need to specify this option. If you specify another token,

you need to specify the URI of the QName for the value type.

11. Click OK and then Save to save the configuration. After saving the token generator configuration, you

can specify a Java Authentication and Authorization Service (JAAS) configuration for your token

consumer.

12. Click the name of your token generator configuration.

13. Under Additional properties, click JAAS configuration.

14. Select a JAAS configuration from the JAAS configuration name field. The field specifies the name of

the JAAS system for application login configuration. You can specify additional JAAS system and

application configurations by clicking Security > Global security. Under Authentication, click JAAS

configuration and either Application logins > New or System logins > New. Do not remove the

predefined system or application login configurations. However, within these configurations, you can

add module class names and specify the order in which WebSphere Application Server loads each

module. WebSphere Application Server provides the following predefined JAAS configurations:

ClientContainer

This selection specifies the login configuration that is used by the client container

applications. The configuration uses the CallbackHandler application programming interface

(API) that is defined in the deployment descriptor for the client container. To modify this

configuration, see the JAAS configuration panel for application logins.

WSLogin

This selection specifies whether all of the applications can use the WSLogin configuration to

perform authentication for the security run time. To modify this configuration, see the JAAS

configuration panel for application logins.

DefaultPrincipalMapping

This selection specifies the login configuration that is used by Java 2 Connectors (J2C) to

map users to principals that are defined in the J2C authentication data entries. To modify this

configuration, see the JAAS configuration panel for application logins.

Chapter 14. Learn about WebSphere applications 789

system.wssecurity.IDAssertion

This selection enables a Version 5.x application to use identity assertion to map a user name

to a WebSphere Application Server credential principal. To modify this configuration, see the

JAAS configuration panel for system logins.

system.wssecurity.Signature

This selection enables a Version 5.x application to map a distinguished name (DN) in a

signed certificate to a WebSphere Application Server credential principal. To modify this

configuration, see the JAAS configuration panel for system logins.

system.LTPA_WEB

This selection processes login requests that are used by the Web container such as servlets

and JavaServer Pages (JSP) files. To modify this configuration, see the JAAS configuration

panel for system logins.

system.WEB_INBOUND

This selection handles login requests for Web applications, which include servlets and

JavaServer Pages (JSP) files. This login configuration is used by WebSphere Application

Server Version 5.1.1. To modify this configuration, see the JAAS configuration panel for

system logins.

system.RMI_INBOUND

This selection handles logins for inbound Remote Method Invocation (RMI) requests. This

login configuration is used by WebSphere Application Server Version 5.1.1. To modify this

configuration, see the JAAS configuration panel for system logins.

system.DEFAULT

This selection handles the logins for inbound requests that are made by internal

authentications and most of the other protocols except Web applications and RMI requests.

This login configuration is used by WebSphere Application Server Version 5.1.1. To modify

this configuration, see the JAAS configuration panel for system logins.

system.RMI_OUTBOUND

This selection processes RMI requests that are sent outbound to another server when either

the com.ibm.CSI.rmiOutboundLoginEnabled or the com.ibm.CSIOutboundPropagationEnabled

properties are true. These properties are set in the CSIv2 authentication panel. To access

the panel, click Security > Global security. Under Authentication, click Authentication

protocol > CSIv2 outbound authentication. To set the

com.ibm.CSI.rmiOutboundLoginEnabled property, select the Custom outbound mapping

option. To set the com.ibm.CSIOutboundPropagationEnabled property, select the Security

attribute propagation option. To modify this JAAS login configuration, see the JAAS

configuration panel for system logins.

system.wssecurity.X509BST

This section verifies an X.509 binary security token (BST) by checking the validity of the

certificate and the certificate path. To modify this configuration, see the JAAS configuration

panel for system logins.

system.wssecurity.PKCS7

This selection verifies an X.509 certificate with a certificate revocation list in a PKCS7 object.

To modify this configuration, see the JAAS configuration panel for system logins.

system.wssecurity.PkiPath

This section verifies an X.509 certificate with a public key infrastructure (PKI) path. To modify

this configuration, see the JAAS configuration panel for system logins.

system.wssecurity.UsernameToken

This selection verifies the basic authentication (user name and password) data. To modify this

configuration, see the JAAS configuration panel for system logins.

790 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

system.wssecurity.IDAssertionUsernameToken

This selection enables Version 6 applications to use identity assertion to map a user name to

a WebSphere Application Server credential principal. To modify this configuration, see the

JAAS configuration panel for system logins.

None With this selection, you do not specify a JAAS login configuration.

15. Click OK and then Save to save the configuration.

You have configured the token consumer at the server or cell level.

You must specify a similar token generator configuration for the server or cell level.

 Related tasks

 “Configuring trusted ID evaluators on the server or cell level” on page 784

 “Configuring the collection certificate store on the server or cell-level bindings” on page 762

 “Configuring trust anchors on the server or cell level” on page 761

Token consumer collection:

Use this page to view the token consumer. The information is used on the consumer side only to process

the security token.

 To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token consumers.

To view this administrative console page for Version 6.x applications on the application level, complete the

following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access the signing information for the following bindings:

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom. Under Required properties, click

Token consumers.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom. Under Required properties, click

Token consumers.

 Related reference

 “Token consumer configuration settings” on page 792
Use this page to specify the information for the token consumer. The information is used at the

consumer side only to process the security token.

 “Token generator collection” on page 769
Use this page to view the token generators. The information is used on the generator side only to

generate the security token.

 “Token generator configuration settings” on page 769
Use this page to specify the information for the token generator. The information is used at the

generator side only to generate the security token.

Token consumer name:

Specifies the name of the token consumer configuration.

Chapter 14. Learn about WebSphere applications 791

Token consumer class name:

Specifies the name of the token consumer implementation class.

 This class must implement the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface.

Token consumer configuration settings:

Use this page to specify the information for the token consumer. The information is used at the consumer

side only to process the security token.

 To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default consumer bindings, click Token consumers > token_consumer_name or click New to

create a new token consumer.

To view this administrative console page for Version 6.x applications on the application level, complete the

following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, you can access the signing information for the following bindings:

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom. Under Required properties, click

Token consumers.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom. Under Required properties, click

Token consumers.

4. Click New to specify a new configuration or click the name of an existing configuration to modify its

settings.

Before specifying additional properties, specify a value in the Token consumer name, the Token consumer

class name, and the Value type local name fields.

 Related reference

 “Token consumer collection” on page 791
Use this page to view the token consumer. The information is used on the consumer side only to

process the security token.

 “Token generator collection” on page 769
Use this page to view the token generators. The information is used on the generator side only to

generate the security token.

 “Token generator configuration settings” on page 769
Use this page to specify the information for the token generator. The information is used at the

generator side only to generate the security token.

Token consumer name:

Specifies the name of the token consumer configuration.

Token consumer class name:

Specifies the name of the token consumer implementation class.

 This class must implement the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface.

792 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Part reference:

Specifies a reference to the name of the security token that is defined in the deployment descriptor.

 On the application level, when the security token is not specified in the deployment descriptor, the Part

reference field is not displayed.

Certificate path:

Specifies the trust anchor and the certificate store.

 You can select the following options:

None If you select this option, the certificate path is not specified.

Trust any

If you select this option, any certificate is trusted. When the received token is incorporated, the

certificate path validation is not processed.

Dedicated signing information

If you select this option, you can specify the trust anchor and the certificate store. When you select

the trust anchor or the certificate store of a trusted certificate, you must configure the collection

certificate store before setting the certificate path.

Trust anchor

You can specify a trust anchor for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default consumer binding Server level Click Servers > Application servers >

server_name.

Under Security, click Web services: Default

bindings for Web services security.

Under Additional properties, click Trust

anchors.

Certificate store

You can specify a certificate path configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Collection

certificate store.

Trusted ID evaluator reference:

Specifies the reference to the Trusted ID evaluator class name that is defined in the Trusted ID evaluators

panel. The trusted ID evaluator is used for determining whether the received ID is trusted.

Chapter 14. Learn about WebSphere applications 793

You can select the following options:

None If you select this option, the trusted ID evaluator is not specified.

Existing evaluator definition

If you select this option, you can select one of the configured trusted ID evaluators.

 You can specify a certificate path configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Trusted ID

evaluators.

Binding evaluator definition

If you select this option, you can specify a new trusted ID evaluator and its class name.

When you select a trusted ID evaluator reference, you must configure the trusted ID evaluators before

setting the token consumer.

The Trusted ID evaluator field is displayed in the default binding configuration and the application server

binding configuration.

Verify nonce:

Specifies whether the nonce of the user name token is verified.

 This option is displayed on the cell, server, and application levels. This option is valid only when the type

of incorporated token is the user name token.

Verify timestamp:

Specifies whether the time stamp of user name token is verified.

 This option is displayed on the cell, server, and application levels. This option is valid only when the type

of incorporated token is the user name token.

Value type local name:

Specifies the local name of value type for the consumed token.

 WebSphere Application Server has predefined value type local names for the user name token and the

X.509 certificate security token. Use the following local names for the user name token and the X.509

certificate security token. When you specify the following local names, you do not need to specify the

Uniform Resource Identifier (URI) of the value type:

Username token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509

794 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

X509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA

Important: For Lightweight Third Party Authentication (LTPA), the value type local name is LTPA. If you

enter LTPA for the local name, you must specify the

http://www.ibm.com/websphere/appserver/tokentype/5.0.2 URI value in the Value type URI

field as well. For the other predefined value types (Username token, X509 certificate token,

X509 certificates in a PKIPath, and a list of X509 certificates and CRLs in a PKCS#7), the

value for the local name field begins with http://. For example, if you are specifying the

username token for the value type, enter http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#UsernameToken in the value type local name field

and then you do not need to enter a value in the value type URI field.

When you specify a custom value type for custom tokens, you can specify the local name and the URI of

the Quality name (QName) of the value type. For example, you might specify Custom for the local name

and http://www.ibm.com/custom for the URI.

Value type URI:

Specifies the namespace URI of the value type for the integrated token.

 When you specify the token consumer for the user name token or the X.509 certificate security token, you

do not need to specify this option. If you want to specify another token, specify the URI of the QName for

the value type.

WebSphere Application Server provides the following predefined value type URI for the LTPA token:

http://www.ibm.com/websphere/appserver/tokentype/5.0.2

Configuring the key information for the consumer binding on the server or cell

level

The key information for the default consumer is used to specify the key that is used by the signing or the

encryption information configurations if these bindings are not defined at the application level. The signing

and encryption information configurations can share the same key information, which is why they are both

defined on the same level. WebSphere Application Server provides default values for these bindings.

However, an administrator must modify these values for a production environment.

Complete the following steps to configure the key information for the consumer binding on the server or

cell level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Under Default consumer bindings, click Key information.

3. Click New to create a key information configuration, click Delete to delete an existing configuration, or

click the name of an existing key information configuration to edit the settings. If you are creating a

new configuration, enter a unique name for the key configuration in the Key information name field. For

example, you might specify con_signkeyinfo.

4. Select a key information type from the Key information type field. WebSphere Application Server

supports the following types of key information:

Chapter 14. Learn about WebSphere applications 795

Key identifier

This key information type is used when two parties agree on how to create a key identifier. For

example, a field of X.509 certificates can be used for the key identifier according to the X.509

profile.

Key name

This key information type is used when the sender and receiver agree on the name of the key.

Security token reference

This key information type is typically used when an X.509 certificate is used for digital

signature.

Embedded token

This key information type is used to embed a security token in an embedded element.

X509 issuer name and issuer serial

This key information type specifies an X.509 certificate with its issuer name and serial number.

Select Security token reference if you are using an X.509 certificate for the digital signature. In these

steps, it is assumed that Security token reference is selected for this field.

Important: This key information type must match the key information type that is specified for the

generator.

5. Select a key locator reference from the Key locator reference menu. In these steps, assume that the

key locator reference is called sig_klocator. You must configure a key locator before you can select it in

this field. For more information on configuring the key locator, see “Configuring the key locator on the

server or cell level” on page 777.

6. Select a token reference from the Token reference field. The token reference refers to the name of a

configured token consumer. When a security token is required in the deployment descriptor, the token

reference attribute is required. If you select Security token reference in the Key information type field,

the token reference is required and you can specify an X.509 token consumer. To specify an X.509

token consumer, you must have an X.509 token consumer configured. To configure an X.509 token

consumer, see “Configuring token consumers on the server or cell level” on page 787.

7. Click OK and Save to save the configuration.

You have configured the key information for the consumer binding at the server or cell level.

You must specify a similar key information configuration for the generator

 Related tasks

 “Configuring the key information for the generator binding on the server or cell level” on page 778

 “Configuring the key locator on the server or cell level” on page 777

 “Configuring token consumers on the server or cell level” on page 787

Configuring the signing information for the consumer binding on the server or cell

level

In the server-side extensions file (ibm-webservices-ext.xmi) and the client-side deployment descriptor

extensions file (ibm-webservicesclient-ext.xmi), you must specify which parts of the message are

signed. Also, you need to configure the key information that is referenced by the key information

references on the signing information panel within the administrative console.

This task explains the steps that are needed for you to configure the signing information for the client-side

request generator and server-side response generator bindings at the server or cell level. WebSphere

Application Server uses the signing information for the default generator to sign parts of the message

including the body, time stamp, and user name token, if these bindings are not defined at the application

level. The Application Server provides default values for bindings. However, an administrator must modify

the defaults for a production environment.

796 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Complete the following steps to configure the signing information for the consumer sections of the bindings

files on the server level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Default consumer bindings, click Signing information.

 3. Click New to create a signing information configuration, click Delete to delete an existing

configuration, or click the name of an existing signing information configuration to edit the settings. If

you are creating a new configuration, enter a unique name for the signing configuration in the Signing

information name field. For example, you might specify gen_signinfo.

 4. Select a signature method algorithm from the Signature method field. The algorithm that is specified

for the default consumer must match the algorithm that is specified for the default generator.

WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

 5. Select a canonicalization method from the Canonicalization method field. The canonicalization

algorithm that you specify for the generator must match the algorithm for the consumer. WebSphere

Application Server supports the following pre-configured canonical XML and exclusive XML

canonicalization algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

 6. Select a key information signature type from the Key information signature type field. The key

information signature type determines how to digitally sign the key. WebSphere Application Server

supports the following signature types:

None Specifies that the KeyInfo element is not signed.

Keyinfo

Specifies that the entire KeyInfo element is signed.

Keyinfochildelements

Specifies that the child elements of the KeyInfo element are signed.

The key information signature type for the consumer must match the signature type for the generator.

You might encounter the following situations:

v If you do not specify one of the previous signature types, WebSphere Application Server uses

keyinfo, by default.

v If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform as the

transform algorithm in a subsequent step, WebSphere Application Server also signs the referenced

token.

 7. Click OK to save the configuration.

 8. Click the name of the new signing information configuration. This configuration is the one that you

specified in the previous steps.

 9. Specify the key information reference, part reference, digest algorithm, and transform algorithm.

a. Under Additional properties, click Key information references > New to create a new reference,

click Key information references > Delete to delete an existing reference, or click a reference

name to edit an existing key information reference.

b. Enter a name for the configuration in the Name field. For example, enter con_skeyinfo.

Chapter 14. Learn about WebSphere applications 797

c. Select a key information reference from the Key information reference field. The key Information

reference points to the key that WebSphere Application Server uses for digital signing. In the

binding files, the reference is specified within the <signingKeyInfo> element. The key that is used

for signing is specified by the Key information element, which is defined at the same level as the

signing information. For more information, see “Configuring the key information for the consumer

binding on the application level” on page 750.

d. Click OK and Save to save the configuration.

e. Under Additional Properties, click Part references > New to create a new part reference, click

Part references > Delete to delete an existing part reference, or click a part name to edit an

existing part reference. The part reference specifies which parts of the message to digitally sign.

The part attribute refers to the name of the <RequiredIntegrity> element in the deployment

descriptor when <PartReference> is specified for the digital signature. WebSphere Application

Server enables you to specify multiple <PartReference> elements for the <SigningInfo> element.

The <PartReference> element has two child elements: <DigestMethod> and <Transform>

f. Specify a unique part name for this part reference. For example, you might specify reqint.

Important: We do not need to specify a value for the Part reference field like you specify on the

application level because the part reference on the application level points to a

particular part of the message that is signed. Because the default bindings for the

server level is applicable to all of the services that are defined on a particular server,

you cannot specify this value.

g. Select a digest method algorithm in the Digest method algorithm field. The digest method

algorithm specified within the <DigestMethod> element that is used in the <SigningInfo> element.

WebSphere Application Server supports the http://www.w3.org/2000/09/xmldsig#sha1 algorithm.

h. Click OK and Save to save the configuration.

i. Click the name of the new part reference configuration. This configuration is the one that you

specified in the previous steps.

j. Under Additional properties, click Transforms > New to create a new transform, click Transforms

> Delete to delete a transform, or click a transform name to edit an existing transform. If you

create a new transform configuration, specify a unique name. For example, you might specify

reqint_body_transform1.

k. Select a transform algorithm from the menu. The transform algorithm is specified within the

<Transform> element. It specifies the transform algorithm for the signature. WebSphere

Application Server supports the following algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the consumer must match the transform algorithm that

you select for the generator.

Important: If both of the following conditions are true, WebSphere Application Server signs the

referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option from the

Key information signature type field on the signing information panel.

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#STR-Transform as the transform algorithm.

10. Click OK.

798 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

11. Click Save at the top of the panel to save your configuration.

After completing these steps, you have configured the signing information for the consumer on the server

level.

You must specify a similar signing information configuration for the generator.

 Related tasks

 “Configuring the signing information for the generator binding on the server or cell level” on page 780

Configuring the encryption information for the consumer binding on the server or

cell level

The encryption information for the default consumer specifies how to process the encryption information on

the receiver side if these bindings are not defined at the application level. WebSphere Application Server

provides default values for the bindings. However, an administrator must modify the defaults for a

production environment.

Complete the following steps to configure the encryption information for the consumer binding on the

server level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers >server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Under Default consumer bindings, click Encryption information.

3. Click New to create an encryption information configuration, click Delete to delete an existing

configuration, or click the name of an existing encryption information configuration to edit the settings.

If you are creating a new configuration, enter a unique name for the encryption configuration in the

Encryption information name field. For example, you might specify con_encinfo.

4. Select a data encryption algorithm from the Data encryption algorithm field. This algorithm is used to

encrypt the data. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

The data encryption algorithm that you select for the consumer side must match the data encryption

algorithm that you select for the generator side.

5. Select a key encryption algorithm from the Key encryption algorithm field. This algorithm is used to

encrypt the key. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

Chapter 14. Learn about WebSphere applications 799

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

If you select None, the key is not encrypted.

The key encryption algorithm that you select for the consumer side must match the key encryption

algorithm that you select for the generator side.

6. Under Additional properties, click Key information references.

7. Click New to create a key information configuration, click Delete to delete an existing configuration, or

click the name of an existing key information configuration to edit the settings. If you are creating a

new configuration, enter a unique name for the key information configuration in the name field. For

example, you might specify con_enckeyinfo.

8. Select a key information reference from the Key information reference field. This selection refers to the

name of the key information that is used for encryption. For more information, see “Configuring the key

information for the consumer binding on the server or cell level” on page 795.

9. Click OK and Save to save the configuration.

You have configured the encryption information for the consumer binding at the server or cell level

You must specify a similar encryption information configuration for the generator.

 Related tasks

 “Configuring the encryption information for the generator binding on the server or cell level” on page

783

Tuning Web services security

The Java Cryptography Extension (JCE) is integrated into the software development kit (SDK) version

1.4.x and is no longer an optional package. However, due to export and import regulations, the default

Java Cryptography Extension (JCE) jurisdiction policy file shipped with the SDK enables you to use strong,

but limited, cryptography only. To enforce this default policy, WebSphere Application Server uses a JCE

jurisdiction policy file that might introduce a performance impact. The default JCE jurisdiction policy might

have a performance impact on the cryptographic functions that are supported by Web services security. If

you have Web services applications that use transport level security for XML encryption or digital

signatures, you might encounter performance degradation over previous releases of WebSphere

Application Server. However, IBM and Sun Microsystems provide versions of these jurisdiction policy files

that do not have restrictions on cryptographic strengths. If you are permitted by your governmental import

and export regulations, download one of these jurisdiction policy files. After downloading one of these files,

the performance of JCE and Web Services security might improve substantially.

For WebSphere Application Server platforms using IBM Developer Kit, Java Technology Edition Version

1.4.2, including the AIX, Linux, and Windows platforms, you can obtain unlimited jurisdiction policy files by

completing the following steps:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java 1.4.2 material

3. Click IBM SDK Policy files.

4. Select Unrestricted JCE Policy files for SDK 1.4.2

5. Enter your user ID and password or register with IBM to download the policy files. The policy files are

downloaded onto your machine.

For WebSphere Application Server platforms using the Sun-based Java Development Kit (JDK) Version

1.4.2, including the Solaris environments and the HP-UX platform, you can obtain unlimited jurisdiction

policy files by completing the following steps:

1. Go to the following Web site: http://java.sun.com/j2se/1.4.2/download.html

800 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.4.2/download.html

2. Click Archive area.

3. Locate the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 1.4.2

information and click Download. The policy files are downloaded onto your machine.

After following either of these sets of steps, two Java Archive (JAR) files are placed in the JVM

jre/lib/security/ directory.

Securing Web services for version 5.x applications based on

WS-Security

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Web services security for WebSphere Application Server is based on standards included in the Web

services security (WS-Security) specification. These standards address how to provide protection for

messages exchanged in a Web service environment. The specification defines the core facilities for

protecting the integrity and confidentiality of a message and provides mechanisms for associating

security-related claims with the message. Web services security is a message-level standard based on

securing Simple Object Access Protocol (SOAP) messages through XML digital signature, confidentiality

through XML encryption, and credential propagation through security tokens.

Use the deprecated ″Securing Apache SOAP Web services″ topics in the WebSphere Application Server,

Version 5 documentation if you are still using Apache SOAP Version 2.3.

To secure Web services, you must consider a broad set of security requirements, including authentication,

authorization, privacy, trust, integrity, confidentiality, secure communications channels, federation,

delegation, and auditing across a spectrum of application and business topologies. One of the key

requirements for the security model in today’s business environment is the ability to interoperate between

formerly incompatible security technologies (such as public key infrastructure, Kerberos and so on.) in

heterogeneous environments (such as Microsoft .NET and Java 2 Platform, Enterprise Edition (J2EE)).

The complete Web services security protocol stack and technology roadmap is described in Security in a

Web Services World: A Proposed Architecture and Roadmap.

Specification: Web Services Security (WS-Security) proposes a standard set of SOAP extensions that you

can use to build secure Web services. These standards confirm integrity and confidentiality, which are

generally provided with digital signature and encryption technologies. In addition, Web services security

provides a general purpose mechanism for associating security tokens with messages. A typical example

of the security token is a user name and password token, in which a user name and password are

included as text. Web services security defines how to encode binary security tokens using methods such

as X.509 certificates and Kerberos tickets.

To establish a managed environment and to enforce constraints for Web services security, you must

perform a Java Naming and Directory Interface (JNDI) lookup on the client to resolve the service

reference. For more information on the recommended client programming model, see ″Service lookup″ in

the Java Specification Request (JSR) 109 specification available at: ftp://www-
126.ibm.com/pub/jsr109/spec/1.0/websvcs-1_0-fr.pdf.

An administrator can use any of the following methods to integrate message-level security into a

WebSphere Application Server environment:

v “Securing Web services for version 5.x applications using XML digital signature” on page 829

v “Securing Web services for version 5.x applications using XML encryption” on page 882

v “Securing Web services for version 5.x applications using basicauth authentication” on page 899

Chapter 14. Learn about WebSphere applications 801

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/library/ws-secure/
ftp://www-126.ibm.com/pub/jsr109/spec/1.0/websvcs-1_0-fr.pdf
ftp://www-126.ibm.com/pub/jsr109/spec/1.0/websvcs-1_0-fr.pdf

v “Securing Web services for version 5.x applications using identity assertion authentication” on page 907

v “Securing Web services for version 5.x applications using signature authentication” on page 913

v “Securing Web services for version 5.x applications using a pluggable token” on page 925

Web services security specification-a chronology

This document describes the process used to develop the Web services security specifications.

Non-OASIS activities

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

In April 2002, IBM, Microsoft, and VeriSign proposed the Web Services Security (WS-Security)

specification on their Web sites. This specification included the basic ideas of security token, XML

signature, and XML encryption. The specification also defined the format for username tokens and

encoded binary security tokens. After some discussion and an interoperability test based on the

specification, the following issues were noted:

v The specification requires that the Web services security processors understand the schema correctly

so that the processor distinguishes between the ID attribute for XML signature and XML encryption.

v The freshness of the message, which indicates whether the message complies with predefined time

constraints, cannot be determined.

v Digested password strings do not strengthen security.

In August 2002, IBM, Microsoft, and VeriSign published the Web Services Security Addendum, which

attempted to address the previously listed issues. The following solutions were put in the addendum:

v Require a global ID attribute for XML signature and XML encryption

v Use time stamp header elements that indicate the time of the creation, receipt, or expiration of the

message

v Use password strings that are digested with a time stamp and nonce (randomly generated token)

OASIS activities

In June 2002, the Organization for the Advancement of Structured Information Standards (OASIS) received

a proposed Web services security specification from IBM, Microsoft, and Verisign. The Web Services

Security Technical Committee (WSS TC) was organized at OASIS soon after the submission. The

technical committee included many companies including IBM, Microsoft, VeriSign, Sun Microsystems, and

BEA Systems.

In September 2002, WSS TC published its first specification, Web Services Security Core Specification,

Working Draft 01. This specification included the contents of both the original Web services security

specification and its addendum.

The coverage of the technical committee became larger as the discussion proceeded. Since the Web

Services Security Core Specification allows arbitrary types of security tokens, proposals were published as

profiles. The profiles described the method for embedding tokens, including Security Assertion Markup

Language (SAML) tokens and Kerberos tokens imbedded into the Web services security messages.

Subsequently, the definitions of the usage for user name tokens and X.509 binary security tokens, which

were defined in the original Web Services Security Specification, were divided into the profiles.

WebSphere Application Server supports the following specifications:

v Web Services Security: SOAP Message Security Draft 13 (formerly Web Services Security Core

Specification)

802 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v Web Services Security: Username Token Profile Draft 2

The following figure shows the various Web services security-related specifications. As indicated in the

figure, the current support level for Web services security: SOAP message security is based on Draft 13

from May 2003. The current support level for Web services security User name token profiles, is based on

Draft 2 from February 2003.

Web services security support

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

WebSphere Application Server, Versions 4.x, 5, and 5.0.1 support digital signature for Apache Simple

Object Access Protocol (SOAP) Version 2.x. Beginning with WebSphere Application Server, Version 5.0.2,

IBM supports Web services security, which is an extension of the IBM Web services engine to provide a

quality of service. The IBM implementation is based on the Web services security specification, ″Web

Services Security (WS-Security)″, originally proposed by IBM, Microsoft, and VeriSign in April 2002. Early

versions of the proposed draft specification can be found in Web Services Security (WS-Security) Version

1.0 05 April 2002 and Web Services Security Addendum 18 August 2002. The WebSphere Application

Server implementation is based on the Organization for the Advancement of Structured Information

Standards (OASIS) working Draft 13 specification. (See the OASIS Web Services Security TC Web site for

the latest working specification.) However, not all the features in the OASIS working Draft 13 specification

are implemented.

WebSphere Application Server security infrastructure fully integrates Web services security with Java 2

Platform, Enterprise Edition (J2EE) security. Web services security is not supported in a pure Java or

non-managed client. When a user ID and password are embedded in a request message, authentication is

performed with the user ID and password. If authentication is successful, a user identity is established and

further resource access is authorized based on that identity. After the user ID and password are

authenticated by the Web services security run time, a J2EE container performs authorization.

WebSphere Application Server provides an implementation of the key features of Web services security

based on the following specifications:

v Specification: Web Services Security (WS-Security) Version 1.0 05 April 2002

v Web Services Security Addendum 18 August 2002

May 2003

WSS: Soap Message

Sec. Draft 13

February 2003

WSS: Username Token

Profile Draft 2

OASIS

activites

April 2002

WS-Security August 2002

WS-Security

Addendum
September 2002

WS-Core Draft 1

Figure 3. Web services security specification support

Chapter 14. Learn about WebSphere applications 803

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secureadd.html

v Web Services Security: SOAP Message Security Working 13 May 2003

v Web Services Security: Username Token Profile Draft

The following table provides a summary of Web services security elements supported by WebSphere

Application Server:

 Table 16. Web services security elements

Element Notes

UsernameToken Both the user name and password for the BasicAuth

authentication method and the user name for the identity

assertion authentication method are supported.

WebSphere Application Server supports nonce, a

randomly generated value.

BinarySecurityToken X.509 certificates and Lightweight Third Party

Authentication (LTPA) can be embedded, but there is no

implementation to embed Kerberos tickets. However, the

binary token generation and validation are pluggable and

are based on the Java Authentication and Authorization

Service (JAAS) Application Programming Interfaces

(APIs). You can extend this implementation to generate

and validate other types of binary security tokens.

Signature The X.509 certificate is embedded as a binary security

token and can be referenced by the

SecurityTokenReference. WebSphere Application Server

does not support shared, key-based signature.

Encryption Both the EncryptedKey and ReferenceList XML tags are

supported. KeyIdentifier specifies public keys and

KeyName identifies the secret keys. WebSphere Application

Server has the capability to map an authenticated identity

to a key for encryption or use the signer certificate to

encrypt the response message.

Timestamp WebSphere Application Server supports the Created and

Expires attributes. The freshness of the message, which

indicates whether the message complies with predefined

time constraints, is checked only if the Expires attribute is

present in the message. WebSphere Application Server

does not support the Received attribute, which is defined

in the addendum. Instead, WebSphere Application Server

uses the TimestampTrace Received attribute, which is

defined in the OASIS specification.

XML based token You can insert and validate an arbitrary format of XML

tokens into a message. This format mechanism is based

on the JAAS APIs.

Signing and encrypting attachments is not supported by WebSphere Application Server. However,

WebSphere Application Server signs and encrypts the following elements for the request message.

 Method Element

XML digital signature v Body

v Securitytoken

v Timestamp

XML encryption v Bodycontent

v Usernametoken

804 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.oasis-open.org/committees/download.php/2314/WSS-SOAPMessageSecurity-13-050103-merged.pdf
http://www.oasis-open.org/apps/group_public/download.php/1003/documents/documents/WSS-Username-02-0223-merged.pdf

Method Element

AuthMethod v BasicAuth

v IDAssertion (From WebSphere Application Server to

another WebSphere Application Server

v Signature

v Lightweight Third Party Authentication (LTPA) on the

server side

v Other customer tokens

WebSphere Application Server signs and encrypts the following elements for the response message:

 Method Element

XML digital signature v Body

v Timestamp

XML encryption v Bodycontent

The namespaces used for sending a message were published by OASIS in draft 13

(http://schemas.xmlsoap.org/ws/2003/06/secext).

April 2002 specification

http://schemas.xmlsoap.org/ws/2002/04/secext

August 2002 addendum

http://schemas.xmlsoap.org/ws/2002/07/secext

 http://schemas.xmlsoap.org/ws/2002/07/utility

OASIS draft published on draft 13 May 2003

http://schemas.xmlsoap.org/ws/2003/06/secext

 http://schemas.xmlsoap.org/ws/2003/06/utility

Note: WebSphere Application Server only uses the previously mentioned two name spaces for

sending out requests and responses. However, the product can process all other mentioned

name spaces for incoming requests and responses.

WebSphere Application Server provides the following capabilities for Web services security:

v Integrity of the message

v Authenticity of the message

v Confidentiality of the message

v Privacy of the message

v Transport level security: provided by Secure Sockets Layer (SSL)

v Security token propagation (pluggable)

v Identity assertion

See the previous table titled, ″Web services security elements,″ for a description of capabilities that are not

supported.

Web services security and Java 2 Platform, Enterprise Edition security relationship

This document describes the relationship between Web services security (message level security) and

Java 2 Platform, Enterprise Edition (J2EE) platform security.

Important distinction between Version 5.x and Version 6 applications

Chapter 14. Learn about WebSphere applications 805

http://schemas.xmlsoap.org/ws/2003/06/secext
http://schemas.xmlsoap.org/ws/2002/04/secext
http://schemas.xmlsoap.org/ws/2002/07/secext
http://schemas.xmlsoap.org/ws/2002/07/utility
http://schemas.xmlsoap.org/ws/2003/06/secext
http://schemas.xmlsoap.org/ws/2003/06/utility

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

WebSphere Application Server supports Java Specification Requests (JSR) 101 and JSR 109. For more

information, see Developing Web services applications. JSRs 101 and 109 define Web services for the

Java 2 Platform, Enterprise Edition (J2EE) architecture so that you can develop and run Web services on

the J2EE component architecture. ″Web services security″ refers to the ″Web services security: SOAP

Message Security″ specification. For more information, see “Web services security support” on page 803.

Important

Note: ″Web services security″ refers to the ″Web services security: SOAP Message Security″

specification (see Web services security support for more information).

Securing Web services with WebSphere Application Server security (J2EE role-based security)

You can secure Web services using the existing security infrastructure of WebSphere Application Server,

J2EE role-based security, and Secure Sockets Layer (SSL) transport level security.

The Web services port can be secured using J2EE role-based security. The Web services sender sends

the basic authentication data using the HTTP header. SSL (HTTPS) can be used to secure the transport.

When the WebSphere Application Server receives the SOAP message, the Web container authenticates

the user (in this example, user1) and sets the security context for the call. After the security context is set,

the SOAP router servlet sends the request to the implementation of the Web services (the implementation

Authentication

RPC

router

EJB

container

EJB

Java

bean

RMI / IIOP

User1

User1

User1

User1

User1

Web

container

Web

Services

engine

WebSphere

Application Server

SOAP / HTTP(s)

SOAP / HTTP(s)

HTTP Basic

<user1: password>

User 1

Authentication
mechanism

SWAM LTPA

User Registry

LocalOS LDAP Custom

Authenticate

user1 / password

Figure 4. Simple object access protocol message flow using existing security infrastructure of WebSphere Application

Server

806 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

can be JavaBeans or enterprise bean files). For enterprise bean implementations, the EJB container

performs an authorization check against the identity of user1.

The Web services port also can be secured using the J2EE role. Then, authorization is performed by the

Web container before the SOAP request is dispatched to the Web services implementation.

Securing Web services with Web services security at the message level

You can also secure Web services using Web services security at the message level. In this case, you can

digitally sign or encrypt a certain part of the message. Web services security also supports security token

propagation within the SOAP message. The following scenario assumes that the Web services port is not

secured with J2EE role-based security and the enterprise bean is secured with J2EE role-based security.

In this case, the Web services port is not secured with J2EE role-based security. The Web services engine

processes the SOAP message before the client sends the message to the Web services port. The Web

services security run time acts on the security constraints, such as digitally signing, encrypting, or

generating (and inserting) a security token in the SOAP header. In this case <wsse:UsernameToken> is

generated using user1 and the password. On the server-side (receiving), the Web services process the

incoming message and Web services security enforces security constraints. This enforcement includes

making sure that messages are properly signed, properly encrypted, and decrypted, authenticating the

security token, and setting up the security context with the authenticated identity. (In this case, user1 is the

Authentication

WebSphere

Application Server

SOAP / HTTP(s)

SOAP / HTTP(s)

wsse: Username Token

<user1: password>

User 1

Authentication
mechanism

User Registry

Authenticate user1 / password

RPC

router

EJB

container

EJB

Java

bean

RMI / IIOP

User1

User1

User1

User1

User1

User1

User1

Web

container

Web

Services

engine

Security

handler

Web

Services

engine

Security

handler

WCCM
(deployment
descriptor)

WCCM

(deployment

descriptor)

SWAM LTPA LocalOS LDAP Custom

Figure 5. Simple Object Access Protocol message flow using Web services security

Chapter 14. Learn about WebSphere applications 807

authenticated identity.) Finally, the SOAP message is dispatched to the Web services implementation (if

the implementation is an enterprise beans file, the EJB container performs an authorization check against

user1). SSL also might be used in this scenario.

Mixing the two

The second scenario shows that Web services security can complement J2EE role-based security. For

example, SSL can be enabled at the transport level to provide a secure channel. Furthermore, if the Web

services implementation is an enterprise beans file, you can leverage the EJB role-based authorization by

performing authorization checks. Web services security run time leverages the security infrastructure to set

the authenticated identity in the security context. The authenticated identity can be used in the

downstream call to J2EE resources (or other resource types).

There are subtle consequences of combining the two scenarios. For example, if the HTTP transport is

sending basic authentication data with user1 and password in the HTTP header, but

<wsse:UsernameToken> with user99 and letmein also is inserted into the SOAP header. In the previous

scenarios, there are two authentications performed. One authentication is performed by the Web container

for authenticating user1, and the other is performed by Web services security for authenticating user99.

The Web services security run time runs after the Web container runs and user99 is the authenticated

identity that is set in the security context.

Web services security can also propagate security tokens from the sender to the receiver for SOAP over a

Java Message Service (JMS) transport.

Web services security model in WebSphere Application Server

The Web services security model used by WebSphere Application Server is the declarative model.

WebSphere Application Server does not include any application programming interfaces (APIs) for

programmatically interacting with Web services security. However, a few Server Provider Interfaces (SPIs)

are available for extending some security-related behaviors.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

808 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The security constraints for Web services security are specified in IBM deployment descriptor extensions

for Web services. The Web services security run time acts on the constraints to enforce Web services

security for the Simple Object Access Protocol (SOAP) message. The scope of the IBM deployment

descriptor extension is at the enterprise bean (EJB) or Web module level. Bindings are associated with

each of the following IBM deployment descriptor extensions:

Client (Might be either a J2EE Client (Application Client Container) or Web services acting as a

client)

ibm-webservicesclient-ext.xmi

 ibm-webservicesclient-bnd.xmi

Server

ibm-webservices-ext.xmi

 ibm-webservices-bnd.xmi

It is recommended that you use the tools provided by IBM (the Application Server Toolkit and Rational

Web Developer) to create the IBM deployment descriptor extension and bindings. After the bindings are

created, you can use the administrative console or an assembly tool to specify the bindings.

Important

Note: The binding information is collected after application deployment rather than during application

deployment. The alternative is to specify the required binding information before deploying your

application.

Web services

implemented

as an EJB file

EJB module

Enterprise application 1

ibm-webserviecesclient-ext.xmi

ibm-webservicesclient-bnd.xmi

Security

handler

Enterprise application 2

EJB module

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

Security

handler

Web services

implemented

as an EJB file

Figure 6. Web services security model

Chapter 14. Learn about WebSphere applications 809

The Web services security run time enforces Web services security based on the defined security

constraints in the deployment descriptor and binding files. Web services security has the following four

points where it intercepts the message and acts on the security constraints defined:

 Message points Description

Request sender (defined in the ibm-webservicesclient-
ext.xmi and ibm-webservicesclient-bnd.xmi files)

v Applies the appropriate security constraints to the

SOAP message (such as signing or encryption) before

the message is sent, generating the time stamp or the

required security token.

Request receiver (defined in the ibm-webservices-
ext.xmi and ibm-webservices-bnd.xmi files)

v Verifies that the Web services security constraints are

met.

v Verifies the freshness of the message based on the

time stamp. The freshness of the message indicates

whether the message complies with predefined time

constraints.

v Verifies the required signature.

v Verifies that the message is encrypted and decrypts

the message if encrypted.

v Validates the security tokens and sets up the security

context for the downstream call.

Response sender (defined in the ibm-webservices-
ext.xmi and ibm-webservices-bnd.xmi files)

v Applies the appropriate security constraints to the

SOAP message response, like signing the message,

encrypting the message, or generating the time stamp.

Deployment descriptor

and service bindings

Deployment descriptor

and service bindings

Configuration Configuration

Client Application Server

Security handler

• Security token generation

• Digital signature generation

• Encrypt message

• Decrypt message

• Digital signature validation

• Security token validation

and setup security context

Simple Object

Access Protocol

request

+

web services

security headers

[transport headers]

Request

Security handler

EJB file,

servlet,

JavaBean

file

Request

Response

• Decrypt message

• Digital signature validation

• Digital signature generation

• Encrypt message

Response

Figure 7. Web services security message interpretation

810 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Message points Description

Response receiver (defined in the ibm-
webservicesclient-ext.xmi or ibm-webservicesclient-
bnd.xmi files)

v Verifies that the Web services security constraints are

met.

v Verifies the freshness of the message based on the

time stamp. The freshness of the message indicates

whether the message complies with predefined time

constraints.

v Verifies the required signature.

v Verifies that the message is encrypted and decrypts

the message, if encrypted.

Web services: Default bindings for the Web services security collection

Use this page to configure the settings for nonce on the server level and to manage the default bindings

for the signing information, encryption information, key information, token generators, token consumers,

key locators, collection certificate store, trust anchors, trusted ID evaluators, algorithm mappings, and login

mappings.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application Servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

Read the Web services documentation before you begin defining the default bindings for Web services

security.

Nonce is a unique cryptographic number that is embedded in a message to help stop repeat, unauthorized

attacks of user name tokens. In WebSphere Application Server and WebSphere Application Server

Express, you must specify values for the Nonce cache timeout, Nonce maximum age, and Nonce clock

skew fields for the server-level.

The default binding configuration provides a central location where reusable binding information is defined.

The application binding file can reference the information that is contained in the default binding

configuration.

Nonce cache timeout:

Specifies the timeout value, in seconds, for the nonce cached on the server. Nonce is a randomly

generated value.

 The Nonce cache timeout field is required on the server level

If you make changes to the value for the Nonce cache timeout field, you must restart WebSphere

Application Server for the changes to take effect.

 Default 600 seconds

Minimum 300 seconds

Nonce maximum age:

Chapter 14. Learn about WebSphere applications 811

Specifies the default time, in seconds, before the nonce timestamp expires. Nonce is a randomly

generated value.

 The maximum value cannot exceed the number of seconds that is specified in the Nonce cache timeout

field for the server level.

The Nonce maximum age field is required on the server level.

 Default 300 seconds

Range 300 to the value that is specified, in seconds, in the

Nonce cache timeout field.

Nonce clock skew:

Specifies the default clock skew value, in seconds, to consider when WebSphere Application Server

checks the timeliness of the message. Nonce is a randomly generated value.

 The maximum value cannot exceed the number of seconds that is specified in the Nonce maximum age

field.

The Nonce clock skew field is required.

 Default 0 seconds

Range 0 to the value that is specified, in seconds, in the Nonce

maximum age field.

Distribute nonce caching:

Enables distributed caching for the nonce value using a Data Replication Service (DRS).

 In previous releases of WebSphere Application Server, the nonce value cached locally. By selecting this

option, the nonce value is propagated to other servers in your environment. However, the nonce value

might be subject to a one-second delay in propagation and subject to any network congestion.

Usage scenario for propagating security tokens

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

A sample scenario

This document describes a usage scenario for Web services security.

In scenario 1, Client 1 invokes Web services 1. Then Web services 1 calls EJB file 2. EJB file 2 calls Web

services 3 and Web services 3 calls Web services 4.

812 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The previous scenario shows how to propagate security tokens using Web services security, the security

infrastructure of the WebSphere Application Server, and Java 2 Platform, Enterprise Edition (J2EE)

security. Web services 1 is configured to accept <wsse:UsernameToken> only and use the BasicAuth

authentication method. However, Web services 4 is configured to accept either <wsse:UsernameToken>

using the BasicAuth authentication method or Lightweight Third Party Authentication (LTPA) as

<wsse:BinarySecurityToken>. The following steps describe the scenario shown in the previous figure:

 1. Client 1 sends a SOAP message to Web services 1 with user1 and password in the

<wsse:UsernameToken> element.

 2. The user1 and password values are authenticated by the Web services security run time and set in

the current security context as the Java Authentication and Authorization Service (JAAS) Subject.

 3. Web services 1 invokes EJB file 2 using the Remote Method Invocation over the Internet Inter-ORB

Protocol (RMI/IIOP) protocol.

 4. The user1 identity is propagated to the downstream call.

 5. The EJB container of EJB file 2 performs an authorization check against user1.

 6. EJB file 2 calls Web services 3 and Web services 3 is configured to accept LTPA tokens.

 7. The RunAs role of EJB file 2 is set to user2.

 8. The LTPA CallbackHandler implementation extracts the LTPA token from the current JAAS Subject in

the security context and Web services security run time inserts the token as <wsse:

BinarySecurityToken> in the SOAP header.

 9. The Web services security run time in Web services 3 calls the JAAS login configuration to validate

the LTPA token and set it in the current security context as the JAAS Subject.

10. Web services 3 is configured to send LTPA security to Web services 4. In this case, assume that the

RunAs role is not configured for Web services 3. The LTPA token of user2 is propagated to Web

services 4.

11. Client 2 uses the <wsse:UsernameToken> element to propagate the basic authentication data to Web

services 4.

Web services security complements the WebSphere Application Server security run time and the J2EE

role-based security. This scenario demonstrates how to propagate security tokens across multiple

resources such as Web services and EJB files.

Client 1

Client 2

Remote Method Invocation over

the Internet / Inter-ORB Protocol

(RM I / I IOP)

User1

EJB file 2

RunAs user2

wsse: UsernameToken

< user1: password >

wsse: UsernameToken

< user2: password >

wsse: UsernameToken

< user1: password >

wsse: BinarySecurityToken

< LTPA token bytes of user2 >

Web service 1

Web service 3

Web service 4

Simple Object

Access Protocol

(SOAP)/ HTTP/ HTTPS

SOAP/ HTTP/ HTTPS SOAP / HTTP / HTTPS

SOAP / HTTP / HTTPS

Figure 8. Propagating security tokens

Chapter 14. Learn about WebSphere applications 813

Configurations

The Web services security model used by WebSphere Application Server is the declarative model.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

No Application Programming Interfaces (APIs) exist in WebSphere Application Server for programmatically

interacting with Web services security. However, Service Provider Programming Interfaces (SPIs) are

available for extending some security run-time behaviors. You can secure an application with Web services

security by defining security constraints in the IBM extension deployment descriptors and in IBM extension

bindings.

The development life cycle of a Web services security-enabled application is similar to the Java 2

Platform, Enterprise Edition (J2EE) model. See the following figure for more details.

The Web services security constraints are defined by the assembler during the application assembly

phase if the J2EE application is Web services-enabled. Create, define, and edit the Web services security

constraints with an assembly tool. For more information, see Assembly tools.

Web services security constraints

The security constraints for Web services security are specified in the IBM deployment descriptor

extension for Web services. The assembler defines these constraints during the application assembly

phase, if the J2EE application is Web services enabled. Define the Web services security constraints using

an assembly tool. For more information, see Assembling applications.

The Web services security run time acts on the constraints to enforce Web services security for the SOAP

message. The scope of the IBM deployment descriptor extension is at the EJB module or Web module

level. There also are bindings associated with each of the following IBM deployment descriptor extensions:

Client (might be either a J2EE client (application client container) or Web services acting as a client)

v ibm-webservicesclient-ext.xmi

v ibm-webservicesclient-bnd.xmi

Server

v ibm-webservices-ext.xmi

v ibm-webservices-bnd.xmi

Creation Assembly Deployment

Deploy
Component

provider

creates the

application

Assembler

assembles

and declares

Web service

security

constraints

Deployer

deploys

and gathers

binding

information

J2EE

module

Web services

(JSR-109)

enabled J2EE

application with

Web services

security

J2EE

application

server

Components

Figure 9. Application development life cycle

814 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The IBM extension deployment descriptor and bindings are associated with each EJB module or Web

module. See Figure 2 for more information. If Web services is acting as a client, then it contains the client

IBM extension deployment descriptors and bindings in the EJB module or Web module.

The Web services security handler acts on the security constraints defined in the IBM extension

deployment descriptor and enforces the security constraints accordingly. There are outbound and inbound

configurations in both the client and server security constraints.

In a SOAP request, the following message points exist:

v Sender outbound

v Receiver inbound

v Receiver outbound

v Sender inbound

These message points correspond to the following four security constraints:

v Request sender (sender outbound)

v Request receiver (receiver inbound)

v Response sender (receiver outbound)

v Response receiver (sender inbound)

The security constraints of request sender and request receiver must match. Also, the security constraints

of the response sender and response receiver must match. For example, if you specify integrity as a

Web services

implemented

as an EJB file

ibm-webservices-bnd.xmi

ibm-webservices-ext.xmi

EJB module

Enterprise application 1

Enterprise application 2ibm-webserviecesclient-bnd.xmi

ibm-webservicesclient-ext.xmi

Web services

implemented as

a JavaBean file

ibm-webservices-bnd.xmi

ibm-webservices-ext.xmi

Web module ibm-webserviecesclient-bnd.xmi

ibm-webservicesclient-ext.xmi

Web services

implemented

as an EJB file

Web

services

security

handler

ibm-webservices-bnd.xmi

ibm-webservices-ext.xmi

Web

services

security

handler

Web

services

security

handler

EJB module

Figure 10. IBM extension deployment descriptors and bindings

Chapter 14. Learn about WebSphere applications 815

constraint in the request receiver, then you must configure the request sender to have integrity applied to

the SOAP message. Otherwise, the request is denied because the SOAP message does not include the

integrity specified in the request constraint.

The four security constraints are shown in the following figure of Web services security constraints.

Sample configuration:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

WebSphere Application Server provides the following sample key stores for sample configurations. These

sample key stores are for testing and sample purposes only. Do not use them a in production

environment.

v {USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks

– The keystore password is client

– Trusted certificate with alias name, soapca

– Personal certificate with alias name, soaprequester and key password client issued by intermediary

certificate authority Int CA2, which is, in turn, issued by soapca

v {USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks

– The keystore password is server

Deployment descriptor

and service bindings

Deployment descriptor

and service bindings

Configuration Configuration

Client Application Server

Security handler

• Security token generation

• Digital signature generation

• Encrypt message

• Decrypt message

• Digital signature validation

• Security token validation

and setup security context

Simple Object

Access Protocol

request

+

web services

security headers

[transport headers]

Request

Security handler

EJB file,

servlet,

JavaBean

file

Request

Response

• Decrypt message

• Digital signature validation

• Digital signature generation

• Encrypt message

Response

Figure 11. Web services security constraints

816 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

– Trusted certificate with alias name, soapca

– Personal certificate with alias name, soapprovider and key password server, issued by intermediary

certificate authority Int CA2, which is, in turn, issued by soapca

v {USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

– The keystore password is storepass

– Secret key CN=Group1, alias name Group1, and key password keypass

– Public key CN=Bob, O=IBM, C=US, alias name bob, and key password keypass

– Private key CN=Alice, O=IBM, C=US, alias name alice, and key password keypass

v {USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

– The keystore password is storepass

– Secret key CN=Group1, alias name Group1, and key password keypass

– Private key CN=Bob, O=IBM, C=US, alias name bob, and key password keypass

– Public key CN=Alice, O=IBM, C=US, alias name alice, and key password keypass

v {USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer

– The intermediary certificate authority is Int CA2.

Default binding (cell and server level)

WebSphere Application Server provides the following default binding information:

Trust anchors

Used to validate the trust of the signer certificate.

v SampleClientTrustAnchor is used by the response receiver to validate the signer certificate.

v SampleServerTrustAnchor is used by the request receiver to validate the signer certificate.

Collection Certificate Store

Used to validate the certificate path.

v SampleCollectionCertStore is used by the response receiver and the request receiver to

validate the signer certificate path.

Key Locators

Used to locate the key for signature, encryption, and decryption.

v SampleClientSignerKey is used by the requesting sender to sign the SOAP message. The

signing key name is clientsignerkey, which can be referenced in the signing information as the

signing key name.

v SampleServerSignerKey is used by the responding sender to sign the SOAP message. The

signing key name is serversignerkey, which can be referenced in the signing information as the

signing key name.

v SampleSenderEncryptionKeyLocator is used by the sender to encrypt the SOAP message. It is

configured to use the {USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

keystore and the com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator keystore key locator.

v SampleReceiverEncryptionKeyLocator is used by the receiver to decrypt the encrypted SOAP

message. The implementation is configured to use the {USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-receiver.jceks keystore and the

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator keystore key locator. The

implementation is configured for symmetric encryption (DES or TRIPLEDES). However, to use it

for asymmetric encryption (RSA), you must add the private key CN=Bob, O=IBM, C=US, alias

name bob, and key password keypass.

v SampleResponseSenderEncryptionKeyLocator is used by the response sender to encrypt the

SOAP response message. It is configured to use the {USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-receiver.jceks keystore and the

com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator key locator. This key locator

Chapter 14. Learn about WebSphere applications 817

maps an authenticated identity (of the current thread) to a public key for encryption. By default,

WebSphere Application Server is configured to map to public key alice, and you must change

WebSphere Application Server to the appropriate user. The

SampleResponseSenderEncryptionKeyLocator key locator also can set a default key for

encryption. By default, this key locator is configured to use public key alice.

Trusted ID Evaluator

Used to establish trust before asserting to the identity in identity assertion.

 SampleTrustedIDEvaluator is configured to use the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl implementation. The default

implementation of com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator contains a list of trusted

identities. The list is defined as properties with trustedId_* as the key and the value as the

trusted identity. Define this information for the server level in the administration console by

completing the following steps:

1. Click Servers > Application Servers > server1.

2. Under Additional Properties, click Web Services: Default bindings for Web Services

Security > Trusted ID Evaluators > SampleTrustedIDEvaluator

Login Mapping

Used to authenticate the incoming security token in the Web services security SOAP header of a

SOAP message.

v The BasicAuth authentication method is used to authenticate user name security token (user

name and password).

v The signature authentication method is used to map a distinguished name (DN) into a

WebSphere Application Server Java Authentication and Authorization Server (JAAS) Subject.

v The IDAssertion authentication method is used to map a trusted identity into a WebSphere

Application Server JAAS Subject for identity assertion.

v The Lightweight Third Party Authentication (LTPA) authentication method is used to validate a

LTPA security token.

The previous default bindings for trust anchors, collection certificate stores, and key locators are for testing

or sample purpose only. Do not use them for production.

A sample configuration

The following examples demonstrate what IBM deployment descriptor extensions and bindings can do.

The unnecessary information was removed from the examples to improve clarity. Do not copy and paste

these examples into your application deployment descriptors or bindings. These examples serve as

reference only and are not representative of the recommended configuration.

Use the following tools to create or edit IBM deployment descriptor extensions and bindings:

v Use an assembly tool to create or edit the IBM deployment descriptor extensions.

v Use an assembly tool or the administrative console to create or edit the bindings file.

The following example illustrates a scenario that:

v Signs the SOAP body, time stamp, and security token.

v Encrypts the body content and user name token.

v Sends the user name token (basic authentication data).

v Generates the time stamp for the request.

For the response, the SOAP body and time stamp are signed, the body content is encrypted, and the

SOAP message freshness is checked using the time stamp. The freshness of the message indicates

whether the message complies with predefined time constraints.

818 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The request sender and the request receiver are a pair. Similarly, the response sender and the response

receiver are a pair.

Tip: It is recommended that you use the WebSphere Application Server variables for specifying the path

to the key stores. In the administrative console, click Environment > Manage WebSphere

Variables. These variables often help with platform differences such as file system naming

conventions. In the following examples, ${USER_INSTALL_ROOT} is used for specifying the path to the

key stores.

Client-side IBM deployment descriptor extension

The client-side IBM deployment descriptor extension describes the following constraints:

Request Sender

v Signs the SOAP body, time stamp and security token

v Encrypts the body content and user name token

v Sends the basic authentication token (user name and password)

v Generates the time stamp to expire in three minutes

Response Receiver

v Verifies that the SOAP body and time stamp are signed

v Verifies that the SOAP body content is encrypted

v Verifies that the time stamp is present (also check for message freshness)

Example 1: Sample client IBM deployment descriptor extension

The xmi:id statements are removed for readability. These statements must be added for this example to

work.

Important: In the following code sample, lines 2 through 4 were split into three lines due to the width of

the printed page.

<?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wscext:WsClientExtension xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI" xmlns:com.ibm.etools.webservice.wscext=

 http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscext.xmi">

 <serviceRefs serviceRefLink="service/myServ">

 <portQnameBindings portQnameLocalNameLink="Port1">

 <clientServiceConfig actorURI="myActorURI">

 <securityRequestSenderServiceConfig actor="myActorURI">

 <integrity>

 <references part="body"/>

 <references part="timestamp"/>

 <references part="securitytoken"/>

 </integrity>

 <confidentiality>

 <confidentialParts part="bodycontent"/>

 <confidentialParts part="usernametoken"/>

 </confidentiality>

 <loginConfig authMethod="BasicAuth"/>

 <addCreatedTimeStamp flag="true" expires="PT3M"/>

 </securityRequestSenderServiceConfig>

 <securityResponseReceiverServiceConfig>

 <requiredIntegrity>

 <references part="body"/>

 <references part="timestamp"/>

 </requiredIntegrity>

Chapter 14. Learn about WebSphere applications 819

<requiredConfidentiality>

 <confidentialParts part="bodycontent"/>

 </requiredConfidentiality>

 <addReceivedTimeStamp flag="true"/>

 </securityResponseReceiverServiceConfig>

 </clientServiceConfig>

 </portQnameBindings>

 </serviceRefs>

</com.ibm.etools.webservice.wscext:WsClientExtension>

Client-side IBM extension bindings

Example 2 shows the client-side IBM extension binding for the security constraints described previously in

the discussion on client-side IBM deployment descriptor extensions.

The signer key and encryption (decryption) key for the message can be obtained from the keystore key

locator implementation (com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator). The signer key is used

for encrypting the response. The sample is configured to use the Java Certification Path API to validate

the certificate path of the signer of the digital signature. The user name token (basic authentication) data is

collected from the standard in (stdin) prompts using one of the default Java Authentication and

Authorization Service (JAAS) implementations :javax.security.auth.callback.CallbackHandler

implementation (com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler).

Example 2: Sample client IBM extension binding

Important: In the following code sample, several lines were split into multiple lines due to the width of the

printed page. See the close bracket for an indication of where each line of code ends.

<?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wscbnd:ClientBinding xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:com.ibm.etools.webservice.wscbnd=

 "http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscbnd.xmi">

 <serviceRefs serviceRefLink="service/MyServ">

 <portQnameBindings portQnameLocalNameLink="Port1">

 <securityRequestSenderBindingConfig>

 <signingInfo>

 <signatureMethod algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <signingKey name="clientsignerkey" locatorRef="SampleClientSignerKey"/>

 <canonicalizationMethod algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <digestMethod algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </signingInfo>

 <keyLocators name="SampleClientSignerKey" classname=

 "com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

 <keyStore storepass="{xor}PDM2OjEr" path=

 "${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks" type="JKS"/>

 <keys alias="soaprequester" keypass="{xor}PDM2OjEr" name="clientsignerkey"/>

 </keyLocators>

 <encryptionInfo name="EncInfo1">

 <encryptionKey name="CN=Bob, O=IBM, C=US" locatorRef=

 "SampleSenderEncryptionKeyLocator"/>

 <encryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <keyEncryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 </encryptionInfo>

 <keyLocators name="SampleSenderEncryptionKeyLocator" classname=

 "com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

 <keyStore storepass="{xor}LCswLTovPiws" path=

 "${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks" type="JCEKS"/>

 <keys alias="Group1" keypass="{xor}NDomLz4sLA==" name="CN=Group1"/>

 </keyLocators>

820 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

<loginBinding authMethod="BasicAuth" callbackHandler=

 "com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler"/>

 </securityRequestSenderBindingConfig>

 <securityResponseReceiverBindingConfig>

 <signingInfos>

 <signatureMethod algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <certPathSettings>

 <trustAnchorRef ref="SampleClientTrustAnchor"/>

 <certStoreRef ref="SampleCollectionCertStore"/>

 </certPathSettings>

 <canonicalizationMethod algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <digestMethod algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </signingInfos>

 <trustAnchors name="SampleClientTrustAnchor">

 <keyStore storepass="{xor}PDM2OjEr" path=

 "${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks" type="JKS"/>

 </trustAnchors>

 <certStoreList>

 <collectionCertStores provider="IBMCertPath" name="SampleCollectionCertStore">

 <x509Certificates path="${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer"/>

 </collectionCertStores>

 </certStoreList>

 <encryptionInfos name="EncInfo2">

 <encryptionKey locatorRef="SampleReceiverEncryptionKeyLocator"/>

 <encryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <keyEncryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 </encryptionInfos>

 <keyLocators name="SampleReceiverEncryptionKeyLocator" classname=

 "com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

 <keyStore storepass="{xor}PDM2OjEr" path=

 "${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks" type="JKS"/>

 <keys alias="soaprequester" keypass="{xor}PDM2OjEr" name="clientsignerkey"/>

 </keyLocators>

 </securityResponseReceiverBindingConfig>

 </portQnameBindings>

 </serviceRefs>

</com.ibm.etools.webservice.wscbnd:ClientBinding>

Server-side IBM deployment descriptor extension

The client-side IBM deployment descriptor extension describes the following constraints:

Request Receiver (ibm-webservices-ext.xmi and ibm-webservices-bnd.xmi)

v Verifies that the SOAP body, time stamp, and security token are signed.

v Verifies that the SOAP body content and user name token are encrypted.

v Verifies that the basic authentication token (user name and password) is in the Web services security

SOAP header.

v Verifies that the time stamp is present (also check for message freshness). The freshness of the

message indicates whether the message complies with predefined time constraints.

Response Sender (ibm-webservices-ext.xmi and ibm-webservices-bnd.xmi)

v Signs the SOAP body and time stamp

v Encrypts the SOAP body content

v Generates the time stamp to expire in 3 minutes

Example 3: Sample server IBM deployment descriptor extension

Chapter 14. Learn about WebSphere applications 821

Important: In the following code sample, several lines were split into multiple lines due to the width of the

printed page. See the close bracket for an indication of where each line of code ends.
<?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wsext:WsExtension xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:com.ibm.etools.webservice.wsext=

http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsext.xmi">

 <wsDescExt wsDescNameLink="MyServ">

 <pcBinding pcNameLink="Port1">

 <serverServiceConfig actorURI="myActorURI">

 <securityRequestReceiverServiceConfig>

 <requiredIntegrity>

 <references part="body"/>

 <references part="timestamp"/>

 <references part="securitytoken"/>

 </requiredIntegrity>

 <requiredConfidentiality">

 <confidentialParts part="bodycontent"/>

 <confidentialParts part="usernametoken"/>

 </requiredConfidentiality>

 <loginConfig>

 <authMethods text="BasicAuth"/>

 </loginConfig>

 <addReceivedTimestamp flag="true"/>

 </securityRequestReceiverServiceConfig>

 <securityResponseSenderServiceConfig actor="myActorURI">

 <integrity>

 <references part="body"/>

 <references part="timestamp"/>

 </integrity>

 <confidentiality>

 <confidentialParts part="bodycontent"/>

 </confidentiality>

 <addCreatedTimestamp flag="true" expires="PT3M"/>

 </securityResponseSenderServiceConfig>

 </serverServiceConfig>

 </pcBinding>

 </wsDescExt>

</com.ibm.etools.webservice.wsext:WsExtension>

Server-side IBM extension bindings

The following binding information reuses some of the default binding information defined either at the

server level or the cell level, which depends upon the installation. For example, request receiver is

referencing the SampleCollectionCertStore certification store and the SampleServerTrustAnchor trust store

is defined in the default binding. However, the encryption information in the request receiver is referencing

a SampleReceiverEncryptionKeyLocator key locator defined in the application-level binding (the same

ibm-webservices-bnd.xmi file). The response sender is configured to use the signer key of the digital

signature of the request to encrypt the response using one of the default key locator

(com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator) implementations.

Example 4: Sample server IBM extension binding

<?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wsbnd:WSBinding xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:com.ibm.etools.webservice.wsbnd=

 http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsbnd.xmi">

 <wsdescBindings wsDescNameLink="MyServ">

 <pcBindings pcNameLink="Port1" scope="Session">

 <securityRequestReceiverBindingConfig>

 <signingInfos>

 <signatureMethod algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <certPathSettings>

822 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

<trustAnchorRef ref="SampleServerTrustAnchor"/>

 <certStoreRef ref="SampleCollectionCertStore"/>

 </certPathSettings>

 <canonicalizationMethod algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <digestMethod algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </signingInfos>

 <encryptionInfos name="EncInfo1">

 <encryptionKey locatorRef="SampleReceiverEncryptionKeyLocator"/>

 <encryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <keyEncryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 </encryptionInfos>

 <keyLocators name="SampleReceiverEncryptionKeyLocator" classname=

 "com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

 <keyStore storepass="{xor}LCswLTovPiws" path="${USER_INSTALL_ROOT}/

 etc/ws-security/samples/enc-receiver.jceks" type="JCEKS"/>

 <keys alias="Group1" keypass="{xor}NDomLz4sLA==" name="CN=Group1"/>

 <keys alias="bob" keypass="{xor}NDomLz4sLA==" name="CN=Bob, O=IBM, C=US"/>

 </keyLocators>

 </securityRequestReceiverBindingConfig>

 <securityResponseSenderBindingConfig>

 <signingInfo>

 <signatureMethod algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <signingKey name="serversignerkey" locatorRef="SampleServerSignerKey"/>

 <canonicalizationMethod algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <digestMethod algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </signingInfo>

 <encryptionInfo name="EncInfo2">

 <encryptionKey locatorRef="SignerKeyLocator"/>

 <encryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <keyEncryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 </encryptionInfo>

 <keyLocators name="SignerKeyLocator" classname=

 "com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator"/>

 </securityResponseSenderBindingConfig>

 </pcBindings>

 </wsdescBindings>

 <routerModules transport="http" name="StockQuote.war"/>

</com.ibm.etools.webservice.wsbnd:WSBinding>

Authentication method overview

The Web services security implementation for WebSphere Application Server supports the following

authentication methods: BasicAuth, Lightweight Third Party Authentication (LTPA), digital signature, and

identity assertion.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

When the WebSphere Application Server is configured to use the BasicAuth authentication method, the

sender attaches the LTPA token as a BinarySecurityToken from the current security context or from basic

authentication data configuration in the binding file in the SOAP message header. The Web services

security message receiver authenticates the sender by validating the user name and password against the

configured user registry. With the LTPA method, the sender attaches the LTPA BinarySecurityToken it

previously received in the SOAP message header. The receiver authenticates the sender by validating the

LTPA token and the token expiration time. With the Digital Signature authentication method, the sender

attaches a BinarySecurityToken from a X509 certificate to the Web services security message header

along with a digital signature of the message body, time stamp, security token, or any combination of the

three. The receiver authenticates the sender by verifying the validity of the X.509 certificate and the digital

signature using the public key from the verified certificate.

Chapter 14. Learn about WebSphere applications 823

The identity assertion authentication method is different from the other three authentication methods. This

method establishes the security credential of the sender based on the trust relationship. You can use the

identity assertion authentication method, for example, when an intermediary server must invoke a service

from a downstream server on behalf of the client, but does not have the client authentication information.

The intermediary server might establish a trust relationship with the downstream server and then assert

the client identity to the same downstream server.

Web Services Security supports the following trust modes:

v BasicAuth

v Digital signature

v Presumed trust

When you use the BasicAuth and digital signature trust modes, the intermediary server passes its own

authentication information to the downstream server for authentication. The presumed trust mode

establishes a trust relationship using some external mechanism. For example, the intermediary server

might pass SOAP messages through a Secure Socket Layers (SSL) connection with the downstream

server and transport layer client certificate authentication.

The Web services security implementation for WebSphere Application Server validates the trust

relationship by following this procedure:

1. The downstream server validates the authentication information of the intermediary server.

2. The downstream server verifies whether the authenticated intermediary server is authorized for identity

assertion. For example, the intermediary server must be in the trust list for the downstream server.

The client identity might be represented by a name string, a distinguished name (DN), or an X.509

certificate. The client identity is attached in the Web services security message in a UsernameToken with

just a user name, DN, or in a BinarySecurityToken of a certificate. The following table summarizes the type

of security token that is required for each authentication method.

 Table 17. Authentication methods and their security tokens

Authentication method Security token

BasicAuth BasicAuth requires <wsse:UsernameToken> with

<wsse:Username> and <wsse:Password>.

Signature Signature requires <ds:Signature> and

<wsse:BinarySecurityToken>.

IDAssertion IDAssertion requires <wsse:UsernameToken> with

<wsse:Username> or <wsse:BinarySecurityToken> with a

X.509 certificate for client identity depending on <idType>.

This method also requires other security tokens according

to the <trustMode>:

v If the <trustMode> is BasicAuth, IDAssertion requires

<wsse:UsernameToken> with <wsse:Username> and

<wsse:Password>.

v If the <trustMode> is Signature, IDAssertion requires

<wsse:BinarySecurityToken>.

LTPA LTPA requires <wsse:BinarySecurityToken> with an LTPA

token.

A Web service can support multiple authentication methods simultaneously. The receiver side of the Web

services deployment descriptor can specify all the authentication methods that are supported in the

ibm-webservices-ext.xmi XML file. The Web services receiver-side, as shown in the following example, is

configured to accept all the authentication methods described previously:

824 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

<loginConfig xmi:id="LoginConfig_1052760331326">

 <authMethods xmi:id="AuthMethod_1052760331326" text="BasicAuth"/>

 <authMethods xmi:id="AuthMethod_1052760331327" text="IDAssertion"/>

 <authMethods xmi:id="AuthMethod_1052760331336" text="Signature"/>

 <authMethods xmi:id="AuthMethod_1052760331337" text="LTPA"/>

</loginConfig>

<idAssertion xmi:id="IDAssertion_1052760331336" idType="Username" trustMode="Signature"/>

You can define only one authentication method in the sender-side Web services deployment descriptor. A

Web service client can use any of the authentication methods that are supported by the particular Web

services application. The following example illustrates an identity assertion authentication method

configuration in the ibm-webservicesclient-ext.xmi deployment descriptor extension of the Web service

client:

<loginConfig xmi:id="LoginConfig_1051555852697">

 <authMethods xmi:id="AuthMethod_1051555852698" text="IDAssertion"/>

</loginConfig>

<idAssertion xmi:id="IDAssertion_1051555852697" idType="Username" trustMode="Signature"/>

As shown in the previous example, the client identity type is Username and the trust mode is digital

signature.

The sender security handler invokes the handle() method of an implementation of the

javax.security.auth.callback.CallbackHandler interface. The

javax.security.auth.callback.CallbackHandler interface creates the security token and passes it back to

the sender security handler. The sender security handler constructs the security token based on the

authentication information in the callback array and inserts the security token into the Web services

security message header.

Security Token

generation

CallbackHandlerconfiguration

security

token

Sender

security handler

Simple Object Access

Protocol request

+

web services

security headers

Deployment descriptor

and service bindings

XML configuration

Deployment descriptor

and service bindings

XML configuration

Receiver

security handler

Request

• Security Token validation

• Set the JAAS subject

caller and runAs identity

JAAS login configurationsecurity token

JAAS

subject

Request

Figure 12. Security token generation and validation

Chapter 14. Learn about WebSphere applications 825

The receiver security handler compares the token type in the message header with the expected token

types configured in the deployment descriptor. If none of the expected token types are found in the Web

services security header of the SOAP message, the request is rejected with a SOAP fault exception.

Otherwise, the token type is used to map to a Java Authentication and Authorization Service (JAAS) login

configuration for validating the token. If the authentication is successful, a JAAS Subject is created and

associated with the running thread. Otherwise, the request is rejected with a SOAP fault exception.

XML digital signature

XML-Signature Syntax and Processing (XML signature) is a specification that defines XML syntax and

processing rules to sign and verify digital signatures for digital content. The specification was developed

jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF).

XML signature does not introduce new cryptographic algorithms. WebSphere Application Server uses XML

signature with existing algorithms such as RSA, HMAC, and SHA1. XML signature defines many methods

for describing key information and enables the definition of a new method.

XML canonicalization (c14n) is often needed when you use XML signature. Information can be represented

in various ways within serialized XML documents. For example, although their octet representations are

different, the following examples are identical:

v <person first="John" last="Smith"/>

v <person last="Smith" first="John"></person>

C14n is a process used to canonicalize XML information. Select an appropriate c14n algorithm because

the information that is canonicalized is dependent upon this algorithm. One of the major c14n algorithms,

Exclusive XML Canonicalization, canonicalizes the character encoding scheme, attribute order, namespace

declarations, and so on. The algorithm does not canonicalize white space outside tags, namespace

prefixes, or data type representation.

XML signature in the Web Services Security-Core specification

The Web Services Security-Core (WSS-Core) specification defines a standard way for Simple Object

Access Protocol (SOAP) messages to incorporate an XML signature. You can use almost all of the XML

signature features in WSS-Core except enveloped signature and enveloping signature. However,

WSS-Core has some recommendations such as exclusive canonicalization for the c14n algorithm and

some additional features such as SecurityTokenReference and KeyIdentifier. The KeyIdentifier is the

value of the SubjectKeyIdentifier field within the X.509 certificate. For more information on the

KeyIdentifier, see ″Reference to a Subject Key Identifier″ within the OASIS Web Services Security X.509

Certificate Token Profile documentation.

By including XML signature in SOAP messages, the following are realized:

Message integrity

A message receiver can confirm that attackers or accidents have not altered parts of the message

after these parts are signed by a key.

Authentication

You can assume that a valid signature is proof of possession. A message with a digital certificate

issued by a certificate authority and a signature in the message that is validated successfully by a

public key in the certificate, is proof that the signer has the corresponding private key. The receiver

can authenticate the signer by checking the trustworthiness of the certificate.

XML signature in the current implementation

XML signature is supported in Web services security, however, an application programming interface (API)

is not available. The current implementation has many hardcoded behaviors and has some user-operable

configuration items. To configure the client for digital signature, see Configuring the client for response

826 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf

digital signature verification: Verifying the message parts. To configure the server for digital signature, see

Configuring the server for request digital signature verification: Verifying the message parts.

Security considerations

In a replay attack, an attacker taps the lines, receives a signed message, and then returns the message to

the receiver. In this case, the receiver receives the same message twice and might process both of them if

the signatures are valid. Processing both messages can cause damage to the receiver if the message is a

claim for money. If you have the signed generation time stamp and the signed expiration time in a

message replay, attacks might be reduced. However, this is not a complete solution. A message must

have a nonce value to prevent these attacks and the receiver must reject a message that contains a

processed nonce. The current implementation does not provide a standard way to generate and check

nonces in messages. In WebSphere Application Server, Version 5.1, nonce is supported in username

tokens only. The username token profile contains concrete nonce usage scenarios for username tokens.

Applications handle nonces (such as serial numbers) and they need to be signed.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Signing parameter configuration settings:

Use this page to configure new signing parameters.

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

The specifications that are listed on this page for the signature method, digest method, and

canonicalization method are located in the World Wide Web Consortium (W3C) document entitled, XML

Signature Syntax and Specification: W3C Recommendation 12 Feb 2002.

To view this administrative console page, complete the following steps:

1. Click Enterprise Applications >application_name.

2. Under Related items, click EJB modules or Web Modules > URI_file_name

3. 5.x application

Under Additional properties, you can access the signing information for the following

bindings:

a. For the Request sender binding, click Web services: Client security bindings. Under Request

sender binding, click Edit. Under Additional properties, click Signing information.

b. For the Response sender binding, click Web services: Server security bindings. Under

Response sender binding, click Edit. Under Additional properties, click Signing information.

4. In the Request Sender Binding column, click Edit > Signing Information.

If the signing information is not available, select None.

If the signing information is available, select Dedicated Signing Information and specify the configuration

in the following fields:

Signature method:

Specifies the algorithm Uniform Resource Identifiers (URI) of the signature method.

 The following algorithms are supported:

Chapter 14. Learn about WebSphere applications 827

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

You can also add custom algorithms.

Digest method:

Specifies the algorithm URI of the digest method.

 WebSphere Application Server supports the http://www.w3.org/2000/09/xmldsig#sha1 algorithm.

Canonicalization method:

Specifies the algorithm URI of the canonicalization method.

 The following algorithms are supported:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Key name:

Specifies the name of the key object found in the keystore file.

Key locator reference:

Specifies the name used to reference the key locator

 You can configure these key locator reference options on the server level and the application level. The

configurations that are listed in the field are a combination of the configurations on these two levels.

You can specify a key locator configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

N/A Server level 1. Click Servers > Application servers

>server_name.

2. Under Security, click Web services:

Default bindings for Web services

security.

3. Under Additional properties, click Key

locators.

Request sender Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB modules >

URI_name.

3. Click Web services: Client security

bindings.

4. Under Request sender binding, click Edit.

5. Under Additional properties, click Key

locators.

828 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Binding name Cell level, server level, or

application level

Path

Request receiver Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB modules >

URI_name.

3. Click Web services: Server security

bindings.

4. Under Request receiver binding, click Edit.

5. Under Additional properties, click Key

locators.

Response sender Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB modules >

URI_name.

3. Click Web services: Server security

bindings.

4. Under Response sender binding, click Edit.

5. Under Additional properties, click Key

locators.

Response receiver Application level 1. Click Applications > Enterprise

applications > application_name.

2. Under Related items, click EJB modules >

URI_name.

3. Click Web services: Client security

bindings.

4. Under Response receiver binding, click

Edit.

5. Under Additional properties, click Key

locators.

Securing Web services for version 5.x applications using XML digital signature

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

WebSphere Application Server provides several different methods to secure your Web services; Extensible

Markup Language (XML) digital signature is one of these methods. You might secure your Web services

using any of the following methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

XML digital signature provides both message integrity and authentication capabilities when it is used with

SOAP messages. A message receiver can verify that attackers or accidents have not altered parts of the

message after the message was signed by a key. If a message has a digital certificate issued by a

Chapter 14. Learn about WebSphere applications 829

certificate authority (CA) and a signature in the message is validated successfully by a public key in the

certificate, it is proof that the signer has the corresponding private key. To use XML digital signature to

secure Web services, complete the following steps:

1. Define the security constraints or extensions. To configure the security constraints, you must use and

assembly tool. For more information, see Assembly tools.

a. Configure the client to digitally sign a message request. To configure the client, complete the

following steps to specify which parts of the SOAP message to digitally sign and define the method

used to digitally sign the message. The client in these steps is the request sender.

1) Specify the message parts by following the steps found in Configuring the client for request

signing: digitally signing message parts.

2) Select the method used to digitally sign the request message. You can select the digital

signature method by following the steps in Configuring the client for request signing: choosing

the digital signature method.

b. Configure the server to verify the digital signature that is used in the message request. To

configure the server, you must specify which parts of the SOAP message, sent by the request

sender, contain digitally signed information and which method was used to digitally sign the

message. The settings chosen for the request receiver, or the server in this step, must match the

settings chosen for the request sender in the previous step.

1) Define the message parts by following the steps found in Configuring the server for request

digital signature verification: verifying message parts.

2) Select the same method used by the request sender to digitally sign the message. You can

select the digital signature method by following the steps in Configuring the server for request

digital signature verification: choosing the verification method

c. Configure the server to digitally sign a message response. To configure the server, complete the

following steps to specify which parts of the SOAP message to digitally sign and define the method

used to digitally sign the message. The sender in these steps is the response sender.

1) Specify which message parts to digitally sign by following the steps found in Configuring the

server for response signing: digitally signing message parts.

2) Select the method used to digitally sign the response message. You can select the digital

signature method by following the steps in Configuring the server for response signing:

choosing the digital signature method

d. Configure the client to verify the digital signature that is used in the message response. To

configure the client, you must specify which parts of the SOAP message sent by the response

sender contain digitally signed information and which method was used to digitally sign the

message. The settings chosen for the response receiver, or client in this step, must match the

settings chosen for the response sender in the previous step.

1) Define the message parts by following the steps found in Configuring the client for response

digital signature verification: verifying message parts

2) Select the same method used by the response sender to digitally sign the message. You can

select the digital signature method by following the steps in Configuring the client for response

digital signature verification: choosing the verification method

2. Define the client security bindings. To configure the client security bindings, complete the steps in

either of the following topics:

v Configuring the client security bindings using the Application Server Toolkit

v Configuring the client security bindings using the administrative console

3. Define the server security bindings. To configure the server security bindings, complete the steps in

either of the following topics:

v Configuring the server security bindings using the Application Server Toolkit

v Configuring the server security bindings using the administrative console

After completing these steps, you have secured your Web services using XML digital signature.

830 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Default configuration for WebSphere Application Server:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

In the WebSphere Application Server, each application server has a copy of the ws-security.xml file,

which defines the default binding information for Web services security. The following list contains the

defaults defined in the ws-security.xml file:

Trust anchors

Identifies the trusted root certificates for signature verification.

Collection certificate stores

Contains certificate revocation lists (CRLs) and nontrusted certificates for verification.

Key locators

Locates the keys for digital signature and encryption.

Trusted ID evaluators

Evaluates the trust of the received identity before identity assertion.

Login mappings

Contains the Java Authentication and Authorization Service (JAAS) configurations for AuthMethod

token validation.

If the Web services security constraints specified in the deployment descriptors and the required bindings

are not defined in the bindings file, the default constraints in the ws-security.xml file are used.

When you use the addNode command, the ws-security.xml file is added with the server configuration to

the new cell. The following figure shows the activity when you use the addNode command.

Default binding:

My cell

My node

Server1

ws-security.xml

file
ibm-services-bnd.xml

file

Default configuration for server1

application-level binding

overrides

EJB module

ibm-webservices-ext.xmi

Web services

implemented

as an EJB file

Figure 13. Configuration when using the addNode command

Chapter 14. Learn about WebSphere applications 831

The default binding information is defined in the ws-security.xml file and can be administered by either

the administrative console or by scripting.

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Certain applications can share certain binding information. This information includes truststores, keystores,

and authentication methods (token validation). WebSphere Application Server provides support for default

binding information. Administrators can define binding information at:

v The server level

Applications can refer to this binding information.

You can define the following binding information in the ws-security.xml file:

Trust anchors (truststore)

v Trust anchors contain key store configuration information that has the root-trusted certificates. Trust

anchors are used for certificate path validation of the incoming X.509-formatted security tokens.

v The Trust Anchor Name is used in the binding file (ibm-webservices-bnd.xmi and ibm-
webservicesclient-bnd-xmi when Web services is running as a client) to refer to the trust anchor

defined in the default binding information. The trust anchor name must be unique in the trust anchor

collection.

Collection certificate store

v The collection certificate store specifies a list of untrusted, intermediate certificates and is used for

certificate path validation of incoming X.509-formatted security tokens. The default provider is

IBMCertPath.

v The Certificate Store Name is used in the binding file (ibm-webservices-bnd.xmi and

ibm-webservicesclient-bnd-xmi when Web services is running as a client) to refer to the certificate

store defined in the default binding information. The Certificate Store Name must be unique to the

collection certificate store collection.

Key locators

v Key locators specify implementation of the com.ibm.wsspi.wssecurity.config.KeyLocator interface. This

interface is used to retrieve keys for signature or encryption. Customer implementations can extend the

key locator interface to retrieve keys using other methods. WebSphere Application Server provides

implementations to retrieve a key from the key store, map an authenticated identity to a key in the key

store, or retrieve a key from the signer certificate (mapping and retrieving actions are used for

encrypting the response).

v The Key Locator Name is used in the binding file (ibm-webservices-bnd.xmi and ibm-
webservicesclient-bnd-xmi when Web services is running as a client) to refer to the key locator

defined in the default binding information. The Key Locator Name must be unique to the key locators

collection in the default binding information.

Trusted ID evaluators

v Trusted ID evaluators are an implementation of the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

interface. This interface is used to make sure the identity (ID)-asserting authority is trusted. Additionally,

you can extend the trusted identity evaluator to validate the trust. WebSphere Application Server

provides a default implementation for validating trust based on a predefined list of identities.

v The Trusted ID Evaluator Name is used in the binding file (ibm-webservices-bnd.xmi) to refer to the

trusted identity evaluator defined in the default binding information. The Trusted ID Evaluator Name

must be unique to the Trusted ID Evaluator collection.

832 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Login mappings

v Login mappings define the mapping of the authentication method to the Java Authentication and

Authorization Service (JAAS) login configuration. The mappings are used to authenticate the incoming

security token embedded in the Web services security Simple Object Access Protocol (SOAP) message

header. The JAAS login configuration is defined in the administrative console under Security > JAAS

Configuration > Application Logins.

v WebSphere Application Server defines the following authentication methods:

BasicAuth

Authenticates user name and password.

Signature

Maps the subject distinguished name (DN) in the certificate to a WebSphere Application Server

credential.

IDAssertion

Maps the identity to a WebSphere Application Server credential.

LTPA Authenticates a Lightweight Third Party Authentication (LTPA) token.

After identity authentication, the associated credential is used in the downstream call.

v This method can be extended to authenticate custom security tokens by providing a custom JAAS login

configuration and by using the com.ibm.wsspi.wssecurity.auth.module.WSSecurityMappingModule to

create the principal and credential required by WebSphere Application Server.

v If LoginConfig (AuthMethod) is defined in the IBM extension deployment descriptor (ibm-webservices-
ext.xmi), but there are no login mapping bindings (ibm-webservices-bnd.xmi) defined for the

AuthMethod, Web services security run time uses the login mapping defined in the default binding

information.

WebSphere Application Server

In the WebSphere Application Server, each server has a copy of the ws-security.xml file (default binding

information for Web services security). There is no cell-level copy of the ws-security.xml file, which is

only available in the WebSphere Application Server Network Deployment installation. To navigate to the

server-level default binding in the administrative console, complete the following steps:

1. Click Servers > Application Servers > server1.

2. Under Additional Properties, click Web Services: Default bindings for Web Services Security.

Chapter 14. Learn about WebSphere applications 833

Web services security run time uses the binding information in the application Enterprise JavaBeans (EJB)

or Web module binding file (ibm-webservices-bnd.xmi or ibm-webservicesclient-bnd.xmi if Web services

is acting as a client on the server) if the binding information is defined in the application-level binding file.

For example, if key locator K1 is defined in both the application-level binding file and the default binding

file (ws-security.xml), the K1 in the application-level binding file is used.

Trust anchors:

A trust anchor specifies key stores that contain trusted root certificates that validate the signer certificate.

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

These key stores are used by the request receiver (as defined in the ibm-webservices-bnd.xmi file) and

the response receiver (as defined in the ibm-webservicesclient-bnd.xmi file when Web services is acting

as client) to validate the signer certificate of the digital signature. The key stores are critical to the integrity

of the digital signature validation. If they are tampered with, the result of the digital signature verification is

doubtful and comprised. Therefore, it is recommended that you secure these key stores. The binding

configuration specified for the request receiver in the ibm-webservices-bnd.xmi file must match the binding

configuration for the response receiver in the ibm-webservicesclient-bnd.xmi file.

The trust anchor is defined as javax.security.cert.TrustAnchor in the Java CertPath application

programming interface (API). The Java CertPath API uses the trust anchor and the certificate store to

validate the incoming X.509 certificate that is embedded in the SOAP message.

The Web services security implementation in WebSphere Application Server supports this trust anchor. In

WebSphere Application Server, the trust anchor is represented as a Java key store object. The type, path,

and password of the key store are passed to the implementation through the administrative console or by

scripting.

Configuring trust anchors using an assembly tool:

My cell

My node

Server1

ws-security.xml

file
ibm-services-bnd.xml

file

Default configuration for server1

application-level binding

overrides

EJB module

ibm-webservices-ext.xmi

Web services

implemented

as an EJB file

Figure 14. Web services security application-level bindings and server-level default binding information

834 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This document describes how to configure trust anchors or trust stores at the application level. It does not

describe how to configure trust anchors at the server or cell level. Trust anchors defined at the application

level have a higher precedence over trust anchors defined at the server or cell level. You can configure an

application-level trust anchor using an assembly tool or the administrative console. This document

describes how to configure the application-level trust anchor using an assembly tool. For more information

on creating and configuring trust anchors at the server or cell level, see either “Configuring the server

security bindings using an assembly tool” on page 875 or “Configuring the server security bindings using

the administrative console” on page 877.

A trust anchor specifies key stores that contain trusted root certificates, which validate the signer

certificate. These key stores are used by the request receiver (as defined in the ibm-webservices-bnd.xmi

file) and the response receiver (as defined in the application-client.xml file when Web services is acting

as client) to validate the signer certificate of the digital signature. The key stores are critical to the integrity

of the digital signature validation. If they are tampered with, the result of the digital signature verification is

doubtful and comprised. Therefore, it is recommended that you secure these key stores. The binding

configuration specified for the request receiver in the ibm-webservices-bnd.xmi file must match the binding

configuration for the response receiver in the application-client.xml file.

Complete the following steps to configure trust anchors using an assembly tool.

1. Configure an assembly tool to work with a Java 2 Platform, Enterprise Edition (J2EE) enterprise

application. For more information, see Assembling applications

2. Create a Web services-enabled J2EE enterprise application. If you have not created a Web

services-enabled J2EE enterprise application, see Developing Web services applications. Also, see

either “Configuring the server security bindings using an assembly tool” on page 875 or “Configuring

the server security bindings using the administrative console” on page 877 for an introduction on how

to manage Web services security binding information on the server.

3. Configure the client-side response receiver, which is defined in the ibm-webservicesclient-bnd.xmi

bindings extensions file.

a. Use an assembly tool to import your J2EE application.

b. Click Windows > Open Perspective > Other > J2EE.

c. Click Application Client projects >application_name > appClientModule > META-INF

d. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor,

and click the WS Binding tab. The Client Deployment Descriptor is displayed.

e. Locate the Port qualified name binding section and either select an existing entry or click Add, to

add a new port binding. The Web services client port binding editor displays for the selected port.

f. Locate the Trust anchor section and click Add. The Trust anchor dialog box is displayed.

1) Enter a unique name within the port binding for the Trust anchor name.

The name is used to reference the trust anchor that is defined.

2) Enter the key store password, path, and key store type.

The supported key store types are Java Cryptography Extension (JCE) and JCEKS.

Click Edit to edit the selected trust anchor.

Click Remove to remove the selected trust anchor.

When you start the application, the configuration is validated in the run time while the binding

information is loading.

g. Save the changes.

Chapter 14. Learn about WebSphere applications 835

4. Configure the server-side request receiver, which is defined in the ibm-webservices-bnd.xmi bindings

extensions file.

a. Click Windows > Open perspective > J2EE.

b. Select the Web services enabled EJB or Web module.

c. In the Package Explorer window, click the META-INF directory for an EJB module or the WEB-INF

directory for a Web module.

d. Right-click the webservices.xml file, select Open with > Web services editor, and click the

bindings tab. The Web services bindings editor is displayed.

e. Locate the Web service description bindings section and either select an existing entry or click Add

to add a new Web services descriptor.

f. Click Binding configurations. The Web services binding configurations editor is displayed for the

selected Web services descriptor.

g. Locate the Trust anchor section and click Add. The Trust anchor dialog box is displayed.

1) Enter a unique name within the binding for the Trust anchor name.

This unique name is used to reference the trust anchor defined.

2) Enter the key store password, path, and key store type. The supported key store types are JCE

and JCEKS.

Click Edit to edit the selected trust anchor.

Click Remove to remove the selected trust anchor.

When you start the application, the configuration is validated in the run time while the binding

information is loading.

h. Save the changes.

This procedure defines trust anchors that can be used by the request receiver or the response receiver (if

the Web services is acting as client) to verify the signer certificate.

The request receiver or the response receiver (if the Web service is acting as a client) uses the defined

trust anchor to verify the signer certificate. The trust anchor is referenced using the trust anchor name.

To complete the signing information configuration process for request receiver, complete the following

tasks:

1. “Configuring the server for request digital signature verification: Verifying the message parts” on page

860

2. “Configuring the server for request digital signature verification: choosing the verification method” on

page 862

To complete the process for the response receiver, if the Web services is acting as a client, complete the

following tasks:

1. “Configuring the client for response digital signature verification: verifying the message parts” on page

867

2. “Configuring the client for response digital signature verification: choosing the verification method” on

page 869

Configuring trust anchors using the administrative console:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This document describes how to configure trust anchors or trust stores at the application level. It does not

describe how to configure trust anchors at the server or cell level. Trust anchors defined at the application

836 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

level have a higher precedence over trust anchors defined at the server or cell level. For more information

on creating and configuring trust anchors at the server or cell level, see either “Configuring the server

security bindings using an assembly tool” on page 875 or “Configuring the server security bindings using

the administrative console” on page 877.

You can configure an application-level trust anchor using an assembly tool or the administrative console.

This document describes how to configure the application-level trust anchor using the administrative

console.

A trust anchor specifies key stores that contain trusted root certificates, which validate the signer

certificate. These key stores are used by the request receiver (as defined in the ibm-webservices-bnd.xmi

file) and the response receiver (as defined in the ibm-webservicesclient-bnd.xmi file when Web services

is acting as client) to validate the signer certificate of the digital signature. The keystores are critical to the

integrity of the digital signature validation. If they are tampered with, the result of the digital signature

verification is doubtful and comprised. Therefore, it is recommended that you secure these keystores. The

binding configuration specified for the request receiver in the ibm-webservices-bnd.xmi file must match the

binding configuration for the response receiver in the ibm-webservicesclient-bnd.xmi file.

The following steps are for the client-side response receiver, which is defined in the ibm-
webservicesclient-bnd.xmi file and the server-side request receiver, which is defined in the

ibm-webservices-bnd.xmi file.

1. Configure an assembly tool to work with a Java 2 Platform, Enterprise Edition (J2EE) enterprise

application. For more information, see Assembling applications

2. Create a Web services-enabled J2EE enterprise application. If you have not created a Web

services-enabled J2EE enterprise application, see Developing Web services applications. Also, see

either “Configuring the server security bindings using an assembly tool” on page 875 or “Configuring

the server security bindings using the administrative console” on page 877 for an introduction on how

to manage Web services security binding information on the server.

3. Click Applications > Enterprise applications > enterprise_application.

4. Under Related items, click either EJB Modules or Web Modules and then click the Web

services-enabled module in the URI field.

5. Under Additional properties, click Web services: client security bindings to edit the response

receiver binding information, if Web services is acting as a client.

a. Under Response receiver binding, click Edit.

b. Under Additional properties, click Trust anchors.

c. Click New to create a new trust anchor.

d. Enter a unique name within the request receiver binding for the Trust anchor name field. The name

is used to reference the trust anchor that is defined.

e. Enter the key store password, path, and key store type.

f. Click the trust anchor name link to edit the selected trust anchor.

g. Click Remove to remove the selected trust anchor or anchors.

When you start the application, the configuration is validated in the run time while the binding

information is loading.

6. Return to the Web services-enabled module panel accessed in step 2.

7. Under Additional properties, click Web services: server security bindings to edit the request receiver

binding information.

a. Under Request receiver binding, click Edit.

b. Under Additional properties, click Trust anchors.

c. Click New to create a new trust anchor

Enter a unique name within the request receiver binding for the Trust anchor name field. The name

is used to reference the trust anchor that is defined.

Chapter 14. Learn about WebSphere applications 837

Enter the key store password, path, and key store type.

Click the trust anchor name link to edit the selected trust anchor.

Click Remove to remove the selected trust anchor or anchors.

When you start the application, the configuration is validated in the run time while the binding

information is loading.

8. Save the changes.

This procedure defines trust anchors that can be used by the request receiver or the response receiver (if

the Web services is acting as client) to verify the signer certificate.

The request receiver or the response receiver (if the Web service is acting as a client) uses the defined

trust anchor to verify the signer certificate. The trust anchor is referenced using the trust anchor name.

To complete the signing information configuration process for request receiver, complete the following

tasks:

1. “Configuring the server for request digital signature verification: Verifying the message parts” on page

860

2. “Configuring the server for request digital signature verification: choosing the verification method” on

page 862

To complete the process for the response receiver, if the Web services is acting as client, complete the

following tasks:

1. “Configuring the client for response digital signature verification: verifying the message parts” on page

867

2. “Configuring the client for response digital signature verification: choosing the verification method” on

page 869

Collection certificate store:

A collection certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a

digitally signed SOAP message.

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

The collection certificate stores are used when processing a received SOAP message. This collection is

configured in the securityRequestReceiverBindingConfig section of the binding file for servers and in the

securityResponseReceiverBindingConfig section of the binding file for clients.

A collection certificate store is one kind of certificate store. A certificate store is defined as

javax.security.cert.CertStore in the Java CertPath application programming interface (API). The Java

CertPath API defines the following types of certificate stores:

Collection certificate store

A collection certificate store accepts the certificates and CRLs as Java collection objects.

Lightweight Directory Access Protocol certificate store

The Lightweight Directory Access Protocol (LDAP) certificate store accepts certificates and CRLs

as LDAP entries.

The CertPath API uses the certificate store and the trust anchor to validate the incoming X.509 certificate

that is embedded in the SOAP message.

838 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The Web services security implementation in the WebSphere Application Server supports the collection

certificate store. Each certificate and CRL is passed as an encoded file. This configuration is done using

either the administrative console or by scripting.

Configuring the client-side collection certificate store using an assembly tool:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

A collection certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs are used to check the signature of a

digitally signed Simple Object Access Protocol (SOAP) message.

You can configure the collection certificate either by using an assembly tool or the WebSphere Application

Server administrative console. Complete the following steps to configure the client-side collection

certificate store using the assembly tool.

 1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools

 2. Click Windows > Open perspective > Other > J2EE.

 3. Click Application Client projects >application_name > appClientModule > META-INF

 4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and

click the WS Binding tab. The Client Deployment Descriptor is displayed.

 5. Click the Port binding tab in deployment descriptor editor within the assembly tool. The Web services

client port binding window is displayed.

 6. Select one of the Port qualified name binding entries.

 7. Expand the Security response receiver binding configuration > certificate store list > Collection

certificate store section.

 8. Click Add to create a new collection certificate store, click Edit to edit an existing certificate store, or

click Remove to delete an existing certificate store.

 9. Enter a name in the Name field. This name is referenced in the Certificate store reference field in the

Signing info dialog box.

10. Leave the Provider field as IBMCertPath.

11. Click Add to enter the path to your certificate store. For example, the path might be:

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. If you have additional certificate store

paths, click Add to add the paths.

12. Click OK when you finish adding paths.

Configuring the client-side collection certificate store using the administrative console:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs are used to check the signature of a

digitally signed Simple Object Access Protocol (SOAP) message.

You can configure the collection certificate either by using the assembly tools or the WebSphere

Application Server administrative console. Complete the following steps to configure the client-side

collection certificate store using the administrative console.

Chapter 14. Learn about WebSphere applications 839

1. Connect to the WebSphere Application Server administrative console. You can connect to the

administrative console by typing http://localhost:9060/ibm/console in your Web browser unless you

have changed the port number.

 2. Click Applications > Enterprise applications > application_name.

 3. Under Related items, click either Web modules or EJB modules depending on the type of module

you are securing.

 4. Click the name of the module you are securing.

 5. Under Additional properties, click either Web services: client security bindings to add the collection

certificate store to the client security bindings. If you do not see any entries, return to the assembly

tool and configure the security extensions for either the client or the server.

To configure the security extensions for the client, see the following topics:

v “Configuring the client for response digital signature verification: verifying the message parts” on

page 867

v “Configuring the client for response digital signature verification: choosing the verification method”

on page 869

 6. Under Response receiver binding, click Edit to edit the client security bindings.

 7. Click Collection certificate store.

 8. Click a Certificate store name to edit an existing certificate store or click New to add a new certificate

store name.

 9. Enter a name in the Certificate store name field. The name entered in this field is a name that is

referenced in the Certificate store field on the Signing information configuration page.

10. Leave the Certificate store provider field value as IBMCertPath.

11. Click Apply.

12. Under Additional properties, click X.509 certificates > New.

13. Enter the path to your certificate store. For example, the path might be:

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. If you have any additional certificate

store paths to enter, click New and add the path names.

14. Click OK.

Configuring the server-side collection certificate store using an assembly tool:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

A collection certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs are used to check the signature of a

digitally signed SOAP message.

You can configure the collection certificate either by using an assembly tool or the WebSphere Application

Server administrative console. Complete the following steps to configure the server-side collection

certificate store using an assembly tool.

 1. Start an assembly tool. For more information on the assembly tools, see Assembly tools.

 2. Click Windows > Open perspective > Other > J2EE.

 3. Click EJB projects >application_name > ejbModule > META-INF

 4. Right-click the webservices.xml file, select Open with > Web Services Editor.

 5. Click the Binding configurations tab in the Web services editor within the assembly tool. The Web

Service Binding Configuration window is displayed.

 6. Select one of the Web service description binding entries under the Port Component Binding section.

840 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

7. Expand the Request receiver binding configuration details > Certificate store list > Collection

certificate store section.

 8. Click Add to create a new collection certificate store, click Edit to edit an existing certificate store, or

click Remove to delete an existing certification store.

 9. Enter a name in the Name field. This name is referenced in the Certificate store reference field in

the Signing info dialog.

10. Leave the Provider field as IBMCertPath.

11. Click Add to enter the path to your certificate store. For example, the path might be:

${USER_INSTALL_ROOT]/etc/ws-security/samples/intca2.cer. If you have additional certificate store

paths, click Add to add the paths.

12. Click OK when you finish adding paths.

Configuring the server-side collection certificate store using the administrative console:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

A collection certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a

digitally signed SOAP message.

You can configure the collection certificate either by using an assembly tool or the WebSphere Application

Server administrative console. Complete the following steps to configure the server-side collection

certificate store using the administrative console.

 1. Connect to the WebSphere Application Server administrative console. You can connect to the

administrative console by typing http://localhost:9060/ibm/console in your Web browser unless you

have changed the port number.

 2. Click Applications > Enterprise applications > application_name.

 3. Under Related items, click either Web modules or EJB modules depending on the type of module

you are securing.

 4. Click the name of the module you are securing.

 5. Under Additional properties, click Web services: server security bindings to add the collection

certificate store to the server security bindings. If you do not see any entries, return to the assembly

tool and configure the security extensions for the server.

To configure the security extensions for the server, see the following topics:

v “Configuring the server for request digital signature verification: Verifying the message parts” on

page 860

v “Configuring the server for request digital signature verification: choosing the verification method”

on page 862

 6. Click Edit under Request Receiver Binding to edit the server security bindings.

 7. Click Collection certificate store.

 8. Click a Certificate store name to edit an existing certificate store or click New to add a new certificate

store name.

 9. Enter a name in the Certificate store name field. The name entered in this field is a name that is

referenced in the Certificate store field on the Signing information configuration page.

10. Leave the Certificate store provider field as IBMCertPath.

11. Click Apply.

12. Under Additional Properties, click X.509 Certificates > New.

Chapter 14. Learn about WebSphere applications 841

13. Enter the path to your certificate store. For example, the path might be:

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. If you have any additional certificate

store paths to enter, click New and add the path names.

14. Click OK.

Configuring default collection certificate stores at the server level in the WebSphere Application

Server administrative console:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

A collection certificate store is a collection of nonroot, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs are used to check the signature of a

digitally signed SOAP message. A certificate store typically refers to a certificate store located in the file

system. The location of the certificate store can vary from machine to machine, so you might configure a

default collection certificate store for a specific machine and reference it from within the signing

information. The signing information is found within the binding configurations of any application installed

on the machine. This suggestion enables you to define a single collection certificate store for all of the

applications that need to use the same certificates. You also can specify the default binding information at

the cell level.

Complete the following steps to configure the default collection certificate store at the server level using

the WebSphere Application Server administrative console:

 1. Connect to the administrative console. You can access the administrative console by typing

http://localhost:9060/ibm/console in your Web browser unless you have changed the port number.

 2. Click Servers > Application servers >server_name.

 3. Under Security, click Web Services: Default bindings for Web Services Security.

 4. Under Additional properties, click Collection certificate store.

 5. Enter a name in the Certificate store name field. This name is referenced in the Certificate store field

on the Signing information configuration page.

 6. Leave the Certificate store provider field value as IBMCertPath.

 7. Click Apply.

 8. Under Additional properties, click X.509 certificates > New.

 9. Enter the path to your certificate store. For example, the path might be:

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer.

If you have any additional certificate store paths to enter, click New and add the path names.

10. Click OK.

Key locator:

A key locator (com.ibm.wsspi.wssecurity.config.KeyLocator) is an abstraction of the mechanism that

retrieves the key for digital signature and encryption.

 You can use any of the following infrastructure from which to retrieve the keys depending upon the

implementation:

v Java keystore file

v Database

v Lightweight Third Party Authentication (LTPA) server

Key locators search the key using some type of a clue. The following types of clues are supported:

842 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v A string label of the key, which is explicitly passed through the application programming interface (API).

The relationships between each key and its name (string label) is maintained inside the key locator.

v The execution context of the key locator; explicit information is not passed to the key locator. A key

locator determines the appropriate key according to the execution context.

Current versions of key locators do not support the retrieval of verification keys because current Web

services security implementations do not support the secret key-based signature. Because the key locators

support the public key-based signature only, the key for verification is embedded in the X.509 certificate as

a <BinarySecurityToken> element in the incoming message.

For example, key locators can obtain the identity of the caller from the context and can retrieve the public

key of the caller for response encryption.

Usage scenarios

This section describes the usage scenarios for key locators.

Signing

The name of the signing key is specified in the Web services security configuration. This value is passed

to the key locator and the actual key is returned. The corresponding X.509 certificate also can be returned.

Verification

As described previously, key locators are not used in signature verification.

Encryption

The name of the encryption key is specified in the Web services security configuration. This value is

passed to the key locator and the actual key is returned.

Decryption

The Web services security specification recommends using the key identifier instead of the key name.

However, while the algorithm for computing the identifier for the public keys is defined in Internet

Engineering Task Force (IETF) Request for Comment (RFC) 3280, there is no agreed upon algorithm for

the secret keys. Therefore, the current implementation of Web services security uses the identifier only

when public key-based encryption is performed. Otherwise, the ordinal key name is used.

When you use public key-based encryption, the value of the key identifier is embedded in the incoming

encrypted message. Then, the Web services security implementation searches for all the keys managed

by the key locator and decrypts the message using the key whose identifier value matches the one in the

message.

When you use secret key-based encryption, the value of the key name is embedded in the incoming

encrypted message. The Web services security implementation asks the key locator for the key with the

name that matches the name in the message and decrypts the message using the key.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Keys:

Keys are used for XML signature and encryption.

Chapter 14. Learn about WebSphere applications 843

There are two predominant kinds of keys used in the current Web services security implementation:

v Public key - such as Rivest Shamir Adleman (RSA) encryption and Digital Signature Algorithm (DSA)

encryption

v Secret key - such as Data Encryption Standard (DES) encryption

In public key-based signature, a message is signed using the sender private key and is verified using the

sender public key. In public key-based encryption, a message is encrypted using the receiver public key

and is decrypted using the receiver private key. In secret key-based signature and encryption, the same

key is used by both parties.

While the current implementation of Web services security can support both kinds of keys, there are a few

items to note:

v Secret key-based signature is not supported.

v The format of the message differs slightly between public key-based encryption and secret key-based

encryption.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Web services security service provider programming interfaces:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Several Service Provider Interfaces (SPIs) are provided to extend the capability of the Web services

security run time. The following list contains the SPIs that are available for WebSphere Application Server:

v com.ibm.wsspi.wssecurity.config.KeyLocator is an abstract for obtaining the keys for digital signature

and encryption. The following list contains the default implementations:

– com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

Implements the Java key store.

– com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator

Provides a mapping of the authenticated identity to a key for encryption. Or, the implementation uses

the default key that is specified. This implementation is typically used in the response sender

configuration.

– com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator

Provides the capability of using the signer key for encryption in the response message. This

implementation is typically used in the response sender configuration.

v com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator is an interface that is used to evaluate the trust for

identity assertion. The default implementation is

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl, which enables you to define a list of trusted

identities.

v The Java Authentication and Authorization Service (JAAS) CallbackHandler application programming

interfaces (APIs) are used for token generation by the request sender. This interface can be extended to

generate a custom token that can be inserted in the Web services security header. The following list

contains the default implementations that are provided by WebSphere Application Server:

– com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

Presents a login prompt to gather the basic authentication data. Use this implementation in the client

environment only.

844 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

– com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

Collects the basic authentication data in the standard in (stdin) prompt. Use this implementation in

the client environment only.

– com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

Reads the basic authentication data from the application binding file. This implementation might be

used on the server side to generate a user name token.

– com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

Generates a Lightweight Third Party Authentication (LTPA) token in the Web services security header

as a binary security token. If basic authentication data is defined in the application binding file, it is

used to perform a login, to extract the LTPA token from the WebSphere credentials, and to insert the

token in the Web services security header. Otherwise, it will extract the LTPA security token from the

invocation credentials (run as identity) and insert the token in the Web services security header.

The JAAS LoginModule API is used for token validation on the request receiver side of the message. You

can implement a custom LoginModule API to perform validation of the custom token on the request

receiver of the message. After the token is verified and validated, the token is set as the caller and then

run as the identity in the WebSphere Application Server run time. The identity is used for authorization

checks by the containers before a Java 2 Platform, Enterprise Edition (J2EE) resource is invoked. The

following list presents the are the default AuthMethod configurations provided by WebSphere Application

Server:

BasicAuth

Validates a user name token.

Signature

Maps the distinguished name (DN) of a verified certificate to a Java Authentication and

Authorization Service (JAAS) subject.

IDAssertion

Maps a trusted identity to a JAAS subject.

LTPA Validates an LTPA token that is received in the message and creates a JAAS subject.

Configuring key locators using an assembly tool:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This task provides instructions on how to configure key locators using an assembly tool. You can configure

key locators in various locations within the assembly tool. This task provides instructions on how to

configure key locators at any of these locations because the concept is the same.

 1. Start an assembly tool. For more information on the assembly tools, see Assembly tools.

 2. Click Windows > Open perspective > Other > J2EE.

 3. Click Application Client projects >application_name > appClientModule > META-INF

 4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and

click the WS Binding tab. The Client Deployment Descriptor is displayed.

 5. Click the WS Binding tab in deployment descriptor editor within the assembly tool or the Binding

configurations tab in the Web services editor within the assembly tool.

 6. Expand one of the Binding configuration sections.

 7. Expand the Key locators section.

 8. Click Add to create a new key locator, click Edit to edit an existing key locator, or click Remove to

delete an existing key locator.

Chapter 14. Learn about WebSphere applications 845

9. Enter a key locator name. The name entered for the Key locator name is used to refer to the key

locator from the Encryption information and Signing Information sections.

10. Enter a key locator class. The key locator class is the implementation of the KeyLocator interface.

When using default implementations, select a class from the menu.

11. Determine whether to click Use key store. Select this option when you use the default

implementations as they use key stores. If you click Use key store, complete the following steps:

a. Enter a value in the key store storepass field. The key store storepass is the password used to

access the key store.

b. Enter a path name in the key store path field. The key store path is the location on the file system

where the key store resides. Make sure that the location can be found wherever you deploy the

application.

c. Enter a type value in the key store type field. The valid types to enter are JKS and JCEKS. JKS is

used when you are not using Java Cryptography Extensions (JCE). JCEKS is used when you are

using JCE. Although the JCEKS type is more secure, it might decrease performance.

d. Click Add to create an entry for a key in the key store.

1) Enter a value in the Alias field.

The key alias is a reference to this particular key from the Signing Information section.

2) Enter a value in the Key pass field.

The key pass is the password associated with the certificate which is created using the

Development Kit, Java Technology Edition keytool.exe file.

3) Enter a value in the Key name field.

The key name refers to the alias of the certificate as found in the key store.

12. Click Add to create a custom property. The property can be used by custom key locator

implementations. For example, you can use properties with the WSIdKeyStoreMapKeyLocator default

implementation. The key locator implementation has the following property names:

v id_, which maps to a credential user ID.

v mappedName_ , which maps to the key alias to use for this user name.

v default, which maps to a key alias to use when a credential does not have an associated id_ entry.

A typical set of properties for this key locator might be: id_1=user1, mappedName_1=key1, id_2=user2,

mappedName_2=key2, default=key3. If user1 or user2 authenticates, then the associated key1 or key2 is

used, respectively. However, if none of the user properties authenticate or the user is not user1 or

user2, then key3 is used.

a. Enter a name in the Name field. The name entered is the property name.

b. Enter a value in the Value field. This value entered is the property value.

Configuring key locators using the administrative console:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This task provides instructions on how to configure key locators using the WebSphere Application Server

administrative console. You can configure binding information in the administrative console. You must use

an assembly tool to configure extensions. The following steps are used to configure a key locator in the

administrative console for a specific application:

1. Connect to the administrative console by typing http://localhost:9060/ibm/console in your Web

browser unless you have changed the port number.

2. Click Applications > Enterprise Applications > application_name.

3. Under Related Items, click either Web Modules or EJB Modules, depending on the type of module

you are securing.

846 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

4. Click the name of the module you are securing.

5. Under Additional Properties, click either Web services: Client security bindings or Web services:

Server security bindings, depending on whether you are adding the key locator to the client security

bindings or to the server security bindings. If you do not see any entries, return to the assembly tool

and configure the security extensions.

6. Edit the Request Sender Binding, Response Receiver Binding, Request Receiver Binding, or

Response Sender Binding.

v If you are editing your client security bindings, click Edit for either the Request Sender Binding or

the Response Receiver Binding.

v If you are editing your server security bindings, click Edit for either the Request Receiver Binding or

the Response Sender Binding.

7. Click Key Locators.

8. Click New to configure a new key locator, select the box next to a key locator name and click Delete

to delete a key locator, or click the name of a key locator to edit its configuration. If you are configuring

a new key locator or editing an existing one, complete the following steps:

a. Specify a name for the key locator in the Key Locator Name field.

b. Specify a name for the key locator class implementation in the Key Locator Classname field.

WebSphere Application Server has the following default key locator class implementations:

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

This class is used by the response sender to map an authenticated identity to a key. If

encryption is used, this class is used to locate a key to encrypt the response message.

The com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator class has the capability

to map an authenticated identity from the invocation credential of the current thread to a

key that is used to encrypt the message. If an authenticated identity is present on the

current thread, the class maps the ID to the mapped name. For example, user1 is mapped

to mappedName_1. Otherwise, name=″default″. When a matching key is not found, the

authenticated identity is mapped to the default key specified in the binding file.

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

This class is used by the response receiver, the request sender, and the request receiver

to map a name to an alias. Encryption uses this class to obtain a key to encrypt a

message and digital signature uses this class to obtain a key to sign a message. The

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator class maps a logical name to a key

alias in the key store file. For example, key #105115176771 maps to CN=Alice, O=IBM,

C=US.

c. Specify the password used to access the key store password in the Key Store Password field.

This field is optional because the key locator does not use a key store.

d. Specify the path name used to access the key store in the Key Store Path field. This field is

optional because the key locator does not use a key store. Use ${USER_INSTALL_ROOT} because

this path expands to the WebSphere Application Server path on your machine.

e. Select a keystore type from the Key Store Type field. This field is optional because the key locator

does not use a key store. Use the JKS option if you are not using Java Cryptography Extensions

(JCE) and use JCEKS if you are using JCE.

Trusted ID evaluator:

Trusted ID evaluator (com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator) is an abstraction of the mechanism

that evaluates whether the given ID name is trusted.

 Depending upon the implementation, you can use various types of infrastructure to store a list of the

trusted IDs, such as:

v Plain text file

v Database

Chapter 14. Learn about WebSphere applications 847

v Lightweight Directory Access Protocol (LDAP) server

The trusted ID evaluator is typically used by the eventual receiver in a multi-hop environment. The Web

services security implementation invokes the trusted ID evaluator and passes the identity name of the

intermediary as a parameter. If the identity is evaluated and deemed trustworthy, the procedure continues.

Otherwise, an exception is thrown and the procedure is stopped.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Login mappings:

Login mappings, found in the ibm-webservices-bnd.xmi Extended Markup Language (XML) file, contains a

mapping configuration. This mapping configuration defines how the Web services security handler maps

the token <ValueType> element that is contained within the security token extracted from the message

header, to the corresponding authentication method. The token <ValueType> element is contained within

the security token extracted from a SOAP message header.

 The sender-side Web services security handler generates and attaches security tokens based on the

<AuthMethods> element that is specified in the deployment descriptor. For example, if the authentication

method is BasicAuth, the sender-side security handler generates and attaches UsernameToken (with both

user name and password) to the SOAP message header. The Web services security run time uses the

Java Authentication and Authorization Service (JAAS) javax.security.auth.callback.CallbackHandler

interface as a security provider to generate security tokens on the client side (or when Web services is

acting as client).

The sender security handler invokes the handle() method of a

javax.security.auth.callback.CallbackHandler interface implementation. This implementation creates

the security token and passes the token back to the sender security handler. The senders security handler

constructs the security token based on the authentication information in the callback array. The security

handler then inserts the security token into the Web Services Security message header.

The CallbackHandler interface implementation that you use to generate the required security token is

defined in the <loginBinding> element in the ibm-webservicesclient-bnd.xmi Web services security

binding file. For example,

<loginBinding xmi:id="LoginBinding_1052760331526" authMethod="BasicAuth"

 callbackHandler="com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler"/>

The <loginBinding> element associates the

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler interface with the BasicAuth

authentication method. WebSphere Application Server provides the following set of CallbackHandler

interface implementations you can use to create various security token types:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

If there is no basic authentication data defined in the login binding information (this information is

not the same as the HTTP basic authentication information), the previous token type prompts for

user name and password through a login panel. The implementation uses the basic authentication

data defined in the login binding. Use this CallbackHandler with the BasicAuth authentication

method. Do not use this CallbackHandler implementation on the server because it prompts you for

login binding information.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

If basic authentication data is not defined in the login binding (this information is not the same as

the HTTP basic authentication information), the implementation prompts for the user name and

password using standard in (stdin). The implementation uses the basic authentication data defined

848 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

in the login binding. Use this CallbackHandler implementation with the BasicAuth authentication

method. Do not use this CallbackHandler implementation on the server because it prompts you for

login binding information.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This CallbackHandler implementation does not prompt. Rather, it uses the basic authentication

data defined in the login binding (this information is not the same as the HTTP basic

authentication information). This CallbackHandler implementation is meant for use with the

BasicAuth authentication method. You must define the basic authentication data in the login

binding information for this CallbackHandler implementation. You can use this implementation

when Web services is running as a client and needs to send basic authentication

(<wsse:UsernameToken>) to the downstream call.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

The CallbackHandler generates Lightweight Third Party Authentication (LTPA) tokens from the run

as JAAS Subject (invocation Subject) of the current WebSphere Application Server security

context. However, if basic authentication data is defined in the login binding information (not the

HTTP basic authentication information), the implementation uses the basic authentication data and

LTPA token generated. The Token Type URI and Token Type Local Name values must be

defined in the login binding information for this CallbackHandler implementation. The token value

type is used to validate the token to the request sender and request receiver binding configuration.

The Web services security run time inserts the LTPA token as a binary security token

(<wsse:BinarySecurityToken>) into the message SOAP header. The value type is mandatory. (See

LTPA for more information). Use this CallbackHandler implementation with the LTPA authentication

method.

Figure 1 shows the sender security handler in the request sender message process.

Chapter 14. Learn about WebSphere applications 849

You can configure the receiver-side security server to support multiple authentication methods and multiple

types of security tokens. The following steps describe the request sender SOAP message process:

1. After receiving a message, the receiver Web services security handler compares the token type (in the

message header) with the expected token types configured in the deployment descriptor.

2. The Web services security handler extracts the security token form the message header and maps the

token <ValueType> element to the corresponding authentication method. The mapping configuration is

defined in the <loginMappings> element in the ibm-webservices-bnd.xmi XML file. For example:

<loginMappings xmi:id="LoginMapping_1051977980074" authMethod="LTPA"

 configName="WSLogin">

 <callbackHandlerFactory xmi:id="CallbackHandlerFactory_1051977980081"

 classname="com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl"/>

 <tokenValueType xmi:id="TokenValueType_1051977980081"

 uri="http://www.ibm.com/websphere/appserver/tokentype/5.0.2" localName="LTPA"/>

</loginMappings>

The com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory interface is a factory for

javax.security.auth.callback.CallbackHandler.

3. The Web services security run time initiates the factory implementation class and passes the

authentication information from Web services security header to the factory class through the set

methods.

4. The Web services security run time invokes the newCallbackHandler() method to obtain the

javax.security.auth.CallbackHandler object, which generates the required security token.

5. When the security handler receives an LTPA BinarySecurityToken, it uses the WSLogin JAAS login

configuration and the newCallbackHandler() method to validate the security token. If none of the

expected token types are found in the SOAP message Web services security header, the request is

rejected with an SOAP fault. Otherwise, the token type is used to map to a JAAS login configuration

Security Token

generation

CallbackHandler
configuration

security token:

Sender

security handler

Request

<Property> - as HashMap

<BasicAuth> - as user name

and password

javax.security.auth.callback.NameCallback

javax.security.auth.callback.PasswordCallback

com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

<wsse:UsernameToken>ifjavax.security.auth.callback.NameCallback

and/or javax.security.auth.callbackPasswordCallback is populated with data.

OR

<wsse:BinarySecurityToken> encoded token from

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

and the ValueType is generated from <TokenValueType> defined

in the binding information.

OR

XML-based token is created based on the DOM element returns

from the com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback.

Deployment descriptor

and service bindings

XML configuration

Figure 15. Request sender SOAP message process

850 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

for token validation. If authentication is successful, a JAAS Subject is created and associated with the

running thread. Otherwise, the request is rejected with a SOAP fault.

The following table shows the authentication methods and the JAAS login configurations.

 Authentication method JAAS login configuration

BasicAuth WSLogin

Signature system.wssecurity.Signature

LTPA WSLogin

IDAssertion system.wssecurity.IDAssertion

Figure 2 shows the receiver security handler in the request receiver message process.

The default <LoginMapping> is defined in the following files:

v Server-level ws-security.xml file

If nothing is defined in the binding file information, the ws-security.xml default is used. However, an

administrator can override the default by defining a new <LoginMapping> element in the binding file.

JAAS subject:

com.ibm.websphere.security.auth.WSPrincipal

com.ibm.websphere.security.cred.WSCredential

<wsse:UsernameToken>ifjavax.security.auth.callback.NameCallback

and/or javax.security.auth.callbackPasswordCallback is populated with data.

OR

<wsse:BinarySecurityToken> encoded token from

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

and the ValueType is generated from <TokenValueType> defined

in the binding information.

OR

XML-based token is created based on the DOM element returns

from the com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback.

• Security Token validation

• Set the JAAS subject

caller and runAs identity

JAAS login configuration

Security token

javax.security.auth.callback.NameCallback

javax.security.auth.callback.PasswordCallback

com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

<!ELEMENT AuthMethod (#PCDATA)>

<!ELEMENT TokenValueType EMPTY>

<!ATTLIST TokenValueType uri CDATA #REQUIRED localName CDATA #REQUIRED>

<!ELEMENT ConfigName (#PCDATA)>

<!ELEMENT CallbackHandlerFactory(Property*)>

<!ATTLIST CallbackHandlerFactory classname %TYPE_CLASS; #REQUIRED>

Sender

security handler

Request

Deployment descriptor

and service bindings

XML configuration

Figure 16. Request receiver SOAP message process

Chapter 14. Learn about WebSphere applications 851

6. The client reads the default binding information in the ${install_dir}/properties/ws-security.xml

file.

7. The server run-time component loads the following files if they exist:

v Server-level ws-security.xml file

On a base application server, the server run time component only loads the server-level

ws-security.xml file. The server-side ws-security.xml file and the application Web services security

binding information are managed using the administrative console and the WSADMIN command. You

can specify the binding information during application deployment either through the administrative

console or through the WSADMIN command. The Web services security policy is defined in the

deployment descriptor extension (ibm-webservicesclient-ext.xmi) and the bindings are stored in the

IBM binding extension (ibm-webservicesclient-bnd.xmi). However, the

${install_dir}/properties/ws-security.xml file defines the default binding value for the client. If the

binding information is not specified in the binding file, the run time reads the binding information from

the default ${install_dir}/properties/ws-security.xml file.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Login mappings collection:

Use this page to view a list of configurations for validating security tokens within incoming messages.

Login mappings map an authentication method to a Java Authentication and Authorization Service (JAAS)

login configuration to validate the security token. Four authentication methods are predefined in the

WebSphere Application Server: BasicAuth, Signature, IDAssertion, and Lightweight Third Party

Authentication (LTPA).

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Login mappings.

4. Click either New to create a new login mapping configuration or click the name of an existing

configuration.

To view this administrative console page for the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, click Web services: Server security bindings.

4. Click Edit under Request receiver binding.

5. Click Login mappings.

If you click Update runtime, the Web services security run time is updated with the default binding

information, which is contained in the ws-security.xml file that was previously saved. After you specify the

authentication method, the Java Authentication and Authorization Service (JAAS) configuration name, and

the Callback Handler Factory class name on this panel, you must complete the following steps:

1. Click Save in the messages section at the top of the administrative console.

852 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

2. Click Update runtime. When you click Update runtime, the configuration changes made to the other

Web services also are updated in the Web services security run time.

Important: If the login mapping configuration is not found on the application level, the Web services run

time searches for the login mapping configuration on the server level. If the configuration is

not found on the server level, the Web services run time searches the cell.

Authentication method:

Specifies the authentication method used for validating the security tokens.

 The following authentication methods are available:

BasicAuth

The basic authentication method includes both a user name and a password in the security token.

The information in the token is authenticated by the receiving server and is used to create a

credential.

Signature

The signature authentication method sends an X.509 certificate as a security token. For

Lightweight Directory Access Protocol (LDAP) registries, the distinguished name (DN) is mapped

to a credential, which is based on the LDAP certificate filter settings. For local OS registries, the

first attribute of the certificate, usually the common name (CN) is mapped directly to a user name

in the registry.

IDAssertion

The identity assertion method maps a trusted identity (ID) to a WebSphere Application Server

credential. This authentication method only includes a user name in the security token. An

additional token is included in the message for trust purposes. When the additional token is

trusted, the IDAssertion token user name is mapped to a credential.

LTPA Lightweight Third Party Authentication (LTPA) validates an LTPA token.

JAAS configuration name:

Specifies the name of the Java Authentication and Authorization Service (JAAS) configuration.

Callback handler factory class name:

Specifies the name of the factory for the CallbackHandler class.

Login mapping configuration settings:

Use this page to specify the Java Authentication and Authorization Service (JAAS) login configuration

settings that are used to validate security tokens within incoming messages.

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers >server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Login mappings.

4. Click either New to create a new login mapping configuration or click the name of an existing

configuration.

To use this administrative console page for the application level, complete the following steps:

Chapter 14. Learn about WebSphere applications 853

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, click Web services: Server security bindings.

4. Click Edit under Request receiver binding.

5. Click Login mappings.

6. Click either New to create a new login mapping configuration or click the name of an existing

configuration.

Important: If the login mapping configuration is not found on the application level, the Web services run

time searches for the login mapping configuration on the server level. If the configuration is

not found on the server level, the Web services run time searches the cell.

Authentication method:

Specifies the method of authentication.

 You can use any string, but the string must match the element in the service-level configuration. The

following words are reserved and have special meanings:

BasicAuth

Uses both a user name and a password.

IDAssertion

Uses only a user name, but requires that additional trust is established on the receiving server

using a TrustedIDEvaluator mechanism.

Signature

Uses the distinguished name (DN) of the signer.

LTPA Validates a token.

JAAS configuration name:

Specifies the name of the Java Authentication and Authorization Service (JAAS) configuration.

 You can use the following predefined system login configurations:

system.wssecurity.IDAssertion

Enables a version 5.x application to use identity assertion to map a user name to a WebSphere

Application Server credential principal.

system.wssecurity.Signature

Enables a version 5.x application to map a distinguished name (DN) in a signed certificate to a

WebSphere Application Server credential principal.

system.LTPA_WEB

Processes login requests that are used by the Web container such as servlets and JavaServer

Pages (JSP) files.

system.WEB_INBOUND

Handles logins for Web application requests, which include servlets and JavaServer Pages. This

login configuration is used by WebSphere Application Server Version 5.1.1.

system.RMI_INBOUND

Handles logins for inbound Remote Method Invocation (RMI) requests. This login configuration is

used by WebSphere Application Server Version 5.1.1.

854 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

system.DEFAULT

Handles the logins for inbound requests made by internal authentications and most of the other

protocols except Web applications and RMI requests. This login configuration is used by

WebSphere Application Server Version 5.1.1.

system.RMI_OUTBOUND

Processes RMI requests that are sent outbound to another server when either the

com.ibm.CSI.rmiOutboundLoginEnabled or the com.ibm.CSIOutboundPropagationEnabled

properties are true. These properties are set in the CSIv2 authentication panel. To access the

panel, click Security > Authentication protocol > CSIv2 Outbound authentication. To set the

com.ibm.CSI.rmiOutboundLoginEnabled property, select Custom outbound mapping. To set the

com.ibm.CSIOutboundPropagationEnabled property, select Security attribute propagation.

system.wssecurity.X509BST

Verifies an X.509 binary security token (BST) by checking the validity of the certificate and the

certificate path.

system.wssecurity.PKCS7

Verifies an X.509 certificate with a certificate revocation list in a PKCS7 object.

system.wssecurity.PkiPath

Verifies an X.509 certificate with a public key infrastructure (PKI) path.

system.wssecurity.UsernameToken

Verifies basic authentication (user name and password).

These system login configurations are defined on the System logins panel, which is accessible by

completing the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS Configuration > System logins.

Attention: The predefined system login configurations are listed on the System logins configuration

panel without the system prefix. For example, the system.wssecurity.UsernameToken configuration listed in

the JAAS configuration name option corresponds to the wssecurity.UsernameToken configuration that is on

the System logins configuration panel.

You can use the following predefined application login configurations:

ClientContainer

Specifies the login configuration that is used by the client container application, which uses the

CallbackHandler API that is defined in the deployment descriptor of the client container.

WSLogin

Specifies whether all applications can use the WSLogin configuration to perform authentication for

the WebSphere Application Server security run time.

DefaultPrincipalMapping

Specifies the login configuration used by Java 2 Connectors (J2C) to map users to principals that

are defined in the J2C authentication data entries.

These application login configurations are defined on the Application logins panel, which is accessible by

completing the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS Configuration > Application logins.

Do not remove these predefined system or application login configurations. Within these configurations,

you can add module class names and specify the order in which WebSphere Application Server loads

each module.

Chapter 14. Learn about WebSphere applications 855

Callback handler factory class name:

Specifies the name of the factory for the CallbackHandler class.

 You must implement the com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory class in this field.

Token type URI:

Specifies the namespace Uniform Resource Identifiers (URI), which denotes the type of security token that

is accepted.

 If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The

ValueType element identifies the type of security token and its namespace. If Extensible Markup Language

(XML) tokens are accepted, the value denotes the top-level element name of the XML token.

If the reserved words are specified previously in the Authentication method field, this field is ignored.

 Data type: Unicode characters except for non-ASCII characters, but

including the number sign (#), the percent sign (%), and

the square brackets ([]).

Token type local name:

Specifies the local name of the security token type, for example, X509v3.

 If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The

ValueType attribute identifies the type of security token and its namespace. If Extensible Markup Language

(XML) tokens are accepted, the value denotes the top-level element name of the XML token.

If the reserved words are specified previously in the Authentication method field, this field is ignored.

Nonce maximum age:

Specifies the time, in seconds, before the nonce timestamp expires. Nonce is a randomly generated value.

 You must specify a minimum of 300 seconds for the Nonce maximum age field. However, the maximum

value cannot exceed the number of seconds specified in the Nonce cache timeout field for either the

server level or the cell level.

You can specify the Nonce maximum age value for the server level by completing the following steps:

1. Click Servers > Application Servers >server_name.

2. Under Additional Properties, click Web Services: Default bindings for Web Services Security.

Important: The Nonce maximum age field on this panel is optional and only valid if the BasicAuth

authentication method is specified. If you specify another authentication method and attempt

to specify values for this field, the following error message displays and you must remove the

specified value: Nonce is not supported for authentication methods other than

BasicAuth.

If you specify the BasicAuth method, but do not specify values for the Nonce maximum age field, the Web

services security run time searches for a Nonce maximum age value on the server level. If a value is not

found on the server level, the run time searches the cell level. If a value is not found on either the server

level or the cell level, the default is 300 seconds.

 Default 300 seconds

856 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Range 300 to Nonce cache timeout seconds

Nonce clock skew:

Specifies the clock skew value, in seconds, to consider when WebSphere Application Server checks the

freshness of the message. Nonce is a randomly generated value.

 You can specify the Nonce clock skew value for the server level by completing the following steps:

1. Click Servers > Application Servers >server_name.

2. Under Additional Properties, click Web Services: Default bindings for Web Services Security.

You must specify a minimum of zero (0) seconds for the Nonce Clock Skew field. However, the maximum

value cannot exceed the number of seconds that is specified in the Nonce maximum age field on this

Login mappings panel.

Important: The Nonce clock skew field on this panel is optional and only valid if the BasicAuth

authentication method is specified. If you specify another authentication method and attempt

to specify values for this field, the following error message displays and you must remove the

specified value: Nonce is not supported for authentication methods other than

BasicAuth.

Note: If you specify BasicAuth, but do not specify values for the Nonce clock skew field, WebSphere

Application Server searches for a Nonce clock skew value on the server level. If a value is not

found on the server level, the run time searches the cell level. If a value is not found on either the

server level or the cell level, the default is zero (0) seconds.

 Default 0 seconds

Range 0 to Nonce Maximum Age seconds

Configuring the client for request signing: digitally signing message parts:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the Security

Extensions tab and the Port Binding tab in the Web Services Client Editor within an assembly tool such as

the Application Server Toolkit or Rational Web Developer.

v “Configuring the client security bindings using an assembly tool” on page 871

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 873

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively.

Complete the following steps to specify which message parts to digitally sign when configuring the client

for request signing:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client projects >application_name > appClientModule > META-INF

Chapter 14. Learn about WebSphere applications 857

4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and

click the WS Extension tab. The Client Deployment Descriptor is displayed.

5. Expand Request sender configuration > Integrity. Integrity refers to digital signature while

confidentiality refers to encryption. Integrity decreases the risk of data modification while the data is

transmitted across the Internet. For more information on digitally signing SOAP messages, see “XML

digital signature” on page 570.

6. Indicate which parts of the message to sign by clicking Add and selecting body, timestamp, or

SecurityToken. The following list contains descriptions of the message parts

Body The body is the user data portion of the message.

Timestamp

The time stamp determines if the message is valid based on the time that the message is sent

and then received. If timestamp is selected, proceed to the next step and select Add created

time stamp to add a time stamp to a message.

Securitytoken

The security token authenticates the client. If this option is selected, the message is signed.

You can choose to digitally sign the message using a time stamp if Add created time stamp is

selected and configured. You can digitally sign the message using a security token if a login

configuration authentication method is selected.

7. Optional: Expand the Add created time stamp section and select this option if you want a time

stamp added to the message. You can specify an expiration time for the time stamp, which helps

defend against replay attacks.The lexical representation for duration is the [ISO 8601] extended format

PnYnMnDTnHnMnS, where:

v nY represents the number of years

v nM represents the number of months

v nD represents the number of days

v T is the date and time separator

v nH represents the number of hours

v nM represents the number of minutes

v nS represents the number of seconds. The number of seconds can include decimal digits to

arbitrary precision.

For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format

is: P1Y2M3DT10H30M. Typically, you configure a message time stamp for about 10 to 30 minutes, for

example, 10 minutes is represented as: P0Y0M0DT0H10M0S. The P character precedes time and date

values.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when executing the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web Services Client Editor

within the assembly tool (such as the Application Server Toolkit or Rational Web Developer):

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web Services Editor within the WebSphere Application Server Toolkit:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

858 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

After you specify which message parts to digitally sign when the client sends a message to a server.

Once you have specified which message parts to digitally sign, you must specify which method is used to

digitally sign the message. See “Configuring the client for request signing: choosing the digital signature

method” for more information.

Configuring the client for request signing: choosing the digital signature method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the Security

extensions tab and the Port binding tab in the Web services client editor within an assembly tool such as

the Application Server Toolkit or Rational Web Developer:

v “Configuring the client security bindings using an assembly tool” on page 871

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 873

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively. You must specify which parts of the message sent by the client must be digitally

signed. See “Configuring the client for request signing: digitally signing message parts” on page 857 for

more information.

Complete the following steps to specify which message parts to digitally sign when configuring the client

for request signing:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > > Other > J2EE.

3. Click Application Client projects >application_name > appClientModule > META-INF

4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and

click the WS Binding tab. The Client Deployment Descriptor is displayed.

5. Expand Security request sender binding configuration > Signing information.

6. Select Edit to view the signing information and select a digital signature method from the Signature

method algorithm field. The following table describes the purpose of this information. Some of these

definitions are based on the XML-Signature specification, which is located at the following Web site

http://www.w3.org/TR/xmldsig-core.

 Name Purpose

Canonicalization method algorithm Canonicalizes the <SignedInfo> element before the

information is digested as part of the signature operation.

Chapter 14. Learn about WebSphere applications 859

http://www.w3.org/TR/xmldsig-core

Name Purpose

Digest method algorithm Applies to the data after transforms are applied, if

specified, to yield the <DigestValue> element. Signing the

<DigestValue> element binds the resource content to the

signer key. The algorithm selected for the client request

sender configuration must match the algorithm selected in

the server request receiver configuration.

Signature method algorithm Converts the canonicalized <SignedInfo> element into the

<SignatureValue> element. The algorithm selected for the

client request sender configuration must match the

algorithm selected in the server request receiver

configuration.

Signing key name Represents the key entry associated with the signing key

locator. The key entry refers to an alias of the key, which

is found in the key store and is used to sign the request.

Signing key locator Represents a reference to a key locator implementation

class that locates the correct hey store where the alias

and the certificate exist.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when executing the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web services client editor

within an assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web services editor within an assembly tool:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which method is used to digitally sign a message when the client sends a message to

a server.

After you configure the client to digitally sign the message, you must configure the server to verify the

digital signature. See “Configuring the server for request digital signature verification: Verifying the

message parts” for more information.

Configuring the server for request digital signature verification: Verifying the message parts:

860 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions

tab and the Binding Configurations tab in the Web services editor within the assembly tool such as the

Application Server Toolkit or Rational Web Developer:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

You can use these two tabs to configure the Web services security extensions and the Web services

security bindings, respectively. Also, you must specify which parts of the message sent by the client must

be digitally signed. See “Configuring the client for request signing: digitally signing message parts” on page

857 to determine which message parts are digitally signed. The message parts specified for the client

request sender must match the message parts specified for the server request receiver.

Complete the following steps to configure the server for request digital signature verification. The steps

describe how to modify the extensions to indicate which parts of the request to verify.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools

2. Click Windows > Open perspective > Other >J2EE.

3. Click EJB Projects >application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab in the Web services editor.

6. Expand the Request receiver service configuration details > Required integrity section. Required

integrity refers to the parts of the message that require digital signature verification. The purpose of

digital signature verification is to make sure that the message parts have not been modified while

transmitting across the Internet.

7. Indicate parts of the message to verify by clicking Add, and selecting one of the following three parts:

body, timestamp, or SecurityToken. You can determine which parts of the message to verify by looking

at the Web service request sender configuration in the client application. To view the Web service

request sender configuration information in the Web services client editor, click the Security extensions

tab and expand Request sender configuration > Integrity. The following includes a list and

description of the message parts:

Body This is the user data portion of the message.

Timestamp

The timestamp determines if the message is valid based on the time that the message is sent

and then received. If timestamp option is selected, proceed to the next step to Add Created

Time Stamp to the message.

Securitytoken

The security token authenticates the client. If the SecurityToken is selected, the message is

signed.

8. Optional: Expand the Add received time stamp section. The Add Received Time Stamp value

indicates to validate the Add Created Time Stamp option configured by the client. You must select this

option if you selected the Add Created Time Stamp on the client. The time stamp ensures message

integrity by indicating the timeliness of the request. This option helps defend against replay attacks.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when executing the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web Services Client Editor

within the Application Server Toolkit:

Chapter 14. Learn about WebSphere applications 861

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web Services Editor within the Application Server Toolkit:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which message parts are digitally signed and must be verified by the server when the

client sends a message to a server.

After you specify which message parts contain a digital signature that must be verified by the server, you

must configure the server to recognize the digital signature method used to digitally sign the message.

See “Configuring the server for request digital signature verification: choosing the verification method” for

more information.

Configuring the server for request digital signature verification: choosing the verification method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions

tab and the Binding Configurations tab in the Web Services Editor within the assembly tool such as the

Application Server Toolkit or Rational Web Developer:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

You can use these two tabs to configure the Web services security extensions and Web services security

bindings, respectively. You must specify which message parts contain digital signature information that

must be verified by the server. See “Configuring the server for request digital signature verification:

Verifying the message parts” on page 860. The message parts specified for the client request sender must

match the message parts specified for the server request receiver. Likewise, the digital signature method

chosen for the client must match the digital signature method used by the server.

Complete the following steps to configure the server for request digital signature verification. The steps

describe how to modify the extensions to indicate which digital signature method the server will use during

verification.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools

862 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

2. Click Windows > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab.

6. Expand the Security request receiver binding configuration details > Signing information section.

7. Click Edit to edit the signing information. The signing information dialog is displayed, select or enter

the following information:

v Canonicalization method algorithm

v Digest method algorithm

v Signature method algorithm

v Use certificate path reference

v Trust anchor reference

v Certificate store reference

v Trust any certificate

For more conceptual information on digitally signing Simple Object Access Protocol (SOAP) messages,

see XML digital signature. The following table describes the purpose for each of these selections.

Some of the following definitions are based on the XML-Signature specification, which is located at the

following Web address: http://www.w3.org/TR/xmldsig-core.

 Name Purpose

Canonicalization method algorithm Canonicalizes the <SignedInfo> element before it is

digested as part of the signature operation. The algorithm

selected for the server request receiver configuration

must match the algorithm selected in the client request

sender configuration.

Digest method algorithm Applies to the data after transforms are applied, if

specified, to yield the <DigestValue> element. The signing

of the <DigestValue> element binds resource content to

the signer key. The algorithm selected for the server

request receiver configuration must match the algorithm

selected in the client request sender configuration.

Signature method algorithm Converts the canonicalized <SignedInfo> element into the

<SignatureValue> element. The algorithm selected for the

server request receiver configuration must match the

algorithm selected in the client request sender

configuration.

Use certificate path reference or Trust any certificate Validates a certificate or signature sent with a message.

When a message is signed, the public key used to sign it

is sent with the message. This public key or certificate

might not be validated at the receiving end. By selecting

User certificate path reference, you must configure a

trust anchor reference and a certificate store reference to

validate the certificate sent with the message. By

selecting Trust any certificate, the signature is validated

by the certificate sent with the message without the

certificate itself being validated.

Use certificate path reference: Trust anchor reference Refers to a key store that contains trusted, self-signed

certificates and certificate authority (CA) certificates.

These certificates are trusted certificates that you can use

with any applications in your deployment.

Chapter 14. Learn about WebSphere applications 863

http://www.w3.org/TR/xmldsig-core

Name Purpose

Use certificate path reference: Certificate store

reference

Contains a collection of X.509 certificates. These

certificates are not trusted for all applications in your

deployment, but might be used as an intermediary to

validate certificates for an application. See

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when executing the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web Services Client Editor

within the Application Server Toolkit:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web Services Editor within the WebSphere Application Server Toolkit:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified the method that the server uses to verify the digital signature in the message parts.

After you configure the client for request signing and the server for request digital signature verification,

you must configure the server and the client to handle the response. Next, specify the response signing for

the server. See “Configuring the server for response signing: digitally signing message parts” for more

information.

Configuring the server for response signing: digitally signing message parts:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions

tab and the Binding configurations tab in the Web services editor within an assembly tool such as the

Application Server Toolkit or Rational Web Developer:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

864 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively.

Complete the following steps to specify which message parts to digitally sign when configuring the server

for response signing:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools

2. Click Windows > Open perspective > Other > J2EE.

3. Click EJB Projects >application _name >ejbModule > META-INF

4. Right-click the webservices.xml file and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web Services Editor within the

assembly tool.

6. Expand Response sender service configuration details > Integrity. Integrity refers to digital

signature while confidentiality refers to encryption. Integrity decreases the risk of data modification

while the data is transmitted across the Internet. For more information on digitally signing SOAP

messages, see XML digital signature.

7. Indicate the parts of the message to sign by clicking Add, and selecting Body, Timestamp, or

Securitytoken.

The following list contains descriptions of the message parts:

Body The body is the user data portion of the message.

Timestamp

The time stamp determines if the message is valid based on the time that the message is sent

and then received. If timestamp if selected, proceed to the next step and click Add Created

Time Stamp, which indicates that the time stamp is added to the message.

Securitytoken

The security token is used for authentication. If this option is selected, the authentication

information is added to the message.

8. Optional: Expand the Add created time stamp section. Select this option if you want a time stamp

added to the message. You can specify an expiration time for the time stamp, which helps defend

against replay attacks. The lexical representation for duration is the ISO 8601 extended format,

PnYnMnDTnHnMnS, where:

v nY represents the number of years.

v nM represents the number of months.

v nD represents the number of days.

v T is the date and time separator.

v nH represents the number of hours.

v nM represents the number of minutes.

v nS represents the number of seconds. The number of seconds can include decimal digits to

arbitrary precision.

For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format

is: P1Y2M3DT10H30M. Typically, you configure a message time stamp for about 10 to 30 minutes. 10

minutes is represented as: P0Y0M0DT0H10M0S. The P character precedes time and date values.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when executing the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web Services Client Editor

within the assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

Chapter 14. Learn about WebSphere applications 865

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web Services Editor within the WebSphere Application Server Toolkit:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which message parts to digitally sign when the server sends a response to the client.

After you specifying which message parts to digitally sign, you must specify which method is used to

digitally sign the message. See “Configuring the server for response signing: choosing the digital signature

method” for more information.

Configuring the server for response signing: choosing the digital signature method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions

tab and the Binding configurations tab in the Web services editor within the assembly tools such as the

Application Server Toolkit or Rational Web Developer:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively.

Complete the following steps to specify which digital signature method to use when configuring the server

for response signing:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click EJB Projects >application _name >ejbModule > META-INF

4. Right-click the webservices.xml file and click Open with > Web services editor.

5. Click the Binding Configurations tab.

6. Expand Response sender binding configuration details > Signing information.

7. Click Edit to choose a signing method. The signing info dialog is displayed and either select or enter

the following information:

v Canonicalization method algorithm

v Digest method algorithm

v Signature method algorithm

866 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v Signing key name

v Signing key locator

The following table describes the purpose of this information. Some of these definitions are based on

the XML-Signature specification, which is located at the following address:

http://www.w3.org/TR/xmldsig-core.

 Name Purpose

Canonicalization method algorithm Canonicalizes the <SignedInfo> element before the

information is digested as part of the signature operation.

Use the same algorithm on the client response receiver.

The algorithm selected for the server response sender

configuration must match the algorithm selected in the

client response receiver configuration.

Digest method algorithm Applies to the data after transforms are applied, if

specified, to yield the <DigestValue> element. Signing the

<DigestValue> binds resource content to the signer key.

The algorithm selected for the server response sender

configuration must match the algorithm selected in the

client response receiver configuration.

Signature method algorithm Converts the canonicalized <SignedInfo> element into the

<SignatureValue> element. The algorithm selected for the

server response sender configuration must match the

algorithm selected in the client response receiver

configuration.

Signing key name Represents the key entry associated with the signing key

locator. The key entry refers to an alias of the key, which

is found in the key store and is used to sign the request.

Signing key locator Represents a reference to a key locator implementation

class that locates the correct key store where the alias

and certificate exists. For more information on configuring

key locators, see any of the following files:

v “Configuring key locators using an assembly tool” on

page 845

v “Configuring key locators using the administrative

console” on page 846

You have specified which method is used to digitally sign a message when the server sends a message to

a client.

After you configure the server to digitally sign the response message, you must configure the client to

verify the digital signature contained in the response message. See “Configuring the client for response

digital signature verification: verifying the message parts” for more information.

Configuring the client for response digital signature verification: verifying the message parts:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to becomes familiar with the WS

Extension tab and the WS Binding tab in the Client Deployment Descriptor within the assembly tool such

as the Application Server Toolkit or Rational Web Developer:

v “Configuring the client security bindings using an assembly tool” on page 871

Chapter 14. Learn about WebSphere applications 867

http://www.w3.org/TR/xmldsig-core

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 873

You can use these two tabs to configure the Web services security extensions and the Web services

security bindings, respectively.

Complete the following steps to configure the client for response digital signature verification. The steps

describe how to modify the extensions to indicate which parts of the response to verify.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file and click Open With > Deployment descriptor editor.

5. Click the WS extension tab.

6. Expand the Response receiver configuration > Required integrity section. Required integrity refers

to parts that require digital signature verification. Digital signature verification decreases the risk that

the message parts have been modified while the message is transmitted across the Internet.

7. Indicate the parts of the message that must be verified. You can determine which parts of the message

to verify by looking at the Web service response sender configuration. Click Add and select one of the

following parts:

Body The body is the user data portion of the message.

Timestamp

The time stamp determines if the message is valid based on the time that the message is sent

and then received. If the time stamp option is selected, proceed to the next step to add a

received time stamp to the message.

Securitytoken

The security token authenticates the client. If Securitytoken option is selected, the message is

signed.

8. Optional: Expand the Add received time stamp section. Select Add received time stamp to add the

received time stamp to the message.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when executing the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web services client editor

within an assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web services editor within an assembly tool:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

868 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which message parts are digitally signed and must be verified by the client when the

server sends a response message to the client.

After you specify which message parts contain a digital signature that must be verified by the client, you

must configure the client to recognize the digital signature method used to digitally sign the message. See

“Configuring the client for response digital signature verification: choosing the verification method” for more

information.

Configuring the client for response digital signature verification: choosing the verification

method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS

extension tab and the WS binding tab in the Web services editor within an assembly tool such as the

Application Server Toolkit or Rational Web Developer:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

You can use these two tabs to configure the Web services security extensions and Web services security

bindings, respectively. Also, you must specify which message parts contain digital signature information

that must be verified by the client. See “Configuring the client for response digital signature verification:

verifying the message parts” on page 867 to specify which message parts are digitally signed by the

server and must be verified by the client. The message parts specified for the server response sender

must match the message parts specified for the client response receiver. Likewise, the digital signature

method chosen for the server must match the digital signature method used by the client.

Complete the following steps to configure the client for response digital signature verification. The steps

describe how to modify the extensions to indicate which digital signature method the client will use during

verification.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab.

6. Expand the Security response receiver binding configuration > Signing information section.

7. Click Edit to select a digital signature method. The signing info dialog displays and either select or

enter the following information:

v Canonicalization method algorithm

v Digest method algorithm

v Signature method algorithm

v Signing key name

v Signing key locator

Chapter 14. Learn about WebSphere applications 869

For more conceptual information on digitally signing SOAP messages, see XML digital signature. The

following table describes the purpose for each of these selections. Some of the following definitions are

based on the XML-Signature specification, which can be found at: http://www.w3.org/TR/xmldsig-core.

 Name Purpose

Canonicalization method algorithm The canonicalization method algorithm is used to

canonicalize the <SignedInfo> element before it is

digested as part of the signature operation.

Digest method algorithm The digest method algorithm is the algorithm applied to

the data after transforms are applied, if specified, to yield

the <DigestValue>. The signing of the <DigestValue>

binds resource content to the signer key. The algorithm

selected for the client response receiver configuration

must match the algorithm selected in the server response

sender configuration.

Signature method algorithm The signature method is the algorithm that is used to

convert the canonicalized <SignedInfo> element into the

<SignatureValue> element. The algorithm selected for the

client response receiver configuration must match the

algorithm selected in the server response sender

configuration.

Use certificate path reference or Trust any certificate When a message is signed, the public key used to sign it

is transmitted with the message. To validate this public

key at the receiving end, configure a certificate path

reference. By selecting User certificate path reference,

you must configure a trust anchor reference and

certificate store reference to validate the certificate sent

with the message. By selecting trust any certificate, the

signature is validated by the certificate sent with the

message without the certificate itself being validated.

Use certificate path reference: Trust anchor reference A trust anchor is a configuration that refers to a keystore

that contains trusted, self-signed certificates and

certificate authority (CA) certificates. These certificates

are trusted certificates that you can use with any

applications in your deployment.

Use certificate path reference: Certificate store

reference

A certificate store is a configuration that has a collection

of X.509 certificates. These certificates are not trusted for

all applications in your deployment, but might be used as

an intermediary to validate certificates for an application.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when executing the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web services client editor

within an assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web services editor within an assembly tool:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

870 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/xmldsig-core

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which method the client uses to verify the digital signature in the message parts.

After you configure the server for response signing and the client for request digital signature verification,

verify that you have configured the client and the server to handle the message request.

Configuring the client security bindings using an assembly tool:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

When configuring a client for Web services security, the bindings describe how to run the security

specifications found in the extensions. Use the Web services client editor within an assembly tool to

include the binding information in the client enterprise archive (EAR) file.

You can configure the client-side bindings from a pure client accessing a Web service or from a Web

service accessing a downstream Web service. This document focuses on the pure client situation.

However, the concepts, and in most cases the steps, also apply when a Web service is configured to

communicate downstream to another Web service that has client bindings. Complete the following steps to

edit the security bindings on a pure client (or server acting as a client) using an assembly tool:

1. Import the Web services client EAR file into an assembly tool. When you edit the client bindings on a

server acting as a client, the same basic steps apply. Refer to the Assembly tools documentation for

additional information.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor. The

Client Deployment Descriptor is displayed.

5. Click the WS Extension tab.

6. On the WS extension tab, select the Port QName Bindings that you want to configure. The Web

services security extensions are configured for outbound requests and inbound responses. You need to

configure the following information for Web services security extensions. These topics are discussed in

more detail in other sections of the documentation.

Request sender configuration details

Details

“Configuring the client for request signing: digitally signing message parts” on page 857

Integrity

“Configuring the client for request signing: digitally signing message parts” on page 857

Confidentiality

“Configuring the client for request encryption: Encrypting the message parts” on page 886

Login Config

Chapter 14. Learn about WebSphere applications 871

BasicAuth

“Configuring the client for basic authentication: specifying the method” on page 900

IDAssertion

“Configuring the client for identity assertion: specifying the method” on page 908

Signature

“Configuring the client for signature authentication: specifying the method” on page 914

LTPA “Configuring the client for LTPA token authentication: specifying LTPA token

authentication” on page 931

ID assertion

“Configuring the client for identity assertion: specifying the method” on page 908

Add created time stamp

“Configuring the client for request signing: digitally signing message parts” on page 857

Response receiver configuration details

Required integrity

“Configuring the client for response digital signature verification: verifying the message parts”

on page 867

Required confidentiality

“Configuring the client for response decryption: decrypting the message parts” on page 897

Add received time stamp

“Configuring the client for response digital signature verification: verifying the message parts”

on page 867

7. On the WS binding tab, select the Port Qualified Name Binding that you want to configure. The Web

services security bindings are configured for outbound requests and inbound responses. You need to

configure the following information for Web services security bindings. These topics are discussed in

more details in other sections of the documentation.

Security request sender binding configuration

Signing information

“Configuring the client for request signing: choosing the digital signature method” on page 859

Encryption information

“Configuring the client for request encryption: choosing the encryption method” on page 887

Key locators

“Configuring key locators using an assembly tool” on page 845

Login binding

Basic auth

“Configuring the client for basic authentication: collecting the authentication

information” on page 902

ID assertion

“Configuring the client for identity assertion: collecting the authentication method” on

page 909

Signature

“Configuring the client for signature authentication: collecting the authentication

information” on page 915

LTPA “Configuring the client for LTPA token authentication: collecting the authentication

method information” on page 932

Security response receiver binding configuration

872 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Signing information

“Configuring the client for response digital signature verification: choosing the verification

method” on page 869

Encryption information

“Configuring the client for response decryption: choosing a decryption method” on page 898

Trust anchor

“Configuring trust anchors using an assembly tool” on page 834

Certificate store list

“Configuring the client-side collection certificate store using an assembly tool” on page 839

Key locators

“Configuring key locators using an assembly tool” on page 845

Important: When configuring the security request sender binding configuration, you must synchronize the

information used to perform the specified security with the security request receiver binding

configuration, which is configured in the server EAR file. These two configurations must be

synchronized in all respects because there is no negotiation during run time to determine the

requirements of the server.

For example, when configuring the encryption information in the security request sender binding

Configuration, you must use the public key from the server for encryption. Therefore, the key locator that

you choose must contain the public key from the server configuration. The server must contain the private

key to decrypt the message. This example illustrates the important relationship between the client and

server configuration. Additionally, when configuring the security response receiver binding configuration,

the server must send the response using security information known by this client security response

receiver binding configuration.

The following table shows the related configurations between the client and the server. The client request

sender and the server request receiver are relative configurations that must be synchronized with each

other. The server response sender and the client response receiver are related configurations that must be

synchronized with each other. Note that the related configurations are end points for any request or

response. One end point must communicate its actions with the other end point because run time

requirements are not negotiated.

 Table 18. Related configurations

Client configuration Server configuration

Request sender Request receiver

Response receiver Response sender

Configuring the security bindings on a server acting as a client using the administrative console:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

When configuring a client for Web services security, the bindings describe how to run the security

specifications found in the extensions. Use the Web services client editor within an assembly tool to

include the binding information in the client enterprise archive (EAR) file.

You can configure the client-side bindings from a pure client accessing a Web service or from a Web

service accessing a downstream Web service. Complete the following steps to find the location in which to

Chapter 14. Learn about WebSphere applications 873

edit the client bindings from a Web service that is running on the server. When a Web service

communicates with another Web service, you must configure client bindings to access the downstream

Web service.

1. Deploy the Web service using the WebSphere Application Server administrative console by clicking

Applications > Install New Application. You can access the administrative console by typing

http://localhost:9060/ibm/console in your Web browser unless you have changed the port number.

For more information on installing an application, see Installing a new application

2. Click Applications > Enterprise applications > application_name.

3. Under Related Items, click either Web modules or EJB modules, depending upon which type of

service is the client to the downstream service.

v For Web modules, click the Web archive (WAR) file that you configured as the client.

v For Enterprise JavaBeans (EJB) modules, click the Java archive (JAR) file that you configured as

the client.

4. Click the name of the WAR or JAR file.

5. Under Additional Properties, click Web Services: Client security bindings. A table displays with the

following columns:

v Component Name

v Port

v Web Service

v Request Sender Binding

v Request Receiver Binding

v HTTP Basic Authentication

v HTTP SSL Configuration

For Web services security, you must edit the request sender binding and response receiver binding

configurations. You can use the defaults for some of the information at the server level. Default

bindings are convenient because you can configure commonly reused elements such as key locators

once and then reference their aliases in the application bindings.

6. View the default bindings for the server using the administrative console by clicking Servers >

Application server > server_name. Under Additional Properties, click Web Services: Default

bindings for Web services security. You can configure the following sections. These topics are

discussed in more detail in other sections of the documentation.

v Request sender binding

– “Signing parameter configuration settings” on page 827

– “Encryption information configuration settings” on page 734

– “Key locator configuration settings” on page 695

– “Login bindings configuration settings” on page 883

v Response receiver binding

– “Signing information configuration settings” on page 716

– “Encryption information configuration settings” on page 729

– “Trust anchor configuration settings” on page 661

– “Collection certificate store configuration settings” on page 666

– “Key locator configuration settings” on page 695

Important: When configuring the security request sender binding configuration, you must synchronize the

information used to perform the specified security with the security request receiver binding

configuration, which is configured in the server EAR file. These two configurations must be

synchronized in all respects because there is no negotiation during run time to determine the

requirements of the server. For example, when configuring the encryption information in the

security request sender binding configuration, you must use the public key from the server for

874 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

encryption. Therefore, the key locator that you choose must contain the public key from the

server configuration. The server must contain the private key to decrypt the message. This

example illustrates the important relationship between the client and server configuration.

Additionally, when configuring the security response receiver binding configuration, the server

must send the response using security information known by this client security response

receiver binding configuration.

The following table shows the related configurations between the client and the server. The client request

sender and the server request receiver are relative configurations that must be synchronized with each

other. The server response sender and the client response receiver are related configurations that must be

synchronized with each other. Note that related configurations are end points for any request or response.

One end point must communicate its actions with the other end point because run time requirements are

not required.

 Table 19. Related configurations

Client configuration Server configuration

Request sender Request receiver

Response receiver Response sender

Configuring the server security bindings using an assembly tool:

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Create an Enterprise JavaBean (EJB) file Java archive (JAR) file or a Web archive (WAR) file containing

the security binding file (ibm-webservices-bnd.xmi) and the security extension file (ibm-webservices-
ext.xmi). If this archive is acting as a client to a downstream service, you also need the client-side

binding file (ibm-webservicesclient-bnd.xmi) and the client-side extension file (ibm-webservicesclient-
ext.xmi). These files are generated using the WSDL2Java command. You can edit these files using the

Web services editor in the Assembly tools.

When configuring server-side security for Web services security, the security extensions configuration

specifies what security is performed, the security bindings configuration indicates how to perform what is

specified in the security extensions configuration. You can use the defaults for some elements at the cell

and server levels in the bindings configuration, including key locators, trust anchors, the collection

certificate store, trusted ID evaluators, and login mappings and reference these elements from the WAR

and JAR binding configurations.

Prior to importing the Web services enterprise archive (EAR) file into the assembly tool, make sure that

you have already run the wsdl2java command on your Web service to enable your J2EE application. You

must import the Web services enterprise archive (EAR) file into the assembly tool.

Open the Web services editor in an assembly tool to begin editing the server security extensions and

bindings. The following steps can locate the server security extensions and bindings. Other tasks specify

how to configure each section of the extensions and bindings in more detail.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Configure the server for inbound requests and outbound responses security configuration. To configure

the server for inbound requests and outbound responses, complete the following steps:

a. Click EJB Projects >application_name > ejbModule > META-INF.

Chapter 14. Learn about WebSphere applications 875

b. Right-click the webservices.xml file and click Open with > Web services editor. The

webservices.xml file represents the server-side (inbound) Web services configuration. The

webservicesclient.xml file represents the client-side (outbound) Web services configuration.

4. In the Web services editor (for the webservices.xml file and inbound requests and outbound responses

Web services configuration), there are several tabs at the bottom of the editor including Web Services,

Port Components, Handlers, Security Extensions, Bindings, and Binding Configurations. The security

extensions are edited using the Security Extensions tab. The security bindings are edited using the

Security Bindings tab.

a. Click the WS Extensions tab and select the port component binding to edit. The Web services

security extensions are configured for inbound requests and outbound responses. You need to

configure the following information for Web services security extensions. These topics are

discussed in more detail in other topics in the documentation.

Request receiver service configuration details

Required integrity

“Configuring the server for request digital signature verification: Verifying the message

parts” on page 860

Required confidentiality

“Configuring the server for request decryption: decrypting the message parts” on page 890

Login config

Basic auth

“Configuring the server to handle BasicAuth authentication information” on page

904

ID assertion

“Configuring the server to handle identity assertion authentication” on page 910

Signature

“Configuring the server to support signature authentication” on page 917

LTPA “Configuring the server to handle LTPA token authentication information” on page

933

Add received time stamp

“Configuring the server for request digital signature verification: Verifying the message

parts” on page 860

Response sender service configuration details

Details

“Configuring the server for response signing: digitally signing message parts” on page 864

Integrity

“Configuring the server for response signing: digitally signing message parts” on page 864

Confidentiality

“Configuring the server for response encryption: encrypting the message parts” on page

894

Add created time stamp-

“Configuring the server for response signing: digitally signing message parts” on page 864

b. Click the Binding Configurations tab and select the port component binding to edit. The Web

services security bindings are configured for inbound requests and outbound responses. You need

to configure the following information for Web services security bindings. These topics are

discussed in more details in other topics in the documentation.

Response receiver binding configuration details

876 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Signing Information

“Configuring the server for request digital signature verification: choosing the verification

method” on page 862

Encryption Information

“Configuring the server for request decryption: choosing the decryption method” on page

891

Trust Anchor

“Configuring trust anchors using an assembly tool” on page 834

Certificate Store List

“Configuring the server-side collection certificate store using an assembly tool” on page

840

Key Locators

“Configuring key locators using an assembly tool” on page 845

Login Mapping

Basic auth

“Configuring the server to validate BasicAuth authentication information” on page

905

ID assertion

“Configuring the server to validate identity assertion authentication information” on

page 911

Signature

“Configuring the server to validate signature authentication information” on page

918

LTPA “Configuring the server to validate LTPA token authentication information” on page

933

Trusted ID evaluator

Trusted ID evaluator reference

Response sender binding configuration details

Signing information

“Configuring the server for response signing: choosing the digital signature method” on

page 866

Encryption information

“Configuring the server for response encryption: choosing the encryption method” on page

894

Key locators

“Configuring key locators using an assembly tool” on page 845

Configure the client for outbound requests and inbound responses security configuration by right-clicking

the webservicesclient.xml file and clicking Open With > Deployment descriptor editor. For more

information, see “Configuring the client security bindings using an assembly tool” on page 871.

Configuring the server security bindings using the administrative console:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Chapter 14. Learn about WebSphere applications 877

Create an Enterprise JavaBean (EJB) file Java archive (JAR) file or Web archive (WAR) file containing the

security binding file (ibm-webservices-bnd.xmi) and the security extension file (ibm-webservices-
ext.xmi). If this archive is acting as a client to a downstream service, you also need the client-side

binding file (ibm-webservicesclient-bnd.xmi) and the client-side extension file (ibm-webservicesclient-
ext.xmi). These files are generated using the WSDL2Java command command. You can edit these files

using the Web Services Editor in the Assembly tools.

When configuring server-side security for Web services security, the security extensions configuration

specifies what security is to be performed while the security bindings configuration indicates how to

perform what is specified in the security extensions configuration. You can use the defaults for some

elements at the cell and server levels in the bindings configuration, including key locators, trust anchors,

the collection certificate store, trusted ID evaluators, and login mappings and reference them from the

WAR and JAR binding configurations.

The following steps describe how to edit bindings for a Web service after these bindings are deployed on

a server. When one Web service communicates with another Web service, you also must configure the

client bindings to access the downstream Web service.

1. Deploy the Web service using the WebSphere Application Server administrative console. The

Administrative Console is accessible by typing http://localhost:9060/ibm/console in a Web

browser. After you log into the administration console, click Applications > Install new application

to deploy the Web service. For more information, see Installing application files with the console.

2. After you deploy the Web service, click Applications > Enterprise applications > application _name.

3. Under Related Items, click either Web modules or EJB modules depending on which service you

want to configure.

a. If you select Web modules, click the WAR file that you want to edit.

b. If you select EJB modules, click the JAR file that you want to edit.

4. After you select a WAR or JAR file, under Additional properties, click Web services: client security

bindings for outbound requests and inbound responses. Click Web services: server security

bindings for inbound requests and outbound responses.

5. If you click Web services: server security bindings, the following sections can be configured. These

topics are discussed in more detail in other sections of the documentation.

v Request receiver binding

– Signing information

– Encryption information

– Trust anchors

– Collection certificate store

– Key locator

– Trusted ID evaluator

– Login mappings

v Response sender binding

– Signing parameters

– Encryption information

– Key locator

XML encryption

XML encryption is a specification developed by World Wide Web (WWW) Consortium (W3C) in 2002 that

contains the steps to encrypt data, the steps to decrypt encrypted data, the XML syntax to represent

encrypted data, the information used to decrypt the data, and a list of encryption algorithms such as triple

DES, AES, and RSA.

878 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

You can apply XML encryption to an XML element, XML element content, and arbitrary data, including an

XML document. For example, suppose that you need to encrypt the CreditCard element shown in the

example 1.

Example 1: Sample XML document

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <CreditCard Limit=’5,000’ Currency=’USD’>

 <Number>4019 2445 0277 5567</Number>

 <Issuer>Example Bank</Issuer>

 <Expiration>04/02</Expiration>

 </CreditCard>

</PaymentInfo>

Example 2: XML document with a common secret key

Example 2 shows the XML document after encryption. The EncryptedData element represents the

encrypted CreditCard element. The EncryptionMethod element describes the applied encryption algorithm,

which is triple DES in this example. The KeyInfo element contains the information to retrieve a decryption

key, which is a KeyName element in this example. The CipherValue element contains the ciphertext

obtained by serializing and encrypting the CreditCard element.

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>John Smith</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

</PaymentInfo>

Example 3: XML document encrypted with the public key of the recipient

In example 2, it is assumed that both the sender and recipient have a common secret key. If the recipient

has a public and private key pair, which is most likely the case, the CreditCard element can be encrypted

as shown in example 3. The EncryptedData element is the same as the EncryptedData element found in

Example 2. However, the KeyInfo element contains an EncryptedKey .

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>Sally Doe</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>yMTEyOTA1M...</CipherValue>

 </CipherData>

 </EncryptedKey>

 </KeyInfo>

 <CipherData>

Chapter 14. Learn about WebSphere applications 879

<CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

</PaymentInfo>

XML Encryption in the WSS-Core

WSS-Core specification is under development by Organization for the Advancement of Structured

Information Standards (OASIS). The specification describes enhancements to Simple Object Access

Protocol (SOAP) messaging to provide quality of protection through message integrity, message

confidentiality, and single message authentication. The message confidentiality is realized by encryption

based on XML Encryption.

The WSS-Core specification supports encryption of any combination of body blocks, header blocks, their

sub-structures, and attachments of a SOAP message. The specification also requires that when you

encrypt parts of a SOAP message, you mprepend a reference from the security header block to the

encrypted parts of the message. The reference can be a clue for a recipient to identify which encrypted

parts of the message to decrypt.

The XML syntax of the reference varies according to what information is encrypted and how it is

encrypted. For example, suppose that the CreditCard element in example 4 is encrypted with either a

common secret key or the public key of the recipient.

Example 4: Sample SOAP message

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <CreditCard Limit=’5,000’ Currency=’USD’>

 <Number>4019 2445 0277 5567</Number>

 <Issuer>Example Bank</Issuer>

 <Expiration>04/02</Expiration>

 </CreditCard>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The resulting SOAP messages are shown in Examples 5 and 6. In these example, the ReferenceList and

EncryptedKey elements are used as references, respectively.

Example 5: SOAP message encrypted with a common secret key

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Header>

 <Security SOAP-ENV:mustUnderstand=’1’

 xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>

 <ReferenceList xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <DataReference URI=’#ed1’/>

 </ReferenceList>

 </Security>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Id=’ed1’

 Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

880 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>John Smith</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 6: SOAP message encrypted with the public key of the recipient

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Header>

 <Security SOAP-ENV:mustUnderstand=’1’

 xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>

 <EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>Sally Doe</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>yMTEyOTA1M...</CipherValue>

 </CipherData>

 <ReferenceList>

 <DataReference URI=’#ed1’/>

 </ReferenceList>

 </EncryptedKey>

 </Security>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Id=’ed1’

 Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Relationship to digital signature

The WSS-Core specification also provides message integrity, which is realized by a digital signature based

on the XML-Signature specification.

A combination of encryption and digital signature over common data introduces cryptographic

vulnerabilities.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Chapter 14. Learn about WebSphere applications 881

Securing Web services for version 5.x applications using XML encryption

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

WebSphere Application Server provides several different methods to secure your Web services. Extensible

Markup Language (XML) encryption is one of these methods. You can secure your Web services using

any of the following methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

XML encryption enables you to encrypt an XML element, the content of an XML element, or arbitrary data

such as an XML document. Like XML digital signature, a message is sent by the client as the request

sender to the server as the request receiver. The response is sent by the server as the response sender

to the client as the request receiver. Unlike XML digital signature, which verifies the authenticity of the

sender, XML encryption scrambles the message content using a key, which can be unscrambled by a

receiver that possesses the same key. You can use XML encryption in conjunction with XML digital

signature to scramble the content while verifying the authenticity of the message sender.

To use XML encryption to secure Web services, you must use an assembly tool. For more information, see

Assembly tools

To securing Web services for version 5.x applications using XML encryption, complete the following steps:

1. Specify the encryption settings for the request sender. The message parts and the encryption method

settings chosen for the request sender on the client must match the message parts and the method

settings chosen for the request receiver on the server. To specify the encryption settings for the

request sender:

a. “Configuring the client for request encryption: Encrypting the message parts” on page 886.

b. “Configuring the client for request encryption: choosing the encryption method” on page 887.

2. Specify the encryption settings for the request receiver. The decryption settings chosen for the request

receiver must match the encryption settings chosen for the request sender.

To specify the decryption settings for the request receiver:

a. “Configuring the server for request decryption: decrypting the message parts” on page 890.

b. “Configuring the server for request decryption: choosing the decryption method” on page 891.

3. Specify the encryption settings for the response sender. The message parts and the encryption method

settings chosen for the response sender on the server must match the message parts and the method

settings chosen for the response receiver on the client. To specify the encryption settings for the

response sender:

a. “Configuring the server for response encryption: encrypting the message parts” on page 894.

b. “Configuring the server for response encryption: choosing the encryption method” on page 894.

4. Specify the encryption settings for the response receiver.

Remember: The decryption settings chosen for the response receiver must match the encryption

settings chosen for the response sender.

To specify the decryption settings for the response receiver, complete the following steps:

882 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

a. “Configuring the client for response decryption: decrypting the message parts” on page 897.

b. “Configuring the client for response decryption: choosing a decryption method” on page 898.

After completing these steps, you have secured your Web services using XML encryption.

Login bindings configuration settings:

Use this page to configure the encryption and decryption parameters.

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

The pluggable token uses the Java Authentication and Authorization Service (JAAS) CallBackHandler

(javax.security.auth.callback.CallBackHandler) interface to generate the token that is inserted into the

message. The following list describes the CallBack support implementations:

com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

This implementation is used for generating binary tokens inserted as

<wsse:BinarySecurityToken/@ValueType> in the message.

javax.security.auth.callback.NameCallback and javax.security.auth.callback.PasswordCallback

This implementation is used for generating user name tokens inserted as <wsse:UsernameToken> in

the message.

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenSenderCallback

This implementation is used to generate Extensible Markup Language (XML) tokens and is

inserted as the <SAML: Assertion> element in the message.

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

This implementation is used to obtain properties that are specified in the binding file.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications >application_name.

2. Under Related Items, click EJB modules or Web modules >URI_file_name > Web Services: Client

security bindings.

3. Under Request Sender Bindings, click Edit.

4. Under Additional properties, click Login binding.

If the encryption information is not available, select None.

If the encryption information is available, select Dedicated login binding and specify the configuration in

the following fields:

Authentication method:

Specifies the unique name for the authentication method.

 You can uses any string to name the authentication method. However, the string must match the element

in the server-level configuration. The following words are reserved by WebSphere Application Server:

BasicAuth

This method uses both a user name and a password.

IDAssertion

This method uses a user name, but it requires that additional trust is established by the receiving

server using a trusted ID evaluator mechanism.

Chapter 14. Learn about WebSphere applications 883

Signature

This method uses the distinguished name (DN) of the signer.

LTPA This method validates the token.

Callback handler:

Specifies the name of the callback handler. The callback handler must implement the

javax.security.auth.callback.CallbackHandler interface.

Basic authentication user ID:

Specifies the user name for basic authentication. With the basic authentication method, you can define a

user name and a password in the binding file.

Basic authentication password:

Specifies the password for basic authentication.

Token type URI:

Specifies the namespace Uniform Resource Identifiers (URI), which denotes the type of security token that

is accepted.

 The value of this field if is impacted by the following conditions:

v If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The

ValueType element identifies the type of security token and its namespace.

v If Extensible Markup Language (XML) tokens are accepted, the value denotes the top-level element

name of the XML token.

v The Token type URI field is ignored if the reserved words, which are listed in the description of the

Authentication method field, are specified.

This information is inserted as <wsse:BinarySecurityToken>/ValueType for the <SAML: Assertion> XML

token.

Token type local name:

Specifies the local name of the security token type. For example, X509v3.

 The value of this field if is impacted by the following conditions:

v If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The

ValueType element identifies the type of security token and its namespace.

v If Extensible Markup Language (XML) tokens are accepted, the value denotes the top-level element

name of the XML token.

v The Token type URI field is ignored if the reserved words, which are listed in the description of the

Authentication method field, are specified.

This information is inserted as <wsse:BinarySecurityToken>/ValueType for the <SAML: Assertion> XML

token.

Request sender:

The security handler on the request sender side of the SOAP message enforces the security constraints,

located in the ibm-webservicesclient-ext.xmi file, and bindings, located in the ibm-webservicesclient-
bnd.xmi file. These constraints and bindings apply both to J2EE application clients or when Web

884 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

services is acting as a client. The security handler acts on the security constraints before sending the

SOAP message. For example, the security handler might digitally sign the message, encrypt the message,

create a time stamp, or insert a security token.

 The security handler on the request sender side of the Simple Object Access Protocol (SOAP) message

enforces the security constraints, located in the ibm-webservicesclient-ext.xmi file, and the bindings,

located in the ibm-webservicesclient-bnd.xmi file. These constraints and bindings apply both to J2EE

application clients or when Web services is acting as a client. The security handler acts on the security

constraints before sending the SOAP message. Request sender security constraints must match the

security constraint requirements defined in the request receiver. For example, the security handler might

digitally sign the message, encrypt the message, create a time stamp, or insert a security token. You can

specify the following security requirements for the request sender and apply them to the SOAP message:

Integrity (digital signature)

You can select multiple parts of a message to sign digitally. The following list contains the integrity

options:

v Body

v Time stamp

v Security token

Confidentiality (encryption)

You can select multiple parts of a message to encrypt. The following list contains the confidentiality

options:

v Body content

v Username token

Security token

You can insert only one token into the message. The following list contains the security token

options:

v Basic authentication, which requires both a user name and a password

v Identity assertion, which requires a user name only

v X.509 binary security token

v Lightweight Third Party Authentication (LTPA) binary security token

v Custom token , which is pluggable and supports custom-defined tokens in the SOAP message

Timestamp

You can have a time stamp to indicate the timeliness of the message.

v Timestamp

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Request sender binding collection:

Use this page to specify the binding configuration to send request messages for Web services security.

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

Chapter 14. Learn about WebSphere applications 885

2. Under Related items, click EJB modules or Web modules > URI_file_name

3. Under Additional properties, click Web services: Client security bindings.

4. Under Request sender binding, click Edit.

Web services security namespace: Specifies the namespace that is used by Web services security to

send a request. However, this field configures the namespace value only and does not enforce the

semantics of the specification related to the namespace. Web services security uses the processing

semantic only in draft 13 of the OASIS specification. The following schemas are available:

v http://schemas.xmlsoap.org/ws/2003/06/secext

v http://schemas.xmlsoap.org/ws/2002/07/secext

v http://schemas.xmlsoap.org/ws/2002/04/secext

v None

The namespace used by the response sender is based on the namespace of the incoming message in the

request receiver.

Signing information:

Specifies the configuration for the signing parameters. Signing information is used to sign and validate

parts of the message including the body and time stamp.

 You can also use these parameters for X.509 validation when the Authentication method is IDAssertion

and the ID Type is X509Certificate, in the server-level configuration. In such cases, you must fill in the

Certificate Path fields only.

Encryption information:

Specifies the configuration for the encrypting and decrypting parameters. Encryption information is used for

encrypting and decrypting various parts of a message, including the body and user name token.

Key locators:

Specifies a list of key locator objects that retrieve the keys for digital signature and encryption from a

keystore file or a repository. The key locator maps a name or a logical name to an alias or maps an

authenticated identity to a key. This logical name is used to locate a key in a key locator implementation.

Login mappings:

Specifies a list of configurations for validating tokens within incoming messages.

 Login mappings map the authentication method to the Java Authentication and Authorization Service

(JAAS) configuration.

To configure JAAS, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS Configuration.

Configuring the client for request encryption: Encrypting the message parts:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

886 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Prior to completing these steps, read either of the following topics to familiarize yourself with the WS

Extensions tab and the WS Binding tab in the Client Deployment Descriptor Editor within an assembly tool:

v “Configuring the client security bindings using an assembly tool” on page 871

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 873

 These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete the following steps to specify which message parts to encrypt when configuring the client for

request encryption:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS extensions tab, which is located at the bottom of Client Deployment Descriptor Editor

within the assembly tool.

6. Expand Request sender configuration > Confidentiality. Confidentiality refers to encryption while

integrity refers to digital signing. Confidentiality reduces the risk of someone understanding the

message flowing across the Internet. With confidentiality specifications, the message is encrypted

before it is sent and decrypted when it is received at the correct target. For more information on

encrypting , see XML encryption.

7. Select the parts of the message that you want to encrypt by clicking Add. You can select one of the

following parts:

Bodycontent

User data portion of the message

Usernametoken

Basic authentication information, if selected

After you specify which message parts to encrypt, you must specify which method to use to encrypt the

request message. See “Configuring the client for request encryption: choosing the encryption method” for

more information.

Configuring the client for request encryption: choosing the encryption method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to familiarize yourself with the WS

Extensions tab and the WS Binding tab in the Client Deployment Descriptor editor within an assembly tool:

v “Configuring the client security bindings using an assembly tool” on page 871

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 873

 These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete the following steps to specify which encryption method to use when configuring the client for

request encryption:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

Chapter 14. Learn about WebSphere applications 887

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click Windows > Open perspective > Other > J2EE.

4. Click Application Client Projects >application_name > appClientModule > META-INF.

5. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

6. Click the WS binding tab, which is located at the bottom of the Client Deployment Descriptor editor

within the assembly tool.

7. Expand Security request sender binding configuration > Encryption information.

8. Select an encryption option and click Edit to view the encryption information or click Add to add

another option. The following table describes the purpose of this information. Some of these

definitions are based on the XML-Encryption specification, which is located at the following Web

address: http://www.w3.org/TR/xmlenc-core

Encryption name

Refers to the name of the encryption information entry.

Data encryption method algorithm

Encrypts and decrypts data in fixed size, multiple octet blocks.

Key encryption method algorithm

Represents public key encryption algorithms that are specified for encrypting and decrypting

keys.

Encryption key name

Represents a Subject (Owner field of the certificate) from a public key certificate found by the

encryption key locator, which is used by the key encryption method algorithm to encrypt the

private key. The private key is used to encrypt the data.

 The key chosen must be a public key of the target. Encryption must be done using the public

key and decryption must be done by the target using the private key (the personal certificate of

the target).

Encryption key locator

Represents a reference to a key locator implementation class that locates the correct key store

where the alias and the certificate exist. For more information on configuring key locators, see

“Configuring key locators using an assembly tool” on page 845 and “Configuring key locators

using the administrative console” on page 846.

For more information, see “Configuring key locators using an assembly tool” on page 845 and “Configuring

key locators using the administrative console” on page 846.

You must specify which parts of the request message to encrypt. See “Configuring the client for request

encryption: Encrypting the message parts” on page 886 if you have not previously specified this

information.

Request receiver: Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

The security handler on the request receiver side of the Simple Object Access Protocol (SOAP) message

enforces the security specifications defined in the IBM extension deployment descriptor

(ibm-webservices-ext.xmi) and bindings (ibm-webservices-bnd.xmi). The request receiver defines the

security requirement of the SOAP message. The security constraint for request sender must match the

security requirement of the request receiver for the server to accept the request. If the incoming SOAP

message does not meet all the security requirements defined, then the request is rejected with the

appropriate fault code returned to the sender. For security tokens, the token is validated using Java

Authentication and Authorization Service (JAAS) login configuration and authenticated identity is set as the

identity for the downstream invocation.

888 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/xmlenc-core

For example, if there is a security requirement to have the SOAP body digitally signed by Joe Smith and if

the SOAP body of the incoming SOAP message is not signed by Joe Smith, then the request is rejected.

You can define the following security requirements for the request receiver:

Required integrity (digital signature)

You can select multiple parts of a message to sign digitally. The following list contains the integrity

options:

v Body

v Time stamp

v Security token

Required confidentiality (encryption)

You can select multiple parts of a message to encrypt. The following list contains the confidentiality

options:

v Body content

v Token

You can have multiple security tokens. The following list contains the security token options:

v Basic authentication, which requires both a user name and a password

v Identity assertion, which requires a user name only

v X.509 binary security token

v Lightweight Third Party Authentication (LTPA) binary security token

v Custom token, which is pluggable and supports custom-defined tokens validated by the JAAS

login configuration

Received time stamp

You can have a time stamp for checking the timeliness of the message.

v Time stamp

Request receiver binding collection:

Use this page to specify the binding configuration to receive request messages for Web services security.

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules > URI_file_name

3. Under Additional properties, click Web services: Server security bindings.

4. Under Request receiver binding, click Edit.

Signing information:

Specifies the configuration for the signing parameters. Signing information is used to sign and validate

parts of a message including the body, the timestamp, and the user name token.

 You also can use these parameters for X.509 certificate validation when the authentication method is

IDAssertion and the ID Type is X509Certificate in the server-level configuration. In such cases, you must

fill in the Certificate Path fields only.

Chapter 14. Learn about WebSphere applications 889

Encryption information:

Specifies the configuration for the encrypting and decrypting parameters. This configuration is used to

encrypt and decrypt parts of the message that include the body and the user name token.

Trust anchors:

Specifies a list of keystore objects that contain the trusted root certificates that are issued by a certificate

authority (CA).

 The certificate authority authenticates a user and issues a certificate. The CertPath API uses the certificate

to validate the certificate chain of incoming, X.509-formatted security tokens or trusted, self-signed

certificates.

Collection certificate store:

Specifies a list of the untrusted, intermediate certificate files.

 The collection certificate store contains a chain of untrusted, intermediate certificates.The CertPath API

attempts to validate these certificates, which are based on the trust anchor.

Key locators:

Specifies a list of key locator objects that retrieve the keys for digital signature and encryption from a

keystore file or a repository. The key locator maps a name or a logical name to an alias or maps an

authenticated identity to a key. This logical name is used to locate a key in a key locator implementation.

Trusted ID evaluators:

Specifies a list of trusted ID evaluators that determine whether to trust the identity-asserting authority or

message sender.

 The trusted ID evaluators are used to authenticate additional identities from one server to another server.

For example, a client sends the identity of user A to server 1 for authentication. Server 1 calls downstream

to server 2, asserts the identity of user A, and includes the user name and password of server 1. Server 2

attempts to establish trust with server 1 by authenticating its user name and password and checking the

trust based on the TrustedIDEvaluator implementation. If the authentication process and the trust check

are successful, server 2 trusts that server 1 authenticated user A and a credential is created for user A on

server 2 to invoke the request.

Login mappings:

Specifies a list of configurations for validating tokens within incoming messages.

 Login mappings map the authentication method to the Java Authentication and Authorization Service

(JAAS) configuration.

To configure JAAS, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click JAAS Configuration.

Configuring the server for request decryption: decrypting the message parts:

Important distinction between Version 5.x and Version 6 applications

890 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Complete this task to specify which parts of the request message must be decrypted by the server. You

must know which parts of the request message the client encrypts because the server must decrypt the

same message parts.

Prior to completing these steps, read either of the following topics to become familiar with the WS

Extensions tab and the WS Binding configurations tab:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete the following steps to configure the request receiver extensions:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name ejbModule > META_INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web services editor within the assembly

tool.

6. Expand the Request receiver service configuration details > Required confidentiality section.

7. Select the parts of the message to decrypt. The message parts selected for the request decryption on

the server must match the message parts selected for the message encryption on the client. Click Add

and select either of the following message parts:

bodycontent

The user data section of the message.

usernametoken

This token is the basic authentication information.

After you specify which parts of the request message to decrypt, you must specify the method to use

decrypt the message. See “Configuring the server for request decryption: choosing the decryption method”

for more information.

Configuring the server for request decryption: choosing the decryption method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS

Extensions tab and the WS Bindings tab:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Chapter 14. Learn about WebSphere applications 891

Complete this task to specify which decryption method is used by the server to decrypt the request

message. You must know which decryption method the client uses because the server must use the same

method.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name ejbModule > META_INF.

4. Right-click the webservices.xml file, select Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the Web services editor within

the assembly tool.

6. Expand the Request receiver binding configuration details > Encryption information section.

7. Click Edit to view the encryption information. The following table describes the purpose for each of

these selections. Some definitions are taken from the XML-Encryption specification , which is located

at the following Web address: http://www.w3.org/TR/xmlenc-core

Encryption name

Represents the name of this encryption information entry; an alias for the entry.

Data encryption method algorithm

Encrypts and decrypts data in fixed size, multiple octet blocks. This algorithm must be the

same as the algorithm selected in the client request sender configuration.

Key encryption method algorithm

Represents algorithms specified for encrypting and decrypting keys. This algorithm must be the

same as the algorithm selected in the client request sender configuration.

Encryption key name

Represents a Subject from a personal certificate, which is typically a distinguished name (DN)

that is found by the encryption key locator. The subject is used by the key encryption method

algorithm to decrypt the secret key, and the secret key is used to decrypt the data.

 The key chosen must be a private key in the key store configured by the key locator. The key

requires the same Subject used by the client to encrypt the data. Encryption must be done

using the public key and decryption by using the private key (personal certificate). To ensure

that the client encrypts the data with the correct public or private key, you must extract the

public key from the server key store and add it to the key store specified in the encryption

configuration information for the client request sender.

 For example, the personal certificate of a server is CN=Bob, O=IBM, C=US. Therefore the

server contains the public and private key pair. The client sending the request should encrypt

the data using the public key for CN=Bob, O=IBM, C=US. The server decrypts the data using

the private key for CN=Bob, O=IBM, C=US.

Encryption key locator

Represents a reference to a key locator implementation class that finds the correct keystore

where the alias and the certificate exist. For more information on configuring key locators, go

to the following sections: “Configuring key locators using an assembly tool” on page 845 and

“Configuring key locators using the administrative console” on page 846.

It is important to note that for decryption, the encryption key name chosen must refer to a personal

certificate that can be located by the key locator of the server referenced in the encryption information.

Enter the Subject of the personal certificate here, which is typically a Distinguished Name (DN). The

Subject uses the default key locator to find the key. If a custom key locator is written, the encryption key

name can be anything used by the key locator to find the correct encryption key. The encryption key

locator references the implementation class that finds the correct key store where this alias and certificate

exist. Refer to “Configuring key locators using an assembly tool” on page 845 and “Configuring key

locators using the administrative console” on page 846 for more information.

892 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/xmlenc-core

You must specify which parts of the request message to decrypt. See “Configuring the server for request

decryption: decrypting the message parts” on page 890 if you have not previously specified this

information.

Response sender: Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

The response sender defines the security requirements of the Simple Object Access Protocol (SOAP)

response message. The security handler acts on the security constraints defined for the response in the

IBM extension deployment descriptors, located in the ibm-webservices-ext.xmi file and the bindings,

located in the ibm-webservices-bnd.xmi file. The security handler signs, encrypts, or generates the time

stamp for the SOAP response message before the response is send to the caller.

Integrity constraints (digital signature)

You can select which parts of the message are digitally signed.

v Body

v Time stamp

Confidentiality (encryption)

You can encrypt the body content of the message.

Time stamp

You can have a time stamp for checking the timeliness of the message.

The security constraints that apply to the SOAP response message must match the security requirements

defined in the response receiver. Otherwise, the response is rejected by the response receiver (caller).

Response sender binding collection:

Use this page to specify the binding configuration for sender response messages for Web services

security.

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules > URI_file_name

3. Under Additional properties, click Web services: Server security bindings.

4. Under Response sender binding, click Edit.

Signing information:

Specifies the configuration for the signing parameters.

 You also can use these parameters for X.509 certificate validation when the authentication method is

IDAssertion and the ID Type is X509Certificate in the server-level configuration. In such cases, you must

fill-in the Certificate Path fields only.

Encryption information:

Specifies the configuration for the encryption and decryption parameters.

Chapter 14. Learn about WebSphere applications 893

Key locators:

Specifies a list of key locator objects that retrieve the keys for a digital signature and encryption from a

keystore file or a repository. The key locator maps a name or logical name to an alias or maps an

authenticated identity to a key. This logical name is used to locate a key in a key locator implementation.

Configuring the server for response encryption: encrypting the message parts:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS

Extensions tab and the WS Bindings tab in the Web services editor within an assembly tool:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively.

Complete the following steps to specify which parts of the response message to encrypt when configuring

the server for response encryption:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name ejbModule > META_INF.

4. Right-click the webservices.xml file, select Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web Services Editor within the

assembly tool.

6. Expand Response sender service configuration details > Confidentiality. Confidentiality refers to

encryption while integrity refers to digital signing. Confidentiality reduces the risk of someone

understanding the message flowing across the Internet. With confidentiality specifications, the

response is encrypted before it is sent and decrypted when it is received at the correct target. For

more information on encrypting, see “XML encryption” on page 878.

7. Select the parts of the response that you want to encrypt by clicking Add and selecting Bodytoken or

Usernametoken. The following information describes the message parts:

Bodycontent

User data portion of the message.

Usernametoken

Basic authentication information, if selected.

 A user name token does not appear in the response so you do not need to select this option

for the response. If you select this option, make sure that you also select it for the client

response receiver. If you do not select this option, make sure that you do not select it for the

client response receiver.

After you specify which message parts to encrypt, you must specify which method to use message

encryption. See “Configuring the server for response encryption: choosing the encryption method” for more

information.

Configuring the server for response encryption: choosing the encryption method:

Important distinction between Version 5.x and Version 6 applications

894 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions

tab and the Binding configurations tab in the Web services editor within an assembly tool:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete the following steps to specify which method the server uses to encrypt the response message:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name ejbModule > META_INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the Web Services Editor within

the assembly tool.

6. Expand Response sender binding configuration details > Encryption information.

7. Click Edit to view the encryption information. The following table describes the purpose of this

information. Some of these definitions are based on the XML-Encryption specification, which is located

at the following Web address: http://www.w3.org/TR/xmlenc-core

Encryption name

Refers to the name of the encryption information entry.

Data encryption method algorithm

Encrypts and decrypts data in fixed size, multiple octet blocks. The algorithm selected for the

server response sender configuration must match the algorithm selected in the client response

receiver configuration.

Key encryption method algorithm

Represents public key encryption algorithms that are specified for encrypting and decrypting

keys. The algorithm selected for the server response sender configuration must match the

algorithm selected in the client response receiver configuration.

Encryption key name

Represents a Subject from a public key certificate typically distinguished name (DN) that is

found by the encryption key locator and used by the key encryption method algorithm to

encrypt the private key. The private key is used to encrypt the data.

 The key name chosen in the server response sender encryption information must be the public

key of the key configured in the client response receiver encryption information. Encryption by

the response sender must be done using the public key and decryption must be done by the

response receiver using the associated private key (the personal certificate of the response

receiver).

Encryption key locator

The encryption key locator represents a reference to a key locator implementation class that

finds the correct key store where the alias and the certificate exist. For more information on

configuring key locators, see “Configuring key locators using an assembly tool” on page 845

and “Configuring key locators using the administrative console” on page 846.

The encryption key name chosen must refer to a public key of the response receiver. For the encryption

key name, use the Subject of the public key certificate, typically a Distinguished Name (DN). The name

chosen is used by the default key locator to find the key. If you write a custom key locator , the encryption

key name might be anything used by the key locator to find the correct encryption key (a public key). The

Chapter 14. Learn about WebSphere applications 895

http://www.w3.org/TR/xmlenc-core

encryption key locator references the implementation class that finds the correct key store where the alias

and certificate exist. For more information, see “Configuring key locators using an assembly tool” on page

845 and “Configuring key locators using the administrative console” on page 846.

You must specify which parts of the response message to encrypt. See “Configuring the server for

response encryption: encrypting the message parts” on page 894 if you have not previously specified this

information.

Response receiver: Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

The response receiver defines the security requirements of the response received from a request to a

Web service. The security constraints for response sender must match the security requirements of the

response receiver. If the constraints do not match, the response is not accepted by the caller or the

sender. The security handler enforces the security constraints based on the security requirements defined

in the IBM extension deployment descriptor, located in the ibm-webservicesclient-ext.xmi file and in the

bindings, located in the ibm-webservicessclient-bnd.xmi file.

For example, the security requirement might have the response Simple Object Access Protocol (SOAP)

body encrypted. If the SOAP body of the SOAP message is not encrypted, the response is rejected and

the appropriate fault code is communicated back to the caller of the Web services.

You can specify the following security requirements for a response receiver:

Required integrity (digital signature)

You can select which parts of a message are digitally signed. The following list contains the

integrity options:

v Body

v Time stamp

Required confidentiality (encryption)

You can encrypt the body content of the message.

Received time stamp

You can have a time stamp for checking the timeliness of the message.

Response receiver binding collection:

Use this page to specify the binding configuration for receiver response messages for Web services

security.

 Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications >application_name.

2. Under Related items, click EJB modules or Web modules > URI_file_name > Web Services: Client

security bindings.

3. Under Response receiver binding, click Edit.

Signing information:

896 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Specifies the configuration for the signing parameters. Signing information is used to sign and to validate

parts of the message including the body and the timestamp.

 You can also use these parameters for X.509 validation when the authentication method is IDAssertion

and the ID type is X509Certificate, in the server-level configuration. In such cases, you must fill in the

certificate path fields only.

Encryption information:

Specifies the configuration for the encryption and decryption parameters.

 Encryption information is used for encrypting and decrypting various parts of a message, including the

body and the user name token.

Trust anchors:

Specifies a list of keystore objects that contain the trusted root certificates that are self-signed or issued by

a certificate authority.

 The certificate authority authenticates a user and issues a certificate. After the certificate is issued, the

keystore objects, which contain these certificates, use the certificate for certificate path or certificate chain

validation of incoming X.509-formatted security tokens.

Collection certificate store:

Specifies a list of the untrusted, intermediate certificate files.

 The collection certificate store contains a chain of untrusted, intermediate certificates. The CertPath API

attempts to validate these certificates, which are based on the trust anchor.

Key locators:

Specifies a list of key locator objects that retrieve the keys for a digital signature and encryption from a

keystore file or a repository.

 The key locator maps a name or a logical name to an alias or maps an authenticated identity to a key.

This logical name is used to locate a key in a key locator implementation.

Configuring the client for response decryption: decrypting the message parts:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS

Extensions tab and the WS Binding tab in the Client Deployment Descriptor Editor within an assembly tool:

v “Configuring the client security bindings using an assembly tool” on page 871

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 873

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively.

Chapter 14. Learn about WebSphere applications 897

Complete the following steps to specify which response message parts to decrypt when configuring the

client for response decryption. The server response encryption and client response decryption

configurations must match.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extensions tab, which is located at the bottom of the deployment descriptor editor within

the assembly tool.

6. Expand the Response receiver configuration > Required confidentiality section.

7. Select the parts of the message that you must decrypt by clicking Add and selecting either

Bodycontent or Usernametoken. The following information describes these message parts:

Bodycontent

The user data portion of the message.

Usernametoken

The basic authentication information, if selected.

The information selected in this step is encrypted by the server in the response sender.

Important: A username token is typically not sent in the response. Thus, you usually do not need to

select username token.

After you specify which message parts to decrypt, you must specify which method to use when decrypting

the response message. See “Configuring the client for response decryption: choosing a decryption

method” for more information.

Configuring the client for response decryption: choosing a decryption method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS

Extensions tab and the WS Bindings tab in the Client Deployment Descriptor Editor within an assembly

tool such as the Application Server Toolkit or Rational Web Developer:

v “Configuring the client security bindings using an assembly tool” on page 871

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 873

These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete the following steps to specify which decryption method to use when the client decrypts the

response message. The server response encryption and client response decryption configurations must

match.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of the deployment descriptor editor within the

assembly tool.

898 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

6. Expand the Security response receiver binding configuration > Encryption information section.

For more information on encrypting and decrypting Simple Object Access Protocol (SOAP) messages,

see “XML encryption” on page 878.

7. Click Edit to view the encryption information. The following table describes the purpose for this

information. Some of these definitions are based on the XML-Encryption specification, which is located

at the following Web address: http://www.w3.org/TR/xmlenc-core

Encryption name

Refers to the alias used for the encryption information entry.

Data encryption method algorithm

Encrypts and decrypts data in fixed size, multiple octet blocks.

Key encryption method algorithm

Represents public key encryption algorithms specified for encrypting and decrypting keys.

Encryption key name

Represents a Subject from a personal certificate, which is typically a distinguished name (DN)

that is found by the encryption key locator. The Subject is used by the key encryption method

algorithm to decrypt the secret key. The secret key is used to decrypt the data.

Important: The key chosen must be a private key of the client. Encryption must be done

using the public key and decryption must be done by the private key (personal

certificate). For example, the personal certificate of the client is: CN=Alice, O=IBM,

C=US. Therefore, the client contains the public and private key pair. The target

server that sends the response encrypts the secret key using the public key for

CN=Alice, O=IBM, C=US. The client decrypts the secret key using the private key

for CN=Alice, O=IBM, C=US
.

Encryption key locator

The encryption key locator represents a reference to a key locator implementation class that

finds the correct key store where the alias and the certificate exist. For more information on

configuring key locators, see “Configuring key locators using an assembly tool” on page 845

and “Configuring key locators using the administrative console” on page 846.

For decryption, the encryption key name chosen must refer to a personal certificate that can be located by

the client key locator. The Subject (owner field of the certificate) of the personal certificate should be

entered in the Encryption key name, this is typically a Distinguished Name (DN). The default key locator

uses the Encryption key name to find the key within the keystore. If you write a custom key locator, the

encryption key name can be anything used by the key locator to find the correct encryption key. The

encryption key locator references the implementation class that locates the correct key store where this

alias and certificate exists. For more information, see “Configuring key locators using an assembly tool” on

page 845 and “Configuring key locators using the administrative console” on page 846.

You must specify which parts of the request message to decrypt. See the topic“Configuring the client for

response decryption: decrypting the message parts” on page 897 if you have not previously specified this

information.

Securing Web services for version 5.x applications using basicauth authentication

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Chapter 14. Learn about WebSphere applications 899

http://www.w3.org/TR/xmlenc-core

WebSphere Application Server provides several different methods to secure your Web services. Extensible

Markup Language (XML) digital signature is one of these methods. You might also secure your Web

services using any of the following methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

With the basicauth authentication method, the request sender generates a basicauth security token using

a callback handler. The request receiver retrieves the basicauth security token from the SOAP message

and validates it using a Java Authentication and Authorization Service (JAAS) login module. Trust is

established using user name and password validation. To use basicauth authentication to secure Web

services, complete the following tasks:

1. Secure the client for basicauth authentication.

a. Configure the client for basicauth authentication: Specifying the method

b. Configure the client for basicauth authentication: Collecting the authentication information

2. Secure the server for basicauth authentication.

a. Configure the server to handle basicauth authentication

b. Configure the server to validate basicauth authentication information

After completing these steps, you have secured your Web services using basicauth authentication.

Configuring the client for basic authentication: specifying the method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

BasicAuth refers to the user ID and password of a valid user in the registry of the target server. BasicAuth

information can be collected in many ways including through an administrative console prompt, a standard

in (Stdin) prompt, or specified in the bindings, which prevents user interaction. For more information on

BasicAuth authentication, see: “BasicAuth authentication method” on page 901.

Attention: WebSphere Application Server supports nonce (randomly generated token) with BasicAuth

authentication. For more information, see Nonce.

Complete the following steps to specify BasicAuth as the authentication method:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extensions tab, which is located at the bottom of the deployment descriptor editor within

the assembly tool.

6. Expand the Request sender configuration > Login configuration section. The only valid login

configuration choices for a pure client are BasicAuth and Signature.

7. Select BasicAuth to authenticate the client using a user ID and a password. This user ID and

password must be specified in the target user registry. The other choice, Signature, attempts to

authenticate the client using the certificate used to digitally sign the message.

900 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

For more information on getting started with the Web services client editor within the assembly tool, see

either of the following topics:

v “Configuring the client security bindings using an assembly tool” on page 871

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 873

After you specify the BasicAuth authentication method, you must specify how to collect the authentication

information. See “Configuring the client for basic authentication: collecting the authentication information”

on page 902.

BasicAuth authentication method:

When you use the BasicAuth authentication method, the security token that is generated is a

<wsse:UsernameToken> element with <wsse:Username> and <wsse:Password> elements.

 WebSphere Application Server supports text passwords but not password digest because passwords are

not stored and cannot be retrieved from the server. On the request sender side, a callback handler is

invoked to generate the security token. On the request receiver side, a Java Authentication and

Authorization Service (JAAS) login module is used to validate the security token. These two operations,

token generation and token validation, are described in the following sections.

BasicAuth token generation

The request sender generates a BasicAuth security token using a callback handler. The security

token returned by the callback handler is inserted in the Simple Object Access Protocol (SOAP)

message. The callback handler that is used is specified in the <LoginBinding> element of the

bindings file, ibm-webservicesclient-bnd.xmi . The following callback handler implementations are

provided with WebSphere Application Server and can be used with the BasicAuth authentication

method:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

You can add your own callback handlers that implement the

javax.security.auth.callback.CallbackHandler method.

BasicAuth token validation

The request receiver retrieves the BasicAuth security token from the SOAP message and validates

it using a JAAS login module. The <wsse:Username> and <wsse:Password> elements in the

security token are used to perform the validation. If the validation is successful, the login module

returns a JAAS Subject. This Subject is set as the identity of the running thread. If the validation

fails, the request is rejected with a SOAP fault exception.

 The JAAS login configuration is specified in the <LoginMapping> element of the bindings file.

Default bindings are specified in the ws-security.xml file. However, you can override these

bindings using the application-specific ibm-webservices-bnd.xmi file. The configuration information

consists of a CallbackHandlerFactory and a ConfigName value. The CallbackHandlerFactory

option specifies the name of a class that is used for creating the JAAS CallbackHandler object.

WebSphere Application Server provides the

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl CallbackHandlerFactory

implementation. The ConfigName value specifies a JAAS configuration name entry. WebSphere

Application Server searches the security.xml file for a matching configuration name entry. If a

match is not found, it searches the wsjaas.conf file for a match. WebSphere Application Server

provides the WSLogin default configuration entry, which is suitable for the BasicAuth authentication

method.

Important distinction between Version 5.x and Version 6 applications

Chapter 14. Learn about WebSphere applications 901

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Configuring the client for basic authentication: collecting the authentication information:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

BasicAuth refers to the user ID and the password of a valid user in the registry of the target server.

Collection of BasicAuth information can occur in many ways including through a user interface prompt, a

standard in (Stdin) prompt, or specified in the bindings, which prevents user interaction. For more

information on BasicAuth authentication, see “BasicAuth authentication method” on page 901.

Complete this task to specify the authentication information needed for BasicAuth authentication:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of deployment descriptor editor within the

assembly tool such as the Application Server Toolkit or Rational Web Developer.

6. Expand the Security request sender binding configuration > Login binding section.

7. Click Edit or Enable to view the login binding information. The login binding information displays and

enter the following information:

Authentication method

Specifies the type of authentication. Select BasicAuth to use basic authentication.

Token value type URI and Token value type local name

When you select BasicAuth, you cannot edit the token value type URI and the local name

values. Specifies values for custom authentication types. For BasicAuth authentication, leave

these values blan.

Callback handler

Specifies the Java Authentication and Authorization Server (JAAS) callback handler

implementation for collecting the BasicAuth information. You can use the following default

implementations for the callback handler:

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This implementation is used for non-user interface console prompts.

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This implementation is used for user interface panel prompts.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This implementation is used when you plan to always enter the user ID and password

in the BasicAuth user ID and password section that follows.

Basic Authentication user ID and Basic Authentication password

Specifies values for the BasicAuth user ID and password, regardless of the default callback

handler indicated previously, these user ID and password values are used to authenticate to

the server for the Web services security authentication. If you leave these values blank, use

either the GUIPromptCallbackHandler or the StdinPromptCallbackHandler implementation, but

only on a pure client. Always fill-in these values for any Web service that acts as a client to

another Web service that you want to specify for BasicAuth for authentication downstream. If

you want the client identity of the originator to flow downstream, configure the Web service

client to use either ID assertion or Lightweight Third Party Authentication (LTPA).

902 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Property

Specifies properties with name and value pairs for custom callback handlers to use. For

BasicAuth authentication, you do not need to enter any information. To enter a new property,

click Add and enter the new property and value.

Other basic authentication entries: There is a basic authentication entry in the Port Qualified Name

Binding Details section. This entry is used for HTTP transport authentication, which might be required if

the router servlet is protected.

Information specified in the Web services security basic authentication section overrides the basic

authentication information specified in the Port Qualified Name Binding Details section for authorizing the

Web service.

For a server that acts as a client, do not specify a user interface or non-user interface prompt callback

handler. To configure BasicAuth authentication from one Web service to a downstream Web service, select

the com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHander implementation and explicitly

specify the BasicAuth user ID and password. If you want the client identity of the originator to flow

downstream, configure the Web service client to use ID assertion.

To use the BasicAuth authentication method, you must specify the method in the Login configuration

section of the assembly tool . See “Configuring the client for basic authentication: specifying the method”

on page 900 if you have not previously specified this information.

Identity assertion authentication method:

When using the identity assertion (IDAssertion) authentication method, the security token generated is a

<wsse:UsernameToken> element that contains a <wsse:Username> element.

 On the request sender side, a callback handler is invoked to generate the security token. On the request

receiver side, the security token is validated. These two operations, token generation and token validation

operations, are described in the following sections.

Identity assertion token validation:

The request receiver retrieves the IDAssertion security token from the SOAP message and validates it

using a Java Authentication and Authorization Service (JAAS) login module. With identity assertion, special

processing is required to establish trust before asserting the identity as the established identity of the

running thread. This special processing is defined by the <IDAssertion> element in the deployment

descriptor file, ibm-webservices-ext.xmi. If all the validation checks are successful, the asserted identity is

set as the identity of the running thread of. If the validation fails, the request is rejected with a SOAP fault

exception.

The JAAS login configuration is specified in the<LoginMapping> element of the bindings file. Default

bindings are specified in the ws-security.xml file. However, you can override these bindings using the

application specific ibm-webservices-bnd.xmi file. The configuration information consists of

CallbackHandlerFactory and a ConfigName. CallbackHandlerFactory specifies the name of a class that is

used for creating the JAAS CallbackHandler object. WebSphere Application Server provides the

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl CallbackHandlerFactory

implementation. ConfigName specifies a JAAS configuration name entry.

WebSphere Application Server searches the security.xml file for a matching configuration name entry. If a

match is not found it searches the wsjaas.conf file. WebSphere Application Server provides the

system.wssecurity.IDAssertion default configuration entry, which is suitable for the identity assertion

authentication method.

Chapter 14. Learn about WebSphere applications 903

The <IDAssertion> element in the ibm-webservices-ext.xmi deployment descriptor file specifies the

special processing required when using the identity assertion authentication method. The <IDAssertion>

element is composed of two sub-elements: <IDType> and <TrustMode>.

The <IDType> element specifies the method for asserting the identity. The supported values for asserting

the identity are:

v Username

v Distinguished name (DN)

v X.509 certificate

When <IDType> is username, a username token (for example, Bob) is provided. This user name is

mapped to a user in the user registry and is the asserted identity after successful trust validation. When

the <IDType> value is DN, a user name token containing a distinguished name is provided (for example,

cn=Bob Smith, o=ibm, c=us). This DN is mapped to a user in the user registry and this user is the

asserted identity after successful trust validation. When the <IDType> is X509Certificate, a binary security

token containing an X509 certificate is provided and the SubjectDN value from the certificate (for example,

cn=Bob Smith, o=ibm, c=us) is extracted. This SubjectDN value is mapped to a user in the user registry

and this user is the asserted identity after successful trust validation.

The <TrustMode> element specifies how the trust authority, or asserting authority, provides trust

information. The supported values are:

v Signature

v BasicAuth

v No value specified

When the <TrustMode> value is Signature the signature is validated. Then, the signer (for example,

cn=IBM Authority, o=ibm, c=us) is mapped to an identity in the user registry (for example, IBMAuthority).

To ensure that the asserting authority is trusted, the mapped identity (for example, IBMAuthority) is

validated against a list of trusted identities. When the <TrustMode> element is BasicAuth, there is a user

name token with a user name and password, which is the user name and password of the asserting

authority.

The user name and password are validated. If they are successfully validated, that user name (for

example, IBMAuthority) is validated against a list of trusted identities. If a value is not specified for

<TrustMode>, trust is presumed and additional trust validation is not performed. This type of identity

assertion is called presumed trust mode. Use the presumed trust mode only in an environment where the

trust is established using some other mechanism.

If all the validations described previously succeed, the asserted identity (for example, Bob) is set as the

identity of the running thread. If any of the validations fail, the request is rejected with a SOAP fault

exception.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Configuring the server to handle BasicAuth authentication information:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

904 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

BasicAuth refers to the user ID and the password of a valid user in the registry of the target server. After

a request is received that contains basic authentication information, the server needs to log in to form a

credential. The credential is used for authorization. If the user ID and the password supplied are not

valid, an exception is thrown and the request ends without invoking the resource. For more information on

BasicAuth authentication, see “BasicAuth authentication method” on page 901.

Complete the following steps to configure the server to handle BasicAuth authentication information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web services editor within an assembly

tool such as the Application Server Toolkit or Rational Web Developer.

6. Expand the Request receiver service configuration details > Login configuration section. You can

select the following options:

v BasicAuth

v Signature

v ID assertion

v Lightweight Third Party Authentication (LTPA)

.

7. Select BasicAuth to authenticate the client with a user ID and a password. The client must specify a

valid user ID and password in the server user registry.

You can select multiple login configurations, which means that different types of security information

might be received at the server. The order in which the login configurations are added decides the

order in which they are processed when a request is received. Problems can occur if you have multiple

login configurations added that have security tokens in common. For example, ID assertion contains a

BasicAuth token. For ID assertion to work properly, list ID assertion ahead of BasicAuth in the

processing list or the BasicAuth processing overrides the IDAssertion processing.

After you specify how the server handles BasicAuth authentication information, you must specify how the

server validates the authentication information. See “Configuring the server to validate BasicAuth

authentication information” for more information.

Configuring the server to validate BasicAuth authentication information:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

BasicAuth refers to the user ID and the password of a valid user in the registry of the target server. Once

a request is received that contains basic authentication information, the server needs to log in to form a

credential. The credential is used for authorization. If the user ID and the password supplied is invalid, an

exception is thrown and the request ends without invoking the resource. For more information on

BasicAuth authentication, see “BasicAuth authentication method” on page 901.

Complete the following steps to specify how the server validates the BasicAuth authentication information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

Chapter 14. Learn about WebSphere applications 905

5. Click the Binding Configurations tab, which is located at the bottom of the Web services editor within

an assembly tool such as the Application Server Toolkit or Rational Web Developer.

6. Expand the Request receiver binding configuration details > Login mapping section.

7. Click Edit to view the login mapping information or click Add to add new login mapping information.

The login mapping dialog is displayed. Select or enter the following information:

Authentication method

Specifies the type of authentication that occurs. Select BasicAuth to use basic authentication.

Configuration name

Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.

For the BasicAuth authentication method, enter WSLogin for the JAAS login Configuration

name.

Use token valid type

Determines if you want to specify a custom token type. For the default authentication method

selections, you do not need to specify this option.

Token value type URI and Token value type URI local name

When you select BasicAuth, you cannot edit the token value type URI and local name values.

Specifies custom authentication types. For BasicAuth authentication leave these fields blank.

Callback handler factory class name

Creates a JAAS CallbackHandler implementation that understands the following callbacks:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

Callback handler factory property name and Callback handler factory property value

Specifies callback handler properties for custom callback handler factory implementations. You

do not need to specify any properties for the default callback handler factory implementation.

For BasicAuth, you do not need to enter any property values.

Login mapping property name and Login mapping property value

Specifies properties for a custom login mapping. For the default implementations including

BasicAuth, leave these fields blank.

You must specify how the server handles the BasicAuth authentication method. See “Configuring the

server to handle BasicAuth authentication information” on page 904 if you have not previously specified

this information.

Identity assertion

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Identity assertion is a method for expressing the identity of the sender (for example, user name) in a

SOAP message. When identity assertion is used as an authentication method, the authentication decision

is performed based only on the name of the identity, and on other information such as passwords and

certificates.

ID type

 The Web Services Security implementation in WebSphere Application Server can handle these

identity types:

906 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

User name

Denotes the user name, such as the one in the local operating system (for example,

″alice″). This name is embedded in the <Username> element within the

<UsernameToken> element.

DN Denotes the distinguished name (DN) for the user, such as ″CN=alice, O=IBM, C=US″. This

name is embedded in the <Username> element within the <UsernameToken> element.

X.509 certificate

Represents the identity of the user as an X.509 certificate instead of a string name. This

certificate is embedded in the <BinarySecurityToken> element.

Managing trust

 The intermediary host in the SOAP message itinerary can assert claimed identity of the initial

sender. Two methods (called trust mode) are supported for this assertion:

Basic authentication

The intermediary adds its user name and password pair to the message.

Signature

The intermediary digitally signs the <UsernameToken> element of the initial sender.

Note: This trust mode does not support the X.509 certificate ID type.

Typical scenario

 ID assertion is typically used in the multihop environment where the SOAP message passes

through one or more intermediary hosts. The intermediary host authenticates the initial sender.

The following scenario describes the process:

1. The initial sender sends a SOAP message to the intermediary host with some embedded

authentication information. This authentication information might be a user name and a

password pair with an Lightweight Third Party Authentication (LTPA) token.

2. The intermediary host authenticates the initial sender according to the embedded

authentication information.

3. The intermediary host removes the authentication information from the SOAP message and

replaces it with the <UsernameToken> element, which contains a user name.

4. The intermediary host asserts the trust according to the trust mode.

5. The intermediary host sends the updated SOAP message to the ultimate receiver.

6. The ultimate receiver checks the trust against the intermediary host information according to

the configured trust mode. Also, the trusted ID evaluator is invoked.

7. If trust is established by the final receiver, the receiver invokes the Web service under the

authorization of the user name (that is, the initial sender) in the SOAP message.

Securing Web services for version 5.x applications using identity assertion

authentication

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

WebSphere Application Server provides several different methods to secure your Web services. Extensible

Markup Language (XML) digital signature is one of these methods. You might also secure your Web

services using any of the following methods:

v XML digital signature

v XML encryption

v Basicauth authentication

Chapter 14. Learn about WebSphere applications 907

v Identity assertion authentication

v Signature authentication

v Pluggable token

With the identity assertion authentication method, the security token generates a <wsee:Username Token>

element that contains a <wsse:Username> element. On the request sender side, a callback handler is

invoked to generate the security token. On the request receiver side, the security token is validated. Unlike

basicauth authentication, trust is established through the use of a security token rather than through user

name and password validation. To use identity assertion authentication to secure Web services, complete

the following tasks:

1. Secure the client for identity assertion authentication.

a. “Configuring the client for identity assertion: specifying the method”

b. “Configuring the client for identity assertion: collecting the authentication method” on page 909

2. Secure the server for identity assertion authentication.

a. “Configuring the server to handle identity assertion authentication” on page 910

b. “Configuring the server to validate identity assertion authentication information” on page 911

After completing these steps, you have secured your Web services using identity assertion authentication.

Configuring the client for identity assertion: specifying the method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This task is used to configure identity assertion authentication. The purpose of identity assertion is to

assert the authenticated identity of the originating client from a Web service to a downstream Web service.

Do not attempt to configure identity assertion from a pure client. Identity assertion works only when you

configure on the client-side of a Web service acting as a client to a downstream Web service.

In order for the downstream Web service to accept the identity of the originating client (just the user

name), you must supply a special trusted BasicAuth credential that the downstream Web service trusts

and can authenticate successfully. You must specify the user ID of the special BasicAuth credential in a

trusted ID evaluator on the downstream Web service configuration. For more information on trusted ID

evaluators, see “Trusted ID evaluator” on page 847.

Complete the following steps to specify identity assertion as the authentication method:

 1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

 2. Click Windows > Open perspective > Other > J2EE.

 3. Click Application Client Projects >application_name > appClientModule > META-INF.

 4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

 5. Click the WS Extension tab, which is located at the bottom of the deployment descriptor editor within

the assembly tool.

 6. Expand the Request sender configuration > Login configuration section.

 7. Select IDAssertion as the authentication method. For more conceptual information on identity

assertion authentication, see “Identity assertion” on page 906.

 8. Expand the IDAssertion section.

 9. For the ID Type, select Username. This value works with all registry types and originating

authentication methods.

10. For the Trust Mode, select either BasicAuth or Signature.

908 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v By selecting BasicAuth, you must include basic authentication information (user ID and password),

which the downstream Web service has specified in the trusted ID evaluator as a trusted user ID.

See “Configuring the client for signature authentication: collecting the authentication information” on

page 915 to specify the user ID and password information.

v By selecting Signature the certificate configured in the signature information section used to sign

the data also is that is used as the trusted subject. The Signature is used to create a credential

and user ID, which the certificate mapped to the downstream registry, is used in the trusted ID

evaluator as a trusted user ID.

See “Configuring the client security bindings using an assembly tool” on page 871 for more information on

the Web services client editor within the assembly tool.

After you specify identity assertion as the authentication method used by the client, you must specify how

to collect the authentication information. See “Configuring the client for identity assertion: collecting the

authentication method” for more information.

Configuring the client for identity assertion: collecting the authentication method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This task is used to configure identity assertion authentication. The purpose of identity assertion is to

assert the authenticated identity of the originating client from a Web service to a downstream Web service.

Do not attempt to configure identity assertion from a pure client. Identity assertion works only when you

configure on the client-side of a Web service acting as a client to a downstream Web service.

In order for the downstream Web service to accept the identity of the originating client (just the user

name), you must supply a special trusted BasicAuth credential that the downstream Web service trusts

and can authenticate successfully. You must specify the user ID of the special BasicAuth credential in a

trusted ID evaluator on the downstream Web service configuration. For more information on trusted ID

evaluators, see “Trusted ID evaluator” on page 847.

Complete the following steps to specify how the client collects the authentication information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of the Deployment Descriptor Editor within an

assembly tool.

6. Expand the Security request sender binding configuration > Login binding section.

7. Click Edit to view the login binding information and select IDAssertion. The login binding dialog is

displayed. Select or enter the following information:

Authentication method

The authentication method specifies the type of authentication that occurs. Select IDAssertion

to use identity assertion.

Token value type URI and Token value type Local name

When you select IDAssertion, you cannot edit the token value type Universal Resource

Identifier (URI) and the local name. Specifies custom authentication types. For IDAssertion

authentication, leave these values blank.

Callback handler

Specifies the Java Authentication and Authorization Service (JAAS) callback handler

Chapter 14. Learn about WebSphere applications 909

implementation for collecting the BasicAuth information. Specify the

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler implementation for

IDAssertion.

Basic authentication User ID and Basic authentication Password

In this field the trust mode entered in the extensions is BasicAuth. Specifies the trusted user ID

and password in these fields. The user ID specified must be an ID that is trusted by the

downstream Web service. The Web service trusts the user ID if it is entered as a trusted ID in

a trusted ID evaluator in the downstream Web service bindings. If the trust mode entered in

the extensions is Signature, you do not need to specify any information in this field.

Property name and Property value

Specifies properties with name and value pairs, for use by custom callback handlers. For

IDAssertion, you do not need to specify any information in this field.

To use the identity assertion authentication method, you must specify the method in the Security

extensions section of an assembly tool. See “Configuring the client for identity assertion: specifying the

method” on page 908 if you have not previously specified this information.

Configuring the server to handle identity assertion authentication:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Use this task to configure identity assertion authentication. The purpose of identity assertion is to assert

the authenticated identity of the originating client from a Web service to a downstream Web service. Do

not attempt to configure identity assertion from a pure client.

For the downstream Web service to accept the identity of the originating client (user name only), you must

supply a special trusted BasicAuth credential that the downstream Web service trusts and can authenticate

successfully. You must specify the user ID of the special BasicAuth credential in a trusted ID evaluator on

the downstream Web service configuration. For more information on trusted ID evaluators, see “Trusted ID

evaluator” on page 847. The server side passes the special BasicAuth credential into the trusted ID

evaluator, which returns true or false that this ID is trusted. Once it is trusted, the user name of the client

is mapped to the credential, which is used for authorization.

Complete the following steps to configure the server to handle identity assertion authentication information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web services editor within the assembly

tool.

6. Expand the Request receiver service configuration details > Login configuration section. The

options you can select are:

v BasicAuth

v Signature

v ID assertion

v Lightweight Third Party Authenticatnon (LTPA)

910 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

7. Select IDAssertion to authenticate the client using the identity assertion data provided. The user ID of

the client must be in the target user registry configured in WebSphere Application Server global

security. You can select global security in the administrative console by clicking Security > Global

security.

You can select multiple login configurations, which means that different types of security information

can be received at the server. The order in which the login configurations are added determines the

processing order when a request is received. Problems can occur if you have multiple login

configurations added that have common security tokens. For example, ID assertion contains a

BasicAuth token, which is the trusted token. For ID assertion to work properly, you must list ID

assertion ahead of BasicAuth in the list or BasicAuth processing overrides ID assertion processing.

8. Expand the IDAssertion section and select both the ID Type and the Trust Mode.

a. For ID Type, the options are:

v Username

v Distinguished name (DN)

v X509certificate

These choices are just preferences and are not guaranteed. Most of the time the Username

option is used. You must choose the same ID Type as the client.

b. For Trust Mode, the options are:

v BasicAuth

v Signature

The Trust Mode refers to the information sent by the client as the trusted ID.

1) If you select BasicAuth, the client sends basic authentication data (user ID and password).

This basicauth data is authenticated to the configured user registry. When the authentication

occurs successfully, the user ID must be part of the trusted ID evaluator trust list.

2) If you select Signature, the client signing certificate is sent. This certificate must be mappable

to the configured user registry. For Local OS, the common name (CN) of the distinguished

name (DN) is mapped to a user ID in the registry. For Lightweight Directory Access

Protocol (LDAP), the DN is mapped to the registry for the ExactDN mode. If it is in the

CertificateFilter mode, attributes are mapped accordingly. In addition, the user name from the

credential generated must be in the Trusted ID Evaluator trust list.

For more information on getting started with the Web Services Editor within an assembly tool, see

“Configuring the server security bindings using an assembly tool” on page 875.

After you specify how the server handles identity assertion authentication information, you must specify

how the server validates the authentication information. See “Configuring the server to validate identity

assertion authentication information” for more information.

Configuring the server to validate identity assertion authentication information:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Use this task to configure identity assertion authentication. The purpose of identity assertion is to assert

the authenticated identity of the originating client from a Web service to a downstream Web service. Do

not attempt to configure identity assertion from a pure client.

For the downstream Web service to accept the identity of the originating client (user name only), you must

supply a special trusted BasicAuth credential that the downstream Web service trusts and can authenticate

successfully. You must specify the user ID of the special BasicAuth credential in a trusted ID evaluator on

Chapter 14. Learn about WebSphere applications 911

the downstream Web service configuration. For more information on trusted ID evaluators, see “Trusted ID

evaluator” on page 847. The server side passes the special BasicAuth credential into the trusted ID

evaluator, which returns a true or false response that this ID is trusted. Once it is trusted, the user name

of the client is mapped to the credential, which is used for authorization.

Complete the following steps to validate the identity assertion authentication information:

 1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

 2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

 3. Click EJB Projects >application_name > ejbModule > META-INF.

 4. Right-click the webservices.xml file, and click Open with > Web services editor.

 5. Click the Binding Configurations tab, which is located at the bottom of the Web services editor within

the assembly tool.

 6. Expand the Request receiver binding configuration details > Login mapping section.

 7. Click Edit to view the login mapping information. Click Add to add new login mapping information.

The login mapping dialog is displayed. Select or enter the following information:

Authentication method

Specifies the type of authentication that occurs. Select IDAssertion to use basic

authentication.

Configuration name

Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.

For the IDAssertion authentication method, enter system.wssecurity.IDAssertion for the

Java Authentication and Authorization Service (JAAS) login configuration name.

Use token value type

Determines if you want to specify a custom token type. For the default authentication method

selections, you do not need to specify this option.

Token value type URI and Token value type local name

When you select ID assertion, you cannot edit the token value type URI and local name

values. Specifies custom authentication types. For the ID assertion authentication method,

leave these values blank.

Callback handler factory class name

Ccreates a JAAS CallbackHandler implementation that understands the following callbacks:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For any of the default authentication methods (BasicAuth, IDAssertion, and Signature), use

the callback handler factory default implementation. Enter the following class name for any of

the default Authentication methods including IDAssertion:

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

 This implementation creates the correct callback handler for the default implementations.

Callback handler factory property name and Callback handler factory property value

Specifies callback handler properties for custom callback handler factory implementations.

The default callback handler factory implemetation does not need any specified properties.

For ID assertion, leave these values blank.

912 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Login mapping property name and Login mapping property value

Specifies properties for a custom login mapping. For the default implementations including

IDAssertion, leave these values blank.

 8. Expand the Trusted ID evaluator section.

 9. Click Edit to see a dialog that displays all the trusted ID evaluator information. The following table

describes the purpose of this information.

Class name

Refers to the implementation of the trusted ID evaluator that you want to use. Enter the

default implementation as com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. If you

want to implement your own trusted ID evaluator, you must implement the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

Property name

Represents the name of this configuration. Enter BasicIDEvaluator.

Property value

Defines the name and value pairs that can be used by the trusted ID evaluator

implementation. For the default implementation, the trusted list is defined here. When a

request comes in and the trusted ID is verified, the user ID, as it appears in the user registry,

must be listed in this property. Specify the property as a name and value pair where the

name is trustedId_n. n is an integer starting from 0 and the value is the user ID associated

with that name. An example list with the trusted names include two properties.

 For example: trustedId_0 = user1, trustedId_1 = user2. The previous example means

that both user1 and user2 are trusted. user1 and user2 must be listed in the configured user

registry.

10. Expand the Trusted ID evaluator reference section.

11. Click Enable to add a new entry. The text you enter for the Trusted ID evaluator reference must be

the same as the name entered previously in the Trusted ID evaluator. Make sure that the name

matches exactly because the information is case sensitive. If an entry is already specified, you can

change it by clicking Edit.

You must specify how the server handles the identity assertion authentication method. See “Configuring

the server to handle identity assertion authentication” on page 910 if you have not previously specified this

information.

Securing Web services for version 5.x applications using signature authentication

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

WebSphere Application Server provides several different methods to secure your Web services. Extensible

Markup Language (XML) digital signature is one of these methods. You might secure your Web services

using any of the following methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

With the signature authentication method, the request sender generates a signature security token using a

callback handler. The security token returned by the callback handler is inserted in the Simple Object

Chapter 14. Learn about WebSphere applications 913

Access Protocol (SOAP) message. The request receiver retrieves the Signature security token from the

SOAP message and validates it using a Java Authentication and Authorization Service (JAAS) login

module. To use signature authentication to secure Web services, complete the following tasks:

1. Secure the client for signature authentication.

a. “Configuring the client for signature authentication: specifying the method.”

b. “Configuring the client for signature authentication: collecting the authentication information” on

page 915.

2. Secure the server for signature authentication.

a. “Configuring the server to support signature authentication” on page 917.

b. “Configuring the server to validate signature authentication information” on page 918.

After completing these steps, you have secured your Web services using signature authentication.

Configuring the client for signature authentication: specifying the method:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This task is used to configure signature authentication. A signature refers to the use of an X.509 certificate

to login on the target server. For more information on signature authentication, see “Signature

authentication method.”

Complete the following steps to specify signature as the authentication method:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extension tab, which is located at the bottom of the deployment descriptor editor within

the assembly tool.

6. Expand the Request sender configuration > Login configuration section. The following login

configuration options are valid for a managed client and Web services acting as a client are:

BasicAuth

Use this option for a managed client.

Signature

Use this option for a managed client.

IDAssertion

Use this option for Web services acting as a client.

7. Select Signature to authenticate the client using the certificate used to digitally sign the request.

For more information on getting started with the Web services client editor within the assembly tool, see

“Configuring the client security bindings using an assembly tool” on page 871.

After you specify signature as the authentication method, you must specify how to collect the

authentication information. See “Configuring the client for signature authentication: collecting the

authentication information” on page 915 for more information.

Signature authentication method:

914 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

When using the signature authentication method, the security token is generated with a <ds:Signature>

and a <wsse:BinarySecurityToken> element.

 On the request sender side, a callback handler is invoked to generate the security token. On the request

receiver side, a Java Authentication and Authorization Service (JAAS) login module is used to validate the

security token. These two operations, token generation and token validation, are described in the following

sections.

Signature token generation

The request sender generates a Signature security token using a callback handler. The security

token returned by the callback handler is inserted in the SOAP message. The callback handler is

specified in the <LoginBinding> element of the bindings file, ibm-webservicesclient-bnd.xmi.

WebSphere Application Server provides the following callback handler implementation that can be

used with the Signature authentication method:

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

 You can add your own callback handlers that implement the

javax.security.auth.callback.CallbackHandler implementation.

Security token validation

The request receiver retrieves the Signature security token from the Simple Object Access

Protocol (SOAP) message and validates it using a JAAS login module. The <ds:Signature> and

<wsse:BinarySecurityToken> elements in the security token are used to perform the validation. If

the validation is successful, the login module returns a Java Authentication and Authorization

Service (JAAS) Subject. This Subject then is set as the identity of the running thread. If the

validation fails, the request is rejected with a SOAP fault exception.

 The JAAS login configuration is specified in the <LoginMapping> element of the bindings file.

Default bindings are specified in the ws-security.xml file. However, you can override these

bindings using the application-specific ibm-webservices-bnd.xmi file. The configuration information

consists of a CallbackHandlerFactory and a ConfigName. The CallbackHandlerFactory specifies

the name of a class that is used for creating the JAAS CallbackHandler object. WebSphere

Application Server provides the

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImp CallbackHandlerFactory

implementation. The ConfigName specifies a JAAS configuration name entry. WebSphere

Application Server searches in the security.xml file for a matching configuration name entry. If a

match is not found, it searches the wsjaas.conf file. WebSphere Application Server provides the

system.wssecurity.Signature default configuration entry, which is suitable for the signature

authentication method.

Remember: The information in this article supports version 5.x applications only that are used with

WebSphere Application Server Version 6. The information does not apply to version 6

applications.

Configuring the client for signature authentication: collecting the authentication information:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This task is used to configure signature authentication. A signature refers to the use of an X.509 certificate

to login on the target server. For more information on signature authentication, see “Signature

authentication method” on page 914.

Complete the following steps to specify how the client collects the authentication information for signature

authentication:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

Chapter 14. Learn about WebSphere applications 915

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of the deployment descriptor editor within the

assembly tool.

6. Expand the Security request sender binding configuration > Signing information and click Edit to

modify the signing key name and signing key locator. To create new signing information, click Enable.

The certificate that is sent to log in at the server is the one configured in the Signing Information

section. Review the section on “Key locator” on page 842 to understand how the signing key name

maps to a key within the key locator entry.

The following list describes the purpose of this information. Some of these definitions are based on the

XML-Signature specification, which is located at the following Web address:

http://www.w3.org/TR/xmldsig-core

Canonicalization method algorithm

Canonicalizes the SignedInfo element before it is digested as part of the signature operation.

Digest mehod algorithm

Represents the algorithm that is applied to the data after transforms are applied, if specified, to

yield the <DigestValue> element. The signing of the DigestValue element binds the resource

content to the signer key. The algorithm selected for the client request sender configuration

must match the algorithm selected in the server request receiver configuration.

Signature method algorithm

Represents the algorithm that is used to convert the canonicalized <SignedInfo> value into the

<SignatureValue> value. The algorithm selected for the client request sender configuration

must match the algorithm selected in the server request receiver configuration.

Signing key name

Represents the key entry associated with the signing key locator. The key entry refers to an

alias of the key, which is used to sign the request.

Signing key locator

TRepresents a reference to a key locator implementation. For more information on

configuring key locators, see “Key locator” on page 842.

7. Expand the Security request sender binding configuration > Login binding section.

8. Click Edit to view the login binding information. Then, select or enter the following information:

Authentication method

Specifies the type of authentication that occurs. Select Signature to use signature

authentication.

Token value type URI and Token value type URI local name

When you select Signature, you cannot edit the Token value type URI and Local name

values. Specifies custom authentication types. For signature authentication, leave these

fields blank.

Callback handler

Specifies the Java Authentication and Authorization Server (JAAS) callback handler

implementation for collecting signature information. Enter the following callback handler for

signature authentication:

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

 This callback handler is used because the signature method does not require user interaction.

Basic authentication user ID and Basic authentication password

Leave the BasicAuth fields blank when Signature authentication is used.

916 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.w3.org/TR/xmldsig-core

Property name and property value

This field enables you to enter properties and name and value pairs for use by custom

callback handlers. For signature authentication, you do not need to enter any information.

Other customization entries: There is a basic authentication entry in the Port Qualified Name Binding

Details section. This entry is used for HTTP transport authentication, which might be required if the router

servlet is protected.

Information specified in the Web services security signature authentication section overrides the basic

authentication information specified in the Port Qualified Name Binding Details section for authorizing the

Web service.

To use the signature authentication method, you must specify the authentication method in the Login

config section of an assembly tool. See “Configuring the client for signature authentication: specifying the

method” on page 914 if you have not previously specified this information.

Configuring the server to support signature authentication:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Use this task to configure signature authentication at the server. Signature authentication refers to an

X.509 certificate sent by the client to the server. The certificate is used to authenticate to the user registry

configured at the server. After a request is received by the server that contains the certificate, the server

needs to log in to form a credential. The credential is used for authorization. If the certificate supplied

cannot be mapped to an entry in the user registry, an exception is thrown and the request ends without

invoking the resource. For more information on signature authentication, see “Signature authentication

method” on page 914.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web Services Editor within the

assembly tool.

6. Expand the Request receiver service configuration details > Login configuration section. You can

select from the following options:

v BasicAuth

v Signature

v ID assertion

v Lightweight Third Party Authentication (LTPA)

7. Select Signature to authenticate the client using an X509 certificate. The certificate that is sent from

the client is the certificate that issued for signing the message. You must be able to map this

certificate to the configured user registry. For Local operating system (OS) registries, the common

name (cn) of the distinguished name (DN) is mapped to a user ID in the registry. For Lightweight

Directory Access Protocol (LDAP), you can configure multiple mapping modes:

v EXACT_DN is the default mode that directly maps the DN of the certificate to an entry in the LDAP

server.

v CERTIFICATE_FILTER is the mode that provides the LDAP advanced configuration with a place to

specify a filter that maps specific attributes of the certificate to specific attributes of the LDAP server.

Chapter 14. Learn about WebSphere applications 917

For more information on getting started with the Web services editor within the assembly tool, see

“Configuring the server security bindings using an assembly tool” on page 875.

After you specify how the server handles signature authentication information, you must specify how the

server validates the authentication information. See “Configuring the server to validate signature

authentication information” for more information.

Configuring the server to validate signature authentication information:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Use this task to configure signature authentication at the server. Signature authentication refers to an

X.509 certificate sent by the client to the server. The certificate is used to authenticate to the user registry

configured at the server. Once a request is received by the server that contains the certificate, the server

needs to log in to form a credential. The credential is used for authorization. If the certificate supplied

cannot be mapped to an entry in the user registry, an exception is thrown and the request ends without

invoking the resource. For more information on signature authentication, see “Signature authentication

method” on page 914.

Complete the following steps to configure the server to validate signature authentication:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the Web services editor within

the assembly tool.

6. Expand the Request receiver binding configuration details > Login mapping section.

7. Click Edit to view the login mapping information or click Add to add new login mapping information.

The login mapping dialog is displayed and you select (or enter) the following information:

Authentication method

Specifies the type of authentication. Select Signature to use signature authentication.

Configuration name

Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.

For the signature authentication method, enter system.wssecurity.Signature for the JAAS

login configuration name. This specification logs in with the

com.ibm.wsspi.wssecurity.auth.module.SignatureLoginModule JAAS login module.

Use token value type

Determines if you want to specify a custom token type. For the default authentication method

selections, you can leave this field blank.

URI and local name

When you select Signature method, you cannot edit the token value type URI and local name

values. Specifies custom authentication types. For signature authentication, you can leave

this field blank.

Callback handler factory class name

Creates a JAAS CallbackHandler implementation that understands the following callback

handlers:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

918 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For any of the default authentication methods (BasicAuth, IDAssertion, and Signature), use the

callback handler factory default implementation. Enter the following class name for any of the

default authentication methods including signature:

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

 This implementation creates the correct callback handler for the default implementations.

Callback handler factory property name and callback handler factory property value

Specifies callback handler properties for custom callback handler factory implementations. You

do not need to specify any properties for the default callback handler factory implementation.

For signature, you can leave this field blank.

Login mapping property name and login mapping property value

Specifies properties for a custom login mapping to use. For the default implementations

including signature, you can leave this field blank.

Specify how the server handles the signature authentication method. See “Configuring the server to

support signature authentication” on page 917 if you have not previously specified this information.

Token type overview

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

The proposed Web services security draft defined two types of security tokens:

v Username token

v Binary security token

A user name token consists of a user name and, optionally, password information. You can include a user

name token directly in the <Security> header within the message. Binary tokens, such as X.509

certificates, Kerberos tickets, Lightweight Third Party Authentication (LTPA) tokens, or other non-XML

formats, require a special encoding for inclusion. The Web services security specification describes how to

encode binary security tokens such as X.509 certificates and Kerberos tickets, and it also describes how

to include opaque encrypted keys. The specification also includes extensibility mechanisms that you can

use to further describe the characteristics of the credentials that are included with a message.

WebSphere Application Server, Version 5.0.2 supports user name tokens, which include both user name

and password for basic authentication and user name, which is used for identity assertion. The

WebSphere Application Server, Version 5.0.2 binary security token implementation supports both X.509

certificates and LTPA binary security. You extend the implementation to generate other types of tokens.

However, Kerberos tickets are not supported in WebSphere Application Server, Version 5.0.2. Each type of

token is processed by a corresponding token generation and validation module. The binary token

generation and validation modules are pluggable that is based on the Java Authentication and

Authorization Service (JAAS) framework. For example, an arbitrary XML-based token format is supported

using the JAAS pluggable framework. WebSphere Application Server, Version 5.0.2 does not support an

XML-based token that is used in the SecurityTokenReference.

You can define the types of tokens that the message can accept in the deployment descriptor extension

file, ibm.webservices-ext.xmi. A message receiver might support one or more types of security tokens. The

following example shows that the receiver supports four types of security tokens:

Chapter 14. Learn about WebSphere applications 919

Important: In the following code sample, several lines were split into multiple lines due to the width of the

printed page. See the close bracket for an indication of where each line of code ends.

?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wsext:WsExtension xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wsext=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsext.xmi"

xmi:id="WsExtension_1052760331306" routerModuleName="StockQuote.war">

 <wsDescExt xmi:id="WsDescExt_1052760331306" wsDescNameLink="StockQuoteFetcher">

 <pcBinding xmi:id="PcBinding_1052760331326" pcNameLink="urn:xmltoday-delayed-quotes"

 scope="Session">

 <serverServiceConfig

 xmi:id="ServerServiceConfig_1052760331326"actorURI="myActorURI">

 <securityRequestReceiverServiceConfig

 xmi:id="SecurityRequestReceiverServiceConfig_1052760331326">

 <loginConfig xmi:id="LoginConfig_1052760331326">

 <authMethods xmi:id="AuthMethod_1052760331326" text="BasicAuth"/>

 <authMethods xmi:id="AuthMethod_1052760331327" text="IDAssertion"/>

 <authMethods xmi:id="AuthMethod_1052760331336" text="Signature"/>

 <authMethods xmi:id="AuthMethod_1052760331337" text="LTPA"/>

 </loginConfig>

<idAssertion xmi:id="IDAssertion_1052760331336" idType="Username" trustMode="Signature"/>

The message sender might choose one of the token types that are supported by the receiver when

sending a message. You can define the type of token to be used by the sending side in the client

descriptor extension file, ibm-webservicesclient-ext.xmi. The following example shows that the sender

chooses to send a UsernameToken to the receiver:

Important: In the following code sample, several lines were split into multiple lines due to the width of the

printed page. See the close bracket for an indication of where each line of code ends.

<?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wscext:WsClientExtension xmi:version="2.0"

mlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wscext=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscext.xmi"

xmi:id="WsClientExtension_1052760331496">

<ServiceRefs xmi:id="ServiceRef_1052760331506" serviceRefLink="service/StockQuoteService">

 <portQnameBindings xmi:id="PortQnameBinding_1052760331506"

portQnameLocalNameLink="StockQuote">

 <clientServiceConfig xmi:id="ClientServiceConfig_1052760331506"

actorURI="myActorURI">

 <securityRequestSenderServiceConfig

xmi:id="SecurityRequestSenderServiceConfig_1052760331506" actor="myActorURI">

 <loginConfig xmi:id="LoginConfig_1052760331506" authMethod="BasicAuth"/>

Username token element:

You can use the UsernameToken element to propagate a user name and, optionally, password information.

Also, you can use this token type to carry basic authentication information. Both a user name and a

password are used to authenticate the message. A UsernameToken containing the user name is used in

identity assertion, which establishes the identity of the user based on the trust relationship.

 The following example shows the syntax of the UsernameToken element:

<UsernameToken Id="...">

 <Username>...</Username>

 <Password Type="...">...</Password>

</UsernameToken>

The Web services security specification defines the following password types:

wsse:PasswordText (default)

This type is the actual password for the user name.

920 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

wsse:PasswordDigest

The type is the digest of the password for the user name. The value is a base64-encoded SHA1

hash value of the UTF8-encoded password.

WebSphere Application Server supports the default PasswordText type. However, it does not support

password digest because most user registry security policies do not expose the password to the

application software.

The following example illustrates the use of the <UsernameToken> element:

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">

 <S:Header>

 ...

 <wsse:Security>

 <wsse:UsernameToken>

 <wsse:Username>Joe</wsse:Username>

 <wsse:Password>ILoveJava</wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

 </S:Header>

</S:Envelope>

Remember: The information in this article supports version 5.x applications only that are used with

WebSphere Application Server Version 6. The information does not apply to version 6

applications.

Nonce, a randomly generated token:

Nonce is a randomly generated, cryptographic token used to prevent the theft of user name tokens used

with SOAP messages. Nonce is used with the basicauth authentication method.

 Without nonce, when a user name token is passed from one machine to another machine using a

non-secure transport, such as HTTP, the token might be intercepted and used in a replay attack. The

same key might be reused when the username token is transmitted between the client and the server,

which leaves it vulnerable to attack. The user name token can be stolen even if you use XML digital

signature and XML encryption.

To help eliminate these replay attacks, the <wsse:Nonce> and <wsu:Created> elements are generated within

the <wsee: usernameToken> element and used to validate the message. The request receiver or response

receiver checks the freshness of the message to verify the difference between when the message is

created and the current time falls within a specified time period. Also, WebSphere Application Server

verifies that the receiver has not processed the token within the specified time period. These two features

are used to lessen the chance that a user name token is used for a replay attack.

Configuring nonce for the application level:

Important: The information in this article supports version 5.x applications only that are used with

WebSphere Application Server Version 6. The information does not apply to version 6

applications.

Nonce is a randomly generated, cryptographic token used to thwart the highjacking of username tokens

used with Simple Object Access Protocol (SOAP) messages. Nonce is used in conjunction with the

BasicAuth authentication method.

This task provides instructions on how to configure nonce for the application level using the WebSphere

Application Server administrative console.

You can configure nonce at the application level and cell level.

Chapter 14. Learn about WebSphere applications 921

However, you must consider the order of precedence:

1. Application level

2. Server level

If you configure nonce on the application level and the server level, the values specified for the application

level take precedence over the values specified for the server level.

1. Connect to the administrative console by typing http://localhost:9060/ibm/console in your Web

browser unless you have changed the port number.

2. Click Applications > Enterprise applications >application_name.

3. Under Related Items, click Web module or EJB module > URI_name.

4. Under Additional properties, click Web services: Server security bindings.

5. Click Edit under Request receiver binding

6. Under Additional properties, click Login mappings > New.

7. Specify (optional) a value, in seconds, for the Nonce maximum age field. This panel is optional and

only valid if the BasicAuth authentication method is specified. If you specify another authentication

method and attempt to specify values for this field, the following error message displays and you must

remove the specified value:

Nonce is not supported for authentication methods other than

BasicAuth.

If you specify BasicAuth, but do not specify values for the Nonce maximum age field, the Web services

security run time searches for a Nonce Maximum Age value on the server level. If a value is not found

on the server level, the run time searches the cell level. If a value is not found on either the server

level or the cell level, the default is 300 seconds.

The value specified for the Nonce Maximum Age field indicates how long the nonce is valid. You must

specify a minimum of 300 seconds, but the value cannot exceed the number of seconds specified for

the Nonce Cache Timeout field for either the server level

You can specify the Nonce Cache Timeout value for the server level by completing the following steps:

a. Click Servers > Application servers >server_name.

b. Under Security, click Web Services: Default bindings for Web services security.

8. Specify (optional) a value, in seconds, for the Nonce clock skew field. The value specified for the

Nonce Clock Skew field specifies the amount of time, in seconds, to consider when the message

receiver checks the timeliness of the value. This panel is optional and only valid if the BasicAuth

authentication method is specified. If you specify another authentication method and attempt to specify

values for this field, the following error message displays and you must remove the specified value:

Nonce is not supported for authentication methods other than

BasicAuth.

If you specify BasicAuth, but do not specify values for the Nonce clock skew field, the Web services

security run time searches for a Nonce clock skew value on the server level. If a value is not found on

the server level, the run time searches the cell level. If a value is not found on either the server level or

the cell level, the default is 0 seconds.

Consider the following information when you set this value:

v Difference in time between the message sender and the message receiver if the clocks are not

synchronized.

v Time needed to encrypt and transmit the message.

v Time needed to get through network congestion.

9. Restart the server.

922 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Configuring nonce for the server level:

Important: The information in this article supports version 5.x applications only that are used with

WebSphere Application Server Version 6. The information does not apply to version 6

applications.

Nonce is a randomly generated, cryptographic token used to prevent the theft of username tokens used

with Simple Object Access Protocol (SOAP) messages. Nonce is used in conjunction with the BasicAuth

authentication method.

This task provides instructions on how to configure nonce for the server level using the WebSphere

Application Server administrative console.

However, you must consider the order of precedence:

1. Application level

2. Server level

If you configure nonce on the application level and the server level, the values specified for the application

level take precedence over the values specified for the server level.

In a WebSphere Application Server or WebSphere Application Server Express environment, you must

specify values for the Nonce cache timeout, Nonce maximum age, and Nonce clock skew fields on the

server level to use nonce effectively.

Complete the following steps to configure nonce on the server level:

1. Connect to the administrative console by typing http://localhost:9060/ibm/console in your Web

browser unless you have changed the port number.

2. Click Servers > Application servers >server_level.

3. Under Security, click Web Services: Default bindings for Web services security.

4. Specify a value, in seconds, for the Nonce cache timeout field. The value specified for the Nonce

cache timeout field indicates how long the nonce remains cached before it is expunged. You must

specify a minimum of 300 seconds. However, if you do not specify a value, the default is 600 seconds.

This field is required for the server level.

5. Specify (optional) a value, in seconds, for the Nonce maximum age field.

The value specified for the Nonce Maximum Age field indicates how long the nonce is valid. You must

specify a minimum of 300 seconds, but the value cannot exceed the number of seconds specified for

the Nonce cache timeout field on the server level.

6. Specify a value, in seconds, for the Nonce clock skew field. The value specified for the Nonce clock

skew field specifies the amount of time, in seconds, to consider when the message receiver checks the

timeliness of the value. Consider the following information when you set this value:

v Difference in time between the message sender and the message receiver if the clocks are not

synchronized.

v Time needed to encrypt and transmit the message.

v Time needed to get through network congestion.

You must specify at least 0 seconds for the Nonce clock skew field. However, the maximum value

cannot exceed the number of seconds specified in the Nonce maximum age field on the server level. If

you do not specify a value, the default is 0 seconds.

7. Restart the server. If you change the Nonce cache timeout value and do not restart the server, the

change is not recognized by the server.

Binary security token:

Chapter 14. Learn about WebSphere applications 923

The ValueType attribute identifies the type of the security token, for example, an LTPA token. The

EncodingType indicates how the security token is encoded, for example, Base64Binary. The

BinarySecurityToken element defines a security token that is binary encoded. The encoding is specified

using the EncodingType attribute. The value type and space are specified using the ValueType attribute.

The Web services security implementation for WebSphere Application Server, Version 5.0.2 supports both

LTPA and X.509 certificate binary security tokens.

 A binary security token has the following attributes that are used for interpretation:

v Value type

v Encoding type

The following example depicts an LTPA binary security token in a Web services security message header:

<wsse:BinarySecurityToken xmlns:ns7902342339871340177=

 ″http://www.ibm.com/websphere/appserver/tokentype/5.0.2″

 EncodingType=″wsse:Base64Binary″

 ValueType=″ns7902342339871340177:LTPA″>

 MIZ6LGPt2CzXBQfio9wZTo1VotWov0NW3Za6lU5K7Li78DSnIK6iHj3hxXgrUn6p4wZI

 8Xg26havepvmSJ8XxiACMihTJuh1t3ufsrjbFQJOqh5VcRvI+AKEaNmnEgEV65jUYAC9

 C/iwBBWk5U/6DIk7LfXcTT0ZPAd+3D3nCS0f+6tnqMou8EG9mtMeTKccz/pJVTZjaRSo

 msu0sewsOKfl/WPsjW0bR/2g3NaVvBy18VlTFBpUbGFVGgzHRjBKAGo+ctkl80nlVLIk

 TUjt/XdYvEpOr6QoddGi4okjDGPyyoDxcvKZnReXww5UsoqlpfXwN4KG9as=

</wsse:BinarySecurityToken></wsse:Security></soapenv:Header>

As shown in the example, the token is Base64Binary encoded.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

XML token:

XML tokens are offered in two formats, Security Assertion Markup Language (SAML) and Extensible rights

Markup Language (XrML).

 XML-based security tokens are growing in popularity. Two well-known formats are:

v Security Assertion Markup Language (SAML)

v Extensible rights Markup Language (XrML)

Using textensibility of the <wsse:Security> header in XML-based security tokens, you can directly insert

these security tokens into the header.

SAML assertions are attached to Web services security messages using Web services by placing

assertion elements inside the <wsse:Security> header. The following example illustrates a Web services

security message with a SAML assertion token.

<S:Envelope xmlns:S="...">&

 <wsse:Security xmlns:wsse="...">

 <saml:Assertion

 MajorVersion="1"

 MinorVersion="0"

 AssertionID="SecurityToken-ef375268"

 Issuer="elliotw1"

 IssueInstant="2002-07-23T11:32:05.6228146-07:00"

 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

 ...

 </saml:Assertion>

924 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

</wsse:Security>

 </S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

For more information on SAML and XrML, see Web services: Resources for learning.

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Security token

A security token represents a set of claims made by a client that might include a name, password, identity,

key, certificate, group, privilege, and so on.

Web services security provides a general-purpose mechanism to associate security tokens with messages

for single message authentication. A specific type of security token is not required by Web services

security. Web services security is designed to be extensible and support multiple security token formats to

accommodate a variety of authentication mechanisms. For example, a client might provide proof of

identity and proof of a particular business certification.

A security token is embedded in the SOAP message within the SOAP header. The security token within

the SOAP header is propagated from the message sender to the intended message receiver. On the

receiving side, the WebSphere Application Server security handler authenticates the security token and

sets up the caller identity on the running thread.

Remember: The information in this article supports version 5.x applications only that are used with

WebSphere Application Server Version 6. The information does not apply to version 6

applications.

Securing Web services for version 5.x applications using a pluggable token

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

WebSphere Application Server provides several different methods to secure your Web services; a

pluggable token is one of these methods. You might secure your Web services using any of the following

methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

Complete the following steps to secure your Web services using a pluggable token:

1. Generate a security token using the Java Authentication and Authorization Service (JAAS)

CallbackHandler interface. The Web services security run time uses the JAAS CallbackHandler

interface as a plug-in to generate security tokens on the client side or when Web services is acting as

a client.

Chapter 14. Learn about WebSphere applications 925

2. Configure your pluggable token. To use pluggable tokens to secure your Web services, you must

configure both the client request sender and the server request receiver. You can configure your

pluggable tokens using either the WebSphere Application Server administrative console or the

WebSphere Application Server Toolkit. For more information, see the following topics:

v “Configuring pluggable tokens using an assembly tool”

v “Configuring pluggable tokens using the administrative console” on page 928

Configuring pluggable tokens using an assembly tool:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This document describes how to configure a pluggable token in the request sender (ibm-
webservicesclient-ext.xmi and ibm-webservicesclient-bnd.xmi file) and request receiver

(ibm-webservices-ext.xmi and ibm-webservices-bnd.xmi file).

The pluggable token is required for the request sender and request receiver because they are a pair. The

request sender and the request receiver must match for the receiver to accept a request.

Prior to completing these steps, it is assumed that you have already created a Web services-enabled Java

2 Platform, Enterprise Edition (J2EE) with a Web Services for J2EE (JSR 109) enterprise application. If

not, see Developing Web services applications to create Web services-enabled J2EE with a JSR 109

enterprise application. See either of the following topics for an introduction of how to manage Web

services security binding information for the server:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

You must specify the security constraints in the ibm-webservicesclient-ext.xmi and the

ibm-webservices-ext.xmi files for the required tokens using an assembly tool such as the Application

Server Toolkit or Rational Web Developer.

Complete the following steps to configure the request sender using the ibm-webservicesclient-ext.xmi

and ibm-webservicesclient-bnd.xmi files:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extension tab. The Web service client security extensions editor is displayed.

a. Under Service References, select an existing service reference or click Add to create a new

reference.

b. Under Port Qname Bindings, select an existing port qualified name for the selected service

reference or click Add to create a new port name binding.

c. Under Request Sender Configuration: Login Configuration, select an exiting authentication method

or type in a new one in the editable list box (Lightweight Third Party Authorization (LTPA) is a

supported token generation when Web services is acting as client).

d. Click File > Save to save the changes.

6. Click the Web services client binding tab. The Web services client binding editor is displayed.

a. Under Port qualified name binding, select an existing entry or click Add to add a new port name

binding. The Web services client binding editor displays for the selected port.

b. Under Login binding, click Edit or Enable. The Login Binding dialog box is displayed.

926 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

1) In the Authentication Method field, enter the authentication method. The authentication method

that you enter in this field must match the authentication method defined on the Security

Extension tab for the same Web service port. This field is mandatory.

2) (Optional) Enter the token value type information in the URI and Local name fields. These

fields are ignored for the BasicAuth, Signature, and IDAssertion authentication methods, but

required for other authentication methods. The token value type information is inserted into the

<wsse:BinarySecurityToken>@ValueType element for binary security token and is used as the

namespace for the XML-based token.

3) Enter an implementation of the Java Authentication and Authorization Service (JAAS)

javax.security.auth.callback.CallbackHandler interface. This field is mandatory.

4) Enter the basic authentication information in the User ID and Password fields. The basic

authentication information is passed to the construct of the CallbackHandler implementation.

The use of the basic authentication information depends on the implementation of

CallbackHandler.

5) In the Property field, add name and value pairs. These pairs are passed to the construct of the

CallbackHandler implementation as java.util.Map values.

6) Click OK.

Click Disable under Login binding on the Web services client port binding tab to remove the

authentication method login binding.

c. Click File > Save to save the changes.

7. In the Package Explorer window, right-click the webservices.xml file and click Open with > Web

services editor. The Web Services window displays.

a. Click the Security extensions tab. The Web service security extensions editor is displayed.

1) Under Web Service Description Extension, select an existing service reference or click Add to

create a new extension.

2) Under Port Component Binding, select an existing port qualified name for the selected service

reference or click Add to create a new one.

3) Under Request Receiver Service Configuration Details: Login Configuration, select an exiting

authentication method or click Add and enter a new method in the Add AuthMethod field that

displays. You can select multiple authentication methods for the request receiver. The security

token of the incoming message is authenticated against the authentication methods in the order

that they are specified in the list. Click Remove to remove the selected authentication method

or methods.

b. Click File > Save to save the changes.

c. Click the Bindings tab. The Web services bindings editor is displayed.

1) Under Web service description bindings, select an existing entry or click Add to add a new

Web services descriptor.

2) Click the Binding configurations tab. The Web services binding configurations editor is

displayed for the selected Web services descriptor.

3) Under Request receiver binding configuration details: login mapping, click Add to create a new

login mapping or click Edit to edit the selected login mapping. The Login mapping dialog is

displayed.

a) In the Authentication method field, enter the authentication method. The information entered

in this field must match the authentication method defined on the Security Extensions tab

for the same Web service port. This field is mandatory.

b) In the Configuration name field, enter a JAAS login configuration name. You must define

the JAAS login configuration name in the WebSphere Application Server administrative

console under Security > Global security. Under Authentication, click JAAS

configuration > Application logins. This is a mandatory field. For more information, see

“Configuring application logins for Java Authentication and Authorization Service” on page

242.

Chapter 14. Learn about WebSphere applications 927

c) (Optional) Select Use Token value type and enter the token value type information in the

URI and Local name fields. This information is optional for BasicAuth, Signature and

IDAssertion authentication methods, but required for any other authentication method. The

token value type is used to validate the <wsse:BinarySecurityToken>@ValueType element

for binary security tokens and to validate the namespace of the XML-based token.

d) Under Callback Handler Factory, enter an implementation of the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory interface in the Class name

field. This field is mandatory.

e) Under Callback Handler Factory property, click Add and enter the name and value pairs for

the Callback Handler Factory Property. These name and value pairs are passed as

java.util.Map to the com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory.init()

method. The use of these name and value pairs is determined by the

CallbackHandlerFactory implementation.

f) Under Login Mapping Property, click Add and enter the name and value pairs for the Login

mapping property. These name and value pairs are available to the JAAS Login Modules

through thecom.ibm.wsspi.wssecurity.auth.callback.PropertyCallback JAAS Callback

interface. Click Remove to delete the selected login mapping.

g) Click OK.

d. Click File > Save to save the changes.

The previous steps define how to configure the request sender to create security tokens in the Simple

Object Access Protocol (SOAP) message and to configure the request receiver to validate the security

tokens found in the incoming SOAP message. WebSphere Application Server supports pluggable security

tokens.

You can use the authentication method defined in the login bindings and login mappings to generate

security tokens in the request sender and validate security tokens in the request receiver.

After you configure pluggable tokens, you must configure both the client and the server to support

pluggable tokens. See the following topics to configure the client and the server:

v Configuring the client for LTPA token authentication: Specifying LTPA token authentication

v Configuring the client for LTPA token authentication: Collecting the authentication information

v Configuring the server to handle LTPA token authentication

v Configuring the server to validate LTPA token authentication information

Configuring pluggable tokens using the administrative console:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Prior to completing these steps, it is assumed that you have already created a Web services-enabled Java

2 Platform, Enterprise Edition (J2EE) with a Web Services for J2EE (JSR 109) enterprise application. If

not, see Developing Web services applications to create Web services-enabled J2EE with a JSR 109

enterprise application. See either of the following topics for an introduction of how to manage Web

services security binding information for the server:

v “Configuring the server security bindings using an assembly tool” on page 875

v “Configuring the server security bindings using the administrative console” on page 877

This document describes how to configure a pluggable token in the request sender (ibm-
webservicesclient-ext.xmi and ibm-webservicesclient-bnd.xmi file) and request receiver

(ibm-webservices-ext.xmi and ibm-webservices-bnd.xmi file).

928 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Important: The pluggable token is required for the request sender and request receiver as they are a

pair. The request sender and the request receiver must match for a request to be accepted by

the receiver.

Prior to completing these steps, it is assumed that you deployed a Web services-enabled enterprise

application to the WebSphere Application Server.

Use the following steps to configure the client-side request sender (ibm-webservicesclient-bnd.xmi file) or

server-side request receiver (ibm-webservices-bnd.xmi file) using the WebSphere Application Server

Administrative Console.

1. Click Applications > Enterprise applications > enterprise_application.

2. Under Related items, click either EJB modules or Web modules > URI. The URI is the Web

services-enabled module

a. Under Additional properties, click Web services: client security bindings to edit the response

sender binding information, if Web services is acting as client.

1) Under Response sender binding, click Edit.

2) Under Additional Properties, click Login binding.

3) Select Dedicated login binding to define a new login binding.

a) Enter the authentication method, this must match the authentication method defined in IBM

extension deployment descriptor. The authentication method must be unique in the binding

file.

b) Enter an implementation of the JAAS javax.security.auth.callback.CallbackHandler

interface.

c) Enter the basic authentication information (User ID and Password) and the basic

authentication information is passed to the construct of the CallbackHandler

implementation. The usage of the basic authentication information is up to the

implementation of the CallbackHandler.

d) Enter the token value type, it is optional for BasicAuth, Signature and IDAssertion

authentication methods but required for any other authentication method. The token value

type is inserted into the <wsse:BinarySecurityToken>@ValueType for binary security token

and used as the namespace of the XML based token.

e) Click Properties. Define the property with name and value pairs. These pairs are passed to

the construct of the CallbackHandler implementation as java.util.Map.

Select None to deselect the login binding.

b. Under Additional Properties, click Web services: server security bindings to edit the request

receiver binding information.

1) Under Request Receiver Binding, click Edit.

2) Under Additional Properties, click Login mappings.

3) Click New to create new login mapping.

a) Enter the authentication method, this must match the authentication method defined in the

IBM extension deployment descriptor. The authentication method must be unique in the

login mapping collection of the binding file.

b) Enter a JAAS Login Configuration name. The JAAS Login Configuration must be defined

under Security > Global security. Under Authentication, click JAAS Configuration >

Application Logins. For more information, see “Configuring application logins for Java

Authentication and Authorization Service” on page 242.

c) Enter an implementation of the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory interface. This is a

mandatory field.

d) Enter the token value type, it is optional for BasicAuth, Signature and IDAssertion

authentication methods but required for any other authentication method. The token value

Chapter 14. Learn about WebSphere applications 929

type is used to validate against the <wsse:BinarySecurityToken>@ValueType for binary

security token and against the namespace of the XML based token.

e) Enter the name and value pairs for the ″Login Mapping Property″ by clicking Properties .

These name and value pairs are available to the JAAS Login Module or Modules by

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback JAAS Callback. Note: This is

true when editing existing login mappings but not when creating new login mappings.

f) Enter the name and value pairs for the ″Callback Handler Factory Property″, these name

and value pairs is passed as java.util.Map to the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory.init() method. The

usage of these name and value pairs is up to the CallbackHandlerFactory implementation.

c. Click authentication method link to edit the selected login mapping.

d. Click Remove to remove the selected login mapping or mappings.

3. Click Save .

The previous steps define how to configure the request sender to create security tokens in the Simple

Object Access Protocol (SOAP) message and the request receiver to validate the security tokens found in

the incoming SOAP message. WebSphere Application Server supports pluggable security tokens.

You can use the authentication method defined in the login bindings and login mappings to generate

security tokens in the request sender and validate security tokens in the request receiver.

Once you have configured pluggable tokens, you must configure both the client and the server to support

pluggable tokens. See the following topics to configure the client and the server:

v “Configuring the client for LTPA token authentication: specifying LTPA token authentication” on page 931

v “Configuring the client for LTPA token authentication: collecting the authentication method information”

on page 932

v “Configuring the server to handle LTPA token authentication information” on page 933

v “Configuring the server to validate LTPA token authentication information” on page 933

Pluggable token support: Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

You can extend the WebSphere Application Server login mapping mechanism to handle new types of

authentication tokens. WebSphere Application Server provides a pluggable framework to generate security

tokens on the sender-side of the message and to validate the security token on the receiver-side of the

message. The framework is based on the Java Authentication and Authorization Service (JAAS)

Application Programming Interfaces (APIs). Pluggable security token support provides plug-in points to

support customer security token types including token generation, token validation, and client identity

mapping to a WebSphere Application Server identity that is used by the Java 2 platform, Enterprise Edition

(J2EE) authorization engine. Moreover, the pluggable token generation and validation framework supports

XML-based tokens to be inserted into the Web service message header and validated on the receiver-side

validation.

Use the javax.security.auth.callback.CallbackHandler implementation to create a new type of security token

following these guidelines:

v Use a constructor that takes a user name (a string or null, if not defined), a password (a char[] or null, if

not defined) and java.util.Map (empty, if properties are not defined).

v Use handle() methods that can process the following implementations:

– javax.security.auth.callback.NameCallback

– javax.security.auth.callback.PasswordCallback

– com.ibm.wsspi.wssecurity.auth.callback.XMLTokenCallback

930 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

– com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

If:

1. Either the javax.security.auth.callback.NameCallback or the

javax.security.auth.callback.PasswordCallback implementation is populated with data, then a

<wsse:UsernameToken> element is created.

2. com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl is populated, the

<wsse:BinarySecurityToken> element is created from the

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl implementation.

3. com.ibm.wsspi.wssecurity.auth.callback.XMLTokenCallback is populated, a XML-based token is

created based on the Document Object Model (DOM) element that is returned from the

XMLTokenCallback.

Encode the token byte by using the security handler and not by using the

javax.security.auth.callback.CallbackHandler implementation.

You can implement the com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory interface, which is

a factory for instantiating the javax.security.auth.callback.CallbackHandler implementation. For your own

implementation, you must provide the javax.security.auth.callback.CallbackHandler interface. The Web

service security run time instantiates the factory implementation class and passes the authentication

information from the Web services message header to the factory class through the setter methods. The

Web services security run time then invokes the newCallbackHandler() method of the factory

implementation class to obtain an instance of the javax.security.auth.CallbackHandler object. The object is

passed to the JAAS login configuration.

The following is an example the definition of the CallbackHandlerFactory interface:

public interface com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory {

 public void setUsername(String username);

 public void setRealm(String realm);

 public void setPassword(String password);

 public void setHashMap(Map properties);

 public void setTokenByte(byte[] token);

 public void setXMLToken(Element xmlToken);

 public CallbackHandler newCallbackHandler();

Configuring the client for LTPA token authentication: specifying LTPA token authentication:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Use this task to configure Lightweight Third-Party Authentication (LTPA) token authentication. Only

configure the client for LTPA token authentication if the authentication mechanism configured in

WebSphere Application Server is LTPA. When a client authenticates to a WebSphere Application Server,

the credential created contains an LTPA token. When a Web service calls a downstream Web service, you

can configure the first Web service to send the LTPA token from the originating client. Do not attempt to

configure LTPA from a pure client. LTPA works only when you configure the client-side of a Web service

acting as a client to a downstream Web service. For the downstream Web service to validate the LTPA

token, the LTPA keys on both servers must be the same.

Complete the following steps to specify LTPA token as the authentication method:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

Chapter 14. Learn about WebSphere applications 931

5. Click the Extensions tab, which is located at the bottom of the deployment descriptor editor within the

assembly tool.

6. Expand the Request sender configuration > Login configuration section.

7. Select LTPA as the authentication method. For more conceptual information on LTPA authentication,

see “Lightweight Third Party Authentication” on page 935.

After you specify LTPA token as the authentication method, you must specify how to collect the LTPA

token information. See “Configuring the client for LTPA token authentication: collecting the authentication

method information” for more information.

Configuring the client for LTPA token authentication: collecting the authentication method

information:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

Use this task to configure Lightweight Third-Party Authentication (LTPA) token authentication. Do not

configure the client for LTPA token authentication unless the authentication mechanism configured in

WebSphere Application Server is LTPA. When a client authenticates to a WebSphere Application Server,

the credential created contains an LTPA token. When a Web service calls a downstream Web service, you

can configure the first Web service to send the LTPA token from the originating client. Do not attempt to

configure LTPA from a pure client. LTPA works only when you configure the client-side of a Web service

acting as a client to a downstream Web service. In order for the downstream Web service to validate the

LTPA token, the LTPA keys on both servers must be the same.

Complete the following steps to specify how to collect the LTPA token authentication information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client Projects >application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Bindings tab, which is located at the bottom of the deployment descriptor editor within the

assembly tool.

6. Expand the Security request sender binding configuration > Login binding section.

7. Click Edit to view the login binding information and select LTPA. If LTPA is not already there, enter it

as an option. The login binding dialog is displayed. Select or enter the following information:

Authentication method

Specifies the type of authentication that occurs. Select LTPA to use identity assertion.

Token value type URI and token value type local name

When you select LTPA, you must edit the token value type URI and the local name fields.

Specifies values for custom authentication types, which are authentication methods not

mentioned in the specification. For the token value type URI field, enter the following string:

http://www.ibm.com/websphere/appserver/tokentype/5.0.2. For the local name field, enter

the following string: LTPA.

Callback handler

Specifies the Java Authentication and Authorization Service (JAAS) callback handler

implementation for collecting the LTPA information. Specify the

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler implementation for LTPA.

Basic authentication user ID and basic authentication password

For LTPA, you can leave these fields empty. However, when you omit this information, the

932 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

LTPA CallbackHandler implementation attempts to obtain the LTPA token from the invocation

(RunAs) credential. If an invocation (RunAs) credential does not exist, then the LTPA token is

not propagated.

Property name and property value

For LTPA, you can leave these fields empty.

See “Configuring the client for LTPA token authentication: specifying LTPA token authentication” on page

931 if you have not previously specified this information.

Configuring the server to handle LTPA token authentication information:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This task is used to configure Lightweight Third-Party Authentication (LTPA). LTPA is a type of

authentication mechanism in WebSphere Application Server security that defines a particular token format.

The purpose of the LTPA token authentication is to flow the LTPA token from the first Web service, which

authenticated the originating client, to the downstream Web service. Do not attempt to configure LTPA from

a pure client. Once the downstream Web service receives the LTPA token, it validates the token to verify

that the token has not been modified and has not expired. For validation to be successful, the LTPA keys

used by both the sending and receiving servers must be the same.

Complete the following steps to specify that LTPA is authentication method. The authentication method

indicated in these steps must match the authentication method specified for the client.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web services editor within the assembly

tool.

6. Expand the Request receiver service configuration details > Login configuration section. You can

select from the following options:

v BasicAuth

v Signature

v ID assertion

v LTPA

7. Select LTPA to authenticate the client using the LTPA token received from the request.

After you specify the authentication method, you must specify the information that the server must validate.

See “Configuring the server to validate LTPA token authentication information” for more information.

Configuring the server to validate LTPA token authentication information:

Important distinction between Version 5.x and Version 6 applications

Note: The information in this article supports version 5.x applications only that are used with WebSphere

Application Server Version 6. The information does not apply to version 6 applications.

This task is used to configure Lightweight Third-Party Authentication (LTPA). LTPA is a type of

authentication mechanism in WebSphere Application Server security that defines a particular token format.

The purpose of the LTPA token authentication is to flow the LTPA token from the first Web service, which

Chapter 14. Learn about WebSphere applications 933

authenticated the originating client, to the downstream Web service. Do not attempt to configure LTPA from

a pure client. Once the downstream Web service receives the LTPA token, it validates the token to verify

that the token has not been modified and has not expired. For validation to be successful, the LTPA keys

used by both the sending and receiving servers must be the same.

Complete the following steps to specify how the server must validate the LTPA token authentication

information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Open the J2EE perspective by clicking Window > Open perspective > Other > J2EE.

3. Click EJB Projects >application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the Web services editor within

the assembly tool.

6. Expand the Request receiver binding configuration details > Login mapping section.

7. Click Edit to view the login mapping information. The login mapping information is displayed. Select or

enter the following information:

Authentication method

Specifies the type of authentication that occurs. Select LTPA to use LTPA token authentication.

Configuration name

Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.

For the LTPA authentication method, enter WSLogin for the JAAS login configuration name.

This configuration understands how to validate an LTPA token.

Use token value type

Determines if you want to specify a custom token type. For LTPA authentication, you must

select this option because LTPA is considered a custom type. LTPA is not in the Web Services

Security Specification.

Token value type URI and local name

Specifies custom authentication types. If you select Use Token value type you must enter

data into the Token value Type URI and local name fields. For the token value type URI field,

enter the following string: http://www.ibm.com/websphere/appserver/tokentype/5.0.2. For

the local name, enter the following string: LTPA

Callback handler factory class name

Creates a JAAS CallbackHandler implementation that understands the following callback

handlers:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For any of the default authentication methods (BasicAuth, IDAssertion, Signature, and LTPA),

use the callback handler factory default implementation. Enter the following class name for

any of the default authentication methods including LTPA:

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

 This implementation creates the correct callback handler for the default implementations.

Callback handler factory property

Specifies callback handler properties for custom callback handler factory implementations.

Default callback handler factory implementation does not any property specifications. For

LTPA, you can leave this field blank.

934 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Login mapping property

Specifies properties for a custom login mapping. For default implementations including LTPA,

you can leave this field blank.

See “Configuring the server to handle LTPA token authentication information” on page 933 if you have not

previously specified this information.

Lightweight Third Party Authentication:

When you use the lightweight third party authentication (LTPA) method, the <wsse:BinarySecurityToken>

security token is generated. On the request sender side, the security token is generated by invoking a

callback handler. On the request receiver side, the security token is validated by a Java Authentication and

Authorization Service (JAAS) login module.

 The following information describes token generation and token validation operations.

LTPA token generation

The request sender uses a callback handler to generate an LTPA security token. The callback

handler returns a security token that is inserted in the Simple Object Access Protocol (SOAP)

message. Specify the appropriate callback handler in the <LoginBinding> element of the bindings

file (ibm-webservicesclient-bnd.xmi). The following callback handler implementation can be used

with the LTPA authentication method:

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

You can add your own callback handlers that implement the

javax.security.auth.callback.CallbackHandler property.

 When using the LTPA authentication method (or any authentication method other than BasicAuth,

Signature or IDAssertion), the TokenValueType attribute of the <LoginBinding> element in the

bindings file (ibm-webservicesclient-bnd.xmi) must be specified. The values to use for the LTPA

TokenValueType attribute are:

v uri=″http://www.ibm.com/websphere/appserver/tokentype/5.0.2″

v localName=″LTPA″

LTPA token validation

The request receiver retrieves the LTPA security token from the SOAP message and validates the

message using a JAAS login module. The <wsse:BinarySecurityToken> security token is used to

perform the validation. If the validation is successful, the login module returns a JAAS Subject.

Subsequently, this Subject is set as the identity of the running thread. If the validation fails, the

request is rejected with a SOAP fault.

 The appropriate JAAS login configuration to use is specified in the bindings file <LoginMapping>

element. Default bindings specified in the ws-security.xml file, but these can be overridden using

the application-specific ibm-webservices-bnd.xmi file. The configuration information consists of a

CallbackHandlerFactory, a ConfigName and a TokenValueType attribute. The

CallbackHandlerFactory specifies the name of a class to use to create the JAAS CallbackHandler

object. A CallbackHandlerFactory implementation is provided

(com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl). The ConfigName

attribute specifies a JAAS configuration name entry. The Web services security run time first

searches the security.xml file for a matching entry and if a matching entry is not found, the run

time searches the wsjaas.conf file. A default configuration entry suitable for the LTPA

authentication method is provided (WSLogin). An appropriate TokenValueType element is located in

the LTPA LoginMapping section of the default ws-security.xml file.

Remember: The information in this article supports version 5.x applications only that are used with

WebSphere Application Server Version 6. The information does not apply to version 6

applications.

Chapter 14. Learn about WebSphere applications 935

Tuning Web services security

The Java Cryptography Extension (JCE) is integrated into the software development kit (SDK) version

1.4.x and is no longer an optional package. However, due to export and import regulations, the default

Java Cryptography Extension (JCE) jurisdiction policy file shipped with the SDK enables you to use strong,

but limited, cryptography only. To enforce this default policy, WebSphere Application Server uses a JCE

jurisdiction policy file that introduces a significant performance impact. The default JCE jurisdiction policy

has a significant performance impact on the cryptographic functions supported by Web services security. If

you have Web services applications that use transport level security for XML encryption or digital

signatures, you might encounter performance degradation over previous releases of WebSphere

Application Server. However, IBM and Sun Microsystems provide versions of these jurisdiction policy files

that do not have restrictions on cryptographic strengths. If you are permitted by your governmental import

and export regulations, download one of these jurisdiction policy files. After downloading one of these files,

the performance of JCE and Web Services security might improve substantially.

For WebSphere Application Server platforms using IBM Developer Kit, Java Technology Edition Version

1.4.2, including the AIX, Linux, and Windows platforms, you can obtain unlimited jurisdiction policy files by

completing the following steps:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java 1.4.2 material

3. Click IBM SDK Policy files.

4. Select Unrestricted JCE Policy files for SDK 1.4.2

5. Enter your user ID and password or register with IBM to download the policy files. The policy files are

downloaded onto your machine.

For WebSphere Application Server platforms using the Sun-based Java Development Kit (JDK) Version

1.4.2, including the Solaris environments and the HP-UX platform, you can obtain unlimited jurisdiction

policy files by completing the following steps:

1. Go to the following Web site: http://java.sun.com/j2se/1.4.2/download.html

2. Click Archive area.

3. Locate the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 1.4.2

information and click Download. The policy files are downloaded onto your machine.

After following either of these sets of steps, two Java Archive (JAR) files are placed in the JVM

jre/lib/security/ directory.

Configuring UDDI Security Roles

Each interface to the UDDI Registry (either through Version 1 and 2 SOAP, Version 3 SOAP, EJB or the

GUI) is supplied with two roles:

Publish role(s) and custody transfer

mapped to AllAuthenticatedUsers. By default, this is configured to use SSL (that is HTTPS), but

this only applies when WebSphere security is enabled.

Inquiry role

mapped to Everyone. By default, this is configured to use HTTP (that is not SSL).

In addition UDDI Version 3 SOAP has an additional role for version 3 SOAP Custody Transfer, which is

mapped in the same way as the Publish Role.

The security role mappings can be altered by users through the Administration Console.

936 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.4.2/download.html

Authentication uses the standard WebSphere facilities and there is no separate registration function for the

Registry. If WebSphere security is enabled, you will need to supply your WebSphere userid and password

for Publish functions (unless you have changed the supplied Publish role).

You will need to set up WebSphere security configuration to be used by UDDI. It is expected that, for

development use, security will be disabled and security will be enabled for production environments.

The V3 SOAP services also support the use of the V3 Security API set get_authToken and

discard_authToken, but its use is optional, and defined by a combination of UDDI Policy and Security

Roles.

v If security is enabled, and the service’s Role is set to AllAuthenticated Users, WebSphere security takes

priority over UDDI authentication, but if the Publish (or Custody Transfer) Role is mapped to Everyone

and policy is set to require Authorization for publish (or Custody Transfer) (see WebSphere

Administration console (UDDI => UDDI Nodes => UDDI NodeID => Policy Groups => APIs => General

Properties)) then an authToken is required, and the user and password supplied in get_authToken will

be checked by WebSphere.

v If security is disabled, Role Mapping does not apply, and the use of the V3 Security API set is defined

by policy. If the ’Use authInfo if provided’ option is checked (see WebSphere Administrative console

(UDDI => UDDI Nodes => General Properties)) the userid supplied in get_authToken is used (but the

password will not be checked). If ’Use authInfo if provided’ is not checked the default user, set to

UNAUTHENTICATED by default (but configurable, see WebSphere Administrative console (UDDI =>

UDDI Nodes => General Properties => Default user ID)) is used.

The V1/2 SOAP interface also supports the UDDI API for get_authToken and discard_authToken API but

use of this is optional.

v If security is disabled and get_authToken is not called, the default user, UNAUTHENTICATED, is used.

v If security is disabled and get_authToken is called, the specified userid is used (but the password is not

checked).

v If WebSphere security is enabled, it takes priority over UDDI authentication, but if the Publish role is

mapped to Everyone, get_authToken must be used and the userid and password will be checked by

WebSphere.

The Security Roles provided with the UDDI Registry are as follows:

v GUI_Publish_User

v GUI_Inquiry_User

v SOAP_Publish_User

v SOAP_Inquiry_user

v EJB_Inquiry_Role

v EJB_Publish_Role

v V3 SOAP_Inquiry_User_Role

v V3 SOAP_Publish_User_Role

v V3 SOAP_CustodyTransfer_User_Role

v V3 SOAP_Security_User_Role

Security API for the UDDI V3 Registry

The security API is a part of the Version 2 Publishing API, but in Version 3 it has its own API set. The

Version 3 security API includes the following API calls:

discard_authToken

Used to inform a node that a previously obtained authentication token is no longer required and

should be considered invalid if used after this message is received. The token is to be discarded

and the session is effectively ended.

Chapter 14. Learn about WebSphere applications 937

get_authToken

Used to request an authentication token in the form of an authInfo element from a UDDI node.

For full details of the syntax of the above queries, refer to the API specification at

http://www.uddi.org/pubs/uddi_v3.htm.

Data access resources

Security of lookups with component managed authentication

External Java clients (stand alone clients or servers from other cells) with Java Naming and Directory

Interface (JNDI) access can look up a Java 2 Connector (J2C) resource such as a data source or Java

Message Service (JMS) queue. However, they are not permitted to take advantage of the component

managed authentication alias defined on the resource. This alias is a default value used when the user

and password are not supplied on the getConnection() call. Therefore, if an external client needs to get a

connection, it must assume responsibility for the authentication by passing it through arguments on the

getConnection() call.

Any client running in the WebSphere Application Server process (such as a Servlet or an enterprise bean)

within the same cell that can look up a resource in the JNDI namespace can obtain connections without

explicitly providing authentication data on the getConnection() call. In this case, if the component‘s

res-auth setting is Application, authentication is taken from the component-managed authentication alias

defined on the connection factory. With res-auth set to Container, authentication is taken from the login

configuration defined on the component‘s resource-reference. It is important to note that J2C

authentication alias is per cell. An enterprise bean or Servlet in one application server cannot look up a

resource in another server process which is in a different cell, because the alias would not be resolved.

Messaging resources

Configuring authorization security for a Version 5 default messaging

provider

Use this task to configure authorization security for the default messaging provider on a WebSphere

Application Server version 5 node in a deployment manager cell.

To configure authorization security for the version 5 default messaging provider complete the following

steps.

Note: Security for the version 5 default messaging provider is enabled when you enable global security

for WebSphere Application Server on the version 5 node. For more information about enabling

global security, see Managing secured applications.

1. Configure authorization settings to access JMS resources owned by the embedded WebSphere JMS

provider. Authorization to access JMS resources owned by the embedded WebSphere JMS provider is

controlled by settings in the WAS_install_root\config\cells\your_cell_name\integral-jms-
authorizations.xml file.

The settings grant or deny authenticated userids access to internal JMS provider resources (queues or

topics). As supplied, the integral-jms-authorisations.xml file grants the following permissions:

v Read and write permissions to all queues.

v Pub, sub, and persist to all topics.

To configure authorization settings, edit the integral-jms-authorisations.xml file according to the

information in this topic and in that file. Please note the file is in Unicode, which requires a binary FTP

to the host from a workstation.

938 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.uddi.org/pubs/uddi_v3.htm

2. Edit the queue-admin-userids element to create a list of userids with administrative access to all

queues. Administrative access is needed to create queues and perform other administrative activities

on queues. For example, consider the following queue-admin-userids section:

<queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

</queue-admin-userids>

In this example the userids adminid1 and adminid2 are defined to have administrative access to all

queues.

3. Edit the queue-default-permissions element to define the default queue access permissions. These

permissions are used for queues for which you do not define specific permissions (in queue sections).

If this section is not specified, then access permissions exist only for those queues for which you have

specifically created queue elements.

For example, consider the following queue-default-permissions element:

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

In this example the default access permission for all queues is write. This can be overridden for a

specific queue by creating a queue element that sets its access permission to read.

4. If you want to define specific access permissions for a queue, create a queue element, then define the

following elements:

For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

In this example for the queue q1, the userid useridr has read permission, the userid useridw has write

permission, the userid useridrw has both read and write permissions, and all other userids have no

access permissions (<public></public>).

5. Edit topic elements to define the access permissions for publish/subscribe topic destinations.

For topics, you can grant and deny access permissions. Full permission inheritance is supported on

topics. If you do not define specific access permissions for a userid on a specific topic then

permissions are inherited first from the public permissions on that topic then from the parent topic. The

inheritance of access permissions continues until the root topic from which the root permissions are

assumed.

a. If you want to define default access permissions for the root topic, edit a topic element with an

empty name element. If you omit such a topic section, topics have no default topic permissions

other than those defined by specific topic elements. For example, consider the following topic

element for the root topic:

Chapter 14. Learn about WebSphere applications 939

<topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

In this example, the default access permission for all topics is set to publish. This can be

overridden by other topic elements for specific topic names.

b. If you want to define access permissions for a specific topic, create a topic element with the name

for the topic then define the access permissions in the public and authorize elements of the topic

element. For example, consider the following topic section:

 <topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

In this example, the subscribe permission is granted to anyone accessing any topic whose name

starts with a/b/c. Also, the userid useridpub is granted publish permission for any topic whose

name starts with a/b/c.

6. Save the integral-jms-authorizations.xml file.

If the dynamic update setting is selected, changes to the integral-jms-authorizations.xml file become active

when the changed file is saved, so there is no need to stop and restarted the JMS server. If the dynamic

update setting is not selected, you need to stop and restart the JMS server to make changes active.

Authorization settings for Version 5 default JMS resources

Use the integral-jms-authorisations.xml file to view or change the authorization settings for JMS resources

owned by the default messaging provider on WebSphere Application Server version 5 nodes.

Authorization to access default JMS resources owned by the default messaging provider on WebSphere

Application Server nodes is controlled by the following settings in the

was_install\config\cells\your_cell_name\integral-jms-authorisations.xml file.

This structure of the settings in integral-jms-authorisations.xml is shown in the following example.

Descriptions of these settings are provided after the example. To configure authorization settings, follow

the instructions provided in Configuring authorization security for the Version 5 JMS providers

<integral-jms-authorizations>

 <dynamic-update>true</dynamic-update>

 <queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

 </queue-admin-userids>

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

940 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

<permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 </queue>

 <queue>

 <name>q2</name>

 <public>

 <permission>write</permission>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 </queue>

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

 <topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

</integral-jms-authorizations>

dynamic-update: Controls whether or not the JMS Server checks dynamically for updates to this file.

true (Default) Enables dynamic update support.

false Disables dynamic update checking and improves authorization performance.

queue-admin-userids: This element lists those userids with administrative access to all Version 5 default

queue destinations. Administrative access is needed to create queues and perform other administrative

activities on queues. You define each userid within a separate userid sub element:

<userid>adminid</userid>

Where adminid is a user ID that can be authenticated by IBM WebSphere Application Server.

queue-default-permissions: This element defines the default queue access permissions that are

assumed if no permissions are specified for a specific queue name. These permissions are used for

queues for which you do not define specific permissions (in queue elements). If this element is not

specified, then no access permissions exist unless explicitly authorized for individual queues.

You define the default permission within a separate permission sub element:

<permission>read-write</permission>

Where read-write is one of the following keywords:

read By default, userids have read access to Version 5 default queue destinations.

write By default, userids have write access to Version 5 default queue destinations.

queue: This element contains the following authorization settings for a single queue destination:

name The name of the queue.

public The default public access permissions for the queue. This is used only for those userids that have

Chapter 14. Learn about WebSphere applications 941

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the queue.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

 You define each permission within a separate permission element. Each permission

element can contain the keyword read or write to define the access permission.

 For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

topic: This element contains the following authorization settings for a single topic destination:

Each topic element has the following sub elements:

name The name of the topic, without wildcards or other substitution characters.

public The default public access permissions for the topic. This is used only for those userids that have

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the topic.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

 You define each permission within a separate permission element. Each permission

element can contain one of the following keywords to define the access permission:

+pub Grant publish permission

+sub Grant subscribe permission

+persist

Grant persist permission

-pub Deny publish permission

-sub Deny subscribe permission

-persist

Deny persist permission

942 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Securing WebSphere MQ messaging directories and log files

Use this task to restrict access to the /var/mqm directories and log files needed for WebSphere MQ as a

JMS provider.

You need to set the permissions described in this topic, to reduce the risk of severe security exposures.

Note: The /var file system is used to store all the security logging information for the system, and is used

to store the temporary files for email and printing. Therefore, it is critical that you maintain free

space in /var for these operations and prevent unauthorized access to the file system. If you do not

create a separate file system for messaging data, and /var fills up, all security logging will be

stopped on the system until some free space is available in /var. Also, email and printing will no

longer be possible until some free space is available in /var.

This procedure involves steps that you complete at different stages of installing and using IBM WebSphere

Application Server, as described below. The steps are also described at appropriate points in other tasks,

but are collected here for completeness.

This procedure applies only to the ordinary UNIX file system. If your site uses access-control lists,

secure the files by using that mechanism. Any site-specific requirements can affect the desired owner,

group and corresponding privileges. For example, on AIX, complete the following steps:

1. Before installing WebSphere MQ, create and mount a journalized file system called /var/mqm. Use a

partition strategy with a separate volume for the messaging data. This means that other system activity

is not affected if a large amount of messaging work builds up in /var/mqm.

2. Install WebSphere MQ as a messaging provider.

As part of this stage, the installation program creates the /var/mqm/errors and

/var/mqm/qmgrs/@SYSTEM/errors directories used to hold messaging logging files.

3. Restrict access to the /var/mqm/errors directory and the logging files, by using the following

commands:

chmod 3777 /var/mqm/errors

chown mqm:mqm /var/mqm/errors

touch /var/mqm/errors/AMQERR01.LOG

chown mqm:mqm /var/mqm/errors/AMQERR01.LOG

chmod 666 /var/mqm/errors/AMQERR01.LOG

touch /var/mqm/errors/AMQERR02.LOG

chown mqm:mqm /var/mqm/errors/AMQERR02.LOG

chmod 666 /var/mqm/errors/AMQERR02.LOG

touch /var/mqm/errors/AMQERR03.LOG

chown mqm:mqm /var/mqm/errors/AMQERR03.LOG

chmod 666 /var/mqm/errors/AMQERR03.LOG

4. Restrict access to the /var/mqm/qmgrs/@SYSTEM/errors directory and the logging files, by using the

following commands:

chmod 3777 /var/mqm/qmgrs/@SYSTEM/errors

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

Chapter 14. Learn about WebSphere applications 943

5. For each application server that uses JMS resources provided by WebSphere MQ, restrict access to

the server’s /var/mqm/qmgrs/long_server_name/errors directory and its messaging logging files. You

should restrict access to the server’s directory and logging files, as soon after creating the application

server as possible.

To restrict access to the server’s directory and logging files, use the following commands:

chmod 3775 /var/mqm/qmgrs/long_server_name/errors

chown mqm:mqm /var/mqm/qmgrs/long_server_name/errors

touch /var/mqm/qmgrs/long_server_name/errors/AMQERR01.LOG

chown mqm:mqm /var/mqm/qmgrs/long_server_name/errors/AMQERR01.LOG

chmod 666 /var/mqm/qmgrs/long_server_name/errors/AMQERR01.LOG

touch /var/mqm/qmgrs/long_server_name/errors/AMQERR02.LOG

chown mqm:mqm /var/mqm/qmgrs/long_server_name/errors/AMQERR02.LOG

chmod 666 /var/mqm/qmgrs/long_server_name/errors/AMQERR02.LOG

touch /var/mqm/qmgrs/long_server_name/errors/AMQERR03.LOG

chown mqm:mqm /var/mqm/qmgrs/long_server_name/errors/AMQERR03.LOG

chmod 666 /var/mqm/qmgrs/long_server_name/errors/AMQERR03.LOG

Where long_server_name is the long name assigned to the server, in the following form:

WAS_nodename_server_name. For example, if you created an application server called server1 to run on

the node called appnode1, the long server name would be: WAS_appnode1_server1.

This task has restricted access to the /var/mqm directories and log files needed for WebSphere MQ as a

JMS provider, such that only the user ID mqm or members of the mqm user group have write access.

Configuring security for message-driven beans that use listener ports

Use this task to configure resource security and security permissions for EJB 2.0 message-driven beans

deployed to use listener ports.

Messages arriving at a listener port have no client credentials associated with them. The messages are

anonymous.

To call secure enterprise beans from a message-driven bean, the message-driven bean needs to be

configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the

RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see EJB component security. For more information about

configuring security for your application, see Assembling secured applications.

JMS connections used by message-driven beans can benefit from the added security of using J2C

container-managed authentication. To enable the use of J2C container authentication aliases and mapping,

define a J2C container-managed alias on the JMS connection factory definition that the message-driven

bean is using to listen upon (defined by the Connection factory JNDI name property of the listener port).

If defined, the listener uses the container-managed authentication alias for its JMSConnection security

credentials instead of any application-managed alias. To set the container-managed alias, use the

administrative console to complete the following steps:

1. To display the listener port settings, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Listener Ports → listener_port

2. To get the name of the JMS connection factory, look at the Connection factory JNDI name property.

3. Display the JMS connection factory properties. For example, to display the properties of a WebSphere

queue connection factory provided by the default messaging provider, click Resources → JMS

Providers → Default Messaging Provider → → [Content pane] WebSphere Queue Connection

Factories → connection_factory

4. Set the Authentication alias property.

5. Click OK

944 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Configuring security for EJB 2.1 message-driven beans

Use this task to configure resource security and security permissions for EJB 2.1 message-driven beans.

Messages handled by message-driven beans have no client credentials associated with them. The

messages are anonymous.

To call secure enterprise beans from a message-driven bean, the message-driven bean needs to be

configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the

RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see EJB component security. For more information about

configuring security for your application, see Assembling secured applications.

Connections used by message-driven beans can benefit from the added security of using J2C

container-managed authentication. To enable the use of J2C container authentication aliases and mapping,

define an authentication alias on the J2C activation specification that the message-driven bean is

configured with. If defined, the message-driven bean uses the authentication alias for its JMSConnection

security credentials instead of any application-managed alias.

To set the authentication alias, you can use the administrative console to complete one the following steps.

This task description assumes that you have already created an activation specification. If you want to

create a new activation specification, see the related tasks.

v For a message-driven bean listening on a JMS destination of the default messaging provider, set the

authentication alias on a JMS activation specification.

1. To display the JMS activation specification settings, click Resources → JMS Providers → Default

messaging → [Activation Specifications] JMS activation specification

2. If you have already created a JMS activation specification, click its name in the list displayed.

Otherwise, click New to create a new JMS activation specification.

3. Set the Authentication alias property.

4. Click OK

5. Save your changes to the master configuration.

v For a message-driven bean listening on a destination (or endpoint) of another JCA provider, set the

authentication alias on a J2C activation specification.

1. To display the J2C activation specification settings, click Resources → Resource Adapters →

adapter_name → J2C Activation specifications → activation specification_name

2. Set the Authentication alias property.

3. Click OK

4. Save your changes to the master configuration.

Mail, URLs, and other J2EE resources

JavaMail security permissions best practices

In many of its activities, the JavaMail API needs to access certain configuration files. The JavaMail and

JavaBeans Activation Framework binary packages themselves already contain the necessary configuration

files. However, the JavaMail API allows the user to define user-specific and installation-specific

configuration files to meet special requirements.

The two locations where such configuration files can exist are <user.home>and <java.home>/lib. For

example, if the JavaMail API needs to access a file named mailcap when sending a message, it first tries

to access <user.home>/.mailcap. If that attempt fails, either due to lack of security permission or a

nonexistent file, the API continues to try<java.home> /lib/mailcap. If that attempts also fails, it tries

META-INF/mailcap in the class path, which actually leads to the configuration files contained in the

Chapter 14. Learn about WebSphere applications 945

mail.jar and activation.jar files. WebSphere Application Server uses the general-purpose JavaMail

configuration files contained in the mail.jar and activation.jar files and does not put any mail

configuration files in <user.home>and <java.home>/lib. File read permission for both the mail.jar and

activation.jar files is granted to all applications to ensure proper functioning of the JavaMail API, as

shown in the following segment of the app.policy file:

grant codeBase "file:${application}" {

 // The following are required by Java mail

permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}lib${/}ext${/}mail.jar", "read";

permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}lib${/}ext${/}activation.jar", "read";

};

JavaMail code attempts to access configuration files at <user.home>and <java.home>/lib causing

AccessControlExceptions to be thrown, since there is no file read permission granted for those two

locations by default. This activity does not affect the proper functioning of the JavaMail API, but you might

see a large amount of JavaMail-related security exceptions reported in the system log, which might swamp

harmful errors that you are looking for. If this situation is a problem, consider adding two more permission

lines to the permission block above. This should eliminate most, if not all, JavaMail-related harmless

security exceptions from the log file. The application permission block in the app.policy file now looks like:

 grant codeBase "file:${application}" {

// The following are required by Java mail

permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}lib${/}ext${/}mail.jar", "read";

permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}lib${/}ext${/}activation.jar", "read";

permission java.io.FilePermission "${user.home}${/}.mailcap", "read";

permission java.io.FilePermission "${java.home}${/}lib${/}mailcap", "read";

};

Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming model extensions for

enhancing your application development and deployment.

See Learn about WebSphere applications: Overview and new features for an introduction to each

WebSphere extension.

ActivitySessions How do I?... Overview Samples

Application profiling How do I?... Overview Samples

Asynchronous beans How do I?... Overview Samples

Dynamic caching How do I?... Overview

Dynamic query How do I?... Overview Samples

Internationalization How do I?... Overview Samples

Object pools How do I?... Overview

Scheduler How do I?... Overview Samples

Startup beans How do I?... Overview

Work areas How do I?... Overview

Scheduler

Securing scheduler tasks

Scheduled tasks are protected using application isolation and administrative roles. If a task is created

using a J2EE server application, only applications with the same name can access those tasks. Tasks

created with a WASScheduler MBean using the AdminClient interface or scripting are not part of a J2EE

946 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

application and have access to all tasks regardless of the application with which they were created. Tasks

created with a WASScheduler MBean are only accessible from the WASScheduler MBean API and are not

accessible from the Scheduler API.

If the Use Administration Roles attribute is enabled on a scheduler and global security is enabled on the

Application Server, all Scheduler API methods and WASScheduler MBean API operations enforce access

based on the WebSphere Administration Roles. If either of these attributes are disabled, then all API

methods are fully accessible by all users.

1. Configure global security.

2. Manage schedulers.

 Related concepts

 “Global security” on page 141
Global security applies to all applications running in the environment and determines whether security

is used at all, the type of registry against which authentication takes place, and other values, many of

which act as defaults.

 Scheduler task user authorization

 Related tasks

 “Configuring global security” on page 142

 Managing schedulers

 Related reference

 “Admin roles” on page 122

 Scheduler interface

Chapter 14. Learn about WebSphere applications 947

948 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 15. Tuning security configurations

Performance issues typically involve trade-offs between function and speed. Usually, the more function

and the more processing involved, the slower the performance. Consider what type of security is

necessary and what you can disable in your environment. For example, if your application servers are

running in a Virtual Private Network (VPN), consider whether you must disable Single Sockets Layer

(SSL). If you have a lot of users, can they be mapped to groups and then associated to your J2EE roles?

These questions are things to consider when designing your security infrastructure.

Complete the following steps for general security tuning:

1. Consider disabling Java 2 Security Manager if you know exactly what code is put onto your server and

you do not need to protect process resources. Remember that in doing so, you put your local

resources at some risk.

2. Disable security for the specific application server that does not require resource protection because

some application servers do not have protected resources. If the application server needs to go

downstream with credentials, however, this action might not be feasible.

3. Consider propagating new security settings to all nodes before restarting the deployment manager and

node agents to change the new security policy.

Configuration changes are generally propagated using configuration synchronization. If

auto-synchronization is enabled, you can wait for the automatic synchronization interval to pass, or you

can force synchronization before the synchronization interval expires. If you are using manual

synchronization, you must synchronize all nodes.

If the cell is in a configuration state (the security policy is mixed with nodes that have security enabled

and disabled) you can use the syncNode utility to synchronize the nodes where the new settings are

not propagated.

Refer to the article, “Enabling global security” on page 144 in the WebSphere Application Server

Network Deployment package for more detailed information about enabling security in a distributed

environment.

4. Consider increasing the cache and token time-out if you feel your environment is secure enough. By

doing so, you have to re-authenticate less often. This action supports subsequent requests to reuse

the credentials that already are created. The downside of increasing the token time-out is the exposure

of having a token hacked and providing the hacker more time to hack into the system before the token

expires. You can use security cache properties to determine the initial size of the primary and

secondary hashtable caches, which affect the frequency of rehashing and the distribution of the hash

algorithms.

See the article “Security cache properties” on page 951 for a list of these properties.

5. Consider changing your administrative connector from Simple Object Access Protocol (SOAP) to

Remote Method Invocation (RMI) because RMI uses stateful connections while SOAP is completely

stateless. Run a benchmark to determine if the performance is improved in your environment.

6. Use the wsadmin script to complete the access IDs for all the users and or groups to speed up the

application startup. Complete this action if applications contain many users, or groups, or if applications

are stopped and started frequently.

7. Consider tuning the Object Request Broker (ORB) because it is a factor in enterprise bean

performance with or without security enabled. Refer to the article, ORB tuning guidelines.

Tuning CSIv2

1. Consider using SSL client certificates instead of a user ID and password to authenticate Java clients.

Since you are already making the SSL connection, using mutual authentication adds little overhead

while removing the service context containing the user ID and password completely.

© Copyright IBM Corp. 2004 949

2. If you send a large amount of data that is not very security sensitive, reduce the strength of your

ciphers. The more data you have to bulk encrypt and the stronger the cipher, the longer this action

takes. If the data is not sensitive, do not waste your processing with 128-bit ciphers.

3. Consider putting just an asterisk (*) in the trusted server ID list (meaning trust all servers) when you

use Identity Assertion for downstream delegation. Use SSL mutual authentication between servers to

provide this trust. Adding this extra step in the SSL handshake performs better than having to fully

authenticate the upstream server and check the trusted list. When an asterisk is used, we simply trust

the identity token. The SSL connection trusts the server by way of client certificate authentication.

4. Ensure that stateful sessions are enabled for Common Secure Interoperability Version 2 (CSIv2). This

is the default, but only requires authentication on the first request and any subsequent token

expirations.

5. If you are only communicating with WebSphere Application Server Version 5 servers, make the Active

Authentication Protocol CSI, instead of CSI and SAS. This action removes an interceptor invocation for

every request on both the client and server sides.

6. For a pure Java client, you can disable the creation of server sockets used for Object Request Broker

(ORB) callbacks. Do this only if you are communicating with servers running WebSphere Application

Server, Version 5 or later.

a. In the sas.client.props file, add com.ibm.CSI.claimTransportAssocSSLTLSRequired=false and

com.ibm.CSI.claimTransportAssocSSLTLSSupported=false.

b. Set the active protocol to csiv2 instead of both in the sas.client.props file. The protocol property

changes to com.ibm.CSI.protocol=csiv2.

Tuning LDAP authentication

1. Select the Ignore Case check box in the WebSphere Application Server LDAP User Registry

configuration, when case-sensitivity is not important.

2. Select Reuse Connections in the WebSphere Application Server LDAP User Registry configuration.

3. Check to see which caches your LDAP server has and take advantage of them. This action is best

with LDAP servers that do not change frequently.

4. Choose the directory type of either IBM_Directory_Server or SecureWay, if you are using an IBM

Directory Server. The IBM Directory Server yields improved performance because it is programmed to

use the new group membership attributes to improve group membership searches. However, it is

required that authorization is case insensitive to use IBM Directory Server.

5. Choose either iPlanet Directory Server (also known as Sun ONE) or Netscape as the directory if you

are an iPlanet Directory user. Using the iPlanet Directory Server directory increases performance in

group membership lookup. However, only use Role for group mechanisms.

Tuning Web authentication

1. Consider increasing the cache and token time-out if you feel your environment is secure enough. The

Web authentication information is stored in these caches and as long as the authentication information

is in the cache, the login module is not invoked to authenticate the user. This supports subsequent

requests to reuse the credentials already created. The downside of increasing the token time-out is the

exposure of having a token stolen and providing the thief more time to hack into the system before the

token expires.

See the article “Security cache properties” on page 951 for a list of these properties.

2. Consider enabling single singon (SSO). SSO is only available when you select LTPA as the

authentication mechanism in the Global Security panel. When you select SSO, a single authentication

to one application server is enough to make requests to multiple application servers in the same SSO

domain. There are some situations where SSO is not desirable and should not be used in those

situations.

3. Consider disabling or enabling the Web Inbound Security Attribute Propagation option on the SSO

panel if the function is not required. In some cases, having the function enabled improves

950 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

performance. This improvement is most likely for higher volume cases where a considerable number of

user registry calls reduces performance. In other cases, having the feature disabled improves

performance. This improvement is most likely when the user registry calls do not take considerable

resources.

Tuning authorization

1. Consider mapping your users to groups in the user registry. Then associate the groups with your J2EE

roles. This association greatly improves performance as the number of users increases.

2. Judiciously assign method-permissions for enterprise beans. For example, you can use an asterisk (*)

to indicate all methods in the method-name element. When all the methods in enterprise beans require

the same permission, use an asterisk (*) for the method-name to indicate all methods. This indication

reduces the size of deployment descriptors and reduces the memory required to load the deployment

descriptor. It also reduces the search time during method-permission match for the enterprise beans

method.

3. Judiciously assign security-constraints for servlets. For example, you can use the URL pattern *.jsp to

apply the same authentication data constraints to indicate all JSP files. For a given URL, the exact

match in the deployment descriptor takes precedence over the longest path match. Use the extension

match (*.jsp, *.do, *.html) if there is no exact match and longest path match for a given URL in the

security constraints.

There is always a trade off between performance, feature and security. Security typically adds more

processing time to your requests, but for a good reason. Not all security features are required in your

environment. When you decide to tune security, you should create a benchmark before making any

change to ensure the change is improving performance.

In a large scale deployment, performance is very important. Running benchmark measurements with

different combinations of features can help you to determine the best performance versus the benefit

configuration for your environment. Continue to run benchmarks if anything changes in your environment,

to help determine the impact of these changes.

Security cache properties

The following administrative console custom properties determine the initial size of the primary and

secondary hash table caches, which affect the frequency of rehashing and the distribution of the hash

algorithms. To get to the custom properties click Servers > Application Servers > server-name >

Process Definition > Control | Servant > Java Virtual Machine > Custom Properties. The larger the

number of available hash values, the less likely a hash collision occurs, retrieval time might be slower. If

several entries compose a hash table cache, creating the table in a larger capacity supports more efficient

hash entries than letting automatic rehashing determine the growth of the table. Rehashing causes every

entry to move each time.

The following explains why you would use these particular hash tables.

com.ibm.websphere.security.util.tokenCacheSize

 This cache stores LTPA credentials in the cache using the LTPA token as a lookup value. When

using an LTPA token to log in, the LTPA credential is created at the security server for the first

time. This cache prevents the need to go to the security server on subsequent logins using an

LTPA token.

com.ibm.websphere.security.util.LTPAValidationCacheSize

 Given the credential token for login, this cache returns the concrete LTPA credential object, without

the need to revalidate at the security server. If the token has expired, revalidation is required.

Chapter 15. Tuning security configurations 951

Secure Sockets Layer performance tips

The following are two types of Secure Sockets Layer (SSL) performance:

v Handshake

v Bulk encryption and decryption

When an SSL connection is established, an SSL handshake occurs. After a connection is made, SSL

performs bulk encryption and decryption for each read-write. The performance cost of an SSL handshake

is much larger than that of bulk encryption and decryption.

To enhance SSL performance, decrease the number of individual SSL connections and handshakes.

Decreasing the number of connections increases performance for secure communication through SSL

connections, as well as non-secure communication through simple TCP/IP connections. One way to

decrease individual SSL connections is to use a browser that supports HTTP 1.1. Decreasing individual

SSL connections can be impossible if you cannot upgrade to HTTP 1.1.

Another common approach is to decrease the number of connections (both TCP/IP and SSL) between two

WebSphere Application Server components. The following guidelines help to verify the HTTP transport of

the application server is configured so that the Web server plug-in does not repeatedly reopen new

connections to the application server:

v Verify that the maximum number of keep alives are, at minimum, as large as the maximum number of

requests per thread of the Web server (or maximum number of processes for IBM HTTP Server on

UNIX). Make sure that the Web server plug-in is capable of obtaining a keep alive connection for every

possible concurrent connection to the application server. Otherwise, the application server closes the

connection after a single request is processed. Also, the maximum number of threads in the Web

container thread pool should be larger than the maximum number of keep alives, to prevent the keep

alive connections from consuming the Web container threads.

Note: HTTP Transports have been deprecated. For instructions on how to set a maximum keep alive

value for channel based configurations, see HTTP transport channel settings.

v Increase the maximum number of requests per keep alive connection. The default value is 100, which

means the application server closes the connection from the plug-in after 100 requests. The plug-in then

has to open a new connection. The purpose of this parameter is to prevent denial of service attacks

when connecting to the application server and preventing continuous send requests to tie up threads in

the application server.

v Use a hardware accelerator if the system performs several SSL handshakes.

Hardware accelerators currently supported by WebSphere Application Server only increase the SSL

handshake performance, not the bulk encryption and decryption. An accelerator typically only benefits

the Web server because Web server connections are short-lived. All other SSL connections in

WebSphere Application Server are long-lived.

v Use an alternative cipher suite with better performance.

The performance of a cipher suite is different with software and hardware. Just because a cipher suite

performs better in software does not mean a cipher suite will perform better with hardware. Some

algorithms are typically inefficient in hardware (for example, DES and 3DES), however, specialized

hardware can provide efficient implementations of these same algorithms.

The performance of bulk encryption and decryption is affected by the cipher suite used for an individual

SSL connection. The following chart displays the performance of each cipher suite. The test software

calculating the data was Java Secure Socket Extension (JSSE) for both the client and server software,

which used no crypto hardware support. The test did not include the time to establish a connection, but

only the time to transmit data through an established connection. Therefore, the data reveals the

relative SSL performance of various cipher suites for long running connections.

Before establishing a connection, the client enables a single cipher suite for each test case. After the

connection is established, the client times how long it takes to write an integer to the server and for the

server to write the specified number of bytes back to the client. Varying the amount of data had

952 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

negligible effects on the relative performance of the cipher suites.

0

100

200

300

400

SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_WITH_NULL_MD5

SSL_RSA_WITH_NULL_SHA

NONE(TCP/IP no SSL)

An analysis of the above data reveals the following:

v Bulk encryption performance is only affected by what follows the WITH in the cipher suite name. This is

expected since the portion before the WITH identifies the algorithm used only during the SSL

handshake.

v MD5 and SHA are the two hash algorithms used to provide data integrity. MD5 is 25% faster than SHA,

however, SHA is more secure than MD5.

v DES and RC2 are slower than RC4.Triple DES is the most secure, but the performance cost is high

when using only software.

v The cipher suite providing the best performance while still providing privacy is

SSL_RSA_WITH_RC4_128_MD5. Even though SSL_RSA_EXPORT_WITH_RC4_40_MD5 is

cryptographically weaker than RSA_WITH_RC4_128_MD5, the performance for bulk encryption is the

same. Therefore, as long as the SSL connection is a long-running connection, the difference in the

performance of high and medium security levels is negligible. It is recommended that a security level of

high be used, instead of medium, for all components participating in communication only among

WebSphere Application Server products. Make sure that the connections are long running connections.

Tuning security

Enabling security decreases performance. The following tuning parameters give you considerations for

increasing performance.

v Disable security on any application servers that does not need security. There are two ways to disable

security. Use either of the following two procedures and then restart the application server:

Using the administrative console

1. Click Servers > Application servers > server_name.

2. Under Security, click Server Security.. Under Additional properties, click Server-level

security.

3. Disable the Enable global security option.

Using the command line

1. Type wsadmin.sh -conntype NONE

2. When the system command prompt redisplays, type securityoff

Chapter 15. Tuning security configurations 953

v Fine-tune the Cache timeout value on the Global security panel as described in the “Global security

settings” on page 145 article. Click Security > Global security to access the Global security panel.

v Configure the security cache properties as described in the “Security cache properties” on page 951

article.

v Enable the SSL session tracking mechanism option as described in Session management settings.

v Improve the performance of Web services security by downloading a Java Cryptography Extension

(JCE) unlimited jurisdiction policy file that does not have restrictions on cryptography strength as

described in the “Tuning Web services security” on page 936 article.

v Read the “Secure Sockets Layer performance tips” on page 952 and Chapter 15, “Tuning security

configurations,” on page 949 articles for more information.

954 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Chapter 16. Troubleshooting security configurations

Refer to Security components troubleshooting tips for instructions on how to troubleshoot errors related to

security.

The following topics explain how to troubleshoot specific problems related to configuring and enabling

security configurations:

v Errors when configuring or enabling security

v Errors or access problems after enabling security

v Errors trying to enable or configure Secure Socket Layer (SSL) encrypted access

v Errors after enabling Secure Sockets Layer (SSL) or SSL-related error messages

Errors when trying to configure or enable security

What kind of error are you seeing?

v “"LTPA password not set. validation failed" message displayed as error in the Administrative Console

after saving global security settings ”

v “"Validation failed for user userid. Please try again..." displayed in the Administrative Console after

saving global security settings ”

v “The setupClient.bat or setupClient.sh file is not working correctly” on page 956

v “Java HotSpot Server VM warning: Unexpected Signal 11 occurred under user-defined signal handler

0x7895710a message occurs in the native_stdout.log file when enabling security on the HP-UX11i

platform” on page 956

v “WebSphere Application Server Version 6 is not working correctly with Enterprise Workload Manager

(EWLM)” on page 956

v If you have successfully configured security (made changes, saved the configuration, and enabled

security with no errors), but are now having problems accessing Web resources or the administrative

console, refer to Errors or access problems after enabling security.

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

"LTPA password not set. validation failed" message displayed as error in the Administrative

Console after saving global security settings

This error can be caused if, when configuring WebSphere Application Server security, ″LTPA″ is selected

as the authentication mechanism, and the LTPA password field is not set. To resolve this problem:

v Select Security Authentication Mechanism > LTPA in the console left-hand navigation pane.

v Complete the password and confirm password fields.

v Click OK.

v Try setting Global Security again.

"Validation failed for user userid. Please try again..." displayed in the Administrative Console after

saving global security settings

This typically indicates that a setting in the User Registry configuration is not valid:

v If the user registry is LocalOS, it is likely that either the server user ID and password are invalid or the

server user ID does not have ″Act As Part of the Operating System″ (for NT) or root authority (for

UNIX). The server user ID needs this authority for authentication using the LocalOS user registry.

v If the user registry is Lightweight Directory Access Protocol (LDAP):

– Any of the settings that enable WebSphere Application Server to communicate with LDAP might be

invalid, such as the LDAP server’s user ID, password, host, port, or LDAP filter. When you select

© Copyright IBM Corp. 2004 955

Apply or OK on the Global Security panel, a validation routine connects to the registry just as it

would during runtime when security is enabled. This is done in order to verify any configuration

problems immediately, instead of waiting until the server restarts.

– Verify whether your LDAP server requires the Bind Distinguished Name (DN) to find the user in the

LDAP directory. If the bind distinguished name is required, you must specify a DN instead of a short

name. You can specify the bind distinguished name by clicking Security > User Registries > LDAP

in the administrative console. For example, you might add cn=root.

– Sometimes the LDAP server might be down during configuration. The best way to check this is to

issue a command line search using a utility such as ldapsearch to search for the server ID. This way

you can determine if the server is running and if the server ID is a valid entry in the LDAP. The

ldapsearch utility is installed during an LDAP or Lotus Notes installation.
v If the user registry is Custom, double check that your implementation is in the classpath. Also, check to

see if your implementation is authenticating properly.

v Regardless of registry type, check the User Registries configuration panels to see if you can find a

configuration error:

– Go back to the User Registries configuration panels and retype the password for the server ID.
v See if there is an obvious configuration error. Double check the attributes specified.

The setupClient.bat or setupClient.sh file is not working correctly

The setupClient.bat file on Windows platforms and the setupClient.sh file on UNIX platforms incorrectly

specify the location of the SOAP security properties file.

In the setupClient.bat file, the correct location should be:

set CLIENTSOAP=-Dcom.ibm.SOAP.ConfigURL=file:%WAS_HOME%/properties/soap.client.props

In the setupClient.sh file, the CLIENTSOAP variable should be:

CLIENTSOAP=-Dcom.ibm.SOAP.ConfigURL=file:$WAS_HOME/properties/soap.client.props

In the setupClient.bat and setupClient.sh files, complete the following steps:

1. Remove the leading / after file:.

2. Change sas to soap.

Java HotSpot Server VM warning: Unexpected Signal 11 occurred under user-defined signal

handler 0x7895710a message occurs in the native_stdout.log file when enabling security on the

HP-UX11i platform

After you enable security on HP-UX 11i platforms, the following error in the native_stdout.log file occurs,

along with a core dump and WebSphere Application Server does not start:

Java HotSpot(TM) Server VM warning:

Unexpected Signal 11 occurred under user-defined signal handler 0x7895710a

To work around this error, apply the fixes recommended by HP for Java at the following URL:

http://www.hp.com/products1/unix/java/infolibrary/patches.html.

WebSphere Application Server Version 6 is not working correctly with Enterprise Workload

Manager (EWLM)

To use WebSphere Application Server Version 6 with Enterprise Workload Manager (EWLM), you must

manually update the WebSphere Application Serve server.policy files. For example:

grant codeBase "file:/<EWLM_Install_Home>/classes/ARM/arm4.jar" {

 permission java.security.AllPermission;

};

Otherwise, you might encounter a Java 2 security exception for violating the Java 2 security permission.

956 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.hp.com/products1/unix/java/infolibrary/patches.html

Refer to “Configuring server.policy files” on page 491 for more information on configuring server.policy

files.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Access problems after enabling security

What kind of error are you seeing?

v I cannot access all or part of the administrative console or use the wsadmin tool after enabling security

v I cannot access a Web page after enabling security

v Authentication error accessing a Web page

v Authorization error accessing a Web page

v The client cannot access an enterprise bean after enabling security

v The client never gets prompted when accessing a secured enterprise bean

v I cannot stop an application server, node manager, or node after enabling security

v AccessControlException is reported in SystemOut.log

v After enabling single signon, I cannot log on to the administrative console

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Obtaining help from IBM.

I cannot access all or part of the administrative console or use the wsadmin tool after enabling

security

v If you cannot access the administrative console, or view and update certain objects, look in the

SystemOut log of the application server which hosts the administrative console page for a related error

message.

v You might not have authorized your ID for administrative tasks. This problem is indicated by errors such

as:

– [8/2/02 10:36:49:722 CDT] 4365c0d9 RoleBasedAuth A CWSCJ0305A: Role based authorization

check failed for security name MyServer/myUserId, accessId MyServer/S-1-5-21-882015564-
4266526380-2569651501-1005 while invoking method getProcessType on resource Server and

module Server.

– Exception message: ″CWWMN0022E: Access denied for the getProcessType operation on Server

MBean″

– When running the command: wsadmin -username j2ee -password j2ee: CWWAX7246E: Cannot

establish ″SOAP″ connection to host ″BIRKT20″ because of an authentication failure. Please

ensure that user and password are correct on the command line or in a properties file.

To grant an ID administrative authority, from the administrative console, click System Administration >

Console Users and validate that the ID is a member. If it is not, add the ID with at least monitor access

privileges, for read-only access.

v Check that the enable_trusted_application flag is set to true. To check the enable_trusted_application

flag, from the Administrative Console, click Security > Global Security > Custom Properties > Enable

Trusted Application and verify that it is set to true.

I cannot access a Web page after enabling security

When secured resources are not accessible, probable causes include:

Chapter 16. Troubleshooting security configurations 957

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

v Authentication errors - WebSphere Application Server security cannot identify the ID of the person or

process. Symptoms of authentication errors include:

On a Netscape browser:

– Authorization failed. Retry? message displays after an attempt to log in.

– Accepts any number of attempts to retry login and displays Error 401 message when Cancel is

clicked to stop retry.

– A typical browser message displays: Error 401: Basic realm=’Default Realm’.

On an Internet Explorer browser:

– Login prompt displays again after an attempt to log in.

– Allows three attempts to retry login.

– Displays Error 401 message after three unsuccessful retries.
v Authorization errors - The security function has identified the requesting person or process as not

authorized to access the secured resource. Symptoms of authorization errors include:

– Netscape browser: ″Error 403: AuthorizationFailed″ message is displayed.

– Internet Explorer:

- ″You are not authorized to view this page″ message is displayed.

- ″HTTP 403 Forbidden″ error is also displayed.
v SSL errors - WebSphere Application Server security uses Secure Socket Layer (SSL) technology

internally to secure and encrypt its own communication, and incorrect configuration of the internal SSL

settings can cause problems. Also you might have enabled SSL encryption for your own Web

application or enterprise bean client traffic which, if configured incorrectly, can cause problems

regardless of whether WebSphere Application Server security is enabled.

– SSL related problems are often indicated by error messages which contain a statement such as:

ERROR: Could not get the initial context or unable to look up the starting

context.Exiting. followed by javax.net.ssl.SSLHandshakeException

The client cannot access an enterprise bean after enabling security

If client access to an enterprise bean fails after security is enabled:

v Review the steps for securing and granting access to resources.

v Browse the server JVM logs for errors relating to enterprise bean access and security. Look up any

errors in the message table.

Errors similar to Authorization failed for /UNAUTHENTICATED while invoking resource

securityName:/UNAUTHENTICATED;accessId:UNAUTHENTICATED not granted any of the required roles

roles indicate that:

– An unprotected servlet or JavaSever Page (JSP) file accessed a protected enterprise bean. When an

unprotected servlet is accessed, the user is not prompted to log in and the servlet runs as

UNAUTHENTICATED. When the servlet makes a call to an enterprise bean that is protected the

servlet fails.

To resolve this problem, secure the servlet that is accessing the protected enterprise bean. Make

sure the runAs property for the servlet is set to an ID that can access the enterprise bean.

– An unauthenticated Java client program is accessing an enterprise bean resource that is protected.

This situation can happen if the file read by the sas.client.props properties file used by the client

program does not have the securityEnabled flag set to true.

To resolve this problem, make sure that the sas.client.props file on the client side has its

securityEnabled flag set to true.

Errors similar to Authorization failed for valid_user while invoking resource

securityName:/username;accessId:xxxxxx not granted any of the required roles roles indicate that

a client attempted to access a secured enterprise bean resource, and the supplied user ID is not

assigned the required roles for that enterprise bean.

– Check that the required roles for the enterprise bean resource are accessed. View the required roles

for the enterprise bean resource in the deployment descriptor of the Web resource.

958 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

– Check the authorization table and make sure that the user or the group that the user belongs to is

assigned one of the required roles. You can view the authorization table for the application that

contains the enterprise bean resource using the administrative console.

If org.omg.CORBA.NO_PERMISSION exceptions occur when programmatically logging on to access a secured

enterprise bean, an authentication exception has occurred on the server. Typically the CORBA exception is

triggered by an underlying com.ibm.WebSphereSecurity.AuthenticationFailedException. To determine the

actual cause of the authentication exception, examine the full trace stack:

1. Begin by viewing the text following WSSecurityContext.acceptSecContext(), reason: in the exception.

Typically, this text describes the failure without further analysis.

2. If this action does not describe the problem, look up the CORBA minor code. The codes are listed in

the article titled Troubleshooting the security components reference.

For example, the following exception indicates a CORBA minor code of 49424300. The explanation of

this error in the CORBA minor code table reads:

authentication failed error.

In this case the user ID or password supplied by the client program is probably invalid:

org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException in WSSecurityContext.acceptSecContext(), reason: Major

A CORBA INITIALIZE exception with CWWSA1477W: SECURITY CLIENT/SERVER CONFIGURATION MISMATCH error

embedded, is received by client program from the server.

This error indicates that the security configuration for the server differs from the client in some fundamental

way. The full exception message lists the specific mismatches. For example, the following exception lists

three errors:

Exception received: org.omg.CORBA.INITIALIZE:

 CWWSA1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH:

The client security configuration (sas.client.props or outbound settings in GUI) does not support the server security con
ERROR 1: CWWSA0607E: The client requires SSL Confidentiality but the server does not support it.

ERROR 2: CWWSA0610E: The server requires SSL Integrity but the client does not support it.

ERROR 3: CWWSA0612E: The client requires client (e.g., userid/password or token), but the server does not support it.

 minor code: 0

 completed: No

at com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.getConnectionKey(SecurityConnectionInterceptor.j

In general, resolving the problem requires a change to the security configuration of either the client or the

server. To determine which configuration setting is involved, look at the text following the CWWSA error

message. For more detailed explanations and instructions, look in the message reference, by selecting the

Reference view of the information center navigation and expanding Messages in the navigation tree.

In these particular cases:

v In ERROR 1, the client is requiring SSL confidentiality but the server does not support SSL

confidentiality. Resolve this mismatch in one of two ways. Either update the server to support SSL

confidentiality or update the client so that it no longer requires it.

v In ERROR 2, the server requires SSL integrity but the client does not support SSL integrity. Resolve this

mismatch in one of two ways. Either update the server to support SSL integrity or update the client so

that it no longer requires it.

v In ERROR 3, the client requires client authentication through a user id and password, but the server

does not support this type of client authentication. Either the client or the server needs to change the

configuration. To change the client configuration, modify the SAS.CLIENT.PROPS file for a pure client or

change the outbound configuration for the server in the Security GUI. To change the configuration for

the target server, modify the inbound configuration in the Security GUI.

Similarly, an exception like org.omg.CORBA.INITIALIZE: JSAS0477W: SECURITY CLIENT/SERVER CONFIG

MISMATCH: appearing on the server trying to service a client request indicates a security configuration

mismatch between client and server. The steps for resolving the problem are the same as for the

JSAS1477W exceptions previously described.

Chapter 16. Troubleshooting security configurations 959

Client program never gets prompted when accessing secured enterprise bean

Even though it appears security is enabled and an enterprise bean is secured, it can happen that the client

executes the remote method without prompting. If the remote method is protected, an authorization failure

results. Otherwise, execute the method as an unauthenticated user.

Possible reasons for this problem include:

v The server with which you are communicating might not have security enabled. Check with the

WebSphere Application Server administrator to ensure that the server security is enabled. Access the

global security settings from within the Security section of the administrative console.

v The client does not have security enabled in the sas.client.props file. Edit the sas.client.props file to

ensure the property com.ibm.CORBA.securityEnabled is set to true.

v The client does not have a ConfigURL specified. Verify that the property com.ibm.CORBA.ConfigURL

is specified on the command line of the Java client, using the -D parameter.

v The specified ConfigURL has an invalid URL syntax, or the sas.client.props that is pointed to cannot

be found. Verify that the com.ibm.CORBA.ConfigURL property is valid, for example, similar to the

C:/WebSphere/AppServer/properties/sas.client.props file on Windows systems. Check the Java

documentation for a description of URL formatting rules. Also, validate that the file exists at the specified

path.

v The client configuration does not support message layer client authentication (user ID and password).

Verify that the sas.client.props file has one of the following properties set to true:

– com.ibm.CSI.performClientAuthenticationSupported=true

– com.ibm.CSI.performClientAuthenticationRequired=true
v The server configuration does not support message layer client authentication (user ID and password).

Check with the WebSphere Application Server administrator to verify that user ID and password

authentication is specified for the inbound configuration of the server within the System Administration

section of the administrative console administration tool.

Cannot stop an application server, node manager, or node after enabling security

If you use command line utilities to stop WebSphere Application Server processes, apply additional

parameters after enabling security to provide authentication and authorization information.

Use the ./stopServer.sh -help command to display the parameters to use.

Use the following command options after enabling security:

v ./stopServer.sh hostname -username name -password password

v ./stopNode.sh -username name -password password

v ./stopManager.sh -username name -password password

After enabling single signon, I cannot log on to the administrative console

This problem occurs when single signon (SSO) is enabled, and you attempt to access the administrative

console using the short name of the server, for example http://myserver:9060/ibm/console. The server

accepts your user ID and password, but returns you to the log on page instead of the administrative

console.

To correct this problem, use the fully qualified host name of the server, for example

http://myserver.mynetwork.mycompany.com:9060/ibm/console.

Errors after enabling security

What kind of error are you seeing?

v Authentication error accessing a Web page

v Authorization error accessing a Web page

v Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential violation

960 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v CWMSG0508E: The JMS Server security service was unable to authenticate user ID: error displayed

in SystemOut.log when starting an application server

v Error Message: CWSCJ0237E: One or more vital LTPAServerObject configuration attributes are

null or not available after enabling security and starting the application server

v An AccessControlException is reported in the SystemOut.log

v Error Message: CWSCJ0336E: Authentication failed for user {0} because of the following

exception {1}

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Obtaining help from IBM.

Authentication error accessing a Web page

Possible causes for authentication errors include:

v Incorrect user name or passwords. Check the user name and password and make sure they are

correct.

v Security configuration error : User registry type is not set correctly. Check the user registry

property in global security settings in the administrative console. Verify that it is the intended user

registry.

v Internal program error. If the client application is a Java standalone program, this program might not

gather or send credential information correctly.

If the user registry configuration, user ID, and password appear correct, use the WebSphere Application

Server trace to determine the cause of the problem. To enable security trace, use the

com.ibm.ws.security.*=all=enabled trace specification.

Authorization error accessing a Web page

If a user who should have access to a resource does not, there is probably a missing configuration step.

Review the steps for securing and granting access to resources.

Specifically:

v Check required roles for the accessed Web resource.

v Check the authorization table to make sure that the user, or the groups to which the user belongs, is

assigned to one of the required roles.

v View required roles for the Web resource in the deployment descriptor of the Web resource.

v View the authorization table for the application that contains the Web resource, using the administrative

console.

v Test with a user who is granted the required roles, to see if the user can access the problem resources.

v If the problem user is required to have one or more of the required roles, use the administrative console

to assign that user to required roles. Then stop and restart the application.

If the user is granted required roles, but still fails to access the secured resources, enable security trace,

using com.ibm.ws.security.*=all=enabled as the trace specification. Collect trace information for further

resolution.

Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential violation on

server

If you find errors on your server similar to:

Error Message: CWSCJ0314E: Current Java 2 Security policy reported a potential violation of Java 2 Security Permission. P
{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

Chapter 16. Troubleshooting security configurations 961

The Java security manager checkPermission() method has reported an exception, SecurityException.

The reported exception might be critical to the secure system. Turn on security trace to determine the

potential code that might have violated the security policy. Once the violating code is determined, verify if

the attempted operation is permitted with respect to Java 2 Security, by examining all applicable Java 2

security policy files and the application code.

A more detailed report is enabled by either configuring RAS trace into debug mode, or specifying a Java

property.

v Check the trace enabling section for instructions on how to configure RAS trace into debug mode, or

v Specify the following property in the Application Servers > server name > ProcessDefinition > Java

Virtual Machine panel from the administrative console in the Generic JVM arguments panel:

– Add the run-time flag java.security.debug

– Valid values:

access

Print all debug information including: required permission, code, stack, and code base

location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.

For a review of Java security policies and what they mean , see the Java 2 Security documentation at

http://java.sun.com/j2se/1.3/docs/guide/security/index.html .

Tip: If the application is running with a Java Mail API, this message might be benign. You can update the

installed Enterprise Application root/META-INF/was.policy file to grant the following permissions to

the application:

v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Error message: CWMSG0508E: The JMS Server security service was unable to authenticate user ID:"

error displayed in SystemOut.log when starting an application server

This error can result from installing the JMS messaging API sample and then enabling security. You can

follow the instructions in the Configure and Run page of the corresponding JMS sample documentation to

configure the sample to work with WebSphere Application Server security.

You can verify the installation of the message-driven bean sample by launching the installation program,

selecting Custom, and browsing the components which are already installed in the Select the features

you like to install panel. The JMS sample is shown as Message-Driven Bean Sample, under

Embedded Messaging.

You can also verify this installation by using the administrative console to open the properties of the

application server which contains the samples. Select MDBSamples and click uninstall.

Error message: CWSCJ0237E: One or more vital LTPAServerObject configuration attributes are null

or not available after enabling security and starting the application server.

This error message can result from selecting LTPA as the authentication mechanism, but not generating

the LTPA keys. The LTPA keys encrypt the LTPA token.

To resolve this problem:

1. Click System Administration > Console users > LTPA

2. Enter a password, which can be anything.

3. Enter the same password in Confirm Password.

962 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://java.sun.com/j2se/1.3/docs/guide/security/index.html

4. Click Apply.

5. Click Generate Keys.

6. Click on Save.

The exception AccessControlException, is reported in the SystemOut.log

The problem is related to the Java 2 Security feature of WebSphere Application Server, the API-level

security framework that is implemented in WebSphere Application Server Version 5. An exception similar

to the following example displays. The error message and number can vary.

E CWSRV0020E: [Servlet Error]-[validator]: Failed to load servlet:

java.security.AccessControlException: access denied

(java.io.FilePermission

C:\WebSphere\AppServer\installedApps\maeda\adminconsole.ear\adminconsole.war\

WEB-INF\validation.xml read)

For an explanation of Java 2 security, how and why to enable or disable it, how it relates to policy files,

and how to edit policy files, see the Java 2 security topic in the information center navigation. The topic

explains that Java 2 security is not only used by this product, but developers can also implement it for

their business applications. Administrators might need to involve developers, if this exception is thrown

when a client tries to access a resource hosted by WebSphere Application Server.

Possible causes of these errors include:

v Syntax errors in a policy file.

v Syntax errors in permission specifications in the ra.xml file bundled in a .rar file. This case applies to

resource adapters that support connector access to CICS or other resources.

v An application is missing the specified permission in a policy file, or in permission specifications in an

ra.xml file bundled in a .rar file

v The class path is not set correctly, preventing the permissions for the resource.xml file for SPI from

being correctly created.

v A library called by an application, or the application, is missing a doPrivileged block to support access to

a resource.

v Permission is specified in the wrong policy file.

To resolve these problems:

v Check all of the related policy files to verify that the permission shown in the exception, for example

java.io.FilePermission, is specified.

v Look for a related ParserException in the SystemOut.log file which reports the details of the syntax

error. For example:

CWSCJ0189E: Caught ParserException while creating template for application policy C:\WAS\config\cells\xxx\node

The exception is com.ibm.ws.security.util.ParserException: line 18: expected ’;’, found ’grant’

v Look for a message similar to: CWSCJ0325W: The permission permission specified in the policy

file is unresolved.

v Check the call stack to determine which method does not have the permission. Identify the class path of

this method. If it is hard to identify the method, enable the Java2 security Report.

– Configuring RAS trace by specifying com.ibm.ws.security.core.*=all=enabled, or specifying a Java

property.java.security.debug property. Valid values for the java.security.debug property are:

access

Print all debug information including: required permission, code, stack, and code base

location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.
– The report shows:

Permission

the missing permission.

Chapter 16. Troubleshooting security configurations 963

Code which method has the problem.

Stack Trace

where the access violation occurred.

CodeBaseLocation

the detail of each stack frame.

Usually, Permission and Code are enough to identify the problem. The following example illustrates a

report:

Permission:

C:\WebSphere\AppServer\logs\server1\SystemOut_02.08.20_11.19.53.log :

access denied (java.io.FilePermission

C:\WebSphere\AppServer\logs\server1\SystemOut_02.08.20_11.19.53.log delete)

Code:

 com.ibm.ejs.ras.RasTestHelper$7 in

{file:/C:/WebSphere/AppServer/installedApps/maeda/JrasFVTApp.ear/RasLib.jar

}

Stack Trace:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\logs\server1\SystemOut_02.08.20_11.19.53.log delete

)

 at java.security.AccessControlContext.checkPermission

 (AccessControlContext.java(Compiled Code))

 at java.security.AccessController.checkPermission

 (AccessController.java(Compiled Code))

 at java.lang.SecurityManager.checkPermission

 (SecurityManager.java(Compiled Code))

 .

Code Base Location:

com.ibm.ws.security.core.SecurityManager :

file:/C:/WebSphere/AppServer/lib/securityimpl.jar

 ClassLoader: com.ibm.ws.bootstrap.ExtClassLoader

 Permissions granted to CodeSource

(file:/C:/WebSphere/AppServer/lib/securityimpl.jar <no certificates>

 {

 (java.util.PropertyPermission java.vendor read);

 (java.util.PropertyPermission java.specification.version read);

 (java.util.PropertyPermission line.separator read);

 (java.util.PropertyPermission java.class.version read);

 (java.util.PropertyPermission java.specification.name read);

 (java.util.PropertyPermission java.vendor.url read);

 (java.util.PropertyPermission java.vm.version read);

 (java.util.PropertyPermission os.name read);

 (java.util.PropertyPermission os.arch read);

 }

 (This list continues.)

v If the method is SPI, check the resources.xml file to ensure that the class path is correct.

v To confirm that all of the policy files are loaded correctly, or what permission each class path is granted,

enable the trace with com.ibm.ws.security.policy.*=all=enabled. All loaded permissions are listed in

the trace.log file. Search for the app.policy, was.policy and ra.xml files. To check the permission list for a

class path, search for Effective Policy for classpath.

v If there are any syntax errors in the policy file or ra.xml file, correct them with the policytool. Avoid

editing the policy manually, because syntax errors can result.

v If a permission is listed as Unresolved, it does not take effect. Verify that the specified permission name

is correct.

v If the class path specified in the resource.xml file is not correct, correct it.

v If a required permission does not exist in either the policy files or the ra.xml file, examine the application

code to see if you need to add this permission. If so, add it to the proper policy file or ra.xml file.

964 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

v If the permission should not be granted outside of the specific method that is accessing this resource,

modify the code needs to use a doPrivileged block.

v If this permission does exist in a policy file or a ra.xml file and they were loaded correctly, but the class

path still does not have the permission in its list, the location of the permission might not be correct.

Read Java 2 Security in the information center navigation carefully to determine in which policy file or

ra.xml file that permission should be specified.

Tip: If the application is running with the Java Mail API, you can update the installed Enterprise

Application root/META-INF/was.policy file to grant the following permissions to the application:

v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Error Message: CWSCJ0336E: Authentication failed for user {0} because of the following

exception {1}

This error message results if the user ID indicated is not found in the LDAP user registry. To resolve this

problem:

1. Verify that your user ID and password are correct.

2. Verify that the user ID exists in the registry.

3. Verify that the base distinguished name (DN) is correct.

4. Verify that the user filter is correct.

5. Verify that the bind DN and the password for the bind DN are correct. If the bind DN and password are

not specified, add the missing information and retry.

6. Verify that the host name and LDAP type are correct.

Consult with the administrator of the user registry if the problem persists.

Errors trying to enable or configure Secure Socket Layer (SLL)

encrypted access

What kind of error are you seeing?

v ″The Java Cryptographic Extension (JCE) files were not found.″ error when launching iKeyman.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

"The Java Cryptographic Extension (JCE) files were not found." error when launching iKeyman.

You may receive the following error when you attempt to start the iKeyman tool: ″The Java Cryptographic

Extension (JCE) files were not found. Please check that the JCE files have been installed in the correct

directory″. When you click OK, the iKeyman tool closes. To resolve this problem:

v Set the JAVA_HOME parameter so that is points to the Java Developer Kit that is shipped with

WebSphere Application Server.

– For example, on a Unix platform the command would be similar to: export

JAVA_HOME=/opt/WebSphere/AppServer/java

– On a Windows platform, if WebSphere Application Server is installed on your c: drive, the command

would be: set JAVA_HOME=c:\WebSphere\AppServer\java
v Rename the file install_dir/java/jre/lib/ext/gskikm.jar to gskikm.jar.org.

Errors after configuring or enabling Secure Sockets Layer

This article explains various problems you might encounter after configuring or enabling Secure Sockets

Layer (SSL).

Chapter 16. Troubleshooting security configurations 965

Stopping the deployment manager after configuring Secure Sockets Layer

After configuring the Secure Sockets Layer repertoires, if you stop the deployment manager without also

stopping the node agents, you might receive the following error message when you restart the deployment

manager:

CWWMU0509I: The server ″nodeagent″ cannot be reached. It appears to be stopped.

CWWMU0211I: Error details may be seen in the file:

 /opt/WebSphere/AppServer/logs/nodeagent/stopServer.log

The error occurs because the deployment manager did not propagate the new SSL certificate to the node

agents. Thus, the node agents are using an older certificate files than the deployment manager and the

certificate files are incompatible. To work around this problem, you must manually stop the node agent and

deployment manager processes. To end the processes on Windows platforms, use the Task Manager. On

UNIX platforms, run the command to end the process.

There are some things you need to consider when identifying the specific process that should be killed.

For each process being killed, WebSphere Application Server stores the process ID in a pid file and you

need to find these *.pid files. For example, the server1.pid for a standalone install might be found at:

<WAS_root>/AppServer/logs/server1.pid

Accessing resources using HTTPS

If you are unable to access resources using a Secure Sockets Layer (SSL) URL (beginning with https:), or

encounter error messages which indicate SSL problems, verify that your HTTP server is configured

correctly for SSL by browsing the welcome page of the HTTP server using SSL by entering the URL:

https://hostname.

If the page works with HTTP, but not HTTPS, the problem is with the HTTP server.

v Refer to the documentation for your HTTP server for instructions on correctly enabling SSL. If you are

using the IBM HTTP Server or Apache, go

to:http://www.ibm.com/software/webservers/httpservers/library.html. Click Frequently Asked

Questions> SSL.

v If you are use the IBM Key Management (IKeyman) tool to create certificates and keys, remember to

stash the password to a file when creating the KDB file with the IBM Key Management Tool.

1. Go to the directory where the KDB file was created, and see if there is a .sth file.

2. If not, open the KDB file with the IBM Key Management Tool, and click Key Database File > Stash

Password. The following message displays: The password has been encrypted and saved in the

file.

If the HTTP server handles SSL-encrypted requests successfully, or is not involved (for example, traffic

flows from a Java client application directly to an enterprise bean hosted by the WebSphere Application

Server, or the problem appears only after enabling WebSphere Application Server security), what kind of

error are you seeing?

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: handshake failure

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: unknown certificate

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: bad certificate

v org.omg.CORBA.INTERNAL: EntryNotFoundException or NTRegistryImp E CWSCJ0070E: No privilege id

configured for: error when programmatically creating a credential.

For general tips on diagnosing and resolving security-related problems, see “Security components

troubleshooting tips” on page 968

966 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

http://www.ibm.com/software/webservers/httpservers/library.html

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Obtaining help from IBM

javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired level

of security. Reason: handshake failure

If you see a Java exception stack similar to the following example:

[Root exception is org.omg.CORBA.TRANSIENT: CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET: CWWJE0080E: javax

Some possible causes are:

v Not having common ciphers between the client and server.

v Not specifying the correct protocol.

To correct these problems:

1. Review the SSL settings. Click WebSphere Administrative Console Security Settings > SSL

Configuration Repertoires > DefaultSSLSettings (or other named SSL settings).

2. Select the Secure Sockets Layer (SSL) option from the Additional Properties menu. You can also

browse the file manually by viewing the install_dir/properties/sas.client.props file.

3. Check the property specified by the com.ibm.ssl.protocol file to determine which protocol is specified.

4. Check the cipher types specified by the com.ibm.ssl.enabledCipherSuites. You might want to add more

cipher types to the list. To see which cipher suites are currently enabled: Fo to the properties page of

the SSL settings as described above, and look for the Cipher Suites property. To see the list of all

possible cipher suites, go to the properties page of the SSL settings as described above, then view the

online help for that page. From the help page, click Configure additional SSL settings.

5. Correct the protocol or cipher problem by using a different client or server protocol and cipher

selection. Typical protocols are SSL or SSLv3.

6. Make the cipher selection 40-bit instead of 128-bit. For CSIv2, set both of the following properties to

false in the sas.client.props file, or set security level=medium in the administrative console settings:

v com.ibm.CSI.performMessageConfidentialityRequired=false

v com.ibm.CSI.performMessageConfidentialitySupported=false

javax.net.ssl.SSLHandshakeException: unknown certificate

If you see a Java exception stack similar to the following example, it might be caused by not having the

personal certificate for the server in the client truststore file:

ERROR: Could not get the initial context or unable to look up the starting context. Exiting. Exception received: javax.n

To correct this problem:

1. Check the client truststore file to determine if the signer certificate from the server personal certificate

is there. For a self-signed server personal certificate, the signer certificate is the public key of the

personal certificate. For a certificate authority signed server personal certificate, the signer certificate is

the root CA certificate of the CA that signed the personal certificate.

2. Add the server signer certificate to the client truststore file.

javax.net.ssl.SSLHandshakeException: bad certificate

If you see a Java exception stack similar to the following example, it can be caused by having a personal

certificate in the client keystore used for SSL mutual authentication but not having extracted the signer

certificate into the server truststore file so that the server can trust it whenever the SSL handshake is

made:

ERROR: Could not get the initial context or unable to look up the starting context. Exiting. Exception received: javax.n

To verify this problem, check the server truststore file to determine if the signer certificate from the client

personal certificate is there. For a self-signed client personal certificate, the signer certificate is the public

Chapter 16. Troubleshooting security configurations 967

key of the personal certificate. For a certificate authority signed client personal certificate, the signer

certificate is the root CA certificate of the CA that signed the personal certificate.

To correct this problem, add the client signer certificate to the server truststore file.

org.omg.CORBA.INTERNAL: EntryNotFoundException or NTRegistryImp E CWSCJ0070E: No

privilege id configured for: error when programmatically creating a credential

If you encounter the following exception in a client application attempting to request a credential from a

WebSphere Application Server using SSL mutual authentication:

ERROR: Could not get the initial context or unable to look up the starting context. Exiting. Exception received: org.omg.CO

or a simultaneous error from the WebSphere Application Server that resembles:

[7/31/02 15:38:48:452 CDT] 27318f5 NTRegistryImp E CWSCJ0070E: No privilege id configured for: testuser

The cause might be that the user ID sent by the client to the server is not in the user registry for that

server.

To confirm this problem, check that an entry exists for the personal certificate that is sent to the server.

Depending on the user registry mechanism, look at the native operating system user ID or Lightweight

Directory Access Protocol (LDAP) server entries.

To correct this problem, add the user ID to the user registry entry (for example, operating system, LDAP

directory, or other custom registry) for the personal certificate identity.

Security components troubleshooting tips

This document explains basic resources and steps for diagnosing security related issues in the

WebSphere Application Server, including:

v What “Log files” on page 969 to look at and what to look for in them.

v What “SDSF output logs” on page 970 to look at and what to look for in them.

v “General approach for troubleshooting security-related issues” on page 971 to isolating and resolving

security problems.

v When and how to “Trace security” on page 975.

v An overview and table of “CSIv2 CORBA Minor Codes” on page 976.

The following security-related problems are addressed elsewhere in the information center:

v Errors and access problems after enabling security

After enabling global security, there was a degradation in performance. See Enabling global security for

information about using the unrestricted policy files.

v Errors after enabling SSL, or SSL-related error messages

v Errors trying to configure and enable security

If none of these steps solves the problem, check to see if the problem has been identified and

documented using the links in Diagnosing and fixing problems: Resources for learning.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

Note: For an overview of WebSphere Application Server security components such as SAS or z/SAS and

how they work, see Getting started with security.

968 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Log files

When troubleshooting the security component, browse the JVM logs for the server that hosts the resource

you are trying to access. The following is a sample of messages you would expect to see from a server in

which the security service has started successfully:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityCompo A CWSCJ0202A: Admin application initialized successfully

SecurityCompo A CWSCJ0203A: Naming application initialized successfully

SecurityCompo A CWSCJ0204A: Rolebased authorizer initialized successfully

SecurityCompo A CWSCJ0205A: Security Admin mBean registered successfully

SecurityCompo A CWSCJ0243A: Security service started successfully

SecurityCompo A CWSCJ0210A: Security enabled true

The following is an example of messages from a server which cannot start the security service, in this

case because the administrative user ID and password given to communicate with the user registry is

wrong, or the user registry itself is down or misconfigured:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.

registry.nt.NTLocalDomainRegistryImpl has been initialized

Authenticatio E CWSCJ4001E: Login failed for badID/<null>

javax.security.auth.login.LoginException: authentication failed: bad user/password

The following is an example of messages from a server for which LDAP has been specified as the security

mechanism, but the LDAP keys have not been properly configured:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: LTPA

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/anID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityServe E CWSCJ0237E: One or more vital LTPAServerObject configuration

attributes are null or not available. The attributes and values are password :

LTPA password does exist, expiration time 30, private key <null>, public key <null>,

and shared key <null>.

Chapter 16. Troubleshooting security configurations 969

A problem with the SSL configuration might lead to the following message. You should ensure that the

keystore location and keystore passwords are valid. Also, ensure the keystore has a valid personal

certificate and that the personal certificate public key or CA root has been extracted on put into the

truststore.

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerId

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

SASRas E CWWSA0026E: [SecurityTaggedComponentAssistorImpl.register]

Exception connecting object to the ORB. Check the SSL configuration to ensure

 that the SSL keyStore and trustStore properties are set properly. If the problem

persists, contact support for assistance. org.omg.CORBA.OBJ_ADAPTER:

ORB_CONNECT_ERROR (5) - couldn’t get Server Subcontract minor code:

4942FB8F completed: No

SDSF output logs

When troubleshooting the security component, browse the SDSF logs for the server that hosts the

resource you are trying to access. The following is a sample of messages you would expect to see from a

server in which the security service has started successfully:

 BBOM0001I com_ibm_Server_Security_Enabled: 1.

 BBOM0001I com_ibm_CSI_claimTLClientAuthenticationSupported: 1.

 BBOM0001I com_ibm_CSI_claimTLClientAuthenticationRequired: 0.

 BBOM0001I com_ibm_CSI_claimTransportAssocSSLTLSSupported: 1.

 BBOM0001I com_ibm_CSI_claimTransportAssocSSLTLSRequired: 0.

 BBOM0001I com_ibm_CSI_claimMessageConfidentialityRequired: 0.

 BBOM0001I com_ibm_CSI_claimClientAuthenticationSupported: 1.

 BBOM0001I com_ibm_CSI_claimClientAuthenticationRequired: 0.

 BBOM0001I com_ibm_CSI_claimClientAuthenticationtype:

 SAFUSERIDPASSWORD.

 BBOM0001I com_ibm_CSI_claimIdentityAssertionTypeSAF: 0.

 BBOM0001I com_ibm_CSI_claimIdentityAssertionTypeDN: 0.

 BBOM0001I com_ibm_CSI_claimIdentityAssertionTypeCert: 0.

 BBOM0001I com_ibm_CSI_claimMessageIntegritySupported: NOT SET,DEFAULT=1.

 BBOM0001I com_ibm_CSI_claimMessageIntegrityRequired: NOT SET,DEFAULT=1.

 BBOM0001I com_ibm_CSI_claimStateful: 1.

 BBOM0001I com_ibm_CSI_claimSecurityLevel: HIGH.

 BBOM0001I com_ibm_CSI_claimSecurityCipherSuiteList: NOT SET.

 BBOM0001I com_ibm_CSI_claimKeyringName: WASKeyring.

 BBOM0001I com_ibm_CSI_claim_ssl_sys_v2_timeout: NOT SET, DEFAULT=100.

 BBOM0001I com_ibm_CSI_claim_ssl_sys_v3_timeout: 600.

 BBOM0001I com_ibm_CSI_performTransportAssocSSLTLSSupported: 1.

 BBOM0001I security_sslClientCerts_allowed: 0.

 BBOM0001I security_kerberos_allowed: 0.

 BBOM0001I security_userid_password_allowed: 0.

 BBOM0001I security_userid_passticket_allowed: 1.

 BBOM0001I security_assertedID_IBM_accepted: 0.

 BBOM0001I security_assertedID_IBM_sent: 0.

 BBOM0001I nonauthenticated_clients_allowed: 1.

 BBOM0001I security_remote_identity: WSGUEST.

 BBOM0001I security_local_identity: WSGUEST.

 BBOM0001I security_EnableRunAsIdentity: 0.

 Messages beginning with BBOO0222I are common to Java WebSphere security.

They appear in both the controller and servant but are applicable to the servant.

 BBOO0222I CWSCJ0240I: Security service initialization completed successfully

 BBOO0222I CWSCJ0215I: Successfully set JAAS login provider

 configuration class to com.ibm.ws.security.auth.login.Configuration.

970 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

BBOO0222I CWSCJ0136I: Custom

 Registry:com.ibm.ws.security.registry.zOS.SAFRegistryImpl has been initialized

 BBOO0222I CWSCJ0157I: Loaded Vendor AuthorizationTable:

 com.ibm.ws.security.core.SAFAuthorizationTableImpl

 BBOO0222I CWSCJ0243I: Security service started successfully

 BBOO0222I CWSCJ0210I: Security enabled true

General approach for troubleshooting security-related issues

When troubleshooting security-related problems, the following questions are very helpful and should be

considered:

Does the problem occur when security is disabled?

This is a good litmus test to determine that a problem is security related. However, just because a

problem only occurs when security is enabled does not always make it a security problem. More

troubleshooting is necessary to ensure the problem is really security-related.

Did security appear to initialize properly?

A lot of security code is visited during initialization. So you will likely see problems there first if the

problem is configuration related.

 The following sequence of messages generated in the SystemOut.log indicate normal code

initialization of an application server. This sequence will vary based on the configuration, but the

messages are similar:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: BIRKT20/pbirk

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityCompo A CWSCJ0202A: Admin application initialized successfully

SecurityCompo A CWSCJ0203A: Naming application initialized successfully

SecurityCompo A CWSCJ0204A: Rolebased authorizer initialized successfully

SecurityCompo A CWSCJ0205A: Security Admin mBean registered successfully

SecurityCompo A CWSCJ0243A: Security service started successfully

SecurityCompo A CWSCJ0210A: Security enabled true

The following sequence of messages generated in the SDSF active log indicate normal code

initialization of an application server. Non-security messages have been removed from the

sequence that follows. This sequence will vary based on the configuration, but the messages are

similar:

 Trace: 2003/08/25 13:06:31.034 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.auth.login.Configuration

 SourceId: com.ibm.ws.security.auth.login.Configuration

 Category: AUDIT

 ExtendedMessage: CWSCJ0215I: Successfully set JAAS login provider

 configuration class to com.ibm.ws.security.auth.login.Configuration.

 Trace: 2003/08/25 13:06:31.085 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityDM

 SourceId: com.ibm.ws.security.core.SecurityDM

 Category: INFO

 ExtendedMessage: CWSCJ0231I: The Security component’s

 FFDC Diagnostic Module com.ibm.ws.security.core.SecurityDM

 registered success

 fully: true.

 Trace: 2003/08/25 13:06:31.086 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

Chapter 16. Troubleshooting security configurations 971

from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0231I: The Security component’s

FFDC Diagnostic Module com.ibm.ws.security.core.SecurityDM registered

 successfully: true.

 Trace: 2003/08/25 13:06:32.426 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

 SourceId: com.ibm.ws.security.core.SecurityComponentImpl

 Category: INFO

 ExtendedMessage: CWSCJ0309I: Java 2 Security is disabled.

 Trace: 2003/08/25 13:06:32.427 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0309I: Java 2 Security is disabled.

 Trace: 2003/08/25 13:06:32.445 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

 SourceId: com.ibm.ws.security.core.SecurityComponentImpl

 Category: INFO

 ExtendedMessage: CWSCJ0212I: WCCM JAAS configuration information

successfully pushed to login provider class.

 Trace: 2003/08/25 13:06:32.445 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0212I: WCCM JAAS configuration

 information successfully pushed to login provider class.

 Trace: 2003/08/25 13:06:32.459 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: SecurityComponentImpl

 SourceId: SecurityComponentImpl

 Category: WARNING

 ExtendedMessage: BBOS1000W LTPA or ICSF are configured as the

authentication mechanism but SSO is disabled.

 Trace: 2003/08/25 13:06:32.459 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 824

 error message: BBOS1000W LTPA or ICSF are configured as the

authentication mechanism but SSO is disabled.

 Trace: 2003/08/25 13:06:32.463 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

 SourceId: com.ibm.ws.security.core.SecurityComponentImpl

 Category: INFO

 ExtendedMessage: CWSCJ0240I: Security service initialization completed

successfully

 Trace: 2003/08/25 13:06:32.463 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0240I: Security service initialization

completed successfully

 Trace: 2003/08/25 13:06:39.718 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.registry.UserRegistryImpl

 SourceId: com.ibm.ws.security.registry.UserRegistryImpl

 Category: AUDIT

 ExtendedMessage: CWSCJ0136I: Custom Registry:

com.ibm.ws.security.registry.zOS.SAFRegistryImpl has been initialized

 Trace: 2003/08/25 13:06:41.967 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.WSAccessManager

 SourceId: com.ibm.ws.security.core.WSAccessManager

 Category: AUDIT

 ExtendedMessage: CWSCJ0157I: Loaded Vendor AuthorizationTable:

com.ibm.ws.security.core.SAFAuthorizationTableImpl

 Trace: 2003/08/25 13:06:43.136 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.role.RoleBasedAuthorizerImpl

 SourceId: com.ibm.ws.security.role.RoleBasedAuthorizerImpl

 Category: AUDIT

972 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

ExtendedMessage: CWSCJ0157I: Loaded Vendor AuthorizationTable:

com.ibm.ws.security.core.SAFAuthorizationTableImpl

 Trace: 2003/08/25 13:06:43.789 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

 SourceId: com.ibm.ws.security.core.SecurityComponentImpl

 Category: INFO

 ExtendedMessage: CWSCJ0243I: Security service started successfully

 Trace: 2003/08/25 13:06:43.789 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0243I: Security service started successfully

 Trace: 2003/08/25 13:06:43.794 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

 SourceId: com.ibm.ws.security.core.SecurityComponentImpl

 Category: INFO

 ExtendedMessage: CWSCJ0210I: Security enabled true

 Trace: 2003/08/25 13:06:43.794 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0210I: Security enabled true

 Trace: 2003/08/25 13:07:06.474 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.WSAccessManager

 SourceId: com.ibm.ws.security.core.WSAccessManager

 Category: AUDIT

 ExtendedMessage: CWSCJ0157I: Loaded Vendor AuthorizationTable:

com.ibm.ws.security.core.SAFAuthorizationTableImpl

 Trace: 2003/08/25 13:07:09.315 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.WSAccessManager

 SourceId: com.ibm.ws.security.core.WSAccessManager

 Category: AUDIT

 ExtendedMessage: CWSCJ0157I: Loaded Vendor AuthorizationTable:

com.ibm.ws.security.core.SAFAuthorizationTableImpl

Is there a stack trace or exception printed in the SystemOut.log?

A single stack trace tells a lot about the problem. What code initiated the code that failed? What is

the failing component? Which class did the failure actually come from? Sometimes the stack trace

is all that is needed to solve the problem and it can pinpoint the root cause. Other times, it can

only give us a clue, and could actually be misleading. When support analyzes a stack trace, they

may request additional trace if it is not clear what the problem is. If it appears to be

security-related and the solution cannot be determined from the stack trace or problem description,

you will be asked to gather the following trace specification:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled from all processes involved.

Is this a distributed security problem or a local security problem?

v If the problem is local, that is the code involved does not make a remote method invocation,

then troubleshooting is isolated to a single process. It is important to know when a problem is

local versus distributed since the behavior of the ORB, among other components, is different

between the two. Once a remote method invocation takes place, an entirely different security

code path is entered.

v When you know that the problem involves two or more servers, the techniques of

troubleshooting change. You will need to trace all servers involved simultaneously so that the

trace shows the client and server sides of the problem. Try to make sure the timestamps on all

machines match as closely as possible so that you can find the request and reply pair from two

different processes. Enable both SAS or z/SAS and Security trace using the trace specification:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

For more information on enabling trace, see Enabling trace.

For more information on enabling trace, see Working with Trace
Is the problem related to authentication or authorization?

Most security problems fall under one of these two categories. Authentication is the process of

determining who the caller is. Authorization is the process of validating that the caller has the

proper authority to invoke the requested method. When authentication fails, typically this is related

Chapter 16. Troubleshooting security configurations 973

to either the authentication protocol, authentication mechanism or user registry. When

authorization fails, this is usually related to the application bindings from assembly and/or

deployment and to the caller’s identity who is accessing the method and the roles required by the

method.

Is this a Web or EJB request?

 Web requests have a completely different code path than EJB requests. Also, there are different

security features for Web requests than for EJB requests, requiring a completely different body of

knowledge to resolve. For example, when using the LTPA authentication mechanism, the single

signon feature (SSO) is available for Web requests but not for EJB requests. Web requests

involve HTTP header information not required by EJB requests due to the protocol differences.

Also, the Web container (or servlet engine) is involved in the entire process. Any of these

components could be involved in the problem and all should be considered during troubleshooting,

based on the type of request and where the failure occurs.

 Secure EJB requests heavily involve the ORB and Naming components since they flow over the

RMI/IIOP protocol. In addition, when work flow management (WLM) is enabled, other behavior

changes in the code can be observed. All of these components interact closely for security to work

properly in this environment. At times, trace in any or all of these components might be necessary

to troubleshoot problems in this area. The trace specification to begin with is

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled. ORB trace is also very beneficial when

the SAS/Security trace does not seem to pinpoint the problem.

Does the problem seem to be related to the Secure Sockets Layer (SSL)?

 The Secure Socket Layer (SSL) is a totally distinct separate layer of security. Troubleshooting SSL

problems are usually separate from troubleshooting authentication and/or authorization problems.

There are many things to consider. Usually, SSL problems are first time setup problems because

the configuration can be difficult. Each client must contain the server’s signer certificate. During

mutual authentication, each server must contain the client’s signer certificate. Also, there can be

protocol differences (SSLv3 vs. TLS), and listener port problems related to stale IORs (i.e., IORs

from a server reflecting the port prior to the server restarting).

 For SSL problems, we sometimes request an SSL trace to determine what is happening with the

SSL handshake. The SSL handshake is the process which occurs when a client opens a socket to

a server. If anything goes wrong with the key exchange, cipher exchange, etc. the handshake will

fail and thus the socket is invalid. Tracing JSSE (the SSL implementation used in WebSphere

Application Server) involves the following steps:

v Set the following system property on the client and server processes: -Djavax.net.debug=true.

For the server, add this to the Generic JVM Arguments property of the Java virtual machine

settings page.

v Turn on ORB trace as well.

v Recreate the problem.

The SystemOut.log of both processes should contain the JSSE trace. You will find trace similar

to the following:

SSLConnection: install <com.ibm.sslite.e@3ae78375>

>> handleHandshakeV2 <com.ibm.sslite.e@3ae78375>

>> handshakeV2 type = 1

>> clientHello: SSLv2.

SSL client version: 3.0

...

...

...

JSSEContext: handleSession[Socket[addr=null,port=0,localport=0]]

<< sendServerHello.

SSL version: 3.0

SSL_RSA_WITH_RC4_128_MD5

HelloRandom

...

...

...

<< sendCertificate.

<< sendServerHelloDone.

974 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleHandshake <com.ibm.sslite.e@3ae78375>

>> handshakeV3 type = 16

>> clientKeyExchange.

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleChangeCipherSpec <com.ibm.sslite.e@3ae78375>

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleHandshake <com.ibm.sslite.e@3ae78375>

>> handshakeV3 type = 20

>> finished.

<< sendChangeCipherSpec.

<< sendFinished.

Trace security

The classes which implement WebSphere Application Server security are:

v com.ibm.ws.security.*

v com.ibm.websphere.security.*

v com.ibm.WebSphereSecurityImpl.*

v SASRas

To view detailed information on the run time behavior of security, enable trace on the following

components and review the output:

v com.ibm.ws.security.*=all=enabled:com.ibm:WebSphereSecurityImpl.*=

all=enabled:com.ibm.websphere.security.*=all=enabled. This trace statement collects the trace for

the security runtime.

v com.ibm.ws.console.security.*=all=enabled. This trace statement collects the trace for the security

center GUI.

v SASRas=all=enabled. This trace statement collects the trace for SAS (low-level authentication logic).
Fine tuning SAS traces:

If a subset of classes need to be traced for the SAS/CSIv2 component, a system property can be

specified with the class names comma separated:

com.ibm.CORBA.securityTraceFilter=SecurityConnectionInterceptorImpl, VaultImpl, ...

Fine tuning Security traces:

If a subset of packages need to be traced, specify a trace specification more detailed than

com.ibm.ws.security.*=all=enabled. For example, to trace just dynamic policy code, you can

specify com.ibm.ws.security.policy.*=all=enabled. To disable dynamic policy trace, you can

specify com.ibm.ws.security.policy.*=all=disabled.

Configuring CSIv2, or z/SAS Trace Settings

Situations arise where reviewing trace for the CSIv2 and z/SAS authentication protocols can assist

in troubleshooting difficult problems. This section describes how to enable to CSIv2 and z/SAS

trace.

Enabling Server-Side CSIv2 and z/SAS Trace

To enable z/SAS trace in an application server, complete the following:

v Add the trace specification, SASRas=all=enabled, to the server.xml file or add it to the

Trace settings within the WebConsole GUI.

v Typically it is best to also trace the authorization security runtime in addition to the

authentication protocol runtime. To do this, use the following two trace specifications in

combination: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

v When troubleshooting a connection type problem, it is beneficial to trace both CSIv2

and SAS or CSIv2 and z/SAS and the ORB. To do this, use the following three trace

specifications:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled:ORBRas=all=enabled.

v In addition to adding these trace specifications, for ORB trace there are a couple of

system properties that also need to be set. Go to the ORB settings in the GUI and add

the following two properties: com.ibm.CORBA.Debug=true and

com.ibm.CORBA.CommTrace=true.

Chapter 16. Troubleshooting security configurations 975

Configuring CSIv2, or SAS Trace Settings

Situations arise where reviewing trace for the CSIv2 or SAS authentication protocols can assist in

troubleshooting difficult problems. This section describes how to enable to CSIv2 and SAS trace.

Enabling Client-Side CSIv2 and SAS Trace

To enable CSIv2 and SAS trace on a pure client, the following steps need to be taken:

v Edit the file TraceSettings.properties in the /WebSphere/AppServer/properties directory.

v In this file, change traceFileName= to point to the path in which you want the ouput file

created. Make sure you put a double backslash (\\) between each subdirectory. For

example, traceFileName=c:\\WebSphere\\AppServer\\logs\\sas_client.log

v In this file, add the trace specification string: SASRas=all=enabled. Any additional trace

strings can be added on separate lines.

v Point to this file from within your client application. On the Java command line where

you launch the client, add the following system property:

-DtraceSettingsFile=TraceSettings.properties.

Note: Do not give the fully qualified path to the TraceSettings.properties file. Make

sure that the TraceSettings.properties file is in your class path.
Enabling Server-Side CSIv2 and SAS Trace

To enable SAS trace in an application server, complete the following:

v Add the trace specification, SASRas=all=enabled, to the server.xml file or add it to the

Trace settings within the WebConsole GUI.

v Typically it is best to also trace the authorization security runtime in addition to the

authentication protocol runtime. To do this, use the following two trace specifications in

combination: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

v When troubleshooting a connection type problem, it is beneficial to trace both CSIv2

and SAS or CSIv2 and z/SAS and the ORB. To do this, use the following three trace

specifications:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled:ORBRas=all=enabled.

v In addition to adding these trace specifications, for ORB trace there are a couple of

system properties that also need to be set. Go to the ORB settings in the GUI and add

the following two properties: com.ibm.CORBA.Debug=true and

com.ibm.CORBA.CommTrace=true.

CSIv2 CORBA Minor Codes

Whatever exceptions might occur within the security code on either the client or server, the eventual

exception will become a CORBA exception. So any exception that occurs gets ″wrapped″ by a CORBA

exception, because the CORBA architecture is used by the security service for its own inter-process

communication. CORBA exceptions are generic, and indicate a problem in communication between two

components. CORBA minor codes are more specific, and indicate the underlying reason that a component

could not complete a request.

The following shows the CORBA Minor codes which a client can expect to receive after executing a

security-related request such as authentication. It also includes the CORBA exception type that the minor

code would appear in.

The following exception shows an example of a CORBA exception where the minor code is 49424300.

From the table below, this minor code indicates Authentication Failure. Typically, a descriptive message is

also included in the exception to assist in troubleshooting the problem. Here, the detailed message is

″Exception caught invoking authenticateBasicAuthData from SecurityServer for user jdoe. Reason:

com.ibm.WebSphereSecurity.AuthenticationFailedException″ which indicates that the authentication failed

for user ″jdoe″.

The completed field in the exception indicates whether the method was completed or not. In the case of a

NO_PERMISSION, the method should never get invoked, so it will always be ″completed:No″. Other

exceptions which are caught on the server side could have a completed status of ″Maybe″ or ″Yes″.

976 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException in

WSSecurityContext.acceptSecContext(),

reason: Major Code[0] Minor Code[0] Message[Exception caught invoking

authenticateBasicAuthData from SecurityServer for user jdoe. Reason:

com.ibm.WebSphereSecurity.AuthenticationFailedException] minor code: 49424300

completed: No

at com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.

map_auth_fail_to_minor_code(PrincipalAuthFailReason.java:83)

 at com.ibm.ISecurityLocalObjectBaseL13Impl.CSIServerRI.receive_request

 (CSIServerRI.java:1569)

 at com.ibm.rmi.pi.InterceptorManager.iterateReceiveRequest

 (InterceptorManager.java:739)

 at com.ibm.CORBA.iiop.ServerDelegate.dispatch(ServerDelegate.java:398)

 at com.ibm.rmi.iiop.ORB.process(ORB.java:313)

 at com.ibm.CORBA.iiop.ORB.process(ORB.java:1581)

 at com.ibm.rmi.iiop.GIOPConnection.doWork(GIOPConnection.java:1827)

 at com.ibm.rmi.iiop.WorkUnitImpl.doWork(WorkUnitImpl.java:81)

 at com.ibm.ejs.oa.pool.PooledThread.run(ThreadPool.java:91)

 at com.ibm.ws.util.CachedThread.run(ThreadPool.java:149)

The following table shows the CORBA Minor codes which a client can expect to receive after executing a

security-related request such as authentication. It also includes the CORBA exception type that the minor

code would appear in.

 Minor code name Minor code

value (in hex)

Exception type (all in the

package of org.omg.CORBA

.*)

Minor code description Retry performed (when

authenticationRe

tryEnabled=true)

AuthenticationFailed 49424300 NO_PERMISSION This is a generic

authentication failed error.

It does not give any details

about whether the userid

or password is invalid.

Some registries can

choose to use this type of

error code, others might

choose to use the next

three types which are

more specific.

Yes

InvalidUserid 49424301 NO_PERMISSION This occurs when the

registry returns bad userid.

Yes

InvalidPassword 49424302 NO_PERMISSION This occurs when the

registry returns bad

password.

Yes

InvalidSecurityCredentials 49424303 NO_PERMISSION This is a generic error

indicating that the

credentials are bad for

whatever reason. It could

be that they don’t have the

right attributes set.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

InvalidRealm 49424304 NO_PERMISSION This occurs when the

REALM in the token

received from the client

does not match the

server’s current realm.

No

ValidationFailed 49424305 NO_PERMISSION A validation failure occurs

when a token is sent from

the client or server to a

target server but the token

format or the expiration is

invalid.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

CredentialTokenExpired 49424306 NO_PERMISSION This is more specific about

why the validation failed.

In this case, the token has

a absolute lifetime, and

this lifetime has expired.

Therefore, it is no longer a

valid token and cannot be

used.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

Chapter 16. Troubleshooting security configurations 977

InvalidCredentialToken 49424307 NO_PERMISSION This is more specific about

why the validation failed.

In this case, the token

cannot be decrypted or the

data within it is not

readable.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

SessionDoesNotExist 49424308 NO_PERMISSION This indicates that the

CSIv2 session does not

exist on the server.

Typically, a retry occurs

automatically and will

successfully create a new

session.

Yes

SessionConflictingEvidence 49424309 NO_PERMISSION This indicates that a

session already exists on

the server which matches

the context_id sent over by

the client, however, the

information provided by

the client for this

EstablishContext message

is different from the

information originally

provided to establish the

session.

Yes

SessionRejected 4942430A NO_PERMISSION This indicates that the

session referenced by the

client has been previously

rejected by the server.

Yes

SecurityServerNotAvailable 4942430B NO_PERMISSION This error occurs when the

server cannot contact the

security server (whether

local or remote) in order to

authenticate or validate.

No

InvalidIdentityToken 4942430C NO_PERMISSION This error indicates that

identity cannot be obtained

from the identity token

when Identity Assertion is

enabled.

No

IdentityServerNotTrusted 4942430D NO_PERMISSION This indicates that the

server id of the sending

server is not on the target

server’s trusted principal

list.

No

InvalidMessage 4942430E NO_PERMISSION This indicates that the

CSIv2 message format is

invalid for the receiving

server.

No

AuthenticationNotSupported 49421090 NO_PERMISSION This error occurs when a

mechanism does not

support authentication

(very rare).

No

InvalidSecurityMechanism 49421091 NO_PERMISSION This is used to indicate

that the specified security

mechanism is not known.

No

CredentialNotAvailable 49421092 NO_PERMISSION This indicates a credential

is not available when it is

required.

No

SecurityMechanismNotSupported 49421093 NO_PERMISSION This error occurs when a

security mechanism

specified in the CSIv2

token is not implemented

on the server.

No

978 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

ValidationNotSupported 49421094 NO_PERMISSION This error occurs when a

mechanism does not

support validation (such as

LocalOS). This error

should not occur since the

LocalOS credential is not a

forwardable credential,

therefore, validation should

never need to be called on

it.

No

CredentialTokenNotSet 49421095 NO_PERMISSION This is used to indicate the

token inside the credential

is null.

No

ServerConnectionFailed 494210A0 COMM_FAILURE This error is used when a

connection attempt fails.

Yes (via ORB retry)

CorbaSystemException 494210B0 INTERNAL This is a generic CORBA

specific exception in

system code.

No

JavaException 494210B1 INTERNAL This is a generic error that

indicated an unexpected

Java exception occurred.

No

ValueIsNull 494210B2 INTERNAL This is used to indicate

that a value or parameter

passed in was null.

No

EffectivePolicyNotPresent 494210B3 INTERNAL This indicates that an

effective policy object for

CSIv2 is not present. This

object is used to determine

what security configuration

features have been

specified.

No

NullPointerException 494210B4 INTERNAL This is used to indicate

that a NullPointerException

was caught in the runtime.

No

ErrorGettingClassInstance 494210B5 INTERNAL This indicates a problem

loading a class

dynamically.

No

MalFormedParameters 494210B6 INTERNAL This indicates parameters

are not valid.

No

DuplicateSecurityAttributeType 494210B7 INTERNAL A duplicate credential

attribute has been

specified during the

set_attributes operation.

No

MethodNotImplemented 494210C0 NO_IMPLEMENT A method invoked has not

been implemented.

No

GSSFormatError 494210C5 BAD_PARAM This indicates that a GSS

encoding or decoding

routine has thrown an

exception.

No

TagComponentFormatError 494210C6 BAD_PARAM This indicates that a tag

component cannot be read

properly.

No

InvalidSecurityAttributeType 494210C7 BAD_PARAM This indicates an attribute

type specified during the

set_attributes operation is

an invalid type.

No

SecurityConfigError 494210CA INITIALIZE A problem exists between

the client and server

configuration.

No

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Chapter 16. Troubleshooting security configurations 979

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

980 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Licensing

 IBM Corporation

 500 Columbus Avenue

 Thornwood, New York 10594 USA

© Copyright IBM Corp. 2004 981

982 IBM WebSphere Application Server – Express, Version 6: Securing applications and their environment

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site (http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2004 983

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Chapter 1. Overview and new features for securing applications and their environment
	Overview of securing applications and their environment
	What is new for security specialists
	Enabling security for WSIF

	Chapter 2. How do I secure applications and their environments?
	Chapter 3. Securing applications and their environment
	Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems
	Interoperability issues for security
	Interoperating with a C++ common object request broker architecture client
	Interoperating with previous product versions
	Security: Resources for learning

	Chapter 5. Planning to secure your environment
	Security considerations when adding a Base Application Server node to Network Deployment
	Creating login key files
	Preparing truststore files
	Configuring the application server for interoperability

	Chapter 6. Implementing security considerations at installation time
	Securing your environment before installation
	Securing your environment after installation
	Protecting plain text passwords
	PropFilePasswordEncoder command reference

	Chapter 7. Migrating security configurations from previous releases
	Migrating custom user registries
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service
	Migrating from the CustomLoginServlet class to servlet filters

	Chapter 8. Developing secured applications
	Developing with programmatic security APIs for Web applications
	Example: Web applications code
	Developing servlet filters for form login processing
	Configuring servlet filters
	Example: Servlet filters

	Developing form login pages
	Example: Form login

	Developing with programmatic APIs for EJB applications
	Example: Enterprise bean application code

	Programmatic login
	Developing programmatic logins with the Java Authentication and Authorization Service
	Example: Programmatic logins

	Custom login module development for a system login configuration
	Example: Customizing a server-side Java Authentication and Authorization Service authentication and login configuration
	Example: Getting the Caller Subject from the Thread
	Example: Getting the RunAs Subject from the Thread
	Example: Overriding the RunAs Subject on the Thread
	Example: User revocation from a cache
	Developing your own J2C principal mapping module
	Developing custom user registries
	Example: Custom user registries
	UserRegistry interface methods

	Trust association interceptor support for Subject creation

	Chapter 9. Assembling secured applications
	Enterprise bean component security
	Securing enterprise bean applications
	Web component security
	Securing Web applications using an assembly tool
	Role-based authorization
	Admin roles
	Naming roles

	Adding users and groups to roles using an assembly tool
	Mapping users to RunAs roles using an assembly tool

	Chapter 10. Deploying secured applications
	Assigning users and groups to roles
	Security role to user and group mappings
	Users
	Groups
	Roles
	Everyone
	All Authenticated

	Security role to user and group selections
	Look up users
	Look up groups
	Role
	Everyone
	All authenticated
	Mapped users
	Mapped groups

	Look up users and groups settings
	Limit
	Pattern

	Delegations
	Assigning users to RunAs roles
	Unprotected EJB 2.0 methods protection settings
	Exclude
	Uncheck
	Specify role
	Module name
	Protection

	EJB 2.1 method protection level settings
	EJB Module
	Module URI
	Method protection

	RunAs roles to users mapping
	User name
	Password

	Updating and redeploying secured applications

	Chapter 11. Testing security
	Chapter 12. Administering security
	Global security
	Configuring global security
	Enabling global security
	Global security settings

	Configuring server security
	Server-level security settings
	Enable global security
	Enforce Java 2 security
	Enforce fine-grained JCA security
	Use domain qualified user IDs
	Cache timeout
	Issue permission warning
	Active protocol

	Administrative console and naming service authorization
	Assigning users to administrator roles
	Console groups and CORBA naming service groups
	Group (Console groups)
	Group (CORBA naming service groups)
	Role (Console group)
	Role (CORBA naming service users)

	Assigning users to naming roles
	Console users settings and CORBA naming service user settings
	User (Console users)
	User (CORBA naming service users)
	Role (Console users)
	Role (CORBA naming service users)

	Authentication mechanisms
	Configuring authentication mechanisms
	Simple WebSphere authentication mechanism
	Lightweight Third Party Authentication
	Configuring Lightweight Third Party Authentication
	Configuring Lightweight Third Party Authentication keys
	Lightweight Third Party Authentication settings

	Trust associations
	Configuring trust association interceptors
	Trust association settings
	Trust association interceptor collection

	Single signon
	Configuring single signon
	Single signon settings
	Troubleshooting single signon configurations

	Single signon using WebSEAL or the Tivoli Access Manager plug-in for Web servers
	Creating a trusted user account in Tivoli Access Manager
	Configuring WebSEAL for use with WebSphere Application Server
	Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application Server
	Configuring single signon using the trust association interceptor
	Configuring single signon using trust association interceptor ++
	Global signon principal mapping
	Configuring global signon principal mapping

	User registries
	Configuring user registries
	Local operating system user registries
	Configuring local operating system user registries
	Local operating system user registry settings

	Lightweight Directory Access Protocol
	Configuring Lightweight Directory Access Protocol user registries
	Lightweight Directory Access Protocol settings
	Advanced Lightweight Directory Access Protocol user registry settings

	Configuring Lightweight Directory Access Protocol search filters
	Using specific directory servers as the LDAP server
	Supported directory services

	Locating a user's group memberships in Lightweight Directory Access Protocol
	Dynamic groups and nested group support
	Dynamic and nested group support for the SunONE or iPlanet Directory Server
	Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server
	Dynamic groups and nested group support for the IBM Directory Server
	Configuring dynamic and nested group support for the IBM Directory Server
	Custom user registries
	Configuring custom user registries
	UserRegistry.java files
	FileRegistrySample.java file
	Result.java file
	Custom user registry settings
	users.props file
	groups.props file

	Java Authentication and Authorization Service
	Java Authentication and Authorization Service authorization

	Configuring application logins for Java Authentication and Authorization Service
	Login configuration for Java Authentication and Authorization Service
	Configuration entry settings for Java Authentication and Authorization Service
	ClientContainer
	DefaultPrincipalMapping
	WSLogin

	System login configuration entry settings for Java Authentication and Authorization Service
	RMI_INBOUND, WEB_INBOUND, DEFAULT
	RMI_OUTBOUND
	SWAM
	wssecurity.IDAssertion
	wssecurity.PKCS7
	wssecurity.PkiPath
	wssecurity.signature
	wssecurity.UsernameToken
	wssecurity.X509BST
	LTPA_WEB
	LTPA

	Login module settings for Java Authentication and Authorization Service
	Module class name
	Proxy class name
	Authentication Strategy
	Module order

	Login module order settings for Java Authentication and Authorization Service
	Login configuration settings for Java Authentication and Authorization Service
	Alias

	J2EE Connector security
	Managing J2EE Connector Architecture authentication data entries
	Java 2 Connector authentication data entry settings

	Identity mapping
	Configuring inbound identity mapping
	Example: Custom login module for inbound mapping

	Configuring outbound mapping to a different target realm
	Example: Using the WSLogin configuration to create a basic authentication subject
	Example: Sample login configuration for RMI_OUTBOUND

	Security attribute propagation
	Enabling security attribute propagation
	Default PropagationToken
	Implementing a custom PropagationToken
	Example: com.ibm.wsspi.security.token.PropagationToken implementation
	Example: custom PropagationToken login module

	Default AuthorizationToken
	Implementing a custom AuthorizationToken
	Example: com.ibm.wsspi.security.token.AuthorizationToken implementation
	Example: custom AuthorizationToken login module

	Default SingleSignonToken
	Implementing a custom SingleSignonToken
	Example: com.ibm.wsspi.security.token.SingleSignonToken implementation
	Example: custom SingleSignonToken login module
	Example: HTTP cookie retrieval

	Default AuthenticationToken
	Implementing a custom AuthenticationToken
	Example: com.ibm.wsspi.security.token.AuthenticationToken implementation
	Example: custom AuthenticationToken login module

	Propagating a custom Java serializable object
	Authorization in WebSphere Application Server
	JACC providers
	Authorization providers settings
	Default authorization
	External authorization using a JACC provider
	External JACC provider

	JACC support in WebSphere Application Server
	JACC policy context handlers
	JACC policy context identifiers (ContextID) format
	JACC policy propagation
	JACC registration of the provider implementation classes

	Enabling an external JACC provider
	External Java Authorization Contract for Containers provider settings
	Name
	Description
	Policy class name
	Policy configuration factory class name
	Role configuration factory class name
	Provider initialization class name
	Requires the EJB arguments policy context handler for access decisions
	Supports dynamic module updates
	Custom properties
	Tivoli Access Manager properties

	Propagating security policy of installed applications to a JACC provider using wsadmin
	Configuring a JACC provider
	Interfaces used to support JACC
	Tivoli Access Manager integration as the JACC provider
	Tivoli Access Manager security for WebSphere Application Server
	Creating the security administrative user
	Tivoli Access Manager JACC provider configuration
	Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility
	Configuring the JACC provider for Tivoli Access Manager using the administrative console
	Tivoli Access Manager JACC provider settings
	Enable embedded Tivoli Access Manager
	Ignore errors during embedded Tivoli Access Manager disablement
	Client listening port set
	Policy server
	Authorization servers
	Administrator user name
	Administrator user password
	User registry distinguished name suffix
	Security domain
	Administrator user distinguished name

	Enabling the JACC provider for Tivoli Access Manager
	Configuring additional authorization servers
	Role-based security with embedded Tivoli Access Manager
	Administering security users and roles with Tivoli Access Manager
	Configuring Tivoli Access Manager groups
	Tivoli Access Manager JACC provider configuration properties
	Static role caching properties
	Dynamic role caching properties
	Object caching properties
	Role-based policy framework properties
	System-dependent configuration properties

	Logging Tivoli Access Manager security
	Enabling embedded Tivoli Access Manager
	Disabling embedded Tivoli Access Manager client
	Disabling embedded Tivoli Access Manager client using the Administration Console
	Disabling embedded Tivoli Access Manager client using wsadmin
	Forcing the unconfiguration of the Tivoli Access Manager JACC provider
	Updating console users and groups
	The Tivoli Access Manager migrateEAR utility
	Troubleshooting authorization providers
	Authentication protocol for EJB security
	Common Secure Interoperability Version 2 features
	Identity assertion
	Message layer authentication
	Secure Sockets Layer client certificate authentication
	Supported authentication protocols

	Configuring Common Secure Interoperability Version 2 and Security Authentication Service authentication protocols
	Common Secure Interoperability Version 2 and Security Authentication Service client configuration
	CSIv2 authentication protocol client settings
	Security Authentication Service authentication protocol client settings

	Configuring Common Secure Interoperability Version 2 inbound authentication
	Common Secure Interoperability inbound authentication settings

	Configuring Common Secure Interoperability Version 2 outbound authentication
	Configuring session management
	Common Secure Interoperability Version 2 outbound authentication settings

	Configuring inbound transports
	Common Secure Interoperability Version 2 transport inbound settings
	Secure Authentication Service inbound transport settings

	Configuring outbound transports
	Common Secure Interoperability Version 2 outbound transport settings
	Secure Authentication Service outbound transport settings

	Example: Common Secure Interoperability Version 2 scenarios
	Scenario 1: Basic authentication and identity assertion
	Scenario 2: Basic authentication, identity assertion, and client certificates
	Scenario 3: Client certificate authentication and RunAs system
	Scenario 4: TCP/IP transport using a virtual private network
	Scenario 5: Interoperability with WebSphere Application Server Version 4.x

	Secure Sockets Layer
	Authenticity
	Confidentiality
	Integrity

	Configuring Secure Sockets Layer
	Configuring Secure Sockets Layer for Web client authentication
	Configuring Secure Sockets Layer for the Lightweight Directory Access Protocol client
	Configuring IBM HTTP Server for Secure Sockets Layer mutual authentication
	Configuring the Web server plug-in for Secure Sockets Layer
	Configuring Secure Sockets Layer for Java client authentication
	Configuring Common Secure Interoperability Version 2 for Secure Sockets Layer client authentication
	Adding keystore files
	Adding truststore files

	Secure Sockets Layer configuration repertoire settings
	Alias
	New Secure Sockets Layer repertoire
	Repertoire settings
	Secure Sockets Layer settings for custom properties

	Creating a Secure Sockets Layer repertoire configuration entry
	Configuring Federal Information Processing Standard Java Secure Socket Extension files
	Digital certificates
	Digital signatures
	Public key cryptography

	Managing digital certificates
	Starting the key management utility (iKeyman)
	Creating a keystore file
	Creating truststore files
	Map certificates to users

	Changes to IBM Developer Kit for Java Technology Edition Version 1.4.x

	Cryptographic token support
	Opening a cryptographic token using the key management utility (iKeyman)
	Configuring to use cryptographic tokens
	Cryptographic token settings
	Token type
	Library file
	Password

	Using Java Secure Socket Extension and Java Cryptography Extension with Servlets and enterprise bean files
	Java 2 security
	Access control exception

	Configuring Java 2 security
	Using PolicyTool to edit policy files
	Java 2 security policy files
	Configuring Java 2 security policy files
	Configuring static policy files

	Migrating Java 2 security policy

	Chapter 13. Configuring security with scripting
	Enabling and disabling global security using scripting
	Enabling and disabling Java 2 security using scripting

	Chapter 14. Learn about WebSphere applications
	Web applications
	Security constraints

	EJB applications
	Configuring security for message-driven beans that use listener ports
	Configuring security for EJB 2.1 message-driven beans

	Client applications
	Accessing secure resources using SSL and applet clients
	Applet client security requirements

	Web services
	Transport level security
	Configuring HTTP outbound transport level security with the administrative console
	HTTP SSL Configuration collection

	Configuring HTTP outbound transport level security with an assembly tool
	Configuring HTTP outbound transport-level security using Java properties
	HTTP basic authentication
	Configuring HTTP basic authentication with the administrative console
	HTTP basic authentication collection

	Configuring HTTP basic authentication with an assembly tool
	HTTP basic authentication collection

	Configuring HTTP basic authentication programmatically
	HTTP basic authentication collection

	Configuring additional HTTP transport properties using the administrative console
	Configuring additional HTTP transport properties with an assembly tool
	Configuring additional HTTP transport properties using wsadmin
	Provide HTTP endpoint URL information
	Specify endpoint URL prefixes for Web services
	Select default HTTP URL prefix
	Select custom HTTP URL prefix

	Publish WSDL zip files settings
	application_name_WSDLFiles.zip
	application_name_ExtendedWSDLFiles.zip

	Securing Web services for version 6 applications based on WS-Security
	What is new for securing Web services
	Web services security enhancements
	High-level architecture for Web services security
	Configuration overview
	Security model mixture
	Security considerations for Web services
	Migrating Version 5.x applications with Web services security to Version 6 applications
	Default implementations of the Web services security service provider programming interfaces
	Default configuration
	Nonce, a randomly generated token
	Configuring an application for Web services security with an assembly tool
	Configuring trust anchors for the generator binding on the application level
	Configuring the collection certificate store for the generator binding on the application level
	Username token element
	Nonce, a randomly generated token
	Configuring the token generator on the application level
	Configuring the key locator for the generator binding on the application level
	Configuring the key information for the generator binding on the application level
	Configuring the signing information for the generator binding on the application level
	Configuring the encryption information for the generator binding on the application level
	Configuring trust anchors for the consumer binding on the application level
	Configuring the collection certificate store for the consumer binding on the application level
	Binary security token
	Configuring token consumer on the application level
	Configuring the key locator for the consumer binding on the application level
	Configuring the key information for the consumer binding on the application level
	Configuring the signing information for the consumer binding on the application level
	Configuring the encryption information for the consumer binding on the application level
	Retrieving tokens from the JAAS Subject in a server application
	Retrieving tokens from the JAAS Subject in a client application
	Configuring trust anchors on the server or cell level
	Configuring the collection certificate store on the server or cell-level bindings
	Distributed nonce caching
	Configuring a nonce on the server or cell level
	Configuring token generators on the server or cell level
	Configuring the key locator on the server or cell level
	Configuring the key information for the generator binding on the server or cell level
	Configuring the signing information for the generator binding on the server or cell level
	Configuring the encryption information for the generator binding on the server or cell level
	Configuring trusted ID evaluators on the server or cell level
	Configuring token consumers on the server or cell level
	Configuring the key information for the consumer binding on the server or cell level
	Configuring the signing information for the consumer binding on the server or cell level
	Configuring the encryption information for the consumer binding on the server or cell level
	Tuning Web services security

	Securing Web services for version 5.x applications based on WS-Security
	Web services security specification-a chronology
	Web services security support
	Web services security and Java 2 Platform, Enterprise Edition security relationship
	Web services security model in WebSphere Application Server
	Web services: Default bindings for the Web services security collection
	Usage scenario for propagating security tokens
	Configurations
	Authentication method overview
	XML digital signature
	Securing Web services for version 5.x applications using XML digital signature
	XML encryption
	Securing Web services for version 5.x applications using XML encryption
	Securing Web services for version 5.x applications using basicauth authentication
	Identity assertion
	Securing Web services for version 5.x applications using identity assertion authentication
	Securing Web services for version 5.x applications using signature authentication
	Token type overview
	Security token
	Securing Web services for version 5.x applications using a pluggable token
	Tuning Web services security

	Configuring UDDI Security Roles
	Security API for the UDDI V3 Registry

	Data access resources
	Security of lookups with component managed authentication

	Messaging resources
	Configuring authorization security for a Version 5 default messaging provider
	Authorization settings for Version 5 default JMS resources

	Securing WebSphere MQ messaging directories and log files
	Configuring security for message-driven beans that use listener ports
	Configuring security for EJB 2.1 message-driven beans

	Mail, URLs, and other J2EE resources
	JavaMail security permissions best practices

	Learn about WebSphere programming extensions
	Scheduler
	Securing scheduler tasks

	Chapter 15. Tuning security configurations
	Tuning CSIv2
	Tuning LDAP authentication
	Tuning Web authentication
	Tuning authorization
	Security cache properties
	Secure Sockets Layer performance tips
	Tuning security

	Chapter 16. Troubleshooting security configurations
	Errors when trying to configure or enable security
	Access problems after enabling security
	Errors after enabling security
	Errors trying to enable or configure Secure Socket Layer (SLL) encrypted access
	Errors after configuring or enabling Secure Sockets Layer
	Security components troubleshooting tips

	Notices
	Trademarks and service marks

