
WebSphere® Application Server, Version 6

Migrating, coexisting, and interoperating

���

Note

Before using this information, be sure to read the general information under Appendix C, “Notices,” on page 157.

Compilation date: November 30, 2004

© Copyright International Business Machines Corporation 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . vii

Part 1. Product overview . 1

Chapter 1. What is new in this release . 3

Chapter 2. How do I migrate, coexist, and interoperate? 5

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 11

Overview of migrating, coexisting, and interoperating 12

Deprecated features in Version 6.0 . 12

Deprecated features in V6.0 . 13

Deprecated features in V5.1.1 . 16

Deprecated features in V5.1 . 17

Deprecated features in V5.0.2 . 20

Deprecated features in V5.0.1 . 21

Deprecated features in V5.0 . 22

Migrating and coexisting . 23

Migration and coexistence overview . 23

Configuration mapping during migration . 25

Migrating WebSphere programming model extensions (PMEs) 31

Part 2. Migrating . 33

Chapter 4. Migrating applications . 35

Migrating Web application components from WebSphere Application Server Version 4.x 35

Migrating Web application components from WebSphere Application Server Version 5.x 37

Migrating HTTP sessions . 38

Migrating enterprise bean code to the supported specification 38

Migrating enterprise bean code from Version 1.0 to Version 1.1 39

Migrating enterprise bean code from Version 1.1 to Version 2.1 39

Migrating Apache SOAP Web services to Web Services for J2EE standards 40

Migrating to Version 3 of the UDDI Registry . 43

Using a remote database for the UDDI Registry . 46

Migrating a Version 4.0 data access application to Version 6.0 46

Converting a 2.2 Web module to a 2.3 Web module 47

Converting a 1.1 EJB module to a 2.1 EJB module (or later) 48

Add the EJB modules and Web modules to an EAR file 48

Installing the Application on WebSphere Application Server 48

Connection considerations when migrating servlets, JavaServer Pages, or enterprise session beans 49

Mail migration tip . 50

Migrating security configurations from previous releases 50

Migrating custom user registries . 51

Migrating trust association interceptors . 54

Migrating Common Object Request Broker Architecture programmatic login to Java Authentication

and Authorization Service . 56

Migrating from the CustomLoginServlet class to servlet filters 59

Migrating Java 2 security policy . 60

Migrating Version 5 Application Profiles to Version 6 . 62

Migrating internationalized applications . 63

Chapter 5. Migrating product configurations . 65

© Copyright IBM Corp. 2004 iii

Stand-alone migrations . 66

Migrating V4.0.x of WebSphere Application Server to a V6 stand-alone Application Server 66

Migrating V4.0.x of WebSphere Application Server to a remote stand-alone V6 machine 68

Migrating V5.x Express to V6 base . 70

Migrating V5.x of WebSphere Application Server to a V6 stand-alone Application Server on a remote

machine . 71

Migrating V5.x of WebSphere Application Server to a V6 Application Server 73

Migrating a V5.x Application Server configuration instance to a V6 Application Server profile 73

Migrating from an operating system that is no longer supported 74

Configuring WebSphere Application Server after migration 75

XML parser for Java code . 76

Configuring WebSphere Application Server for DB2 access 78

Chapter 6. Migrating Web server configurations . 81

Chapter 7. Migrating administrative scripts . 83

Migrating V4.0.x administrative scripts to V6 wsadmin 83

Example: Migrating - Creating an application server 85

Example: Migrating - Starting an application server 85

Example: Migrating - Installing an application . 85

Example: Migrating - Installing a JDBC driver . 87

Example: Migrating - Creating a server group . 87

Example: Migrating - Stopping a node . 88

Example: Migrating - Stopping an application server 88

Example: Migrating - Pinging running servers for the current state 88

Example: Migrating - Regenerating the node plug-in configuration 89

Example: Migrating - Testing the DataSource object connection 89

Example: Migrating - Cloning a server group . 90

Example: Migrating - Enabling security . 90

Example: Migrating - Disabling security . 91

Example: Migrating - Modifying the virtual host . 91

Example: Migrating - Modifying and restarting an application server 91

Example: Migrating - Removing an application server 92

Example: Migrating - Modifying the embedded transports in an application server 93

Example: Migrating - Connecting to a remote server 93

Example: Migrating - Uninstalling an application . 93

Example: Migrating - Editing an application . 93

Example: Migrating - Modifying attributes of application servers, applications, and other configured

objects . 94

Example: Migrating - Displaying help . 94

Example: Migrating - Listing actions available for configured objects 94

Example: Migrating - Setting the server trace specification 95

Migrating administrative scripts from 5.x to 6.0 . 95

Example: Migrating - Allowing configuration overwrite when saving a configuration 97

Part 3. Coexisting . 99

Chapter 8. Coexisting . 101

Coexistence support . 101

Setting up Version 4.0.x and Version 6 coexistence 103

Setting up Version 5 and Version 6 coexistence . 104

Setting up Version 6 coexistence . 105

Chapter 9. Configuring ports . 107

Port number settings in WebSphere Application Server versions 107

iv IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Part 4. Interoperating . 111

Chapter 10. Interoperating . 113

Chapter 11. Container interoperability . 117

Chapter 12. Web Services-Interoperability Basic Profile 121

Chapter 13. Interoperability issues for security . 123

Chapter 14. Interoperating with a C++ common object request broker architecture client . . . 125

Chapter 15. Interoperating with previous product versions 127

Chapter 16. JNDI interoperability considerations 129

Chapter 17. Application profiling interoperability 131

Chapter 18. Interoperating with asynchronous beans 133

Chapter 19. Interoperating with schedulers . 135

Appendix A. Migration tools . 137

The clientUpgrade command . 137

The convertScriptCompatibility command . 138

WASPreUpgrade command . 139

WASPostUpgrade command . 142

Using the Migration wizard . 145

Migrating from V4 to V6 with the Migration wizard 145

Migrating a V5 Application Server to a V6 Stand-alone Application Server with the Migration wizard 148

Appendix B. Troubleshooting migration . 151

Migration utility troubleshooting tips . 154

Migrating a previously non-root configuration to root 155

Appendix C. Notices . 157

Appendix D. Trademarks and service marks . 159

Contents v

vi IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004 vii

viii IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Part 1. Product overview

© Copyright IBM Corp. 2004 1

2 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 1. What is new in this release

This topic provides a high level overview of what is new and changed in Version 6. The audience is

anyone who is evaluating or planning to use Version 6, particularly users of previous versions or editions.

Welcome to Version 6, which helps you:

v Rapidly understand and obtain value from new J2EE 1.4 technology

v Make the most of your existing resources and lower your total cost of ownership

v Work more productively, with easier to use installation and administration interfaces

v Support your growing business with a firm foundation to the WebSphere platform

There is now greater consistency in the WebSphere Application Server family from top to bottom, including

in the Express version. Such features include support for J2EE 1.4 across the family, which makes it

easier to develop and deploy applications using industry standard tools, and support for the latest Web

Services standards, making it easier to integrate applications inside the enterprise as well as externally

with customers, partners and supplier.

IBM WebSphere Application Server Version 6 provides customers better scaling so more concurrent users

can access an application built on the software. This can help reduce administrative and licensing costs for

companies and provides better flexibility to quickly bring additional user resources on board.

What is new for migration

A new migration wizard collects data for the migration command line tools. The wizard also monitors and

reports migration status. Note that the installation program no longer performs the migration.

See “Using the Migration wizard” on page 145 for additional information.

Another big change is the introduction of separate installation routines for the Application Server product,

the Web server, the Web server plug-ins, and the clients so that you can install only what you need on a

particular machine.

At a glance, these are the main new items in installation, migration, coexistence, and interoperability:

v Simplified operating system setup and prerequisites

v Updated Launchpad application for planning and starting installation more easily

v Improved documentation, including diagrams of installation scenarios

v More componetized installation procedures let you install only what you need

v Improved installation logging and status indicators

v Smaller footprint

v Binary files are shared by installations on the same machine

v Updated First Steps application for getting started quickly after installation

v Simplified service and fixes

v Easier removal and reinstallation

v New migration wizard

For additional details about each installation item, including links to relevant documentation, see the

Getting Started PDF.

© Copyright IBM Corp. 2004 3

What is new for administrators

The biggest improvements and changes in system administration, monitoring, and tuning can be

summarized as follows:

v Changes to the default configuration

v Fine grained application update and other deployment improvements

v Enhanced administrative infrastructure, with J2EE 1.4 related changes

v Growing set of administrative commands

v Improved installation and configuration, with profiles

v Improved monitoring and performance tuning

v Default messaging provider

v Even more administrative improvements!

For details about each item, including links to relevant documentation, see the Administration: Operations

PDF.

Improvements to this documentation

v New How do I?... feature gathers documentation, multimedia demonstrations, tutorials, cheat sheets,

and presentations for commonly performed tasks

v Improved installation documentation

v Improved scripting documentation

v Conceptual overviews and what is new topics have better content and are easier to find

v Quick start shortcuts direct you quickly to key materials

v New Learn about WebSphere applications section for studying the programming model

v Improved, task-based table of contents

v Improvements to troubleshooting content and placement

4 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 2. How do I migrate, coexist, and interoperate?

v Migrate product and Web server configurations

v Migrate your applications

v Coexist

v Interoperate

v Troubleshoot migration

Legend for ″How do I?...″ links

 Documentation

Show me

Tell me

Guide me

Teach me

Refer to the detailed

steps and reference

Watch a brief

multimedia

demonstration

View the presentation

for an overview

Be led through the

console pages

Perform the tutorial

with sample code

Approximate time:

Varies

Approximate time: 3

to 5 minutes

Approximate time:

10 minutes+

Approximate time:

1/2 hour+

Approximate time: 1

hour+

Migrate product and Web server configurations

Expand Migration > Migrating product configurations in the information center navigation to obtain

instructions for various navigational paths to Version 6.0.x from previous versions and other editions.

--

Obtain an overview of migration and coexistence options

 Find out about supported migration paths, migration tools, the goals of migration and coexistence,

and more.

Documentation

Tell me

--

Determine what configuration information needs to change

 Learn what changes during migration, which involves migrating a single instance to another single

instance on the same machine or a separate machine.

Documentation

© Copyright IBM Corp. 2004 5

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Install_Migration/Presentations/WASv6_Migration/player.html

--

Review the software and hardware prerequisites

 Learn which product configurations are supported.

Documentation

--

Locate migration tools

 Become acquainted with the tools that the product provides for automated migration.

Documentation

Tell me

--

Migrate Web server plug-in configurations

 Migrate the configurations used by the application server to communicate with supported Web

servers.

Documentation

--

Migrate your applications

Expand Migration > Migrating WebSphere applications in the information center table of contents for

information about migrating specific application components, their deployment descriptors, and their

administrative configurations (such as EJB container settings).

--

Identify deprecated features that you might be using

 Review a summary of deprecated features in Version 6.0.x. As they become available, links to

additional information are provided to help you migrate away from deprecated features.

Documentation

--

6 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Install_Migration/Presentations/WASv6_Migration/player.html

Review the software and hardware prerequisites

 Learn which product configurations are supported. Specification levels are included.

 Documentation:

Supported hardware

and software

--

Learn about WebSphere applications

 Use this section as a starting point to investigate the technologies used in and by applications that

you deploy on the application server.

 Documentation:

″Learn about

WebSphere

applications″ in the

Developing and

Deploying Applications

PDF.

--

Coexist

Expand Migration > Coexisting in the information center navigation to obtain instructions for various

coexistence scenarios. Coexistence, as it applies to WebSphere Application Server products, is the ability

of multiple installations of WebSphere Application Server to run on the same machine at the same time.

Multiple installations include multiple versions and multiple instances of one version. Coexistence also

implies various combinations of Web server interaction.

--

Review supported coexistence scenarios

 All combinations of V4.x products, V5.x products, and V6.0 products can coexist so long as there

are no port conflicts. There are some coexistence limitations for V5 products that have the

embedded messaging feature installed, as described in the documentation. The installation wizard

looks for certain existing installations to determine if it should prompt for coexistence information.

 Documentation:

Chapter 8,

“Coexisting,” on page

101

--

Chapter 2. How do I migrate, coexist, and interoperate? 7

http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Configure ports for coexistence or interoperability

 This topic provides reference information about identifying port numbers in versions of WebSphere

Application Server, as a means of determining port conflicts that might occur when you intend for

an earlier version to coexist or interoperate with Version 6.0.x.

 Documentation: “Port

number settings in

WebSphere

Application Server

versions” on page 107

--

Obtain valid port settings for coexistence

 Version 6 autonomically detects free ports among profiles installed from the same core product

files. The port mechanism does not detect ports in use by previous versions or by other products.

 You must verify that you are using ports that do not conflict with other products and programs

running on your node. Select free ports on ports selection panel of the installation wizard or the

Profile creation wizard.

 Documentation:

v See the Getting

Started PDF for

more information.

v “Port number

settings in

WebSphere

Application Server

versions” on page

107

--

Interoperate

Interoperability is exchanging data between two coexisting product installations.

--

Interoperate across product versions

 WebSphere Application Server, Version 6.0.x is generally interoperable with some previous

versions. However, there are specific requirements to address for each version. Certain changes

are required to support interoperability between versions.

8 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Documentation:

Chapter 10,

“Interoperating,” on

page 113

--

Configure ports for coexistence or interoperability

 This topic provides reference information about identifying port numbers in versions of WebSphere

Application Server, as a means of determining port conflicts that might occur when you intend for

an earlier version to coexist or interoperate with Version 6.0.x.

 Documentation: “Port

number settings in

WebSphere

Application Server

versions” on page 107

--

Troubleshoot migration

Troubleshoot problems that occur during migration.

--

Troubleshoot migration problems

 Find details about logs and messages pertaining to the automated migration tools, plus other tips

for solving problems that occur during migration.

 Documentation:

Appendix B,

“Troubleshooting

migration,” on page

151

--

Chapter 2. How do I migrate, coexist, and interoperate? 9

10 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 3. Overview and new features for migrating,

coexisting, and interoperating

This topic summarizes the contents and organization of the migration documentation, including links to

conceptual overviews and descriptions of new features.

v

“Overview of migrating, coexisting, and interoperating” on page 12

Sections in the migration documentation:

“Deprecated features in Version 6.0” on page 12

This topic summarizes deprecated programming interfaces as of Version 6.0.

Chapter 5, “Migrating product configurations,” on page 65

This topic describes how to migrate administrative configurations somewhat manually, with the

migration tools. Consider using the automated Installation wizard instead.

Chapter 6, “Migrating Web server configurations,” on page 81

This topic describes what to do to migrate a Web server from supporting IBM WebSphere

Application Server, Version 4.0.x or Version 5.x.x, to support IBM WebSphere Application Server,

Version 6.0.

Migrating WebSphere applications

This topic provides migration, coexistence, and interoperability instructions that are specific to

various types of applications. For example, you can focus on moving Web applications with the

latest supported specifications; migrating Web services from Apache SOAP; or integrating two

types of messaging support.

Chapter 7, “Migrating administrative scripts,” on page 83

This topic provides guidance for migrating from WebSphere Application Server V4.0 wscp scripts

to wsadmin in V6.x.

Chapter 8, “Coexisting,” on page 101

This topic is a starting point for finding information about which coexistence scenarios are

supported, and how to set them up.

Chapter 10, “Interoperating,” on page 113

This topic describes how to interoperate across product versions.

© Copyright IBM Corp. 2004 11

Chapter 9, “Configuring ports,” on page 107

This topic is a starting point for finding information about configuring ports, particularly in

coexistence scenarios.

Appendix B, “Troubleshooting migration,” on page 151

This topic describes how to identify and handle a variety of problems that are encountered during

migration, interoperability, and coexistence activities.

Overview of migrating, coexisting, and interoperating

This topic provides links to conceptual overviews of migrating applications and their environment as well

as coexisting and interoperating various versions or editions of the application serving environment.

“Migration and coexistence overview” on page 23

 This topic describes common product topologies that you can install with WebSphere Application

Server, Version 6 products.

Presentations from Education on Demand

 v Migration overview

Deprecated features in Version 6.0

This document summarizes deprecated features in Version 6.0. As they become available, links to

additional information will be provided to help you migrate away from deprecated features.

IBM Deprecation policy

A deprecated class or interface is supported for at least two full product releases or three full years

(whichever is longer) before being removed from the product entirely.

Deprecation list

The following tables summarize what is deprecated, by release and version. Use these tables to calculate

the earliest release in which the item might be removed, according to the deprecation policy.

Each table represents on what release/version the deprecation took effect. Each table describes what is

being deprecated, for example: features, APIs, scripting interfaces, tools, wizards, publicly exposed

configuration data, naming identifiers, constants, etc., and, where possible, the recommended migration

action IBM suggests.

This article consists of the following versions/releases:

v Deprecated features in V6.0

v Deprecated features in V5.1.1

v Deprecated features in V5.1

v Deprecated features in V5.0.2

v Deprecated features in V5.0.1

v Deprecated features in V5.0

12 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Install_Migration/Presentations/WASv6_Migration/player.html

Deprecated features in V6.0

 Application programming model and container support features

Support for the following tsx tags in the JSP engine is deprecated:

v repeat

v dbconnect

v dbquery

v getProperty

v userid

v passwd

v dbmodify

Recommended migration action:

Instead of using the tsx tags, you should use equivalent tags from the JavaServer Pages Standard Tag Library

(JSTL). JSTL is supported in WebSphere Application Server V6.0, and the tag library is shipped with the product.

Use the following list as a guideline for converting tsx tags to JSTL tags:

tsx tag JSTL tag

tsx:repeat

c:forEach

tsx:dbconnect

sql:setDataSource

tsx:dbquery

sql:query

tsx:getProperty

Use standard EL syntax, for example, c:out value="${book.title}", where book is the current index in the

result set

tsx:userid

Use the user attribute of the setDataSource tag

tsx:passwd

Use the password attribute of the setDataSource tag

tsx:dbmodify

sql:update

Application services features

The WebSphere JRAS Extensions API is deprecated in this release. No further enhancements are planned for JRAS

support.

Recommended migration action:

Begin moving over to the java.util.logging package (JSR47), particularly for any new code you are writing.

The UDDI version 2 EJB interface to the UDDI Registry is deprecated.

Recommended migration action:

There is no replacement for the EJB interface. This interface is included in WebSphere Application Server V6.0 for

compatibility with V5.x. Users do not need to take any specific actions, and can continue to use the version 2 EJB

API, but should be aware that it does not include any UDDI functionality that is new to UDDI version 3, and that the

interface may be removed in a future release of WebSphere Application Server.

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 13

The UDDI4J version 2 class library, uddi4jv2.jar, is deprecated.

Recommended migration action:

Start using the version 3 UDDI APIs. A client library is provided to simplify constructing and sending UDDI v3

requests from Java. This is the IBM UDDI v3 Client for Java, provided in uddiv3client.jar. The UDDI4J APIs may still

be used, but you should be aware that they do not provide access to any of the new UDDI version 3 functionality,

and that they may be removed in a future release of WebSphere Application Server.

All of the low-level UDDI Utility Tools (UUT) APIs, such as BusinessStub, ServiceStub, etc., are deprecated. These

are all replaced by the high-level PromoterAPI interface.

Recommended migration action:

Start using the PromoterAPI in place of these low-level APIs, which will be removed in a future release of

WebSphere Application Server. The PromoterAPI provides the same functionality at a higher level of abstraction.

The following methods in the J2EE Connector Architecture runtime are deprecated:

v com.ibm.ws.management.descriptor.xml.ConnectionFactory.xml (getPoolContents and getAllPoolContents

methods)

v com.ibm.websphere.j2c.ConnectionManager interface

v com.ibm.websphere.j2c.ConnectionEventListener interface

Also, container-managed authentication aliases on a J2C Connection Factory or Datasource are deprecated.

Recommended migration action:

v getPoolContents and getAllPoolContents replaced by showPoolContents and whoAllPoolContents

v ConnectionManager interface replaced by J2EE Connector Architecture 1.5 LazyAssociatableConnectionManager

interface

v ConnectionEventListener interface replaced by J2EE Connector Architecture 1.5

LazyEnlistableConnectionManager interface.

For container-managed authentication aliases, specify the container-managed credentials via the application’s

resource binding information.

The ApplicationProfile property on the WorkManager panel in the administrative console is deprecated.

Recommended migration action:

None.

Two items from the DataSource panel in the administrative console are deprecated:

v Container-Managed Authentication Alias

v DefaultPrincipleMapping

Recommended migration action:

None.

All classes in the com.ibm.websphere.servlet.filter package are deprecated:

v ChainedRequest

v ChainedResponse

v ChainerServlet

v ServletChain

Recommended migration action:

Re-architect your legacy applications to use javax.servlet.filter classes rather than com.ibm.websphere.servlet.filter

classes. Starting from the Servlet 2.3 specification, javax.servlet.filter classes give you the capability to intercept

requests and examine responses. They also allow you to achieve chaining functionality, as well as embellishing

and/or truncating responses.

14 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

MIME filtering is deprecated. MIME filters were first introduced in WebSphere Application Server V3.5 as a way for

servlets to embellish, truncate, and/or modify the responses generated by other servlets, based on the MIME types of

the output content.

Recommended migration action:

javax.servlet.filters, which were introduced in the Servlet 2.3 specification, allow users to plug in filters which can

intercept requests to and responses from servlets. They also have the capability to modify content flowing in either

direction.

javax.servlet.filters maintain all the functionality of MIME filters. javax.servlet.filters are standard APIs, and are

supported by all compliant application servers. Refer to the Servlet 2.3 specification for more information.

Container-managed persistence (CMP) entity beans configured with method level access intent may run into data

access problems, like deadlock. Therefore, the method level access intent is deprecated.

Recommended migration action:

Re-configure CMP entity beans to use bean level access intent, or re-configure Application profiles with WebSphere

Application Server Tool (AST).

All the methods and fields in com.ibm.websphere.product.product and com.ibm.websphere.product.buildInfo classes

are deprecated. Hence, the following methods from com.ibm.websphere.product.WASProduct class (which involves

com.ibm.websphere.product.product and com.ibm.websphere.product.buildInfo objects) are deprecated:

v public product getProductByFilename(String basename)

v public product getProductById(String id)

v public boolean productPresent(String id)

v public boolean addProduct(product aProduct)

v public boolean removeProduct(product aProduct)

v public Iterator getProducts()

v public Iterator getProductNames()

v public String loadVersionInfoAsXMLString(String filename)

v public String getProductDirName()

v public static String computeProductDirName()

Recommended migration action:

Use the following supported methods from com.ibm.websphere.product.WASDirectory:

v public WASProductInfo getWASProductInfo(String id)

v public boolean isThisProductInstalled(String id)

v public WASProductInfo[] getWASProductInfoInstances()

v public String getWasLocation()

Also, instead of getting product information (name, version, build level, build date) from the old WASProduct API

(com.ibm.websphere.product.WASProduct), you should now use the following methods in the WASDirectory class to

get that information:

v com.ibm.webpshere.product.WASDirectory.getName(String)

v com.ibm.webpshere.product.WASDirectory.getVersion(String)

v com.ibm.webpshere.product.WASDirectory.getBuildLevel(String)

v com.ibm.webpshere.product.WASDirectory.getBuildDate(String)

Data Access Beans, which are shipped with WebSphere Application Server in databeans.jar, are deprecated.

Recommended migration action:

Instead of using Data Access Beans, you should use Service Data Objects (SDO).

Security features

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 15

SOAP-Security (XML digital signature) based on Apache SOAP implementation is deprecated.

Recommended migration action:

Instead of using SOAP-Security, you should migrate your application to JSR-109 implementation of Web service.

Also, migrate (reconfigure your application) to use WSS (Web Service Security) 1.0 implementation.

WSS (Web Service Security) draft 13 specification-level support is deprecated in favor of the WSS 1.0

implementation.

Recommended migration action:

Applications should be migrated to the supported WSS 1.0 standard. The draft-level support does not provide

interoperability with some third party vendors, as the message level has been changed between the draft and the

WSS 1.0 implementation.

WSS 1.0 is only supported in J2EE 1.4 applications. Hence, you need to migrate applications to J2EE 1.4 first. The

next step is to use AST/RAD tooling to reconfigure WSS for the migrated application. There is no automatic migration

of WSS in this release of AST/RAD tooling for V6.0; the migration has to be done manually.

The following SPI has also been deprecated:

com.ibm.wsspi.wssecurity.config.KeyLocator

You need to migrate your implementation to the new SPI for WSS 1.0 support in V6.0:

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator

Finally, the JAAS LoginModule implementation needs to be migrated to the new programming model for JAAS

LoginModule in V6.0.

System administration features

Configuring resources under cell scope is deprecated.

Recommended migration action:

You should configure resources under cluster scope instead. In previous releases, you configured cell scope

resources to allow the cluster members to share the resource configuration definition. In Version 6, cell scope

resource configuration is discouraged because cell scope resources are visible to every node in the cell, even though

not every node in the cell is able to support the resource.

The depl.extension.reg and installdir options for the install command in the AdminApp scripting object are deprecated.

Recommended migration action:

There is no replacement for the depl.extension.reg option. In V5.x, this option was a no-op. For the installdir option,

use the installed.ear.destination option instead.

Performance features

The PMI Client API, which was introduced in V4.0 to programmatically gather performance data from WebSphere

Application Server, is deprecated.

Recommended migration action:

The Java Management Extension (JMX) interface, which is part of the J2EE specification, is the recommended way

to gather WebSphere Application Server performance data. PMI data can be gathered from the J2EE-managed

object MBeans, or from the WebSphere PMI Perf MBean. While the J2EE MBeans provide performance data about a

specific component, the Perf MBean acts as a gateway to the WebSphere Application Server PMI service, and

provides access to the performance data for all the components.

Deprecated features in V5.1.1

 Application services features

16 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

The following JDBC drivers are deprecated:

v MS SQL Server 2000 Driver for JDBC

v SequeLink JDBC driver for MS SQL Server

Recommended migration action:

If you are using either of these JDBC drivers and still want to use MS SQL Server as their database, you can switch

to the Connect JDBC driver. You can purchase the Connect JDBC driver from DataDirect Technologies, or you can

use the Connect JDBC driver shipped with WebSphere Application Server, which is free for use with WebSphere

Application Server.

Deprecated features in V5.1

 Installation and migration tools

The Application Assembly Tool (AAT) used for developing J2EE applications is being replaced by the Assembly Tool

(AT) component of the Application Server Toolkit (AST).

Recommended migration action:

Instead of running the Application Assembly Tool, users will install and run the Assembly Toolkit component of the

Application Server Toolkit. AST is based on the eclipse framework. Upon starting the AST, the J2EE function is found

by opening the J2EE Perspective.

JDOM (a Java representation of an XML document which provides an API for efficient reading, manipulating and

writing documentation). The currently packaged version of JDOM in WebSphere Application Server will not be

packaged in future releases of WebSphere.

Recommended migration action:

Go to JDOM and get the latest copy of JDOM and bundle it inside your application.

Note: Customers running WebSphere Studio Application Developer Integration Edition Version 4.1 applications will

need to migrate them to WebSphere Studio Application Developer Integration Edition Version 5.0.

In future releases, IBM intends to remove the C++ Object Request Broker (ORB), the C++ library for IDL valuetypes

and the WebSphere Application Server C++ security client. IBM will no longer ship or support the Common Object

Request Broker Architecture (CORBA) C++ Developer Kit. The CORBA technology is a bridge for migration to a Java

2 Platform Enterprise Edition (J2EE) and WebSphere Application Server environment.

In addition to the preceding information, the CORBA C++ client feature will be removed from the Application Clients

installation image in future releases.

Recommended migration action:

It is recommended that customers migrate to the Object Request Broker (ORB) service for Java technology that

ships with WebSphere Application Server. However, there is no equivalent J2EE functionality for the C++ security

client or the C++ Valuetype library. Customers that require such functionality must provide or develop their own.

The deprecation of the CORBA C++ Developer Kit does not affect support for CORBA interoperability with vendor

software for CORBA services. View the following links for additional information about interoperability:

v CORBA Interoperability Samples documentation

v IBM WebSphere Application Servers CORBA Interoperability white paper

IBM Cloudscape 5.1.x.

Recommended migration action:

No action is required at this time.

Servers and clustering features

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 17

http://www.jdom.org
http://www.ibm.com/developerworks/websphere/library/samples/WASV501/corba.html
http://www.ibm.com/support/docview.wss?uid=swg27004340

IBM HTTP Server (IHS) 1.3.x.

Recommended migration action:

If you are using IHS 1.3.x with modules:

v that are shipped as part of IHS 1.3.x packages, you do not need to take any action to migrate those modules.

v supplied by a third party (including other IBM products), you need to obtain IHS/Apache 2 versions of these

modules from the third party.

v that have been customized or are in-house, you need to port these modules to the new IHS/Apache 2 API.

Application programming model and container support features

Bean Scripting Framework (BSF). JSP execution and debugging functionality is being deprecated in WebSphere

Application Server version 5.1.

Recommended migration action:

If using the Javascript, Tcl, and Python languages, the functionality will need to be re-architected. If using BSF

scripting in your own custom applications, they will be unaffected. Custom scripts written for the WebSphere

Application Server admin console will also be unaffected.

This functionality will continue to exist in WebSphere Application Server app server release 5.1, and succeeding

releases, until version 6.0. If debugging JSPs you may have to restart the app server during Javascript debugging

sessions.

Data access programming interfaces in com.ibm.websphere.rsadapter.

Relational resource adapter interface:

(com.ibm.websphere.rsadapter)

Methods have been deprecated in these types:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

 public void doSpecialBLobWork(ResultSet rset,

 InputStream[] data, String[] blobColumnNames)

 public String assembleSqlString(String[] blobColumnNames,

 StringBuffer whereClause, String[] varValues, String tableName)

Recommended migration action:

These relational resource adapter deprecated methods do not impact the application.

Note: You will not need to implement these deprecated methods in their subclasses if you have the subclass of

OracleDataStoreHelper class. Those deprecated methods will not be called by the WebSphere Application Server

runtime.

18 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Webcontainer API modifications:

Note: There are no declared deprecations. The only changes are caused because of a Java API that changed

between 1.3 and 1.4.

The changed class is com.ibm.websphere.servlet.error.ServletErrorReport. The return signature for getStackTrace()

is changed because java.lang.Throwable now defines the same method with a different return signature.

v Old method signature

public String getStackTrace();

// returns a String representation of the

exception stack

v New method signature (JDK 1.4, WebSphere Application Server 5.1)

public StackTraceElement[] getStackTrace();

// returns an array of stack trace

elements

v Replacement method (WebSphere Application Server 5.1) (a replacement method that carries on the old

functionality has been provided):

public String getStackTraceAsString();

// returns a String representation

of the Exception Stack

Recommended migration action:

If you are using com.ibm.websphere.servlet.error.ServletErrorReport.getStackTrace() and expecting a return type of

String, you need to change your application to use the replacement method.

Application services features

Data access binaries -- Common Connector Framework:

The following jar files will be deprecated in V5.1:

v ccf.jar

v ccf2.jar

v recjava.jar

v eablib.jar

Recommended migration action:

The J2EE Connector Architecture solution should be used instead of the Common Connector Framework.

Setting the XA partner log directory via the ’TRANLOG_ROOT’ variable is deprecated in V5.1.

Recommended migration action:

The setting currently stored in the TRANLOG_ROOT variable (if any) will need to be added to the Transaction

Service panel for any servers who wish to use the XA partner log. If the default location is to be used, then no action

is required. The Transaction Service panel can be found on the Administrative Console by selecting Application

Servers on the left, choosing the application server to be modified, and selecting Transaction Service on the panel

that is displayed. The directory currently in TRANLOG_ROOT should be entered in the Logging Directory box on the

panel.

Security features

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 19

Security programming interfaces:

v The API is being deprecated for

com.ibm.websphere.security.auth.WSPrincipal.getCredential()

Recommended migration action:

Instead of getting the WSCredential from the principal, you should now use one of the following methods to get the

Subject which contains the WSCredential:

– The RunAs Subject is the Subject used for outbound requests.

– The Caller subject is the Subject that represents the authenticated caller for the current request.

– The methods to use to get the runAs and caller subjects are

com.ibm.websphere.security.auth.WSSubject.getRunAsSubject()

and

com.ibm.websphere.security.auth.WSSubject.getCallerSubject()

respectively.

v The interface is being deprecated in

com.ibm.websphere.security.auth.WSSecurityContext

Recommended migration action:

Use JAAS for any authentication related functionality.

v The exception is being deprecated in

com.ibm.websphere.security.auth.WSSecurityContextException

Recommended migration action:

Use JAAS for any authentication related functionality.

v The class is being deprecated in

com.ibm.websphere.security.auth.WSSecurityContextResult

Recommended migration action:

Use JAAS for any authentication related functionality.

System administration features

The following class is deprecated:

com.ibm.websphere.rsadapter.DB2390DataStoreHelper

Recommended migration action:

If you currently use the DB2390DataStoreHelper class for the DB2 Legacy CLI-based provider when you are

accessing data, you should now use the DB2DataStoreHelper class.

If you currently use the DB2390DataStoreHelper class for the DB2 Universal JDBC provider driver when you are

accessing data, you should now use the DB2UniversalDataStoreHelper class.

Deprecated features in V5.0.2

 Application programming model and container support features

Apache SOAP channel in Web services gateway.

Recommended migration action:

Gateway services should be deployed to the SOAP HTTP channel instead of the Apache SOAP channel. The

Endpoint (URL) of the service will be different for this channel and therefore client programs that are talking to the

gateway will need to use the new service Endpoint.

20 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Apache SOAP, WEBSJAVA.SOAP:

v soap.jar,

v wssoap.jar

Recommended migration action:

See “Migrating Apache SOAP Web services to Web Services for J2EE standards” on page 40 for more information.

Application services features

Data access programming interfaces in com.ibm.websphere.rsadapter.

Relational resource adapter interface:

(com.ibm.websphere.rsadapter)

Methods have been deprecated in these types:

v com.ibm.websphere.rsadapter.DataStoreHelper

 public int processSQL(java.lang.String.sqlString, int isolevel,

 boolean addForUpdate, boolean addextendedForUpdateSyntax);

 public DataStoreAdatperException mapException(DataStoreAdapterException e);

v com.ibm.websphere.rsadapter.GenericDataStoreHelper

 public int processSQL(java.lang.String.sqlString, int isolevel,

 boolean addForUpdate, boolean addextendedForUpdateSyntax);

 public DataStoreAdatperException mapException(DataStoreAdapterException e);

v com.ibm.websphere.rsadapter.WSCallHelper

 public static DataStoreHelper createDataStoreHelper(String dsClassName)

Recommended migration action:

These relational resource adapter deprecated methods do not impact the application.

Note: You will not need to implement these deprecated methods in their subclasses if you have the subclass of

GenericDataStoreHelper. Those deprecated methods will not be called by the WebSphere Application Server runtime.

For com.ibm.websphere.rsadapter.WSCallHelper, please use the getDataStoreHelper(datasource) method to get a

DataStoreHelper object.

System administration features

The testConnection command in the AdminControl scripting object ($AdminControl TestConnection configId props)

is deprecated. Running this command in WebSphere Application Server, Version 5.0.2 or later returns the following

message: WASX7390E: Operation not supported - testConnection command with config id and properties

arguments is not supported. Use testConnection command with config id argument only.

Recommended migration action:

As of WebSphere Application Server, Version 5.0.2 or later, the preferred way to test a data source connection is the

testConnection command passing in the data source configuration ID as the only parameter.

The getPropertiesForDataSource command in the AdminControl scripting object ($AdminControl

getPropertiesForDataSource configId) is deprecated. This command incorrectly assumes the availability of the

configuration service when you run it in the connected mode. Running this command in WebSphere Application

Server, Version 5.0.2 or later returns the following message: WASX7389E: Operation not supported -

getPropertiesForDataSource command is not supported.

Recommended migration action:

There is no replacement for this command.

Deprecated features in V5.0.1

 Application services features

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 21

Data access programming interfaces in com.ibm.websphere.rsadapter.

Relational resource adapter interface:

(com.ibm.websphere.rsadapter)

Methods have been deprecated in these types:

v com.ibm.websphere.rsadapter.DataStoreHelper

public int processSQL(java.lang.String sqlString, int isolevel);

v com.ibm.websphere.rsadapter.GenericDataStoreHelper

public int processSQL(java.lang.String sqlString, int isolevel);

v com.ibm.websphere.rsadapter.DB2390DataStoreHelper

public int processSQL(java.lang.String sqlString, int isolevel);

Recommended migration action:

These relational resource adapter deprecated methods do not impact the application.

Note: You will not need to implement these deprecated methods in their subclasses if you have the subclass of

com.ibm.websphere.rsadapter.GenericDataStoreHelper. Those deprecated methods will not be called by the

WebSphere Application Server runtime.

Deprecated features in V5.0

 Application services features

The following three methods from com.ibm.websphere.appprofile.accessintent.AccessIntent are deprecated:

public boolean getPessimisticUpdateHintWeakestLockAtLoad();

public boolean getPessimisticUpdateHintNoCollision();

public boolean getPessimisticUpdateHintExclusive();

This is a base api.

Recommended migration action:

Rather than using the three deprecated methods on the AccessIntent interface, developers should use the following

method from the same interface:

public int getPessimisticUpdateLockHint();

The possible return values are defined on the AccessIntent interface:

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NOCOLLISION = 1;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_WEAKEST_LOCK_AT_LOAD = 2;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NONE = 3;

public final static intPESSIMISTIC_UPDATE_LOCK_HINT_EXCLUSIVE = 4;

Web application programming interfaces -- Various Version 5 methods in com.ibm.websphere.ServletErrorReport

Performance features

Performance Monitoring Infrastructure -- Various Version 5 public methods in:

v com.ibm.websphere.pmi.stat.StatsUtil

Recommended migration action:

There is no replacement for StatsUtil.

v com.ibm.websphere.pmi.PmiJmxTest

Recommended migration action:

Use PmiClient.findConfig().

v com.ibm.websphere.pmi.client.PmiClient

Recommended migration action:

The getNLSValue (String key) is replaced by getNLSValue (String key, String moduleID).

22 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Migrating and coexisting

This topic describes migrating, which is copying the configuration from a previous release of a WebSphere

Application Server product into a new release. This topic also describes coexisting, which is running a new

release of a WebSphere Application Server product on the same machine at the same time as you run an

earlier release, or running two installations of the same release of a WebSphere Application Server

product on the same machine at the same time.

If you have a previous version, you must decide whether to copy the configuration and applications of the

previous version to the new version. Migration does not uninstall the previous version. To run an earlier

release and the new release at the same time is coexistence. To support coexistence, you need to provide

non-default port assignments during profile creation.

See the Getting Started PDF for more information.

See “Migration and coexistence overview” for more information on coexistence.

Use the following procedure to migrate applications and configurations:

1. Prepare to migrate or update product prerequisites and corequisites to supported versions.

Refer to the IBM WebSphere Application Server supported hardware and software site for current

requirements.

2. Install the V6 product.

See the Getting Started PDF for more information.

3. Use the Migration wizard to migrate your configuration.

The Migration wizard is new for Version 6; it provides a graphical user interface to the migration tools.

4. Migrate Web server plug-ins.

5. Set up multiple versions of WebSphere Application Server to coexist. No run-time conflicts can exist for

multiple instances and versions of WebSphere Application Server to run at the same time on the same

machine. Potential conflicts can occur with your port assignments. See “Port number settings in

WebSphere Application Server versions” on page 107 for more information.

a. Run V4 and V6 together, as described in “Setting up Version 4.0.x and Version 6 coexistence” on

page 103.

b. Run V5 and V6 together, as described in “Setting up Version 5 and Version 6 coexistence” on page

104.

c. Run V6 and V6 together, as described in “Setting up Version 6 coexistence” on page 105.

d. Create more than one V6 profile on the same machine.

See the Getting Started PDF for more information.

You can coexist with, or migrate the applications and configuration from a previous version of WebSphere

Application Server.

Migration from V5 to V6 does not require extensive tuning. See Chapter 5, “Migrating product

configurations,” on page 65 for a description of fine tuning a migration. Part of the procedure for using the

migration tools includes a description of what to tune after using the tools.

For more information on coexistence among releases, see “Migration and coexistence overview.”

Migration and coexistence overview

WebSphere Application Server contains migration tools that provide migration functionality. The Migration

wizard is new for Version 6; it provides a graphical user interface to the migration tools. The Migration

wizard can call the migration tools, or you can execute them directly. The migration tools migrate

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 23

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

applications and configuration information to the new version, as described in Chapter 5, “Migrating

product configurations,” on page 65 and Configuration mapping during migration.

 Table 1. Overview of migrating from release to release

Migration path Description

V5.x to V6 The migration from V5.x to V6 is fairly routine. Important reference topics for this

migration include:

v Profile creation, using either the Profile creation wizard or the wasprofile command.

See the Getting Started PDF for more information.

v Migrating from Version 5 embedded messaging. See the WebSphere Messaging

Guide PDF.

v Managing WebSphere Application Server, Version 5 JMS use of WebSphere Version

6 messaging resources. See the WebSphere Messaging Guide PDF.

V4.0.x to V6 The migration tools perform a fairly routine migration from V4 to V6. For example, Java

2 Platform, Enterprise Edition (J2EE) 1.2 enterprise archive (EAR) files in V4 work in

V6 of WebSphere Application Server, which supports the J2EE 1.4 specification.

Similarly, it is not necessary to redeploy enterprise Java bean (EJB) 1.1 Java archive

(JAR) files when moving them from V4 to V6, which also supports EJB 2.0 JAR files.

If you neither migrate nor coexist with an earlier version of WebSphere Application Server, you are

choosing to ignore the previous installation, and you can run only one version at a time because of

conflicting default port assignments. It is possible for both versions to run at the same time without conflict

if you use non-default ports in the earlier version. To setup coexistence, select the radio button that states,

″Install a new copy of the V6 Application Server product″ during installation.

See the Getting Started PDF for more information.

You can resolve conflicting port assignments by specifying port assignments for coexistence during profile

creation, by wsadmin scripting, or by using the Servers > Application Servers > server1 > End Points

administrative console page to ensure that Version 6 can run with an earlier version.

Migrating and coexisting have roughly opposite goals. The goal of migration is to reconstruct your earlier

version in a nearly identical V6 environment, including applications, configuration settings, universal

resource identifier (URI) descriptors, and Web server context roots. The Migration wizard uses the

migration tools to migrate the previous configuration and applications. The goal of coexistence is to create

an environment that is not in conflict with an earlier version, so far as port settings are concerned. This

allows both nodes to start and run at the same time. Coexistence processing changes the following

configuration files:

v The virtualhosts.xml file:

– HTTP Transport Port

– IBM HTTP Server Port

– HTTPS Transport Port

– HTTP Administrative Console Port

– HTTPS Administrative Console Secure Port
v The serverindex.xml file:

– Bootstrap Address

– SOAP Connector Address

– DRS Client Address

– SAS SSL ServerAuth Listener Address

– CSIV2 SSL ServerAuth Listener Address

– CSIV2 SSL MutualAuth Listener Address

– WC adminhost

– WC defaulthost

– DCS Unicast Address

24 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

– WC adminhost secure

– WC default secure

– SIB Endpoint Address

– SIB Endpoint Secure Address

– SIB MQ Endpoint Address

– SIB MQ Endpoint Secure Address

See “Port number settings in WebSphere Application Server versions” on page 107 for more information.

Consider these issues in a migration or coexistence scenario:

v Conflicting context roots when attempting to share the same Web server.

Follow the procedure in Migrating Web server configurations to learn how to configure a Web server for

sharing between WebSphere Application Server versions.

v If your node agent or Application Server has been configured to run as non-root, follow the instructions

in “Migrating a previously non-root configuration to root” on page 155 to change the ownership and file

permissions of the node directories after running WASPostUpgrade. This must be done before starting

the V6 node agent or application server.

Configuration mapping during migration

This topic describes what changes during migration, which always involves migrating a single instance to

another single instance on the same machine or a separate machine. Open the information center for the

Network Deployment product to learn how the migration tools map models, clones, server groups, clusters,

and Lightweight Third Party Authentication (LTPA) security settings.

Many migration scenarios are possible. The Version 6 migration tools maps objects and attributes to the

Version 6 environment when you restore a configuration from a previous version.

Bootstrap port

 Migration maps a default bootstrap NameServer port setting, 900, from V4.0.x Advanced Edition or

V5.x to the V6 NameServer default, 2809. The migration tools map a non-default value directly

into the V6 environment.

 For V4.0.x Advanced Single Server Edition migration, the bootstrap NameServer port maps to the

NameServer value of the Application Server defined in the server configuration file.

Command line parameters

 The migration tools convert appropriate command line parameters to Java virtual machine (JVM)

settings in the server process definition. Most settings are mapped directly. Some settings, such as

memory heap sizes, are not migrated because their roles in the V6 configuration either do not

exist, have different meanings, or have different scopes.

Default Server

 The name of the default server in Version 6 is server1. All objects previously owned by the

DefaultServer of V4.0.x are owned by server1 of Version 6 after migration.

GenericServer

Introduced in V5.1.x, a GenericServer was an APPLICATION_SERVER fitted to manage external

resources. In V6, it has its own type, called GENERIC_SERVER. Migration will perform this

conversion, but migration cannot accurately migrate the external resources that the GenericServer

references. After migration has completed migrating the GenericServer settings, you need to

perform the following actions:

v If the old resource that the GenericServer was managing is located under the old WebSphere

Application Server installation, you have to copy any related files to the new installation of

WebSphere Application Server. You must also run any required setup to put the external

application back into a valid and working state. IBM recommends instead that you re-install the

resource into the new WebSphere Application Server directory. Whichever you choose to do,

the final step is that you need to reset the reference to the new location of the application.

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 25

v If the old resource that the GenericServer was managing is not installed under the old

WebSphere Application Server installation, nothing further is required.
Java DataBase Connectivity (JDBC) drivers and data sources

 Version 6 significantly redefines JDBC and data source objects. The migration tools map V4.0.x

data sources to Version 6 data sources, using predecessor settings as input variables.

jmsserver

jmsserver is changed from type MESSAGE_BROKER to type APPLICATION_SERVER. Any

queues or topics that it owned have been migrated into the new WebSphere Platform messaging

framework. In previous releases, in an ND environment, jmsserver was its own

MESSAGE_BROKER server; in the Base environment it was contained within

APPLICATION_SERVER types. All JMS resources are left untouched and should work without

modification. Further migration of these resources can be performed by executing scripts/bats

provided by WebSphere Platform messaging..

Name bindings

 Version 6 has a new naming structure. All references, such as Enterprise JavaBeans (EJB)

references that were valid in previous versions no longer work in Version 6. However, you can use

the administrative console to add a name binding that maps an old name into the new Version 6

naming structure. For example, the name of the Version 4.0.x enterprise bean reference can be

both the name of the binding and the Java Naming and Directory Interface (JNDI) name in the

Version 6 name space.

Node name

 A Version 4.0.x repository can contain more than one node name and associated children. The

WASPostUpgrade tool processes only those objects and children that match the node name of the

migrating node. The tool identifies node names in the configuration files that it is migrating and

selects any node names in a configuration file that match the long network name or short network

name of the migrating machine.

PageList servlet

 The configuration of the PageList servlet has changed from V4.0.x. Direct use of the servlet has

been deprecated. The PageList servlet is available as part of the servlet extension configuration in

the Web archive (WAR) file. All references are updated to the servlet configuration supported in

Version 6.

 You can also use the Application Server Toolkit (AST) and Rational Web Developer to modify the

servlet configuration.

 If you use or extend the PageList servlet, you might see an error similar to the following example

when running a migrated application that uses the servlet:

Error 500: No PageList information is configured for servlet

EmpInfoApp.SearchByDept

Use the Assembly Toolkit to correct the error, by moving the usage or extension to your migrated

Enterprise archive (EAR) file:

1. Start the Assembly Toolkit to load the EAR file that generates the error.

2. Open the Web modules within the EAR file.

3. Expand the Web module that generates the error.

4. Open the Web components and find the one that generates the error.

5. Expand the Servlets. The PageList Extensions option displays.

6. Add your extension information.

7. Save the EAR file and redeploy it.
Policy file migration from Version 5.x to Version 6

WebSphere Application Server V6 migrates all the policy files that are installed with V5.x by

merging settings into the V6 policy files with the following characteristics:

v Any comments located in the V6 policy file will be lost. They are replaced with the comments

contained in the V5 policy file.

26 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

v Migration will NOT attempt to merge permissions or grants; it is strictly an add-type migration. If

the permission or grant is not located in the V6 file, the migration will bring it over.

v Security is a critical component; thus, the migration makes any additions at the end of the

original .policy file right after the comment MIGR0372I: Migrated grant permissions follow.

This is done to help administrators verify any policy file changes that the migration has made.
Properties directory and the lib/app directory

 Migration copies files from prior version directories into the Version 6 configuration. See the

following section for more information.

Property file migration from Version 4.0.x

 V6 migration migrates property files from V4.0.x if these files are also present in WebSphere

Application Server, V6. Specifically, property-file migration includes these files:

v converter.properties

v sas.client.props

v encoding.properties (If the ″ko″ setting is incorrect, no migration occurs.)

v TraceSettings.properties

You must manually convert settings in other property files to the equivalent V6 configuration.

Property file migration from Version 5.x to Version 6

WebSphere Application Server V6 migrates all the property files that are installed with V5.x by

merging settings into the V6 property files with these exceptions:

v j2c.properties (migrated into resources.xml files)

v samples.properties

Migration does not overlay property files.

Resource Adapter Archive (RAR) referenced by J2C resources

RARs that are referenced by J2C resources are migrated if those RARs are in the old WebSphere

Application Server installation. In this case, the RARs are copied over to the corresponding

location in the new WebSphere Application Server installation. Relational Resource Adapter RARs

will not be migrated.

Samples

No migration of Samples from previous versions is available. Equivalent Version 6 Samples are

available to use.

Security

 Java 2 Security is enabled by default in Version 6. Security enablement might cause some

applications to run on Versions 4.0.x and not run on Version 6. Several techniques are available

that you can use to define different levels of Java 2 Security in Version 6. One is to create a

was.policy file as part of the application, to enable all security permissions. The migration tools

call the wsadmin command to add an existing was.policy file in the Version 6 properties

directory to enterprise applications as they migrate. The migration tools perform this task while

moving Version 4.0.x applications into Version 6.

 Global security that uses LTPA authentication in Versions 4.0.x is migrated to the base WebSphere

Application Server product. However, although global security was enabled in Versions 4.0.x, it is

disabled during migration to Version 6 (security is NOT disabled when migrating from V5.x).

 Version 4.0.x introduced properties to support tuning the JNDI search timeout value along with

LDAP reuse connection. These two properties are now settings in the Security Center of the

Version 6 administrative console. Version 4.0.x property values are not migrated to Version 6

settings.

v The jndi.LDAP.SearchControl.TimeLimit property is equivalent to the Version 6 Search Timeout

setting, which is 300 by default in Version 6.

v The jndi.LDAP.URLContextImplementation property is equivalent to the Version 6 Reuse

Connection setting, which is true by default in Version 6.

Use the Version 6 administrative console to change these settings to match your Version 4.0.x

property values, if necessary.

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 27

Servlet package name changes

The package that contains the DefaultErrorReporter, SimpleFileServlet, and InvokerServlet servlets

changed in Version 5. In Version 4.0.x, the servlets are in the com.ibm.servlet.engine.webapp

class. In Version 6, the servlets are in the com.ibm.ws.webcontainer.servlet class.

Stdin, stdout, stderr, passivation, and working directories

 The location for these directories is typically within the installation directory of a previous version.

The default location for stdin, stdout, and stderr is the logs directory of the Version 6 installation

root. The migration tools attempt to migrate existing passivation and working directories.

Otherwise, appropriate Version 6 defaults are used.

 Using common directories between versions in a coexistence scenario can cause problems.

Transport ports

 The migration tools migrate all ports. The tools warn about port conflicts in a log when a port

already exists. You must resolve port conflicts before running the servers that are in conflict, at the

same time.

 Choosing -scriptCompatibility=″true″ or -scriptCompatibility=″false″ results in two different

outcomes for transport ports:

v -scriptCompatibility=″true″: This results in your transport ports being brought over as they are

(this is the default).

v -scriptCompatibility=″false″: This results in the transports ports being converted to the new

implementation of channels and chains. From an external application usage standpoint, they will

still act the same, but they have been moved to the TransportChannelService.
Web modules

The specification level of the Java 2 Platform, Enterprise Edition (J2EE) that Version 6 implements

requires behavior changes in the Web container for setting the content type. If a default servlet

writer does not set the content type, not only does the Version 6 Web container no longer default

to it, the Web container returns the call as ″null″. This situation might cause some browsers to

display resulting Web container tags incorrectly. Migration sets the autoResponseEncoding IBM

extension to true for Web modules as it migrates enterprise applications. This action prevents the

problem.

Version 4.0.x to Version 6 migration

The V4.0.x configuration is already at the J2EE 1.2 specification level. Although Version 6 is at the

J2EE 1.4 specification level, J2EE 1.2 objects are supported.

v Enterprise beans

No redeployment is required when moving EJB 1.1 JAR files from Version 4.0.

Specify only one backend data store vendor per JAR file. If enterprise beans use different

backend data stores, package them into separate JAR files.

v JMS Resources

All JMS resources from Version 4.0 are mapped into generic JMS resources in the Version 6

configuration. Reconfigure JMS resources that use IBM WebSphere MQ as IBM WebSphere

MQ-specific resources. MQ JMS resources have better integration with system management.

You do not need to manually define entries in the name space. You can see the backing MQ

queue definitions through MQ JMS entries.

v JSP precompiling

In Version 4.0.x, the classes generated from JSP pages are in a package based on the

directory structure of the WAR file. Any JSP at the top of the context root is in the unnamed

package. JSP pages in subdirectories of the root are in packages named after the

subdirectories. In Version 6, the classes generated from JSP pages are all in the

org.apache.jsp package. Therefore, the class files are not compatible between versions.

When migrating an enterprise application from Version 4.0.x to Version 6, recompile the JSP

pages to regenerate the class files into the correct packages.

The migration tools provide this support, by using the -preCompileJSPs option of the wsadmin

tool during the installation of the application.

28 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Use the same option to install any Version 4.0.x enterprise applications that you manually move

to Version 6.

v J2EE security

You can apply security in two Version 4.0.x locations to enterprise applications. Information in

the repository has precedence over information in the enterprise application bindings. The

migration tools migrate information in the repository to the enterprise application.

v Secure Sockets Layer (SSL) migration

The following SSLConfig attributes that point to user-defined key files are migrated from

WebSphere Application Server Advanced Edition, Version 4.0.x to V6 as follows:

V4.0.x settings

<key_file_name>dir_name/WASLDAPKeyring.jks</key_file_name>

<trust_file_name>dir_name/WASLDAPKeyring.jks</trust_file_name>

The dir_name variable identifies the original location of the WASLDAPKeyring.jks file.

V6 settings

keyFileName="dir_name/WASLDAPKeyring.jks"

trustFileName="dir_name/WASLDAPKeyring.jks"

The dir_name variable identifies the original location of the WASLDAPKeyring.jks file.

V4.0.x settings

<key_file_name>${WAS_HOME}/keys/WASLDAPKeyring.jks</key_file_name>

<trust_file_name>${WAS_HOME}/keys/WASLDAPKeyring.jks</trust_file_name>

V6 settings

keyFileName="${USER_INSTALL_ROOT}/keys/WASLDAPKeyring.jks"

trustFileName="${USER_INSTALL_ROOT}/keys/WASLDAPKeyring.jks"

The migration tools do not copy the key files (for example, .jks, or .kdb) to the corresponding

directory in the base WebSphere Application Server product or the Network Deployment

product. You must complete the migration of the SSL configuration by copying qualifying key

store files to Version 6 directories.

If the key-file-name and trust-file-name attributes point to the DummyServerKeyFile.jks file in the

WebSphere Application Server Advanced Edition V4.0.x configuration, the key-file-name and

trust-file-name attributes are not migrated to V6. Instead the V6 default value of

${USER_INSTALL_ROOT}/etc/DummyServerKeyFile.jks is left unchanged.

v Servlet package name changes when migrating from Version 4.0 to Version 6

If the web.xml Web module file for Version 4.0 defines the SimpleFileServlet servlet, the

migration tools update the class name to reflect the Version 6 package. The tools also set the

FileServing Enabled attribute to true.

If the web.xml file defines the InvokerServlet servlet, the migration tools update the class name

to reflect the Version 6 package. The tools also set the ServeServletsByClassnameEnabled

attribute to true.

If the web.xml file defines the DefaultErrorReporter servlet, the migration tools update the class

name to reflect the Version 6 package.
Version 5.x to Version 6 migration

Migrating from V5.x to V6 is much less complicated than migrating from V4.0.x. Both versions use

the same underlying definitions. The task involves mapping configuration files from the V5.x to the

V6 configuration and copying installed applications into the new product. The migration tools

support the migration of federated nodes and support the full migration of a Network Deployment

node.

Java heap size for migrating EAR files

When migrating all 5.x EAR files to V6 using the wsadmin tool, the WASPostUpgrade tool

uses the default maximum Java heap size value of 64MB to install the EAR files.

 If a V5.x EAR file fails to install during migration because the Java heap size is not large

enough, you see a message similar to the following error:

java.lang.OutOfMemoryError JVMXE006:OutOfMemoryError

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 29

Increase the maximum Java heap size and follow the instructions below to install the

application:

 Installing the application on WebSphere Application Server, Version 6

 Assume that:

Installation root

C:\WebSphere\AppServer

Number signs (###)

Maximum heap size value

EAR_file_name

The name of the EAR file

app_name

The name of the application.

server_name

The name of the server on which the EAR file installs

node_name

The name of the node on which the server is configured

 The command appears on more than one line for clarity.

wsadmin -conntype NONE

 -javaoption

 -Xmx###m

 -c "$AdminApp install

 C:\\WebSphere\\AppServer\\installableApps\\

 EAR_file_name

 {-nodeployejb

 -appname app_name

 -server server_name

 -node node_name}"

Installing the application on WebSphere Application Server Network Deployment,

Version 6

 Assume that:

Installation root

C:\WebSphere\DeploymentManager

Number signs (###)

Maximum heap size value

EAR_file_name

The name of the EAR file

app_name

The name of the application.

cluster_name

The name of the cluster on which the EAR file should be installed

 The command appears on more than one line for clarity.

wsadmin -conntype NONE

 -javaoption

 -Xmx###m

 -c "$AdminApp install

 C:\\WebSphere\\DeploymentManager\\installableApps\\

 EAR_file_name>

 {-nodeployejb

 -appname app_name

 -cluster cluster_name}"

30 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Migrating WebSphere programming model extensions (PMEs)

This topic describes the movement of a subset of PMEs to WebSphere Application Server Version 6 from

WebSphere Application Server Enterprise Edition V4.0.x and V5.0.x and WebSphere Business Integration

Server Foundation V5.1.x.

Overview of PME migration

The migration of PME services from WebSphere Application Server Enterprise Edition V4.0.x and V5.0.x

and WebSphere Business Integration Server Foundation V5.1.x to WebSphere Application Server Version

6 is handled on an individual basis. For PME services that are not supported in WebSphere Application

Server V6, all configuration information is removed. For PME services that are supported in WebSphere

Application Server V6, the configuration from the previous release environment overwrites the values in

the new release.

Validating PMEs

As part of application installation, both during migration and outside of migration, applications are validated

to ensure that they only use resources for services that are supported by WebSphere Application Server

V6. Any application that uses a resource for a service that is not supported by WebSphere Application

Server V6 will not work correctly, and an error will be issued indicating that the application cannot be

installed.

PME-specific information

For more information on the specific PMEs that have been migrated to WebSphere Application Server V6,

see the Developing and Deploying Applications PDF.

Chapter 3. Overview and new features for migrating, coexisting, and interoperating 31

32 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Part 2. Migrating

© Copyright IBM Corp. 2004 33

34 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 4. Migrating applications

Use this section to learn about migrating applications.

Migrating Web application components from WebSphere Application

Server Version 4.x

Migration of Web applications deployed in WebSphere Application Server Version 5.x is not necessary;

version 2.2 and 2.3 of the Java Servlet specification and version 1.2 and 1.4 of the JavaServer Pages

(JSP) specification are still supported. However, where there are behavioral differences between the Java

2 Enterprise Edition (J2EE) 1.2 and J2EE 1.3 specifications, bear in mind that J2EE 1.3 specifications are

implemented in WebSphere Application Server Version 5 and will override any J2EE 1.2 behaviors.

Servlet migration might be a concern if your application:

v Implements a WebSphere internal servlet to bypass a WebSphere Application Server Version 4.x single

application path restriction.

v Extends a PageListServlet that relies on configuration information in the servlet configuration XML file.

v Uses a servlet to generate Hyper Text Markup Language (HTML) output.

v Calls the response.sendRedirect method for a servlet using the encodeRedirectURL function or

executing within a non-context root.

JSP migration might be a concern if your application references JSP page implementation classes in

unnamed packages, or if you install WebSphere Application Server Version 4.x EAR files (deployed in

Version 4.x with the JSP Precompile option), in Version 5.

Follow these steps if migration issues apply to your Web application:

1. Use WebSphere Application Server Version 5 package names for any WebSphere Application Server

Version 4.x internal servlets, which are implemented in your application.

In WebSphere Application Server Version 4.x, Web modules with a context root setting of / are not

supported. Accessing Web modules with this root context results in HTTP 404 - File not Found errors.

To bypass the errors, and to enable the serving of static files from the root context, WebSphere

Application Server Version 4.x users are advised to add the servlet class,

com.ibm.servlet.engine.webapp.SimpleFileServlet, to their Web module.

The Version 4.x single path limitation does not exist in Version 5. However, users who choose to use

the com.ibm.servlet.engine.webapp.SimpleFileServlet in Version 5 must do one of the following:

v Rename com.ibm.servlet.engine.webapp.SimpleFileServlet to

com.ibm.ws.webcontainer.servlet.SimpleFileServlet.

v Opena Web deployment descriptor editor using an assembly tool and select File serving enabled

on the Extensions tab.

The following list identifies the other internal servlets affected by the Version 6 package name change:

v DefaultErrorReporter

v AutoInvoker

Use the Version 5 package name, com.ibm.ws.webcontainer.servlet.servlet class name for these

servlets.

2. Use the WASPostUpgrade tool to migrate servlets that extend PageListServlet and rely on

configuration information in the associated XML servlet configuration file. In Version 4.x, the XML

servlet configuration file provides configuration data for page lists and augments servlet configuration

information. This file is named as either servlet_class_name.servlet or servlet_name.servlet, and is

stored in the same directory as the servlet class file.

The XML servlet configuration file is not supported in WebSphere Application Server Version 5.

3. Set a content type if your servlet generates Hyper Text Markup Language (HTML) output.

© Copyright IBM Corp. 2004 35

The default behavior of the Web container changed in WebSphere Application Server Version 5. If the

servlet developer does not specify a content type in the servlet then the container is forbidden to set

one automatically. Without an explicit content type setting, the content type is set to null. The Netscape

browser displays HTML source as plain text with a null content type setting.

To resolve this problem, do one of the following:

v Explicitly set a content type in your servlet.

v Opena Web deployment descriptor editor in an assembly tool and select Automatic Response

Encoding enabled on the Extensions tab.

4. Set the Java environment variable, com.ibm.websphere.sendredirect.compatibility, to true if you

want your URLs interpreted relative to the application root.

The default value of the Java environment variable com.ibm.websphere.sendredirect.compatibility

changed in WebSphere Application Server Version 5. In Version 4, the default setting of this variable is

true. In Version 5, the setting is false.

When this variable is set to false, if a URL has a leading slash, the URL is interpreted relative to the

Web module/application root. However, if the URL does not have a leading slash, it is interpreted

relative to the Web container root (also known as the Web server document root). Therefore, if an

application has a WAR file that has a context root of myPledge_app and a servlet that has a servlet

mapping of /Intranet/, a JSP file in the WAR file cannot access the servlet when its

encodeRedirectURL is set to /Intranet/myPledge. The JSP file can access the servlet if the

encodeRedirectURL is set to myPledge_app/Intranet/myPlege, or if the

com.ibm.websphere.sendredirect.compatibility variable is set to true.

5. Use the WASPostUpgrade tool to migrate WebSphere Version 4.x enterprise applications to Version 5.

Note: The WebSphere Application Server Version 4.x JSP page implementation class files are not

compatible with the WebSphere Application Server Version 5 JSP container.

The WASPostUpgrade tool automatically precompiles JSP files, which ensures the JSP page

implementation class files are compatible with Version 5.

If you install Version 4.x EAR files, deployed with the JSP Precompile option, in Version 5, and you

choose not to follow the migration path, do one of the following:

v Select the Pre-compile JSP option in the administrative console Install New Application window.

v Specify the -preCompileJSPs option when using the wsadmin tool.

6. Import your classes if your application uses unnamed packages.

Section 8.2 of the JSP 1.2 specification states:

The JSP container creates a JSP page implementation class for each JSP page.

The name of the JSP page implementation class is implementation dependent.

The JSP page implementation object belongs to an implementation-dependent

named package. The package used may vary between one JSP and another, so

minimal assumptions should be made. The unnamed package should not be used

without an explicit import of the class.

For example, if myBeanClass is in the unnamed package, and you reference it in a jsp:useBean tag,

then you must explicitly import myBeanClass with the page directive import attribute, as shown in the

following example:

 <%@page import="myBeanClass" %>

 . . .

 <jsp:useBean id="myBean" class="myBeanClass" scope="session"/>

In WebSphere Application Server Version 5, the JSP engine creates JSP page implementation classes

in the org.apache.jsp package. If a class in the unnamed package is not explicitly imported, then the

javac compiler assumes the class is in package org.apache.jsp, and the compilation fails.Note: Avoid

using the unnamed package altogether because of a change made in JDK 1.4 that will affect the JSP

2.0 specification. WebSphere Application Server Version 5 ships with JDK 1.3.1, so this is not an issue

with the Version 5 JSP engine, but it will become an issue in future releases.

The Incompatibilities section of the version 1.4.Java 2 Platform, Standard Edition (J2SE)

documentation states:

36 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

The compiler now rejects import statements that import a type from the

unnamed namespace. Previous versions of the compiler would accept such

import declarations, even though they were arguably not allowed by the

language (because the type name appearing in the import clause is not in

scope). The specification is being clarified to state clearly that you

cannot have a simple name in an import statement, nor can you import from

the unnamed namespace.

 To summarize, the syntax:

 import SimpleName;

is no longer legal. Nor is the syntax

 import ClassInUnnamedNamespace.Nested;

which would import a nested class from the unnamed namespace.

 To fix such problems in your code, move all of the classes from the

unnamed namespace into a named namespace.

See ″Resources for learning″ for links to the J2SE, JSP, and Servlet specification documentation.

Migrating Web application components from WebSphere Application

Server Version 5.x

Supported open specification levels in WebSphere Application Server Version 6 are documented in article,

Migrating.

Migration of Web applications deployed in WebSphere Application Server Version 5.x is not necessary;

version 2.2 and 2.3 of the Java Servlet specification and version 1.2 and 1.4 of the JavaServer Pages

(JSP) specification are still supported. However, where there are behavioral differences between the Java

2 Enterprise Edition (J2EE) 1.2 and J2EE 1.3 specifications, bear in mind that J2EE 1.3 specifications are

implemented in WebSphere Application Server Version 5 and will override any J2EE 1.2 behaviors.

Servlet migration might be a concern if your application:

v implements a WebSphere internal servlet to bypass a WebSphere Application Server Version 4.x single

application path restriction.

v extends a PageListServlet that relies on configuration information in the servlet configuration XML file.

v uses a servlet to generate Hyper Text Markup Language (HTML) output.

v calls the response.sendRedirect method for a servlet using the encodeRedirectURL function or executing

within a non-context root.

JSP migration might be a concern if your application references JSP page implementation classes in

unnamed packages, or if you install WebSphere Application Server Version 4.x EAR files (deployed in

Version 4.x with the JSP Precompile option), in Version 5. You need to recompile all JSP pages when

migrating from WebSphere Application Server Version 5.x to version 6.

Follow these steps if migration issues apply to your Web application:

Use WebSphere Application Server Version 5 package names for any WebSphere Application Server

Version 4.x internal servlets, which are implemented in your application.

In WebSphere Application Server Version 4.x, Web modules with a context root setting of / are not

supported. Accessing Web modules with this root context results in HTTP 404 - File not Found errrors.

To bypass the errors, and to enable the serving of static files from the root context, WebSphere Application

Server Version 4.x users are advised to add the servlet class,

com.ibm.servlet.engine.webapp.SimpleFileServlet, to their Web module.

Chapter 4. Migrating applications 37

The Version 4.x single path limitation does not exist in Version 5. However, users who choose to use the

com.ibm.servlet.engine.webapp.SimpleFileServlet in Version 5 must do one of the following:

v Rename com.ibm.servlet.engine.webapp.SimpleFileServlet to

com.ibm.ws.webcontainer.servlet.SimpleFileServlet.

v Opena Web deployment descriptor editor using an assembly tool and select File serving enabled on

the Extensions tab.

See ″Resources for learning″ for links to the J2SE, JSP, and Servlet specification documentation.

Migrating HTTP sessions

Note: In Version 5 and higher, default write frequency mode is TIME_BASED_WRITES, which is different

from Version 4.0.x default mode of END_OF_SERVICE.

Migrating from Version 5.x

No programmatic changes are required to migrate from version 5.x to version 6.

Migrating from Version 4.0

No programmatic changes are required to migrate from version 4.0.x to version 6.

Migrating enterprise bean code to the supported specification

Support for Version 2.1 of the Enterprise JavaBeans (EJB) specification is added for Version 6 of this

product. Migration of enterprise beans deployed in Versions 4 or 5 of this product is not generally

necessary; Versions 1.1 and 2.0 of the EJB specification are still supported. Follow these steps as

appropriate for your application deployment.

1. Modify enterprise bean code for changes in the specification.

v For Version 1.0 beans, migrate at least to Version 1.1.

See the WebSphere Messaging Guide PDF for more information.

v As stated previously, migration from Version 1.1 to Version 2.x of the EJB specification is not

required for redeployment on this version of the product. However, if your application requires the

capabilities of Version 2.x, migrate your Version 1.1-compliant code.

See the WebSphere Messaging PDF for more information.

Note: The EJB Version 2.0 specification mandates that prior to the EJB container’s running a

findByMethod query, the state of all enterprise beans enlisted in the current transaction be

synchronized with the persistent store. (This is so the query is performed against current

data.) If Version 1.1 beans are reassembled into an EJB 2.x-compliant module, the EJB

container synchronizes the state of Version 1.1 beans as well as that of Version 2.x beans.

As a result, you might notice some change in application behavior even though the

application code for the Version 1.1 beans has not been changed.

2. You might have to modify code for some EJB 1.1-compliant modules that were not migrated to Version

2.x. Use the following information to help you decide.

v Some stub classes for deployed enterprise beans have changed in the Java 2 Software

Development Kit, Version 1.4.1.

v The task of generating deployment code for enterprise beans changed significantly for EJB

1.1-compliant modules relative to EJB 1.0-compliant modules.

For detailed information about source and binary compatibility between deployed versions, see

″Resources for learning.″

3. Reassemble and redeploy all modules to incorporate migrated code.

38 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Migrating enterprise bean code from Version 1.0 to Version 1.1

The following information generally applies to any enterprise bean that currently complies with Version 1.0

of the Enterprise JavaBeans (EJB) specification. For more information about migrating code for beans

produced with Rational Application Developer, see the documentation for that product.

1. In session beans, replace all uses of javax.jts.UserTransaction with javax.transaction.UserTransaction.

Entity beans may no longer use the UserTransaction interface at all.

2. In finder methods for entity beans, include FinderException in the throws clause.

3. Remove throws of java.rmi.RemoteException; throw javax.ejb.EJBException instead. However,

continue to include RemoteException in the throws clause of home and remote interfaces as required

by the use of Remote Method Invocation (RMI).

4. Remove uses of the finalize() method.

5. Replace calls to getCallerIdentity() with calls to getCallerPrincipal(). The use of getCallerIdentity() is

deprecated.

6. Replace calls to isCallerInRole(Identity) with calls to isCallerinRole (String). The use of

isCallerInRole(Identity) and java.security.Identity is deprecated.

7. Replace calls to getEnvironment() in favor of JNDI lookup. As an example, change the following code:

String homeName =

 aLink.getEntityContext().getEnvironment().getProperty("TARGET_HOME_NAME");

if (homeName == null) homeName = "TARGET_HOME_NAME";

The updated code would look something like the following:

Context env = (Context)(new InitialContext()).lookup("java:comp/env");

String homeName = (String)env.lookup("ejb10-properties/TARGET_HOME_NAME");

8. In ejbCreate methods for an entity bean with container-managed persistence (CMP), return the bean’s

primary key class instead of void.

9. Add the getHomeHandle() method to home interfaces.

public javax.ejb.HomeHandle getHomeHandle() {return null;}

Consider enhancements to match the following changes in the specification:

v Primary keys for entity beans can be of type java.lang.String.

v Finder methods for entity beans return java.util.Collection.

v Check the format of any JNDI names being used. Local name spaces are also supported.

v Security is defined by role, and isolation levels are defined at the method level rather than at the bean

level.

Migrating enterprise bean code from Version 1.1 to Version 2.1

Enterprise JavaBeans (EJB) Version 2.1-compliant beans can be assembled only in an EJB 2.1-compliant

module, although an EJB 2.1-compliant module can contain a mixture of Version 1.x and Version 2.1

beans.

The EJB Version 2.1 specification mandates that prior to the EJB container starting a findByMethod query,

the state of all enterprise beans that are enlisted in the current transaction be synchronized with the

persistent store. (This action is so the query is performed against current data.) If Version 1.1 beans are

reassembled into an EJB 2.1-compliant module, the EJB container synchronizes the state of Version 1.1

beans as well as that of Version 2.1 beans. As a result, you might notice some change in application

behavior even though the application code for the Version 1.1 beans has not been changed.

The following information generally applies to any enterprise bean that currently complies with Version 1.1

of the EJB specification. For more information about migrating code for beans produced with the Rational

Application Developer tool, see the documentation for that product.

1. In beans with container-managed persistence (CMP) version 1.x, replace each CMP field with abstract

get and set methods. In doing so, you must make each bean class abstract.

Chapter 4. Migrating applications 39

2. In beans with CMP version 1.x, change all occurrences of this.field = value to setField(value).

3. In each CMP bean, create abstract get and set methods for the primary key.

4. In beans with CMP version 1.x, create an EJB Query Language statement for each finder method.

Note: EJB Query Language has the following limitations in Application Developer Version 5:

v EJB Query Language queries involving beans with keys made up of relationships to other

beans appear as invalid and cause errors at deployment time.

v The IBM EJB Query Language support extends the EJB 2.1 spec in various ways, including

relaxing some restrictions, adding support for more DB2 functions, and so on. If portability

across various vendor databases or EJB deployment tools is a concern, then care should be

taken to write all EJB Query Language queries strictly according to instructions described in

Chapter 11 of the EJB 2.1 specification.

5. In finder methods for beans with CMP version 1.x, return java.util.Collection instead of

java.util.Enumeration.

6. Update handling of non-application exceptions.

v To report non-application exceptions, throw javax.ejb.EJBException instead of

java.rmi.RemoteException.

v Modify rollback behavior as needed: In EJB versions 1.1 and 2.1, all non-application exceptions

thrown by the bean instance result in the rollback of the transaction in which the instance is running;

the instance is discarded. In EJB 1.0, the container does not roll back the transaction or discard the

instance if it throws java.rmi.RemoteException.

7. Update rollback behavior as the result of application exceptions.

v In EJB versions 1.1 and 2.1, an application exception does not cause the EJB container to

automatically roll back a transaction.

v In EJB Version 1.1, the container performs the rollback only if the instance has called

setRollbackOnly() on its EJBContext object.

v In EJB Version 1.0, the container is required to roll back a transaction when an application exception

is passed through a transaction boundary started by the container.

8. Update any CMP setting of application-specific default values to be inside ejbCreate (not using global

variables, since EJB 1.1 containers set all fields to generic default values before calling ejbCreate,

which overwrites any previous application-specific defaults). This approach also works for EJB 1.0

CMPs.

Note: In Application Developer Version 5, there is a J2EE Migration wizard to migrate the EJB beans

within an EJB 2.1 project from 1.x into 2.1 (you cannot just migrate individually selected beans).

The wizard performs migration steps #1 to #2 above. It also migrates EJB 1.1 (proprietary)

relationships into EJB 2.1 (standard) relationships, and maintains EJB inheritance.

Migrating Apache SOAP Web services to Web Services for J2EE

standards

This topic explains how to migrate Web services that were developed using Apache SOAP to Web

services that are developed based on the Web Services for Java 2 Platform, Enterprise Edition (J2EE)

specification.

If you have used Web services based on Apache SOAP and now want to develop and implement Web

services based on the Web Services for J2EE specification, you need to migrate client applications

developed with all versions of 4.0, and versions of 5.0 prior to 5.0.2.

To migrate these client applications according to the Web Services for J2EE standards:

1. Plan your migration strategy. You can port an Apache SOAP client to a Java API for XML-based RPC

(JAX-RPC) Web services client in one of two ways:

40 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

v If you have, or can create, a Web Services Description Language (WSDL) document for the service,

consider using the WSDL2Java command tool to generate bindings for the Web service. It is more

work to adapt an Apache SOAP client to use the generated JAX-RPC bindings, but the resulting

client code is more robust and easier to maintain. To follow this path, develop a Web services client

based on Web Services for J2EE.

v If you do not have a WSDL document for the service, do not expect the service to change, and you

want to port the Apache SOAP client with minimal work, you can convert the code to use the

JAX-RPC dynamic invocation interface (DII), which is similar to the Apache SOAP APIs. The DII

APIs do not use WSDL or generated bindings.

Because JAX-RPC does not specify a framework for user-written serializers, the JAX-RPC does not

support the use of custom serializers. If your application cannot conform to the default mapping

between Java, WSDL, and XML technology supported by WebSphere Application Server, do not

attempt to migrate the application. The remainder of this topic assumes that you decided to use the

JAX-RPC dynamic invocation interface (DII) APIs.

2. Review the GetQuote Sample. A Web services migration Sample is available in the Samples Gallery.

This Sample is located in the GetQuote.java file, originally written for Apache SOAP users, and

includes an explanation about the changes needed to migrate to the JAX-RPC DII interfaces.

3. Convert the client application from Apache SOAP to JAX-RPC DII The Apache SOAP API and

JAX-RPC DII API structures are similar. You can instantiate and configure a call object, set up the

parameters, invoke the operation, and process the result in both. You can create a generic instance of

a Service object with the following command:

javax.xml.rpc.Service service = ServiceFactory.newInstance().createService(new QName(""));

in JAX-RPC.

a. Create the Call object. An instance of the Call object is created with the following code:

org.apache.soap.rpc.Call call = new org.apache.soap.rpc.Call ()

in Apache SOAP.

An instance of the Call object is created by

java.xml.rpc.Call call = service.createCall();

in JAX-RPC.

b. Set the endpoint Uniform Resource Identifiers (URI). The target URI for the operation is passed as

a parameter to

call.invoke: call.invoke("http://...", "");

in Apache SOAP.

The setTargetEndpointAddress method is used as a parameter to

call.setTargetEndpointAddress("http://...");

in JAX-RPC.

Apache SOAP has a setTargetObjectURI method on the Call object that contains routing

information for the request. JAX-RPC has no equivalent method. The information in the

targetObjectURI is included in the targetEndpoint URI for JAX-RPC.

c. Set the operation name. The operation name is configured on the Call object by

call.setMethodName("opName");

in Apache SOAP.

The setOperationName method, which accepts a QName instead of a String parameter, is used in

JAX-RPC as illustrated in the following example:

call.setOperationName(new javax.xml.namespace.Qname("namespace", "opName"));

d. Set the encoding style. The encoding style is configured on the Call object by

call.setEncodingStyleURI(org.apache.soap.Constants.NS_URI_SOAP_ENC);

Chapter 4. Migrating applications 41

in Apache SOAP.

The encoding style is set by a property of the Call object

call.setProperty(javax.xml.rpc.Call.ENCODINGSTYLE_URI_PROPERTY, "http://schemas.

xmlsoap.org/soap/encoding/");

in JAX-RPC.

e. Declare the parameters and set the parameter values. Apache SOAP parameter types and values

are described by parameter instances, which are collected into a vector and set on the Call object

before the call, for example:

Vector params = new Vector ();

params.addElement (new org.apache.soap.rpc.Parameter(name, type, value, encodingURI));

// repeat for additional parameters...

call.setParams (params);

For JAX-RPC, the Call object is configured with parameter names and types without providing their

values, for example:

call.addParameter(name, xmlType, mode);

// repeat for additional parameters

call.setReturnType(type);

Where

v name (type java.lang.String) is the name of the parameter

v xmlType (type javax.xml.namespace.QName) is the XML type of the parameter

v mode (type javax.xml.rpc.ParameterMode) the mode of the parameter, for example, IN, OUT, or

INOUT

f. Make the call. The operation is invoked on the Call object by

org.apache.soap.Response resp = call.invoke(endpointURI, "");

in Apache SOAP.

The parameter values are collected into an array and passed to call.invoke as illustrated in the

following example:

Object resp = call.invoke(new Object[] {parm1, parm2,...});

in JAX-RPC.

g. Check for faults. You can check for a SOAP fault on the invocation by checking the response:

if resp.generatedFault then {

org.apache.soap.Fault f = resp.getFault;

f.getFaultCode();

f.getFaultString();

}

in Apache SOAP.

A java.rmi.RemoteException error is displayed in JAX-RPC if a SOAP fault occurs on the

invocation.

try {

... call.invoke(...)

} catch (java.rmi.RemoteException) ...

h. Retrieve the result. In Apache SOAP, if the invocation is successful and returns a result, it can be

retrieved from the Response object:

Parameter result = resp.getReturnValue(); return result.getValue();

In JAX-RPC, the result of invoke is the returned object when no exception is displayed:

Object result = call.invoke(...);

 ...

return result;

You have migrated Apache SOAP Web services to J2EE Web services.

42 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Develop a Web services client. This topic explains how to develop a Web services client based on the

Web Services for J2EE specification.

Test the Web services-enabled clients to make sure the migration process is successful and you can

implement the Web services in a J2EE environment.

Migrating to Version 3 of the UDDI Registry

Use this topic to migrate to a UDDI Registry that uses a DB2 database, from a previous UDDI Version to

UDDI Version 3.

Use this topic to migrate to a UDDI Registry that uses a DB2 database, from a Version 2 UDDI Registry to

a Version 3 UDDI Registry.

Before you begin.

You can use the process described in this topic to migrate a UDDI Registry to UDDI Version 3, running in

WebSphere Application Server Version 6, subject to the following constraints:

v Your registry uses a DB2 database.

v Your registry runs in WebSphere Application Server Version 5 or later.

If you are migrating from the IBM WebSphere UDDI Version 1.1 or 1.1.1, which ran on WebSphere

Application Server Version 4, you should first migrate to UDDI Version 2 running on WebSphere

Application Server Version 5 (as described in the WebSphere Application Server Version 5 Information

Center), then complete the steps described in this topic.

You should not run the version 2 UDDI Registry application from WebSphere Application Server Version 5

and onwards except in the case where you are running in a mixed cell migration mode, where WebSphere

Application Server version 6 Deployment Manager manages the version 5.x nodes. A Version 2 UDDI

Registry can run in WebSphere Application Server v6 but it is not supported.

This task describes in detail the process of migrating from a Version 2 UDDI Registry running on

WebSphere Application Server Version 5, to a Version 3UDDI Registry running on WebSphere Application

Server Version 6.

If you have UDDI deployed in a clustered application server and you migrate to WebSphere Application

Server Version 6, you will not be able to run UDDI across the mixed-version cluster. You can continue to

run the UDDI Registry on the server(s) that remain at Version 5 of WebSphere Application Server, but you

will not be able to run the UDDI Registry in the Version 6 servers of WebSphere Application Server until all

nodes in the cluster have been migrated to WebSphere Application Server Version 6. This is because the

UDDI data needs to be migrated from the UDDI Version 2 format to the UDDI Version 3 format.

If you are migrating the UDDI Registry from a WebSphere Application Server version 5.x Network

Deployment configuration, or from a WebSphere Application Server version 5.x standalone application

server, the steps are very similar. For a Network Deployment migration to a WebSphere Application Server

version 6 Network Deployment configuration, a number of choices are available, including having a mixed

version cell where the WebSphere Application Server version 6 Deployment Manager can manage

application servers at different levels. In this way, individual application servers can be migrated when

convenient in a step by step manner. See Migrating and coexisting overview elsewhere in this Information

Center for more details.

To migrate a Version 2 UDDI Registry to UDDI Version 3, running in WebSphere Application Server

Version 6, complete the following steps (this is assuming that you have migrated the WebSphere

Application Manager Version 5 Deployment Manager to Version 6 first):

Chapter 4. Migrating applications 43

1. Stop the UDDI Registry application that is running in your Version 5.x application server. This

prevents further UDDI requests being directed to the UDDI Registry and ensures that no new data is

published during the migration process.

 2. Record information about the uddi.properties values being used. This file is located in the

<DeploymentManager-install-
dir>/config/cells/<cellname>/nodes/<nodename>/servers/<servername> directory on your

WebSphere Application Server Version 5.x system (or in the properties subdirectory if you are

migrating a standalone application server).

 3. Migrate from WebSphere Application Server Version 5.x to Version 6 (see Migrating and coexisting

overview). This results in a new directory tree for the migrated Version 6 application server.

 4. Start the new migrated (Version 6) application server.

 5. Create the UDDI Version 3 DB2 database.

 6. Using the administrative console or JMX:

a. Create a UDDI Version 3 JDBC provider and datasource to access the UDDI Version 3 database.

b. Create a J2C authentication data entry for the Version 3 UDDI database.

c. Create a new datasource for the Version 2 UDDI database. This is known as the UDDI Migration

datasource. Note that the JNDI name must be datasources/uddimigration, or that you would

like to keep the same (see table below).

 7. Run the uddiDeploy.jacl script. This deploys the UDDI Version 3 application from the installableApps

directory into the application server, supplying the node name and server name as parameters.

 8. Start the UDDI Application from the administrative console.

 9. Configure the node (using the UDDI administrative console or JMX management interface). You must

do this before you complete node initialization (see next step). It is recommended you take all the

default values except for:

v The NodeId and related ’node personality’ settings, which must be set to suitable, and valid,

values.

v Settings from uddi.properties that must remain the same as were used for Version 2.

v Settings from uddi.properties that you would like to keep the same (such as dbMaxResultCount).

v Any policy values that you wish to change from the default settings (or these can be changed at a

later time).

10. Request the completion of node initialization using the Initialize button on the UDDI administrative

console (or using the JMX management interface for UDDI). The UDDI Node Initialization detects that

there is a UDDI Migration datasource, and migrates the Version 2 data as part of the UDDI node

initialization processing.

Note: This step can take some time depending on the amount of data in your UDDI Registry.

11. Verify the migration process has completed successfully. The following message should appear in the

server log:

CWUDQ0003I: UDDI registry migration has completed

Should the following error appear:

CWUDQ004W: UDDI registry not started due to migration errors

it means that an unexpected error has occurred during migration. The UDDI Registry node will not be

activated. Check the error logs for the problem and, if it cannot be fixed contact your IBM

representative for advice.

12. Once migration is complete the UDDI Migration datasource may be removed, and the registry is

available for use.

Migrating uddi.properties values

44 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

The table below shows the values of the properties that were stored in the uddi.properties file in

WebSphere Application Server V5, and their equivalents in WebSphere Application Server v6.

 Version 2 UDDI property (set in

uddi.property file)

Version 3 UDDI Property (set via

Administrative Console or UDDI

Administrative Interface)

Recommended Version 3 UDDI

property setting

dbMaxResultCount maximum inquiry response set size You might want to retain the value

from Version 2, but can safely change

this (or use the default)

persister no equivalent Not applicable

defaultLanguage default language code You are recommended to retain the

value from Version 2

operatorName UDDI node ID You must use a valid value for the

UDDI node ID. This will be applied to

your Version 2 data as it is migrated.

maxSearchKeys maximum search keys You might want to retain the value

from Version 2, but can safely change

this (or use the default)

getServletURLprefix Prefix for generated discoveryURLs You should enter a valid value for

your configuration, which should

therefore be the same as the value

used for Version 2.

getServletName no equivalent Not applicable

Setting up a UDDI Migration Datasource

This topic describes how to set up a UDDI Migration Datasource, to be used to reference a Version 2

UDDI Registry database. Migration is only supported from DB2, so these instructions describe how to set

up a DB2 datasource.

1. If a suitable DB2 JDBC Provider does not already exist, then create one, selecting the options DB2

Legacy CLI-based Type 2 JDBC Driver and Connection Pool datasource.

2. Create a datasource for the Version 2 UDDI Registry database:

a. Expand Resource and JDBC Providers.

b. Select the desired ’scope’ of the JDBC provider you selected or created earlier. For example,

select:

Server: yourservername

This displays the JDBC providers at the server level.

c. Select the JDBC provider created or selected earlier.

d. Under Additional Properties, select Data Sources (not the Data Sources Version 4 option).

e. Select New to create a new datasource.

f. Fill in the details for the datasource as follows:

Name a suitable name, such as UDDI Datasource

JNDI name

set to datasources/uddimigration - this value is compulsory, and must be as shown.#

Description

a suitable description

Category

set to uddi

Chapter 4. Migrating applications 45

Data store helper class name

filled in for you as: com.ibm.websphere.rsadapter.DB2DataStoreHelper

datasource properties

...

DB2 databasename

UDDI20, or the name given to your Version 2 UDDI DB2 database

Component-managed authentication alias

select the alias for the DB2 userid used to access UDDI data, for example

MyNode/UDDIAlias (refer to Setting up and deploying a new UDDI Registry if you do not

have such an alias)

Container-managed authentication alias

Set to (none)

Mapping-configuration alias

Set to (none)

Leave all the other fields unchanged.

3. Click Apply and save the changes to the Master Configuration.

Using a remote database for the UDDI Registry

It is possible for the UDDI Registry database to be hosted on a separate system (remote system) from the

system on which the UDDI Registry application is deployed.

This is achieved using standard database capabilities of the database product used for the UDDI Registry

database. You should refer to documentation for the database product if you are not familiar with these

capabilities. Some considerations specific to each database product are:

Remote DB2

Create a DB2 UDDI database on the remote system, and use the DB2 Client to create an alias to

reference it. Use the alias name as the Database name in the UDDI datasource.

Remote Oracle

Create the Oracle tables used for an Oracle UDDI database on the remote system, and use the URL

property of the UDDI datasource to reference the remote Oracle instance.

Networked Cloudscape

Create a Cloudscape UDDI database on the remote system, and use the Cloudscape Network Server

using Universal data source properties (Database name, Server name and Port number) of the UDDI

datasource to reference the remote Cloudscape database.

Migrating a Version 4.0 data access application to Version 6.0

To use the connection management infrastructure in WebSphere Application Server Version 6.0, you must

package your application as a J2EE 1.3 (or later) application. This process involves repackaging your Web

modules to the 2.3 specification and your EJB modules to the 2.1 specification before installing them onto

WebSphere Application Server.

46 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Converting a 2.2 Web module to a 2.3 Web module

Use the following steps to migrate each of your Web modules.

 1. Open an assembly tool such as the Application Server Toolkit (AST) or Rational Web Developer.

 2. Create a new Web module by selecting File > New > Web Module.

 3. Add any required class files to the new module.

a. Expand the Files portion of the tree.

b. Right-click Class Files and select Add Files.

c. In the Add Files window, click Browse.

d. Navigate to your WebSphere Application Server 4.0 EAR file and click Select.

e. In the upper left pane of the Add Files window, navigate to your WAR file and expand the WEB-INF

and classes directories.

f. Select each of the directories and files in the classes directory and click Add.

g. After you add all of the required class files, click OK.

 4. Add any required JAR files to the new module.

a. Expand the Files portion of the tree.

b. Right-click Jar Files and select Add Files.

c. Navigate to your WebSphere 4.0 EAR file and click Select.

d. In the upper left pane of the Add Files window, navigate to your WAR file and expand the WEB-INF

and lib directories.

e. Select each JAR file and click Add.

f. After you add all of the required JAR files, clickOK.

 5. Add any required resource files, such as HTML files, JSP files, GIFs, and so on, to the new module.

a. Expand the Files portion of the tree.

b. Right-click Resource Files and select Add Files.

c. Navigate to your WebSphere Application Server 4.0 EAR file and click Select.

d. In the upper left pane of the Add Files window, navigate to your WAR file.

e. Select each of the directories and files in the WAR file, excluding META-INF and WEB-INF, and click

Add.

f. After you add all of the required resource files, clickOK.

 6. Import your Web components.

a. Right-click Web Components and select Import.

b. In the Import Components window click Browse.

c. Navigate to your WebSphere Application Server 4.0 EAR file and click Open.

d. In the left top pane of the Import Components window, highlight the WAR file that you are

migrating.

e. Highlight each of the components that display in the right top pane and click Add.

f. When all of your Web components display in the Selected Components pane of the window, click

OK.

g. Verify that your Web components are correctly imported under the Web Components section of

your new Web module.

 7. Add servlet mappings for each of your Web components.

a. Right-click Servlet Mappings and select New.

b. Identify a URL pattern for the Web component.

c. Select the web component from the Servlet drop-down box.

d. Click OK.

Chapter 4. Migrating applications 47

8. Add any necessary resource references by following the instructions in the Developing and Deploying

Applications PDF.

 9. Add any other Web module properties that are required. Click Help for a description of the settings.

10. Save the Web module.

Converting a 1.1 EJB module to a 2.1 EJB module (or later)

Use the following steps to migrate each of your EJB modules.

1. Open an assembly tool.

2. Create a new EJB Module by selecting File > New > EJB Module.

3. Add any required class files to the new module.

a. Right-click Files object and select Add Files.

b. In the Add Files window click Browse.

c. Navigate to your WebSphere Application Server 4.0 EAR file and click Select.

d. In the upper left pane of the Add Files window, navigate to your enterprise bean JAR file.

e. Select each of the directories and class files and click Add.

f. After you add all of the required class files, click OK.

4. Create your session beans and entity beans. To find help on this subject, see Migrating enterprise

bean code to the supported specification, the documentation for Rational Application Developer, or the

documentation for WebSphere Studio Application Developer Integration Edition.

5. Add any necessary resource references by following the instructions in the Developing and Deploying

Applications PDF.

6. Add any other EJB module properties that are required. Click Help for a description of the settings.

7. Save the EJB module.

8. Generate the deployed code for the EJB module by clicking File > Generate Code for Deployment.

9. Fill in the appropriate fields and click Generate Now.

Add the EJB modules and Web modules to an EAR file

1. Open an assembly tool.

2. Create a new Application by selecting File > New > Application.

3. Add each of your EJB modules.

a. Right-click EJB Modules and select Import.

b. Navigate to your converted EJB module and click Open.

c. Click OK.

4. Add each of your Web modules.

a. Right-click Web Modules and select Import.

b. Navigate to your converted Web module and click Open.

c. Fill in a Context root and click OK.

5. Identify any other application properties. Click Help for a description of the settings.

6. Save the EAR file.

Installing the Application on WebSphere Application Server

1. Create a JDBC provider and a data source object following the instructions in the Developing and

Deploying Applications PDF.

2. Install the application, following the instructions in the Developing and Deploying Applications PDF and

bind the resource references to the data source that you created.

48 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Connection considerations when migrating servlets, JavaServer

Pages, or enterprise session beans

Because WebSphere Application Server provides backward compatibility with application modules coded

to the J2EE 1.2 specification, you can continue to use Version 4 style data sources when you migrate to

Application Server Version 6.x. As long as you configure Version 4 data sources only for J2EE 1.2

modules, the behavior of your data access application components does not change.

If you are adopting a later version of the J2EE specification along with your migration to Application Server

Version 6.x, however, the behavior of your data access components can change. Specifically, this risk

applies to applications that include servlets, JavaServer Page (JSP) files, or enterprise session beans that

run inside local transactions over shareable connections. A behavior change in the data access

components can adversely affect the use of connections in such applications.

This change affects all applications that contain the following methods:

v RequestDispatcher.include()

v RequestDispatcher.forward()

v JSP includes (<jsp:include>)

Symptoms of the problem include:

v Session hang

v Session timeout

v Running out of connections

Note: You can also experience these symptoms with applications that contain the components and

methods described previously if you are upgrading from J2EE 1.2 modules within Application Server

Version 6.x.

Explanation of the underlying problem

For J2EE 1.2 modules using Version 4 data sources, WebSphere Application Server issues non-sharable

connections to JSP files, servlets, and enterprise session beans. All of the other application components

are issued shareable connections. However, for J2EE 1.3 and 1.4 modules, Application Server issues

shareable connections to all logically named resources (resources bound to individual references) unless

you specify the connections as unshareable in the individual resource-references. Using shareable

connections in this context has the following effects:

v All connections that are received and used outside the scope of a user transaction are not returned to

the free connection pool until the encapsulating method returns, even when the connection handle

issues a close() call.

v All connections that are received and used outside the scope of a user transaction are not shared with

other component instances (that is, other servlets, JSP files, or enterprise beans).

For example, session bean 1 gets a connection and then calls session bean 2 that also gets a

connection. Even if all properties are identical, each session bean receives its own connection.

If you do not anticipate this change in the connection behavior, the way you structure your application

code can lead to excessive connection use, particularly in the cases of JSP includes, session beans that

run inside local transactions over shareable connections, RequestDispatcher.include()routines,

RequestDispatcher.forward() routines, or calls from these methods to other components.

Examples of the connection behavior change

Servlet A gets a connection, completes the work, commits the connection, and calls close() on the

connection. Next, servlet A calls the RequestDispatcher.include() to include servlet B, which performs the

same steps as servlet A. Because the servlet A connection does not return to the free pool until it returns

from the current method, two connections are now busy. In this way, more connections might be in use

than you intended in your application. If these connections are not accounted for in the Max Connections

Chapter 4. Migrating applications 49

setting on the connection pool, this behavior might cause a lack of connections in the pool, which results

in ConnectionWaitTimeOut exceptions. If the connection wait timeout is not enabled, or if the connection

wait timeout is set to a large number, these threads might appear to hang because they are waiting for

connections that are never returned to the pool. Threads waiting for new connections do not return the

ones they are currently using if new connections are not available.

Alternatives to the connection behavior change

To resolve these problems:

1. Use unshared connections.

If you use an unshared connection and are not in a user transaction, the connection is returned to the

free pool when you issue a close() call (assuming you commit or roll back the connection).

2. Increase the maximum number of connections.

To calculate the number of required connections, multiply the number of configured threads by the

deepest level of component call nesting (for those calls that use connections).

Mail migration tip

Parts of the JavaServer Page (JSP) 1.2 specification change the way the EmailBean class works with

Email.jsp.

The specifications state that the JSP container creates a JSP page implementation class for each JSP

page. The name of the JSP page implementation class is implementation-dependent. The JSP page

implementation object belongs to an implementation-dependent named package which can vary between

one JSP and another; therefore minimal assumptions should be made. The unnamed package should not

be used without explicit import of the class.

Following these specifications, you should place EmailBean.class in a package referred to it by the fully

qualified packageName in Email.jsp. Otherwise, Email.jsp is unable to find EmailBean.class.

Migrating security configurations from previous releases

This article addresses the need to migration your security configurations from a previous release of IBM

WebSphere Application Server to WebSphere Application Server, Version 6. Complete the following steps

to migrate your security configurations:

v Before migrating your configurations, verify that the administrative server of the previous release is

running.

v If security is enabled in the previous release, obtain the server ID and password of the previous

release. This information is needed to log onto the administrative server of the previous release during

migration.

v You can optionally disable security in the previous release before migrating the installation. There is no

logon required during the installation.

1. Start the First steps wizard by launching the firststeps.bat or firststeps.sh file. The first steps file

is located in the following directory:

v

./install_root/profiles/profile_name/firststeps/firststeps.sh

v

install_root\profiles\profile_name\firststeps\firststeps.bat

2. On the First steps wizard panel, click Migration wizard.

3. Follow the instructions provided in the First steps wizard to complete the migration.

For more information on the Migration wizard, see “Using the Migration wizard” on page 145.

The security configuration of previous WebSphere Application Server releases and its applications are

migrated to the new installation of WebSphere Application Server Version 6.

50 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

This task is for migrating an installation.

If custom user registry is used in the previous version, the migration process does not migrate the class

files used by the custom user registry in the <previous_install_root>\classes directory. Therefore, after

migration, copy your custom user registry implementation classes to the install_root\classes directory.

If you upgrade from WebSphere Application Server, Version 5.x or 4.0.x to WebSphere Application Server,

Version 6, data associated with Version 5.x or 4.0.x trust associations is not automatically migrated to

Version 6. To migrate trust associations, see “Migrating trust association interceptors” on page 54.

Migrating custom user registries

Before you perform this task, it is assumed that you already have a custom user registry implemented and

are working with WebSphere Application Server Version 5.x or 4.x. The custom registry in WebSphere

Application Server Version 4 is based on the CustomRegistry interface. For WebSphere Application Server

Version 5.x and later, the interface is called the UserRegistry interface. The WebSphere Application Server

Version 4-based custom registry works without any changes to the implementation in WebSphere

Application Server Version 5.x or later except when the implementation is using data sources to connect to

a database during initialization. If the previous implementation is using a data source to access a

database, change the implementation to use JDBC connections to connect to the database. The

WebSphere Application Server Version 4 version of the CustomRegistry interface was deprecated in

WebSphere Application Server Version 5. So, moving your implementation to the WebSphere Application

Server Version 5.x and later based interface is expected.

In WebSphere Application Server Version 5.x and later, in addition to the UserRegistry interface, the

custom user registry requires the Result object to handle user and group information. This file is already

provided in the package and you are expected to use it for the getUsers, getGroups and the

getUsersForGroup methods.

In WebSphere Application Server Version 4.x, it might have been possible to use other WebSphere

Application Server components (for example, datasources) to initialize the custom registry. This is no

longer possible in WebSphere Application Server Version 5 or later, because other components like the

containers are initialized after security and are not available during the registry initialization. In WebSphere

Application Server Version 5, a custom registry implementation is a pure custom implementation,

independent of other WebSphere Application Server components.

In WebSphere Application Server Version 4, if you had display names for users the EJB method

getCallerPrincipal() and the servlet methods getUserPrincipal() and getRemoteUser() returned the

display names. This behavior changed in WebSphere Application Server Version 5.x. By default, these

methods now return the security name instead of the display name. However, if you need the display

names to return, set the WAS_UseDisplayName property to true. See the getUserDisplayName method

description or the Javadoc, for more information.

If the migration tool was used to migrate the WebSphere Application Server Version 4 configuration to

WebSphere Application Server Version 5.x or later, be aware that this migration does not involve any

changes to your existing code. Since the WebSphere Application Server Version 4 custom registry works

in WebSphere Application Server Version 5.x or later without any changes to the implementation (except

when using data sources) you can use the Version 4-based custom registry after the migration without

modifying the code. Consider that the migration tool might not copy your implementation files from Version

4 to Version 5.x or later. You might have to copy them to the class path in the Version 6 setup (preferably

to the classes subdirectoy, just like in Version 4). If you are using the WebSphere Application Server

Network Deployment version, copy the files to the cell and to each of the nodes class paths.

In Version 5.x or later, a case insensitive authorization can occur when using the custom registry. This

authorization is in effect only on the authorization check. This function is useful in cases where your

custom registry returns inconsistent (in terms of case) results for user and group unique IDs.

Chapter 4. Migrating applications 51

Note: Setting this flag does not have any effect on the user names or passwords. Only the unique IDs

returned from the registry are changed to lowercase before comparing them with the information in

the authorization table, which is also converted to lowercase during run time.

Before proceeding, look at the UserRegistry interface. See the Security Guide PDF for a description of

each of these methods in detail and the changes from Version 4.

The following steps go through in detail all the changes required to move your WebSphere Application

Server Version 4 custom user registry to the Version 5.x or later custom user registry. The steps are very

simple and involve minimal code changes. The sample implementation file is used as an example when

describing some of the steps.

 1. Change your implementation to UserRegistry instead of CustomRegistry. Change:

public class FileRegistrySample implements CustomRegistry

to

public class FileRegistrySample implements UserRegistry

 2. Throw the java.rmi.RemoteException in the constructors public FileRegistrySample() throws

java.rmi.RemoteException

 3. Change the mapCertificate method to take a certificate chain instead of a single certificate. Change

public String mapCertificate(X509Certificate cert)

to

public String mapCertificate(X509Certificate[]cert)

Having a certificate chain gives you the flexibility to act on the chain instead of one certificate. If you

are only interested in the first certificate just take the first certificate in the chain before processing. In

Version 5, the mapCertificate method is called to map the user in a certificate to a valid user in the

registry, when certificates are used for authentication by the Web or the Java clients (transport layer

certificates, Identity Assertion certificates). In Version 4, this was only called by Web clients since the

Common Secure Interoperability Version 2 (CSIv2) protocol was not supported.

 4. Remove the getUsers() method.

 5. Change the signature of the getUsers(String) method to return a Result object and accept an

additional parameter (int). Change:

public List getUsers(String pattern)

to

public Result getUsers(String pattern, int limit)

In your implementation, construct the Result object from the list of the users obtained from the

registry (whose number is limited to the value of the limit parameter) and call the setHasMore()

method on the Result object if the total number of users in the registry exceeds the limit value.

 6. Change the signature of the getUsersForGroup(String) method to return a Result object and accept

an additional parameter (int) and throw a new exception called NotImplementedException. Change

the following:

public List getUsersForGroup(String groupName)

 throws CustomRegistryException,

 EntryNotFoundException {

to

52 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

In Version 5.x and later, this method is not called directly by the WebSphere Application Server

Security component. However, other components of the WebSphere Application Server like the

WebSphere Business Integration Server Foundation Process Choreographer use this method when

staff assignments are modeled using groups. Since this already is implemented in WebSphere

Application Server Version 4, it is recommended that you change the implementation similar to the

getUsers method as explained in step 5.

 7. Remove the getUniqueUserIds(String) method.

 8. Remove the getGroups() method.

 9. Change the signature of the getGroups(String) method to return a Result object and accept an

additional parameter (int). change the following:

public List getGroups(String pattern)

to

public Result getGroups(String pattern, int limit)

In your implementation, construct the Result object from the list of the groups obtained from the

registry (whose number is limited to the value of the limit parameter) and call the setHasMore()

method on the Result object if the total number of groups in the registry exceeds the limit value.

10. Add the createCredential method. This method is not called at this time, so return as null.

public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

 return null;

 }

The first and second lines of the previous code example normally appear on one line. However, it

extended beyond the width of the page.

11. To build the Version 5.x and later implementation make sure you have the sas.jar and wssec.jar in

your class path.

%install_root%\java\bin\javac -classpath %WAS_HOME%\lib\wssec.jar;

%WAS_HOME%\lib\sas.jar FileRegistrySample.java

Type the previous lines as one continuous line.

To build the Version 4 custom registry in Version 5.x and later, only the sas.jar file is required.

12. Copy the implementation classes to the product class path. The %install_root%/lib/ext directory is

the preferred location.

13. Use the administrative console to set up the custom registry. Follow the instructions in the Security

Guide PDF to set up the custom registry including the IgnoreCase flag. Make sure that you add the

WAS_UseDisplayName properties, if required.

Migrates a Version 4 custom registry to the Version 5.x and later custom registry.

This step is required to migrate a custom registry from WebSphere Application Server Version 4 to

WebSphere Application Server Version 5.x and later.

Chapter 4. Migrating applications 53

If you are enabling security, make sure you complete the remaining steps. Once completed, save the

configuration and restart all the servers. Try accessing some J2EE resources to verify that the custom

registry migration was successful.

Migrating trust association interceptors

The following topics are addressed in this document:

v Changes to the product-provided trust association interceptors

v Migrating product-provided trust association interceptors

v Changes to the custom trust association interceptors

v Migrating custom trust association interceptors

Changes to the product-provided trust association interceptors

For the product provided implementation for the WebSeal server a new optional property

com.ibm.websphere.security.webseal.ignoreProxy has been added. If this property is set to true or yes,

the implementation does not check for the proxy host names and the proxy ports to match any of the host

names and ports listed in the com.ibm.websphere.security.webseal.hostnames and the

com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains

the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),

HTP/1.1 webseal1:7002, 1.1 webseal2:7001

Note: The previous VIA header information was split onto two lines due to the width of the printed page.

and the com.ibm.websphere.security.webseal.ignoreProxy is set to true or yes, the host name Fred is

not be used when matching the host names. By default, this property is not set, which implies that any

proxy host names and ports expected in the VIA header should be listed in the host names and the ports

properties to satisfy the isTargetInterceptor method.

Migrating product-provided trust association interceptors

The properties located in the webseal.properties and trustedserver.properties files are not migrated

from previous versions of the WebSphere Application Server. You must migrate the appropriate properties

to WebSphere Application Server, Version 5 using the trust association panels in the administrative

console.

Changes to the custom trust association interceptors

If the custom interceptor extends,

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor, then implement the following

new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the Trust Association implementation.

Zero (0) is the default value for indicating the interceptor was successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status

you can either change your implementation to match the expectations or make one of the following

changes:

Method 1:

Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust

association interceptor custom properties. Set the property to the value that indicates that the

54 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

interceptor is successfully initialized. All of the other possible values imply failure. In case of

failure, the corresponding trust association interceptor is not used.

Method 2:

Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust

association interceptor custom properties. Set the value of this property to true, which tells

WebSphere Application Server to ignore the status of this method. If you add this property to the

custom properties, WebSphere Application Server does not check the return status, which is

similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props); method replaces the public int init (String

propsFile) method.

The init(Properties) method accepts a java.util.Properties object which contains the set of properties

required to initialize the interceptor. All the properties set for an interceptor (by using the Custom

Properties link for that interceptor or using scripting) will be sent to this method. The interceptor can then

use these properties to initialize itself. For example, in the product provided implementation for the

WebSEAL server, this method reads the hosts and ports so that a request coming in can be verified to

come from trusted hosts and ports. A return value of 0 implies that the interceptor initialization is

successful. Any other value implies that the initialization was not successful and the interceptor will not be

used.

All the properties set for an interceptor (by using the Custom Properties link in the administrative console

for that interceptor or using scripting) is sent to this method. The interceptor can then use these properties

to initialize itself. For example, in the product-provided implementation for the WebSEAL server, this

method reads the hosts and ports so that an incoming request can be verified to come from trusted hosts

and ports. A return value of 0 implies that the interceptor initialization is successful. Any other value implies

that the initialization was not successful and the interceptor is ignored.

Note: The init(String) method still works if you want to use it instead of implementing the

init(Properties) method. The only requirement is that the file name containing the custom trust

association properties should now be entered using the Custom Properties link of the interceptor

in the administrative console or by using scripts. You can enter the property using either of the

following methods. The first method is used for backward compatibility with previous versions of

WebSphere Application Server.

Method 1:

The same property names used in the previous release are used to obtain the file name.

The file name is obtained by concatenating the .config to the

com.ibm.websphere.security.trustassociation.types property value. If the file name is

called myTAI.properties and is located in the C:/WebSphere/AppServer/properties

directory, set the following properties:

v com.ibm.websphere.security.trustassociation.types = myTAItype

v com.ibm.websphere.security.trustassociation.myTAItype.config =

C:/WebSphere/AppServer/properties/myTAI.properties
Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in

the trust association custom properties to the location of the file. For example, set the

following property:

com.ibm.websphere.security.trustassociation.initPropsFile=

C:/WebSphere/AppServer/properties/myTAI.properties

 The previous line of code was split into two lines due to the width of the screen. Type as

one continuous line.

However, it is highly recommended that your implementation be changed to implement the init(Properties)

method instead of relying on init (String propsfile) method.

Chapter 4. Migrating applications 55

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are not automatically

migrated to version 5.x and later. Users can manually migrate these trust associations using the following

steps:

1. Recompile the implementation file, if necessary.

For more information, refer to the ″Changes to the custom trust association interceptors″ section

previously discussed in this document.

To recompile the implementation file, type the following:

%WAS_HOME%/java/bin/javac -classpath %WAS_HOME%/lib/wssec.jar;

%WAS_HOME%/lib/j2ee.jar <your implementation file>.java

Note: The previous line of code was broken into two lines due to the width of the page. Type the code

as one continuous line.

2. Copy the custom trust association interceptor class files to a location in your product class path. It is

suggested that you copy these class files into the %WAS_HOME%/lib/ext directory.

3. Start the WebSphere Application Server

4. Enable security to use the trust association interceptor. The properties located in your custom trust

association properties file and in the trustedserver.properties file are not migrated from previous

versions of WebSphere Application Server to version 5. You must migrate the appropriate properties to

WebSphere Application Server, version 5.x or later using the trust association panels in the GUI.

Migrating Common Object Request Broker Architecture programmatic

login to Java Authentication and Authorization Service

WebSphere Application Server fully supports the Java Authentication and Authorization Service (JAAS) as

programmatic login APIs. See the Security Guide PDF for more details on JAAS support.

This document outlines the deprecated Common Object Request Broker Architecture (CORBA)

programmatic login APIs and the alternatives provided by JAAS. The following are the deprecated CORBA

programmatic login APIs:

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/LoginHelper.java.

The sampleApp is not included in Version 5.x and later.

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/ServerSideAuthenticator.java.

The sampleApp is not included in Version 5.x and later.

v com.ibm.IExtendedSecurity._LoginHelper.

This API is included with the product, but is deprecated.

v org.omg.SecurityLevel2.Credentials.

This API is included with the product, but not recommended to use.

The APIs provided in WebSphere Application Server Version 5.x and later are a combination of standard

JAAS APIs and a product implementation of standard JAAS interfaces.

The following information is only a summary; refer to the JAAS documentation for your platform located at:

http://www.ibm.com/developerworks/java/jdk/security/ .

v Programmatic login APIs:

– javax.security.auth.login.LoginContext

– javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product

provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:

56 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

http://www.ibm.com/developerworks/java/jdk/security/

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

Provides a non-prompt CallbackHandler when the application pushes basic authentication

data (user ID, password, and security realm) or token data to product LoginModules. This

API is recommended for server-side login.

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl

Provides a login prompt CallbackHandler to gather basic authentication data (user ID,

password, and security realm). This API is recommended for client-side login.

Note: If this API is used on the server side, the server is blocked for input.
– javax.security.auth.callback.Callback interface:

javax.security.auth.callback.NameCallback

Provided by JAAS to pass the user name to the LoginModules interface.

javax.security.auth.callback.PasswordCallback

Provided by JAAS to pass the password to the LoginModules interface.

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

Provided by the product to perform a token-based login. With this API, an application can

pass a token-byte array to the LoginModules interface.
– javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides LoginModules implementation for client and server-side

login. Refer to the Security Guide PDF for details.
v javax.security.Subject:

com.ibm.websphere.security.auth.WSSubject

An extension provided by the product to invoke remote J2EE resources using the credentials in

the javax.security.Subject

com.ibm.websphere.security.cred.WSCredential

After a successful JAAS login with the WebSphere Application Server LoginModules intefaces, a

com.ibm.websphere.security.cred.WSCredential credential is created and stored in the

Subject.

com.ibm.websphere.security.auth.WSPrincipal

An authenticated principal, that is created and stored in a Subject that is authenticated by the

WebSphere LoginModules interface.

1. Use the following as an example of how to perform programmatic login using the CORBA-based

programmatic login APIs: The CORBA-based programmatic login APIs are replaced by JAAS login.

public class TestClient {

...

private void performLogin() {

// Get the ID and password of the user.

String userid = customGetUserid();

String password = customGetPassword();

// Create a new security context to hold authentication data.

LoginHelper loginHelper = new LoginHelper();

try {

// Provide the ID and password of the user for authentication.

org.omg.SecurityLevel2.Credentials credentials =

loginHelper.login(userid, password);

// Use the new credentials for all future invocations.

loginHelper.setInvocationCredentials(credentials);

// Retrieve the name of the user from the credentials

// so we can tell the user that login succeeded.

String username = loginHelper.getUserName(credentials);

System.out.println("Security context set for user: "+username);

} catch (org.omg.SecurityLevel2.LoginFailed e) {

// Handle the LoginFailed exception.

}

}

...

}

Chapter 4. Migrating applications 57

2. Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS

programmatic login APIs. The following example assumes that the application code is granted for the

required Java 2 security permissions. For more information, see the Security Guide PDF and the JAAS

documentation located at: http://www.ibm.com/developerworks/java/jdk/security/.

public class TestClient {

...

private void performLogin() {

// Create a new JAAS LoginContext.

javax.security.auth.login.LoginContext lc = null;

try {

// Use GUI prompt to gather the BasicAuth data.

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

+ e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS Login Configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

// Retrieve the name of the principal from the Subject

// so we can tell the user that login succeeded,

// should only be one WSPrincipal.

java.util.Set ps =

s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);

java.util.Iterator it = ps.iterator();

while (it.hasNext()) {

com.ibm.websphere.security.auth.WSPrincipal p =

(com.ibm.websphere.security.auth.WSPrincipal) it.next();

System.out.println("Principal: " + p.getName());

}

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

58 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

http://www.ibm.com/developerworks/java/jdk/security/

}

}

...

}

Migrating from the CustomLoginServlet class to servlet filters

The CustomLoginServlet class was deprecated in Version 5. Those applications using the

CustomLoginServlet class to perform authentication now need to use form-based login. Using the

form-based login mechanism, you can control the look and feel of the login screen. In form-based login, a

login page is specified that displays when retrieving the user ID and password information. You also can

specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.

Servlet filters can dynamically intercept requests and responses to transform or use the information

contained in the requests or responses. One or more servlet filters attach to a servlet or a group of

servlets. Servlet filters also can attach to JSP files and HTML pages. All the attached servlet filters are

called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant Web

container. A form login servlet performs the authentication and servlet filters can perform additional

authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either

form login page or for /j_security_check URL. The j_security_check is posted by the form login page

with the j_username parameter, containing the user name and the j_password parameter containing the

password. A servlet filter can use user name and password information to perform more authentication or

meet other special needs.

1. Develop a form login page and error page for the application, as described in the Security Guide PDF.

2. Configure the form login page and the error page for the application as described in the Security Guide

PDF.

3. Develop servlet filters if additional processing is required before and after form login authentication.

Refer to the Security Guide PDF for details.

4. Configure the servlet filters developed in the previous step for either the form login page URL or for the

/j_security_check URL. Use an assembly tool or development tools like Rational Application

Developer to configure filters. After configuring the servlet filters, the web-xml file contains two stanzas.

The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.

The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL. In

this case, the servlet filter maps to /j_security_check.

<filter id=″Filter_1″>

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login operation</description>

 <init-param>

 <param-name>ParamName</param-name>

 <param-value>ParamValue</param-value>

 <init-param>

 </filet>

 <filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

 </filter-mapping>

Chapter 4. Migrating applications 59

This migration results in an application that uses form-based login and servlet filters without the use of the

CustomLoginServlet class.

The use of form-based login and servlet filters by the new application are used to replace the

CustomLoginServlet class. Servlet filters also are used to perform additional authentication, auditing and

logging.

Migrating Java 2 security policy

Previous WebSphere Application Server releases

Starting from Version 3.x, WebSphere Application Server installed a Java 2 security manager in the server

run time to prevent enterprise applications from calling the System.exit() and the

System.setSecurityManager() methods. These two Java APIs have undesirable consequences if called by

enterprise applications. The System.exit() API, for example, causes the Java virtual machine (application

server process) to exit prematurely, which is an undesirable operation for an application server.

However, Java 2 security was not a fully supported feature prior to Version 5. To support Java 2 security

properly, all the server run time must be marked as privileged (with doPrivileged() API calls inserted in

the correct places), and identify the default permission sets or policy. Application code is not privileged and

subject to the permissions defined in the policy files. The doPrivileged instrumentation is important and

necessary to support Java 2 security. Without it, the application code must be granted the permissions

required by the server run time. This is due to the design and algorithm used by Java 2 security to enforce

permission checks. Please refer to the Java 2 security check permission algorithm.

The following two permissions are enforced by the WebSphere Java 2 security manager (hard coded):

v java.lang.RuntimePermission(exitVM)

v java.lang.RuntimePermission(setSecurityManager)

Application code is denied access to these permissions regardless of what is in the Java 2 security policy.

However, the server run time is granted these permissions. All the other permission checks are not

enforced.

Partial support was introduced since the version 4.02 product release. Prior to version 4.0.2, Java 2

security was not supported. From version 4.02 and later, only two permissions are supported:

v java.net.SocketPermission

v java.net.NetPermission

However, not all the product server run time is properly marked as privileged. You must grant the

application code all the other permissions besides the two listed previously or the enterprise application

can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

What changed

Java 2 Security is fully supported in version 5.x and later, which means all permissions are enforced. The

default Java 2 security policy for enterprise application is the recommended permission set defined by the

J2EE 1.4 specification. Refer to the

install_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy file for the

default Java 2 security policy granted to enterprise applications. This is a much more stringent policy

compared to previous releases.

All policy is declarative. The product security manager honors all policy declared in the policy files. There

is an exception to this rule: enterprise applications are denied access to permissions declared in the

install_rootprofiles/profile_name/config/cells/cell_name/filter.policy file.

60 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Note: Enterprise applications that run on Version 4.0.x with Java 2 security enabled are not guaranteed to

run successfully when migrating to Version 5 (when Java 2 security is enabled), even if the Java 2

security policy is migrated properly. The default Java 2 security policy for enterprise applications is

much more stringent and all permissions are enforced in Version 5. It might fail because the

application code does not have the necessary permissions granted where system resources (such

as file I/O for example) can be programmatically accessed and are now subject to the permission

checking.

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:

v java.security.policy. The absolute path of the policy file (action required). It contains both system

permissions (permissions granted to the Java Virtual Machine (JVM) and the product server run time)

and enterprise application permissions. Migrate the Java 2 security policy of the enterprise application to

Version 5. For Java 2 security policy migration, see the steps for migrating Java 2 security policy.

v enableJava2Security. Used to enable Java 2 security enforcement (no action required). This is

deprecated; a flag in the WebSphere configuration application programming interface (API) is used to

control whether to enabled Java 2 security. Enable this option through the administrative console.

v was.home. Expanded to the installation directory of the WebSphere Application Server (action might be

required). This is deprecated; superseded by ${user.install.root} and ${was.install.root}

properties. If the directory contains instance specific data then ${user.install.root} is used; otherwise

${was.install.root} is used. Use these properties interchangeably for the WebSphere Application

Server or the Network Deployment environments. See the steps for migrating Java 2 security policy.

Migrating the Java 2 Security Policy

There is no easy way of migrating the Java policy file from Version 4.0.x automatically because there is a

mixture of system permissions and application permissions in the same policy file. Manually copy the Java

2 security policy for enterprise applications to a was.policy or app.policy file. However, migrating the

Java 2 security policy to a was.policy file is preferable because symbols or relative codebase is used

instead of absolute codebase. There are many advantages to this process. The permissions defined in the

was.policy file should only be granted to the specific enterprise application, while permissions in the

app.policy file apply to all the enterprise applications running on the node where the app.policy file

belongs. Refer to the Security Guide PDF for more details on policy management.

The following example illustrates the migration of a Java 2 security policy from a previous release. The

contents include the Java 2 security policy file (the default is install_rootprofiles

profile_name/properties/java.policy) for the app1.ear enterprise application and the system

permissions (permissions granted to the JVM and product server run time). Default permissions are

omitted for clarity:

// For product Samples

 grant codeBase ″file:${install_root}/installedApps/app1.ear/-″ {

 permission java.security.SecurityPermission ″printIdentity″;

 permission java.io.FilePermission ″${install_root}${/}temp${/}somefile.txt″,

 ″read″;

 };

For clarity of illustration, all the permissions are migrated as the application level permissions in this

example. However, you can grant permissions at a more granular level at the component level (Web,

enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to

a particular component.

1. Ensure that Java 2 security is disabled on the application server.

Chapter 4. Migrating applications 61

2. Create a new was.policy file (if one is not present) or update the was.policy for migrated applications

in the configuration repository in

(profiles/profile_nameconfig/cells/cell_name/applications/app.ear/deployments/app/META-
INF/was.policy) with the following contents:

grant codeBase ″file:${application}″ {

 permission java.security.SecurityPermission ″printIdentity″;

 permission java.io.FilePermission ″

 ${user.install.root}${/}temp${/}somefile.txt″, ″read″;

 };

The third and fourth lines in the previous code sample are one continuous line, but extended beyond

the width of the page.

3. Use an assembly tool to attach the was.policy file to the enterprise archive (EAR) file. You also can

use an assembly tool to validate the contents of the was.policy file. For more information, see the

Security Guide PDF.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2

Security permissions and the default permissions set declared in the

${was.install.root}profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy

file. This requires code review, code inspection, application documentation review, and sandbox testing

of migrated enterprise applications with Java 2 security enabled in a pre-production environment. Refer

to developer kit APIs protected by Java 2 security for information about which APIs are protected by

Java 2 security. If you use third party libraries, consult the vendor documentation for APIs that are

protected by Java 2 security. Verify that the application is granted all the required permissions, or it

might fail to run when Java 2 security is enabled.

5. Perform pre-production testing of the migrated enterprise application with Java 2 security enabled.

Hint: Enable trace for the WebSphere Application Server Java 2 security manager in the

pre-production testing environment (with trace string:

com.ibm.ws.security.core.SecurityManager=all=enabled). This can be helpful in debugging the

AccessControlException exception thrown when an application is not granted the required permission

or some system code is not properly marked as privileged. The trace dumps the stack trace and

permissions granted to the classes on the call stack when the exception is thrown. For more

information, see the Security Guide PDF.

Note: Because the Java 2 security policy is much more stringent compared with previous releases, it

is strongly advised that the administrator or deployer review their enterprise applications to see

if extra permissions are required before enabling Java 2 security. If the enterprise applications

are not granted the required permissions, they fail to run.

Migrating Version 5 Application Profiles to Version 6

The WebSphere Application Server Version 6 application profiling function works under the unit of work

concept. This gives it a more predictable data access pattern based on the active unit of work, which could

be either a transaction or an ActivitySession.

In order to support Java 2 platform, Enterprise Edition (J2EE) 1.3 applications with an application profile

configuration from WebSphere Application Server Version 5.x , the Application Profile service on a Version

6 server must enable the Application Profiling 5.x Compatibility Mode as the default. The 5.x compatibility

mode has a fair amount of performance overhead on a Version 6 server. Because of this, if there is no

J2EE 1.3 application with an application profile V5.x configuration installed, the server does not load the

support for the 5.x compatibility mode during startup, even when the 5.x compatibility mode is turned on.

After the server starts without loading the 5.x compatibility mode support, if a J2EE 1.3 application with an

application profile V5.x configuration installs on the server and attempts to start, the following message is

displayed, and the server must be restarted:

62 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

ACIN0031E: The J2EE 1.3 application <ApplicationName> is configured for application

profiling and is installed and starting on a running server that enables Application Profiling

 5.x Compatibility Mode. You must re-start the server.

This situation only happens when:

1. the server started with the Application Profile service enabled and 5.x compatibility mode turned on

2. you try to install and start a J2EE 1.3 application with an application profile configured in Version 5.x.

To avoid this situation, you must install at least one J2EE 1.3 application with an application profile Version

5.x configuration before starting the server.

Ideally, you would upgrade your J2EE 1.3 applications to use the Version 6 application profiling

configuration and turn off the Application Profiling 5.x Compatibility Mode through the administrative

console.

Therefore it is recommended that you migrate any application you might have configured with application

profiling in Version 5. Application profiles migration only requires you to re-configure your applications in

the Version 6 Application Server Toolkit (AST). See the Developing and Deploying Applications PDF for

more information.

Migrating internationalized applications

Applications that used the internationalization service in WebSphere Application Server versions 4 and 5

can use the service in later versions with no modification. The packaging and structure of the

internationalization context API remain identical across releases. Most importantly, the semantics of the

API remain as well.

In Version 4, the internationalization service did not provide internationalization deployment descriptor

policy information to direct how the service manages internationalization context across the various

application components. Rather, the service employed the implicit client-side internationalization (CSI) and

server-side internationalization (SSI) policies, which dictated how the service managed context according

to the type of Java 2 Platform, Enterprise Edition (J2EE) container hosting a component. For details, refer

to the combined information center for WebSphere Application Server Version 4. Briefly, all server

components in Version 4 are SSI, and all EJB client applications are CSI.

In versions 5 and later, the internationalization type setting of all server components is configured to

Container by default. The internationalization service assigns the RunAsCallercontainer internationalization

attribute by default to any container-managed (CMI) servlet or enterprise bean invocation lacking a

container internationalization attribute. As a result, the invocations of server components that lack

internationalization policy information in the deployment descriptor run under the policy, [CMI,

RunAsCaller], which is semantically equivalent to the SSI internationalization policy of Version 4; EJB

client applications run under the logical policy [AMI, RunAsServer], which is equivalent to the CSI policy of

Version 4.

When migrating a Version 4 application to versions 5 or later, it is unnecessary to configure the

internationalization deployment descriptor information during application assembly because all component

invocations run under semantically equivalent internationalization context management policies.

Chapter 4. Migrating applications 63

http://www7b.software.ibm.com/wsdd/WASInfoCenter/infocenter/

64 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 5. Migrating product configurations

You can migrate administrative configurations with the Migration wizard or with the command line migration

tools, as this task describes.

If you use an earlier version of WebSphere Application Server, the system administrator might have

fine-tuned various application and server settings for your environment. It is important to have a strategy

for migrating these settings with maximum efficiency and minimal loss.

You can perform incremental migration of V4.0.x nodes by calling the migration tools multiple times, each

time specifying a different configuration file. Various reasons exist for having multiple configuration files.

Whatever the reason, migrating one configuration file at a time lets you test applications incrementally

before continuing to the next configuration file. You can also perform incremental migration of V5.x

instances in the same manner.

Before using the migration tools, consult the V6.0 Release Notes document to understand what fixes you

must apply to earlier versions. Applying fixes to an earlier version might also apply fixes to files that have a

role in the migration. Apply any fixes to ensure the most effective migration of configurations and

applications possible.

The migration tools in V6.0 support migration from the following versions of WebSphere Application

Server: V4.0.x, V5.0.x, V5.1.x.

IBM provides a set of migration tools for migrating administrative configurations from V4.0.x, V5.0.x, or

V5.1.x to the Base product.

When you use the migration tools, the overall migration process is:

1. Install the V6 product. Installing the product creates a stand-alone Application Server.

2. Start the First steps console.

3. Select the Migration wizard on the First steps console.

4. Use the Migration wizard to migrate the previous release to the V6 product.

The Migration wizard calls the WASPostUpgrade command line tool. WASPostUpgrade uses the

backupConfig command to save the existing V6.0 configuration before performing migration. The results

are stored in the profile_name/temp directory. You can use the restoreConfig command to restore the

backup, if required.

1. Migrate V5.x and V4.0.x base WebSphere Application Server nodes.

Select one of the following migration scenarios for information about how to migrate configuration data

from a V4.0.x or V5.x Express node or a V4.0.x or V5.x base WebSphere Application Server node to a

V6 stand-alone Application Server:

v “Migrating V4.0.x of WebSphere Application Server to a V6 stand-alone Application Server” on page

66

v “Migrating V4.0.x of WebSphere Application Server to a remote stand-alone V6 machine” on page

68

v “Migrating V5.x of WebSphere Application Server to a V6 Application Server” on page 73

v “Migrating V5.x of WebSphere Application Server to a V6 stand-alone Application Server on a

remote machine” on page 71

v “Migrating a V5.x Application Server configuration instance to a V6 Application Server profile” on

page 73

v “Migrating from an operating system that is no longer supported” on page 74

© Copyright IBM Corp. 2004 65

Note: If you are migrating a V5.x managed node to a V6 managed profile, the node names must

match.

2. Configure the WebSphere Application Server environment after migration, as described in “Configuring

WebSphere Application Server after migration” on page 75. This is a way of verifying the results of the

migration tools. You can also use “Configuration mapping during migration” on page 25 to verify the

results of the migration. The topic has a detailed description of how the migration tools migrate objects,

and what you should verify.

You can use the migration tools to migrate from one version of WebSphere Application Server to another.

Stand-alone migrations

Select the appropriate migration scenarios for information about how to migrate from a V4.0.x or V5.x

Express node or a V4.0.x or V5.x base WebSphere Application Server node to a V6 stand-alone

Application Server:

v “Migrating V4.0.x of WebSphere Application Server to a V6 stand-alone Application Server”

v “Migrating V4.0.x of WebSphere Application Server to a remote stand-alone V6 machine” on page 68

v “Migrating V5.x of WebSphere Application Server to a V6 Application Server” on page 73

v “Migrating V5.x of WebSphere Application Server to a V6 stand-alone Application Server on a remote

machine” on page 71

v “Migrating a V5.x Application Server configuration instance to a V6 Application Server profile” on page

73

v “Migrating from an operating system that is no longer supported” on page 74

You can use the migration tools to migrate from one version of WebSphere Application Server to another.

Migrating V4.0.x of WebSphere Application Server to a V6 stand-alone

Application Server

You can use the migration tools to migrate configuration data from Version 4.0.x of WebSphere Application

Server to WebSphere Application Server V6.

If you use an earlier version of WebSphere Application Server, the system administrator might have

fine-tuned various application and server settings for your environment. It is important to have a strategy

for migrating these settings with maximum efficiency and minimal loss.

You can migrate administrative configurations with the Migration wizard, which is the graphical interface to

the Version 6 migration tools (the “WASPreUpgrade command” on page 139 and the “WASPostUpgrade

command” on page 142). You can also migrate manually, using the tools from the command line, as this

task describes.

You can perform incremental manual migration by calling the migration tools multiple times, each time

specifying a different configuration file. There are various reasons for having multiple configuration files.

Whatever the reason, migrating one configuration file at a time lets you test applications incrementally

before continuing to the next configuration file.

Manual migration provides a more incremental migration approach than the complete migration that the

Migration wizard provides. IBM provides a set of migration tools for migrating administrative configurations

to the base WebSphere Application Server product from Version 4.0.x. The overall migration process is to

install the Version 6 product, back up the current configuration and necessary files, and restore the

configuration.

66 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Before using the migration tools, consult the Release Notes document to understand what fixes you must

apply to earlier versions. Applying fixes to an earlier version might also apply fixes to files that have a role

in the migration. Apply any fixes to ensure the most effective migration of configurations and applications

possible.

Typically you can use the WASPreUpgrade and WASPostUpgrade migration tools to upgrade from V4.0.x

to V6 on the same machine. If your scenario includes migrating a V4.0.x configuration on one machine to

WebSphere Application Server V6 on another machine, use the alternate procedure described in

“Migrating V4.0.x of WebSphere Application Server to a remote stand-alone V6 machine” on page 68.

This topic describes using the V6 migration tools to migrate the following products:

v WebSphere Application Server Advanced Edition, V4.0.x

v WebSphere Application Server Advanced Single Server Edition V4.0.x (the steps vary slightly)

The WASPreUpgrade tool saves the existing V4.0.x configuration into a migration-specific-backup

directory. The WASPostUpgrade tool uses this directory to add the old configuration settings to the new

V6.0 environment.

1. Perform a typical or custom V6 installation..

2. Use the V6 Profile creation wizard to create a stand-alone profile.

Note: When you create the V6 profile, the NodeName you choose must match one of the NodeNames

in the V4.0.x environment.

3. Recommended: Use the Migration wizard to migrate the node (the recommended way to access the

Migration wizard is through the First Steps console). If you choose to use the Migration wizard, you do

not need to proceed through the rest of the steps in this task.

4. Save the current configuration using the WASPreUpgrade script from the migration/bin directory of

the product CD-ROM. Save the configuration in the migration-specific-backup directory:

WASPreUpgrade /usr/tmp/migration-specific-backup /usr/websphere/appserver yourNodeName

For V4.0.x Advanced Edition, verify that the administrative server of the existing environment is

running. The WASPreUpgrade tool provides status to the screen and to log files in the

migration-specific-backup directory. ASCII log file names start with the text WASPreUpgrade and

include a date and timestamp.

See “WASPreUpgrade command” on page 139 for a list of the files and directories from the existing

V4.0.x configuration that WASPreUpgrade saves to the backup directory.

The WASPreUpgrade tool saves selected files from the V4.0.x install_root/bin directory. It also

exports the existing Application Server configuration from the V4.0.x repository. The WASPreUpgrade

tool calls the XMLConfig tool to export the existing V4.0.x repository to the websphere_backup.xml file

in the migration-specific-backup directory.

V4.0.x Advanced Single Server Edition does not require the administrative server to run at the time of

migration. The WASPreUpgrade tool copies the server-cfg.xml file from the install_root/config

directory to the migration-specific-backup/config directory.

If errors occur for a V4.0.x Advanced Single Server Edition scenario while running the

WASPreUpgrade tool, you might have to apply fixes to the V4.0.x installation to successfully complete

the export step. See the IBM Support page for the latest fixes that might be applicable. When viewing

this information from the information center, click Support to link to the IBM Support page.

5. Migrate the previous configuration to the new installation with the WASPostUpgrade tool in the

profile_name/bin directory of the V6 installation. The WASPostUpgrade tool migrates V4.0.x

configuration information created by the WASPreUpgrade tool to the V6 installation.

The WASPostUpgrade tool does not migrate Samples or the administrative console application

because there are already Samples and an administrative console application in V6. The

WASPostUpgrade tool records detailed information specific to each enterprise bean it deploys, in the

WASPostUpgrade.log file.

Chapter 5. Migrating product configurations 67

6. Stop the administrative server of the earlier version if it is running, before running the Version 6 node.

7. Configure WebSphere Application Server after migration. This is a way of verifying the results of the

migration tools. You can also use Configuration mapping during migration to verify the results of the

migration. The topic has a detailed description of how the migration tools migrate objects, and what

you should verify.

You can use the migration tools to perform a manual migration from Version 4.0.x of WebSphere

Application Server to Version 6.

After you test and verify that the applications and configuration data you moved to the V6 node is

successful, you can uninstall the V4.0.x Application Server as described in the information centers for

those releases. Click the Library link at the bottom of any V6 information center topic to locate the

information centers for the other releases.

Migrating V4.0.x of WebSphere Application Server to a remote

stand-alone V6 machine

You can use the migration tools to perform a manual migration between two machines.

Typically you can use the WASPreUpgrade and the WASPostUpgrade migration tools from V6 of

WebSphere Application Server to upgrade from V4.0.x to V6 on the same machine.

However, some scenarios require that you migrate the V4.0 configuration on one machine to V6 on a

different machine. One of these scenarios is when you install new machines for your latest V6

environment but need to migrate your existing V4.0.x configuration from other machines.

This topic describes using the V6 migration tools to migrate the following products:

v WebSphere Application Server Advanced Edition, V4.0

v WebSphere Application Server Advanced Single Server Edition, V4.0 (the steps vary slightly)

The WASPreUpgrade tool saves the existing V4.0 configuration into a migration-specific-backup directory.

The WASPostUpgrade tool uses this directory to add the old configuration settings to the new V6

environment.

1. Obtain the V6 product CD-ROM. On this CD is the migration/bin directory. This directory contains a

special environment that you can use to run the WASPreUpgrade tool without installing V6.

2. Save the current configuration using the WASPreUpgrade script from the /migration/bin directory of

the V6 product CD-ROM, which you must mount to the V4.0 machine. Save the configuration in the

migration-specific-backup directory on the V4.0 machine.

WASPreUpgrade /opt/tmp/migration-specific-backup /opt/websphere/appserver adminNodeName

For all scenarios except V4.0.x Advanced Single Server Edition, verify that the administrative server of

the existing environment is running. The WASPreUpgrade tool provides status to the screen and to log

files in the migration-specific-backup directory. ASCII log file names start with the text WASPreUpgrade

and include a date and timestamp.

The WASPreUpgrade tool saves selected files from the V4.0.x /bin directory. It also exports the

existing Application Server configuration from the V4.0.x repository. The WASPreUpgrade tool calls

XMLConfig to export the existing V4.0.x repository to the websphere_backup.xml file in the

migration-specific-backup directory.

V4.0.x Advanced Single Server Edition does not require the administrative server to run at the time of

migration. The WASPreUpgrade tool copies the server-cfg.xml file from the install_root/config

directory to the migration-specific-backup/config directory.

68 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

If errors occur while running the WASPreUpgrade tool, you might have to apply fixes to the V4.0

installation to successfully complete the export step. See the IBM Support page for the latest fixes that

might be applicable. When viewing this information from the information center, click Support to link to

the IBM Support page.

3. Copy the migration-specific-backup directory from the V4.0 machine to the V6 machine. Use the ftp

command, shared storage, or some other mechanism to copy the file to the new machine.

Perform the following steps on the machine with V6 of WebSphere Application Server.

4. Copy the migration-specific-backup/websphere_backup.xml or the migration-specific-
backup/config/server-cfg.xml file and store it as an archive. You edit the original file in the next step.

5. Edit the migration-specific-backup/websphere_backup.xml or the /migration-specific-
backup/config/server-cfg.xml file to correct machine-dependent settings. Make the following changes

in the file:

a. Change the node name in the migration-specific-backup/websphere_backup.xml file. There is no

node name in the migration-specific-backup/config/server-cfg.xml file. If you are using the

same node name for the V6 machine that you use for the original V4.0.x configuration, do not

change the name. Otherwise, you must change all occurrences of the V4.0.x node name to the

node name you are using for WebSphere Application Server V6. The node name occurs in many

XML stanzas throughout the file. Failing to change all occurrences results in an incomplete

migration of data.

b. Change the path names in the migration-specific-backup/websphere_backup.xml or the

migration-specific-backup/config/server-cfg.xml file. The configuration file refers to path

names in many XML stanzas throughout the file. Update any reference to a file outside of the

V4.0.x directory structure to the equivalent directory on the new machine, even if you must create

an equivalent directory. The implication of configuring a matching environment means that you

might have to copy the original directory to the V6 machine. Or you might have to install the

appropriate software.

c. Check files in the properties directories for references that contain path names. In particular, edit

the migration-specific-backup/properties/sas.client.props and the migration-specific-
backup/properties/TraceSettings.properties files to correct machine-dependent settings: Make

the following changes in the file:

1) Change the path values of any property in the file.

Each property file contains properties that refer to paths. Update any reference to a file outside

of the V4.0.x directory structure to the equivalent directory on the new machine, even if you

must create an equivalent directory.

2) Correct specification styles for path values that are dependent on the operating system.

You must correct path specifications if they differ from what works on the machine running V6.

d. Correct specification styles for path names that are dependent on the operating system. You must

correct path specifications if they differ from what works on the machine running V6. For example,

if you are moving from V4.0.x on a Windows platform to V6 on a Linux platform, change any

Windows-specific path in the configuration file to use the Linux path style. Change

c:\mystuff\somepath to /opt/mystuff/somepath.

e. Change user IDs and passwords to match security requirements. You might have to change user

IDs and passwords if they are not identical to those in use on the V6 machine.

To change an encoded password to a clear-text password, change

<password>{xor}LCoxayht</password> to <password>mypassword</password>.

f. Change other machine-specific information. The configuration might refer to other software products

or configurations that do not exist on the new machine. For example, the old machine might have a

database. The V6 configuration should still point to the database on the old machine, possibly.

Modify the data source to point to the database on the V4.0.x machine.

6. Install the V6 product.

7. Use the Profile Creation wizard to create a V6 profile.

Chapter 5. Migrating product configurations 69

8. Add the V4.0.x configuration to the V6 configuration. Use the WASPostUpgrade tool in the

install_root/bin directory of V6 to add the V4.0.x configuration to the V6 configuration.

WASPostUpgrade /opt/tmp/migration-specific-backup

The WASPostUpgrade tool records detailed information specific to each enterprise bean it deploys, in

the migration-specific-backup/WASPostUpgrade.log file.

9. Configure WebSphere Application Server after migration. This is a way of verifying the results of the

migration tools. You can read Configuration mapping during migration to learn more about the results

of migration. This topic has a detailed description of how the migration tools migrate objects, and what

you should verify.

This procedure results in migrating WebSphere Application Server from V4.0.x to a remote V6 machine.

Migrating V5.x Express to V6 base

You can migrate the configuration from V5.x WebSphere Application Server - Express to WebSphere

Application Server, V6.

This topic describes how to use the V6 WebSphere Application Server migration tools to migrate your

applications and configuration from V5 WebSphere Application Server - Express to V6 WebSphere

Application Server.

1. Use the V6 Migration wizard to transfer configuration settings from V5 Express to V6 Express.

a. Start the First steps console at the end of installation, or by issuing the following command from

the firststeps directory:

v

./install_root/firststeps/firststeps.sh

v

install_root\firststeps\irststeps.bat

b. Start the Migration wizard from the First steps console:

The Migration wizard uses the WASPreUpgrade command line tool and the WASPostUpgrade

command line tool to migrate the data and applications from V5 to V6.

This step transfers configuration information for the V5 Express server resources, security, variables,

and virtual hosts to the V6 base product. All stored information is in XML files in the

install_root/profiles/profile_name/config/cells directory of each product. For a full description of

each XML file, see the Configuration documents and Configuration document descriptions topics in the

information center.

The WASPreUpgrade command line tool saves selected files from the /bin directory to a backup

directory you specify on a wizard panel. Migration saves files from the following directories to the

backup directory:

v classes (This directory is not saved for iSeries platforms.)

v config

v installableApps

v installedApps (or an alternate directory specified by the user)

v properties (A subset of files in this directory is saved for iSeries platforms.)

Later, the Migration wizard uses the WASPostUpgrade migration tool to restore the environment in the

backup directory into the base WebSphere Application Server installation.

2. Resolve port differences.

The Migration wizard displays a list of ports for Express. If the same port is used for more than one

purpose, the migration tools log a message that states you must manually resolve the port conflict.

Two groups of port differences can remain within port assignments in the virtual hosts file, at the cell

level:

v HTTP transport chains

70 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/ccfg_confdoc.html
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/rcfg_rconfdoc_descriptions.html

WebSphere Application Server and Express use different HTTP transport ports by default. To

maintain port assignments used by Express when migrating to the base WebSphere Application

Server product, add the Express port values at the server level:

a. In the WebSphere Application Server administrative console, click the plus sign (″+″) next to

Servers

b. Click Application Servers.

c. Click the server on which you plan to install your applications.

d. Click Web Container settings.

e. Click Web container transport chains.

f. Use Studio Site Developer to find the original V5 Express remote server HTTP transport ports:

1) Display the Server Configuration view.

2) Double-click the Express remote server that you are migrating.

3) Click Ports.

4) View ports defined under Server Settings.
g. Click New in the V6 WebSphere Application Server administrative console to create additional

entries needed to define a port.
v Advanced ports

There are a number of special purpose ports defined for Express. These ports are described in the

“Migrating and coexisting” on page 23 topic. Use non-conflicting values to continue to run both V5

Express and V6 Express on the same system (coexistence), or if WebSphere Application Server

applications are dependent on the port values.

Using V6 Express port values might require you to change applications. Change any references to

port values that are changing. To identify Express applications that require port changes, modify the

port configuration on the V5 Express installation to use V6 port values. Test the applications that you

intend to migrate to identify port references that are in error.

a. In the WebSphere Application Server administrative console, click the plus sign (″+″) next to

Servers.

b. Click Application Servers to get a list of servers.

c. Click the server on which you intend to install the applications.

d. Click Ports.

e. Use Studio Site Developer to find the original V5 Express remote server port assignments:

1) Display the Server Configuration view.

2) Double click the Express remote server that you are migrating.

3) Click Ports.

4) View Advanced Ports defined under Server Settings.

3. Verify migrated applications.

To verify that applications are installed successfully:

a. Click Enterprise Applications in the administrative console.

b. Check your migrated applications.

c. Click Start.

Verify that your applications start successfully.

You can successfully migrate applications to the base WebSphere Application Server product.

Migrating V5.x of WebSphere Application Server to a V6 stand-alone

Application Server on a remote machine

You can use the migration tools to migrate between two machines.

Typically you can use the WASPreUpgrade and the WASPostUpgrade migration tools to upgrade from

Version 5.x to Version 6 on the same machine.

However, some scenarios require that you migrate the V5.x configuration on one machine to V6 on a

different machine. One of these scenarios is when you install new machines for your V6 environment but

need to migrate your existing V5.x configuration from other machines.

Chapter 5. Migrating product configurations 71

To ensure that your operating system is supported by WebSphere Application Server Version 6, visit the

following site for the most current list of supported hardware and software:

v WebSphere Application Server system requirements

If you find that your operating system is not supported for migration to V6, see “Migrating from an

operating system that is no longer supported” on page 74.

This task describes how to use the V6 migration tools to migrate WebSphere Application Server, Version

5.x to Version 6 on a separate machine.

The WASPreUpgrade tool saves the existing V5.x configuration into a migration-specific-backup

directory. The WASPostUpgrade tool uses this directory to add the old configuration settings to the new V6

environment.

1. Obtain the V6 product CD-ROM. On this CD is the migration/bin directory. This directory contains a

special environment that you can use to run the WASPreUpgrade tool without installing V6.

2. Save the current configuration using the WASPreUpgrade script from the migration/bin directory of

the V6 product CD-ROM, which you must mount to the V5.x machine. Save the configuration in the

migration-specific-backup directory on the V5.x machine.

Linux:

./WASPreUpgrade.sh /filepath/migration-specific-backup /opt/WebSphere/AppServer

Windows:

WASPreUpgrade C:\filepath\migration-specific-backup C:\Program Files\WebSphere\AppServer

The WASPreUpgrade tool provides status to the screen and to log files in the migration-specific-
backup directory. ASCII log file names start with the text WASPreUpgrade and include a date and

timestamp.

3. Copy the migration-specific-backup directory from the V5.x machine to the V6 machine. Use the ftp

command, shared storage, or some other mechanism to copy the directory to the new machine.

4. Optional: Run the backupConfig tool from the 5.x install_root to create a backup of your 5.x

environment.

5. Install V6 of WebSphere Application Server. Install the same features as the earlier release.

6. Create a profile with the Profile Creation wizard.

Note: When you create the V6 profile, the node name you choose must match one of the NodeNames

in the V4.0.x environment.

7. Add the V5.x configuration to the V6 configuration. Use the WASPostUpgrade tool in the

install_root/bin directory of the V6 installation to add the V5.x configuration to the V6 configuration.

Linux:

./WASPostUpgrade.sh /filepath/migration-specific-backup

Windows:

WASPostUpgrade C:\filepath\migration-specific-backup

The WASPostUpgrade tool records detailed information specific to each enterprise bean it deploys, in

the migration-specific-backup/WASPostUpgrade.log file.

8. Modify the configuration using the WebSphere Application Server 6 administration interfaces. Make

these changes:

a. Change user IDs and passwords to match security requirements. You might have to change user

IDs and passwords if they are not identical to those in use on the V5.x machine.

b. Change other machine-specific information. The configuration might refer to other software

products or configurations that do not exist on the new machine. For example, the old machine

might have a database. Modify the data source to point to the database on the old machine.

72 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

You have migrated WebSphere Application Server from V5.x to a remote V6 machine.

Migrating V5.x of WebSphere Application Server to a V6 Application

Server

The migration tools of WebSphere Application Server, Version 6 support migrating configuration data from

V5.x to V6.

If your scenario includes migrating a V5.x configuration on one machine to WebSphere Application Server

V6 on another machine, use the alternate procedure described in “Migrating V5.x of WebSphere

Application Server to a V6 stand-alone Application Server on a remote machine” on page 71.

This task describes how to migrate the configuration of a V5.x node to V6. This task describes how to use

the V6 migration tools to perform the migration.

1. Stop all of the V5.x Application Servers that are running on the node. Use the stopServer command

from the install_root/bin directory. For example, issue the following commands to stop server1 and

server2 on a Linux platform:

stopServer.sh server1

stopServer.sh server2

If security is enabled, specify the -user and -password parameters on the stopServer command.

You can migrate a V5.x node without stopping it. It is not necessary to have the node running to

migrate its configuration. The migration tools can retrieve all the configuration data while the node is

stopped. You must stop the node before you can start the V6 node that you are installing.

2. Install the V6 product.

3. Use the Profile Creation wizard to create a V6 profile.

4. Use the Migration wizard to migrate the node (the recommended way to access the Migration wizard is

through the First Steps console).

After going through the Migration wizard, you have upgraded a Version 5.x node to Version 6.

Migrating a V5.x Application Server configuration instance to a V6

Application Server profile

The migration tools of WebSphere Application Server, Version 6 support migrating a V5.x configuration

instance to a V6 profile.

This task describes how to migrate the configuration of a V5.x configuration instance to a V6 profile. This

task describes how to use the V6 migration tools to perform the migration.

If the node you are migrating is part of a deployment manager cell, migrate the V5.x deployment manager

to V6 as described in the information center for Network Deployment first, before continuing this

procedure. The deployment manager node must always be at the highest release level within the cell.

1. Stop all of the V5.x Application Servers that are running on the node. Use the stopServer command

from the install_root/bin directory. For example, issue the following commands to stop server1 and

server2 on a Linux platform:

stopServer.sh server1

stopServer.sh server2

If security is enabled, specify the -user and -password parameters on the stopServer command.

You can migrate a V5.x node without stopping it. But it is not necessary to have the node running to

migrate its configuration. The migration tools can retrieve all the configuration data while the node is

stopped. You must stop the node before you can start the V6 node that you are installing.

2. Install the V6 product.

3. From the profile_name/bin directory of the V6 node, run the following command:

Chapter 5. Migrating product configurations 73

UNIX:

 ./WASPreUpgrade.sh <backupDirectory> <V5_location>

Windows:

 WASPreUpgrade.bat <backupDirectory> <V5_location>

where backupDirectory is the name of the directory you want the output of WASPreUpgrade to be

stored, and V5_location is the location where the V5.x node is installed.

4. From the V6 node’s <profile_name>/bin directory, run the following command:

UNIX:

./WASPostUpgrade.sh <backupDirectory> -oldProfile <host_instanceName> -profileName <ProfileName>

Windows:

 WASPostUpgrade.bat <backupDirectory> -oldProfile <host_instanceName> -profileName <ProfileName>

where backupDirectory is the same directory you specified in WASPreUpgrade, and ProfileName is the

name of the V6 profile. (See “WASPostUpgrade command” on page 142 for more information on

WASPostUpgrade.)

5. Start the V6 node.

6. Optional: Uninstall the V5.x node. Perform this step only after you are certain that you have

successfully migrated the configuration of the node you intend to delete.

You have upgraded a Version 5.x configuration instance to a Version 6 profile.

Migrating from an operating system that is no longer supported

You can migrate an earlier WebSphere Application Server Version 4.0.x or Version 5.x release that is

running on an operating system that Version 6.0 does not support.

1. Start up the WebSphere Application Server Version 4.0.x or Version 5.x Administrative Server.

2. Run the WASPreUpgrade command line migration tool. Run the command from the migration\bin (or

migration/bin) directory in the platform_root of the Version 6 CD-ROM.

3. Shut down the WebSphere Application Server Version 4.0.x or Version 5.x release by stopping all

server nodes in the configuration, including the administrative server node.

4. Tar or zip the backup directory and FTP it to another system.

5. Install the new operating system, keeping the same host name. If possible, keep the system name and

passwords the same as the old system. Place any database files related to applications you are

migrating in the same path as the previous system. In general, try to keep paths the same. If you do

change paths and names, refer to“Migrating V5.x of WebSphere Application Server to a V6

stand-alone Application Server on a remote machine” on page 71. Make any changes before running

the WASPostUpgrade command below.

6. FTP the backup directory from the other system and unzip it.

7. Install the V6 product.

See the Getting Started PDF for more information.

8. Use the Profile creation wizard to create a V6 profile.

See the Getting Started PDF for more information.

9. Run the WASPostUpgrade command line migration tool, from the bin directory of the Version 6

install_root. Specify the backup directory that you unzipped in step 6. See the WASPostUpgrade topic

for proper command syntax.

install_root\bin\WASPostUpgrade WAS_HOME\migration

74 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Creating a backup directory on unsupported V4.0.x operating systems

This topic applies to installations of WebSphere Application Server Advanced Server Single Edition (AEs)

and Advanced Edition (AE) Version 4.0.x that are running on the AIX 4.3.3 or Solaris 7 operating systems.

Due to limitations of the JDK used by WebSphere Application Server V6, you cannot use the

WASPreUpgrade command that comes with the WebSphere Application Server V6 product CD with these

operating systems. To create the backup directory used as input to the WASPostUpgrade command, use

the following steps.

1. Optional: Upgrade your operating system. If you choose to upgrade your system, you do not need to

proceed to the following steps. AIX provides an ″OS migration″ path from release 4.3.3 to release 5.1

that retains your current system configuration. Solaris provides an ″OS Upgrade″ path from Solaris 7 to

Solaris 8 that does the same. Consult your operating system documentation for details.

2. Manually create the backup directory:

a. For both AE and AEs, the first step is to back up the common set of configuration files. The

following example reflects an AIX installation. You may have to update many of the values in this

example to reflect your configuration requirements, or to reflect a different operating system.

copy /websphere/appserver/bin to /websphere/backup/websphere_backup/bin

copy /websphere/appserver/classes to /websphere/backup/websphere_backup/classes

copy /websphere/appserver/config to /websphere/backup/websphere_backup/config

copy /websphere/appserver/installableApps to /websphere/backup/websphere_backup/installableApps

copy /websphere/appserver/installedApps to /websphere/backup/websphere_backup/installedApps

copy /websphere/appserver/lib/app to /websphere/backup/websphere_backup/lib/app

copy /websphere/appserver/properties to /websphere/backup/websphere_backup/properties

Note: Some of the above directories may not exist on all systems.

b. For AE only, the following additional steps are required:

1) Save the following configuration files:

copy /websphere/appserver/installedConnectors to

 /websphere/backup/websphere_backup/installedConnectors

2) Use the Version 4.0.x XMLConfig tool to export the current configuration. Before exporting an

AE configuration to a file, be sure that the administrative server is running. See the V4.0 AE

XMLConfig documentation for further details on the following parameters:

v adminNodeName

v export

v nameServiceHost

v nameServicePort

Sample export command for Version 4.0.x:

 XMLConfig -export /websphere/backup/websphere_backup.xml -adminNodeName cally

Configuring WebSphere Application Server after migration

Installation automatically configures IBM WebSphere Application Server, Version 6 and all other bundled

products. There is no need for additional configuration if you did not migrate from an earlier version.

If you migrate an installation of WebSphere Application Server, Version 4.0.x, there are some items to

review before considering your environment fully configured.

1. Examine any Lightweight Third Party Authentication (LTPA) security settings you might have used, and

apply the settings in the WebSphere Application Server security settings.

Global security that uses LTPA authentication in Version 4.0.x is migrated to the base WebSphere

Application Server product. However, although global security was enabled in Version 4.0.x, it is

disabled during migration to Version 6.

Chapter 5. Migrating product configurations 75

2. Check the WASPostUpgrade.log file in the logs directory, for details about JSP 0.91 objects that the

migration tools do not migrate.

Version 6 does not support JSP 0.91 objects. The migration tools do not migrate JSP objects

configured to run as JSP 0.91 objects. The migration tools do, however, recognize the objects in the

output and log them. Version 6 runs JSP 1.0 and 1.1 objects as JSP 1.2 objects, which is its only

supported level.

3. Identify and use the migration tools to migrate non-migrated nodes in Version 4.0.x repositories that

have multiple nodes.

A Version 4.0.x repository can contain more than one node name and its associated children. The

WASPostUpgrade tool processes only those objects and children that match the migrating node. This

determination is made by checking the names of nodes in configuration files with fully qualified and

non-qualified network names of the migrating machine.

4. Update J2EE resources in client JAR files to the new resource format with the ClientUpgrade tool.

J2EE applications might exist on the client, if the client has client JAR files with J2EE resources.

5. To migrate a Version 4.0.x or V5.x XML application to the Version 6 level, you must recompile it.

6. Optional: Configure WebSphere Application Server to use a database.

7. Review your Java virtual machine settings to verify that you are using a heap size of at least 50 for

improved startup performance.

If you have used a smaller heap size in the past, you can use the default heap size, which is now 50.

Now you are finished with pre-test configuration. You might have to fine tune your WebSphere Application

Server environment as you test it. Test all redeployed applications before moving them into production.

XML parser for Java code

On November 9, 1999, the Apache Software Foundation announced the creation of the xml.apache.org

project for Open Source Extensible Markup Language (XML) solutions.

As part of that announcement, IBM announced that it was donating its XML4J, XML4C, and LotusXSL

technologies to the xml.apache.org project. The parsing technologies have been renamed Xerces, and the

LotusXSL technology has been renamed Xalan.

IBM is shifting its XML parsing development resources to work on the Xerces parsers. The objective is to

use the Xerces code base as the foundation for XML4J and XML4C. This version of XML4J is based on

the Apache Xerces2 code base.

What is the difference between XML4J and Xerces?

IBM has tested this version of XML4J in addition to the testing done by the xml.apache.org project. The

names of the main Java archive (JAR) files have changed from xml4j.jar to xmlParserAPIs.jar and

xercesImpl.jar, and from xml4jSamples.jar to xercesSamples.jar.

This version of XML4J contains one major API change and a few relatively minor API changes from the

last major release. It’s major features are many bugfixes and performance improvements, as well as the

addition of a few features.

XML4J 4.2.x ships with the official W3C DOM HTML Recommendation API . The major change to the API

was the removal of setSelected from the HTMLOptionElement interface. To workaround this change from

XML4J 4.1.x, use setAttribute and removeAttribute from the interface to modify the selected attribute.

Which part of the API is public, and which is subject to change?

To answer this question, you must understand the terms used for application program interface (API)

status:

76 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

http://alphaworks.ibm.com/tech/xml4c
http://xml.apache.org
http://xml.apache.org/#xerces
http://xml.apache.org/#xalan

v Public - The typical client developer codes for this API. Any severe problem in this API is addressed.

Also, the majority of this API is defined as ″public″ and has reached World Wide Web Consortium

(W3C) Recommendation status or a similar status in the XML Core Working Group. Not much change in

these interfaces is expected. A W3C Recommendation indicates that a specification is stable,

contributes to Web interoperability, and has been reviewed by all W3C members, who are in favor of

supporting its adoption by the industry.

v Experimental - These interfaces and classes reflect the latest W3C specifications and Simple API for

XML (SAX) specifications from the XML Core Working Group. Because these specifications are not

finalized, the interfaces are subject to change. As an experimental specification is adopted at the

highest level, such as at the W3C Recommendation level, the specification is upgraded to the Public

category.

v Internal - These classes are considered internal to Xerces, even though they might be public and have

public methods. Developers with complex and specific needs, such as building an XML parser can use

these classes. However, the architecture is subject to change.

The following table summarizes API status by interface content:

API Status

API contents (packages, interfaces,

classes and methods)

Comments

Public DOM Level 1 interfaces (found in

org.w3c.dom, org.w3c.dom.html) and

DOM Level 2 (DOM2) interfaces

(found in org.w3c.dom and

subpackages)

The DOM2 interfaces are

implemented in the same interfaces

as DOM1 as new methods.

SAX Level 1 interfaces (found in

org.xml.sax. and subpackages) and

SAX Level 2 (SAX2) interfaces (found

in org.xml.sax. and subpackages)

DOM L1, DOM L2, SAX1, and SAX2

Interfaces are stable.

Experimental DOM Level 3 (DOM3) and Core DOM

Level 3 (DOM3) Abstract Schemas

and Load and Save (found in

org.apache.xerces.dom3 and

subpackages).

DOM L3 is in working draft status.

XML4J provides a subset of DOM L3

support.

Internal All other packages are internal. The internal Xerces architecture can

change.

For more information see XML4J Information.

As an Apache Open Source project, the Xerces community is interested in your questions and feedback

regarding the entire API, not just the part that is designated as public.

If you have specific questions, patches, or feedback regarding the Xerces API or code, visit the Apache

Web site, and sign up for the mailing list. Send more basic questions or questions specific to XML4J to the

AlphaWorks discussion forum.

Which APIs do I use for new development?

Use the org.apache.xerces.parsers.* classes for new development. The four compatibility parser classes

are replaced by the following classes:

org.apache.xerces.parsers.SAXParser

org.apache.xerces.parsers.DOMParser

Chapter 5. Migrating product configurations 77

http://www.w3.org/
http://w3.xml.ibm.com/software/Documentation/xml4j4docs/xml4j4_2_3/docs/index.html
http://xml.apache.org/
http://xml.apache.org/
http://www.alphaworks.ibm.com/tech/xml4j

Validation control has become a feature of the parser, and no longer requires separate classes.

The future direction for the parser instantiation classes is a parser instantiation API that results from the

W3C DOM Level 3 effort, which is just getting underway.

To make sure that your code is as stable as possible, use the interfaces that are specified in the Public

section of the preceding table (for example DOM1 and SAX1). Updates are made to the table to reflect the

new interfaces and the classes that are given Public status (for example, DOM2 and SAX2).

Is IBM making any additional support guarantees with XML4J?

IBM is not making any additional support guarantees for XML4J. In particular, IBM is not certifying that

XML4J is Y2K compliant. XML4J makes no internal date calculations.

Migrating applications to use the XML4J 4.2.2 parser and the XSLT4J 2.5.4 transformer

The Java API for XML Processing (JAXP) specification defines a pluggability mechanism for a SAX or a

DOM parser using the javax.xml.parsers APIs. Transformers are pluggable using the javax.xml.transform

APIs.

The IBM SDK 1.4.1 bundles in Version 6 include an XML4J 4.2.2 parser and an XSLT4J 2.5.4 transformer.

You can use a different implementation of JAXP in an application. Package the parser and transformer in

the application.

You can change an application to remove its dependency on the API in a previous version of the parser or

the transformer from an earlier version of WebSphere Application Server. Package the JAR files in the

application.

In both cases, set the class loader delegation mode to PARENT_LAST on the application or Web module.

Recommendation: Have your applications use the JAXP API instead of using the parser or transformer

implementation API directly.

You must recompile a V4.0.x XML application or a V5.x XML application to migrate it to the Version 6

level.

Configuring WebSphere Application Server for DB2 access

This topic describes how to configure V6 on a Linux or UNIX-based platform to use multiple V8.1 DB2

clients.

WebSphere Application Server, V6 does not configure environment variables for accessing a DB2

database during installation. A database is not a prerequisite. Therefore, the installation and configuration

of V6 do not involve database configuration.

You can install multiple DB2 Version 8.x instances on the same Linux or UNIX machine. This topic

describes configuring V6 on a Linux or UNIX-based platform to use multiple V8.x DB2 clients.

See the IBM WebSphere Application Server supported hardware, software, and APIs Web site at

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html for information about required

patches for DB2.

If your WebSphere Application Server, Version 6 machine has only a Version 8.x client installed, and all

DB2 data sources defined in WebSphere Application Server access DB2 databases through this client,

78 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

source the db2profile file in the login profile of your V6 instance owner, invoke the script

db2_home/java12/usejdbc2 to use the JDBC2 drivers instead of the default JDBC1 drivers, and put the

DB2 lib directory in the java.library.path variable.

For example, assume that the following values are true:

 WebSphere Application Server instance owner, that is the

administrative user who starts WebSphere Application

Server

adm00001

DB2 client instance owner db2inst1

DB2 client instance home /export/home/db2inst1

1. Update the .profile of user adm0001.

Add the following line:

. /export/home/db2inst1/sqllib/db2profile

You can also add the line to the setupCmdLine.sh script of WebSphere Application Server.

2. Specify the JDBC provider class path.

You have two ways to specify the JDBC provider class path on the DB2 JDBC Provider definition

panel of the WebSphere Application Server administrative console:

v Leave the default value (${DB2_JDBC_DRIVER_PATH}/db2java.zip) as is. Click Environment >

Manage WebSphere Variables in the administrative console. Set the DB2_JDBC_DRIVER_PATH

variable to the value /export/home/db2inst1/sqllib/java12. This approach is preferred.

v Enter the class path, such as /export/home/db2inst1/sqllib/java12/db2java.zip.

Windows platforms support only one DB2 installation. The DB2 environment variables are populated in

the system environment automatically. WebSphere Application Server does not need to set these

environment variables.

3. Set DB2-required environment variables for a particular Application Server.

a. On the administrative console of WebSphere Application Server, click Application servers >

server_name > Configuration > Java and process management > Environment entries > New

to create a new entry.

b. Create a DB2INSTANCE entry. Enter DB2INSTANCE in the Name field, the instance name, such as

db2v8 in the Value field, and click Apply.

c. Create a library path entry. Create the appropriate library path:

v AIX: LIBPATH entry

v Linux: LD_LIBRARY_PATH entry

v Solaris: LD_LIBRARY_PATH entry

v HP-UX: SHLIB_PATH entry

Use the value of the DB2 native library path, such as /export/home/db2v8/sqllib//lib for a V8.x

client, or /export/home/db2v8B/sqllib/lib for another V8.x client.

The DB2 lib directory must be on the java.library.path path. Otherwise the application server

cannot load the db2jdbc.so library and cannot work with DB2. Even with the DB2 lib directory on

the java.library.path path, you must invoke the /home/db2inst1/db2profile environment into the

root shell before you start the application server.

4. Configure the WebSphere Application Server product so that it can use both V8.1 clients.

In cases where multiple V8.1 clients are installed on a WebSphere Application Server V5.x machine,

and you intend to use two or more clients in your V6 Application Servers, you can set DB2

environment variables within each application server, instead of setting them globally as shown

previously.

DB2 UDB V8 uses a new client and server communications mechanism that is based on distributed

relational database architecture. While the new communications mechanism provides a number of

advantages, it also introduces restrictions on the communications capability between DB2 V7 and V8

products.

Chapter 5. Migrating product configurations 79

Because a number of restrictions exist when using a V8 client to communicate with a V7 server, this

configuration is not recommended. However, a V7 client can access a V8 server without difficulty.

If you have a WebSphere Application Server application that accesses both a V7 server (on a

WebSphere Application Server V5.x machine) and a V8 server (on a WebSphere Application Server V6

machine), use the DB2 V7 client on the WebSphere Application Server V5.x machine to access both

the V7 server and the V8 DB2 server.

WebSphere Application Server V6 supports DB2 V8.x but does not support V7.

You can choose to use a V7 client to access a V7 server, and use a V8 client to access a V8 server.

This choice results in two versions of DB2 clients.

When you use a V7 client (on a WebSphere Application Server V5.x machine) to access a V8 server,

you must explicitly bind V7 packages to the V8 server. To bind packages in the V7 client environment,

make a connection to the V8 server and bind both the db2cli.lst and the db2ubind.lst files. For

example:

cd /home/db2inst1/sqllib/bnd

db2 connect to v8server

db2 bind @db2cli.lst

db2 bind @db2ubind.lst

db2 terminate

One WebSphere Application Server node can support multiple application server instances. Each

application server is essentially a single Java runtime environment, which is one Java virtual machine

(JVM). Each JVM can have its own set of environment variables that differ from other application

server instances.

You can set DB2 environment variables per application server instance to let each application server

instance communicate with a single DB2 client instance. The client instance can have multiple

databases cataloged.

Such a configuration means that you cannot have one application server instance communicating with

both a V7 client and a V8.1 client. However, you can create another application server instance to

communicate with a different DB2 client.

5. Match the appropriate data source to the application component.

When mapping a data source to an application component, do not mismatch data sources from

different DB2 client instances.

For example, if you set the server1 application server instance to run in the DB2 V7 client instance,

server1 application components can use only data sources defined under the same V7 client JDBC

driver.

WebSphere Application Server V6 supports defining a JDBC provider on different scopes: cell, cluster,

node (the default) and server. If you have different DB2 client instances, consider defining them on the

server level instead of on the node or cluster level. Server level definitions avoid possible mismatches

between the data sources and different DB2 JDBC providers.

You can configure DB2 for use on WebSphere Application Server. Tune your WebSphere Application

Server environment as you test it. Test all redeployed applications before moving them into production.

80 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 6. Migrating Web server configurations

This topic describes what to do to migrate a Web server from supporting IBM WebSphere Application

Server, Version 4.0.x or V5.x, to support IBM WebSphere Application Server, Version 6.

Use the Plugins installation wizard to install the binary plug-in module and the plugin-cfg.xml

configuration file on the same machine as the Web server. Use the following procedure to migrate your

Web server to work with Version 6.

1. Install the IBM HTTP Server, Version 6.0 and its plug-in, or a plug-in for another supported Web server

from the product CD-ROM.

Install the HTTP Server and its plug-in on a different machine with the following procedure:

a. Insert the product CD-ROM labelled, WebSphere Application Server, IBM HTTP Server, into the

machine.

b. Close the launchpad if it starts automatically.

c. Change directories to the IHS directory on the product CD-ROM.

d. Click the installation script for your platform, to install the IBM HTTP Server:

v

InstallIHS.sh

v

InstallIHS.bat

This script installs the plug-in you need and makes the necessary configuration changes for the

supported Web server.

IBM HTTP Server, Version 6.0 can coexist with earlier versions, or you can upgrade earlier versions to

V6.0. Upgrading relieves you from having to uninstall and reinstall the HTTP server. Install V6.0 into

the same directory structure as the earlier version to upgrade that version. If you install the HTTP

Server into a different directory, V6.0 coexists with the previous version. By default, the administration

server and the Web Server use the same ports as the previous version, which causes a conflict.

However, you can change the port assignments on the port assignment panel of the Installation wizard

or the Profile creation wizard.

v Change the port number assignments for the new installation if you install into a separate directory.

You can change port numbers on the coexistence panel. You can back track through the installation

wizard and change the port settings if you have not already done so. Or, you can change the port

settings after installation, in the httpd.conf file in the HTTP Server directory.

v Update the IBM HTTP Server httpd.conf configuration entries to remove entries for earlier

WebSphere Application Server versions if you install into the same directory as an earlier version.

Versions 4.0.x, 5.x, and 6 of WebSphere Application Server use the same HTTP transport plug-in

binary module. If the Web server configuration file contains WebSphere Application Server V4.0.x or

V5.x plug-in information, you must manually remove it. Otherwise, when the HTTP Server attempts

to start the second V6 plug-in binary module, there is an error. The error indicates that the module is

already loaded.

The configuration file might contain duplicate entries for accessing WebSphere Application Server

Samples. Remove any aliases for previous versions and retain the V6 entries:

V4.0.x installations:

Alias /IBMWebAS/ "C:\WebSphere\AppServer40\web\"

Alias /WSsamples "C:\WebSphere\AppServer40\WSsamples\"

V5 installation:

Alias /WSsamples "c:\Program Files\WebSphere\AppServer\WSsamples"

Alias /IBMWebAS/ "c:\Program Files\WebSphere\AppServer\web\"

V6 installation:

Alias /WSsamples "c:\Program Files\WebSphere\AppServer\WSsamples"

Alias /IBMWebAS/ "c:\Program Files\WebSphere\AppServer\web\"

2. Migrate plug-ins to work with IBM WebSphere Application Server, Version 6. Starting with WebSphere

Application Server V6.0:

© Copyright IBM Corp. 2004 81

v Web servers can be represented in the administrative console.

v The Web server plug-in configuration file (plugin-cfg.xml) is associated with every Web server

definition instead of one cell-wide plug-in configuration file.

v The settings in the generated plug-in configuration file are based on the list of applications that are

deployed on the hosting Web server.

Use the following steps to generate a Web server plug-in configuration file that is based on topology.

This method was used for generated plug-in configuration files in previous releases.

a. Use the GenPluginCfg.bat or GenPluginCfg.sh script to generate the plug-in configuration file.

b. Manually propagate the generated plug-in configuration file from the machine on which the

WebSphere Application Server resides to the remote Web server.

c. Use the Plug-ins installation wizard to configure the Web server. Instead of using the default plug-in

configuration file location, specify the new location of the plug-in configuration file that was

propagated in the previous step.

It is recommended that you migrate to the application-centric approach which uses the Plug-ins

installation wizard. The Plug-ins installation wizard generates scripts that can be used to create the

Web server definition for that Web server and to map all of the applications that are currently deployed

to the newly created Web server definition.

You now understand what you must do to install or migrate a Web server and plug-in to work with

WebSphere Application Server, including installing the Web server on the same machine with the

Application Server, or on different machines.

After migrating your Web server, you can install the WebSphere Application Server product or migrate a

previous installation:

82 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 7. Migrating administrative scripts

WebSphere Application Server Version 6 supports migrating administrative scripts from V4.0.x and V5.x.

v If you are migrating administrative scripts from V4.0.x, see:

“Migrating V4.0.x administrative scripts to V6 wsadmin”

v If you are migrating administrative scripts from V5.x, see:

“Migrating administrative scripts from 5.x to 6.0” on page 95

Migrating V4.0.x administrative scripts to V6 wsadmin

The purpose of this section is to provide guidance for migrating from WebSphere Application Server V4.0

wscp scripts to wsadmin in V6.x.

The wscp tool was a part of the WebSphere Application Server V4.0 administration repository support. The

repository no longer exists and the tools that manipulate it are no longer needed. You can use the V6.x

scripting client program, wsadmin, to do the same kinds of things wscp did, and more. You can use the

Jacl and Jython scripting languages for scripts, but the elements specific to wsadmin are different from

those available in wscp. This article shows how to create WebSphere Application Server V6.x scripts that

perform actions similar to those performed by V4.0 wscp. Automatic conversion of scripts between the two

releases is difficult.

The wsadmin scripting client uses the Bean Scripting Framework (BSF), and is based on Java

Management Extensions (JMX).

In V4.0, wscp commands are used for both configuration queries or updates, and operational commands.

In V6.x, a distinction is made between configurational and operational commands.

1. Identify the wscp commands used in your script.

2. Determine if each command is used for configuration or operation.

v Configuration commands include the following: create, list, modify, remove, show, showall, install,

uninstall, all SecurityConfig commands, all SecurityRoleAssignment commands, clone, and

removeClone.

v Operation commands include the following: start, stop, show (if for a run-time attribute),

testConnection, all DrAdmin commands, and regenPluginCfg.

v Other commands exist to provide help for configuration commands. These commands include the

following: attributes, containment, and help.

3. Find the corresponding configuration wsadmin V6.x object type for each configuration commands. Use

the AdminConfig create, list, modify, remove, show, and showAttribute commands to perform the

same type of operations in V6.x that you performed in V4.0. Use the following table to determine the

corresponding types:

 V4.0 wscp command V6.x wsadmin configuration type

ApplicationServer Server

Context Not applicable

DataSource WAS40DataSource, DataSource

Domain Not applicable

EnterpriseApp ApplicationDeployment

GenericServer Server

J2CConnectionFactory J2CConnectionFactory

J2CResourceAdapter J2CResourceAdapter

© Copyright IBM Corp. 2004 83

JDBCDriver JDBCProvider

JMSConnectionFactory JMSConnectionFactory

JMSDestination JMSDestination

JMSProvider JMSProvider

MailSession MailSession

Module ModuleDeployment

Node Node

ServerGroup ServerCluster

URL URL

URLProvider URLProvider

VirtualHost VirtualHost

4. Determine the V6.x attribute names by using the online help commands of the AdminConfig object. For

example: attributes, defaults, parents, required, or types.

5. Convert application installation commands. For application installation, use the AdminApp object

installInteractive command to complete a successful installation. Then locate message WASX7278I in

the wsadmin.traceout log file and use the data in the message to construct an installation command

for your source.

6. Convert operational commands. Use the following table to determine how to deal with operational

commands in V6.x wscp:

 wscp 4.0 wsadmin 6.x wsadmin 6.x wsadmin 6.x

action Object and command Mbean, if any Operation, if any

server start AdminControl startServer

server stop AdminControl stopServer

servergroup start AdminControl invoke Cluster start

servergroup stop AdminControl invoke Cluster stop

application start AdminControl invoke ApplicationManager startApplication

application stop AdminControl invoke ApplicationManager stopApplication

node stop AdminControl invoke <nodeagent> stopNode

check run-time attribute AdminControl getAttribute <mbean> <attribute>

check run-time attributes AdminControl getAttributes <mbean> <list of attributes>

regenPluginCfg AdminControl invoke PluginCfgGenerator generate

testConnection AdminControl

testConnection

enable security securityon command

disable security securityoff command

7. Save configuration changes. In V6.x, configuration changes are made to a temporary workspace.

These changes are not committed to the WebSphere Application Server configuration until you invoke

the save command on the AdminConfig object. If your script makes configuration changes, for

example, creates, removes, or changes objects, or installs or uninstalls applications, invoke the

following command to commit the change:

Using Jacl:

$AdminConfig save

Using Jython:

84 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

AdminConfig.save()

Example: Migrating - Creating an application server

Creating an application server involves a configuration command. To do this task in the wscp V4.0 tool and

the wsadmin V6.x tool, you must know the hierarchical name of the application server. The following

examples demonstrate how to create an application server in WebSphere Application Server V4.0 and

V6.x:

v wscp V4.0

ApplicationServer create /Node:mynode/ApplicationServer:myserv/ -attribute {{Stdout myfile.out}}

v wsadmin V6.x

Server objects are contained within nodes.

Using Jacl:

set node [$AdminConfig getid /Node:mynode/]

$AdminConfig create Server $node {{name myserv} {outputStreamRedirect {{fileName myfile.out}}}}

$AdminConfig save

Using Jython:

node = AdminConfig.getid(’/Node:mynode/’)

AdminConfig.create(’Server’, node, [[’name’, ’myserv’],

 [’outputStreamRedirect’, [[’fileName’, ’myfile.out’]]]])

AdminConfig.save()

where Stdout is the name of the V4.0 ApplicationServer attribute that is replaced by the fileName

attribute, and embedded within the outputStreamRedirect attribute of the server.

Example: Migrating - Starting an application server

The following examples demonstrate how to start an application server with WebSphere Application Server

V4.0 and V6.x:

v wscp V4.0

ApplicationServer start /Node:mynode/ApplicationServer:myserv/

v wsadmin V6.x

If you are connected to a server in a base installation, you cannot request to start another server. You

can only start an application server if you have a Network Deployment installation. In a Network

Deployment installation, use the following command:

Using Jacl:

$AdminControl startServer myserv mynode 600

Using Jython:

AdminControl.startServer(’myserv’, ’mynode’, 600)

where 600 represents the wait time in seconds. The server name and node name are required.

Example: Migrating - Installing an application

The following examples demonstrate how to install an application in WebSphere Application Server V4.0

and V6.x:

v wscp V4.0

– Construct the -modvirtualhosts option:

set modhost1 [list mtcomps.war default_host]

set modhosts [list $modhost1]

– Construct the -resourcereferences option:

set resref1 [list mtcomps.war::mail/MailSession9 mail/DefaultMailSession]

set resref2 [list deplmtest.jar::MailEJBObject::mail/MailSession9 mail/DefaultMailSession]

set resrefs [list $resref1 $resref2]

– Install the application:

Chapter 7. Migrating administrative scripts 85

EnterpriseApp install /Node:mynode/ c:/WebSphere/AppServer/installableApps/jmsample.ear

 -appname MailSampleApp

 -defappserver /Node:$mynode/ApplicationServer:myserv/

 -modvirtualhosts $modhosts

 -resourcereferences $resrefs

v wsadmin V6.x

The following command sequence accomplishes approximately the same thing as the V4.0 commands

previously presented, but simpler ways exist:

– Construct the -MapWebModToVH option:

Using Jacl:

set modtovh1 [list "JavaMail Sample WebApp" mtcomps.war,WEB-INF/web.xml default_host]

set modtovh [list $modtovh1]

Using Jython:

modtovh1 = ["JavaMail Sample WebApp", ’mtcomps.war,WEB-INF/web.xml’, ’default_host’]

modtovh = [modtovh1]

– Construct the -MapResRefToEJB option:

Using Jacl:

set resreftoejb1 [list deplmtest.jar MailEJBObject

 deplmtest.jar,META-INF/ejb-jar.xml

 mail/MailSession9

 javax.mail.Session

 mail/DefaultMailSession]

set resreftoejb2 [list "JavaMail Sample WebApp" ""

 mtcomps.war,WEB-INF/web.xml

 mail/MailSession9

 javax.mail.Session mail/bozo]

set resreftoejb [list $resreftoejb1 $resreftoejb2]

Using Jython:

resreftoejb1 = [[’deplmtest.jar’, ’MailEJBObject’,

 ’deplmtest.jar,META-INF/ejb-jar.xml’,

 ’mail/MailSession9’,

 ’javax.mail.Session’,

 ’mail/DefaultMailSession’]]

resreftoejb2 = [["JavaMail Sample WebApp", ’ ’,

 ’mtcomps.war,WEB-INF/web.xml’,

 ’mail/MailSession9’,

 ’javax.mail.Session’,

 ’mail/bozo’]]

– Construct the attribute string:

Using Jacl:

set attrs [list -MapWebModToVH $modtovh

 -MapResRefToEJB $resreftoejb

 -node mynode

 -server myserv

 -appname MailSampleApp]

Using Jython:

attrs = [’-MapWebModToVH’, modtovh,

 ’-MapResRefToEJB’, resreftoejb1,

 ’-MapResRefToEJB’, resreftoejb2,

 ’-node’, ’mynode’,

 ’-server’, ’myserv’,

 ’-appname’, ’MailSampleApp’]

– Install the application:

Using Jacl:

$AdminApp install c:/WebSphere/AppServer/installableApps/jmsample.ear $attrs

Using Jython:

AdminApp.install(’c:/WebSphere/AppServer/installableApps/jmsample.ear’, attrs)

– Save your changes:

86 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

$AdminConfig save

Using Jython:

AdminConfig.save()

You can use the AdminApp taskInfo command to obtain information about each task option. You can

use the AdminApp interactiveInstall command to step through all the installation tasks, one at a time. If

you use the installInteractive command to successfully install an application, an option string logs in

the wsadmin.traceout file under the message ID WASX7278I. You can copy and paste this option string

into wsadmin scripts.

Example: Migrating - Installing a JDBC driver

The following examples demonstrate how to install a JDBC driver in WebSphere Application Server V4.0

and V6.x:

v wscp V4.0

In the WebSphere Application Server V4.0, you must create the JDBC driver and then install it.

JDBCDriver create /JDBCDriver:mydriver/

 -attribute {{ImplClass COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource}}

JDBCDriver install /JDBCDriver:mydriver/

 -node /Node:mynode/ -jarFile c:/SQLLIB/java/db2java.zip

v wsadmin V6.x

In WebSphere Application Server V6.x, there is no separate installation step. The Java archive (JAR)

file name in the V4.0 installation step is replaced by the classpath attribute on the V6.x JDBC provider

object. In V6.x, resources can exist at the server, node, or cell level of the configuration.

Using Jacl:

set node [$AdminConfig getid /Node:mynode/]

$AdminConfig create JDBCProvider $node

 {{classpath c:/SQLLIB/java/db2java.zip}

 {implementationClassName COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource}

 {name mydriver}}

$AdminConfig save

Using Jython:

node = AdminConfig.getid(’/Node:mynode/’)

AdminConfig.create(’JDBCProvider’, node,

 [[’classpath’, ’c:/SQLLIB/java/db2java.zip’],

 [’implementationClassName’,

 ’COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource’],

 [’name’, ’mydriver’]])

AdminConfig.save()

Example: Migrating - Creating a server group

In WebSphere Application Server V6.x, ServerClusters have replaced V4.0 ServerGroups. The members

of a cluster are servers with identical application configurations. The following examples demonstrate how

to create a server group in WebSphere Application Server V4.0 and V6.x. They assume that an application

server named as1 already exists and is used as the first clone in a server group:

v wscp V4.0

ServerGroup create /ServerGroup:sg1/ -baseInstance /Node:mynode/ApplicationServer:as1/

-serverGroupAttrs {{EJBServerAttributes {{SelectionPolicy roundrobin}}}}

v wsadmin V6.x

Using Jacl:

set serverid [$AdminConfig getid /Node:mynode/Server:as1/]

$AdminConfig convertToCluster $serverid MyCluster

$AdminConfig save

Using Jython:

serverid = AdminConfig.getid(’/Node:mynode/Server:as1/’)

AdminConfig.convertToCluster(serverid, ’MyCluster’)

AdminConfig.save()

Chapter 7. Migrating administrative scripts 87

Example: Migrating - Stopping a node

The WebSphere Application Server V4.0 wscp tool requires the name of the node. In V4.0, if you stop a

node, you bring down the administrative server on that node. To take the equivalent action in V6.x, stop

the node agent.

Tip: If you bring down the server to which the wsadmin process is connected, you cannot issue any more

commands against that server.

v wscp V4.0

Node stop /Node:mynode/

v wsadmin V6.x

Using Jacl:

set na [$AdminControl queryNames type=NodeAgent,node=mynode,*]

$AdminControl invoke $na stopNode

Using Jython:

na = AdminControl.queryNames(’type=NodeAgent,node=mynode,*’)

AdminControl.invoke(na, ’stopNode’)

Stopping the node agent on a remote machine process is an asynchronous action where the stop is

initiated, and then control returns to the command line.

Example: Migrating - Stopping an application server

The WebSphere Application Server V4.0 wscp tool requires that you know the hierarchical name of the

application server in question (the node name and the server name). The same information is required in

V6.x.

Tip: You are stopping a server object, not an application server. Servers represent logical processes on

many platforms, for instance Windows or AIX, and are the entity that is stopped and started. Application

servers are contained within servers.

v wscp V4.0

ApplicationServer stop {/Node:mynode/ApplicationServer:Default Server/}

v wsadmin V6.x

Using Jacl:

$AdminControl stopServer servername [nodename immediateFlag]

Using Jython:

AdminControl.stopServer(’servername’, [nodename immediateFlag])

For a Network Deployment installation:

Using Jacl:

$AdminControl stopServer servername nodename [immediateFlag]

Using Jython:

AdminControl.stopServer(’servername’, ’nodeName’, [immediateFlag])

Example: Migrating - Pinging running servers for the current state

The purpose of this task is to determine if a server is running. The following examples demonstrate how to

ping running servers in WebSphere Application Server V4.0 and V6.x:

v wscp V4.0

set servers [ApplicationServer list]

foreach server $servers {

 set result ApplicationServer show $server -attribute {CurrentState}

 puts "state for server $server: $result"

}

v wsadmin V6.x

In the WebSphere Application Server V6.x configuration and control commands are separate.

88 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Using Jacl:

set servers [$AdminConfig list Server]

foreach server $servers {

 set objName [$AdminConfig getObjectName $server]

 if {[llength $objName] == 0} {

 puts "server $server is not running"

 } else {

 set result [$AdminControl getAttribute $objName state]

 puts "state for server $server: $result"

 }

}

Using Jython:

get line separator

import java.lang.System as sys

lineSeparator = sys.getProperty(’line.separator’)

servers = AdminConfig.list(’Server’).split(lineSeparator)

for server in servers:

 objName = AdminConfig.getObjectName(server).split(lineSeparator)

 if len(objName) == 0:

 print "server " + server + " is not running\n"

 else:

 result = AdminControl.getAttribute(objName, ’state’)

 print "state for server " + server + ": " + result + "\n"

The first line of this example obtains a list of all servers defined in the configuration. You can interrogate

this data to determine the running servers. If the server is not running, nothing is returned from the

getObjectName command on the AdminConfig object. If the server is running, ask for its state attribute.

If the Mbean is there, the server is running and the state is STARTED. It is possible, however, for the state

to be something other than STARTED, for example, STOPPING.

Example: Migrating - Regenerating the node plug-in configuration

The following examples demonstrate how to regenerating the node plug-in configuration in the WebSphere

Application Server V4.0 and V6.x:

v wscp V4.0

Node regenPluginCfg /Node:mynode/

v wsadmin V6.x

Using Jacl:

set generator [$AdminControl completeObjectName type=PluginCfgGenerator,node=mynode,*]

$AdminControl invoke $generator generate "c:/WebSphere/DeploymentManager

c:/WebSphere/DeloymentManager/config mycell mynode null plugin-cfg.xml"

Using Jython:

generator = AdminControl.completeObjectName(’type=PluginCfgGenerator,node=mynode,*’)

AdminControl.invoke(generator, ’generate’, "c:/WebSphere/DeploymentManager

c:/WebSphere/DeloymentManager/config mycell mynode null plugin-cfg.xml")

Example: Migrating - Testing the DataSource object connection

The following examples demonstrate how to test the connection to a DataSource object in the WebSphere

Application Server V4.0 and V6.x:

v wscp V4.0

set myds /JDBCDriver:mydriver/DataSource:myds/

DataSource testConnection $myds

v wsadmin V6.x

The testConnection command is part of the AdminControl object because it is an operational

command. This particular type of operational command takes a configuration ID as an argument, so you

invoke the getid command on the AdminConfig object:

Using Jacl:

Chapter 7. Migrating administrative scripts 89

set myds [$AdminConfig getid /JDBCProvider:mydriver/DataSource:mydatasrc/]

$AdminControl testConnection $myds

Using Jython:

myds = AdminConfig.getid(’/JDBCProvider:mydriver/DataSource:mydatasrc/’)

AdminControl.testConnection(myds)

In many cases, a user ID and password, or other properties are required to complete the test

connection. If this is the case, you receive the following message, which describes the missing

properties:

WASX7216E: 2 attributes required for testConnection are missing:

 "[user, password]" To complete this operation,

 please supply the missing attributes as an option,

 following this example:

{{user user_val} {password password_val}}

For this example, issue the following commands:

Using Jacl:

set myds [$AdminConfig getid /JDBCProvider:mydriver/DataSource:mydatasrc/]

$AdminControl testConnection $myds {{user myuser} {password secret}}

Using Jython:

myds = AdminConfig.getid(’/JDBCProvider:mydriver/DataSource:mydatasrc/’)

AdminControl.testConnection(myds, [[’user’, ’myuser’], [’password’, ’secret’]])

Example: Migrating - Cloning a server group

The following examples demonstrate how to clone a server group in WebSphere Application Server V4.0

and V6.x:

v wscp V4.0

ServerGroup clone /ServerGroup:sg1/ -cloneAttrs {{Name newServer}} -node /Node:mynode/

v wsadmin V6.x

In the following example, the first command obtains the cluster ID, the second command obtains the

node ID, and the last command creates a new member of an existing cluster:

Using Jacl:

set cluster1 [$AdminConfig getid /ServerCluster:mycluster/]

set n1 [$AdminConfig getid /Node:mynode/]

$AdminConfig createClusterMember $cluster1 $n1 {{memberName newServer}}

$AdminConfig save

Using Jython:

cluster1 = AdminConfig.getid(’/ServerCluster:mycluster/’)

n1 = AdminConfig.getid(’/Node:mynode/’)

AdminConfig.createClusterMember(cluster1, n1, [[’memberName’, ’newServer’]])

AdminConfig.save()

Example: Migrating - Enabling security

The following examples demonstrate how to enable local os security for WebSphere Application Server

V4.0 and V6.x:

v wscp V4.0

SecurityConfig setAuthenticationMechanism LOCALOS -userid {me secret}

SecurityConfig enableSecurity

v wsadmin V6.x

Using Jacl:

securityon myuser mypassword

Using Jython:

securityon(’myuser’, ’mypassword’)

This command turns on local security. The securityon function checks the validity of the user and

password combination, and fails the function if the combination is invalid.

90 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Note: This action assumes that global security is fully configured before issuing this command and that

you are just switching the enabled flag on and off. If global security is not yet fully configured, the

command fails.

Example: Migrating - Disabling security

The following examples demonstrate how to disable security for WebSphere Application Server V4.0 and

V6.x:

v wscp V4.0

SecurityConfig disableSecurity

v wsadmin V6.x

Using Jacl:

securityoff

Using Jython:

securityoff()

This command turns off global security.

Example: Migrating - Modifying the virtual host

The following examples demonstrate how to modify the virutal host in WebSphere Application Server V4.0

and V6.x:

v wscp V4.0

VirtualHost modify /VirtualHost:default_host/ -attribute {{Name default_host} {AliasList

{*:80 *:9080 *:9081}}

v wsadmin V6.x

Using Jacl:

set def_host [$AdminConfig getid /VirtualHost:default_host/]

$AdminConfig modify $def_host

 {{aliases {{{port 80}

 {hostname *}}

 {{port 9080}

 {hostname *}}

 {{port 9081}

 {hostname *}}}}}

$AdminConfig save

Using Jython:

def_host = AdminConfig.getid(’/VirtualHost:default_host/’)

AdminConfig.modify(def_host,

 [[’aliases’,

 [[[’port’, 80],

 [’hostname’, ’*’]], [[’port’, 9080],

 [’hostname’, ’*’]], [[’port’, 9081],

 [’hostname’, ’*’]]]]])

AdminConfig.save()

Example: Migrating - Modifying and restarting an application server

In this task, you make a configuration change to an existing application server, then stop and restart the

server to pick up the change. In WebSphere Application Server V6.x, you can only change the attributes in

a running server that the server supports explicitly, or by objects it contains. You can determine these

attributes online by using the Help attributes scripting command, or by referring to the Mbean

documentation. When you use this type of update, you change only the current running state of the server.

Your changes are not permanent. The updates that you make to the server configuration do not take effect

until you stop and restart the server.

Chapter 7. Migrating administrative scripts 91

The enum attribute is changed. WebSphere Application Server V4.0 requires that you find the

corresponding integer to enum value by making changes with the GUI, and examining the output. In V6.x,

the string names of the enum literals are available using online help, using the AdminConfig attributes

command, and displaying or updating an attribute.

The following examples demonstrate how to modify and restart an application server in WebSphere

Application Server V4.0 and V6.x:

v wscp V4.0

1. Stop the application server using the following command:

ApplicationServer stop /Node:mynode/ApplicationServer:myserver/

2. Modify the application server, for example:

ApplicationServer modify /Node:mynode/ApplicationServer:myserver/ -attribute {{ModuleVisibility 1}}

3. Restart the application server using the following command:

ApplicationServer start /Node:mynode/ApplicationServer:myserver/

v wsadmin V6.x

1. Stop the application server using the following command:

Using Jacl:

$AdminControl stopServer myserver mynode

Using Jython:

AdminControl.stopServer(’myserver’, ’mynode’)

2. Modify the application server, for example:

Using Jacl:

set s1 [$AdminConfig getid /Node:mynode/Server:myserver/]

set errStream [$AdminConfig showAttribute $s1 errorStreamRedirect}

$AdminConfig modify $s1 {{rolloverPeriod 12}}

$AdminConfig save

Using Jython:

s1 = AdminConfig.getid(’/Node:mynode/Server:myserver/’)

errStream = AdminConfig.showAttribute(s1, ’errorStreamRedirect’)

AdminConfig.modify(s1, [[’rolloverPeriod’, 12]])

AdminConfig.save()

3. Restart the application server using the following command:

Using Jacl:

$AdminControl startServer myserver mynode

Using Jython:

AdminControl.startServer(’myserver’, ’mynode’)

Example: Migrating - Removing an application server

Removing an application server involves a configuration command:

v wscp V4.0

ApplicationServer remove /Node:mynode/ApplicationServer:myserv/

v wsadmin V6.x

Using Jacl:

set serv [$AdminConfig getid /Node:mynode/Server:myserv/]

$AdminConfig remove $serv

$AdminConfig save

Using Jython:

serv = AdminConfig.getid(’/Node:mynode/Server:myserv/’)

AdminConfig.remove(serv)

AdminConfig.save()

92 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Example: Migrating - Modifying the embedded transports in an

application server

The following examples demonstrate how to modify the embedded transports in an application server in

WebSphere Application Server V4.0 and V6.x:

v wscp V4.0

ApplicationServer modify /Node:mynode/ApplicationServer:myserv/ -attribute

{{WebContainerConfig {Transports {{{MaxKeepAlive 25} {MaxReqKeepAlive 100} {KeepAliveTimeout

5} {ConnectionTimeout 5} {Host *} {Port 9080} {BacklogConnections 511} {HttpProperties {}}

{SSLEnabled true} {SSLConfig {}}}}}}}

v wsadmin V6.x

Using Jacl:

set server [$AdminConfig getid /Node:mynode/Server:myserv/]

set web_container [$AdminConfig list WebContainer $server]

$AdminConfig modify $web_container

 {{transports:HTTPTransport

 {{{sslEnabled true}

 {sslConfig DefaultSSLSettings}

 {address {{host *} {port 9080}}}}}}}

$AdminConfig save

Using Jython:

server = AdminConfig.getid(’/Node:mynode/Server:myserv/’)

web_container = AdminConfig.list(’WebContainer’, server)

AdminConfig.modify(web_container,

 [[’transports:HTTPTransport’,

 [[[’sslEnabled’, ’true’],

 [’sslConfig’, ’DefaultSSLSettings’],

 [’address’, [[’host’, ’*’],

 [’port’, 9080]]]]]]])

AdminConfig.save()

Example: Migrating - Connecting to a remote server

v wscp V4.0

wscp.hostname = myhost

v wsadmin V6.x

wsadmin -host myhost.austin.ibm.com

Example: Migrating - Uninstalling an application

v wscp V4.0

EnterpriseApp remove {/EnterpriseApp:Sample Application/}

v wsadmin V6.x

Using Jacl:

$AdminApp uninstall TechnologySamples

$AdminConfig save

Using Jython:

AdminApp.uninstall(’TechnologySamples’)

AdminConfig.save()

Example: Migrating - Editing an application

v wscp V4.0

EnterpriseApp modify {/EnterpriseApp:Trade Sample/} -attribute {{Name changedName}}

v wsadmin V6.x

Using Jacl:

Chapter 7. Migrating administrative scripts 93

$AdminApp edit DefaultApplication {-BindJndiForEJBMessageBinding

 {{"Increment Enterprise Java Bean" "Increment"

 "Increment.jar,META-INF/ejb-jar.xml" "Increment"}}}

$AdminConfig save

Using Jython:

AdminApp.edit(’DefaultApplication’, ’[-BindJndiForEJBMessageBinding

 [["Increment Enterprise Java Bean" Increment

 Increment.jar,META-INF/ejb-jar.xml Increment]]]’)

AdminConfig.save()

Example: Migrating - Modifying attributes of application servers,

applications, and other configured objects

v wscp V4.0

ApplicationServer modify /Node:dev-pc/ApplicationServer:myServer/

-attribute {{PingInterval 120}}

v wsadmin V6.x

Using Jacl:

set trace [$AdminConfig getid /TraceService:/]

$AdminConfig modify trace {{startupTraceSpecification com.ibm.ws.*=all=enabled}}

$AdminConfig save

Using Jython:

trace = AdminConfig.getid(’/TraceService:/’)

AdminConfig.modify(’trace’, [[startupTraceSpecification com.ibm.ws.*=all=enabled]])

AdminConfig.save()

You must restart the server in order to see the changes in the configuration.

Example: Migrating - Displaying help

v wscp V4.0

To obtain general help, use the following example:

help

To obtain help on a particular object, use the following example:

ApplicationServer help

v wsadmin V6.x

To list all of the options available, use the following example:

Using Jacl:

$Help scriptingObject

Using Jython:

Help.scriptingObject()

where scriptingObject can be AdminConfig, AdminControl, AdminApp or AdminTask.

Example: Migrating - Listing actions available for configured objects

v wscp V4.0

ApplicationServer help operations

v wsadmin V6.x

Using Jacl:

$AdminConfig attributes Server

Using Jython:

AdminConfig.attributes(’Server’)

94 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Example: Migrating - Setting the server trace specification

v wscp V4.0

DrAdmin remote <portno> -setTrace com.ibm.ejs.*=all=enabled

v wsadmin V6.x

There are two ways to set tracing with wsadmin in V6.x. The following way takes immediate effect, but

is temporary and is set on the runtime, using the AdminControl object:

Using Jacl:

set ts [$AdminControl queryNames type=TraceService,node=nodeName,process=serverName,*]

$AdminControl setAttribute $ts traceSpecification com.ibm.*=all=enabled

Using Jython:

ts = AdminControl.queryNames(’type=TraceService,node=nodeName,process=serverName,*’)

AdminControl.setAttribute(ts, ’traceSpecification’, ’com.ibm.*=all=enabled’)

If you want your changes to persist, change the configuration by using the AdminConfig object, for

example:

Using Jacl:

set svr [$AdminConfig getid /Node:nodeName/Server:serverName/]

set ts [$AdminConfig list TraceService $svr]

$AdminConfig modify $ts {{startupTraceSpecification com.ibm.*=all=enabled}}

$AdminConfig save

Using Jython:

svr = AdminConfig.getid(’/Node:nodeName/Server:serverName/’)

ts = AdminConfig.list(’TraceService’, svr)

AdminConfig.modify(ts, [[’startupTraceSpecification’, ’com.ibm,*=all=enabled’]])

AdminConfig.save()

You can also change the TraceLog specifications, for example:

Using Jacl:

set svr [$AdminConfig getid/Node:nodeName/Server:serverName/]

set ts [$AdminConfig list TraceService $svr]

set trlog [$AdminConfig list TraceLog $ts]

$AdminConfig modify $trlog {{fileName myFile.log} {maxNumberOfBackupFiles 10} {rolloverSize 2}}

$AdminConfig save

Using Jython:

svr = AdminConfig.getid(’/Node:nodeName/Server:serverName/’)

ts = AdminConfig.list(’TraceService’ svr)

trlog = AdminConfig.list(’TraceLog’, ts)

AdminConfig.modify(trlog, [[’fileName’ ’myFile.log’], [’maxNumberOfBackupFiles’ 10], [’rolloverSize’ 2]])

AdminConfig.save()

Migrating administrative scripts from 5.x to 6.0

There are a few changes to be aware of that are required for your existing scripts when moving to

WebSphere Application Server Version 6. In general, the administration model has changed very little.

However, there are some changes required with Version 6. See the following steps for the three categories

of changes:

1. Prepare for evolutionary changes without script compatibility support. These types of changes can be

evolved directly without the assistance of script compatibility support. The data can be accessed from

multiple locations, including the old and new locations. As long as the new location is not updated, the

data is accessed from the old location. Once the new location is updated, it becomes the current data

and is used for further accesses and updates. Warning messages are logged when the old location is

still being used.

The location of the transaction logs directory attribute has changed from the

ApplicationServer::TransactionService to the ServerEntry::recoveryLogs. As long as the new

Chapter 7. Migrating administrative scripts 95

location is not used, the value from the old location will continue to be used. Scripts that modify the old

location can still be used; that value will take effect until a value in the new location is set. The change

to scripts to use the new location is as follows:

Old location:

v Using Jacl:

set transService [$AdminConfig list TransactionService $server1]

 $AdminConfig showAttribute $transService transactionLogDirectory

New Location:

v Using Jacl:

$AdminConfig list ServerEntry $node

set serverEntry <select one of the ServerEntry from output of above command>

set recoveryLog [$AdminConfig showAttribute $serverEntry recoveryLog]

$AdminConfig showAttribute $recoveryLog transactionLogDirectory

2. Prepare for evolutionary changes with script compatibility support. These changes are assisted by the

compatibility mode provided by “WASPostUpgrade command” on page 142. During migration, the

default is to migrate using compatibility mode. If this option is taken, then the old object types are

migrated into the new configuration; all existing scripts will run unchanged.

HTTP transports: the new architecture for V6 uses the new channel framework. HTTP definitions are

mapped on top of this support. When compatibility mode is chosen, the old HTTPTransport objects are

migrated and mapped onto the channel architecture. Existing scripts can modify these objects and will

run unchanged. See “Example: Migrating - Modifying the embedded transports in an application server”

on page 93 for examples.

Process definition: The name of this object is changed from processDef to processDefs. You can

mitigate this change by using the compatibility mode mapping provided by the migration tools. The

change to scripts to use the new location is as follows:

Old example:

v Using Jacl:

set processDef [$AdminConfig list JavaProcessDef $server1]

set processDef [$AdminConfig showAttribute $server1 processDefinition]

Using Jython:

processDef = AdminConfig.list(’JavaProcessDef’, server1)

print processDef

New example. Identify the process definition belonging to this server and assign it to the processDefs

variable:

v Using Jacl:

set processDefs [$AdminConfig list JavaProcessDef $server1]

set processDefs [$AdminConfig showAttribute $server1 processDefinitions]

Using Jython:

processDefs = AdminConfig.list(’JavaProcessDef’, server1)

print processDefs

3. Prepare for required changes.

a. Be aware of the implications of migrating JMS applications from the embedded messaging in

WebSphere Application Server Version 5 to the default messaging provider in WebSphere

Application Server Version 6.

b. A new version of Jacl (1.3.1) is shipped with WebSphere Application Server V6. With this Jacl

version, regexp command supports only tcl 8.0 regexp command syntax. If your existing V5.x Jacl

script uses regexp command syntax that is supported in Jacl 1.2.6 but not anymore in Jacl 1.3.1,

you may not get a match anymore, or you may get a compile error for your regexp command

similar to the following:

com.ibm.bsf.BSFException: error while eval’ing Jacl expression:

couldn’t compile regular expression pattern: ?+* follows nothing

 while executing

"regexp {(?x)

96 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

..."

 ("if" test expression)

 invoked from within

"if {[regexp {(?x)

 ..."

 (file testregexp.jacl line 2)

 (file line 2)

 invoked from within

"source testregexp.jacl"

There is no workaround for this regression problem. Jacl has indicated that this is by design and

there is no simple patch to fix this design decision. For more information on Jacl, see the

Administration: Operations PDF.

Example: Migrating - Allowing configuration overwrite when saving a

configuration

The following examples demonstrate how to enable configuration overwrite in network deployment for

WebSphere Application Server V5.x and V6.x:

v wsadmin V5.x

Using Jacl:

$AdminConfig setSaveMode overwriteOnConflict

Using Jython:

AdminConfig.setSaveMode(’overwriteOnConflict’)

v wsadmin V6.x

1. Enable configuration repository to allow configuration overwrite:

Using Jacl:

set s1AdminService [$AdminConfig getid /Server:dmgr/AdminService:/]

set configRepository [$AdminConfig showAttribute $s1AdminService configRepository]

set props [$AdminConfig showAttribute $configRepository properties]

set foundAllowConfigOverwrites ""

if {$props != "{}"} {

 foreach prop $props {

 if {[$AdminConfig showAttribute $prop name] == "allowConfigOverwrites"} {

 set foundAllowConfigOverwrites $prop

 break

 }

 }

}

if {$foundAllowConfigOverwrites == ""} {

 $AdminConfig create Property $configRepository {{name allowConfigOverwrites} {value true}}

} else {

 $AdminConfig modify $foundAllowConfigOverwrites {{value true}}

}

$AdminConfig save

Using Jython:

s1AdminService = AdminConfig.getid(’/Server:dmgr/AdminService:/’)

configRepository = AdminConfig.showAttribute(s1AdminService, ’configRepository’)

props = AdminConfig.showAttribute(configRepository, ’properties’)

foundAllowConfigOverwrites = ’’

if props != ’[]’:

 properties = props[1:len(props)-1].split(’ ’)

 for prop in properties:

 name = AdminConfig.showAttribute(prop, ’name’)

 if name == ’allowConfigOverwrites’:

 foundAllowConfigOverwrites = prop

 break

if len(foundAllowConfigOverwrites) != 0:

Chapter 7. Migrating administrative scripts 97

AdminConfig.modify(foundAllowConfigOverwrites, [[’value’, ’true’]])

else:

 AdminConfig.create(’Property’, configRepository, [[’name’, ’allowConfigOverwrites’], [’value’, ’true’]])

AdminConfig.save()

2. Restart the deployment manager. From the bin directory of the deployment manager profile, run the

following:

On Windows platforms:

stopManager

startManager

On Unix platforms:

./stopManager.sh

./startManager.sh

3. Allow configuration overwrite, for example:

Using Jacl:

$AdminConfig setSaveMode overwriteOnConflict

Using Jython:

AdminConfig.setSaveMode(’overwriteOnConflict’)

98 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Part 3. Coexisting

© Copyright IBM Corp. 2004 99

100 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 8. Coexisting

This topic is a starting point for finding information about which coexistence scenarios are supported, and

how to set up the scenarios.

v Read about “Coexistence support.”

This topic discusses which coexistence scenarios are supported.

v “Setting up Version 4.0.x and Version 6 coexistence” on page 103.

This task describes how to install a Version 6 product to coexist with another installation instance of

Version 4.x.

v “Setting up Version 5 and Version 6 coexistence” on page 104.

This task describes how to install a Version 6 product to coexist with another installation instance of

Version 5.x.

v “Setting up Version 6 coexistence” on page 105.

This task describes how to install a Version 6 product to coexist with another installation instance of

Version 6.

Coexistence support

Coexistence, as it applies to WebSphere Application Server products, is the ability of multiple installations

of WebSphere Application Server to run on the same machine at the same time. Multiple installations

include multiple versions and multiple instances of one version. Coexistence also implies various

combinations of Web server interaction.

Version 6.0 WebSphere Application Server products can coexist with the following supported versions:

v IBM WebSphere Application Server Advanced Server Single Edition and Advanced Edition, Version

4.0.2 and later

v IBM WebSphere Business Integration Server Foundation Edition, Version 4.1 and later

v IBM WebSphere Application Server, Version 5.0.0 and later

v IBM WebSphere Application Server Network Deployment, Version 5.0.0 and later

v IBM WebSphere Application Server Enterprise, Version 5.0.0 and later

v IBM WebSphere Application Server, Version 5.1.0 and later

v IBM WebSphere Application Server Network Deployment, Version 5.1.0 and later

All combinations of V4.x products, V5.x products, and V6.0 products can coexist so long as there are no

port conflicts.

V4.0.2 and later products can coexist with the Version 6.0 WebSphere Application Server clients:

 Table 2. Multiversion WebSphere Application Server clients coexistence scenarios

Installed product WebSphere Application Server clients, V6

IBM WebSphere Application Server Advanced Single Server

Edition, Version 4.0.2 and later

Supported

IBM WebSphere Application Server Advanced Edition, Version

4.0.2 and later

Supported

IBM WebSphere Business Integration Server Foundation

Edition, Version 4.1 and later

Supported

IBM WebSphere Application Server, Version 5.0.0 Supported

IBM WebSphere Application Server Network Deployment,

Version 5.0.0

Supported

IBM WebSphere Business Integration Server Foundation,

Version 5.0.0

Supported

© Copyright IBM Corp. 2004 101

Table 2. Multiversion WebSphere Application Server clients coexistence scenarios (continued)

Installed product WebSphere Application Server clients, V6

IBM WebSphere Application Server, Version 5.0.1 Supported

IBM WebSphere Application Server Network Deployment,

Version 5.0.1

Supported

IBM WebSphere Business Integration Server Foundation,

Version 5.0.1

Supported

IBM WebSphere Application Server, Version 5.0.2 Supported

IBM WebSphere Application Server Network Deployment,

Version 5.0.2

Supported

IBM WebSphere Business Integration Server Foundation,

Version 5.0.2

Supported

IBM WebSphere Application Server, Version 5.1 Supported

IBM WebSphere Application Server Network Deployment,

Version 5.1

Supported

V4.0.2 and later products and V5.x products can coexist with V6 products:

 Table 3. Multiversion coexistence scenarios

Installed product

V5.x V6

Application

Server

Network

Deployment

Enterprise /

WBISF

Application

Server

Network

Deployment

Express

Advanced Single

Server Edition

V4.0.2 and later

Supported Supported Supported Supported Supported Supported

Advanced Edition

V4.0.2 and later

Supported Supported Supported Supported Supported Supported

Enterprise Edition

V4.1 and later

Supported Supported Supported Supported Supported Supported

WebSphere

Application Server

clients V4.0.x

Supported Supported Supported Supported Supported Supported

WebSphere

Application Server,

V5.0.0

Supported Supported Supported Supported Supported Supported

Network

Deployment

V5.0.0

Supported Supported Supported Supported Supported Supported

Enterprise,V5.0.0 Supported Supported Supported Supported Supported Supported

WebSphere

Application Server

clients V5.0.0

Supported Supported Supported Supported Supported Supported

WebSphere

Application Server

V5.0.1

Supported Supported Supported Supported Supported Supported

Network

Deployment

V5.0.1

Supported Supported Supported Supported Supported Supported

Enterprise V5.0.1 Supported Supported Supported Supported Supported Supported

102 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Table 3. Multiversion coexistence scenarios (continued)

Installed product

V5.x V6

Application

Server

Network

Deployment

Enterprise /

WBISF

Application

Server

Network

Deployment

Express

WebSphere

Application Server

clients V5.0.1

Supported Supported Supported Supported Supported Supported

WebSphere

Application Server

V5.0.2

Supported Supported Supported Supported Supported Supported

Network

Deployment

V5.0.2

Supported Supported Supported Supported Supported Supported

Enterprise V5.0.2 Supported Supported Supported Supported Supported Supported

WebSphere

Application Server

clients V5.0.2

Supported Supported Supported Supported Supported Supported

WebSphere

Application Server

V5.1

Supported Supported Supported Supported Supported Supported

Network

Deployment V5.1

Supported Supported Supported Supported Supported Supported

Integration Server

V5.1

Supported Supported Supported Supported Supported Supported

WebSphere

Application Server

clients V5.1

Supported Supported Supported Supported Supported Supported

In addition to multiversion coexistence, WebSphere Application Server also lets you install multiple times

on one machine (multiple installation instances), or install once and have multiple profiles.

Multiple Version 6 instances on one machine include:

v Multiple Application Server instances from multiple installations of the WebSphere Application Server

product

v Multiple Application Server profiles from a single installation of the WebSphere Application Server

product

Setting up Version 4.0.x and Version 6 coexistence

You must migrate prerequisite and corequisite programs to the levels required by WebSphere Application

Server, Version 6. You must also identify ports in use in Version 4.0.x before you begin the Version 6

installation, to avoid possible conflicts during coexistence. The first two steps in this task describe these

activities.

You can install WebSphere Application Server Version 4.0.x and Version 6 on the same node. Change the

ports to avoid conflicts during profile creation.

Silent installation also supports configuring for coexistence silently. You can specify non-conflicting port

assignments in the options response file.

Chapter 8. Coexisting 103

By default, there are port conflicts between Version 4.0.x and Version 6 that you must resolve. Also, if you

migrate more than two Version 4.0.x nodes to Version 6, there are port conflicts that you must resolve, as

described in the “Setting up Version 6 coexistence” on page 105 topic.

1. Migrate prerequisite and corequisite programs to the levels required by WebSphere Application Server,

Version 6.

Refer to the IBM WebSphere Application Server supported hardware and software site for current

requirements.

2. Resolve port conflicts.

Refer to the Port number settings in WebSphere Application Server versions topic to see a list of

default port numbers, and where they are defined.

Inspect the configuration of the previous version:

v For WebSphere Application Server Advanced Single Server Edition, Version 4.0.x: Inspect the

server-cfg.xml file to get port values for the configuration.

v For WebSphere Application Server Advanced Edition, Version 4.0.x: Inspect the admin.config

file to get port values for the configuration. When the administrative server is running, use this

command:

xmlConfig -export config.xml -nodeName theNodeName

Review the config.xml file to look for <node action=″update″ name=″nodename″> to find the

appropriate node and port number assignments in the file. The Version 6 installation wizard will

display the default set of coexistence port numbers during profile creation time. Change the values

to ports that are not in use. The installation wizard uses whatever values you approve.

3. Associate a Web server with each WebSphere Application Server.

v Use a separate Web server for each WebSphere Application Server.

a. Create a Web server instance using the Web server documentation.

b. Use the standalone Web server plug-in installation wizard to install the appropriate Version 6

Web server plug-in. This wizard is provided on a separate CD from the WebSphere Application

Server Installation CD. The Web server plug-in configuration file, plugin_cfg.xml, is now

configurable using the administrative console.
v Use the same Web server for both WebSphere Application Server versions.

To use the same Web server for both Application Server versions, you must first upgrade the Web

server to the common level supported by both versions of the application server.

Follow this procedure to use the same Web server for both WebSphere Application Server versions.

a. Install the appropriate Version 6 Web server plug-in using the standalone Web server plug-in

installation wizard that is provided on a separate CD from the WebSphere Application Server

Installation CD.

b. Replace the original plugin-cfg.xml file of the Version 6 installation with the master file.

4. Fix any problems with environmental variables on Windows platforms. For example, installing

WebSphere Application Server, Version 6 updates the system variable PATH, potentially affecting tools

with the same name across installations. To run tools with conflicting names, alter the PATH

environment variable in a command window and place the directory for the former installation before

the directory for the latter installation. For example, PATH=E:\WebSphere\AppServer\40\bin;%PATH%.

Then, invoke the tools from the bin directory.

Setting up Version 5 and Version 6 coexistence

This task describes how to install a Version 6 product to coexist with another installation instance of

Version 5.x.

After installing the WebSphere Application Server product, you can install it again on the same machine.

Each installation of the base product is a stand-alone Application Server (server1) with its own set of

unique configuration files.

104 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Be aware of multiple instance limitations:

v If you install more than one instance, the most recent installation is the only one in the operating system

registry.

v If you install more than two instances, the third and subsequent installations require that you change all

port numbers on the coexistence panel, to avoid potential conflicts.

v To uninstall a registered product instance, always use the operating system remove program function,

such as the Add/Remove Program utility on Windows platforms. To uninstall an unregistered instance,

use the Uninstall.exe or uninstall command in the install_root/_uninstall directory that matches

the instance you intend to remove.

Reasons to use multiple installation instances include:

v You can achieve complete isolation between each WebSphere Application Server instance. You can

uninstall one instance independently of the others.

v You can install the base WebSphere Application Server more than once on the same machine.

v You can install the base V5.x and V6 WebSphere Application Server on the same machine.

Reasons to not use multiple installation instances include:

v The machine might have a hard disk space constraint.

v You can use the operating system registry to locate the last installed instance of a WebSphere

Application Server product only.

When you install any product a second time, the last installation is the one that appears in the registry.

v Uninstalling the last instance removes any record of the product in the registry.

Suppose you have installed three instances of the base WebSphere Application Server product. You

use the remove program function of the operating system to uninstall the registered third copy of the

base product. A registry record no longer exists that indicates the existence of the other two installation

instances. Other applications cannot use a query of the operating system registry to detect the presence

of either base WebSphere Application Server product instance.

Use the Profile creation wizard to installing the base WebSphere Application Server product once and

creating multiple profiles.

Use the following procedure to install multiple installation instances.

1. Use the installation wizard to install another installation. If you intend to share a single Web server

among installations, install the appropriate Version 6 Web server plug-in using the standalone Web

server plug-in installation wizard that is provided on a separate CD from the WebSphere Application

Server Installation CD.

2. Share a Web server among multiple installation instances.

a. Use the Plug-in Installation wizard to select a Web server plug-in.

b. Use the administrative console to generate the plug-in configuration files for every installation

instance and to then merge them into one master configuration.

c. Use the administrative console to replace the original plugin-cfg.xml file with the master file on

the Web server.

You can access samples from only one of the installation instances.

3. Change port assignments in configuration files if you have a node that you cannot start because of

port conflicts.

Setting up Version 6 coexistence

This task describes how to install a V6 product to coexist with concurrent V6.0 profiles.

After installing the WebSphere Application Server product, you can install it again on the same machine.

Chapter 8. Coexisting 105

Select the new installation option from the installation wizard panel, to install a new instance instead of

adding features to the last installation, and to install into a separate profile directory.

Each installation of the product installs the core product files.

You can install once and use the Profile creation wizard to create multiple Application Server processes.

Use the following procedure to install multiple copies of the core product files.

1. Use the installation wizard to install another set of the core product files.

2. Create additional server profiles and processes, using the Profile creation wizard.

3. If you have a node that you cannot start because of port conflicts, change port assignments to

non-conflicting ports in configuration files by editing the profiles_install_root/ profile_name/

config/ cells/ cell_name/ nodes/ node_name/ serverindex.xml file.

106 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 9. Configuring ports

This topic discusses configuring ports, particularly in coexistence scenarios.

1. Review “Port number settings in WebSphere Application Server versions.”

This topic provides reference information about identifying port numbers in versions of WebSphere

Application Server, as a means of determining port conflicts that might occur when you intend for an

earlier version to coexist with Version 6.

2. You can change port settings on the port assignment panel while using the Installation wizard orthe

Profile creation wizard.

3. After installation, edit the

profiles_install_root/profile_name/config/cells/cell_name/nodes/node_name/serverindex.xml file to

change the port settings, or use scripting to change the values.

See the Administration: Operations PDF for more information.

Port number settings in WebSphere Application Server versions

This topic provides reference information about identifying port numbers in versions of WebSphere

Application Server, as a means of determining port conflicts that might occur when you intend for an

earlier version to coexist or interoperate with Version 6.

Version 6 port numbers

 Table 4. Port definitions for WebSphere Application Server Version 6

Port name

WebSphere Application

Server File

Value

HTTP_TRANSPORT 9080

serverindex.xml and

virtualhosts.xml

HTTP Admin Console Port

(HTTP_TRANSPORT_ADMIN)

9060

HTTPS Transport Port (HTTPS_TRANSPORT) 9443

HTTPS Admin Console Secure Port

(HTTPS_TRANSPORT_ADMIN)

9043

BOOTSTRAP_ADDRESS 2809

serverindex.xml

SOAP_CONNECTOR_ADDRESS 8880

SAS_SSL_SERVERAUTH_ LISTENER_ADDRESS 9401

CSIV2_SSL_SERVERAUTH_

LISTENER_ADDRESS

9403

CSIV2_SSL_MUTUALAUTH_

LISTENER_ADDRESS

9402

ORB_LISTENER_ADDRESS 9100

DCS_UNICAST_ADDRESS 9353

SIB_ENDPOINT_ADDRESS 7276

SIB_ENDPOINT_ SECURE_ADDRESS 7286

SIB_MQ_ENDPOINT_ ADDRESS 5558

SIB_MQ_ENDPOINT_ SECURE_ADDRESS 5578

Internal JMS Server

(JMSSERVER_SECURITY_PORT)

5557

DRS_CLIENT_ADDRESS 7873

© Copyright IBM Corp. 2004 107

Table 4. Port definitions for WebSphere Application Server Version 6 (continued)

Port name

WebSphere Application

Server File

Value

IBM HTTP Server Port 80 virtualhosts.xml, plugin-cfg.xml,

and IHSinstall_root/conf/

httpd.conf

IBM HTTP Server Admin Port 8008 IHSinstall_root/conf/ admin.conf

NODE_MULTICAST_IPV6_

DISCOVERY_ADDRESS

5001

serverindex.xml

Version 5.x port numbers

 Table 5. Port definitions for WebSphere Application Server Version 5.1

Port name

WebSphere Application

Server File

Value

HTTP_TRANSPORT 9080

server.xml and virtualhosts.xml

HTTPS Transport Port (HTTPS_TRANSPORT) 9443

HTTP Admin Console Port

(HTTP_TRANSPORT_ADMIN)

9090

HTTPS Admin Console Secure Port

(HTTPS_TRANSPORT_ADMIN)

9043

Internal JMS Server

(JMSSERVER_SECURITY_PORT)

5557

server.xml

JMSSERVER_QUEUED_ADDRESS 5558

serverindex.xml

JMSSERVER_DIRECT_ADDRESS 5559

BOOTSTRAP_ADDRESS 2809 serverindex.xml

SOAP_CONNECTOR_ADDRESS 8880 serverindex.xml

DRS_CLIENT_ADDRESS 7873 serverindex.xml

SAS_SSL_SERVERAUTH_ LISTENER_ADDRESS 0 serverindex.xml

CSIV2_SSL_SERVERAUTH_

LISTENER_ADDRESS

0

serverindex.xml

CSIV2_SSL_MUTUALAUTH_

LISTENER_ADDRESS

0

ORB_LISTENER_ADDRESS 0 serverindex.xml

IBM HTTP Server Port 80 virtualhosts.xml, plugin-cfg.xml,

and IHSinstall_root/conf/

httpd.conf

IBM HTTP Server Admin Port 8008 IHSinstall_root/conf/ admin.conf

Version 4.0.x port numbers

For WebSphere Application Server Advanced Single Server Edition, Version 4.0.x: Inspect the

server-cfg.xml file to find the Web container HTTP transports port values for the configuration.

For WebSphere Application Server Advanced Edition, Version 4.0.x: When the administrative server is

running, use this command to extract the configuration from the database:

108 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

xmlConfig -export config.xml -nodeName theNodeName

Look for the Web container HTTP transports port assignments.

 Table 6. Port definitions for WebSphere Application Server V4.0.x

Port name Value

Advanced Edition

IBM WebSphere

Business Integration

Server Foundation

Edition

Advanced Single

Server Edition

File

bootstrapPort 900

admin.config admin.config

server-cfg.xml

lsdPort 9000

LSDSSLPort 9001

HTTP transport port 9080

database database

HTTPS transport port 9443

Admin Console HTTP

transport port

9090

ObjectLevelTrace 2102

diagThreadPort 7000

Chapter 9. Configuring ports 109

110 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Part 4. Interoperating

© Copyright IBM Corp. 2004 111

112 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 10. Interoperating

WebSphere Application Server Version 6 is generally interoperable with WebSphere Application Server

Versions 4.0.x and 5.x. However, there are specific requirements to address for each version. In general,

IBM recommends that you apply the latest fix level to support interoperability. If this is not possible, then

the following interim fixes can be used to support your environment.

1. Apply required interim fixes.

 Table 7. Interim fixes to apply to Version 4.0.x

Interim fix Version 4.0.1 Version 4.0.2 Version 4.0.3 Version 4.0.5 Version 4.0.6 Version 4.0.7

PQ60074 Apply Apply

PQ60336 Apply Apply

PQ63548 Apply Apply Apply

PQ88648

(which requires

PQ88653)

Apply Apply Apply

PQ88973 Apply Apply Apply

 Table 8. Interim fixes to apply to Version 5.0.x

Interim fix Version 5.0.0 Version 5.0.1 Version 5.0.2

PQ88973 Apply Apply Apply

PQ89426 (which requires

PQ88653)

Apply (or move to 5.0.2.8)

 Table 9. Interim fixes to apply to Version 5.1.x

Interim fix Version 5.1.0 Version 5.1.1

PQ84384 Apply (or move to 5.1.0.4 or higher)

All fixes are available on the Support site for WebSphere Application Server products. There is a link to

the Support site for WebSphere Application Server products at the bottom of each information center

topic. Scroll all the way to the bottom of each page to see the link.

Interim fix PQ60074

An Object Request Broker (ORB) fix that supports V6 naming client access to the Version

4.0.x name server. A down-level client has no problem accessing a V6 name server, even

when using corbaloc.

Interim fix PQ60336

An ORB fix to reconcile java.math.BigDecimal and other class differences in IBM Software

Development Kits 130 and 131.

Note: This fix does not apply to IBM Software Development Kits on Solaris platforms.
Interim fix PQ63548

A fix to correct problems that might occur when passing embedded valueTypes between

WebSphere Application Server releases.

 The best solution is to upgrade all your installations to the latest release and PTF levels, such

as Version 4.0.4, which do not require this fix. If this solution is not possible, apply the fix to

your version.

 Symptoms include org.omg.CORBA.MARSHAL exceptions when passing embedded valueTypes

across the versions. Sometimes, other symptoms might mask org.omg.CORBA.MARSHAL

exceptions, which makes them difficult to identify.

© Copyright IBM Corp. 2004 113

http://www-306.ibm.com/software/webservers/appserv/was/support/

If symptoms reoccur in spite of the fix, re-export existing IORs.

Interim fixes PQ88648 (V4), PQ89426 (V5.0.2), PQ84384(V5.1.0):

The transaction service is changed so that when a transaction is marked for rollbackOnly in a

subordinate server, the superior server will be informed. This will allow applications running in

the superior server to detect this status change.

Interim fix PQ88973

An interim fix to upgrade the Software Development Kit (SDK) used by the Version 5.0.x client.

The evolution of a number of core classes causes interoperability errors between a

WebSphere Application Server, Version 5.0.x client and a Version 6 server.

 You might see the following message when running an interoperability scenario between a

WebSphere Application Server, Version 5.0.x client and a WebSphere Application Server,

Version 6 server:

java.rmi.MarshalException:

 CORBA MARSHAL 0x4942f89a No;

 nested exception is: org.omg.CORBA.MARSHAL:

 Unable to read value from underlying bridge :

 Invalid start_value valuetag: c

minor code: 4942F89A

completed: No

A number of core classes evolved between Software Development Kit (SDK) 1.3.x and SDK

1.4.x. You can experience problems interoperating with WebSphere Application Server, Version

6, which uses SDK 1.4.x.

 The recommended response is to upgrade SDK 1.3.1 to a newer Service Release (SR). The

SDK Service Release updates are available at the following IBM support sites:

v V5.0.2 Cumulative Fix for SDKs

v 1.3.1 Java SDK, Java Tech Edition for WebSphere Application Server V4

2. Follow the required guidelines for V4.0.x and V5.0.2.

 Table 10. Guidelines to apply for Version 5.x and Version 4.0.x

Guideline Version 5.x Version 4.0.x

1 Apply (V5.0.2 only) Apply

2 Apply

3 Apply

4 Apply

5 Apply

6 Apply Apply

Guideline 1:

Set the following JVM properties:

com.ibm.ejs.jts.jts.ControlSet.nativeOnly=false

com.ibm.ejs.jts.jts.ControlSet.interoperabilityOnly=true

Always apply this guideline to V4.0.x. For V5.0.2, apply this guideline in addition to applying

interim fixes (or moving to V5.0.2.8).

Guideline 2:

Make required naming changes to support Version 4.0.x client access to Version 6 enterprise

beans. There are several ways to make it work, such as:

v Updating the namebindings.xml file if you do not use the Version 6 migration tools, but have

installed Version 4.0.x applications on Version 6. To allow Version 4.0.x client access to the

applications, add additional information to the bind information in the Version 6 namespace

to make the old JNDI names work. Add the information to the namebindings.xml

configuration file at the cell level using the administrative console.

114 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg24007622
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg24006479

Note: Applications that you migrate to Version 6 using the WASPreUpgrade and

WASPostUpgrade migration tools already have this update.

v Calling Version 6 enterprise beans directly using the naming path that includes the server on

which the enterprise beans are running, such as cell/node/server1/some/ejb/name, for

example.

v Using the Version 4.0.x client java:/comp location to find Version 6 enterprise beans.
Guideline 3:

Be aware of administrative console limitations.

 You cannot use the administrative interfaces for Version 6 to administer a Version 4.0.x

administrative server. Likewise, you cannot use a Version 4.0.x administrative console to

administer a Version 6 environment. If you use the administrative console on a remote

machine to administer Version 4.0.x WebSphere Application Server domains, migrating any of

the nodes or domains to Version 6 renders the remote administration console ineffective for

administering any Version 6 environment.

Guideline 4:

Use Secure Sockets Layer Version 3 (SSL v3) for secure connections when interoperating .

You cannot use Common Secure Interoperability Version 2 (CSIv2) for interoperability, because

Version 4.0.x does not support CSIv2.

Guideline 5:

(This guideline applies only to V4.0.1.) Be aware of limitations when calling WorkLoad

Management (WLM)-enabled enterprise beans.

 Some clients cannot call WLM-enabled enterprise beans on remote clusters when there is a

local WLM-enabled enterprise bean of the same name. If there is a cluster local to the client

with the same enterprise bean as the remote cluster that the client is trying to call, the client

ends up talking to the local cluster.

Guideline 6:

Be aware of the level of WebSphere Application Server in which each function you use is

supported. Applications that you intend to be interoperable must only use function that is

supported by all levels of WebSphere Application Server in the cluster. For example,

applications that use the commonj.timer.TimerManager resource, which is new for V6, should

not be deployed to a cluster including both V5.1 and V6 servers.

This information is dynamic and might be augmented by information in technical articles that are available

on the IBM DeveloperWorks WebSphere site. Check the site for the latest information.

Chapter 10. Interoperating 115

http://www7b.software.ibm.com/wsdd/

116 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 11. Container interoperability

Container interoperability describes the ability of WebSphere Application Server clients and servers at

different versions to successfully negotiate differences in native Enterprise JavaBeans (EJB) finder

methods support and Java 2 Platform, Enterprise Edition (J2EE) compliance.

The product uses interoperable versions of some class types to enable interoperability. However, older

4.0.x client and application server versions do not support the interoperability classes, which makes them

uninteroperable with versions that use the classes. The system property

com.ibm.websphere.container.portable remedies this situation by enabling newer versions of the

application server to turn off the interoperability classes. This lets a more recent application server return

class types that are interoperable with an older client.

Depending on the value of com.ibm.websphere.container.portable, application servers at versions 5 and

later, and 4.0.3 and later, return different classes for the following:

v Enumerations and collections returned by EJB 1.1 finder methods

v EJBMetaData

v Handles to:

– Entity beans

– Session beans

– Home interfaces

If the property is set to false, application servers return the old class types, to enable interoperability with

4.0.2 and earlier. If the property is set to true, application servers return the new classes.

The following tables show interoperability characteristics for various version combinations of application

servers and clients as well as default property values for each combination.

Interoperability of Version 4.0.x client with Version 5 (and later) application server

Ideally, all 4.0.x clients that use Version 5 or later application servers should be at Version 4.0.3 or later.

Version 5 and later application servers return the interoperability class types by default (true). This can

cause interoperability problems for distributed clients at versions 4.0.1 or 4.0.2. In particular, problems can

occur with collections and enumerations returned by Enterprise JavaBeans Version 1.1 finder methods.

Although it is strongly discouraged, you can set com.ibm.websphere.container.portable to false on a

Version 5 and later application server. This causes the application server to return the old class types,

providing interoperability with clients at Version 4.0.2 and earlier. This is discouraged because:

v The Version 5 application server instance would become non-J2EE 1.3 (and later) compliant with regard

to handles, home interface handles, and EJBMetaData.

v EJB 1.x finder methods return collection and enumeration objects that do not originate from

ejbportable.jar.

v Interoperability restrictions still exist with the property set to false.

v Version 5 and later client handles to entity beans and home interfaces do not work across domains for

the server you set to false.

If you would like to use updated Handle classes in EJB 2.x-compliant beans but have one of the older

clients (versions 4.0.2 and earlier) installed, set the system property

com.ibm.websphere.container.portable.finder to false. With this setting in place, the Version 5 and later

application server uses the updated handles but returns the enumerations and collections that were

used in the earlier clients.

© Copyright IBM Corp. 2004 117

Interoperability of client at Version 4.0.2 and earlier with Version 5 (and later) application server

 Client at Version 4.0.2 and earlier,

using this function

Application server at Version 5 and

later, property true (default)

Application server at Version 5 and

later, property false

EJBMetaData Does not work Works for 4.0.2 client

Handle to session bean Does not work Works

Handle to entity bean Does not work Does not work across cells

Enumeration returned by EJB 1.x

finder method

Does not work Works

Collection returned by EJB 1.x finder

method

Does not work Works

Handle to home interface Does not work Does not work across cells

If you would like to use updated Handle classes in EJB 2.x-compliant beans but have one of the older

clients (versions 4.0.2 and earlier) installed, set the system property

com.ibm.websphere.container.portable.finder to false. With this setting in place, the Version 5 and later

server uses the new Handle classes but returns the older enumeration and collection classes.

Interoperability of client at Version 4.0.3 and later with Version 5 and later application server

Clients at Version 4.0.3 and later work well with Version 5 and later application servers. However, if you

set the com.ibm.websphere.container.portable to false, client handles to entity beans and home interfaces

do not work across domains for the server you set to false.

 Client at Version 4.0.3 and later,

using this function

Application server at Version 5 and

later, property true (default)

Application server at Version 5 and

later, property false

EJBMetaData Works Works

Handle to session bean Works Works

Handle to entity bean Works Does not work across cells

Enumeration returned by EJB 1.x

finder method

Works Works

Collection returned by EJB 1.x finder

method

Works Works

Handle to home interface Works Does not work across cells

Interoperability of Version 5 and later client with Version 4.0.x application server

Clients at Version 5 and later work well with Version 4.0.3 application servers if you set

com.ibm.websphere.container.portable to true. Client handles to entity beans and home interfaces do not

work across domains for any Version 4.0.3 server with com.ibm.websphere.container.portable at the

default value, false. Version 5 client handles to application servers at Version 4.0.2 and earlier also have

restrictions.

 Client at Version 5 and

later, using this function

Application server at

Version 4.0.3, property

true

Application server at

Version 4.0.3, property

false (default)

Application server at

Version 4.0.2 or earlier

EJBMetaData Works Works Works for 4.0.2 server only

Handle to session bean Works Works Works

Handle to entity bean Works Does not work across

domains

Does not work across

domains

118 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Client at Version 5 and

later, using this function

Application server at

Version 4.0.3, property

true

Application server at

Version 4.0.3, property

false (default)

Application server at

Version 4.0.2 or earlier

Enumeration returned by

EJB 1.x finder method

Works Works Works

Collection returned by EJB

1.x finder method

Works Works Works

Handle to home interface Works Does not work across

domains

Does not work across

domains

Interoperability of zSeries Version 4.0.x client with Version 5 and later application server

The only valid configuration for container interoperability with zSeries Version 4.0.x clients is the default

configuration for the Version 5 application server.

Interoperability of Version 5 and later client with zSeries Version 4.0.x application server

Version 5 clients should work with a zSeries Version 4.0.x application server with the correct

interoperability fixes described in the zSeries documentation. The interoperability characteristics should be

the same as for a Version 4.0.3 distributed application server with the property set to true.

 Client at Version 5 and later, using this function zSeries application server at Version 4.0.x

EJBMetaData Works

Handle to session bean Works

Handle to entity bean Works

Enumeration returned by EJB 1.x finder method Works

Collection returned by EJB 1.x finder method Works

Handle to home interface Works

Chapter 11. Container interoperability 119

120 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 12. Web Services-Interoperability Basic Profile

The Web Services-Interoperability (WS-I) Basic Profile is a set of non-proprietary Web services

specifications that promote interoperability.

WebSphere Application Server conforms to the WS-I Basic Profile 1.1.

The WS-I Basic Profile is governed by a consortium of industry-leading corporations, including IBM, under

direction of the WS-I Organization. The profile consists of a set of principles that relate to bringing about

open standards for Web services technology. All organizations that are interested in promoting

interoperability among Web services are encouraged to become members of the Web Services

Interoperability Organization.

Several technology components are used in the composition and implementation of Web services,

including messaging, description, discovery, and security. Each of these components are supported by

specifications and standards, including SOAP 1.1, Extensible Markup Language (XML) 1.0, HTTP 1.1,

Web Services Description Language (WSDL) 1.1, and Universal Description, Discovery and Integration

(UDDI). The WS-I Basic Profile specifies how these technology components are used together to achieve

interoperability, and mandates specific use of each of the technologies when appropriate. You can read

more about the WS-I Basic Profile at the WS-I Organization Web site.

Each of the technology components have requirements that you can read about in more detail at the WS-I

Organization Web site. For example, support for Universal Transformation Format (UTF)-16 encoding is

required by WS-I Basic Profile. UTF-16 is a kind of Unicode encoding scheme using 16-bit values to store

Universal Character Set (UCS) characters. UTF-8 is the most common encoding that is used on the

Internet; UTF-16 encoding is typically used for Java and Windows product applications; and UTF-32 is

used by various Linux and Unix systems. Unlike UTF-8, UTF-16 has issues with big-endian and

little-endian, and often involves Byte Order Mark (BOM) to indicate the endian. BOM is mandatory for

UTF-16 encoding and it can be used in UTF-8.

The following table summarizes some of the properties of each UTF:

 Bytes Encoding form

EF BB BF UTF-8

FF FE UTF-16, little-endian

FE FF UTF-16, big-endian

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

BOM is written prior to the XML text, and it indicates to the parser how the XML is encoded. The XML

declaration contains the encoding, for example: <?xml version=xxx encoding=″utf-xxx″?>. BOM is used

with the encoding to determine how to interpret the XML. Here is an example of a SOAP message and

how BOM and UTF encoding are used:

POST http://www.whitemesa.net/soap12/add-test-rpc HTTP/1.1

Content-Type: application/soap+xml; charset=utf-16; action=""

SOAPAction:

Host: localhost: 8080

Content-Length: 562

OxFF0xFE<?xml version="1.0" encoding="utf-16"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2002/12/soap-envelope"

 xmlns:soapenc="http://www.w3.org/2002/12/soap-encoding

 xmlns:tns="http://whitemesa.net/wsdl/soap12-test"

 xmlns:types="http://whitemesa.net/wsdl/soap12-test/encodedTypes"

© Copyright IBM Corp. 2004 121

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soap:Body>

 <q1:echoString xmlns:q1="http://soapinterop.org/">

 <inputString soap:encodingStyle="http://example.org/unknownEncoding"

 xsi:type="xsd:string">

 Hello SOAP 1.2

 </inputString>

 </q1:echoString>

 </soap:Body>

</soap:Envelope>

In the example code, 0xFF0xFE represents the byte codes, while the <?xml> declaration is the textual

representation.

To learn more about the WS-Basic profile, including scenarios, UTF and BOM, see the Developing and

Deploying Applications PDF.

122 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 13. Interoperability issues for security

To have interoperability of Security Authentication Service (SAS) between C++ and WebSphere Application

Server, use the Common Secure Interoperability Version 2 (CSIv2) authentication protocol over Remote

Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP).

© Copyright IBM Corp. 2004 123

124 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 14. Interoperating with a C++ common object request

broker architecture client

You can achieve interoperability of Security Authentication Service between the C++ Common Object

Request Broker Architecture (CORBA) client and WebSphere Application Server using Common Secure

Interoperability Version 2 (CSIv2) authentication protocol over Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI-IIOP). The CSIv2 security service protocol has authentication, attribute and

transport layers. Among the three layers, transport authentication is conceptually simple, however,

cryptographically based transport authentication is the strongest. WebSphere Application Server Enterprise

has implemented the transport authentication layer, so that C++ secure CORBA clients can use it

effectively in making CORBA clients and protected enterprise bean resources work together.

Security authentication from non-Java based C++ client to enterprise beans. WebSphere Application

Server supports security in the CORBA C++ client to access protected enterprise beans. If configured,

C++ CORBA clients can access protected enterprise bean methods using client certificate to achieve

mutual authentication on WebSphere Application Server Enterprise applications.

To support the C++ CORBA client in accessing protected enterprise beans:

v Create an environment file for the client, such as current.env. Set the variables listed below

(security_sslKeyring, client_protocol_user, client_protocol_password) in the file.

v Point to the environment file using the fully qualified path name through the environment variable

WAS_CONFIG_FILE. For example, in the test shell script test.sh, export

WAS_CONFIG_FILE=/WebSphere/V5R0M0/AppServer/bin/current.env.

 C++ security setting Description

client_protocol_password Specifies the password for the user ID.

client_protocol_user Specifies the user ID to be authenticated at the target

server.

security_sslKeyring Specifies the name of the RACF keyring the client will

use. The keyring must be defined under the user ID that

is issuing the command to run the client.

To support the C++ CORBA client in accessing protected enterprise beans:

1. Obtain a valid certificate to represent the client and export its public key to the target enterprise bean

server.

A valid certificate is needed to represent the C++ client. Request a certificate from the certificate

authority (CA) or create a self-signed certificate for testing purposes.

Use the Key Management Utility from the Global Security Kit (GSKit) to extract the public key from the

personal certificate and save it in the .arm format. For details, see the Security Guide PDF.

2. Prepare a truststore file for WebSphere Application Server.

Add the extracted client public key in the .arm file from the client to the server key truststore file. The

server can now authenticate the client.

Note: This is done by invoking the Key Management Utility through ikeyman.bat or ikeyman.sh from

WebSphere Application Server installation.

For details, see the Security Guide PDF.

3. Configure WebSphere Application Server to support SSL as the authentication mechanism.

a. Start the administrative console.

b. Locate the application server that has the target enterprise bean deployed and configure it to use

SSL client certificate authentication.

© Copyright IBM Corp. 2004 125

If it is a base installation, complete the following steps:

1) Click Security > Global security. Under Authentication, click Authentication protocol >

CSIv2 inbound authentication. Select Supported for the Basic authentication and Client

certificate authentication options. Leave the rest of the options as defaults.

2) Click Security > Global security. Under Authentication, click Authentication protocol >

CSIv2 inbound transport and verify that the SSL-supported option is selected.

If it is a Network Deployment setting, complete the following steps:

1) Click Server > Application Server >server_name_where_the_EJB_resides. Under security,

click Server security. Under Additional properties, click CSI inbound authentication. Select

Supported for the Basic authentication and Client certificate authentication options. Leave the

rest of the options as defaults.

2) Click Server > Application Server >server_name_where_the_EJB_resides. Under security,

click Server security. Under Additional properties, click CSI inbound transport. Verify that the

SSL-Supported option is selected.

For details, see the Security Guide PDF.

c. Restart the application server.

The WebSphere Application Server is ready to take a C++ CORBA security client and a mutually

authenticated server and client by using SSL in the transport layer.

4. Configure the C++ CORBA client to use a certificate in performing the mutual authentication.

Client users are accustomed to using property files in their applications because they are helpful in

specifying configuration settings. The following list presents important C++ security settings:

 C++ security setting Description

com.ibm.CORBA.bootstrapHostName=ricebella.austin.ibm.com Specifies the target host name.

com.ibm.CORBA.securityEnabled=yes Enables security.

com.ibm.CSI.performTLClientAuthenticationSupported=yes Ensures client is supporting mutual

authentication by certificate

com.ibm.CSI.performTransportAssocSSLTLSSupported=yes Ensures SSL is used, not TCP/IP

com.ibm.ssl.keyFile=C:/ricebella/etc/DummyKeyRingFile.KDB Specifies which key database file to use.

com.ibm.ssl.keyPassword=WebAS Specifies the password for opening the key

database file. WebSphere Application Server

supports a utility called PasswordEncode4cpp

to encode the plain password.

com.ibm.CORBA.translationEnabled=1 Enables the valueType conversion.

To use the property files in running a C++ client, an environment variable WASPROPS, is used to

indicate where a property file or a list of property files exist.

For the complete set of C++ client properties, see the sample property file scclient.props, which is

shipped with the product located in the install_root\profiles\profile_name\etc directory.

126 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 15. Interoperating with previous product versions

IBM WebSphere Application Server, Version 5.x or later interoperates with the previous product versions

(such as Version 4 and Version 3.5). Interoperability is achieved only when the Lightweight Third Party

Authentication (LTPA) authentication mechanism and Lightweight Directory Access Protocol (LDAP) user

registry are used. Credentials derived from Simple WebSphere Authentication Mechanisms (SWAM) are

not forwardable.

1. Enable security with the LTPA authentication mechanism and the LDAP user registry. Make sure that

the same LDAP user registry is shared by all the product versions.

2. Extract and add Version 5 server certificates into the server key ring file of the previous version.

a. Open the Version 5 server key ring file using the key management utility (iKeyman) and extract the

server certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and

add the certificate extracted from product Version 5.

3. Extract and add Version 5 server certificates into the server key ring file of the previous version.

a. Open the Version 5 server key ring file using the key management utility (iKeyman) and extract the

server certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and

add the certificate extracted from product Version 5.

4. Extract and add Version 5 trust certificates into the trust key ring file of the previous product version.

a. Open the Version 5 trust key ring file using the key management utility and extract the trust

certificate to a file.

b. Open the trust key ring file of the previous product version using the key management utility and

add the certificate extracted from Version 5.

5. If single signon (SSO) is enabled, export keys from the Version 5 product and import them into the

previous product version. The Version 4 product requires the fix, PQ61779, and the Version 3.5

product requires the fix, PQ59667, for SSO to function.

6. Verify that the application uses the correct JNDI name. In Version 5, the enterprise beans are

registered with long JNDI names like, (top)/nodes/node_name/servers/server_name/HelloHome.

Whereas in previous releases, enterprise beans are registered under a root like, (top)/HelloHome.

Therefore, EJB applications from previous versions perform a lookup on the Version 5 enterprise

beans.

You can also create EJB name bindings in Version 5 that are compatible with the previous version. To

create an EJB name binding at the root Version 5, start the administrative console and click

Environment > Naming > Naming Space Bindings > New > EJB > Next. Complete all the fields

and enter a short name (for example, -HelloHome) as the JNDI Name. Click Next and Finish.

7. Stop and restart all the servers.

8. Make sure that the correct naming bootstrap port is used to perform naming lookup. In previous

product versions, the naming bootstrap port is 900. In Version 5, the bootstrap port is 2809.

© Copyright IBM Corp. 2004 127

128 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 16. JNDI interoperability considerations

This section explains considerations to take into account when interoperating with WebSphere Application

Server V4.0 and with non-WebSphere Application Server JNDI clients. Also, the way resources from

MQSeries must be bound to the name space changed after V4.0 and is described below.

Interoperability with WebSphere Application Server V4.0

v EJB clients running on WebSphere Application Server V4.0 accessing EJB applications running

on WebSphere Application Server V5 or V6

Applications migrated from previous versions of WebSphere Application Server may still have clients still

running in a previous release. The default initial JNDI context for EJB clients running on previous

versions of WebSphere Application Server is the cell persistent root (legacy root). The home for an

enterprise bean deployed in version 5 or 6 is bound to its server’s server root context. In order for the

EJB lookup name for down-level clients to remain unchanged, configure a binding for the EJB home

under the cell persistent root.

v EJB clients running on WebSphere Application Server V5 or V6 accessing EJB applications

running on WebSphere Application Server V4.0 servers

The default initial context for a WebSphere Application Server V4.0 server is the correct initial context.

Simply look up the JNDI name under which the EJB home is bound.

Note: To enable WebSphere Application Server V5 or V6 clients to access version 4.x servers, the

down-level installations must have e-fix PQ60074 installed.

EJB clients running in an environment other than WebSphere Application Server accessing EJB

applications running on WebSphere Application Server V5 or V6 servers

When an EJB application running in WebSphere Application Server V5 or V6 is accessed by a

non-WebSphere Application Server EJB client, the JNDI initial context factory is presumed to be a

non-WebSphere Application Server implementation. In this case, the default initial context will be the cell

root. If the JNDI service provider being used supports CORBA object URLs, the corbaname format can be

used to look up the EJB home. The construction of the stringified name depends on whether the object is

installed on a single server or cluster, as shown below.

v Single server

initialContext.lookup(

 "corbaname:iiop:myHost:2809#cell/nodes/node1/servers/server1/myEJB");

According to the URL above, the bootstrap host and port are myHost and 2809, and the enterprise

bean is installed in a server server1 in node node1 and bound in that server under the name myEJB.

v Server cluster

initialContext.lookup(

 "corbaname:iiop:myHost:2809#cell/clusters/myCluster/myEJB");

According to the URL above, the bootstrap host and port are myHost and 2809, and the enterprise

bean is installed in a server cluster named myCluster and bound in that cluster under the name

myEJB.

The above lookup will work with any name server bootstrap host and port configured in the same cell.

The above lookup will also work if the bootstrap host and port belongs to a member of the cluster itself.

To avoid a single point of failure, the bootstrap server host and port for each cluster member could be

listed in the URL as follows:

initialContext.lookup(

 "corbaname:iiop:host1:9810,host2:9810#cell/clusters/myCluster/myEJB");

The name prefix cell/clusters/myCluster/ is not necessary if boostrapping to the cluster itself, but it will

work. The prefix is needed, however, when looking up enterprise beans in other clusters. Name

© Copyright IBM Corp. 2004 129

bindings under the clusters context are implemented on the name server to resolve to the server root

of a running cluster member during a lookup; thus avoiding a single point of failure.

v Without CORBA object URL support

If the JNDI initial context factory being used does not support CORBA object URLs, the initial context

can be obtained from the server, and the lookup can be performed on the initial context as follows:

Hashtable env = new Hashtable();

env.put(CONTEXT.PROVIDER_URL, "iiop://myHost:2809");

Context ic = new InitialContext(env);

Object o = ic.lookup("cell/clusters/myCluster/myEJB");

Binding resources from MQSeries 5.2

In releases previous to WebSphere Application Server V5, the MQSeries jmsadmin tool could be used to

bind resources to the name space. When used with a WebSphere Application Server V5 or V6 name

space, the resource is bound within a transient partition in the name space and does not persist past the

life of the server process. Instead of binding the MQSeries resources with the jmsadmin tool, bind them

from the WebSphere Application Server administrative console, under Resources in the console

navigation tree.

130 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 17. Application profiling interoperability

The effect of 5.x Compatibility Mode

Application profiling supports forward compatibility. Application profiles created in previous versions of

WebSphere Application Server (Enterprise Edition 5.0 or WebSphere Business Integration Server

Foundation 5.1) can only run in WebSphere Application Server Version 6 if the Application Profiling 5.x

Compatibility Mode attribute is turned on. If the 5.x Compatibility Mode attribute is off, Version 5 application

profiles might display unexpected behavior. For information about the 5.x Compatibility Mode, see the

Developing and Deploying Applications PDF.

Similarly, application profiles that you create using WebSphere Application Server Version 6 are not

compatible with Version 5 or earlier versions. Even applications configured with application profiles run on

Version 6 servers with the Application Profiling 5.x Compatibility Mode attribute turned on cannot interact

with applications configured with profiles run on Version 5 servers.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x Compatibility

Mode, you must set the appprofileCompatibility system property to true in the client process. You can do

this by specifying the -CCDappprofileCompatibility=true option when invoking the launchClient command.

Considerations for a clustered environment

In a clustered environment with mixed WebSphere Application Server product versions and mixed

platforms, applications configured with application profiles might exhibit unexpected behavior because

previous versions of server members cannot support the application profiling of Version 6.

If a clustered environment contains both Version 5.x and 6.0 server members, and if any applications are

configured with application profiles, the Application Profiling 5.x Compatibility Mode attribute must be

turned on in Version 6 server members. Still, this cluster can only support Version 5 application profiling

behavior. To support applications configured with Version 6 application profiles in a cluster environment, all

server members in the cluster must be at the Version 6 level.

WebSphere Application Server Enterprise Edition Version 5.0.2

If you use WebSphere Application Server Enterprise Edition 5.0.2, you must apply WebSphere Application

Server Version 5 service pack 7 or later service pack to enable Application Profiling interoperability.

© Copyright IBM Corp. 2004 131

132 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 18. Interoperating with asynchronous beans

Asynchronous beans support Serialized WorkWithExecutionContext interoperability with objects serialized

in 5.0.2 or later.

For more information on migrating to WebSphere Application Server Version 6 from previous product

releases, see Migrating product configurations.

1. Install the Version 6 product. Installing the product creates a stand-alone Application Server.

2.

3. Start the First steps console.

4. Select the Migration wizard on the First steps console.

5. Use the Migration wizard to migrate the previous release to the Version 6 product.

© Copyright IBM Corp. 2004 133

134 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Chapter 19. Interoperating with schedulers

Schedulers support forward compatibility. Tasks created in previous versions of WebSphere Application

Server Enterprise Edition 5.0 or WebSphere Business Integration Server Foundation 5.1 continue to run in

WebSphere Application Server, Version 6 schedulers. Tasks that you create using Version 6 are not

compatible with product schedulers from Version 5 or earlier. Version 5 schedulers do not run any Version

6 tasks.

All schedulers that are configured to use the same database and tables are considered a clustered

scheduler. To guarantee that your tasks will run correctly, all servers in a scheduler cluster must be at the

same version. If the servers are at different versions, tasks created with a Version 6 scheduler may not

run. If a mixed-Version environment is required for a short period of time, then all scheduler poll daemons

should be stopped on all Version 5 servers to allow a Version 6 server to run all tasks. This action allows

the Version 6 schedulers to obtain leases and run tasks that have been created with a Version 6

scheduler.

Running tasks created with schedulers prior to Version 5.0.2 is not supported. See the topic,

″Interoperating with the Scheduler service,″ in the WebSphere Application Server Enterprise Edition

Version 5.0.2 information center for details on how to migrate these tasks to a more recent version. See

the information center library page to access the Version 5.0.2 information center.

© Copyright IBM Corp. 2004 135

http://www-306.ibm.com/software/webservers/appserv/infocenter.html

136 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Appendix A. Migration tools

This topic introduces the migration tools that WebSphere Application Server provides. All of the migration

tools are in the install_root/bin directory after installation. The WASPreUpgrade.sh or WASPreUpgrade.bat

scripts also ship in the /migration/bin directory on the product CD-ROM so that you can store the

configuration of an existing release before installing the V6 product. It is important to use the migration

tools for the version of Application Server that you are installing. The tools change over time. The tools on

the product CD-ROM provide the necessary function for migrating from a previous release of Application

Server to the one on the product CD-ROM. The tools on the CD-ROM match the product on the CD-ROM.

If you use migration tools from an earlier release of Application Server, you are likely to encounter a

problem with the migration.

clientUpgrade.sh (and clientUpgrade.bat)

Upgrades the client application to a new release level.

convertScriptCompatibility.sh (and convertScriptCompatibility.bat)

Used by administrators to convert their configuration from a mode that supports backward

compatibility of V5.x administration scripts to a mode that is fully V6.0.

WASPreUpgrade.sh (and WASPreUpgrade.bat)

Saves the applications and configuration data from a previous installation of WebSphere

Application Server to a backup directory. The WASPostUpgrade script restores the configuration

data from the directory to the new installation. The Migration wizard calls the WASPreUpgrade.sh

script during migration. You can also use the command to perform a manual migration, after

installing the new version.

WASPostUpgrade.sh (and WASPostUpgrade.bat)

Restores the configuration data from a previous release. WASPostUpgrade reads the data from

the backup directory where the WASPreUpgrade script stored the data. The Migration wizard calls

the WASPostUpgrade.sh script during migration. You can also use the command to perform a

manual migration, after installing the new version.

The clientUpgrade command

Use the clientUpgrade command to migrate V4.0.x and V5.x client resources to V6.0 level resources. In

the process of migrating these resources, the client-resources.xmi file located in the client jars will be

migrated to the latest level. A backup of the client-resources.xmi file will also be located in the client jar. If

this command is not executed against the client EAR files before they are installed on V6.0, the client

EARs will not operate or install correctly.

Note: WebSphere Application Server Versions 5.1 and higher do not support the Windows NT platform.

The command file is located in the bin subdirectory of the WAS_install_root, or the ND_install_root

directory. By default, the WAS_install_root for WebSphere Application Server and WebSphere Application

Server Enterprise is:

v Windows operating platforms - drive\WebSphere\AppServer directory

v AIX or UNIX-based operating platforms - /usr/WebSphere/AppServer directory

By default, the ND_install_root for WebSphere Application Server Network Deployment is:

v Windows operating platforms - drive\WebSphere\DeploymentManager directory

v AIX or UNIX-based operating platforms - /usr/WebSphere/DeploymentManager directory

Linux and UNIX-based platforms:

clientUpgrade.sh EAR_file [-clientJar client_jar]

 [-logFileLocation logFileLocation]

 [-traceString trace_spec [-traceFile file_name]]

© Copyright IBM Corp. 2004 137

Windows platforms:

clientUpgrade.bat EAR_file [-clientJar client_jar]

 [-logFileLocation logFileLocation]

 [-traceString trace_spec [-traceFile file_name]]

Parameters

Supported arguments include the following:

EAR_file

Use this parameter to specify the fully qualified path to the EAR file that contains client JAR files to

process.

-clientJar

Use this optional parameter to specify a JAR file for processing. If not specified, the program

transforms all client JAR files in the EAR file.

-logFileLocation log_file_location

Use this optional parameter to specify an alternate location to store the log output.

-traceString trace_spec -traceFile file_name

Use these optional parameters to gather trace information for IBM Service personnel. Specify a

trace_spec of ″*=all=enabled″ (with quotation marks) to gather all trace information.

The following example demonstrates correct syntax:

clientUpgrade EAR_file -clientJar ejbJarFile

The convertScriptCompatibility command

The convertScriptCompatibility command is a migration tool used by administrators for converting a

configuration from a mode that supports backward compatibility of V5.x administration scripts to a mode

that is fully V6.0. This command converts WebSphere Common Configuration Model (WCCM) objects of

type processDef to use processDefs as defined in the 6.0 server.xml model. There can be only one

occurrence of a processDefs object in a server configuration. If an existing processDefs object is found

when performing this conversion, it is used and updated; otherwise a new object is created. The

convertScriptCompatibility command also maps existing transport entries to channel support. This

affects server.xml and serverindex.xml files. The values of the transport settings are used to create new

channel entries.

convertScriptCompatibility.sh command syntax for Linux and UNIX-based platforms

The command syntax is as follows:

convertScriptCompatibility.sh [-help]

 [-backupConfig true | false]

 [-profileName profile_name]

 [-nodeName node_name [-serverName server_name]]

 [-traceString trace_spec [-traceFile file_name]]

convertScriptCompatibility.bat command syntax for Windows platforms

The command syntax is as follows:

convertScriptCompatibility.bat [-help]

 [-backupConfig true | false]

 [-profileName profile_name]

 [-nodeName node_name [-serverName server_name]]

 [-traceString trace_spec [-traceFile file_name]]

138 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Parameters

Supported arguments include the following:

-help

Displays help for this command

-backupConfig true | false

An optional parameter used to back up the existing configuration of the current instance. The default is

true, to use the backupConfig command to save a copy of the current configuration into the

profile_name/temp directory. Use the restoreConfig command to restore that configuration as

required.

-profileName profile_name

An optional parameter used to specify a profile configuration in the V6 environment. If not specified,

the default profile will be used. If the default has not been set or cannot be found, the system will

return an error.

-nodeName node_name -serverName server_name

Optional parameters used to specify a node name and a server name for the program to update. If

neither is specified, all nodes and servers in the configuration are converted. When you use

-serverName in conjunction with -nodeName, all processing will be limited to the specified node_name.

-traceString trace_spec -traceFile file_name

Optional parameters to gather trace information for IBM Service personnel. Specify a trace

specification of ″*=all=enabled″ (with quotation marks) to gather all trace information.

WASPreUpgrade command

The WASPreUpgrade command is a migration tool that saves the configuration and applications of a

previous version or release to a Version 6.0 node.

Location of command file

The command file is located and should be run in the WAS60_install_root/bin directory. The command

file is a script named WASPreUpgrade.sh for Linux-based platforms or WASPreUpgrade.bat for Windows

platforms.

WASPreUpgrade.sh command syntax for Linux-based platforms

The command syntax is as follows:

WASPreUpgrade.sh backupDirectory

 currentWebSphereDirectory

 [adminNodeName]

 [-nameServiceHost host_name [-nameServicePort port_number]]

 [-import xmiDataFile]

 [-traceString trace_spec [-traceFile file_name]]

WASPreUpgrade.bat command syntax for Windows platforms

WASPreUpgrade backupDirectory

 currentWebSphereDirectory

 [adminNodeName]

 [-nameServiceHost host_name [-nameServicePort port_number]]

 [-import xmiDataFile]

 [-traceString trace_spec [-traceFile file_name]]

Parameters

The first two arguments are required. The third argument is required and positional only when upgrading

from WebSphere Application Server Advanced Edition, Version 4.0.x.

Appendix A. Migration tools 139

Supported arguments include:

backupDirectory

Required parameter of the directory in which the WASPreUpgrade tool stores the saved configuration

and files, and from which the WASPostUpgrade tool later reads the configuration and files. The

WASPreUpgrade tool creates the directory if the directory does not already exist.

currentWebSphereDirectory

Required positional name of the installation/instance root for the current V4.x, V5.0.x, or V5.1.x

installation. This version can be any form of WebSphere Application Server, V4.0.x, and any form of

V5.0.x or V5.1.x, including WebSphere Application Server Express.

adminNodeName

Optional, positional name of the node containing the administrative server for the currently installed

product. The value of this argument must match the node name given in the topology tree on the

Topology tab of the administrative console for the currently installed product. The WASPreUpgrade tool

calls the XMLConfig tool using this parameter. This parameter is only required when upgrading from

WebSphere Application Server Advanced Edition, Version 4.0.x.

-nameServiceHost host_name -nameServicePort port_number

When specified, the WASPreUpgrade tool passes these optional parameters to the XMLConfig tool.

Use these parameters to override the default host name and port number used by the XMLConfig tool.

This parameter is only applicable when upgrading from WebSphere Application Server Advanced

Edition, Version 4.0.x.

-import xmiDataFile

The name of the WebSphere Application Server Advanced Single Server Edition or Advanced Edition,

Version 4.0 XML Metadata Interchange (XMI) configuration file to process. This parameter is optional

because the program uses the config\server-cfg.xml file by default.

 When migrating a configuration that uses anything other than the default server-cfg.xml file name,

you must use the -import option along with a path to point to the non-default XMI configuration file.

You also must use the -import and path option when running the WASPostUpgrade tool later, to point

to the non-default XMI configuration file in the directory created by the WASPreUpgrade tool.

-traceString trace_spec -traceFile file_name

Optional parameters to gather trace information for IBM Service personnel. Specify a trace

specification of ″*=all=enabled″ (with quotation marks) to gather all trace information.

Logging

The WASPreUpgrade tool displays status to the screen while it runs. The tool also saves a more extensive

set of logging information in the backup directory. You can view the WASPreUpgrade.log file with a text

editor.

Migrated resources

WASPreUpgrade migrates all of your resources and applications, but does not migrate entities in your

classes directory.

Migration saves the following files in the backup directory.

For Version 5.x:

 v classes (not saved for iSeries)

v config

v installableApps

v installedApps

v properties

140 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

WASPreUpgrade also saves all instances created in the V5.x environment. (For iSeries,

WASPreUpgrade must be invoked for each instance.)

For Version 4.0.x:

 v bin/setupCmdLine.sh (or bin/setupCmdLine.bat for Windows platforms)

v classes (not saved for iSeries)

v config

v installableApps

v installedApps (by default unless overriden within a specified developer configuration file)

v installedConnectors (Version 4.x Advanced Edition only)

v properties

Migrating from V4.0.x Advanced Edition

The following example specifies a backup directory named backupDirectory, and identifies the root of the

existing installation as d:\WebSphere\AppServer.

WASPreUpgrade backupDirectory d:\WebSphere\AppServer yourNodeName

Migrating from V4.0.x Advanced Single Server Edition with multiple backup directories

This example shows how to migrate incrementally, to migrate separate configuration files from a single

node with a single installation of WebSphere Application Server Advanced Single Server Edition. To

migrate more than one configuration file, you must run the WASPreUpgrade tool multiple times to multiple

backup directories because not all of the applications are in the same installedApps directory. For this

reason, using a single backup directory for all runs of the WASPreUpgrade tool is not recommended. Use

a separate backup directory for each run. The intent of this example is to show how to migrate a single

node with multiple configuration files.

1. Run the following WASPreUpgrade commands to migrate applications A, B, C, D, and E, which reside

in three separate application directories. Server assumptions include:

v The Application Server uses the default configuration file, server-cfg.xml, as well as

myServer1-cfg.xml and OldServer-cfg.xml.
> WASPreUpgrade C:\WAS4ABBACKUP G:\WebSphere\AppServer

> WASPreUpgrade C:\WAS4CDBACKUP G:\WebSphere\AppServer

 -import G:\WebSphere\AppServer\config\myServer1-cfg.xml

> WASPreUpgrade C:\WAS4EBACKUP G:\WebSphere\AppServer

 -import G:\WebSphere\AppServer\config\OldServer-cfg.xml

2. Run the following WASPostUpgrade commands to restore the applications and configurations to the

Version 6 Application Server:

> WASPostUpgrade C:\WAS4ABBACKUP

> WASPostUpgrade C:\WAS4CDBACKUP -import C:\WAS4CDBACKUP\myServer1-cfg.xml

> WASPostUpgrade C:\WAS4EBACKUP -import C:\WAS4EBACKUP\OldServer-cfg.xml

Migrating from V5.x

This example shows how to migrate a single instance of the base WebSphere Application Server, V5.x.

Verify that you have stopped all Java processes related to the WebSphere Application Server product that

you are migrating.

1. Run the following WASPreUpgrade.bat command to migrate all applications in the installedApps

directory of the V5.x Application Server, which has an installation root of C:\Program

Files\WebSphere\AppServer.

WASPreUpgrade "C:\WAS5xxBACKUP" C:\Program Files\WebSphere\AppServer

2. Run the following WASPostUpgrade commands to restore the applications and configurations to the

Version 6 Application Server:

WASPostUpgrade "C:\WAS5xxBACKUP"

Appendix A. Migration tools 141

WASPostUpgrade command

The WASPostUpgrade command is a migration tool for adding the configuration and applications of a

previous version or release to a Version 6.0 WebSphere Application Server node. The configuration

includes migrated applications. The tool adds all migrated applications into the

install_root/installedApps directory for the Version 6 installation. The tool retrieves the saved

configuration that was created by the WASPreUpgrade tool from the backupDirectory that you specify.

Location of command file

The command file is located and should be run in the WAS60_install_root/bin directory. The command

file is a script named WASPostUpgrade.sh for Linux-based platforms or WASPostUpgrade.bat for Windows

platforms.

WASPostUpgrade.sh command syntax for Linux-based platforms

The command syntax is as follows:

WASPostUpgrade.sh backupDirectory

 [-oldProfile profile_name]

 [-profileName profile_name]

 [-import xmi_data_file]

 [-scriptCompatibility true | false]

 [-portBlock port_starting_number]

 [-backupConfig true | false]

 [-replacePorts true | false]

 [-substitute "key1=value1[;key2=value2;[...]]"]

 [-instance instanceName -hostName hostname]

 [-includeApps true | false]

 [-traceString trace_spec [-traceFile file_name]]

 [-scriptCompatibility true | false]

 [-connectionTimeout <TimeoutInMinutes>]

The first argument is required.

WASPostUpgrade.bat command syntax for Windows platforms

WASPostUpgrade backupDirectory

 [-oldProfile profile_name]

 [-profileName profile_name]

 [-import xmi_data_file]

 [-scriptCompatibility true | false]

 [-portBlock port_starting_number]

 [-backupConfig true | false]

 [-replacePorts true | false]

 [-substitute "key1=value1[;key2=value2;[...]]"]

 [-instance instance_name -hostName host_name]

 [-includeApps true | false]

 [-traceString trace_spec [-traceFile file_name]]

 [-scriptCompatibility true | false]

 [-connectionTimeout < timeoutInMinutes>]

The first argument is required.

Parameters

Supported arguments include:

backupDirectory

Required parameter of the directory in which the WASPreUpgrade tool stores the saved configuration

and files. The WASPostUpgrade tool reads the configuration and files stored in this directory. The

WASPreUpgrade tool creates this directory if it does not already exist.

142 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

-oldProfile profile_name

An optional parameter for migrating instances from previous WebSphere Application Server versions or

profiles. The instance or profile must already exist in the migration backup directory before executing

this command. In V5.x, unique instance names were defined by the concatenation of -instanceName

and -hostName; this concatenation forms the profile_name that you need to use with the -oldprofile

parameter. In V5.x, this concatenation is stored in the install_root\properties directory, in a file

called wsinstance.config.

-profileName profile_name

An optional parameter for migrating to profiles in V6. You must have already created this profile before

calling WASPostUpgrade. If -profileName is not specified, the default profile will be used. If no default

profile is found, the system will report an error.

-import xmi_data_file

The name of the WebSphere Application Server Advanced Single Server Edition or Advanced Edition,

Version 4.0 XML Metadata Interchange (XMI) configuration file to process. This parameter is optional

because the program uses the config\server-cfg.xml file by default.

 When migrating a configuration that uses anything other than the default server-cfg.xml file name,

you must use the -import option along with the path to the non-default XMI configuration file in the

directory created by the WASPreUpgrade tool.

-portBlock port_starting_number

An optional parameter used to specify the starting value to use when creating ports.

-backupConfig true | false

An optional parameter used to back up the existing configuration of the current profile before adding

the saved configuration from the earlier release to the current instance. The default is true, to use the

backupConfig command to save a copy of the current configuration into the profile_name/temp

directory. Use the restoreConfig command to restore that configuration as required.

-replacePorts true | false

An optional parameter used to define how to migrate virtual host and server transport ports. The

default for migrations from V4.0.x is false (do not replace default port definitions); the default for

migrations from V5.x is true (do replace default port definitions). Migrating adds configuration data

from the previous version to the existing data in the V6.0 configuration. In some cases existing port

definitions from the earlier release were carefully set to avoid port conflicts with other products. In such

cases, it is likely that you would want to migrate the settings into V6.0. Use the -replacePorts

parameter to totally replace settings in the V6.0 environment with the settings from the previous

version. Select true to replace all virtual host alias port settings during migration. If migrating from

V5.0.x or later, transport settings in existing servers are replaced by the settings from the previous

version.

-substitute key1=value1;key2=value2;...

Optional argument passed to the XMLConfig tool. Specify values for security variables to substitute

(for example, -substitute ″NODE_NAME=admin_node;APP_SERVER=default_server″).

 In the input XML data file, each key appears as key for substitution. In the above example, this

argument substitutes any occurrence of $NODE_NAME$ with admin_node and APP_SERVER with

default_server in the input XML file.

 If the substitution string contains semicolons, use $semiColon$ to distinguish the string from the ″;″

delimiter. On Linux platforms, add an escape character to each dollar sign ($) within the substitution

string (for example, \$semiColon\$).

 This parameter is applicable for configurations saved from Advanced Edition, Version 4.0.x.

-instance instance_name -hostName host_name

Optional parameters used for migrating instances from previous versions of WebSphere Application

Server. An instance of instance_name host_name must already exist in the current WebSphere

Application Server configuration before this command is executed.

Appendix A. Migration tools 143

-includeApps true | false

An optional parameter used to specify whether to migrate only the old configuration, or to include user

enterprise applications as part of the migration. The default is true. WebSphere Application Server

system applications will migrate regardless of the value set by this parameter.

-traceString trace_spec -traceFile file_name

Optional parameters to gather trace information for IBM Service personnel. Specify a trace

specification of ″*=all=enabled″ (with quotation marks) to gather all trace information.

-scriptCompatibility true | false

An optional parameter used to specify whether migration should create Transport and ProcessDef

definitions in the configuration instead of Channels and ProcessDefs. Use this parameter if you have

existing wsadmin scripts or programs that create or modify Transport or ProcessDef defintions. The

default is true.

-connectionTimeout timeoutInMinutes

This is an optional parameter to be used if a SOAP/RMI timeout occurs when performing a migration

of a managed node. This parameter is specified in minutes (the default value is 10). It is possible to

run into a SOAP/RMI timeout issue when migrating a very large or very complex configuration; if this

happens, you should increase the amount of time before a SOAP/RMI connection timeout occurs and

run migration again.

Logging

The WASPostUpgrade tool displays status to the screen while running. This tool also saves a more

extensive set of logging information in the logs directory. You can view the WASPostUpgrade.log file with a

text editor.

Logging

The WASPostUpgrade tool displays status to the screen while running. This tool also saves a more

extensive set of logging information in the logs directory. You can view the WASPostUpgrade.log file with a

text editor.

Migrating from V4.0.x Advanced Edition

The following example specifies a backup directory named backupDirectory, and identifies the root of the

existing installation as d:\WebSphere\AppServer.

WASPreUpgrade backupDirectory d:\WebSphere\AppServer yourNodeName

Migrating from V4.0.x Advanced Single Server Edition with multiple backup directories

This example shows how to migrate separate configuration files incrementally from a single node with a

single installation of WebSphere Application Server Advanced Single Server Edition. To migrate more than

one configuration file, you must run the WASPreUpgrade tool multiple times to multiple backup directories

because not all of the applications are in the same installedApps directory. For this reason, using a single

backup directory for all the runs of the WASPreUpgrade tool is not recommended. Use a separate backup

directory for each run. The intent of this example is to show how to migrate a single node with multiple

configuration files.

1. Run the following WASPreUpgrade commands to migrate applications A, B, C, D, and E, which reside

in three separate application directories. Server assumptions include:

v The Application Server uses the server-cfg.xml default configuration file, as well as the

myServer1-cfg.xml and the OldServer-cfg.xml files.
> WASPreUpgrade "C:\WAS4ABBACKUP" G:\WebSphere\AppServer

> WASPreUpgrade "C:\WAS4CDBACKUP" G:\WebSphere\AppServer

 -import G:\WebSphere\AppServer\config\myServer1-cfg.xml

> WASPreUpgrade "C:\WAS4EBACKUP" G:\WebSphere\AppServer

 -import G:\WebSphere\AppServer\config\OldServer-cfg.xml

144 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

2. Run the following WASPostUpgrade commands to restore the applications and configurations to the

Version 6 Application Server:

> WASPostUpgrade C:\WAS4ABBACKUP

> WASPostUpgrade "C:\WAS4CDBACKUP" -import "C:\WAS4CDBACKUP\myServer1-cfg.xml"

> WASPostUpgrade "C:\WAS4EBACKUP" -import "C:\WAS4EBACKUP\OldServer-cfg.xml"

Migrating from V5.x

This example shows how to migrate a single instance of the base WebSphere Application Server, V5.x.

Verify that you have stopped all Java processes related to the WebSphere Application Server product that

you are migrating.

1. Run the following WASPreUpgrade.bat command to migrate all applications in the installedApps

directory of the V5.x Application Server, which has an installation root of C:\Program

Files\WebSphere\AppServer.

WASPreUpgrade "C:\WAS5xxBACKUP" C:\Program Files\WebSphere\AppServer

2. Run the following WASPostUpgrade commands to restore the applications and configurations to the

Version 6 Application Server:

WASPostUpgrade "C:\WAS5xxBACKUP"

Using the Migration wizard

Version 6 migration always works by migrating an earlier supported version of WebSphere Application

Server to a Version 6 profile.

Before using the Migration wizard, you must have access to the existing, previous version of WebSphere

Application Server, and you must also have a valid Version 6 profile.

The base WebSphere Application Server product creates a valid Version 6 profile for a stand-alone

Application Server during installation.

The Migration wizard is new as of Version 6. The wizard is the graphical interface to the Version 6

migration tools, the “WASPreUpgrade command” on page 139 and the “WASPostUpgrade command” on

page 142, which are command line tools. This topic describes how to use the Migration wizard to preform

migrations to V6.

v Migrate a V4.x Application Server to a V6 stand-alone Application Server

v Migrate a V5 Application Server to a V6 stand-alone Application Server

Migrating from V4 to V6 with the Migration wizard

Version 6 migration always works by migrating an earlier supported version of WebSphere Application

Server to an Application Server profile.

Collect the following information about your V4 installation before you begin this procedure. The Migration

wizard prompts you for the information during the migration.

Legend: Supported versions and their keys in the following table are:

v IBM WebSphere Application Server Advanced Single Server Edition, Version 4.0.2 and later (V4.0.y

AEs)

v IBM WebSphere Application Server Advanced Edition, Version 4.0.2 and later (V4.0.y AE)

v IBM WebSphere Application Server Enterprise Edition, Version 4.1 and later (V4.1.y EE)

Appendix A. Migration tools 145

Table 11. V4 information that is required

Panel and field in

wizard

Version 4 product Record your

value here

Link to description

of field V4.0.y AEs V4.0.y AE V4.1.y EE

Installation root

directory

Yes Yes Yes See

“WASPreUpgrade

command” on page

139 for a description

of the current

WebSphere Directory

parameter.

Configuration file name Optional:

Defaults to

config /

server-cfg.xml

file.

No No, if EE is

installed on top

of AE. Optional

if EE is

installed on top

of AEs:

Defaults to

config /

server-cfg.xml

file.

The name of the XML

configuration file to

process. See

“WASPreUpgrade

command” on page

139 for a description

of the import

parameter.

Use port values

assigned to previous

installation?

Optional;

defaults to

false.

Optional;

defaults to

false.

Optional;

defaults to

false.

Specifying “true”

causes any ports of

matching virtual hosts

to first be removed

from the new

configuration before

adding the new

values.

Specifying “false” for

this parameter adds

new port values.

See

“WASPostUpgrade

command” on page

142 for a description

of the replace Ports

parameter.

Before using the Migration wizard, you must have access to the existing, previous version of WebSphere

Application Server. You must also have a valid Version 6 profile to serve as the target of the migration.

You should have installed Version 6 already. Use the Profile creation wizard to create a new Application

Server instance if the target profile for the migration does not yet exist. After verifying that a valid Version 6

target exists, you can start the procedure.

See the Getting Started PDF for more information.

Note: When you create the V6 profile, the NodeName you choose must match one of the NodeNames in

the V4.0.x environment.

The base WebSphere Application Server product creates a valid Version 6 profile for a stand-alone

Application Server during installation.

146 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

This topic describes using the Migration wizard to migrate a Version 4.x Application Server to a Version 6

stand-alone Application Server.

The Migration wizard is new as of Version 6. The wizard is the graphical interface to the Version 6

migration tools, which are the “WASPreUpgrade command” on page 139 and the “WASPostUpgrade

command” on page 142. The migration tools are command line tools.

You must supply the following V6 information about the target profile during the migration:

 Table 12. Version 6 information

Panel and field in wizard Record your value here Link to description of field

Backup directory name See “WASPreUpgrade command” on

page 139 or “WASPostUpgrade

command” on page 142 for a description

of the backup Directory Name

parameter.

Profile name See “WASPostUpgrade command” on

page 142 for a description of the

profile Name parameter.

After gathering all of the information that is required during the migration, use the wizard to migrate a

Version 4.x Application Server to a Version 6 stand-alone Application Server.

1. Start the First steps console.

v

./install_root/profiles/profile_name/firststeps/firststeps.sh

v

install_root\profiles\profile_name\firststeps\firststeps.bat

2. Click the Migration wizard option on the First steps console.

The First steps console starts the Migration wizard. The wizard displays its Welcome panel.

3. Read the Welcome panel to learn about the migration, then click Next.

The wizard displays the Detected versions of WebSphere Application Server panel.

4. Select a previous version, then click Next to continue.

Select the check box to specify the location of a previous installation that might not appear in the list.

Version 4.0.y AEs requires you to identify the location of the configuration file. You do not need to

identify the location of the configuration file for other V4 editions.

The default location to use for the previous installation varies depending on the V4.x product that you

have installed. The following list shows default locations:

v IBM WebSphere Application Server Advanced Single Server Edition, Version 4.0.2 and later (V4.0.y

AEs) uses a default location for the config\server-cfg.xml file.

v IBM WebSphere Application Server Advanced Edition, Version 4.0.2 and later (V4.0.y AE) uses the

output from the XMLConfig tool. You must have the Advanced Edition admininstrative server running

during the migration.

v IBM WebSphere Application Server Enterprise Edition, Version 4.1 and later (V4.1.y EE) uses the

location of the product that it is extending, which can be either AEs or AE.

If the previous version specification is correct, the wizard displays the Migration backup directory panel.

5. Specify a backup directory, then click Next to continue.

If the directory that you specify already has files in it, the wizard displays a warning message. Specify

an empty directory or a directory that does not yet exist.

If the V6 profile is valid, the wizard displays the Target profile selection panel.

6. Select the target profile from the list of valid profiles for the installation, then click Next.

Use the Profile creation wizard to create a target profile for the migration if one does not yet exist.

Appendix A. Migration tools 147

The wizard displays the Port value assignment panel.

7. Choose whether to use port values assigned to the previous installation, or generate new V6 port

values that are already assigned to the target profile, then click Next.

The wizard begins the premigration. The wizard displays a Migration status panel during the

premigration.

If the premigration is not successful, the wizard displays a failure panel. If the premigration is partially

successful, the wizard displays a warning panel.

Correct any problems and retry the migration.

If the premigration is successful, the wizard displays an indication of success.

8. Click Next to start the postmigration.

If the postmigration is not successful, the wizard displays a failure panel. If the postmigration is partially

successful, the wizard displays a warning panel.

Correct any problems and retry the migration.

If the postmigration is successful, the wizard displays an indication of success.

9. Click Finish to exit the migration wizard.

Migrating a V5 Application Server to a V6 Stand-alone Application

Server with the Migration wizard

Version 6 migration always works by migrating an earlier supported version of WebSphere Application

Server to an Application Server profile.

Collect the following information about your V5 installation before you begin this procedure. The Migration

wizard prompts you for the information during the migration:

v Installation root directory

See “WASPreUpgrade command” on page 139 for a description of the currentWebSphereDirectory

parameter.

v Use port values assigned to previous installation?

Specifying “true” causes any ports of matching VirtualHosts to first be removed from the new

configuration before adding the new values.

Specifying “false” for this parameter will just add new port values.

See “WASPostUpgrade command” on page 142 for a description of the replacePorts parameter.

v Backup directory name

See “WASPreUpgrade command” on page 139 for a description of the backupDirectory parameter.

v Target profile name.

See “WASPostUpgrade command” on page 142 for a description of the profileName parameter.

Before using the Migration wizard, you should have installed Version 6 already. Use the Profile creation

wizard to create a valid new Application Server profile if one does not already exist. After verifying that a

valid Version 6 target exists, you can start the procedure.

The base WebSphere Application Server product creates a valid Version 6 profile for a stand-alone

Application Server during installation.

This topic describes using the Migration wizard to migrate a Version 5.x Application Server to a Version 6

stand-alone Application Server.

The Migration wizard is new as of Version 6. The wizard is the graphical interface to the Version 6

migration tools, which are the “WASPreUpgrade command” on page 139 and the “WASPostUpgrade

command” on page 142. The migration tools are command-line tools.

148 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Use the wizard to migrate a Version 5.x Application Server to a Version 6 stand-alone Application Server.

1. Start the First steps console.

v

./install_root/profiles/profile_name/firststeps/firststeps.sh

v

install_root\profiles\profile_name\firststeps\firststeps.bat

2. Click the Migration wizard option on the First steps console.

The First steps console starts the Migration wizard. The wizard displays its Welcome panel.

3. Read the Welcome panel to learn about the migration, then click Next.

The wizard displays the Detected versions of WebSphere Application Server panel.

4. Select a previous version, then click Next to continue.

Select the check box to specify the location of a previous installation that might not appear in the list.

If the previous version specification is correct, the wizard displays the Target profile selection panel.

5. Select the target profile from the list of valid V6 profiles for the installation, then click Next.

Use the Profile creation wizard to create a target profile for the migration if one does not yet exist.

The wizard displays the Port value assignment panel.

6. Choose whether to use port values assigned to the previous installation, or generate new V6 port

values that are already assigned to the target profile, then click Next.

The wizard begins the premigration. The wizard displays a Migration status panel during the

premigration.

If the premigration is not successful, the wizard displays a failure panel. If the premigration is partially

successful, the wizard displays a warning panel.

Correct any problems and retry the migration.

If the premigration is successful, the wizard displays an indication of success.

7. Click Next to start the postmigration.

If the postmigration is not successful, the wizard displays a failure panel. If the postmigration is partially

successful, the wizard displays a warning panel.

Correct any problems and retry the migration.

If the postmigration is successful, the wizard displays an indication of success.

8. Click Finish to exit the migration wizard.

Appendix A. Migration tools 149

150 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Appendix B. Troubleshooting migration

To resolve problems encountered in migrating from an older version of WebSphere Application Server,

determine whether your problems occur using the pre-upgrade tool or the post-upgrade tool.

v The following problems can occur when using the pre-upgrade tool:

1. A ″Not found″ or ″no such file or directory″ message is returned from the WASPostUpgrade or

WASPreUpgrade tool. This problem can occur if you are trying to run the WASPostUpgrade tool or

the WASPreUpgrade tool from a directory other than install_dir\bin. Verify that the

WASPostUpgrade or WASPreUpgrade .bat or .sh files reside in the install_dir\bin directory, and

launch either file from that location.

1. The DB2 JDBC driver and DB2 JDBC driver (XA) cannot be found in the drop down list of supported

JDBC providers in the administrative console The administrative console no longer displays

deprecated JDBC provider names. The new JDBC provider names used in the administrative

console are more descriptive and less confusing. The new providers will differ only by name from

the deprecated ones.

The deprecated names will continue to exist in the jdbc-resource-provider-templates.xml file for

migration reasons (for example, for existing JACL scripts). However, you are encouraged to use the

new JDBC provider names in your JACL scripts.

2. You receive message: MIGR0108E: The specified WebSphere directory does not contain

WebSphere version that can be upgraded.

Several possible reasons for this error exist:

– If WebSphere Application Server version 4.0.x is installed, you might not have run the

WASPreUpgrade tool from the bin directory of the Version 5 installation root.

a. Look for the following message to display when the WASPreUpgrade tool runs: IBM

WebSphere Application Server, Release 4.0. This message indicates that you are running

the WebSphere Application Server Release 4.0 migration utility, not the version 5 migration

utility.

b. Alter your environment path or change the current directory so that you can launch the

WebSphere Application Server Version 5 WASPreUpgrade program.
– WebSphere Application Server version 5 might be installed in the same root directory as the

earlier version.

a. Browse the directory structure of the older version to see whether it contains new Version 5.0

directories, such as WebSphere\AppServer\logs\ffdc.

b. Uninstall all versions of WebSphere Application Server.

c. Reinstall and reconfigure the older version.

d. Install WebSphere Application Server Version 5 in a different root directory than the previous

one.
– An invalid directory might have been specified when launching the WASPostUpgrade tool, or the

WASPreUpgrade tool has not been run.

3. MIGR0125E: The call to XMLConfig was not successful error when trying to run WASPreUpgrade

The WASPreUpgrade tool saves selected files from WebSphere Application Server Version 3.5.x

and Version 4.x bin directories. It also exports the existing application server configuration from the

repository.

If you are migrating from WebSphere Application Server Version 4.0.x Advanced Edition, the

WASPreUpgrade command calls the XMLConfig command to export the existing application server

configuration from the repository. If errors occur during this part of the WASPreUpgrade command,

you might have to apply fixes to the installation to successfully complete the export step. Contact

IBM Support for the latest applicable fixes using the link at the end of this topic.

v The following problems can occur when using the post-upgrade tool:

1. A ″Not found″ or ″no such file or directory″ message is returned from the WASPostUpgrade or

WASPreUpgrade tool. This problem can occur if you are trying to run the WASPostUpgrade tool or

© Copyright IBM Corp. 2004 151

the WASPreUpgrade tool from a directory other than install_dir\bin. Verify that the

WASPostUpgrade or WASPreUpgrade .bat or .sh files reside in the install_dir\bin directory, and

launch either file from that location.

2. You receive message: MIGR0102E: Invalid Command Line. MIGR0105E: You must specify the

primary node name. The most likely cause of this error is that Version 4.0.x of the WebSphere

Application Server is installed, and the WASPostUpgrade tool was not run from the bin directory of

the WebSphere Application Server Version 5 installation root.

If the following messages appear when the WASPostUpgrade tool is run, the Version 4.0 migration

tool was run:

– IBM WebSphere Application Server, Release 4.0

– MIGR0002I: java com.ibm.websphere.migration.postupgrade.WASPostUpgrade

 <backupDirectoryName>

 -adminNodeName <primary node name>

 [-nameServiceHost <hostName> [-nameServicePort <portNumber>]]

 [-substitute <"key1=value1[;key2=value2;[...]]">]

 In input xml file, the key(s) should appear as key for substitution.")

 [-import <xml data file>]

 [-traceString <trace specification> [-traceFile <filename>]]}"

To correct this problem, run the WASPostUpgrade command from the bin directory of the

WebSphere Application Server Version 5 installation root.

3. You receive message: MIGR0108E: The specified WebSphere directory does not contain

WebSphere version that can be upgraded.

Several possible reasons for this error exist:

– If WebSphere Application Server version 4.0.x is installed, you might not have run the

WASPreUpgrade tool from the bin directory of the Version 5 installation root.

a. Look for the following message to display when the WASPreUpgrade tool runs: IBM

WebSphere Application Server, Release 4.0. This message indicates that you are running

the WebSphere Application Server Release 4.0 migration utility, not the version 5 migration

utility.

b. Alter your environment path or change the current directory so that you can launch the

WebSphere Application Server Version 5 WASPreUpgrade program.
– WebSphere Application Server version 5 might be installed in the same root directory as the

earlier version.

a. Browse the directory structure of the older version to see whether it contains new Version 5.0

directories, such as WebSphere\AppServer\logs\ffdc.

b. Uninstall all versions of WebSphere Application Server.

c. Reinstall and reconfigure the older version.

d. Install WebSphere Application Server Version 5 in a different root directory than the previous

one.
– An invalid directory might have been specified when launching the WASPostUpgrade tool, or the

WASPreUpgrade tool has not been run.

4. You receive message: MIGR0116E: The backup directory [migration_backup_directory] does not

contain the required xml data file.

If Version 4.0.x of WebSphere Application Server is installed, you might not have run the

WASPostUpgrade tool from the bin directory of the Version 5.0 installation root.

– If the message IBM WebSphere Application Server, Release 4.0 displays when launching the

WASPostUpgrade program, then the wrong version of the program is executing.

– Run the WASPostUpgrade command from the bin directory of the Version 5.0 installation root.

5. You receive error: MIGR0253E: The backup directory migration_backup_directory does not

exist.

Several possible reasons for this error exist:

– The WASPreUpgrade tool was not run prior to the WASPostUpgrade tool.

a. Check to see if the backup directory specified in the error message exists.

b. If not, run the WASPreUpgrade .bat or .sh file.

c. Retry the WASPostUpgrade tool.

152 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

– An invalid backup directory might be specified. For example, the directory might have been a

subdirectory of the V3.5.x or V4.0.x tree, which was deleted after the WASPreUpgrade tool was

run and the older version of the product was uninstalled, but before the WASPostUpgrade tool

was run.

a. Determine if the full directory structure specified in the error message exists.

b. If possible, rerun the WASPreUpgrade tool, specifying the correct full migration backup

directory.

c. If the backup directory does not exist, and the older version it came from is gone, rebuild the

older version from a backup repository or XML configuration file.

d. Rerun the WASPreUpgrade tool.

6. You decide that you need to run WASPreUpgrade again after you have already run

WASPostUpgrade. During the course of a deployment manager or a managed node migration,

WASPostUpgrade disables the old environment. If, after running WASPostUpgrade, you want to run

WASPreUpgrade again against the old installation, you must execute the

migrationDisablementReversal.jacl script located in the old install_root/bin directory. After executing

this .jacl script, your V5.x environment will be in a valid state again, allowing you to run

WASPreUpgrade to produce valid results.

7. The SOAP/RMI call up to the deployment manager times out. During the course of a federated

migration, the migration process makes a call up to the DeploymentManager to perform a portion of

the migration. If, after seeing the messageMIGR0388I, you see a SOAP/RMI connection timeout

exception, rerun WASPostUpgrade specifying the ″-connectionTimeout″ to some value greater than

the default (the default is 10 minutes). A good rule of thumb is to double the value and execute

WASPostUpgrade again.

8. A federated migration fails with message MIGR0405E. The migration that has taken place on your

deployment manager as part of your federated migration has failed. For a more detailed reason of

why this error has occurred, open the folder yourNodeName_migration_temp located on your

deployment manager node under the ...DeploymentManagerProfile/temp directory. Example:

/websphere60/appserver/profiles/dm_profile/temp/nodeX_migration_temp

The logs, traces, and everything else involved in the migration for this node on the deployment

manager node are located in this folder. This folder will also be required for IBM support related to

this scenario.

9. V6 applications are lost during migration. During a federated migration, if any of the V6 applications

fail to install, they will be lost during the syncing of the configurations. The reason this happens is

that one of the final steps of WASPostUpgrade is to execute a syncNode command. This has the

result of downloading the configuration on the deployment manager node and overwriting the

configuration on the federated node. If the applications fail to install, they will not be in the

configuration located on the deployment manager node. To resolve this issue, manually install the

applications after migration. If they are standard V6 applications, they will be located in the

WAS_ROOT/installableApps directory.

v If none of these errors describes your problem:

1. For general tips on migration problems, see Troubleshooting the migration utility.

2. Review the migration topic and its subtopics, which address migrating specific kinds of components.

3. For other kinds of migration problems, such as an application imported from another version of

WebSphere Application Server that will not start, look up the related problem in the Troubleshooting

and Support PDF.

4. Check to see if the problem has been identified and documented by looking at the IBM Support

page.

5. IBM Support has documents that can save you time gathering information needed to resolve this

problem. Before opening a PMR, see the IBM Support page.

If you did not find your problem listed, contact IBM support.

Appendix B. Troubleshooting migration 153

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS28
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS28&q=mustgather
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/ctrb_gethelp.help

Migration utility troubleshooting tips

If you are encounter problems migrating an application from a previous version of WebSphere Application

Server to Version 6.0:

v Look for these log files and browse them for clues:

– install_dir/profile/profile_name/logs/WASPostUpgrade.time stamp.log

– install_dir/profile/profile_name/logs/WASPostUpgrade.trace

– migration_backup_dir/WASPreUpgrade.time stamp.log

– install_dir/logs/clientupgrade.time stamp.log

v Look for MIGR0259I: The migration has successfully completed. or MIGR0271W: The migration

completed with warnings. in the migration_backup_dir/WASPreUpgrade.time stamp.log,

migration_backup_dir/WASPreUpgrade.time stamp.log, or install_dir/logs/clientupgrade.time

stamp.log.

If MIGR0286E: The migration failed to complete. appears, attempt to correct any problems based on

the error messages that appear in the log file. After correcting any errors, rerun the command from the

bin directory of the product installation root. If the errors persist, rerun the command with trace enabled.

v Look at your trace output to see more detailed message information. To locate the trace output:

– For the WASPreUpgrade command, look in the backupDirectory.

– For all other commands, look in the logs directory of the profile being modified. The names of the log

files follow this format:

commandname.timestamp.trace

where commandname is WASPostUpgrade or another command, and timestamp is a date

timestamp.

If you are still unable to find your trace output, see the Troubleshooting and Support PDF for more

information.

See the following articles for more information:

– “WASPreUpgrade command” on page 139

– “WASPostUpgrade command” on page 142

– “The clientUpgrade command” on page 137
v Open the log analyzer on the service log of the server which is hosting the resource you are trying to

access and use it to browse error and warning messages.

v With WebSphere Application Server running, run the dumpNameSpace on Windows or

dumpNameSpace.sh command on Unix, and pipe, redirect, or ″more″ the output so that it can be

easily viewed. This command results in a display of all objects in WebSphere Application Server’s

namespace, including the directory path and object name.

v If the object a client needs to access does not appear, use the administrative console to verify that:

– The server hosting the target resource is started.

– The web module or EJB container hosting the target resource is running.

– The JNDI name of the target resource is properly specified.
v To view detailed information on the runtime behavior of WebSphere Application Server’s Naming

service, enable trace on the following components and review the output:

– com.ibm.ws.naming.*

– com.ibm.websphere.naming.*

If none of these steps solves the problem, see Appendix B, “Troubleshooting migration,” on page 151 for

tips on specific migration problems.

Check to see if the problem is identified and documented using the links in the Troubleshooting and

Support PDF.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

154 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

See the Troubleshooting and Support PDF for more information.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Migrating a previously non-root configuration to root

This topic describes how to run an application server as root in WebSphere Application Server Version 6

when you previously used a non-root user ID on Linux and UNIX platforms in Version 5.x. In this scenario,

the following step must be completed for the application servers to run correctly:

Set the ownership of the profile or directory to be the same as the user under which WebSphere

Application Server is to run. As a root user, run the following commands:

cd $WASROOT/profiles/

chown -R wasadmin default/

chgrp -R wasgrp default/

chmod -R 755 default/

...

cd $WASROOT/profiles/default/bin

./startManager.sh

where the profile name is default run as a user in wasadmin with the primary group wasgrp.

Appendix B. Troubleshooting migration 155

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS28
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS28
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS28&q=mustgather

156 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Appendix C. Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Licensing

 IBM Corporation

 500 Columbus Avenue

 Thornwood, New York 10594 USA

© Copyright IBM Corp. 2004 157

158 IBM WebSphere Application Server, Version 6: Migrating, coexisting, and interoperating

Appendix D. Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site (http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2004 159

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Part 1. Product overview
	Chapter 1. What is new in this release
	Chapter 2. How do I migrate, coexist, and interoperate?
	Chapter 3. Overview and new features for migrating, coexisting, and interoperating
	Overview of migrating, coexisting, and interoperating
	Deprecated features in Version 6.0
	Deprecated features in V6.0
	Deprecated features in V5.1.1
	Deprecated features in V5.1
	Deprecated features in V5.0.2
	Deprecated features in V5.0.1
	Deprecated features in V5.0

	Migrating and coexisting
	Migration and coexistence overview
	Configuration mapping during migration
	Migrating WebSphere programming model extensions (PMEs)

	Part 2. Migrating
	Chapter 4. Migrating applications
	Migrating Web application components from WebSphere Application Server Version 4.x
	Migrating Web application components from WebSphere Application Server Version 5.x
	Migrating HTTP sessions
	Migrating enterprise bean code to the supported specification
	Migrating enterprise bean code from Version 1.0 to Version 1.1
	Migrating enterprise bean code from Version 1.1 to Version 2.1

	Migrating Apache SOAP Web services to Web Services for J2EE standards
	Migrating to Version 3 of the UDDI Registry
	Using a remote database for the UDDI Registry
	Migrating a Version 4.0 data access application to Version 6.0
	Converting a 2.2 Web module to a 2.3 Web module
	Converting a 1.1 EJB module to a 2.1 EJB module (or later)
	Add the EJB modules and Web modules to an EAR file
	Installing the Application on WebSphere Application Server
	Connection considerations when migrating servlets, JavaServer Pages, or enterprise session beans

	Mail migration tip
	Migrating security configurations from previous releases
	Migrating custom user registries
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service
	Migrating from the CustomLoginServlet class to servlet filters
	Migrating Java 2 security policy

	Migrating Version 5 Application Profiles to Version 6
	Migrating internationalized applications

	Chapter 5. Migrating product configurations
	Stand-alone migrations
	Migrating V4.0.x of WebSphere Application Server to a V6 stand-alone Application Server
	Migrating V4.0.x of WebSphere Application Server to a remote stand-alone V6 machine
	Migrating V5.x Express to V6 base
	Migrating V5.x of WebSphere Application Server to a V6 stand-alone Application Server on a remote machine
	Migrating V5.x of WebSphere Application Server to a V6 Application Server
	Migrating a V5.x Application Server configuration instance to a V6 Application Server profile
	Migrating from an operating system that is no longer supported
	Creating a backup directory on unsupported V4.0.x operating systems

	Configuring WebSphere Application Server after migration
	XML parser for Java code
	Configuring WebSphere Application Server for DB2 access

	Chapter 6. Migrating Web server configurations
	Chapter 7. Migrating administrative scripts
	Migrating V4.0.x administrative scripts to V6 wsadmin
	Example: Migrating - Creating an application server
	Example: Migrating - Starting an application server
	Example: Migrating - Installing an application
	Example: Migrating - Installing a JDBC driver
	Example: Migrating - Creating a server group
	Example: Migrating - Stopping a node
	Example: Migrating - Stopping an application server
	Example: Migrating - Pinging running servers for the current state
	Example: Migrating - Regenerating the node plug-in configuration
	Example: Migrating - Testing the DataSource object connection
	Example: Migrating - Cloning a server group
	Example: Migrating - Enabling security
	Example: Migrating - Disabling security
	Example: Migrating - Modifying the virtual host
	Example: Migrating - Modifying and restarting an application server
	Example: Migrating - Removing an application server
	Example: Migrating - Modifying the embedded transports in an application server
	Example: Migrating - Connecting to a remote server
	Example: Migrating - Uninstalling an application
	Example: Migrating - Editing an application
	Example: Migrating - Modifying attributes of application servers, applications, and other configured objects
	Example: Migrating - Displaying help
	Example: Migrating - Listing actions available for configured objects
	Example: Migrating - Setting the server trace specification

	Migrating administrative scripts from 5.x to 6.0
	Example: Migrating - Allowing configuration overwrite when saving a configuration

	Part 3. Coexisting
	Chapter 8. Coexisting
	Coexistence support
	Setting up Version 4.0.x and Version 6 coexistence
	Setting up Version 5 and Version 6 coexistence
	Setting up Version 6 coexistence

	Chapter 9. Configuring ports
	Port number settings in WebSphere Application Server versions

	Part 4. Interoperating
	Chapter 10. Interoperating
	Chapter 11. Container interoperability
	Chapter 12. Web Services-Interoperability Basic Profile
	Chapter 13. Interoperability issues for security
	Chapter 14. Interoperating with a C++ common object request broker architecture client
	Chapter 15. Interoperating with previous product versions
	Chapter 16. JNDI interoperability considerations
	Chapter 17. Application profiling interoperability
	Chapter 18. Interoperating with asynchronous beans
	Chapter 19. Interoperating with schedulers
	Appendix A. Migration tools
	The clientUpgrade command
	The convertScriptCompatibility command
	WASPreUpgrade command
	WASPostUpgrade command
	Using the Migration wizard
	Migrating from V4 to V6 with the Migration wizard
	Migrating a V5 Application Server to a V6 Stand-alone Application Server with the Migration wizard

	Appendix B. Troubleshooting migration
	Migration utility troubleshooting tips
	Migrating a previously non-root configuration to root

	Appendix C. Notices
	Appendix D. Trademarks and service marks

