
WebSphere® Application Server, Version 6

Setting up the application serving environment

���

Note

Before using this information, be sure to read the general information under “Notices” on page 169.

Compilation date: December 2, 2004

© Copyright International Business Machines Corporation 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . vii

Chapter 1. Overview for setting up application serving environments 1

Setting up WebSphere Application Server products . 1

Introduction: System administration . 2

Introduction: Administrative console . 2

Introduction: Administrative scripting (wsadmin) . 2

Introduction: Administrative commands . 3

Introduction: Administrative programs . 3

Introduction: Administrative configuration data . 4

Introduction: Servers . 4

Introduction: Application servers . 4

Introduction: Web servers . 5

Introduction: Environment . 6

Chapter 2. How do I administer applications and their environments? 7

Chapter 3. Setting up the application serving environment 9

Chapter 4. Planning the installation (diagrams) . 11

Planning to install WebSphere Application Server . 12

Planning to install Web server plug-ins . 16

Planning to install WebSphere Application Server Clients 19

Planning to create application server environments . 20

Queuing network . 20

Queuing and clustering . 21

Queue configuration tips . 22

Chapter 5. Configuring the product after installation 25

firststeps command . 25

Using the Profile creation wizard . 28

Using the Profile creation wizard to create an application server 30

Deleting a profile . 34

wasprofile command . 34

Introduction to terms that describe Version 6 profiles 35

Location of the command file . 36

Logging . 37

Required disk space . 37

Concurrent profile creation . 37

Entering lengthy commands on more than one line 37

wasprofile.sh command syntax . 37

wasprofile.bat command syntax . 38

Parameters . 39

Use case scenarios . 41

Using the installation verification test . 45

ivt command . 46

Chapter 6. Configuring ports . 49

Port number settings in WebSphere Application Server versions 49

Chapter 7. Communicating with Web servers . 53

Web server plug-in properties settings . 55

Plug-in log file name . 55

© Copyright IBM Corp. 2004 iii

Plug-in installation location . 55

Plug-in configuration file name . 56

Automatically generate plug-in configuration file . 56

Automatically propagate plug-in configuration file . 56

Ignore DNS failures during Web server startup . 57

Refresh configuration interval . 57

Plug-in logging . 57

Web server plug-in request and response optimization properties settings 58

Web server plug-in caching properties settings . 60

Web server plug-in request routing properties settings 60

Web server plug-in custom properties . 62

Web server plug-in configuration service properties settings 63

Enable automated Web server configuration processing 63

Application Server property settings for a Web server plug-in 63

Server role . 63

Connect timeout . 63

Maximum number of connections that can be handled by the Application Server 64

Use extended handshake to check whether Application Server is running 64

Send the header ″100 Continue″ before sending the request content 64

Web server plug-in configuration properties . 65

Web server plug-in connections . 67

Web server plug-in remote user information processing 68

Web server plug-ins . 68

Checking your IBM HTTP Server version . 68

Web server tuning parameters . 69

Gskit install images files . 73

Plug-ins: Resources for learning . 73

Web server plug-in tuning tips . 73

Tuning Web servers . 74

Chapter 8. Setting up the administrative architecture 75

Administration service settings . 75

Standalone . 75

Preferred Connector . 75

Extension MBean Providers collection . 75

Extension MBean collection . 76

Java Management Extensions connector properties 76

Java Management Extensions connectors . 81

Repository service settings . 81

Administrative agents: Resources for learning . 82

Chapter 9. Configuring the environment . 83

Virtual hosts . 83

Why you would use virtual hosting . 83

The default virtual host (default_host) . 84

How requests map to virtual host aliases . 84

Configuring virtual hosts . 86

Virtual host collection . 86

Variables . 89

Configuring WebSphere variables . 90

WebSphere variables collection . 91

IBM Toolbox for Java JDBC driver . 92

Configure and use the jt400.jar file . 93

Shared library files . 93

Managing shared libraries . 93

Creating shared libraries . 94

iv IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Shared library collection . 94

Associating shared libraries with applications . 95

Associating shared libraries with servers . 96

Installed optional packages . 96

Using installed optional packages . 97

Library reference collection . 99

Environment: Resources for learning . 100

Chapter 10. Working with server configuration files 101

Configuration documents . 101

Configuration document descriptions . 102

Object names . 104

Configuration repositories . 105

Handling temporary configuration files resulting from session timeout 105

Changing the location of temporary configuration files 105

Changing the location of backed-up configuration files 106

Changing the location of temporary workspace files 106

Backing up and restoring administrative configurations 107

Transformation of configuration files . 107

Server configuration files: Resources for learning . 107

Chapter 11. Administering application servers . 109

Application servers . 109

Creating application servers . 109

Configuring application servers for UTF-8 encoding 110

Managing application servers . 111

Server collection . 111

Starting servers . 119

Running application servers from a non-root user 120

Detecting and handling problems with run-time components 121

Stopping servers . 121

Creating generic servers . 122

Starting and terminating generic servers . 123

Configuring transport chains . 124

Transport chains . 125

HTTP transport channel custom property . 126

HTTP Tunnel transport channel custom property 126

Troubleshooting transport chain problems . 127

Configuring HTTP transports . 127

Transport chains collection . 133

Transport chain settings . 133

HTTP tunnel transport channel settings . 134

HTTP transport channel settings . 134

TCP transport channel settings . 136

DCS transport channel settings . 138

Web container transport channel settings . 139

Custom services . 139

Developing custom services . 140

Custom service collection . 141

Process definition . 142

Defining application server processes . 142

Process definition settings . 143

Automatically restarting server processes . 146

Java virtual machines (JVMs) . 152

Using the JVM . 152

Java virtual machine settings . 152

Contents v

Configuring JVM sendRedirect calls to use context root 156

Setting custom JVM properties . 157

Tuning Java virtual machines . 159

Preparing to host applications . 159

Java memory tuning tips . 160

Configuring multiple network interface card support 163

Tuning application servers . 164

Web services client to Web container optimized communication 166

Application servers: Resources for learning . 167

Notices . 169

Trademarks and service marks . 171

vi IBM WebSphere Application Server, Version 6: Setting up the application serving environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004 vii

viii IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Chapter 1. Overview for setting up application serving

environments

This topic summarizes the contents and organization of the administration documentation, including links

to conceptual overviews and descriptions of new features.

This publication is for the administrator who is responsible for integrating application serving capabilities

into an existing network environment. It looks at the product as part of a larger system, typically a

production environment or realistic test environment.

This publication reiterates some installation and customization activities, including topology planning and

creating product configurations. It carries the focus into the administrative realm, discussing port

configuration and other network concerns. See also the Installing your application serving environment

PDF.

This information expands the topology planning discussion by describing how to set up and maintain

logical administrative domains of cells and nodes, and how to balance workload through clustering and

high availability configurations.

Setting up WebSphere Application Server products

IBM WebSphere Application Server products provide a next-generation application server on an

industry-standard foundation. Each product addresses a distinct set of scenarios and needs. WebSphere

Application Server, Version 6 product offerings are described on the WebSphere Application Server Web

site athttp://www.ibm.com/software/webservers/appserv/was/.

Planning

See Chapter 4, “Planning the installation (diagrams),” on page 11 for a description of typical scenarios for

each WebSphere Application Server product.

Installing

See the Installing your application serving environment PDF for a description of installing the WebSphere

Application Server product and other installable components on the product disc.

Configuring

See “Using the Profile creation wizard” on page 28 for a description of installing other stand-alone

Application Servers on your machine.

Migrating

See the Migrating, coexisting, and interoperating PDF for a description of how to migrate applications and

configuration data from a previous version of WebSphere Application Server.

Deploying applications

The Information Center describes a way to sample WebSphere Application Server functionality by quickly

deploying Web components, such as servlets and JSP files. The method is not recommended as an

official development method. See the Developing and deploying applications PDF to get started.

© Copyright IBM Corp. 2004 1

http://www.ibm.com/software/webservers/appserv/was/

Introduction: System administration

A variety of tools are provided for administering the WebSphere Application Server product:

v Console

The administrative console is a graphical interface that provides many features to guide you through

deployment and systems administration tasks. Use it to explore available management options.

For more information, refer to “Introduction: Administrative console.”

v Scripting

The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command

interpreter environment enabling you to run administrative operations in a scripting language. You can

also submit scripting language programs to run. The wsadmin tool is intended for production

environments and unattended operations.

For more information, refer to “Introduction: Administrative scripting (wsadmin).”

v Commands

Command-line tools are simple programs that you run from an operating system command-line prompt

to perform specific tasks, as opposed to general purpose administration. Using the tools, you can start

and stop application servers, check server status, add or remove nodes, and complete similar tasks.

For more information, refer to “Introduction: Administrative commands” on page 3.

v Programming

The product supports a Java programming interface for developing administrative programs. All of the

administrative tools supplied with the product are written according to the API, which is based on the

industry standard Java Management Extensions (JMX) specification.

For more information, refer to “Introduction: Administrative programs” on page 3.

v Data

Product configuration data resides in XML files that are manipulated by the previously-mentioned

administrative tools.

For more information, refer to “Introduction: Administrative configuration data” on page 4.

Introduction: Administrative console

The administrative console is a graphical interface for performing deployment and system administration

tasks. It runs in your Web browser. Your actions in the console modify a set of XML configuration files.

You can use the console to perform tasks such as:

v Add, delete, start, and stop application servers

v Deploy new applications to a server

v Start and stop existing applications, and modify certain configurations

v Add and delete Java 2 Platform, Enterprise Edition (J2EE) resource providers for applications that

require data access, mail, URLs, and so on

v Manage variables, shared libraries, and other configurations that can span multiple application servers

v Configure product security, including access to the administrative console

v Collect data for performance and troubleshooting purposes

v Find the product version information. It is located on the front page of the console.

See the Using the administrative clients PDF for information on how you begin using the console. See also

the Reference > Administrator > Settings section of the Information Center navigation. It lists the

settings or properties you can configure.

Introduction: Administrative scripting (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command

interpreter environment enabling you to run administrative operations in a scripting language. The wsadmin

2 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

tool is intended for production environments and unattended operations. You can use the wsadmin tool to

perform the same tasks that you can perform using the administrative console.

The following list highlights the topics and tasks available with scripting. See the Administering applications

and their environment PDF for more information on how to perform these tasks.

v Getting started with scripting Provides an introduction to WebSphere Application Server scripting and

information about using the wsadmin tool. Topics include information about the scripting languages and

the scripting objects, and instructions for starting the wsadmin tool.

v Deploying applications Provides instructions for deploying and uninstalling applications. For example,

stand-alone Java archive files and Web archive files, the administrative console, remote enterprise

archive (EAR) files, file transfer applications, and so on.

v Managing deployed applications Includes tasks that you perform after the application is deployed. For

example, starting and stopping applications, checking status, modifying listener address ports, querying

application state, configuring a shared library, and so on.

v Configuring servers Provides instructions for configuring servers, such as creating a server, modifying

and restarting the server, configuring the Java virtual machine, disabling a component, disabling a

service, and so on.

v Configuring connections to Web servers Includes topics such as regenerating the plug-in, creating new

virtual host templates, modifying virtual hosts, and so on.

v Managing servers Includes tasks that you use to manage servers. For example, stopping nodes,

starting and stopping servers, querying a server state, starting a listener port, and so on.

v Configuring security Includes security tasks, for example, enabling and disabling global security,

enabling and disabling Java 2 security, and so on.

v Configuring data access Includes topics such as configuring a Java DataBase Connectivity (JDBC)

provider, defining a data source, configuring connection pools, and so on.

v Configuring messaging Includes topics about messaging, such as Java Message Service (JMS)

connection, JMS provider, WebSphere queue connection factory, MQ topics, and so on.

v Configuring mail, URLs, and resource environment entries Includes topics such as mail providers, mail

sessions, protocols, resource environment providers, reference tables, URL providers, URLs, and so on.

v Dynamic caching Includes caching topics, for example, creating, viewing and modifying a cache

instance.

v Troubleshooting Provides information about how to troubleshoot using scripting. For example, tracing,

thread dumps, profiles, and so on.

v Obtaining product information Includes tasks such as querying the product identification.

v Scripting reference material Includes all of the reference material related to scripting. Topics include the

syntax for the wsadmin tool and for the administrative command framework, explanations and examples

for all of the scripting object commands, the scripting properties, and so on.

Introduction: Administrative commands

Command-line tools are simple programs that you run from an operating system command-line prompt to

perform specific tasks, as opposed to general purpose administration. Using the tools, you can start and

stop application servers, check server status, add or remove nodes, and complete similar tasks.

See the Administering applications and their environment PDF for the names and syntax of all the

commands that are available with the product. A subset of these commands are particular to system

administration purposes.

Introduction: Administrative programs

The product supports a Java programming interface for developing administrative programs. All of the

administrative tools supplied with the product are written according to the API, which is based on the

industry standard Java Management Extensions (JMX) specification. You can write a Java program that

Chapter 1. Overview and new features for administering applications and their environments 3

performs any of the administrative features of the WebSphere Application Server administrative tools. You

can also extend the basic WebSphere Application Server administrative system to include your own

managed resources.

Introduction: Administrative configuration data

Administrative tasks typically involve defining new configurations of the product or performing operations

on managed resources within the environment. IBM WebSphere Application Server configuration data is

kept in files. Because all product configuration involves changing the content of those files, it is useful to

know the structure and content of the configuration files.

The WebSphere Application Server product includes an implementation of the Java Management

Extension (JMX) specification. All operations on managed resources in the product go through JMX

functions. This setup means a more standard framework underlying your administrative operations as well

as the ability to tap into the systems management infrastructure programmatically.

Introduction: Servers

Application servers

Application servers provide the core functionality of the WebSphere Application Server product family. They

extend the ability of a Web server to handle Web application requests, and much more. An application

server enables a server to generate a dynamic, customized response to a client request.

For additional overview, refer to “Introduction: Application servers.”

Introduction: Application servers

Overview

An application server is a Java Virtual Machine (JVM) that is running user applications. The application

server collaborates with the Web server to return a dynamic, customized response to a client request.

Application code, including servlets, JavaServer Pages (JSP) files, enterprise beans and their supporting

classes, runs in an application server. Conforming to the Java 2 platform, Enterprise Edition (J2EE)

component architecture, servlets and JSP files run in a Web container, and enterprise beans run in an

Enterprise JavaBeans (EJB) container.

To begin creating and managing an application server, see Chapter 11, “Administering application servers,”

on page 109.

You can define multiple application servers, each running its own JVM. Enhance the operation of an

application server by using the following options:

v Configure transport chains to provide networking services to such functions as the service integration

bus component of IBM service integration technologies, WebSphere Secure Caching Proxy, and the

high availability manager core group bridge service. See “Configuring transport chains” on page 124 for

more information.

v Plug into an application server to define a hook point that runs when the server starts and shuts down.

See “Custom services” on page 139 for more information.

v Define command-line information that passes to a server when it starts or initializes. See the Using the

administrative clients PDF for more information.

v “Tuning application servers” on page 164

v Enhance the performance of the application server JVM. See “Using the JVM” on page 152 for more

information.

v Use an Object Request Broker (ORB) for RMI/IIOP communication. See the Developing and deploying

applications PDF for more information.

Asynchronous messaging

4 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

The product supports asynchronous messaging based on the Java Messaging Service (JMS) of a JMS

provider that conforms to the JMS specification version 1.1.

The JMS functions of the default messaging provider in WebSphere Application Server are served by one

or more messaging engines (in a service integration bus) that runs within application servers.

Generic Servers

In distributed platforms, the Generic Servers feature allows you create a generic server as an application

server instance within the WebSphere Application Server administration, and associate it with a

non-WebSphere server or process. The generic server can be associated with any server or process

necessary to support the application server environment, including:

v A Java server

v A C or C++ server or process

v A CORBA server

v A Remote Method Invocation (RMI) server

After you define a generic server, you can use the Application Server administrative console to start, stop,

and monitor the associated non-WebSphere server or process when stopping or starting the applications

that rely on them.

For more information, refer to “Creating generic servers” on page 122.

Introduction: Web servers

In the WebSphere Application Server product, an application server works with a Web server to handle

requests for dynamic content, such as servlets, from Web applications. Go to

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html for the most current information

about supported Web servers.

The application server and Web server communicate using “Web server plug-ins” on page 68. Chapter 7,

“Communicating with Web servers,” on page 53 describes how to set up your Web server and Web server

plug-in environment and how to create a Web server definition. The Web server definition associates a

Web server with an application server. After you create a Web server definition, you can use the

administrative console to perform the following functions for that Web server:

v Check the status of the Web server

v Generate a plug-in configuration file for that Web server.

If the Web server is an IBM HTTP Server (IHS) and the IHS Administration server is installed and properly

configured, you can also:

v Display the IBM HTTP Server Error log (error.log) and Access log (access.log) files.

v Start and stop the server.

v Display and edit the IBM HTTP Server configuration file (httpd.conf).

v Propagate the plug-in configuration file after it is generated.

You can not propagate a plug-in configuration file for a non-IHS Web server. You must manually install an

updated plug-in configuration file on that Web server.

After you set up your Web server and Web server plug-in, whenever you deploy a Web application, you

must specify a Web server as the deployment target that serves as a router for requests to the Web

application. The configuration settings in the plug-in configuration file (plugin-cfg.xml) for each Web server

are based on the applications that are routed through that Web server. If the Web server plug-in

configuration service is enabled, a Web server plug-in’s configuration file is automatically regenerated

whenever a new application is associated with that Web server.

Chapter 1. Overview and new features for administering applications and their environments 5

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Note: Before starting the Web server, make sure you are authorized to run any Application Response

Measurement (ARM) agent associated with that Web server.

Refer to your Web server documentation for information on how to administer that Web server. For tips on

tuning your Web server plug-in, see “Web server plug-in tuning tips” on page 73.

Introduction: Environment

The environment of the product applies to the configuring of Web server plug-ins, variables, and objects

that you want consistent throughout a cell.

Web servers

In the WebSphere Application Server product, an application server works with a Web server to handle

requests for Web applications. The application Server and Web server communicate using a WebSphere

HTTP plug-in for the Web server.

For more information, refer to “Introduction: Web servers” on page 5.

Variables

A variable is a configuration property that can be used to provide a parameter for any value in the system.

A variable has a name and a value to use in place of that name wherever the variable name is located

within the system.

For more information, refer to “Configuring WebSphere variables” on page 90.

6 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Chapter 2. How do I administer applications and their

environments?

v Establish the application serving environment

v Secure the application serving environment. (See the Securing applications and their environment PDF.)

v Set up Web access for applications. (See the Developing and deploying applications PDF.)

v Set up resources for applications to use. (See the Developing and deploying applications PDF.)

v Configure class loaders - see development and deployment. (See the Developing and deploying

applications PDF.)

v Deploy and administer applications. (See the Developing and deploying applications PDF.)

v Use the administrative clients. (See the Using administrative clients PDF.)

v Troubleshoot deployment and administration. (See the Troubleshooting and support PDF.)

Establish the application serving environment

The following tasks involve establishing application serving capability in your network environment,

whether you use single or clustered application servers. Servers can be grouped into administrative

domains known as nodes and cells.

See also the overview:

v Version 6 topology and terminology

--

Create WebSphere profiles

 Profiles are the files that define a stand-alone Application Server node, a managed node, or a

deployment manager node. A profile also includes all of the files that the node can change.

 --

Administer configurations

 Application server configuration files define the available application servers, their configurations,

and their contents. You should periodically save changes to your administrative configuration. You

can change the default locations of configuration files, as needed.

 --

Administer application servers

 Create, configure, and operate application server processes. An application server configuration

provides settings that control how an application server provides services for running enterprise

applications and their components.

 --

Administer other server types

 One step in the process of creating an application server is to specify a template. A server

template is used to define the configuration settings of the new server. You have the option of

specifying the default server template or choosing a template that is based on a server that

already exists. The default template will be used if you do not specify a different template when

you create the server.

 You can create other types of servers, to represent Web servers in your topology, or for other

purposes. There are two types of generic servers: (1) Non-Java applications or processes, or (2)

Java applications or processes. A custom service provides the ability to plug into a WebSphere

application server to define a hook point that runs when the server starts and shuts down.

© Copyright IBM Corp. 2004 7

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/BigPicture/Presentations/WASXv6_Topology_Terminology/player.html

--

8 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Chapter 3. Setting up the application serving environment

This topic summarizes the contents of the documentation that helps you set up your application serving

environment. This information is for administrators, particularly those performing installation, customization,

and maintenance of topologies.

Chapter 4, “Planning the installation (diagrams),” on page 11

 In preparation for installation, this topic describes common product topologies that you can install

with WebSphere Application Server, Version 6 products.

Chapter 5, “Configuring the product after installation,” on page 25

 This topic describes what to do after installing the product.

 You can display the First Steps tool, an easy way to get started with the product.

Chapter 6, “Configuring ports,” on page 49

 This topic provides information about port number settings for Version 6 and previous versions, for

use in coexistence and interoperability situations.

Chapter 7, “Communicating with Web servers,” on page 53

 This topic describes how to install and configure WebSphere plug-ins for Web servers, enabling

communication between Web servers and application servers.

Chapter 8, “Setting up the administrative architecture,” on page 75

 This topic describes how to configure administrative services.

Chapter 9, “Configuring the environment,” on page 83

 This topic describes how to configure settings for virtual hosts, variables, and shared libraries to

assist in handling requests among Web applications, Web containers, and application servers.

Chapter 10, “Working with server configuration files,” on page 101

 This topic describes how to change the default locations of configuration files, as needed.

Application server configuration files define the available application servers, their configurations,

and their contents.

Chapter 11, “Administering application servers,” on page 109

 This topic describes how to configure individual application servers to provides services for running

enterprise applications and their components.

© Copyright IBM Corp. 2004 9

10 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Chapter 4. Planning the installation (diagrams)

This topic describes common product topologies that you can install with the product.

Use this topic to understand the capabilities of your product package. Knowing what you can do with the

product might influence how you install the product and other installable components on the product disc.

This topic describes topology diagrams and shows you how to create the topologies by showing what

components to install for each topology.

Phased installation roadmap

To install a Version 6 production environment, you install the following components:

v The WebSphere Application Server product on your product CD

v A supported Web server, such as the IBM HTTP Server V6 on the product CD

v A binary plug-in module for your Web server from the product CD

You can also use the product CD to install an application client environment on a client machine. Running

Java 2 Platform, Enterprise Edition (J2EE) and thin application clients that communicate with WebSphere

Application Server requires that elements of the Application Server are installed on the machine on which

the client runs. However, if the machine does not have the Application Server installed, you can install

Application Server clients to provide a stand-alone client run-time environment for your client applications.

You can use the Application Server Toolkit CD in the primary packet of discs to install a development

environment. Or you can use the Rational Application Developer Trial CD in the supplemental packet of

discs to install a fully integrated development environment that includes an exact replica of the Application

Server for development testing.

Installation features

Installation features in V6 include:

 Feature Description

The WebSphere Application Server

product includes Application Server

nodes.

You can use the Profile creation wizard to create stand-alone application server

nodes after installing the product. You do not have to reinstall the product to

create additional application servers. All application servers on a machine share

the same core product files.

The product CD includes all of the

installable components that are

required to create an e-business

environment.

You can use the product CD to install the IBM HTTP Server, the Web server

plug-ins, and the WebSphere Application Server Clients. You do not have to use

separate CDs. Separate installation programs exist within component directories

on the product CD.

Each installable component has its

own installation program.

You can use the V6 launchpad to install any installable component on the

product CD. Or you can install each component directly using the install

command in each component directory.

The launchpad can install any

installable product in the primary

packet of compact discs.

The launchpad can also install the Application Server Toolkit on Windows 2000

and Linux (Intel) systems. The Application Server Toolkit is on a separate disc,

which requires you to change discs to launch the installation.

Review topology diagrams for each of the following installable components to determine which topology

best fits your needs. The diagrams and their accompanying procedures can serve as a roadmap for

installing a similar topology.

This topic describes installation scenarios for the following installable components:

© Copyright IBM Corp. 2004 11

v WebSphere Application Server (base product)

v Web server plug-ins

v Application clients

In addition to product installation diagrams for the installable components, this topic also links to a

roadmap for using the Profile creation wizard, which is new for Version 6. The Profile creation wizard lets

you create run-time environments for application server processes.

Each of the following installation scenarios includes topology diagrams and associated installation steps.

Each step links to a specific procedure for installing a component or to a description of a command or tool.

1. Review the installation scenarios for the base WebSphere Application Server product, as described in

“Planning to install WebSphere Application Server.”

2. Review the installation scenarios for the WebSphere Application Server plug-ins, as described in

“Planning to install Web server plug-ins” on page 16.

3. Review the installation scenarios for the application clients, as described in “Planning to install

WebSphere Application Server Clients” on page 19.

4. Review the installation scenarios for the Profile creation wizard, as described in “Planning to create

application server environments” on page 20.

5. Optional: Review interoperability and coexistence diagrams to know what is possible with Version 6.

WebSphere Application Server V6 can interoperate with your other e-business systems, including other

versions of WebSphere Application Server. Interoperability provides a communication mechanism for

WebSphere Application Server nodes that are at different versions. Coexistence describes multiple

versions or instances running on the same machine, at the same time.

Interoperability support enhances migration scenarios with more configuration options. It often is

convenient or practical to interoperate during the migration of a configuration from an earlier

WebSphere Application Server version to a later one when some machines are at the earlier version

and some machines are at the later version. The mixed environment of machines and application

components at different software version levels requires interoperability and coexistence.

It is often impractical, or even physically impossible, to migrate all the machines and applications within

an enterprise at the same time. Understanding multiversion interoperability and coexistence is

therefore an essential part of a migration between version levels.

See the Migrating, coexisting, and Interoperating PDF for more information.

6. Optional: Consider performance when designing your network, as described in “Queuing network” on

page 20.

You can review installation scenarios to identify the specific steps to follow when installing more than one

component on a single machine or on separate machines.

After determining an appropriate installation scenario, you are ready to install the necessary components

and to configure the products for the system that you selected.

Planning to install WebSphere Application Server

This topic describes common installation scenarios and links to component installation procedures for each

scenario.

IBM WebSphere Application Server, Version 6.0 is an integrated platform that contains an Application

Server, a set of Web development tools, a Web server, and additional supporting software and

documentation.

The following information describes scenarios for installing the product in various topologies on one or

more machines:

v Scenario 1: Single-machine installation of WebSphere Application Server

12 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

v Scenario 2: Single-machine installation of WebSphere Application Server and a Web server

v Scenario 3: Two-machine installation of WebSphere Application Server and a Web server

v Scenario 4: Creating multiple profiles that use one installation of WebSphere Application Server

Each scenario includes a diagram and a list of detailed installation steps.

v Scenario 1: Single-machine installation of WebSphere Application Server

Installing WebSphere Application Server by itself on a single machine creates a stand-alone application

server, which is automatically named server1. Installing the base product creates the core product files

and a profile for application server. The profile is a separate set of files that define the application server

environment.

In this scenario, application server uses its internal HTTP transport chain for communication, which is

suitable for handling an application with a relatively low request work load. For example, this type of

installation can support a simple test environment or a departmental intranet environment.

Machine A

Shared product binaries

(system files)

WebSphere Application Server, Version 6.0

Profile01

1. Install WebSphere Application Server.

v Scenario 2: Single-machine installation of WebSphere application servers and a Web server

Installing a Web server, such as IBM HTTP Server, on the same machine as the application server

provides a more robust Web server environment. Installing a Web server plug-in is a requirement for the

Web server to communicate with the application server. This type of installation supports rigorous

testing environments or production environments that do not require a firewall. However, this is not a

typical production environment.

HTTP server

Plug-in

Application

server

optional

Client

HTTP

requests optional

1. Install WebSphere Application Server.

2. Install IBM HTTP Server or another supported Web server.

3. Install the Web server plug-ins and configure the Web server using the Plug-ins installation wizard.

v Scenario 3: Two-machine installation of WebSphere Application Server and a Web server

In the typical production environment, the application server on one machine communicates with a Web

server on a separate (remote) machine through the Web server plug-in. Optional firewalls can provide

additional security for the application server machine.

Chapter 4. Planning the installation (diagrams) 13

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.ihs.doc/info/aes/ae/tihs_install.html

Machine A

Data tier, optionalMachine B Machine A

Internet Intranet

Web server
Web client

(browser)

Application

Server

Application

data

Firewall Firewall

Plug-in

1. Install WebSphere Application Server on Machine A.

2. Install IBM HTTP Server or another supported Web server on Machine B.

3. Install the Web server plug-ins and configure the Web server using the Plug-ins installation wizard

on Machine B.

4. The Plug-ins installation wizard creates a script named configureWeb_server_name in the

plugins_install_root/bin directory on Machine B. Copy the script to the install_root/bin directory on

Machine A.

5. Run the configureWeb_server_name script to create a Web server definition in the administrative

console. You can then use the administrative console to manage the Web server.

6. Propagate the plugin-cfg.xml file from the Application Server to the Web server using the

administrative console. Click Servers > Web server > Propagate Plug-in. (Web servers other than

IBM HTTP Server require manual propagation.)

v Scenario 4: Creating multiple profiles that use one installation of WebSphere Application Server

A profile is a separate data partition that contains the files that define the run-time environment for an

application server. A default profile is created during the installation of the base product. Create

additional profiles using the Profile creation wizard. Each profile defines a separate stand-alone

application server that has its own administrative interface.

After creating a profile and installing a dedicated Web server, use the Plug-ins installation wizard to

install a Web server plug-in and to update the Web server configuration file. The Web server can then

communicate with the application server.

With topology, each profile has unique applications, configuration settings, data, and log files, and

shares the same set of core product files. Creating multiple profiles creates multiple application server

environments that you can dedicate to different purposes.

For example, each application server on a Web site can serve a different application. In another

example, each application server can be a separate test environment that you assign to a programmer

or to a development team.

Updating the core product files

Another feature of having multiple profiles is enhanced serviceability. When a refresh pack or a fix pack

updates the core product files on a machine, all of the application server profiles that were created from

the core product files begin using the updated files. In some situations, you might prefer to not update

all of the application servers on a machine. In such situations, simply install the product a second time

to create a second set of core product files. Create application server profiles from both installations to

manage the product updates incrementally.

14 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.ihs.doc/info/aes/ae/tihs_install.html

Web client

(browser)

Internet

Data tier, optional

Application

data

Firewall Firewall

Machine A

Application

Server

Machine A

Application

Server 1

application 1

Intranet

Profile01

Machine A

Application

Server 2

application 2

Profile02

Machine B

Web server

Plug-in

Web server

Plug-in

1. Install WebSphere Application Server on Machine A.

 2. Install IBM HTTP Server or another supported Web server on Machine B.

 3. Install the Web server plug-ins and configure the Web server using the Plug-ins installation wizard

on Machine B.

 4. The Plug-ins installation wizard creates a script named configureWeb_server_name in the

plugins_install_root/bin directory on Machine B. Copy the script to the install_root/bin directory on

Machine A.

 5. Run the configureWeb_server_name script to create a Web server definition in the administrative

console. You can then use the administrative console to manage the Web server.

 6. Propagate the plugin-cfg.xml file from the application server to the Web server using the

administrative console. Click Servers > Web server > Propagate Plug-in. (Web servers other

than IBM HTTP Server require manual propagation.)

 7. Create the second Application Server profile using the Profile creation wizard on Machine A. Make

the profile the default profile during the profile creation by selecting the check box on the

appropriate panel.

The script that the Plug-ins installation wizard creates works on the default profile only. So, this

script can only create a Web server definition on the profile that is the default profile at the time

that the script runs.

 8. Install a second IBM HTTP Server or another supported Web server on Machine B.

 9. On Machine B, install the Web server plug-ins to configure the second Web server using the

Plug-ins installation wizard. Both Web servers share a single installation of the plug-in binaries but

must be configured individually.

10. The Plug-ins installation wizard creates a script named configureWeb_server_name for the second

Web server. The script is in the plugins_install_root/bin directory on Machine B. Copy the script to

the install_root/bin directory on Machine A.

11. Run the configureWeb_server_name script to create a Web server definition in the administrative

console. You can then use the administrative console to manage the Web server.

12. Propagate the plugin-cfg.xml file from the second application server to the Web server using the

administrative console. Click Servers > Web server > Propagate Plug-in. (Web servers other

than IBM HTTP Server require manual propagation.)

You can review common installation scenarios to find a possible match for the topology that you intend to

install. Each product installation diagram provides a high-level procedure for installing the components that

comprise the topology.

After determining a possible topology, you are ready to follow the detailed installation instructions for each

product that you plan to install.

Chapter 4. Planning the installation (diagrams) 15

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.ihs.doc/info/aes/ae/tihs_install.html
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.ihs.doc/info/aes/ae/tihs_install.html

Planning to install Web server plug-ins

This topic describes common installation scenarios and links to component installation procedures for each

scenario.

The primary production configuration is an application server on one machine and a Web server on a

separate machine. This configuration is referred to as a remote configuration. Contrast the remote

configuration to the local configuration, where the application server and the Web server are on the same

machine.

The Plug-ins installation wizard has four main tasks:

v Installs the binary plug-in module on the Web server machine.

v Configures the Web server configuration file on the Web server machine to point to the binary plug-in

module and to the XML configuration file for the binary module.

v Installs a temporary XML configuration file for the binary module (plugin-cfg.xml) on the Web server

machine in remote scenarios.

v Creates the configuration for a Web server definition on the application server machine. The wizard

processes the creation of the Web server definition differently depending on the scenario:

– Recommended remote stand-alone Application Server installation:

Creates a configuration script that you run on the application server machine. Install the Web server

and its plug-in on a different machine than the application server. This configuration is recommended

for a production environment.

– Local stand-alone Application Server installation:

Detects the default profile on a local application server machine and creates the Web server

definition for it directly. Install the Web server and its plug-in on the same machine with the

application server. This configuration is for development and test environments.

Select a link to go to the appropriate steps in the following procedure.

v Set up a remote Web server installation.

The remote Web server configuration is recommended for production environments.

The remote installation installs the Web server plug-in on the Web server machine when the application

server is on a separate machine, such as shown in the following graphic:

Machine B Machine A

Web server

Plug-in

WebSphere

Application

Server

Firewall
optional

Remote installation scenario

 Table 1. Installation and configuration

Step Machine Task

1 A Install your WebSphere Application Server product. See the Installing your application

serving environment PDF.

16 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Table 1. Installation and configuration (continued)

Step Machine Task

2 B Install IBM HTTP Server or another supported Web server. See your Web server

documentation.

3 B Install the binary plug-in module using the Plug-ins installation wizard. See the

Installing your application serving environment PDF.

The script for creating and configuring the Web server is created under the

plug-ins_install_root/ bin directory.

4 B Copy the configureWeb_server_name script to Machine A. If one machine is running

under Linux or UNIX and the other machine is running under Windows, copy the script

from the plug-ins_install_root/ bin/ crossPlatformScripts directory.

5 A Paste the configureWeb_server_name script from Machine B to the was_install_root/

bin directory on Machine A.

6 A Run the script from a command line.

7 A Verify that the application server is running. Open the administrative console and save

the changed configuration.

8 B

Run the plug-ins_install_root/setupPluginCfg.sh script for a Domino Web

Server before starting a Domino Web server.Otherwise, start the Web server.

9 B Run the snoop servlet.

To verify with your own application, regenerate and propagate the plugin-cfg.xml file

after installing the application.

Regeneration of the plugin-cfg.xml file

During the installation of the plug-ins, the temporary plugin-cfg.xml file is installed on Machine B in the

plug-ins_install_root/ config/ web_server_name directory.

The Web server plug-in configuration service regenerates the plugin-cfg.xml file automatically.

To use the real plugin-cfg.xml file from the application server, propagate the plugin-cfg.xml file as

described in the next section.

Propagation of the plugin-cfg.xml file

The Web server plug-in configuration service propagates the plugin-cfg.xml file automatically for IBM

HTTP Server 6.0 only.

For all other Web servers, propagate the plug-in configuration file manually. Copy the plugin-cfg.xml

file from the profiles_install_root/ config/ cells/ cell_name/ nodes/ Web_server_name_node/

servers/ web_server_name directory on Machine A. Paste the file into the plug-ins_install_root/

config/ web_server_name directory on Machine B.

v Set up a local Web server configuration.

The local Web server configuration is recommended for a development or test environment.

Chapter 4. Planning the installation (diagrams) 17

A local installation includes the Web server plug-in, the Web server, and the application server on the

same machine:

Machine A

Web server

Plug-in

WebSphere

Application

Server

Local installation scenario

 Table 2. Installation and configuration

Step Machine Task

1 A Install your WebSphere Application Server product. See the Installing your application

serving environment PDF.

2 A Install IBM HTTP Server or another supported Web server. See your Web server

documentation.

3 A Install the binary plug-in module using the Plug-ins installation wizard. See the

Installing your application serving environment PDF.

The Web server definition is automatically created and configured during the installation

of the plug-ins.

4 A Verify that the application server is running. Open the administrative console and save

the changed configuration.

5 B

Run the plug-ins_install_root/setupPluginCfg.sh script for a Domino Web

Server before starting a Domino Web server.Otherwise, start the Web server.

6 B Run the snoop servlet.

To verify with your own application, regenerate and propagate the plugin-cfg.xml file

after installing the application.

Regeneration of the plugin-cfg.xml file

The Web server plug-in configuration service regenerates the plugin-cfg.xml file automatically.

The plugin-cfg.xml file is generated in the profiles_install_root/ profile_name/ config/ cells/

cell_name/ nodes/ Web_server_name_node/ servers/ web_server_name directory. The generation occurs

when the Web server definition is created.

Propagation of the plugin-cfg.xml file

The local file does not require propagation.

You can set up a remote or local Web server by installing Application Server, the Web server, and then the

Web server plug-ins.

See your Web server documentation for more information about the files involved in configuring a Web

server.

See the Installing your application serving environment PDF for information about the logic behind the

processing scenarios for the Plug-ins installation wizard.

18 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

See the Installing your application serving environment PDF for information about how the Plug-ins

installation wizard configures supported Web servers.

See See the Installing your application serving environment PDF for information about other installation

scenarios for installing Web server plug-ins.

Planning to install WebSphere Application Server Clients

This topic helps you examine typical topologies and uses for WebSphere Application Server Clients.

This topic is one in a series of topics described in Chapter 4, “Planning the installation (diagrams),” on

page 11. Consider all of the planning scenarios that are mentioned in the parent article to determine the

best approach to installing your e-business network. This topic describes installing and using the

WebSphere Application Server Clients.

In a traditional client server environment, the client requests a service and the server fulfills the request.

Multiple clients use a single server. Clients can also access several different servers. This model persists

for Java clients except that now these requests use a client run-time environment.

In this model, the client application requires a servlet to communicate with the enterprise bean, and the

servlet must reside on the same machine as the WebSphere Application Server.

The Application Client for WebSphere Application Server, Version 6 now consists of the following models:

v ActiveX application client

v Applet client

v J2EE application client

v Pluggable and thin application clients

The following graphic shows a topology for installing the Application Client and using client applications:

The example shows two types of application clients installed in a topology that uses client applications to

access applications and data on Machine A:

v The ActiveX application client on Machine B is a Windows only client that uses the Java Native

Interface (JNI) architecture to programmatically access the Java virtual machine (JVM) API. The JVM

code exists in the same process space as the ActiveX application (Visual Basic, VBScript, or Active

Server Pages (ASP) files) and remains attached to the process until that process terminates.

v The J2EE application client on Machine C is a Java application program that accesses enterprise

beans, Java Database Connectivity (JDBC) APIs, and Java Message Service message queues. The

application program must configure the execution environment of the J2EE application client and use

the Java Naming and Directory Interface (JNDI) name space to access resources.

Use the following procedure as a roadmap for installing the Application Client.

1. Install the WebSphere Application Server product from your product CD on Machine A to establish the

core product files.

2. Use the Profile creation wizard to create the additional stand-alone application server profile.

3. Use the administrative console of each application server to deploy any user applications.

4. Use the administrative console of each application server to create a Web server configuration for the

Web server.

5. Use the administrative console of each application server to regenerate each plugin-cfg.xml file in the

local Web server configuration.

6. Install the IBM HTTP Server from the product CD on Machine A.

7. Use the Plug-ins installation wizard to install the plug-in for IBM HTTP Server on Machine A.

Chapter 4. Planning the installation (diagrams) 19

The wizard automatically configures the HTTP Server to communicate with the first application server.

8. Install the Application Client from your product CD on Machine B.

a. Select the Custom install type.

b. Select the ActiveX to EJB Bridge feature.

c. Select to add the Java run time to the system path.

d. Select the Java run time as the default JRE, which adds the Java run time path to the beginning of

the system path.

9. Install the Application Client from your product CD on Machine C.

a. Select the Custom install type.

b. Select the J2EE application client feature.

This topic can help you plan run-time environments for client applications.

See the Using administrative clients PDF for information about creating client applications.

Planning to create application server environments

Application server profiles are the run-time environments for application server processes. This topic

describes common scenarios for creating application server profiles and provides links to profile creation

procedures for each scenario.

Install the core product files for a WebSphere Application Server product before using the Profile creation

wizard to create additional application server run-time environments.

This topic describes how to use the Profile creation wizard to create application server profiles. Each

profile is a run-time environment for the application server that it defines, with data files, configuration files,

applications, and an administrative console.

Create a stand-alone application server, as described in “Using the Profile creation wizard to create an

application server” on page 30.

The installation procedure creates an application server during installation named server1. However, you

can use the Profile creation wizard to create more stand-alone application servers on a machine where

server1 or another application server already exists.

You can create additional application server processes using the Profile creation wizard.

After installing the product and optionally adding more application servers with the Profile creation wizard,

you are ready to deploy applications to test the environment.

Queuing network

WebSphere Application Server contains interrelated components that must be harmoniously tuned to

support the custom needs of your end-to-end e-business application. These adjustments help the system

achieve maximum throughput while maintaining the overall stability of the system. This group of

interconnected components is known as a queuing network. These queues or components include the

network, Web server, Web container, EJB container, data source, and possibly a connection manager to a

custom back-end system. Each of these resources represents a queue of requests waiting to use that

resource. Various queue settings include:

v IBM HTTP Server: MaxClients for UNIX and ThreadsPerChild for Windows NT and Windows 2000

systems described in “Web server tuning parameters” on page 69.

20 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

v Web container: Maximum size described in “Thread pool settings” on page 117,

MaxKeepAliveConnections and MaxKeepAliveRequests described in “HTTP transport custom

properties” on page 130.

v Tuning Object Request Brokers explained in “Tuning application servers” on page 164.

v Data source connection pooling and statement cache size are explained in the Developing and

deploying applications PDF.

Most of the queues that make up the queuing network are closed queues. A closed queue places a limit

on the maximum number of requests present in the queue, while an open queue has no limit. A closed

queue supports tight management of system resources. For example, the Web container thread pool

setting controls the size of the Web container queue. If the average servlet running in a Web container

creates 10MB of objects during each request, a value of 100 for thread pools limits the memory consumed

by the Web container to 1GB.

In a closed queue, requests can be active or waiting. An active request is doing work or waiting for a

response from a downstream queue. For example, an active request in the Web server is doing work,

such as retrieving static HTML, or waiting for a request to complete in the Web container. A waiting

request is waiting to become active. The request remains in the waiting state until one of the active

requests leaves the queue.

All Web servers supported by WebSphere Application Server are closed queues, as are WebSphere

Application Server data sources. You can configure Web containers as open or closed queues. In general,

it is best to make them closed queues. EJB containers are open queues. If there are no threads available

in the pool, a new one is created for the duration of the request.

If enterprise beans are called by servlets, the Web container limits the number of total concurrent requests

into an EJB container, because the Web container also has a limit. The Web container limits the number of

total concurrent requests only if enterprise beans are called from the servlet thread of execution. Nothing

prevents you from creating threads and bombarding the EJB container with requests. Therefore, servlets

should not create their own work threads.

Queuing and clustering

Cloning application servers can be a valuable asset in configuring highly-scalable production

environments, especially when the application is experiencing bottlenecks that are preventing full CPU

utilization of symmetric multiprocessing (SMP) servers. When adjusting the WebSphere Application Server

system queues in clustered configurations, remember that when a server is added to a cluster, the server

downstream receives twice the load.

Two servlet engines are located between a Web server and a data source. It is assumed that the Web

server, servlet engines and data source, but not the database, are all running on a single SMP server.

Given these constraints, the following queue considerations must be made:

v Double the Web server queue settings to ensure ample work is distributed to each Web container.

v Reduce the Web container thread pools to avoid saturating a system resource like CPU or another

resource that the servlets are using.

v Reduce the data source to avoid saturating the database server.

v Reduce Java heap parameters for each instance of the application server. For versions of the Java

virtual machine (JVM) shipped with WebSphere Application Server, it is crucial that the heap from all

JVMs remain in physical memory. For example, if a cluster of four JVMs is running on a system,

enough physical memory must be available for all four heaps.

Chapter 4. Planning the installation (diagrams) 21

Queue configuration tips

The following section outlines a methodology for configuring the WebSphere Application Server queues.

Moving the database server onto another machine or providing more powerful resources, for example a

faster set of CPUs with more memory, can dramatically change the dynamics of your system.

There are four tips for queuing:

v Minimize the number of requests in WebSphere Application Server queues.

In general, requests wait in the network in front of the Web server, rather than waiting in WebSphere

Application Server. This configuration only supports those requests that are ready for processing to

enter the queuing network. Specify that the queues furthest upstream or closest to the client are slightly

larger, and queues further downstream or furthest from the client are progressively smaller.

Queues in the queuing network become progressively smaller as work flows downstream. When 200

client requests arrive at the Web server, 125 requests remain queued in the network because the Web

server is set to handle 75 concurrent clients. As the 75 requests pass from the Web server to the Web

container, 25 requests remain queued in the Web server and the remaining 50 are handled by the Web

container. This process progresses through the data source until 25 user requests arrive at the final

destination, the database server. Because there is work waiting to enter a component at each point

upstream, no component in this system must wait for work to arrive. The bulk of the requests wait in the

network, outside of WebSphere Application Server. This type of configuration adds stability, because no

component is overloaded.

v Draw throughput curves to determine when the system capabilities are maximized.

You can use a test case that represents the full spirit of the production application by either exercising

all meaningful code paths or using the production application. Run a set of experiments to determine

when the system capabilities are fully stressed or when it has reached the saturation point. Conduct

these tests after most of the bottlenecks are removed from the application. The goal of these tests is to

drive CPUs to near 100% utilization. For maximum concurrency through the system, start the initial

baseline experiment with large queues. For example, start the first experiment with a queue size of 100

at each of the servers in the queuing network: Web server, Web container and data source. Begin a

series of experiments to plot a throughput curve, increasing the concurrent user load after each

experiment. For example, perform experiments with one user, two users, five, 10, 25, 50, 100, 150 and

200 users. After each run, record the throughput requests per second, and response times in seconds

per request. The curve resulting from the baseline experiments resembles the following typical

throughput curve shown as follows:

The WebSphere Application Server throughput is a function of the number of concurrent requests

present in the total system. Section A, the light load zone, shows that the number of concurrent user

requests increases, the throughput increases almost linearly with the number of requests. At light loads,

concurrent requests face very little congestion within the WebSphere Application Server system queues.

At some point, congestion starts to develop and throughput increases at a much lower rate until it

reaches a saturation point that represents the maximum throughput value, as determined by some

bottleneck in the WebSphere Application Server system. The most manageable type of bottleneck

occurs when the WebSphere Application Server machine CPUs become fully utilized because adding

CPUs or more powerful CPUs fixes the bottleneck.

In the heavy load zone or Section B, as the concurrent client load increases, throughput remains

relatively constant. However, the response time increases proportionally to the user load. That is, if the

user load is doubled in the heavy load zone, the response time doubles. At some point, represented by

Section C, the buckle zone, one of the system components becomes exhausted. At this point,

throughput starts to degrade. For example, the system might enter the buckle zone when the network

connections at the Web server exhaust the limits of the network adapter or if the requests exceed

operating system limits for file handles.

If the saturation point is reached by driving CPU utilization close to 100%, you can move on to the next

step. If the saturation CPU occurs before system utilization reaches 100%, it is likely that another

22 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

bottleneck is being aggravated by the application. For example, the application might be creating Java

objects causing excessive garbage collection bottlenecks in the Java code.

There are two ways to manage application bottlenecks: remove the bottleneck or clone the bottleneck.

The best way to manage a bottleneck is to remove it. You can use a Java-based application profiler,

such as Rational Application Developer, Performance Trace Data Visualizer (PTDV), Borland’s

Optimizeit, JProbe or Jinsight to examine overall object utilization.

v Decrease queue sizes while moving downstream from the client.

The number of concurrent users at the throughput saturation point represents the maximum

concurrency of the application. For example, if the application saturates WebSphere Application Server

at 50 users, using 48 users might produce the best combination of throughput and response time. This

value is called the Max Application Concurrency value. Max Application Concurrency becomes the

preferred value for adjusting the WebSphere Application Server system queues. Remember, it is

desirable for most users to wait in the network; therefore, queue sizes should increase when moving

downstream farther from the client. For example, given a Max Application Concurrency value of 48, start

with system queues at the following values: Web server 75, Web container 50, data source 45. Perform

a set of additional experiments adjusting these values slightly higher and lower to find the best settings.

To help determine the number of concurrent users, view the Servlet Engine Thread Pool and

Concurrently Active Threads metric in the Tivoli Performance Viewer.

v Adjust queue settings to correspond to access patterns.

In many cases, only a fraction of the requests passing through one queue enters the next queue

downstream. In a site with many static pages, a number of requests are fulfilled at the Web server and

are not passed to the Web container. In this circumstance, the Web server queue can be significantly

larger than the Web container queue. In the previous example, the Web server queue was set to 75,

rather than closer to the value of Max Application Concurrency. You can make similar adjustments when

different components have different execution times.

For example, in an application that spends 90% of its time in a complex servlet and only 10% of its time

making a short JDBC query, on average 10% of the servlets are using database connections at any

time, so the database connection queue can be significantly smaller than the Web container queue.

Conversely, if the majority of servlet execution time is spent making a complex query to a database,

consider increasing the queue values at both the Web container and the data source. Always monitor

the CPU and memory utilization for both the WebSphere Application Server and the database servers to

verify that the CPU or memory are not saturating.

Chapter 4. Planning the installation (diagrams) 23

24 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Chapter 5. Configuring the product after installation

This topic summarizes how to configure the application serving environment.

Use the First steps console to configure and test the WebSphere Application Server environment after

installation.

This procedure uses the First steps console to launch the installation verification test (IVT) that tests and

verifies your WebSphere Application Server environment. This procedure also uses the First steps console

to launch the Profile creation wizard to create an additional Application Server.

1. Start the First steps console by selecting the check box on the last panel of the wizard.

The First steps console can start automatically at the end of the installation. Select the check box on

the last panel of the Installation wizard.

The First steps console is an easy way to start using the product. The console provides one-stop

access to the administrative console, Samples Gallery, Profile creation wizard, installation verification

test, Migration wizard, and other activities.

See the description of the “firststeps command” for more information.

2. Click Installation verification on the First steps console.

The installation verification test starts the Application Server process named server1 and runs several

tests to verify that the server1 process can start without errors.

See “Using the installation verification test” on page 45 for more information.

3. Click Profile creation wizard on the First steps console to create an Application Server profile.

You can create multiple Application Servers on your system without installing the product again.

See “Using the Profile creation wizard to create an application server” on page 30.

4. Start the First steps console by selecting the check box on the last panel of the Profile creation wizard.

This First steps console belongs to the Application Server profile that you just created. Each profile has

its own First steps console.

5. Click Installation verification on the First steps console.

The installation verification test starts the new Application Server process named server1 and runs

several tests to verify that the server1 process can start without error.

This procedure results in configuring and testing the Application Server environment.

See “Planning to install WebSphere Application Server” on page 12 for diagrams of topologies that you

can create using the First steps console and the Profile creation wizard.

firststeps command

The firststeps command starts the First steps console.

The First steps console

The First steps console is a post-installation ease-of-use tool for directing WebSphere Application Server

elements from one place. Options display dynamically on the First steps console, depending on features

you install. With all of the options present, you can use the First steps console to start or stop the

application server, verify the installation, access the information center, access the administrative console,

launch the Migration wizard, or access the Samples gallery.

Select the check box to start the First steps console at the end of the product installation.

You can also start the First steps console from the command line as described later.

© Copyright IBM Corp. 2004 25

Installation verification

This option starts the installation verification test (IVT). The test consists of starting and monitoring

the application server during its start up.

 If this is the first time that you have used the First steps console since creating an application

server profile, click Installation verification to verify that all is well with your installation. The

verification process starts the application server.

 If you select the Installation verification option, the Start the server option is grayed out while

the IVT is running.

 The IVT provides the following useful information about the application server:

v The server name: server1

v The name of the profile

v The profile file path

v The type of profile: default

v The cell name

v The node name

v The current encoding

v The port number for the administrative console

v Various informational messages that include the location of the SystemOut.log file and how

many errors are listed within the file

v A completion message

Start the server

This option toggles to Stop the server when the application server is running.

 After selecting the Start the server option, an output screen displays with status messages. The

success message informs you that the server is open for e-business. Then the menu item

changes to Stop the server.

 If you select the Start the server option, the Installation verification option is grayed out while

the application server is running.

Administrative console

This option is grayed out until the application server is running.

 The administrative console is a configuration editor that runs in a Web browser. The administrative

console lets you work with XML configuration files for the application server. To launch the

administrative console, click Administrative console. You can also point your browser to

http://localhost:9060/ibm/console to start the administrative console. Substitute your own host

name in the address if the localhost variable does not resolve correctly. As the administrative

console opens, it prompts you for a login name. This is not a security item, but merely a tag to

identify configuration changes that you make during the session. Secure signon is also available.

Profile creation wizard

This option starts the Profile creation wizard. The wizard lets you create additional application

servers. A profile consists of files that define the run-time environment for the application server.

Each environment has its own administrative interface. This means that the new application server

has its own administrative console.

 Each application server has its own First steps console. The location of the command is within the

set of files in the profile. A prompt to launch the First steps console displays on the last panel of

the Profile creation wizard.

Samples gallery

This option starts the Samples gallery. The option is grayed out until you start the application

server. The option displays when you have installed the Samples during installation. The typical

installation includes the Samples by default.

26 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

From the First steps console, click Samples gallery to explore the application Samples.

Alternatively you can point your browser directly to http://localhost:9080/WSsamples. Substitute

your own host name in the address if the localhost variable does not resolve correctly. The Web

address is case sensitive. Substitute your own host name in the address.

Information center for WebSphere Application Server

This option links you to the online information center at the

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp IBM Web address.

Migration wizard

This option starts the Migration wizard. The Migration wizard is a new graphical interface to the

migration tools. The migration tools are described in the Migrating, coexisting, and interoperating

PDF.

Exit This option closes the First steps console.

Location of the command file

Installing the product creates a default profile for the server1 application server. The location of the First

steps console for the default profile is:

v

install_root/profiles/default/firststeps/firststeps.sh

v

install_root\profiles\default\firststeps\firststeps.bat

The location of the firststeps.sh or firststeps.bat script for any profile is:

v

install_root/profiles/profile_name/firststeps/firststeps.sh

v

install_root\profiles\profile_name\firststeps\firststeps.bat

Parameters

No parameters are associated with this command.

Syntax for the firststeps command

Use the following syntax for the command:

v

./firststeps.sh

v

firststeps.bat

Usage tips

The following links exist on the First steps console for the base WebSphere Application Server product:

 Option Link

Installation verification Calls the ivt command.

The location of the installation verification test varies per platform:

v

install_root/profiles/profile_name/bin/ivt.sh

v

install_root\profiles\profile_name\bin\ivt.bat

Start the server Calls the startServer command.

The location of the startServer command varies per platform:

v

install_root/profiles/profile_name/bin/startServer.sh server1

v

install_root\profiles\profile_name\bin\startServer.bat server1

When you have more than one application server on the same machine, the

command starts the same application server that is associated with the First

steps console.

Chapter 5. Configuring the product after installation 27

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Option Link

Stop the server Calls the stopServer command.

The location of the stopServer command varies per platform:

v

install_root/profiles/profile_name/bin/stopServer.sh server1

v

install_root\profiles\profile_name\bin\stopServer.bat server1

Administrative console Opens the default browser to the http://localhost:9060/ibm/console Web

address.

When you have more than one application server on the same machine, the

port varies. The First steps console starts the administrative console that is

associated with the First steps console.

Profile creation wizard Calls the pctplatform command.

The command is in the install_root/bin/ProfileCreator directory. The name

of the command varies per platform:

v pctAIX.bin

v pctHPUX.bin

v 64-bit platforms: pctHPUXIA64.bin

v pctLinux.bin

v 64-bit platforms: pct.bin S/390 platforms: pctLinux390.bin

v Power platforms: pctLinuxPPC.bin

v pctSolaris.bin

v

pctWindows.exe

v

64-bit platforms: pctWindowsIA64.exe

Samples Gallery Opens the default browser to the http://localhost:9080/WSsamples Web

address.

If you do not install Samples, the option does not appear on the First steps

console. If you do not install the Samples during the initial installation of the

product, the option does not display on the First steps console. You can

perform an incremental installation to add the Samples feature. After adding

the Samples, the options displays on the First steps console.

When you have more than one profile on the same machine, the port

varies. The First steps console starts the Samples gallery that is associated

with the First steps console.

Information center for WebSphere

Application Server products

Opens the default browser to the online information center at the

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp Web address.

Migration wizard Calls the migration command.

The location of the migration command is:

v

install_root/bin/migration.sh

v

install_root\bin\migration.bat

The migration tools are also in the /migration folder on the product disc.

Using the Profile creation wizard

This topic describes how to create run-time environments for WebSphere Application Server. Each

run-time environment is created within a profile. A profile is the set of files that define the run-time

environment. The Profile creation wizard creates the profile for each run-time environment.

Before using the Profile creation wizard, install the core product files.

28 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

The Profile creation wizard is the wizard interface to the profile creation tool, wasprofile. See the

description of the “wasprofile command” on page 34 for more information.

An error can occur when you have not provided enough system temporary space to create a profile. Verify

that you have a minimum of 40 MB of temp space available before creating a profile.

You must have 200 MB of available disk space in the directory where you create an Application Server

profile.

 Manually verify that the required space for creating a profile is available on AIX. A known problem in the

underlying InstallShield for Multiplatforms (ISMP) code prevents proper space checking on AIX systems at

the time that the product disc was created.

Important: Concurrent profile creation is not supported at this time for one set of core product files.

Concurrent attempts to create profiles result in a warning about a profile creation already in

progress.

The installation procedure creates one profile named default for an application server named server1.

You can use the Profile creation wizard to create more application server processes. For example, a

second profile can allow two different teams in a department to test independently of one another using

the same machine.

Each use of the Profile creation wizard or the wasprofile command line tool creates one profile.

1. Install the product to create the core product files.

2. Start the Profile creation wizard to create a new run-time environment.

Several ways exist to start the wizard.

One way to start the wizard is to issue the command directly from a command line.

The command is in the install_root/bin/ProfileCreator directory. The name of the command varies

per platform:

v pctAIX.bin

v pctHPUX.bin

v 64-bit platforms: pctHPUXIA64.bin

v pctLinux.bin

v 64-bit platforms: pct.bin S/390 platforms: pctLinux390.bin

v Power platforms: pctLinuxPPC.bin

v pctSolaris.bin

v

pctWindows.exe

v

64-bit platforms: pctWindowsIA64.exe

Another way to start the Profile creation wizard is to select the wizard from the First steps console.

a. Open a command window.

b. Change directories to the firststeps directory in the installation root directory:

The installation root varies by platform:

v /usr/IBM/WebSphere/AppServer/firststeps

v /opt/IBM/WebSphere/AppServer/firststeps

v

C:\Program Files\IBM\WebSphere\AppServer\firststeps

c. Issue the firststeps command to start the console:

v

./firststeps.sh

v

firststeps.bat

d. Select the Profile creation wizard option on the console.

Chapter 5. Configuring the product after installation 29

The Profile creation wizard is an InstallShield for Multiplatforms application. The wizard loads the

Java 2 SDK and then displays its Welcome panel.

See the description of the “firststeps command” on page 25 for more information.

3. Create another stand-alone application server.

See “Using the Profile creation wizard to create an application server.”

The installation procedure creates a stand-alone application server during installation. However, you

can use the Profile creation wizard to create additional stand-alone application servers.

See the Administering applications and their environment PDF to learn more about the command-line

alternative method of creating a profile, and to see examples of using the command.

See Chapter 4, “Planning the installation (diagrams),” on page 11 for examples of configurations that you

can create by creating profiles.

Using the Profile creation wizard to create an application server

The Profile creation wizard can create an application server profile on any machine where the core product

files exist.

Before using the Profile creation wizard, install the core product files.

The Profile creation wizard is the wizard interface to the profile creation tool, wasprofile. See the

description of the “wasprofile command” on page 34 for more information.

An error can occur when you have not provided enough system temporary space to create a profile. Verify

that you have a minimum of 40 MB of temp space available before creating a profile.

You must have 200 MB of available disk space in the directory where you create an Application Server

profile.

 Manually verify that the required space for creating a profile is available on AIX. A known problem in the

underlying InstallShield for Multiplatforms (ISMP) code prevents proper space checking on AIX systems at

the time that the product disc was created.

The Installation wizard creates an application server profile with a server named server1. You can create

additional profiles. Each additional profile is an application server named server1.

This procedure describes creating an application server profile using the graphical user interface provided

by the Profile creation wizard.

You can also use the wasprofile command to create an application server profile. See the description of

the “wasprofile command” on page 34 for more information.

 1. Start the Profile creation wizard to create a new run-time environment.

Several ways exist to start the wizard.

One way to start the wizard is to issue the command directly from a command line.

The command is in the install_root/bin/ProfileCreator directory. The name of the command varies

per platform:

v pctAIX.bin

v pctHPUX.bin

v 64-bit platforms: pctHPUXIA64.bin

v pctLinux.bin

v 64-bit platforms: pct.bin S/390 platforms: pctLinux390.bin

v Power platforms: pctLinuxPPC.bin

30 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

v pctSolaris.bin

v

pctWindows.exe

v

64-bit platforms: pctWindowsIA64.exe

Another way to start the Profile creation wizard is to select the wizard from the First steps console.

a. Open a command window.

b. Change directories to the firststeps directory in the installation root directory:

The installation root varies by platform:

v /usr/IBM/WebSphere/AppServer/firststeps

v /opt/IBM/WebSphere/AppServer/firststeps

v

C:\Program Files\IBM\WebSphere\AppServer\firststeps

c. Issue the firststeps command to start the console:

v

./firststeps.sh

v

firststeps.bat

d. Select the Profile creation wizard option on the console.

The Profile creation wizard is an InstallShield for Multiplatforms application. The wizard loads the

Java 2 SDK and then displays its Welcome panel.

See the description of the “firststeps command” on page 25 for more information.

 2. Click Next on the Welcome panel.

The wizard displays the Profile type selection panel.

 3. Click Next.

The wizard displays the Profile name panel.

Each profile that you create must have a name. The name is the name of the folder that contains all

of the files that define the run-time environment for the profile. When you have more than one profile,

you can tell them apart at their highest level by this name.

 4. Specify a name for the profile, then click Next.

Profile naming guidelines: The profile name can be any unique name with the following restrictions.

Do not use any of the following characters when naming your profile:

v Spaces

v Illegal special characters that are not allowed within the name of a directory on your operating

system, such as *&?

v Slashes (/) or (\)

Double-byte characters are allowed.

The default profile

The first profile that you create on a machine is the default profile. The default profile is the default

target for commands issued from the bin directory in the product installation root. When only one

profile exists on a machine, every command works on the only server process in the configuration.

Addressing a profile in a multi-profile environment

When two or more profiles exist on a machine, certain commands require that you specify the profile

to which the command applies. These commands use the -profileName parameter to identify which

profile to address. You might find it easier to use the commands that in the bin directory of each

profile.

A command in the profiles/profile_name/bin directory has two lines. The first line sets the

WAS_USER_SCRIPT environment variable for the command window. The variable sets up the

command environment to address the profile. The second line calls the actual command in the

install_root/bin directory.

The actual command queries the command shell to determine the calling profile and to autonomically

address the command to the calling profile.

The wizard then displays the Profile directory panel.

Chapter 5. Configuring the product after installation 31

5. Accept the default directory or specify a non-default location, then click Next. Or click Browse to

select a different location.

If you click Back and change the name of the profile, you must manually change the name on this

panel when it displays again.

The wizard displays the Node and host name panel.

 6. Specify the characteristics for the application server, then click Next.

Use unique names for each application server that you create.

Reserved names: Avoid using reserved folder names as field values. The use of reserved folder

names can cause unpredictable results. The following words are reserved:

v cells

v nodes

v servers

v clusters

v applications

v deployments

 Field name Default value Constraints Description

Node name Name of your

machine

Avoid using the reserved

words.

Pick any name you want. To help organize

your installation, use a unique name if you

plan to create more than one application

server on the machine.

Host name DNS name of your

machine

Addressable through your

network.

Use the actual DNS name or IP address of

your machine to enable communication with

your machine. See additional information

about the host name following this table.

Node name considerations:

The installation directory path must be no longer than 60 characters.

Host name considerations:

The host name is the network name for the physical machine on which the node is installed. The host

name must resolve to a physical network node on the server. When multiple network cards exist in

the server, the host name or IP address must resolve to one of the network cards. Remote nodes use

the host name to connect to and to communicate with this node. Selecting a host name that other

machines can reach within your network is extremely important. Do not use the generic localhost

identifier for this value.

If you define coexisting nodes on the same computer with unique IP addresses, define each IP

address in a domain name server (DNS) look-up table. Configuration files for stand-alone Application

Servers do not provide domain name resolution for multiple IP addresses on a machine with a single

network address.

The value that you specify for the host name is used as the value of the hostName property in

configuration documents for the stand-alone Application Server. Specify the host name value in one of

the following formats:

v Fully qualified domain name servers (DNS) host name string, such as

xmachine.manhattan.ibm.com

v The default short DNS host name string, such as xmachine

v Numeric IP address, such as 127.1.255.3

The fully qualified DNS host name has the advantage of being totally unambiguous and also flexible.

You have the flexibility of changing the actual IP address for the host system without having to

change the Application Server configuration. This value for host name is particularly useful if you plan

32 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

to change the IP address frequently when using Dynamic Host Configuration Protocol (DHCP) to

assign IP addresses. A format disadvantage is being dependent on DNS. If DNS is not available, then

connectivity is compromised.

The short host name is also dynamically resolvable. A short name format has the added ability of

being redefined in the local hosts file so that the system can run the Application Server even when

disconnected from the network. Define the short name to 127.0.0.1 (local loopback) in the hosts file to

run disconnected. A format disadvantage is being dependent on DNS for remote access. If DNS is

not available, then connectivity is compromised.

A numeric IP address has the advantage of not requiring name resolution through DNS. A remote

node can connect to the node you name with a numeric IP address without DNS being available. A

format disadvantage is that the numeric IP address is fixed. You must change the setting of the

hostName property in Express configuration documents whenever you change the machine IP

address. Therefore, do not use a numeric IP address if you use DHCP, or if you change IP addresses

regularly. Another format disadvantage is that you cannot use the node if the host is disconnected

from the network.

After specifying application server characteristics, the wizard displays the Port value assignment

panel.

 7. Verify that the ports specified for the stand-alone application server are unique, then click Next.

After specifying port assignments, the wizard displays the Windows service definition panel, if

you are installing on a Windows platform.

 8.

Choose whether to run the application server as a Windows service on a Windows platform

and click Next.

Version 6 attempts to start Windows services for application server processes started by a

startServer command. For example, if you configure an application server as a Windows service and

issue the startServer command, the wasservice command attempts to start the defined service.

If you chose to install a local system service, you do not have to specify your user ID or password. If

you create a specified user type of service, you must specify the user ID and the password for the

user who is to run the service. The user must have Log on as a service authority for the service to

run properly.

To perform this installation task, the user ID must not have spaces in its name. The ID must also

belong to the administrator group and must have the advanced user rights Act as part of the

operating system and Log on as a service. The Installation wizard grants the user ID the advanced

user rights if it does not already have them, if the user ID belongs to the administrator group.

You can also create other Windows services after the installation is complete, to start other server

processes. See “Automatically restarting server processes” on page 146 for more information.

The installation wizard shows which components are selected for installation in a pre-installation

summary panel.

 9. Click Next to create the application server or click Back to change the characteristics of the

application server.

The wizard displays the Installation status panel that shows which components are installing.

When the installation is complete, the wizard displays the Profile creation is complete panel.

10. Click Finish to exit, then click Profile creation wizard on the First steps console to start the wizard

again to create other application servers.

You can create an application server profile. The node within the profile has an application server named

server1.

Refer to the description of the “wasprofile command” on page 34 to learn about creating this type of profile

using a command instead of a wizard.

Deploy an application to get started!

Chapter 5. Configuring the product after installation 33

Deleting a profile

This topic describes how to manually delete a profile.

Before using the manual procedure to remove a profile, try the wasprofile command with the -delete

option. For example, issue one of the following commands:

./wasprofile.sh -delete

 -profileName profile_name | -profilePath profile_path

wasprofile.bat -delete

 -profileName profile_name | -profilePath profile_path

See “wasprofile command.”

If the command does not work, use this procedure to delete the profile.

This procedure describes how to manually delete a profile when the wasprofile -delete command results

in the following message:

INSTCONFFAILED: Cannot delete profile

1. Delete the profiles_install_root/profile_name directory.

2. If the install_root/properties/profileRegistry.xml file exists, edit the file in a flat-file editor to delete

the entry for the profile, if the entry is present.

The entry resembles the following example:

<profile isDefault="true"

 name="BadProfile"

 path="E:\IBM\WebSphere\AppServer\profiles\BadProfile"

 template="E:\IBM\WebSphere\AppServer\profileTemplates\default"/>

3.

Compare the two batch files, install_root/ properties/ fsdb/ _was_profile_default/

default.sh and install_root/ properties/ fsdb/ bad_profile_name.sh.

If the files are identical, delete the install_root/ properties/ fsdb/ _was_profile_default directory

and the install_root/ properties/ fsdb/ bad_profile_name.sh file.

If the files are not identical, delete only the install_root/ properties/ fsdb/ bad_profile_name.sh file.

4.

Compare the two batch files, install_root\ properties\ fsdb\ _was_profile_default\

default.bat and install_root\ properties\ fsdb\ bad_profile_name.bat.

If the files are identical, delete the install_root\ properties\ fsdb\ _was_profile_default directory

and the install_root\ properties\ fsdb\ bad_profile_name.bat file.

If the files are not identical, delete only the install_root\ properties\ fsdb\ bad_profile_name.bat file.

See the description of the “wasprofile command” to learn more about the command-line method of working

with profiles.

See “Using the Profile creation wizard” on page 28 for more information about creating profiles with the

Profile creation wizard.

wasprofile command

The wasprofile command line tool creates all Application Server run-time environments in Version 6. The

command creates a profile, which is the set of files that define the run-time environment for a stand-alone

Application Server.

The wasprofile command is also referred to as the profile creation tool.

34 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Introduction to terms that describe Version 6 profiles

The wasprofile command creates the run-time environment for a WebSphere Application Server process

in a set of files called a profile. The profile defines the run-time environment and includes all of the files

that the server processes in the run-time environment can change. The profile creation tool and its

graphical user interface, the Profile creation wizard, are the only ways to create run-time environments in

V6.

The Profile creation wizard is an InstallShield for Multiplatforms (ISMP) application. You can use the wizard

to enter most of the parameters that are described in this topic. Some parameters, however, require you to

use the wasprofile command. You must use the wasprofile command to delete a profile, for instance,

because the Profile creation wizard does not provide a deletion function.

However, the Profile creation wizard also performs tasks that the wasprofile command does not. For

instance, the wizard can create a Windows service for each profile that it creates. It can also assign

non-conflicting ports based on previous Version 6 port assignments.

Core product files

The core product files are the shared product binaries. The binary files are shared by all profiles.

The directory structure for V6 has two major divisions of files in the installation root directory for the

product:

v The core product files are shared product binary files that do not change unless you install a refresh

pack, a fix pack, or an interim fix. Some log information is also updated.

v The profiles directory is the default directory for creating profiles. The configuration for every defined

Application Server process is within the profiles directory unless you specify a new directory when you

create a profile. These files change as often as you create a new profile, reconfigure an existing profile,

or delete a profile.

All of the folders except for the profiles directory and a few others such as the logs directory and the

properties directory do not change unless you install service fixes. The profiles directory, however,

changes each time you add, change, or delete a profile. The profiles directory is the default repository for

profiles. However, you can put a profile anywhere on the machine provided there is enough available disk

space.

If you put a profile in another existing folder in the installation root directory, a risk exists that the profile

might be affected by the installation of a service fix that applies maintenance to the folder. Use a directory

outside of the installation root directory when using a directory other than the profiles directory for

creating profiles.

WebSphere Application Server profile

The wasprofile command line tool defines each Application Server instance of a Version 6 product.

You must run the wizard or the command line tool each time that you want to create a stand-alone

Application Server. A need for more than one stand-alone Application Server on a machine is common.

Administration is greatly enhanced when using V6 profiles instead of multiple product installs. Not only is

disk space saved, but updating the product is simplified when you only maintain a single set of product

core files. Also, creating new profiles is faster and less prone to error than full product installs, allowing a

developer to create new disposable profiles of the product for development and testing.

You can run the Profile creation wizard or the profile creation tool to create a new Application Server

environment on the same machine as an existing one. Simply define unique characteristics (such as

profile name and node name) for the new profile. Each profile has its own administrative console and

administrative scripting interface. Each Application Server process shares all run-time scripts, libraries, the

Software Development Kit, and other core product files.

Chapter 5. Configuring the product after installation 35

The installation program for the base WebSphere Application Server product uses the profile creation tool

to create an Application Server profile named default.

Installed file set

You decide where to install the files that define a profile. The default location is in the profiles directory in

the installation root directory. But you can change the location on the Profile creation wizard or in a

parameter when using the command line tool. For example, assume that you create two profiles on a

Linux platform with host name devhost1. The profile directories resemble the following example if you do

not relocate them:

/opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01

/opt/IBM/WebSphere/AppServer/profiles/devhost1Profile02

Suppose that you specify a different directory, such as /opt/profiles, for the profile directory field in the

wizard. The profile directories resemble the following example:

/opt/profiles/devhost1Profile01

/opt/profiles/devhost1Profile02

The following directories exist within a profile. This example assumes that a profile named

devhost1Profile01 exists:

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/bin

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/config

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/etc

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/firststeps

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/installableApps

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/installedApps

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/installedConnectors

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/installedFilters

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/logs

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/properties

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/samples

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/temp

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/tranlog

 /opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01/wstemp

The profile repository

The profile repository is the default location of profile-related metadata. The repository is the default

location for new profiles, which is often referred to as the profiles installation root directory.

However, you can decide where to install a profile. The default location of the profile repository is the

install_root/profiles directory. In the earlier example, creating two profiles on a Linux platform with host

name devhost1 results in the following example directories in the profile repository:

/opt/IBM/WebSphere/AppServer/profiles/devhost1Profile01

/opt/IBM/WebSphere/AppServer/profiles/devhost1Profile02

When you specify a directory, such as /opt/profiles, the profiles are no longer in the default repository,

which is not a problem. For example, the following locations are valid:

/opt/profiles/devhost1Profile01

/opt/profiles/devhost1Profile02

Location of the command file

The command file is located in the install_root/bin directory. The command file is a script named

wasprofile.sh for Linux and UNIX platforms or wasprofile.bat for Windows platforms.

36 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

The Profile creation wizard is the graphical user interface to the command line tool. The file name of the

command that calls the Profile creation wizard varies per operating system platform. See “Using the Profile

creation wizard” on page 28 for more information.

Logging

The wasprofile command creates a log for every profile that it creates. The logs are in the

install_root/logs/wasprofile directory. The files are named in this pattern:

wasprofile_create_profile_name.log.

The command also creates a log for every profile that it deletes. The logs are in the

install_root/logs/wasprofile directory. The files are named in this pattern:

wasprofile_delete_profile_name.log.

Required disk space

 Manually verify that the required space for creating a profile is available on AIX. A known problem in the

underlying InstallShield for Multiplatforms (ISMP) code prevents proper space checking on AIX systems at

the time that the product disc was created.

An error can occur when you have not provided enough system temporary space to create a profile. Verify

that you have a minimum of 40 MB of temp space available before creating a profile.

You must have 200 MB of available disk space in the directory where you create an Application Server

profile.

Concurrent profile creation

Important: Concurrent profile creation is not supported at this time for one set of core product files.

Concurrent attempts to create profiles result in a warning about a profile creation already in

progress.

Entering lengthy commands on more than one line

The length of the wasprofile command can exceed the normal shell window limit for one line of 256

characters. If your command is longer than the limit, issue the command on multiple lines by ending a line

with a backward slash, pressing Enter, and continuing the command on the next line.

For example, on a Solaris system, the following command requires input on multiple lines:

./wasprofile.sh \

-create -profileName bladetcb6profile \

-profilePath /usr/IBM/WebSphere/AppServer/profiles/bladetcb6profile \

-templatePath /usr/WebSphere/AppServer/profileTemplates/default \

-nodeName bladetcb6node \

-cellName bladetcb6Cell \

-hostName bladetcb6.rtp.raleigh.ibm.com

Omit the line continuation character from the last line to signal the end of the command to the operating

system.

wasprofile.sh command syntax

List existing profiles:

./wasprofile.sh -listProfiles

 [-debug]

Delete profiles:

Chapter 5. Configuring the product after installation 37

./wasprofile.sh -delete

 -profileName profile_name | -profilePath profile_path

 [-debug]

Create new profiles:

wasprofile.sh -create

 -profileName profile_name

 -profilePath fully_qualified_profile_path

 -templatePath template_path

 -nodeName node_name

 -cellName cell_name

 -hostName host_name

 -server iSeries_server_name

 [-startingPort starting_port | -portsFile filepath]

 -winserviceCheck true | false

 -winserviceAccountType specifieduser | localsystem

 -winserviceUserName yourusername

 -winservicePassword yourpassword

 -winserviceStartupType manual | automatic | disabled

 [-debug]

Get name of existing profile from path:

./wasprofile.sh -getName

 -profilePath profile_path

 [-debug]

Get path of existing profile from name:

./wasprofile.sh -getPath

 -profileName profile_name

 [-debug]

Check the integrity of the profile registry:

./wasprofile.sh -validateRegistry

 [-debug]

Check the integrity of the profile registry, removing profiles that are not found:

./wasprofile.sh -validateAndUpdateRegistry

 [-backup file_name]

 [-debug]

wasprofile.bat command syntax

List existing profiles:

wasprofile.bat -listProfiles

 [-debug]

Delete profiles:

wasprofile.bat -delete

 -profileName profile_name | -profilePath profile_path

 [-debug]

Create new profiles:

wasprofile.bat -create

 -profileName profile_name

 -profilePath fully_qualified_profile_path

 -templatePath template_path

 -nodeName node_name

 [-cellName cell_name]

 -hostName host_name

 -server iSeries_server_name

 [-startingPort starting_port | -portsFile filepath]

 -winserviceCheck true | false

38 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

-winserviceAccountType specifieduser | localsystem

 -winserviceUserName yourusername

 -winservicePassword yourpassword

 -winserviceStartupType manual | automatic | disabled

 [-debug]

When the -startingPort parameter is not used, the profile creation tool uses the default port settings

specified in the serverindex.xml file.

Get name of existing profile from path:

wasprofile.bat -getName

 -profilePath fully_qualified_profile_path

 [-debug]

Get path of existing profile from name:

wasprofile.bat -getPath

 -profileName profile_name

 [-debug]

Check integrity of profile registry:

wasprofile.bat -validateRegistry

 [-debug]

Check integrity of profile registry, removing unfound profiles:

wasprofile.bat -validateAndUpdateRegistry

 [-backup file_name]

 [-debug]

Parameters

Supported arguments include:

-augment

Refreshes or augments the given profile using the template in the templatePath parameter.

-backup file_name

Backs up the profile registry file to a file with the file name specified.

-cellname file_name

Specifies the cell name of the profile.

 This is an optional parameter for WebSphere Application Server.

 If you omit the parameter, a default cell name is assigned.

-create

Creates the profile.

-debug

Turns on the debug function of the Ant utility, which the wasprofile command uses.

-delete

Deletes the profile.

-getName

Gets the name for a profile registered at a given file system path. Requires the –profilePath parameter.

-getPath

Gets the file system location for a profile of a given name. Requires the –profileName parameter.

-hostName host_name

Specifies the host name where you are creating the profile. This should match the host name that you

specified during installation of the initial product.

Chapter 5. Configuring the product after installation 39

-listProfiles

Llists all defined profiles.

-nodeName node_name

Specifies the node name for the node that is created with the new profile. Use a unique value or on

the machine. Each profile that shares the same set of product binaries must have a unique node

name.

-portsFile file_path

An optional parameter that specifies the path to a file that defines port settings for the new profile.

When omitted, the wasprofile tool looks for the install_root /profileTemplates/profile_type

/actions/portsUpdate/bin/portdef.props file.

 Do not use this parameter when using the startingPort parameter.

-profileName profile_name

Specifies the name of the profile. Use a unique value when creating a profile. Each profile that shares

the same set of product binaries must have a unique name.

-profilePath profile_path

Specifies the fully qualified path to the profile.

If the fully qualified path contains spaces, enclose the value in quotation marks.

-startingPort startingPort

Specifies the starting port number for generating all ports for the profile. If not specified, the

wasprofile command uses default ports specified in the serverindex.xml file.

-templatePath template_path

Specifies the path to the templates in the shared binaries.

-validateAndUpdateRegistry registry_file backup_file

Checks all of the profiles that are listed in the profile registry to see if the profiles are present on the

file system. Removes any missing profiles from the registry. Returns a list of the missing profiles that

were deleted from the profile.

-validateRegistry registry_file

Checks all of the profiles that are listed in the profile registry to see if the profiles are present on the

file system. Returns a list of missing profiles.

-winserviceAccountType type_of_owner_account

The type of the owner account of the Windows service created for the profile can be either

specifieduser or localsystem. The Windows service can run under the local account of the user who is

creating the profile.

winserviceCheck value

The value can be either true or false. Specify true to create a Windows service for the server process

that is created within the profile. Specify false to not create the Windows service.

-winservicePassword yourpassword

Specify the password for the specified user or the local account that is to own the Windows service.

-winserviceStartupType startup_type

Possible startup_type values are:

v manual

v automatic

v disabled

See “WASService command” on page 148 for more information about Windows services.

-winserviceUserName user_ID

Specify your user ID so that Windows can verify you as an ID that is capable of creating a Windows

40 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

service. Your user ID must belong to the administrator group and have the following advanced user

rights, Act as part of the operating system and Log on as a service

Use case scenarios

Use cases are a description of common tasks for which the tool is used.

Scenario: Deleting a profile

The following command is on more than one line for clarity. Enter the command on one line to delete the

profile named shasti:

wasprofile.sh -delete

 -profileName shasti

Scenario: Using predefined port numbers

When you use the wasprofile tool without the -startingPort parameter, the tool uses the

/profileTemplates/profile_type /actions/portsUpdate/bin/portdef.props file to set the initial ports.

Example of using the -portsFile parameter

Copy the file, edit the port settings, and use your copy by using the -portsFile parameter as shown in the

following example:

wasprofile.bat

 -create

 -profileName Wow_Profile

 -profilePath

 C:\ExpressV6\IBM\WebSphere\AppServer\profiles\Wow_Profile

 -templatePath

 C:\ExpressV6\IBM\WebSphere\AppServer\profileTemplates\default

 -nodeName Wow_node

 -cellName Wow_cell

 -hostName loyAllen

 -portsFile C:\temp\ports\portdef.props

Suppose that the portdef.props file has the following values:

WC_defaulthost=39080

WC_adminhost=39060

WC_defaulthost_secure=39443

WC_adminhost_secure=39043

BOOTSTRAP_ADDRESS=32809

SOAP_CONNECTOR_ADDRESS=38880

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS=39401

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS=39403

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS=39402

ORB_LISTENER_ADDRESS=39100

DCS_UNICAST_ADDRESS=39353

SIB_ENDPOINT_ADDRESS=37276

SIB_ENDPOINT_SECURE_ADDRESS=37286

SIB_MQ_ENDPOINT_ADDRESS=35558

SIB_MQ_ENDPOINT_SECURE_ADDRESS=35578

As you run the command, messages similar to the following appear in the output stream:

replaceRegExpAllInstancesOfGivenTokenWithGivenValueForTheGivenFile:

 [echo] File C:\ExpressV6\IBM\WebSphere\AppServer\profiles\

 Wow_Profile/config/templates/default/serverentry-template.xml:

 setting CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS to 39403

...

replaceRegExpAllInstancesOfGivenTokenWithGivenValueForTheGivenFile:

 [echo] File C:\ExpressV6\IBM\WebSphere\AppServer\profiles\

 Wow_Profile/config/templates/default/serverentry-template.xml:

 setting CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS to 39402

...

Chapter 5. Configuring the product after installation 41

The resulting serverindex.xml file looks similar to the following example:

<?xml version="1.0" encoding="UTF-8"?>

<serverindex:ServerIndex xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

...

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="BOOTSTRAP_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="32809"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SOAP_CONNECTOR_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="38880"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SAS_SSL_SERVERAUTH_LISTENER_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="39401"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="39403"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="39402"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="WC_adminhost">

 <endPoint xmi:id="EndPoint_..." host="*" port="39060"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="WC_defaulthost">

 <endPoint xmi:id="EndPoint_..." host="*" port="39080"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="DCS_UNICAST_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="39353"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="WC_adminhost_secure">

 <endPoint xmi:id="EndPoint_..." host="*" port="39043"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="WC_defaulthost_secure">

 <endPoint xmi:id="EndPoint_..." host="*" port="39443"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SIB_ENDPOINT_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="*" port="37276"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SIB_ENDPOINT_SECURE_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="*" port="37286"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SIB_MQ_ENDPOINT_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="*" port="35558"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="SIB_MQ_ENDPOINT_SECURE_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="*" port="35578"/>

 </specialEndpoints>

 <specialEndpoints xmi:id="NamedEndPoint_..."

 endPointName="ORB_LISTENER_ADDRESS">

 <endPoint xmi:id="EndPoint_..." host="IBMmachine" port="39100"/>

 </specialEndpoints>

 </serverEntries>

</serverindex:ServerIndex>

42 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

The wasprofile command creates a copy of the current portdefs.props file in the

install_root\profiles\profile_name\logs directory.

Do not use the portsFile parameter when using the startingPort parameter. The two parameters are

mutually exclusive.

Scenario: Incrementing default port numbers from a starting point

The wasprofile command can assign port numbers based on a starting port value that you give on the

command line, using the -startingPort parameter. The tool assigns port numbers sequentially from the

starting port number value.

The order of port assignments is arbitrary. Predicting assignments is not possible.

For example, ports created with -startingPort 20002 would appear similar to the following example:

Assigned ports for an Application Server profile

WC_defaulthost=20002

WC_adminhost=20003

WC_defaulthost_secure=20004

WC_adminhost_secure=20005

BOOTSTRAP_ADDRESS=20006

SOAP_CONNECTOR_ADDRESS=20007

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS=20008

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS=20009

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS=20010

ORB_LISTENER_ADDRESS=20011

DCS_UNICAST_ADDRESS=20012

SIB_ENDPOINT_ADDRESS=20013

SIB_ENDPOINT_SECURE_ADDRESS=20014

SIB_MQ_ENDPOINT_ADDRESS=20015

SIB_MQ_ENDPOINT_SECURE_ADDRESS=20016

Example of startingPort parameter use

The following example of using the wasprofile command creates ports from an initial value of 20002, with

the content shown in the previous example:

wasprofile.bat -create

 -profileName shasti

 -profilePath G:\shasti\WebSphere

 -templatePath template_path

 -nodeName W2K03

 -cellName W2K03_Cell01

 -hostName planetnt

 -startingPort 20002

Scenario: Setting up and using the profile environment

Most tasks that you perform in a profile are done using the -profileName attribute on the command line

tools that you use. Such a scenario might be:

1. Create the server process using the install_root/bin/wasprofile.sh (or wasprofile.bat) script from the

original installation. Assume that you create the Profile02 profile.

2. In that command window or in another, change directories to the /bin directory of the new server

process.

3. Establish a temporary override for the normal WebSphere Application Server environment by using the

-profileName attribute on a command you issue. In the same window, start server1 by changing

directories to the install_root/bin directory of the original installation and issuing the command.

There is no such command in the /bin directory of the server process:

startServer.sh server1 -profileName Profile02

Chapter 5. Configuring the product after installation 43

4. Notice the changes in the environment. Display all of the ports for the machine to see the ports that

you set for the server process. For example, in a Linux bash shell or in the command window on a

Windows platform, type:

netstat -a

5. Open a browser window and point it at the port defined for the HTTP_TRANSPORT_ADMIN port of

the new process. For example, suppose the setting is HTTP_TRANSPORT_ADMIN=20003. Open the

administrative console for server1 by pointing your browser at:

http://hostname_orIP_address:20003/ibm/console/

Scenario: Profile creation for a non-root user

Two methods exist for a non-root user to create a profile:

v The root user creates the profile and assigns ownership to the non-root user.

v A non-root user creates a profile after getting write permission to the appropriate directories.

Remember: An ease-of-use limitation exists for non-root users who create profiles. Mechanisms within

the Profile creation wizard that suggest unique names and port values are disabled for

non-root users. The non-root user must change the default field values in the Profile creation

wizard for the profile name, node name, and port assignments. Consider assigning non-root

users a range of values for each of the fields. You can assign responsibility to the non-root

profilers for adhering to their proper value ranges and for maintaining the integrity of their

own definitions.

Root creates the profile and assigns ownership to a non-root user: The root user can create a

profile and assigns ownership of the profile directory to a non-root user.

1. The root user creates the profile with the following command:

./wasprofile.sh -create -profileName profile01 -profilePath install_root/profiles/profile01

2. The root user changes ownership of the directory for the profile to the non-root user with the following

command:

chown -R user1 install_root/profiles/profile01

A non-root user creates the profile (advanced option): The root user can grant write permission to the

appropriate files and directories to a non-root user. The non-root user can then create the profile. You can

create a group for users who are authorized to create profiles. Or you can give everyone the ability to

create profiles. The following example shows how to create a group that is authorized to create profiles.

1. Log on to the Application Server system as root.

2. Create the profilers group that you can use to create profiles.

3. Create a user named user1 to create profiles.

4. Add users root and user1 to the profilers group.

5. Log off and back on as root to pick up the new group.

6. As root, use operating system tools to change file permissions.

The following example assumes that the installation root directory is /opt/IBM/WebSphere/AppServer:

mkdir /opt/IBM/WebSphere/AppServer/logs/wasprofile

chgrp profilers /opt/IBM/WebSphere/AppServer/logs/wasprofile

chmod g+wr /opt/IBM/WebSphere/AppServer/logs/wasprofile

chgrp profilers /opt/IBM/WebSphere/AppServer/properties

chmod g+wr /opt/IBM/WebSphere/AppServer/properties

chmod g+wr /opt/IBM/WebSphere/AppServer/properties/profileRegistry.xml

You might have to change the permissions on additional /opt/IBM/WebSphere/AppServer directories if

you encounter permission problems.

7. The non-root user who belongs to the profilers group can then create a profile in any directory to which

the non-root user has write permission.

44 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

If the non-root user does not have write access to any directories, it is up to the root user to change

that situation. If the non-root user does not have write access to the /tmp directory, it is up to the root

user to change that as well.

The commands listed in step 6 give users assigned to the profilers group the ability to write to the

/opt/IBM/WebSphere/AppServer/logs/wasprofile directory and to the

/opt/IBM/WebSphere/AppServer/properties directory. It is not necessary to write to any other

directories in the installation root of your WebSphere Application Server product.

Have non-root users create a profiles directory in their own area, not in the installation root directory

of the product.

Using the installation verification test

This topic describes how to use the installation verification test (IVT). The IVT verifies that the installation

of the application server profile was successful. A profile consists of files that define the run-time

environment for an application server. Each profile has its own IVT command.

After installing the product, you are ready to use the installation verification test (IVT).

The IVT program scans product log files for errors and verifies core functionality of the product installation.

After installing the product, the Installation wizard displays a prompt for starting the First steps console.

Installation verification is the first option on the First steps console.

The test consists of starting and monitoring the application server during its start up.

1. Select Installation verification on the First steps console after installing the product.

You can also start the First steps console from the command line, as described in “firststeps

command” on page 25.

You can also start the “ivt command” on page 46 directly from the bin directory of the profile:

v

install_root/profiles/default/bin/ivt.sh

v

install_root\profiles\default\bin\ivt.bat

If you create additional profiles, the ivt script location is within the profile_home/bin directory.

2. Observe the results in the First steps status window.

The log file for installation verification is the install_root/profiles/default/logs/ivtClient.log file. If

you create additional profiles, the file path is profile_home/logs/ivtClient.log.

The IVT provides the following useful information about the application server:

v The application server name

v The name of the profile

v The profile file path

v The type of profile

v The node name

v The current encoding

v The port number for the administrative console

v Various informational messages that include the location of the SystemOut.log file and how many

errors are listed within the file

v A completion message

As the IVT starts the application server on a Windows platform, the IVT attempts to start the Windows

service for the application server, if a Windows service exists. This is true even though the Windows

service might have a manual startup type.

See “Automatically restarting server processes” on page 146 for more information.

Chapter 5. Configuring the product after installation 45

3. If the log shows that errors occurred during the installation verification, correct the errors and run the

IVT again. If necessary, create a new profile after correcting the error, and run the IVT on the new

profile.

The IVT program starts the server process automatically if the server is not running. Once the server

initializes, the IVT runs a series of verification tests. The tool displays pass or fail status in a console

window. The tool also logs results to the profile_home/logs/ivtClient.log file. As the IVT verifies your

system, the tool reports any detectable errors in the SystemOut.log file.

Return to the Installing your application serving environment PDF to continue.

ivt command

The ivt command starts the installation verification test (IVT) program. The IVT verifies that the installation

of the application server profile was successful. A profile consists of files that define the run-time

environment for an application server. Each profile has its own IVT command.

The IVT program starts the application server automatically if the server process is not already running.

After the server process initializes, the IVT runs a series of verification tests and displays pass or fail

status in a console window.

The IVT program scans the SystemOut.log file for errors and verifies core functionality of the profile.

You can start the IVT program from the command line or from the First steps console.

Location of the command file

Installing the product creates a default profile for the server1 application server. The location of the

installation verification test program for the default profile is:

v

install_root/profiles/default/bin/ivt.sh

v

install_root\profiles\default\bin\ivt.bat

The location of the ivt.sh or ivt.bat script for any profile is:

v

install_root/profiles/profile_name/bin/ivt.sh

v

install_root\profiles\profile_name\bin\ivt.bat

Parameters

The following parameters are associated with this command.

server_name

Required parameter that identifies the name of the server process, such as server1.

profile_name

Required parameter that identifies the name of the profile that contains the server definition.

-p server_port_number

Optional parameter that identifies the default_host port when the port is not 9080, which is the default.

-host machine_host_name

Optional parameter that identifies the host machine of the profile to test. The default is localhost.

Syntax for the ivt command

Use the following syntax for the command:

v

install_root/profiles/profile_name/bin/ivt.sh

v

install_root\profiles\profile_name\bin\ivt.bat

46 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Logging

The ivt command logs results to the install_root/profiles/profile name/logs/ivtClient.log file.

Example

The following examples test the server1 process in the profile01 profile on the myhost machine using the

default_host on port 9081.

ivt.bat server1 profile01 -p 9081 -host myhost

ivt.sh server1 profile01 -p 9081 -host myhost

Chapter 5. Configuring the product after installation 47

48 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Chapter 6. Configuring ports

This topic discusses configuring ports, particularly in coexistence scenarios.

1. Review “Port number settings in WebSphere Application Server versions.”

This topic provides reference information about identifying port numbers in versions of WebSphere

Application Server, as a means of determining port conflicts that might occur when you intend for an

earlier version to coexist with Version 6.

2. You can change port settings on the port assignment panel while using the Installation wizard orthe

Profile creation wizard.

See “Using the Profile creation wizard” on page 28 and the Installing your application serving

environment PDF for more information.

3. After installation, edit the

profiles_install_root/profile_name/config/cells/cell_name/nodes/node_name/serverindex.xml file to

change the port settings, or use scripting to change the values.

See the Administering applications and their environment PDF for more information.

Port number settings in WebSphere Application Server versions

This topic provides reference information about identifying port numbers in versions of WebSphere

Application Server, as a means of determining port conflicts that might occur when you intend for an

earlier version to coexist or interoperate with Version 6.

Version 6 port numbers

 Table 3. Port definitions for WebSphere Application Server Version 6

Port name

WebSphere Application

Server File

Value

HTTP_TRANSPORT 9080

serverindex.xml and

virtualhosts.xml

HTTP Admin Console Port

(HTTP_TRANSPORT_ADMIN)

9060

HTTPS Transport Port (HTTPS_TRANSPORT) 9443

HTTPS Admin Console Secure Port

(HTTPS_TRANSPORT_ADMIN)

9043

© Copyright IBM Corp. 2004 49

Table 3. Port definitions for WebSphere Application Server Version 6 (continued)

Port name

WebSphere Application

Server File

Value

BOOTSTRAP_ADDRESS 2809

serverindex.xml

SOAP_CONNECTOR_ADDRESS 8880

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS 9401

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS 9403

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS 9402

ORB_LISTENER_ADDRESS 9100

DCS_UNICAST_ADDRESS 9353

SIB_ENDPOINT_ADDRESS 7276

SIB_ENDPOINT_SECURE_ADDRESS 7286

SIB_MQ_ENDPOINT_ADDRESS 5558

SIB_MQ_ENDPOINT_SECURE_ADDRESS 5578

Internal JMS Server

(JMSSERVER_SECURITY_PORT)

5557

DRS_CLIENT_ADDRESS 7873

IBM HTTP Server Port 80 virtualhosts.xml, plugin-cfg.xml,

and IHSinstall_root/conf/

httpd.conf

IBM HTTP Server Admin Port 8008 IHSinstall_root/conf/ admin.conf

NODE_MULTICAST_IPV6_DISCOVERY_ADDRESS 5001 serverindex.xml

Version 5.x port numbers

 Table 4. Port definitions for WebSphere Application Server Version 5.1

Port name

WebSphere Application

Server File

Value

HTTP_TRANSPORT 9080

server.xml and virtualhosts.xml

HTTPS Transport Port (HTTPS_TRANSPORT) 9443

HTTP Admin Console Port

(HTTP_TRANSPORT_ADMIN)

9090

HTTPS Admin Console Secure Port

(HTTPS_TRANSPORT_ADMIN)

9043

Internal JMS Server

(JMSSERVER_SECURITY_PORT)

5557

server.xml

JMSSERVER_QUEUED_ADDRESS 5558

serverindex.xml

JMSSERVER_DIRECT_ADDRESS 5559

BOOTSTRAP_ADDRESS 2809 serverindex.xml

SOAP_CONNECTOR_ADDRESS 8880 serverindex.xml

DRS_CLIENT_ADDRESS 7873 serverindex.xml

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS 0 serverindex.xml

50 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Table 4. Port definitions for WebSphere Application Server Version 5.1 (continued)

Port name

WebSphere Application

Server File

Value

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS 0

serverindex.xml

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS 0

ORB_LISTENER_ADDRESS 0 serverindex.xml

IBM HTTP Server Port 80 virtualhosts.xml, plugin-cfg.xml,

and IHSinstall_root/conf/

httpd.conf

IBM HTTP Server Admin Port 8008 IHSinstall_root/conf/ admin.conf

Version 4.0.x port numbers

For WebSphere Application Server Advanced Single Server Edition, Version 4.0.x: Inspect the

server-cfg.xml file to find the Web container HTTP transports port values for the configuration.

For WebSphere Application Server Advanced Edition, Version 4.0.x: When the administrative server is

running, use this command to extract the configuration from the database:

xmlConfig -export config.xml -nodeName theNodeName

Look for the Web container HTTP transports port assignments.

 Table 5. Port definitions for WebSphere Application Server V4.0.x

Port name Value

Advanced Edition

IBM WebSphere

Business Integration

Server Foundation

Edition

Advanced Single

Server Edition

File

bootstrapPort 900

admin.config admin.config

server-cfg.xml

lsdPort 9000

LSDSSLPort 9001

HTTP transport port 9080

database database

HTTPS transport port 9443

Admin Console HTTP

transport port

9090

ObjectLevelTrace 2102

diagThreadPort 7000

Chapter 6. Configuring ports 51

52 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Chapter 7. Communicating with Web servers

The WebSphere Application Server works with a Web server to route requests for dynamic content, such

as servlets, from Web applications. The Web servers are necessary for directing traffic from browsers to

the applications that run in WebSphere Application Server. The Web server plug-in uses the XML

configuration file to determine whether a request is from the Web server or the Application Server.

The Web server plug-ins for distributed platform Web servers are provided on a separate CD from the

WebSphere Application Server products. A Web Server Plug-in Installation Wizard is also provided on that

CD. The Installing your application serving environment PDF describes how to install a Web server plug-in

and create a Web server definition.

1. Install your Web server if it is not already installed. See the installation information provided with your

Web server.

2. Ensure that your Web server is configured to perform operations required by Web applications, such

as GET and POST. Typically, this involves setting a directive in the Web server configuration file (such

as the httpd.conf file for an IBM HTTP Server). Refer to the Web server documentation for instructions.

If an operation is not enabled when a servlet or JSP file requiring the operation is accessed, an error

message displays, such as this one from the IBM HTTP Server:

HTTP method POST is not supported by this URL.

3. Use the Plug-in Installation wizard to install the appropriate plug-in file to your Web server and run the

script configureWeb_server_name created by the wizard to create and configure the Web server

definition in the WebSphere configuration repository. The following substeps are performed during the

plug-in installation process. See the Plug-in Installation Roadmap for additional information.

a. A Web server definitions is created. You can also use either use the administrative console or use

the ConfigureWebServerDefintion.jacl script to create a Web server definition.

If you use the administrative console:

1) Select the node that was created in the preceding step, and in the Server name field, enter the

local name of the Web server for which you are creating a Web server definition.

2) Use the wizard to complete the Web server definition.

b. An application or modules are mapped to a Web server. If an application that you want to use with

this Web server is already installed, the application is automatically mapped to the Web server. If

the application is not installed, select this Web server during the Map modules to servers step of

the application installation process.

c. Master repository is updated and saved.

4. Optional: Configure the plug-in. Use either the administrative console, or issue the GenPluginCfg

command to create your plugin-cfg.xml file.

When setting up your Web server plug-in, you must decide whether or not to have the configuration

automatically generated in response to a configuration change. When the Web server plug-in

configuration service is enabled and any of the following conditions occur, the plug-in configuration file

is automatically generated:

v When the Web server is created or saved.

v When an application is installed.

v When an application is uninstalled.

v When the virtual host definition is updated

Generating or regenerating the configuration file might take a while to complete. After it finishes, all

objects in the administrative cell use their newest settings, which the Web server can access. If the

Application Server is on the same physical machine as the Web server, the regeneration usually takes

about 30 to 60 seconds to complete. The regeneration takes longer if they are not both on the same

machine.

© Copyright IBM Corp. 2004 53

Important: When the plug-in configuration file is first generated, it does not include admin_host on the

list of virtual hosts. The Installing your application serving environment PDF describes how

to add it to the list.

To use the administrative console:

a. Select Servers > Web Servers > webserver > plug-in properties.

b. Select Automatically generate plug-in configuration file or click on one or more of the following

topics to manually configure the plugin-cfg.xml file:

v Caching

v Request and response

v Request routing

v Service

Web server plug-in configuration properties maps each property to one of these topics.

c. Click OK.

d. You might need to stop the application server and then start the application server again to enable

the Web server to locate the plugin-cfg.xml file.

5. If you want to use Secure-socket layer (SSL) with this configuration, use the plug-in’s installation

wizard to install the appropriate GSKIT installation image file on your workstation. See the Securing

applications and their environment PDF for information on how to configure GSKIT.

6. If you want to enable the Web server plug-in to use private headers, define an SSL configuration

repertoire that defines a trust file. Then in the administrative console, select Application servers >

server1 > Web Container Settings > Web Container Transport Chains > transport_chain > SSL

Inbound Channel (SSL_2) and specify this repertoire for that transport chain. If you try to use private

headers without setting up an SSL configuration repertoire that does not include a trust file definition,

the private headers will be ignored. If the private headers are ignored, the application server might not

locate the requested application.

After you enable the use of private headers, the transport chain’s SSL inbound channel trusts all

private headers it receives. Therefore, you must ensure that all paths to the transport chain’s SSL

inbound channel are trusted.

7. Tune your Web server with Web server tuning parameters.

8. Propagate the plug-in configuration. The plug-in configuration file (plugin-cfg.xml) is automatically

propagated to the Web server if the Web server plug-in configuration service is enabled, and one of

the following is true:

v The Web server is a local Web server. (It are located on the same machine as an application

server.)

v The Web server is a remote IBM HTTP Server (IHS) Version 6.0 that has a running IHS

Administrative server.

If neither of these conditions is true, the plugin-cfg.xml file must be manually copied to the remote Web

server’s installation location.

The configuration is complete. To activate the configuration, stop and restart the Web server. If you

encounter problems restarting your Web server, check the http_plugin.log file for information on what

portion of the plugin-cfg.xml file contains an error. The log file states the line number on which the error

occurred along with other details that might help you diagnose why the Web server did not start. You can

then use the administrative console to update the plugin-cfg.xml file.

If applications are infrequently installed or uninstalled, which is usually the situation in a production

environment, or if you can tolerate the performance impact of generating and distributing the plug-in

configuration file each time any of the previously listed actions occur, you should consider enabling this

service.

If you are making a series of simultaneous changes, like installing numerous applications, you might want

the configuration service disabled until after you make the last change. The Web server plug-in

54 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

configuration service is enabled by default. To disable this service, in the administrative console click elect

Servers > Application Servers > server_name > Administration Services >Web server plug-in

configuration service and then unselect the Enable automated Web server configuration processing

option.

Tip: If your installation uses a firewall, make sure you configure the Web server plug-in to use a port that

has been opened. (See your security administrator for information on how to obtain an open port.

Web server plug-in properties settings

Use this page to view or change the settings of a Web server plug-in configuration file. The plug-in

configuration file, plugin_cfg.xml, provides properties for establishing communication between the Web

server and the Application Server.

To view this administrative console page, click Servers > Web Servers >Web_server_name Plug-in

Properties.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when this Web server has accessed applications running on application

servers and there is an http_plugin.log file.

Plug-in log file name

Specifies the fully qualified path to the log file to which the plug-in will write error messages. The default

file path is plugin_install_root/logs/web_server_name/http_plugin.log .

If the file does not exist then it will be created. If the file already exists, it will be opened in append mode

and the previous plug-in log messages will remain.

This field corresponds to the RequestMetrics loggingEnabled element in the plugin-cfg.xml file.

 Data type String

Default for Linux and UNIX platforms plugin_install_root/logs/web_server_name/http_plugin.log

Default for Windows platforms plugin_install_root/logs/web_server_name/http_plugin.log

Plug-in installation location

Specifies the fully qualified path to where the plug-in configuration file is installed.

 Data type String

Default The default value is the installation root directory.

If you select a Web server plug-in during installation, the installer program configures the Web server to

identify the location of the plugin-cfg.xml file, if possible. The Web server is considered installed on a

local machine if it is on the same machine as the application server. It is considered installed on a remote

machine if the Web server and the application server are on different machines.

v If the Web server is installed on a remote machine, the plug-in configuration file, by default, will be

installed in the plugin_install_root/config/web_server_name directory.

v If the Web server is installed on a local standalone machine, the plug-in configuration file, by default will

be installed in the profile_install_root/config/cells/cell_name/nodes/web_server_name

_node/servers/web_server_name directory.

Chapter 7. Communicating with Web servers 55

The installer program adds a directive to the Web server configuration that specifies the location of the

plugin-cfg.xml file.

For remote Web servers, you must copy the file from the local directory where the Application Server is

installed to the remote machine. This is known as propagating the plug-in configuration file. If you are

using an IBM HTTP Server (IHS) V6 for your Web server, WebSphere Application Server can automatically

propagate the plug-in configuration file for you to remote machines provided there is a working HTTP

transport mechanism to propagate the file.

Plug-in configuration file name

Specifies the file name of the configuration file for the plug-in. The Application Server generates the

plugin-cfg.xml file by default. The configuration file identifies applications, Application Servers, clusters,

and HTTP ports for the Web server. The Web server uses the file to access deployed applications on

various Application Servers.

 Data type String

Default plugin-cfg.xml

If you select a plug-in during installation, the installer program configures the Web server to identify the

location and name of the plugin-cfg.xml file, if possible.

You can change the name of the plug-in configuration file. However, if you do change the file name, you

must also change the Web server configuration to point to the new plug-in configuration file.

Automatically generate plug-in configuration file

To automatically generate a plug-in configuration file to a remote Web server:

v This field must be checked.

v The plug-in configuration service must be enabled

When the plug-in configuration service is enabled, a plug-in configuration file is automatically generated for

a Web server whenever:

v The WebSphere Application Server administrator defines new Web server.

v An application is deployed to an Application Server.

v An application is uninstalled.

v A virtual host definition is updated and saved.

Clear the check box if you want to manually generate a plug-in configuration file for this Web server.

Important: When the plug-in configuration file is generated, it does not include admin_host on the list of

virtual hosts. The Installing your application serving environment PDF describes how to add it

to the list.

Automatically propagate plug-in configuration file

To automatically propagate a copy of a changed plug-in configuration file to a Web server:

v This field must be checked.

v The plug-in configuration service must be enabled

v A WebSphere Application Server node agent must be on the node that hosts the Web server associated

with the changed plug-in configuration file.

Note: The plug-in configuration file can only be automatically propagated to a remote Web server if that

Web server is an IHS V6.0 Web server and its administration server is running.

56 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Ignore DNS failures during Web server startup

Specifies whether the plug-in ignores DNS failures within a configuration when starting.

This field corresponds to the IgnoreDNSFuilures element in the plugin-cfg.xml file.

When set to true, the plug-in ignores DNS failures within a configuration and starts successfully if at least

one server in each ServerCluster is able to resolve the host name. Any server for which the host name

can not be resolved is marked unavailable for the life of the configuration. No attempts to resolve the host

name are made later on during the routing of requests. If a DNS failure occurs, a log message is written to

the plug-in log file and the plug-in initialization continues rather than causing the Web server not to start.

When false is specified, DNS failures cause the Web server not to start.

 Data type String

Default false

Refresh configuration interval

Specifies the time interval, in seconds, at which the plug-in should check the configuration file to see if

updates or changes have occurred. The plug-in checks the file for any modifications that have occurred

since the last time the plug-in configuration was loaded.

In a development environment in which changes are frequent, a lower setting than the default setting of 60

seconds is preferable. In production, a higher value than the default is preferable because updates to the

configuration will not occur so often. If the plug-in reload fails for some reason, a message is written to the

plug-in log file and the previous configuration is used until the plug-in configuration file successfully

reloads. If you are not seeing the changes you made to your plug-in configuration, check the plug-in log

file for indications of the problem.

 Data type Integer

Default 60 seconds.

Plug-in logging

Specifies the location and name of the http_plugin.log file. Also specifies the scope of messages in the

log.

This field corresponds to the RequestMetrics traceLevel element in the plugin-cfg.xml file.

The log describes the location and level of log messages that are written by the plug-in. If a log is not

specified within the configuration file, then, in some cases, log messages are written to the Web server

error log.

On a distributed platform, if the log file does not exist then it will be created. If the log file already exists, it

will be opened in append mode and the previous plug-in log messages will remain.

Log file name - The fully qualified path to the log file to which the plug-in will write error messages.

 Data type String

Default plugin_install_root/logs/web_server_name/http_plugin.log

Specify the file path of the http_plugin.log file.

Log level- The level of detail of the log messages that the plug-in should write to the log. You can specify

one of the following values for this attribute:

v Trace. All of the steps in the request process are logged in detail.

Chapter 7. Communicating with Web servers 57

v Stats. The server selected for each request and other load balancing information relating to request

handling is logged.

v Warn. All warning and error messages resulting from abnormal request processing are logged.

v Error. Only error messages resulting from abnormal request processing are logged.

If a Log level is not specified, the default value Error is used.

Be careful when setting the level to Trace. A lot of messages are logged at this level which can cause the

disk space/file system to fill up very quickly. A Trace setting should never be used in a normally functioning

environment as it adversely affects performance.

 Data type String

Default Error

Web server plug-in request and response optimization properties

settings

Use this page to view or change the request and response optimization properties for a Web server

plug-in.

To view this administrative console page, click Servers > Web Servers >web_server_name Plug-in

Properties > Request and Response.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when this Web server has accessed applications running on application

servers and there is an http_plugin.log file.

Maximum chunk size used when reading the response body

Specifies the maximum chunk size the plug-in can use when reading the response body.

This field corresponds to the ResponseChunkSize element in the plugin-cfg.xml file.

The plug-in reads the response body in 64K chunks until all of the response data is read. This approach

causes a performance problem for requests whose response body contains large amounts of data.

If the content length of the response body is unknown, the values specified for this property is used as the

size of the buffer that is allocated. The response body is then read in this size chunks, until the entire body

is read. If the content length is known, then a buffer size of either the content length or the specified size

(whichever is less) is used to read the response body.

 Data type Integer

Default 64 kilobytes

Specify the size in kilobytes (1024 byte blocks).

Enable Nagle algorithm for connections to the Application Server

When checked, the Nagle algorithm is enabled for connections between the plug-in and the Application

Server.

This field corresponds to the ASDisableNagle element in the plugin-cfg.xml file.

The Nagle algorithm is named after engineer John Nagle, who invented this standard part of the

transmission control protocol/internet protocol (TCP/IP). The algorithm reduces network overhead by

adding a transmission delay (usually 20 milliseconds) to a small packet, which lets other small packets

58 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

arrive and be included in the transmission. Because communications has an associated cost that is not as

dependent on packet size as it is on frequency of transmission, this algorithm potentially reduces overhead

with a more efficient number of transmissions.

Clear the check box to disable the Nagle algorithm.

Enable Nagle Algorithm for the IIS Web Server

When checked, the Nagle algorithm is used for connections from the Microsoft Internet Informations

Services (IIS) Web Server to the Application Server.

This field corresponds to the IHSDisableNagle element in the plugin-cfg.xml file. It only appears if you are

using the Microsoft Internet Informations Services (IIS) Web server. Clear the check box to disable the

Nagle algorithm for this connection.

Chunk response to the client

When checked, responses to the client are broken into chunks if a Transfer-Encoding : Chunked

response header is present in the response.

This field corresponds to the ChunkedResponse element in the plugin-cfg.xml file. It only appears if you

are using a Microsoft Internet Informations Services (IIS) Web Server, a Java System Web server, or a

Domino Web server. The IHS Web server automatically handles breaking the response into chunks to

send to the client.

Clear the check box to if you do not want responses broken into chunks.

Accept content for all requests

This field corresponds to the AcceptAllContent element in the plugin-cfg.xml file.

When selected, users can include content in POST, PUT, GET, and HEAD requests when a

Content-Length or Transfer-encoding header is contained in the request header.

Virtual host matching

When selected, virtual host mapping is performed by physically using the port number for which the

request was received.

This field corresponds to the VHostMatchingCompat element in the plugin-cfg.xml file.

If this field is not selected, matching is done logically using the port number contained in the host header.

Use the radio buttons to make your physical or logical port selection.

Application server port preference

Specifies which port number the Application Server should use to build URI’s for a sendRedirect.

This field corresponds to the AppServerPortPreference element in the plugin-cfg.xml file.

Specify:

v webserverPort if the port number from the host header of the HTTP request coming in is to be used.

v hostHeader if the port number on which the Web server received the request is to be used.

The default is webserverPort.

Priority used by the IIS Web server when loading the plug-in configuration file

Specifies the priority in which the Microsoft Internet Informations Services (IIS) Web server loads the

WebSphere Web server plug-in.

Chapter 7. Communicating with Web servers 59

This field corresponds to the IISPluginPriority element in the plugin-cfg.xml file. It only appears if you are

using the IIS Web server. Because the IIS Web server uses this value during startup, the Web server must

be restarted before a change to this field takes effect.

Select one of the following priorities:

v High

v Medium

v Low

The default value of High ensures that all requests are handled by the Web server plug-in before they are

handled by any other filter/extensions. If problems occur while using a priority of Medium or Low, you will

have to rearrange the order or change the priority of the interfering filter/extension.

Web server plug-in caching properties settings

Use this page to view or change the caching properties for a Web server plug-in.

To view this administrative console page, click Servers > Web Servers >Web_server_name Plug-in

Properties > Caching Properties.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when this Web server has accessed applications running on application

servers and there is an http_plugin.log file.

Enable Edge Side Include (ESI) processing to cache the responses

Specifies whether to enable Edge Side Include processing to cache the responses.

This field corresponds to the esiEnable element in the plugin-cfg.xml file.

When selected, Edge Side Include (ESI) processing is used to cache responses. If ESI processing is

disabled for the plug-in, the other ESI plug-in properties are ignored. Clear the checkbox to disable Edge

Side Include processing.

Enable invalidation monitor to receive notifications

When checked, the ESI processor receives invalidations from the Application Server.

This field corresponds to the ESIInvalidationMonitor element in the plugin-cfg.xml file. It is ignored if Edge

Side Include (ESI) processing is not enabled for the plug-in.

Maximum cache size

Specifies, in 1K byte units, the maximum size of the cache. The default maximum size of the cache is

1024K bytes (1 megabyte). If the cache is full, the first entry to be evicted from the cache is the entry that

is closest its expiration time.

This field corresponds to the esiMaxCacheSize element in the plugin-cfg.xml file.

 Data type Integer

Default 1024 kilobytes

Specify the size in kilobytes (1024 byte blocks).

Web server plug-in request routing properties settings

Use this page to view or change the request routing properties for a Web server plug-in.

60 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

To view this administrative console page, click Servers > Web Servers >Web_server_name Plug-in

Properties > Plug-in server_cluster_name Properties.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when this Web server has accessed applications running on application

servers and there is an http_plugin.log file.

Load balancing option

Specifies the load balancing option that the plug-in uses in sending requests to the various application

servers associated with that Web server.

This field corresponds to the LoadBalanceWeight element in the plugin-cfg.xml file.

Select the appropriate load balancing option:

v Round robin

v Random

The Round Robin implementation has a random starting point. The first application server is picked

randomly. Round Robin is then used to pick application servers from that point forward. This

implementation ensures that in multiple process based Web servers, all of the processes don’t start up by

sending the first request to the same Application Server.

The default load balancing type is Round Robin.

Retry interval

Specifies the length of time, in seconds, that should elapse from the time an application server is marked

down to the time that the plug-in retries a connection.

This field corresponds to the ServerWaitforContinue element in the plugin-cfg.xml file.

 Data type Integer

Default 60 seconds

Maximum size of request content

Select whether there is a limit on the size of request content. If limited, this field also specifies the

maximum number of bytes of request content allowed in order for the plug-in to attempt to send the

request to an application server.

This field corresponds to the PostSizeLimit element in the plugin-cfg.xml file.

When a limit is set, the plug-in fails any request that is received that is greater than the specified limit.

Select whether to limit the size of request content:

v No limit

v Set limit

If Set limit is selected, specify a limit size.

 Data type Integer

Default -1, which indicates there is no limit for the post size.

Specify the size in kilobytes (1024 byte blocks).

Chapter 7. Communicating with Web servers 61

Remove special headers

When checked, the plug-in will remove any headers from incoming requests before adding the headers the

plug-in is supposed to add before forwarding the request to an application server.

This field corresponds to the RemoveSpecialHeaders element in the plugin-cfg.xml file.

The plug-in adds special headers to the request before it is forwarded to the application server. These

headers store information about the request that will need to be used by the application. Not removing the

headers from incoming requests introduces a potential security exposure.

Clear the check box to retain special headers.

Clone separator change

When checked, the plug-in expects the plus character (+) as the clone separator.

This field corresponds to the ServerCloneID element in the plugin-cfg.xml file.

Some pervasive devices cannot handle the colon character (:) used to separate clone IDs in conjunction

with session affinity. If this field is checked, you must also change the configurations of the associated

application servers such that the application servers separates clone IDs with the plus character as well.

Clear the checkbox to use the colon character to separate clone IDs.

Web server plug-in custom properties

If you are using a Web server plug-in, you can add the following custom property to the configuration

settings for that plug-in.

To add a custom property:

1. In the administrative console, click In the administrative console, click Servers > Web Servers >

Web_server_name > Plug-in properties > Custom properties > New

2. Under General Properties specify the name of the custom property in the Name field and a value for

this property in the Value field. You can also specify a description of this property in the Description

field.

3. Click Apply or OK.

4. Click Save to save your configuration changes.

5. Restart the server.

Following is a list of Web server plug-in custom properties that are provided with the Application Server.

These properties are not shown on the properties settings pages for the plug-in.

StashfileLocation

Use this element to set a value for the stashfile initialization parameter.

 Data type String

KeyringLocation

Use this element to set a value for the keyring initialization parameter.

 Data type String

62 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Web server plug-in configuration service properties settings

Use this page to view or change the configuration settings for the Web server plug-in configuration service.

To view this administrative console page, click Application Servers >server_name > Administration

Services > Web server plug-in configuration service.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

Enable automated Web server configuration processing

When selected, the Web server plug-in configuration service automatically generates the plug-in

configuration file whenever the Web server environment changes. For example, the plug-in configuration

file is regenerated whenever one of the following activities occurs:

v A new application is deployed on an associated application server.

v The Web server definition is saved.

v An application is removed from an associated application server.

v A new virtual host is defined.

Whenever a virtual host definition is updated, the plug-in configuration file is automatically regenerated for

all of the Web servers.

Application Server property settings for a Web server plug-in

Use this page to view or change application server settings for a Web server plug-in.

To view this administrative console page, click Application Servers >server_name > Web Server Plug-in.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when this Web server has accessed applications running on application

servers and there is an http_plugin.log file.

Server role

Specifies the role this application server is assigned.

Select Primary to add this application server to the list of primary application servers. The plug-in initially

attempts to route requests to the application servers on this list.

Select Backup to add this application server to the list of backup application servers. The plug-in does not

load balance across the backup application servers. A backup server is only used if a primary server is not

available. When the plug-in determines that a backup application server is required, it goes through the list

of backup servers, in order, until no servers are left in the list or until a request is successfully sent and a

response received from one of the servers on this list.

Connect timeout

Specifies whether or not there is a limited amount of time the Application Server will maintain a connection

with the Web server.

You can select either No timeout or Set timeout. If you select Set timeout you, must specify, in seconds,

the length of time a connection with the Web server is to be maintained.

Chapter 7. Communicating with Web servers 63

This property enables the plug-in to perform non-blocking connections with the application server.

Non-blocking connections are beneficial when the plug-in is unable to contact the destination to determine

whether or not the port is available. If no value is specified for this property, the plug-in performs a

blocking connect in which the plug-in sits until an operating system times out (which could be as long as 2

minutes depending on the platform) and allows the plug-in to mark the server unavailable.

A value of 0 causes the plug-in to perform a blocking connect. A value greater than 0 specifies the number

of seconds you want the plug-in to wait for a successful connection. If a connection does not occur after

that time interval, the plug-in marks the server unavailable and fails over to another application server

defined for the requested application.

 Data type Integer

Maximum number of connections that can be handled by the

Application Server

Specifies the maximum number of pending connections to an Application Server that can be flowing

through a Web server process at any point in time.

This field corresponds to the ServerMaxConnections element in the plugin-cfg.xml file.

You can select either No limit or Set limit. If you select Set limit you, must specify the maximum number

of connections that can exist between the Web server and the Application Server at any given point in

time.

If this attribute is set to either zero or -1, there is no limit to the number of pending connections to the

Application Servers.

 Data type Integer

Default -1

Use extended handshake to check whether Application Server is

running

When selected, the Web server plug-in will use an extended handshake to check whether or not the

Application Server is running.

This field corresponds to the ServerExtendedHandshake element in the plugin-cfg.xml file.

Select this property if a proxy firewall is between the plug-in and the application server.

The plug-in marks a server as down when the connect() fails. However, when a proxy firewall is in

between the plug-in and the application server, the connect() will succeed, even though the back end

application server is down. This causes the plug-in to not failover correctly to other application servers.

If the plug-in performs some handshaking with the application server to ensure that it is started before it

sends a request it can failover to another application server if it detects that the application server with

which it is attempting to perform a handshake is down.

Send the header ″100 Continue″ before sending the request content

This field corresponds to the WaitForContinue element in the plugin-cfg.xml file.

When selected, the Web server plug-in will send the header ″100 Continue″ to the Application Server

before it sends the request content.

64 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Web server plug-in configuration properties

The following table indicates which panel in the administrative console you need to use to manually

configure a Web server plug-in property.

 Table 6. Web server plug-in configuration properties

Administrative console panel Field name Configuration property name

In the administrative console, click

Servers > Web Servers

>Web_server_name > Plug-in

properties

Refresh configuration interval RefreshInterval

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties

Plug-in log file name Log->name

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties

Plug-in logging Log->LogLevel

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties

Ignore DNS failures during Web

server startup

IgnoreDNSFailures

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Custom properties >

New

KeyringLocation Keyring

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Custom properties >

New

StashfileLocation Stashfile

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request routing

Load balancing option LoadBalance

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request Routing

Clone separator change CloneSeparatorChange

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request Routing

Retry interval RetryInterval

In the administrative console, click

Servers >Web server_name >

Plug-in properties > Request

routing

Maximum size of request content PostSizeLimit

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request routing

Remove special headers RemoveSpecialHeaders

Chapter 7. Communicating with Web servers 65

Table 6. Web server plug-in configuration properties (continued)

In the administrative console, click

Application Servers >server_name >

Web server plug-in properties

Server role PrimaryServers and BackupServers

list

In the administrative console, click

Application Servers >server_name >

Web server plug-in properties

Connect timeout Server ConnectTimeout

In the administrative console, click

Application Servers >server_name >

Web server plug-in properties

Use extended handshake to check

whether Application Server is running

Server Extended Handshake

In the administrative console, click

Application Servers >server_name >

Web server plug-in properties

Send the header ″100 Continue″

before sending the request content

WaitForContinue

In the administrative console, click

Application Servers >server_name >

Web server plug-in properties

Maximum number of connections that

can be handled by the Application

Server

Server MaxConnections

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Application server port preference AppServerPortPreference

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Enable Nagle algorithm for

connections to the Application Server

ASDisableNagle

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Enable Nagle Algorithm for the IIS

Web Server

IISDisableNagle

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Virtual host matching VHostMatchingCompat

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Maximum chunk size used when

reading the response body

ResponseChunkSize

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Accept content for all requests AcceptAllContent

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Chunk response to the client ChunkedResponse

66 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Table 6. Web server plug-in configuration properties (continued)

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Request and

Response

Priority used by the IIS Web server

when loading the plug-in configuration

file

IISPluginPriority

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Caching

Enable Edge Side Include (ESI)

processing to cache the responses

ESIEnable

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Caching

Maximum cache size ESIMaxCacheSize

In the administrative console, click

Servers > Web Servers >

Web_server_name > Plug-in

properties > Caching

Enable invalidation monitor to receive

notifications

ESIInvalidationMonitor

Web server plug-in connections

The WebSphere Application Server Web server plug-ins are used to establish and maintain persistent

HTTP and HTTPS connections to Application Servers .

When the plug-in is ready to send a request to the application server, it first checks its connection pool for

existing connections. If an existing connection is available the plug-in checks its connection status. If the

status is still good, the plug-in uses that connection to send the request. If a connection does not exist, the

plug-in creates one. If a connection exists but has been closed by the application server, the plug-in closes

that connection and opens a new one.

After a connection is established between a plug-in and an application server, it will not be closed unless

the application server closes it for one of the following reasons:

v If the Use Keep-Alive property is selected and the time limit specified on the Read timeout or Write

timeout property for the HTTP inbound channel has expired.

v The maximum number of persistent requests which can be processed on an HTTP inbound channel has

been exceeded. (This number is set using the HTTP inbound channel’s Maximum persistent requests

property.)

v The Application Server is shutting down.

Even if the application server closes a connection, the plug-in will not know that it has been closed until it

tries to use it again. The connection will be closed if one of the following events occur:

v The plug-in receives a new HTTP request and tries to reuse the existing connection.

v The number of httpd processes drop because the Web server is not receiving any new HTTP requests.

(For the IHS Web server, the number of httpd processes that are kept alive depends on the value

specified on the Web server’s MinSpareServers directive.)

v The Web server is stopped and all httpd processes are terminated, and their corresponding sockets are

closed.

Note: Sometimes, if a heavy request load is stopped or decreased abruptly on a particular application

server, a lot of the plug-in’s connections to that application server will be in CLOSE_WAIT state.

Because these connections will be closed the first time the plug-in tries to reuse them, having a

large number of connections in CLOSE-WAIT state should not affect performance

Chapter 7. Communicating with Web servers 67

Web server plug-in remote user information processing

You can configure your Web server with a third-party authentication module and then configure the Web

server plug-in to route requests to the Application Server. If an application calls the getRemoteUser()

method, it relies on a private HTTP header that contains the remote user information and is parsed by the

plug-in. The plug-in sets the private HTTP header value whenever a Web server authentication module

populates the remote user in the Web server data structure. If the private HTTP header value is not set,

the application’s call to getRemoteUser() returns a null value.

v In the case of an Apache and IBM HTTP Server (IHS) Web server, the plug-in builds the private header

from the information contained in the associated request record.

v In the case of a Sun One Web server, the plug-in builds the private header from the information

contained in the auth_user property associated with the request. The private header is usually set to

the name of the local HTTP user of the Web browser, if HTTP access authorization is activated for the

URL.

v In the case of a Domino Web server, the plug-in builds the private header from the information

contained in the REMOTE_USER environment variable. The plug-in sets this variable to anonymous

for users who have not logged in and to the username for users who are logged into the application.

v In the case of an Internet Information Services (IIS) Web server, the plug-in builds the private header

from the information contained in the REMOTE_USER environment variable. The plug-in sets this

variable to the name of the user as it is derived from the authorization header sent by the client.

If the private header is not being set in the Sun One, IIS, or Domino Web server plug-in, make sure the

request record includes information about the user requesting the data.

Note: If an application’s call to getRemoteUser() returns a null value, or if the correct remote user

information is not being added to the Web server plug-in’s data structure, make sure the remote

user parameter within the WebAgent is still set to YES. (Sometimes this parameter gets set to NO

when service is applied.)

Web server plug-ins

Web server plug-ins enable the Web server to communicate requests for dynamic content, such as

servlets, to the application server. A Web server plug-in is associated with each Web server definition. The

configuration file (plugin-cfg.xml) that is generated for each plug-in is based on the applications that are

routed through the associated Web server.

A Web server plug-in is used to forward HTTP requests from a supported Web server to an application

server. Using a Web server plug-in to provide communication between a Web server and an application

server has the following advantages:

v XML-based configuration file

v Standard protocol recognized by firewall products

v Security using HTTPS, replacing proprietary Open Servlet Engine (OSE) over Secure Sockets Layer

(SSL)

Each of the supported distributed platform Web server plug-ins run on a number of operating systems.

See Supported Hardware and Software at

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.htmlfor the product for the most

current information about supported Web servers.

Checking your IBM HTTP Server version

At times, you might need to determine the version of your IBM HTTP Server installation.

1. Change directory to the installation root of the Web server. For example, this is /opt/IBMIHS on a

Solaris machine.

68 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

2. Find the subdirectory that contains apache.exe (on a Windows platforms) or apachectl (on a

UNIX-based platforms, such as z/OS, Solaris, Linux, and HP-UX)

3. On a Windows platform, issue:

apache.exe -V

4. On a UNIX-based platforms issue:

./apachectl -V 4

The version is shown in the ″Server version:″ field and will looks something like the following:

Server version: IBM_HTTP_Server/2.0.47 Apache/2.0.47

Server built: July 2 2004 20:38:36

Server’s Module Magic Number: 20020903:4.

Web server tuning parameters

WebSphere Application Server provides plug-ins for several Web server brands and versions. Each Web

server operating system combination has specific tuning parameters that affect the application

performance.

v IBM HTTP Server

The IBM HTTP Server V6.0 is a multi-process, multi-threaded server.

– Access logs

- Description: Collects all incoming HTTP requests. Logging degrades performance because IO

operation overhead causes logs to grow significantly in a short time.

- How to view or set:

1. Open the IBM HTTP Server httpd.conf file, located in the directory

IBM_HTTP_Server_root_directory/conf.

2. Search for a line with the text CustomLog.

3. Comment out this line by placing # in front of the line.

4. Save and close the httpd.conf file.

5. Stop and restart the IBM HTTP Server.
- Default value: Logging of every incoming HTTP request is enabled.

- Recommended value: Disable the access logs.
– MaxClients

- Description: The MaxClients directive controls the maximum number of simultaneous connections

or users that the web server can service at any one time. If, at peak usage, your web server

needs to support 200 active users at once, you should set MaxClients to 220 (200 plus an extra

10% for load growth). Setting MaxClients too low could cause some users to believe the web

server is not responding. You should have sufficient RAM in your web server machines to support

each connected client. For IBM HTTP Server V6.0 on UNIX, you should allocate around 1.5MB

MaxClients of RAM for use by the IBM HTTP Server. For IBM HTTP Server V6.0 on Windows,

you should allocate around 300KB MaxClients of RAM for use by the IBM HTTP Server. Some

third party modules can significantly increase the amount of RAM used per connected client.

- How to view or set: Edit the MaxClients directive in the IBM HTTP Server httpd.conf file,

located in the directory IBM_HTTP_Server_root_directory/conf.

- Default value: 150

- Recommended value: The maximum number of users normally simultaneously connected to your

web server, plus an additional 10% for buffer. Note: The KeepAliveTimeout setting can affect how

long a user is connected to the webserver.
– MinSpareServers, MaxSpareServers, and StartServers

- Description: Pre-allocates and maintains the specified number of processes so that few

processes are created and destroyed as the load approaches the specified number of processes.

Specifying similar values reduces the CPU usage for creating and destroying HTTPD processes.

Adjust this parameter if the time waiting for IBM HTTP Server to start more servers, so that it can

handle HTTP requests, is not acceptable.

- How to view or set: Edit the MinSpareServers, MaxSpareServers and StartServers directives in

the httpd.conf file located in the IBM_HTTP_Server_root_directory/conf directory.

Chapter 7. Communicating with Web servers 69

- Default value: MinSpareServers 5, MaxSpareServers 10, StartServers 5

- Recommended value: For optimum performance, specify the same value for the

MinSpareServers and the StartServers parameters. If MaxSpareServers is set to less than

MinSpareServers, IBM HTTP Server resets MaxSpareServer=MinSpareServer+1. Setting the

StartServers too high can cause swapping if memory is not sufficient, degrading performance.
– ListenBackLog

- Description: Sets the length of a pending connections queue. When several clients request

connections to the IBM HTTP Server, and all threads used, a queue exists to hold additional client

requests. However, if you use the default Fast Response Cache Accelerator (FRCA) feature of

IBM HTTP Server V6.0 on Windows, the ListenBackLog directive is not used since FRCA has its

own internal queue.

- How to view or set: For non-FRCA: Edit the IBM HTTP Server httpd.conf file. Then, add or

view the ListenBackLog directive.

- Default value: For HTTP Server V6.0: 1024 with FRCA enabled, 511 with FRCA disabled

- Recommended value: Use the defaults.
v IBM HTTP Server - Linux

– MaxRequestsPerChild

- Description: Sets the limit on the number of requests that an individual child server process

handles. After the number of requests reaches the value set for the MaxRequestsPerChild

parameter, the child process dies. Adjust this parameter if destroying and creating child processes

is degrading your Web server performance.

- How to view or set:

1. Edit the IBM HTTP server httpd.conf file located in the IBM_HTTP_Server_root_directory/conf

directory.

2. Change the value of the parameter.

3. Save the changes and restart the IBM HTTP server.
- Default value: 500

- Recommended value: Should normally be set to 0. Non-zero settings can be useful if child

memory usage is observed to steadly increase over time. Memory leaks have occasionally been

observed in third party modules and various OS runtime libraries used by the IBM HTTP Server.
v IBM HTTP Server - Windows 2000 and Windows 2003

– ThreadsPerChild

- Description: Sets the number of concurrent threads running at any one time within the IBM HTTP

Server.

- How to view or set: Edit the IBM HTTP Server file httpd.conf file located in the directory

IBM_HTTP_Server_root_directory/conf. Change the value of the parameter. Save the changes and

restart the IBM HTTP Server.

There are two ways to find how many threads are used under load:

1. Use the Windows 2000 and Windows 2003 Performance Monitor under the desktop Start

menu:

a. Right-click the status bar on your desktop. Click Task Manager.

b. Select the Processes tab.

c. Click View > Select Columns.

d. Select Thread Count.

e. Click OK.

The Processes tab shows the number threads for each process under the column name

Threads, including Apache.

2. Use the IBM HTTP Server server-status (this choice works on all platforms, not just

Windows):

a. Edit the IBM HTTP Server httpd.conf file as follows: Remove the comment character #

from the following lines: #LoadModule status_module, modules/ApacheModuleStatus.dll,

#<Location/server-status>, #SetHandler server-status, and #</Location>.

b. Save the changes and restart the IBM HTTP Server.

c. In a Web browser, go to the URL: http://yourhost/server-status. Alternatively,

d. Click Reload to update status.

70 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

e. (Optional) If the browser supports refresh, go to http://your_host/server-
status?refresh=5 to refresh every five seconds. You will see five requests currently

processing 45 idle servers.
- Default value: 250 for IBM HTTP Server V6.0.

- Recommended value: Set this value to prevent bottlenecks, allowing just enough traffic through

to the application server.
– Web server configuration reload interval

- Description: Tracks a variety of configuration information about WebSphere Application Server

resources. The Web server needs to understand some of this information, such as Uniform

Resource Identifiers (URIs) pointing to WebSphere Application Server resources. This

configuration data is pushed to the Web server through the WebSphere Application Server plug-in

at intervals specified by this parameter. Periodic updates add new servlet definitions without

having to restart any of the WebSphere Application Server servers. However, the dynamic

regeneration of this configuration information is costly in terms of performance. Adjust this

parameter in a stable production environment.

- How to view or set:Use the Refresh configuration interval Web server plug-in property to change

the current setting for this parameter. In the administrative console, click Servers > Web Servers

>Web_server_name > Plug-in properties.

- Default value: The default reload interval is 60 seconds.

- Recommended value: Increase the reload interval to a value that represents an acceptable wait

time between the servlet update and the Web server update.

For more information about the plugin-cfg.xml file see the topic “Web server plug-ins” on page 68.
v Sun Java System Web server, Enterprise Edition (formerly Sun ONE) - Solaris operating

environment

The default configuration of the Sun ONE Web server, Enterprise Edition provides a single-process,

multi-threaded server.

– Active threads

- Description: Specifies the current number of threads active in the server. After the server reaches

the limit set with this parameter, the server stops servicing new connections until it finishes old

connections. If this setting is too low, the server can become throttled, resulting in degraded

response times. To tell if the Web server is being throttled, consult its perfdump statistics. Look at

the following data:

v WaitingThreads count: If WaitingThreads count is getting close to zero, or is zero, the server

is not accepting new connections.

v BusyThreads count: If the WaitingThreads count is close to zero, or is zero, BusyThreads is

probably very close to its limit.

v ActiveThreads count: If ActiveThreads count is close to its limit, the server is probably limiting

itself.
- How to view or set: Use the Maximum number of simultaneous requests parameter in the

Enterprise Server Manager interface to control the number of active threads within Sun ONE Web

server, Enterprise Edition. This setting corresponds to the RqThrottle parameter in the

magnus.conf file.

- Default value: 512

- Recommended value: Increase the thread count until the active threads parameters show

optimum behavior.
v Microsoft Internet Information Server (IIS) - Windows NT and Windows 2000

– IIS permission properties

- Description: The Web server has several properties that dramatically affect the performance of

the application server. The default settings are usually acceptable. However, because other

products can change the default settings without user knowledge, make sure to check the IIS

settings for the Home Directory permissions of the Web server. The permissions should be set to

Script and not to Execute. If the permissions are set to Execute, no error messages are returned,

but the performance of WebSphere Application Server is decreased.

- How to view or set: To check or change these permissions, perform the following procedure in

the Microsoft management console:

Chapter 7. Communicating with Web servers 71

1. Select the Web site (usually default Web site).

2. Right-click and select the Properties option.

3. Click the Home Directory tab. To set the permissions of the Home Directory:

a. In the Application settings, select the Script check box in the Permissions list and clear

the Execute check box.

b. (Optional) Check the permissions of the sePlugin:

1) Expand the Web server.

2) Right-click the sePlugin and select Properties.

3) Confirm that the Execute permissions are set to Execute.
- Default value: Script

- Recommended value: Script
– Number of expected hits per day

- Description: Controls the memory that IIS allocates for connections.

- How to view or set: Using the performance window, set the parameter to More than 100000 in

the Web site properties panel of the Microsoft management console.

- Default value: Fewer than 100000

- Recommended value: More than 100000
– ListenBackLog parameter

- Description: Alleviates failed connections under heavy load conditions, if you are using IIS on

Windows NT and Windows 2000. Failure typically occurs when you are using more than 100

clients. ListenBackLog increases the number of requests that IIS keeps in its queue. Consider

raising this value if you see intermittent Unable to locate server errors in the Netscape

browser.

- How to view or set:

1. Use a command prompt to issue the regedit command to access the operating system

registry.

2. In the registry window, locate the parameter in the

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\

InetInfo\Parameters\ListenBackLog directory.

3. Right-click the parameter to adjust the setting according to the server load.
- Default value: 25 (decimal)

- Recommended value: You can set the ListenBackLog parameter can be set as high as 200,

without negative impact on performance and with an improvement in load handling.

Modifying the WebSphere plug-in to improve performance

You can improve the performance of IBM HTTP Server V6.0 (with the WebSphere Web server plug-in) by

modifying the plug-in’s RetryInterval configuration. The RetryInterval is the length of time to wait before

trying to connect to a server that has been marked temporarily unavailable. Making this change can help

the IBM HTTP Server V6.0 to scale higher than 400 users.

The plug-in marks a server temporarily unavailable if the connection to the server fails. Although a default

value is 60 seconds, it is recommended that you lower this value in order to increase throughput under

heavy load conditions. Lowering the RetryInterval is important for IBM HTTP Server V6.0 on UNIX

operating systems that have a single thread per process, or for IBM HTTP Server 2.0 if it is configured to

have fewer than 10 threads per process.

How can lowering the RetryInterval affect throughput? If the plug-in attempts to connect to a particular

application server while the application server threads are busy handling other connections, which

happens under heavy load conditions, the connection times out and the plug-in marks the server

temporarily unavailable. If the same plug-in process has other connections open to the same server and a

response is received on one of these connections, the server is marked again. However, when you use

the IBM HTTP Server V6.0 on a UNIX operating system, there is no other connection since there is only

one thread and one concurrent request per plug-in process. Therefore, the plug-in waits for the

RetryInterval before attempting to connect to the server again.

72 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Since the application server is not really down, but is busy, requests are typically completed in a small

amount of time. The application server threads become available to accept more connections. A large

RetryInterval causes application servers that are marked temporarily unavailable, resulting in more

consistent application server CPU utilization and a higher sustained throughput.

Note: Although lowering the RetryInterval can improve performance, if all the application servers are

running, a low value can have an adverse affect when one of the application servers is down. In

this case, each IBM HTTP Server V6.0 process attempts to connect and fail more frequently,

resulting in increased latency and decreased overall throughput.

Gskit install images files

The Global Security Kit (GSKit) installation image files for the WebSphere Web server plug-ins are

packaged on the CD with the Web server plug-in files. You can download the appropriate GSKIT file to the

workstation on which your Web server is running. Use the following table to assist you in selecting the

correct GSKIT installation image file.

 Operating system GSKit 7 Installation image file

Windows No image name

AIX gskta.rte

HP-UX gsk7bas

Solaris Operating Environment gsk7bas

Linux gsk7bas_7.0.3.1.i386.rpm

Linux390 gsk7bas-7.0.3.1.s390.rpm

LinuxPPC gsk7bas-7.0.3.1.ppc.rpm

Plug-ins: Resources for learning

See this topic in the V6 Information Center to find links links to relevant supplemental information about

Web server plug-ins. The information resides on IBM and non-IBM Internet sites, whose sponsors control

the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Web server plug-in tuning tips

Balancing workloads:

In a distributed environment, you can limit the number of connections that can be handled by an

applications server. To do this, go to the Servers > Web Servers > webserver > Plug-in properties page

in the administrative console and select Set limit for the Minimum number of connections that can be

handled by the Application Server field. Then specify in the Connections field the maximum number of

connections you want to allow. When this maximum number of connections is reached, the plug-in returns

an HTTP 503 response code to the client. This code indicates that the server is currently unable to handle

the request because it is experiencing a temporary overloading or because maintenance is being

performed.

When this maximum number of connections is reached, the plug-in, when establishing connections,

automatically skips that application server, and tries the next available application server. If no application

Chapter 7. Communicating with Web servers 73

servers are available, an HTTP 503 response code will be returned to the client. This code indicates that

the server is currently unable to handle the request because it is experiencing a temporary overloading or

because maintenance is being performed.

Limiting the number of connections that can be established with an application server works best for Web

servers that follow the threading model instead of the process model, and only one process is started.

The IBM HTTP Server V6.0.x follows the threading model. To prevent the IBM HTTP Server from starting

more than one process, change the following properties in the Web server configuration file (httpd.conf)

to the indicated values:

ServerLimit 1

ThreadLimit 4000

StartServers 1

MaxClients 1024

MinSpareThreads 1

MaxSpareThreads 1024

ThreadsPerChild 1024

MaxRequestsPerChild 0

Improving performance in a high stress environment:

If you use the default settings for a Microsoft Windows operating system, you might encounter Web server

plug-in performance problems if you are running in a high stress environment. To avoid these problems,

consider tuning the the TCP/IP setting for this operating system. Two of the keys setting to tune are

TcpTimedWaitDelay and MaxUserPort.

To tune the TcpTimedWaitDelay setting, change the value of the tcp_time_wait_interval parameter from the

default value of 240 seconds, to 30 seconds:

1. Locate in the Windows Registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\tcpip\Parameters\TcpTimedWaitDelay

If this entry does not exist in your Windows Registry, create it by editing this entry as a new DWORD

item.

2. Specify, in seconds, a value between 30 and 300 inclusive for this entry. (It is recommended that you

specify a value of 30.)

To tune the MaxUserPort setting:

1. Locate in the Windows Registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\tcpip\Parameters\MaxUserPort

If this entry does not exist in your Windows Registry, create it by editing this entry as a new DWORD

item.

2. Set the maximum number of ports to a value between 5000 and 65534 ports, inclusive. (It is

recommended that you specify a value of 65534,)

See the Microsoft Web site at http://www.microsoft.com for more information about these settings.

Tuning Web servers

“Web server tuning parameters” on page 69 lists tuning parameters specific to Web servers. The listed

parameters may not apply to all of the supported Web servers. Check your Web server documentation

before using any of these parameters.

74 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

http://www.microsoft.com

Chapter 8. Setting up the administrative architecture

If your system uses administrative services, you can specify settings for the service.

Use the settings page for an administrative service to configure administrative services.

Administration service settings

Use this page to view and change the configuration for an administration service.

To view this administrative console page, click Servers > Application Servers >server_name >

Administration > Administration Services

Standalone

Specifies whether the server process is a participant in a Network Deployment cell or not. If the box is

checked (true), the server does not participate in distributed administration. If the box is unchecked (false),

the server participates in the Network Deployment system.

The default value for base WebSphere Application Server installations is true. When addNode runs to

incorporate the server into a Network Deployment cell, the value switches to false.

 Data type Boolean

Default true

Preferred Connector

Specifies the preferred JMX Connector type. Available options, such as SOAPConnector or RMIConnector,

are defined using the JMX Connectors page.

 Data type String

Default SOAP

Extension MBean Providers collection

Use this page to view and change the configuration for JMX extension MBean providers.

You can configure JMX extension MBean providers to be used to extend the existing WebSphere

managed resources in the core administrative system. Each MBean provider is a library containing an

implementation of a JMX MBean and its MBean XML Descriptor file.

To view this administrative console page, click Servers > Application Servers >server_name >

Administration > Administration Services > Extension MBean Providers

Name The name used to identify the Extension MBean provider library.

Description

An arbitrary descriptive text for the Extension MBean Provider configuration.

Classpath

The path to the Java archive (JAR) file that contains the Extension MBean provider library. This

class path is automatically added to the Application Server class path.

Extension MBean Provider settings

Use this page to view and change the configuration for a JMX extension MBean provider.

You can configure a library containing an implementation of a JMX MBean, and its MBean XML Descriptor

file, to be used to extend the existing WebSphere managed resources in the core administrative system

© Copyright IBM Corp. 2004 75

To view this administrative console page, click Servers > Application Servers >server_name >

Administration > Administration Services > Extension MBean Providers >provider_library_name

Classpath: The path to the Java archive (JAR) file that contains the Extension MBean provider library.

This class path is automatically added to the Application Server class path. The class loader needs this

information to load and parse the Extension MBean XML Descriptor file.

Description: An arbitrary descriptive text for the Extension MBean Provider configuration. Use this field

for any text that helps identify or differentiate the provider configuration.

Name: The name used to identify the Extension MBean provider library.

Extension MBean collection

You can configure Java Management Extension (JMX) MBeans to extend the existing WebSphere

Application Server managed resources in the administrative console. Use this page to register JMX

MBeans. Any MBeans that are listed have already been registered.

To view this administrative console page, click Servers > Application Servers >server name >

Administration > Administration Services > Extension MBean Providers > provider library name>

Extension MBean

DescriptorURI

Specifies the location, relative to the provider class path, where the MBean XML descriptor file is

located.

Type Specifies the type to use for registering this MBean. The type must match the type that is declared

in the MBean descriptor file.

Extension MBean settings

Use this page to view and configure Java Management Extension (JMX) MBeans.

To view this administrative console page, click Servers > Application Servers >server name>

Administration > Administration Services > Extension MBean Providers > provider library name>

Extension MBean >Extension MBean name

descriptorURI: Specifies the location, relative to the provider class path, where the MBean XML

descriptor file is located.

type: Specifies the type to use for registering this MBean. The type must match the type that is declared

in the MBean descriptor file.

Java Management Extensions connector properties

A Java Management Extensions (JMX) connector can either be a Remote Method Invocation (RMI)

connector or a Simple Object Access Protocol (SOAP) connector.

Depending on the property, you can specify or set a property in the administrative console, the wsadmin

tool, Application Server commands, scripts run from a command line interface, or a custom Java

administrative client program that you write. You can also set SOAP connector properties in the

soap.client.props file.

For specific information on how to code the JMX connector properties for the wsadmin tool, the Application

Server commands, or scripts, see the particular tool or command. For specific information on how to code

the JMX connector properties for a custom Java administrative client program, see the ″Java API

documentation for Application Server″ topic in the Information Center.

For the administrative console, this article specifies the coding of the particular setting or property. Coding

of properties in the soap.client.props file that are specific to JMX connectors is specified. These

76 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

properties begin with com.ibm.SOAP. Other properties in the soap.client.props file that contain

information that can be set elsewhere in the Application Server are not documented here. The coding for

the com.ibm.ssl.contextProvider property, which can be set only in the soap.client.props file, is specified.

Each profile has a property file at installation root/profiles/profile

name/properties/soap.client.props. These property files allow you to set different properties, including

security and timeout properties. These properties are the default for all administrative connections that use

the SOAP JMX connector between processes executing in a particular profile. For instance, the wsadmin

program executing under a particular profile uses the property values from that file for the SOAP connector

behavior unless the properties are overridden by some other programmatic means.

To view the JMX connector custom properties administrative console panel that goes with this article, click

one of the following paths:

v Servers -> Application servers ->server name -> Server Infrastructure -> Administration ->

Administration Services -> Additional properties -> JMX Connectors->connector type -> Additional

Properties -> Custom properties

v System administration -> Deployment manager ->Additional Properties -> Administration

Services -> Additional Properties -> JMX Connectors->connector type-> Additional Properties ->

Custom properties

v System administration -> Node agents ->node agent name -> Additional Properties ->

Administration Services -> Additional Properties -> JMX Connectors->connector type-> Additional

Properties -> Custom properties

SOAP connector properties

This section discusses JMX connector properties that pertain to SOAP connectors.

SOAP Request timeout

Specifies the SOAP client request timeout. The value that you choose depends on a number of factors

such as the size and the number of the applications that are installed on the server, the speed of your

machine, and the level of usage of your machine.

The program default value for the request timeout is 600 seconds. However, other components that

connect to the SOAP client can override the default. Components that use the soap.client.props file have

a default value of 180 seconds.

You can set the property by using one of the following options:

v Scripts run from a command line interface.

v The soap.client.props file.

 Property com.ibm.SOAP.requestTimeout

Data type Integer

Range in seconds 0 to n

If the property is zero (0), the request never times out.

Default 180

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property requestTimeout

Data type Integer

Chapter 8. Setting up the administrative architecture 77

Range in seconds 0 to n

If the property is zero (0), the request never times out.

Default 600

v A Java administrative client. The property is AdminClient.CONNECTOR_SOAP_REQUEST_TIMEOUT.

Configuration URL

Specifies the Universal Resource Locator (URL) of the soap.client.props file. Specify the configuration

URL property if you want a program to read SOAP properties from this file. You can set the property by

using one of the following options:

v Scripts run from a command line interface. Scripts can pass the Configuration URL property to the

Application Server on the com.ibm.SOAP.ConfigURL system property.

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property ConfigURL

Data type String

Valid Value http://Path/soap.client.props

Default None

v A Java administrative client. The property is AdminClient.CONNECTOR_SOAP_CONFIG.

Security context provider

Specifies the Secure Sockets Layer (SSL) implementation to use between the Application Server and the

SOAP client. You can specify either IBM Java Secure Sockets Extension (IBMJSSE) or IBM Java Secure

Sockets Extension that has undergone Federal Information Processing Standards certification

(IBMJSSEFIPS).

You can set the property by using the soap.client.props file.

 Property com.ibm.ssl.contextProvider

Data type String

Valid Values IBMJSSE

IBMJSSEFIPS

IBMJSSE2

Default IBMJSSE2

Secure Sockets Layer (SSL) security

Use this property to enable SSL security between Application Server and the SOAP client. You can set the

property by using one of the following options:

v Scripts run from a command line interface.

v The soap.client.props file.

 Property com.ibm.SOAP.securityEnabled

Data type Boolean

Default False

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property securityEnabled

78 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Data type Boolean

Default False

v A Java administrative client. The property is AdminClient.CONNECTOR_SECURITY_ENABLED.

SOAP and RMI connector properties

This section discusses JMX connector properties that pertain to both SOAP connectors and RMI

connectors.

Connector type

Specify a connector type of SOAP or RMI, depending on whether Application Server connects to a SOAP

server or an RMI server. You can set the property by using one of the following options:

v The wsadmin tool.

v Scripts run from a command line interface.

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property Type

Data type String

Valid values SOAPConnector

RMIConnector

Default SOAP

v A Java administrative client. The property is AdminClient.CONNECTOR_TYPE. Specify by using the

AdminClient.CONNECTOR_TYPE_RMI or the AdminClient.CONNECTOR_TYPE_SOAP constants.

Host

Use the host property to specify the host name or the IP address of the server to which Application Server

connects. The server can be a SOAP server or an RMI server. You can set the property by using one of

the following options:

v The wsadmin tool.

v Scripts run from a command line interface.

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property host

Data type String

Valid values Host name or IP address

Default None

v A Java administrative client. The property is AdminClient.CONNECTOR_HOST.

Port

Use the port property to specify the port number of the server to which Application Server connects. The

server can be a SOAP server or an RMI server. You can set the property by using one of the following

options:

v The wsadmin tool.

v Scripts run from a command line interface.

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

Chapter 8. Setting up the administrative architecture 79

Property port

Data type Integer

Valid value Port number

Default None

v A Java administrative client. The property is AdminClient.CONNECTOR_PORT.

User name

Specifies the user name that Application Server uses to access the SOAP server or the RMI server. You

can set the property by using one of the following options:

v The wsadmin tool.

v Scripts run from a command line interface.

v The soap.client.props file.

 Property com.ibm.SOAP.loginUserid

Data type String

Valid value The value must match the global SSL settings for SOAP

or RMI.

Default None

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property username

Data type String

Valid value The value must match the global SSL settings for SOAP

or RMI.

Default None

v A Java administrative client. The property is AdminClient.USERNAME.

Password

Specifies the password that Application Server uses to access the SOAP server or the RMI server. You

can set the property by using one of the following options:

v The wsadmin tool.

v Scripts run from a command line interface.

v The soap.client.props file.

 Property com.ibm.SOAP.loginPassword

Data type String

Valid values The value must match the global SSL settings for SOAP

or RMI.

Default None

v The administrative console. Specify the property and the value as a name-value pair on the JMX

connector custom properties panel of the administrative console.

 Property password

Data type String

Valid values The value must match the global SSL settings for SOAP

or RMI.

Default None

80 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

v A Java administrative client. The property is AdminClient.PASSWORD.

Java Management Extensions connectors

Use this page to view and change the configuration for Java Management Extensions (JMX) connectors.

To view this administrative console page, click Servers > Application Servers >server_name >

Administration > Administration Services > JMX Connectors

Java Management Extensions (JMX) connectors communicate with WebSphere Application Server when

you invoke a scripting process. There is no default for the type and parameters of a connector. The

wsadmin.properties file specifies the Simple Object Access Protocol (SOAP) connector and an appropriate

port number. You can also use the Remote Method Invocation (RMI) connector.

Use one of the following methods to select the connector type and attributes:

v Specify properties in a properties file.

v Indicate options on the command line.

Type

Specifies the type of the JMX connector.

 Data type Enum

Default SOAPConnector

Range SOAPConnector

For JMX connections using Simple Object Access

Protocol (SOAP).

RMIConnector

For JMX connections using Remote Method

Invocation (RMI).

JMX connector settings

Use this page to view the configuration for a Java Management Extensions (JMX) connector.

To view this administrative console page, click Servers > Application Servers >server_name >

Administration Services > JMX Connectors >connector_type

Type:

Specifies the type of the JMX connector.

 Data type Enum

Default SOAPConnector

Range SOAPConnector

For JMX connections using Simple Object Access

Protocol (SOAP).

RMIConnector

For JMX connections using Remote Method

Invocation (RMI).

Repository service settings

Use this page to view and change the configuration for an administrative service repository.

To view this administrative console page, click Servers > Application Servers >server_name >

Administration Services > Repository Service.

Chapter 8. Setting up the administrative architecture 81

Audit Enabled

Specifies whether to audit repository updates in the log file. The default is to audit repository updates.

 Data type Boolean

Default true

Administrative agents: Resources for learning

Use the following links to find relevant supplemental information about WebSphere Application Server

administrative agents and distributed administration. The information resides on IBM and non-IBM Internet

sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information:

Administration

v IBM WebSphere Application Server Redbooks at http://publib-
b.boulder.ibm.com/Redbooks.nsf/portals/WebSphere.

This site contains a listing of all WebSphere Application Server Redbooks.

v IBM developerWorks WebSphere at http://www.software.ibm.com/wsdd/.

This site is the home of technical information for developers working with WebSphere products. You can

download WebSphere software, take a fast path to developerWorks zones, such as VisualAge Java or

WebSphere Application Server, learn about WebSphere products through a newcomers page, tutorials,

technology previews, training, and Redbooks, get answers to questions about WebSphere products, and

join the WebSphere community, where you can keep up with the latest developments and technical

papers.

v WebSphere Application Server Support page at

http://www.ibm.com/software/webservers/appserv/support.html.

Take advantage of the Web-based Support and Service resources from IBM to quickly find answers to

your technical questions. You can easily access this extensive Web-based support through the IBM

Software Support portal and search by product category, or by product name. For example, if you are

experiencing problems specific to WebSphere Application Server, click WebSphere Application Server

in the product list. The WebSphere Application Server Support page appears.

82 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd/
http://www-3.ibm.com/software/webservers/appserv/support.html

Chapter 9. Configuring the environment

To assist in handling requests among Web applications, Web containers, and application servers, you can

configure settings for virtual hosts, variables and shared libraries.

1. Configure virtual hosts.

2. Configure variables.

3. If your deployed applications use shared library files, define the shared library files needed.

See “Managing shared libraries” on page 93.

Virtual hosts

A virtual host is a configuration that enables a single host machine to resemble multiple host machines.

Resources associated with one virtual host cannot share data with resources associated with another

virtual host, even if the virtual hosts share the same physical machine.

Each virtual host has a logical name and a list of one or more DNS aliases by which it is known. A DNS

alias is the TCP/IP hostname and port number that is used to request the servlet, for example

yourHostName:80. When no port number is specified, 80 is assumed.

When a servlet request is made, the server name and port number entered into the browser are compared

to a list of all known aliases in an effort to locate the correct virtual host and serve the servlet. If no match

is found, an error is returned to the browser.

An application server provides a default virtual host with some common aliases, such as the machine’s IP

address, short host name, and fully qualified host name. The alias comprises the first part of the path for

accessing a resource such as a servlet. For example, it is localhost:80 in the request

http://localhost:80/myServlet.

A virtual host is not associated with a particular node (machine). It is a configuration, rather than a ″live

object,″ explaining why you can create it, but cannot start or stop it. For many users, creating virtual hosts

is unnecessary because the default_host is provided.

Adding a localhost to the virtual hosts adds the host name and IP address of the localhost machine to the

alias table. This allows a remote user to access the administrative console.

Why you would use virtual hosting

Virtual hosts let you manage a single application server on a single machine as if the application server

were multiple application servers each on their own host machine. Resources associated with one virtual

host cannot share data with resources associated with another virtual host. This is true even though the

virtual hosts share the same application server on the same physical machine.

Virtual hosts allow the administrator to isolate and independently manage multiple sets of resources on the

same physical machine.

Suppose an Internet service provider (ISP) has two customers with Internet sites hosted on the same

machine. The ISP keeps the two sites isolated from one another, despite their sharing a machine, by using

virtual hosts. The ISP associates the resources of the first company with VirtualHost1 and the resources of

the second company with VirtualHost2. Both virtual hosts map to the same application server.

Further suppose that both company sites offer the same servlet. Each site has its own instance of the

servlet, and is unaware of the same servlet on the other site. If the company whose site is organized on

© Copyright IBM Corp. 2004 83

VirtualHost2 is past due in paying its account with the ISP, the ISP can refuse all servlet requests that are

routed to VirtualHost2. Even though the same servlet is available on VirtualHost1, the requests directed at

VirtualHost2 do not go to the other virtual host.

The servlets on one virtual host do not share their context with the servlets on the other virtual host.

Requests for the servlet on VirtualHost1 can continue as usual. This is true even though VirtualHost2 is

refusing to fill requests for the servlet with the same name.

You associate a servlet or other application with a virtual host instead of the actual DNS address.

The default virtual host (default_host)

The product provides a default virtual host (named default_host).

The virtual host configuration uses wildcard entries with the ports for its virtual host entries.

v The default alias is *:80, using an internal port that is not secure.

v Aliases of the form *:9080 use the secure internal port.

v Aliases of the form *:9443 use the external port that is not secure.

v Aliases of the form *:443 use the secure external port.

Unless you specifically want to isolate resources from one another on the same node (physical machine),

you probably do not need any virtual hosts in addition to the default host.

How requests map to virtual host aliases

Virtual hosts let you manage a single application server on a single machine as if the application server

were multiple application servers that are each on their own host machine. Resources associated with one

virtual host cannot share data with resources associated with another virtual host, even though the virtual

hosts share the same application server on the same physical machine.

When you request a resource, WebSphere Application Server tries to map the request to an alias of a

defined virtual host.

Mappings are both case sensitive and insensitive. For example, the portion ″http://host:port/″ is case

insensitive, but the URL that follows is case sensitive. The match must be alphanumerically exact. Also,

different port numbers are treated as different aliases.

For example, the request http://www.myhost.com/myservlet maps successfully to

http://WWW.MYHOST.COM/myservlet but not to http://WWW.MYHOST.COM/MYSERVLET or

Www.Myhost.Com/Myservlet. In the latter two cases, these mappings fail due to case sensitivity. The

request http://www.myhost.com/myservlet does not map successfully to http://myhost/myservlet or to

http://myhost:9876/myservlet. These mappings fail because they are not alphanumerically correct.

You can use wildcard entries for aliases by port and specify that all valid host name and address

combinations on a particular port map to a particular virtual host.

If you request a resource using an alias that cannot be mapped to an alias of a defined virtual host, you

receive a 404 error in the browser that was used to issue the request. A message states that the virtual

host could not be found.

Two sets of associations occur for virtual hosts. Application deployment associates an application with a

virtual host. Virtual host definitions associate the network address of the machine and the HTTP transport

or Web server port assignment of the application server with the virtual host. Looking at the flow from the

Web client request for the snoop servlet, for example, the following actions occur:

1. The Web client asks for the snoop servlet: at Web address

http://www.some_host.some_company.com:9080/snoop

84 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

2. The some_host machine has the 9080 port assigned to the stand-alone WebSphere Application

Server, server1.

3. The server1 Application Server looks at the virtual host assignments to determine the virtual host that

is assigned to the alias some_host.some_company.com:9080.

4. The application server finds that no explicit alias for that DNS string exists. However, a wild card

assignment for host name * at port 9080 does exist. This is a match. The virtual host that defines the

match is default_host.

5. The application server looks at the applications deployed on the default_host and finds the snoop

servlet.

6. The application server serves the application to the Web client and the requester is able to use the

snoop servlet.

You can have any number of aliases for a virtual host. You can even have overlapping aliases, such as:

 Virtual host Alias Port

default_host * 9080

localhost 9080

my_machine 9080

my_machine.my_company.com 9080

localhost 80

The Application Server looks for a match using the explicit address specified on the Web client address.

However, it might resolve the match to any other alias that matches the pattern before matching the

explicit address. Simply defining an alias first in the list of aliases does not guarantee the search order

when WebSphere Application Server is looking for a matching alias.

A problem can occur if you use the same alias for two different virtual hosts. For example, assume that

you installed the default application and the snoop servlet on the default_host. You also have another

virtual host called the admin_host. However, you have not installed the default application or the snoop

servlet on the admin_host.

Assume that you define overlapping aliases for both virtual hosts because you accidentally defined port

9080 for the admin_host instead of port 9060:

 Virtual host Alias Port

default_host * 9080

localhost 9080

admin_host * 9060

my_machine.com 9080

Assume that a Web client request comes in for http://my_machine.com:9080/snoop.

If the application server matches the request against *:9080, the application is served from the

default_host. If the application server matches the request to my.machine.com:9080, the application cannot

be found. A 404 error occurs in the browser that issues the request. A message states that the virtual host

could not be found.

This problem is the result of not finding the requested application in the first virtual host that has a

matching alias. The correct way to code aliases is for the alias name on an incoming request to match

only one virtual host in all of your virtual host definitions. If the URL can match more than one virtual host,

you can see the problem just described.

Chapter 9. Configuring the environment 85

Configuring virtual hosts

Virtual hosts enable you to isolate and independently manage multiple sets of resources on the same

physical machine.

1. Create a virtual host using the “Virtual host collection” of the administrative console. Click

Environment > Virtual Hosts from the navigation tree of the console. Click New. On the “Virtual host

settings” on page 87 page that displays, specify an administrative name for the virtual host. When you

create a virtual host, a default set of 90 MIME entries is created for the virtual host.

2. There must be a virtual host alias corresponding to each port used by an HTTP transport. There is one

HTTP transport in each Web container, usually assigned to the virtual host named default_host. You

can change the default assignment to any valid virtual host.

You must create a virtual host for each HTTP port in the following cases:

v You are using the internal HTTP transport with a port other than the default of 9080. You must

define the port that you are using.

v You are using the default port 9080, but the port is no longer defined. You must define port 9080.

v You have created multiple Application Servers (either stand-alone servers or cluster members) that

use the same virtual host. Because each server must be listening on a different HTTP transport

port, you must define a virtual host alias for the transport port of each server.

If you define new virtual host aliases, identify the port values that the aliases use on the “HTTP

transport collection” on page 128 page.

3. If necessary, create a virtual host alias for each HTTP transport port.

From the “Virtual host collection” page, click your virtual host. On the “Virtual host settings” on page 87

page for the virtual host, click Host aliases. To define a virtual host alias on the “Host alias collection”

on page 87 page, click New. On the “Host alias settings” on page 88 page for the virtual host alias,

specify a host name and a port. Configure the virtual host to contain an alias for the port number. For

example, specify an alias of *:9082 if 9082 is the port number in use by the transport.

4. When you enter the URL for the application into a Web browser, include the port number in the URL.

For example, if 9082 is the port number, specify a URL such as

http://localhost:9082/wlm/SimpleServlet

5. If MIME entries are not specified at the Web module level, define MIME object types and their file

name extensions. For each needed MIME entry on the “MIME type collection” on page 89 page, click

New. On the “MIME type settings” on page 89 page, specify a MIME type and extension.

6. After you configure a virtual host alias or change a configuration, you must regenerate the Web server

plug-in configuration and restart WebSphere Application Server.

Virtual host collection

Use this page to create and manage configurations that each let a single host machine resemble multiple

host machines. Such configurations are known as virtual hosts.

To view this administrative console page, click Environment > Virtual Hosts.

Each virtual host has a logical name (which you define on this panel) and is known by its list of one or

more domain name system (DNS) aliases. A DNS alias is the TCP/IP host name and port number used to

request the servlet, for example yourHostName:80. (Port 80 is the default.)

You define one or more alias associations by clicking an existing virtual host or by adding a new virtual

host.

When a servlet request is made, the server name and port number entered into the browser are compared

to a list of all known aliases in an effort to locate the correct virtual host to serve the servlet. No match

returns an error to the browser.

86 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

An application server profile provides a default virtual host with some common aliases, such as the

internet protocol (IP) address, the DNS short host name, and the DNS fully qualified host name. The alias

comprises the first part of the path for accessing a resource such as a servlet.

For example, the alias is localhost:80 in the request http://localhost:80/myServlet.

A virtual host is not associated with a particular profile or node (machine), but is associated with a

particular server instead. It is a configuration, rather than a ″live object.″ You can create a virtual host, but

you cannot start or stop it.

For many users, creating virtual hosts is unnecessary because the default_host that is provided is

sufficient.

Adding the host name and IP address of the localhost machine to the alias table lets a remote user

access the administrative console.

Resources associated with one virtual host cannot share data with resources associated with another

virtual host, even if the virtual hosts share the same physical machine.

Name

Specifies a logical name for configuring Web applications to a particular host name. The default virtual

host is suitable for most simple configurations.

Virtual hosts enable you to isolate, and independently manage, multiple sets of resources on the same

physical machine. Determine whether you need a virtual host alias for each port associated with an HTTP

transport channel or an HTTP transport. There must be a virtual host alias corresponding to each port

used by an HTTP transport channel or an HTTP transport. There is one HTTP transport channel or HTTP

transport associated with each Web container, and there is one Web container in each application server.

When you create a virtual host, a default set of 90 MIME entries is created for the virtual host.

You must create a virtual host for each HTTP port in the following cases:

v You use the internal HTTP transport with a port other than the default value of 9080, or for some reason

the virtual host does not contain the usual entry for port 9080.

v You create multiple application servers (stand-alone servers, managed servers, or cluster members) that

are using the same virtual host. Because each server must be listening on a different HTTP port, you

need a virtual host alias for the HTTP port of each server.

Virtual host settings

Use this page to configure a virtual host instance.

To view this administrative console page, click Environment > Virtual Hosts >virtual_host_name.

Name:

Specifies a logical name for configuring Web applications to a particular host name. The default virtual

host is suitable for most simple configurations.

 Data type String

Default default_host

Host alias collection

Use this page to manage host name aliases defined for a virtual host. An alias is the DNS host name and

port number that a client uses to form the URL request for a Web application resource.

Chapter 9. Configuring the environment 87

To view this administrative console page, click Environment > Virtual Hosts >virtual_host_name > Host

Aliases.

Host Name:

Specifies the IP address, DNS host name with domain name suffix, or just the DNS host name, used by a

client to request a Web application resource (such as a servlet, JavaServer Pages (JSP) file, or HTML

page). For example, the host alias name is myhost in a DNS name of myhost:8080.

 The product provides a default virtual host (named default_host). The virtual host configuration uses the

wildcard character * (asterisk) along with the port number for its virtual host entries. Unless you specifically

want to isolate resources from one another on the same node (physical machine), you probably do not

need any virtual hosts in addition to the default host.

Port:

Specifies the port for which the Web server has been configured to accept client requests. For example,

the port assignment is 8080 in a DNS name of myhost:8080. A URL refers to this DNS as:

http://myhost:8080/servlet/snoop.

Host alias settings:

Use this page to view and configure a host alias.

 To view this administrative console page, click Environment > Virtual Hosts >virtual_host_name > Host

Aliases >host_alias_name.

Host name:

Specifies the IP address, domain name system (DNS) host name with domain name suffix, or the DNS

host name that clients use to request a Web application resource, such as a servlet, JSP file, or HTML

page.

 For example, when the DNS name is myhost, the host alias is myhost:8080, where 8080 is the port. A URL

request can refer to the snoop servlet on the host alias as: http://myhost:8080/servlet/snoop.

When there is no port number specified for a host alias, the default port is 80. For existing virtual hosts,

the default host name and port reflect the values specified at product installation or configuration. For new

virtual hosts, the default can be * to allow any value or no specification.

 Data type String

Default *

You can also use the IP address or the long or short DNS

name.

Port:

Specifies the port where the Web server accepts client requests. Specify a port value in conjunction with

the host name.

 The default reflects the value specified at product setup. The default might be 80, 81, 9060 or a similar

value.

 Data type Integer

Default 9060

88 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

MIME type collection

Use this page to view and configure multi-purpose internet mail extensions (MIME) object types and their

file name extensions.

The list shows a collection of MIME type extension mappings defined for the virtual host. Virtual host

MIME entries apply when you do not specify MIME entries at the Web module level.

To view a list of current virtual host Mime types in the administrative console, click Environment > Virtual

Hosts >virtual_host_name > MIME Types.

MIME Type:

Specifies a MIME type, which can be application, audio, image, text, video, www, or x-world. An example

value for MIME type is text/html.

Extensions:

Specifies file extensions of files that map the MIME type. Do not specify the period before the extension.

Example extensions for a text/html MIME type are htm and html.

MIME type settings:

Use this page to configure a multi-purpose internet mail extensions (MIME) object type.

 To view this administrative console page, click Environment > Virtual Hosts >virtual_host_name > MIME

Types >MIME_type.

MIME Type:

Specifies a MIME type, which can be application, audio, image, text, video, www, or x-world. An example

value for MIME type is text/html.

 An example value for MIME type is text/html. A default value appears only if you are viewing the

configuration for an existing instance.

 Data type String

Extensions:

Specifies file extensions of files that map the MIME type. Do not specify the period before the extension.

Example extensions for a text/html MIME type are htm and html.

 File extensions for a text/html MIME type are .htm and .html. A default value appears only if you are

viewing the configuration for an existing MIME type.

 Data type String

Variables

A variable is a configuration property that can be used to provide a parameter for some values in the

system. A variable has a name and a value.

WebSphere variables are used for:

v Configuring WebSphere Application Server path names, such as JAVA_HOME, and

APP_INSTALL_ROOT.

Chapter 9. Configuring the environment 89

v Configuring certain customization values.

Each variable has a scope. A scope is the range of locations in the WebSphere Application Server network

where the variable is applicable.

v A variable with a node-level scope is available only on the node and the servers on that node. If a

node-level variable has the same name as a cell-wide variable, the node-level variable value takes

precedence.

v A server variable is available only on the one server process. A server variable takes precedence over a

variable with the same name that is defined at a higher level.

You can use variables in configuration values such as file system path settings. Use the following syntax

to refer to a variable:

${variable_name}

The value of a variable can contain a reference to another variable. The value of the variable is computed

by substituting the value of the referenced variable recursively.

Variables are useful when concatenating two path variables when the specification does not accept the

AND operator. For example, suppose that the following variables exist:

 Variable name Variable value

ROOT_DIR /

HOME_DIR ${ROOT_DIR}home

USER_DIR ${HOME_DIR}/myuserdir

The variable reference ${USER_DIR} resolves to the value /home/myuserdir.

Configuring WebSphere variables

This topic describes how to create a WebSphere Application Server variable.

You can define a WebSphere Application Server variable to provide a parameter for some values in the

system. After you define the name and value for a variable, the value is used in place of the variable

name. Variables most often specify file paths. However, some system components also support the use of

variables.

WebSphere variables are used for:

v Configuring WebSphere Application Server path names, such as JAVA_HOME, and

APP_INSTALL_ROOT.

v Configuring certain customization values.

The scope of a variable can be cell-wide, node-wide, or applicable to only one server process.

Define variables on the Environment > WebSphere Variables console page.

Define the scope to apply a variable node-wide or to only one server process. A variable resolves to its

new value when used in a component that supports the use of variables.

1. Click Environment > WebSphere Variables in the administrative console to define a new variable.

2. Specify the scope of the variable. Declare the new variable for the Node or Server and click Apply.

The variable exists at the level you specify. Define a variable at multiple levels to use multiple values.

The more granular definition overrides the higher level setting.

For instance, if you specify the same variable on a node and a server, the server setting overrides the

node setting.

90 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Scoping variables is particularly important when testing data source objects. Variable scoping can

cause a data source to fail the test connection, but to succeed at run time, or to pass the test

connection, but fail at run time.

See the Developing and deploying applications PDF for more information.

3. Click New on the WebSphere Variables page.

4. Specify a name, a value, and a description on the Variable page. Click OK.

5. Verify that the variable is displayed in the list of variables. The administrative console does not pick up

typing errors. The variable is ignored if it is referred to incorrectly.

6. Save your configuration.

7. Stop the server and start the server again to put the variable configuration into effect.

WebSphere variables collection

Use this page to view and change a list of substitution variables with their values and scope.

To view this administrative console page, click Environment > WebSphere Variables.

For information on a variable, click the variable and read the value in the Description field.

Name

Specifies the symbolic name for a WebSphere Application Server variable. For example, a variable name

might represent a physical path or URL root used by WebSphere Application Server.

Value

Specifies the value that the symbolic name represents. For example, the value might be an absolute path

value for a file or URL root.

Scope

Specifies the level at which a WebSphere Application Server variable is visible on the administrative

console panel.

A resource can be visible in the administrative console collection table at the node or server scope.

Variable settings

Use this page to define the name and value of a WebSphere Application Server substitution variable.

To view this administrative console page, click Environment > WebSphere Variables

>WebSphere_variable_name.

Name:

Specifies the symbolic name for a WebSphere Application Server variable. For example, a variable name

might represent a physical path or URL root that is used by WebSphere Application Server.

 WebSphere variables are used for:

v Configuring WebSphere Application Server path names, such as JAVA_HOME, and

APP_INSTALL_ROOT.

v Configuring certain customization values.

WebSphere Application Server substitutes the symbolic name wherever its value displays in the system.

For example, ″JAVA_HOME″ is the symbolic name representing the file system path to the installation

directory for the Java Virtual Machine (JVM). For example, the value is

/opt/IBM/WebSphere/AppServer/java for the WebSphere Application Server product on a Linux machine.

Chapter 9. Configuring the environment 91

You can create new variables for use in WebSphere Application Server components that support the use

of variables.

 Data type String

Value:

Specifies the value that the symbolic name represents. For example, the value might be an absolute path

value for a file or URL root.

 For example, /opt/IBM/WebSphere/AppServer/java is the value on a Linux machine for a variable named

JAVA_HOME.

 Data type String

Description:

Documents the purpose of a variable.

 Data type String

IBM Toolbox for Java JDBC driver

WebSphere Application Server supports the IBM Toolbox for Java JDBC driver. The IBM Toolbox for Java

JDBC driver is included with the IBM Toolbox for Java product.

IBM Toolbox for Java is a library of Java classes that are optimized for accessing iSeries and AS/400 data

and resources. You can use the IBM Toolbox for Java JDBC driver to access local or remote DB2 UDB

for iSeries 400 databases from server-side and client Java applications that run on any platform that

supports Java.

IBM Toolbox for Java is available in these versions:

IBM Toolbox for Java licensed program

The licensed program is available with every OS/400 release, starting with Version 4 Release 2

(V4R2). You can install the licensed program on your iSeries 400 system, and then either copy the

IBM Toolbox for Java JAR file (jt400.jar) to your system or update your system classpath to locate

the server installation. Product documentation for IBM Toolbox for Java is available from the

iSeries information center: http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm

Locate the documentation by traversing the following path in the left-hand navigation window of

the iSeries information center: Programming > Java > IBM Toolbox for Java.

JTOpen

JTOpen is the open source version of IBM Toolbox for Java, and is more frequently updated than

the licensed program version. You can download JTOpen from http://www-
1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm. You can also download the JTOpen

Programming Guide. The guide includes instructions for installing JTOpen and information about

the JDBC driver.

The JDBC driver for both versions supports JDBC 2.0. For more information about IBM Toolbox for Java

and JTOpen, see the product Web site at http://www-
1.ibm.com/servers/eserver/iseries/toolbox/index.html.

Note: If you are using WebSphere Application Server on platforms other than iSeries, use the JTOpen

version of the Toolbox JDBC driver.

92 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/index.html
http://www-1.ibm.com/servers/eserver/iseries/toolbox/index.html

Configure and use the jt400.jar file

1. Download the jt400.jar file from the JTOpen URL at http://www-
1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm. Place it in a directory on your

workstation such as C:\JDBC_Drivers\Toolbox.

2. Open the administrative console.

3. Select Environment.

4. Select Managed WebSphere Variables.

5. Set the managed variable OS400_TOOLBOX_JDBC_DRIVER_PATH at the Node level.

6. Double click OS400_TOOLBOX_JDBC_DRIVER_PATH.

7. Set the value to the full directory path to the jt400.jar file downloaded in step one. Do not include

jt400.jar in this value. For example,

OS400_TOOLBOX_JDBC_DRIVER_PATH == "C:\JDBC_Drivers\Toolbox"

When you choose a Toolbox driver from the list of possible resource providers the Classpath field

looks like:

Classpath == ${OS400_TOOLBOX_JDBC_DRIVER_PATH}/jt400.jar

Shared library files

Shared library files in WebSphere Application Server consist of a symbolic name, a Java class path, and a

native path for loading Java Native Interface (JNI) libraries.

You can define a shared library at the cell, node, or server level. Defining a library at one of the three

levels does not cause the library to be placed into the application server’s class loader. You must

associate the library to an application or server in order for the classes represented by the shared library

to be loaded in either a server-wide or application-specific class loader.

A separate class loader is used for shared libraries that are associated with an application server. This

class loader is the parent of the application class loader, and the WebSphere Application Server

extensions class loader is its parent. Shared libraries that are associated with an application are loaded by

the application class loader.

Managing shared libraries

Shared libraries are files used by multiple applications. Using the administrative console, you can define a

shared library at the cell, node, or server level. You can then associate the library to an application or

server to load the classes represented by the shared library in either a server-wide or application-specific

class loader. Using an installed optional package, you can associate a shared library to an application by

declaring the dependent library .jar file in the MANIFEST.MF file of the application. Refer to the Java 2

Platform, Enterprise Edition (J2EE) 1.4 specification, section 8.2 for an example.

If your deployed applications use shared library files, define shared libraries for the library files and

associate the libraries with specific applications or with an application server. Associating a shared library

file with a server associates the file with all applications on the server. Use the Shared Libraries page to

define new shared library files to the system and remove them.

v Use the administrative console to define a shared library.

1. Create a shared library for each library file that your applications need.

2. Associate each shared library with an application or a server.

– Associate a shared library with an application that uses the shared library file.

– Associate a shared library with an application server so every application on the server can use

the shared library file.

v Use an installed optional package to declare a shared library for an application.

v Remove a shared library.

Chapter 9. Configuring the environment 93

http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/downloads.htm

1. Click Environment > Shared Libraries in the console navigation tree to access the Shared

Libraries page.

2. Select the library to be removed.

3. Click Delete.

The list of shared libraries is refreshed. The library file no longer displays in the list.

Creating shared libraries

Shared libraries are files used by multiple applications.

The first step for making a library file available to multiple applications deployed on a server is to create a

shared library for each library file that your applications need. When you create the shared libraries, set

variables for the library files.

Use the Shared Libraries page to create and configure shared libraries.

1. Go to the Shared Libraries page. Click Environment > Shared Libraries in the console navigation

tree.

2. Change the scope of the collection table to see what shared libraries are in a cell, node, or server.

a. Select the cell, a node, or a server.

b. Click Apply.

3. Click New.

4. Configure the shared library.

a. On the settings page for a shared library, specify the name, class path, and any other variables for

the library file that are needed.

b. Click Apply.

5. Repeat steps 1 through 4 until you define a shared library instance for each library file that your

applications need.

Using the administrative console, associate your shared libraries with specific applications or with the class

loader of an application server. Associating a shared library file with a server class loader associates the

file with all applications on the server.

Alternatively, you can use an installed optional package to associate your shared libraries with an

application.

Shared library collection

Use this page to define a list of shared library files that deployed applications can use.

To view this administrative console page, click Environment > Shared Libraries.

By default, a shared library is accessible to applications deployed (or installed) on the same node as the

shared library file. Use the Scope field to change the scope to a different node or to a specific server.

Name

Specifies a name for the shared library.

Description

Describes the shared library file.

Shared library settings

Use this page to make a library file available to deployed applications.

To view this administrative console page, click Environment > Shared Libraries >shared_library_name.

94 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Name:

Specifies a name for the shared library.

 Data type String

Description:

Describes the shared library file.

 Data type String

Classpath:

Specifies the class path used to locate the JAR files for the shared library support.

 Data type String

Units Class path

Native Library Path:

Specifies the class path for locating platform-specific library files for shared library support; for example,

.dll, .so, or *SRVPGM objects.

 Data type String

Units Class path

Associating shared libraries with applications

You can associate a shared library with an application. Classes represented by the shared library are then

loaded in the application’s class loader, making the classes available to the application.

This article assumes that you have defined a shared library at the cell, node, or server level. The shared

library represents a library file used by multiple deployed applications.

This article also assumes that you want to use the administrative console, and not an installed optional

package, to associate a shared library with an application.

To associate a shared library with an application, create and configure a library reference using the

administrative console. A library reference specifies the name of the shared library file.

If you associate a shared library with an application, do not associate the same shared library with a

server class loader.

1. Click Applications > Enterprise Applications >application_name > Libraries in the console

navigation tree to access the Library Ref page.

2. Click Add.

3. On the settings page for a library reference, specify variables for the library reference as needed. The

variables identify the shared library file that your application uses.

4. Click Apply.

The name of the library reference is shown in the list on the Library Ref page.

Chapter 9. Configuring the environment 95

Repeat steps 2 through 4 until you define a library reference instance for each shared library that your

application requires.

Associating shared libraries with servers

You can associate shared libraries with the class loader of a server. Classes represented by the shared

library are then loaded in a server-wide class loader, making the classes available to all applications

deployed on the server.

This article assumes that you have defined a shared library at the cell, node, or server level. The shared

library represents a library file used by multiple deployed applications.

To associate a shared library with the class loader of a server, create and configure a library reference

using the administrative console. A library reference specifies the name of the shared library file.

If you associate a shared library with a server class loader, do not associate the same shared library with

an application.

1. Configure class loaders for applications deployed on the server.

a. Click Servers > Application Servers > server_name to access the settings page for the

application server.

b. Set values for the application Class loader policy and Class loading mode of the server. For

information on these settings, see “Application server settings” on page 112 and class loaders.

2. Create a library reference for each shared library file that your application needs.

a. Go to the settings page for a class loader.

b. Click Libraries to access the Library Ref page.

c. Click Add.

d. On the settings page for a library reference, specify variables for the library reference as needed.

The variables identify the shared library file that your application uses.

e. Click Apply. The name of the library reference is shown in the list on the Library Ref page.

Repeat the previous steps until you define a library reference for each shared library that your

application needs.

Installed optional packages

Installed optional packages enable applications to use the classes in Java archive (.jar) files without

having to include them explicitly in a class path. An installed optional package is a .jar file containing

specialized tags in its manifest file that enable the application server to identify it. An installed optional

package declares one or more shared library .jar files in the manifest file of an application. When the

application is installed on a server, the classes represented by the shared libraries are loaded in the class

loader of the application, making the classes available to the application.

When a Java 2 Platform, Enterprise Edition (J2EE) application is installed on a server, dependency

information is specified in its manifest file. WebSphere Application Server reads the dependency

information of the application (.ear file) to automatically associate the application with an installed optional

package .jar file. WebSphere Application Server adds the .jar files in associated optional packages to

the application class path. Classes in the installed optional packages are then available to application

classes.

Installed optional packages used by WebSphere Application Server are described in section 8.2 of the

J2EE specification, Version 1.4 at http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf.

WebSphere Application Server supports using the manifest file (manifest.mf) in shared library .jar files

and application .ear files. WebSphere Application Server does not support the Java 2 Platform Standard

Edition (J2SE) Installed Optional Package semantics used in the J2SE specification

96 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

(http://java.sun.com/j2se/1.3/docs/guide/extensions/spec.html), which primarily serve the applet

environment. WebSphere Application Server ignores applet-specific tags within manifest files.

Sample manifest.mf file

A sample manifest file follows for an application app1.ear that refers to a single shared library file

util.jar:

app1.ear:

 META-INF/application.xml

 ejb1.jar:

 META-INF/MANIFEST.MF:

 Extension-List: util

 util-Extension-Name: com/example/util

 util-Specification-Version: 1.4

 META-INF/ejb-jar.xml

util.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/example/util

 Specification-Title: example.com’s util package

 Specification-Version: 1.4

 Specification-Vendor: example.com

 Implementation-Version: build96

The syntax of a manifest entry depends on whether the entry applies to a member with a defining role (the

shared library) or a member with a referencing role (a J2EE application or a module within a J2EE

application).

Manifest entry tagging

Main tags used for manifest entries include the following:

Extension-List

A required tag with variable syntax. Within the context of the referencing role (application’s

manifest), this is a space delimited list that identifies and constructs unique Extension-Name,

Extension-Specification tags for each element in the list. Within the context of the defining role

(shared library), this tag is not valid.

Extension-Name

A required tag that provides a name and links the defining and referencing members. The syntax

of the element within the referencing role is to prefix the element with the <ListElement> string.

For each element in the Extension-List, there is a corresponding <ListElement>-Extension-Name

tag. The defining string literal value for this tag (in the above sample com/example/util1) is used

to match (in an equality test) the corresponding tags between the defining and referencing roles.

Specification-Version

A required tag that identifies the specification version and links the defining and referencing

members.

Implementation-Version

An optional tag that identifies the implementation version and links the defining and referencing

members.

Further information on these tags is in the .jar file specification at

http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Manifest%20Specification.

Using installed optional packages

You can associate one or more shared libraries with an application using an installed optional package

that declares the shared libraries in the application’s manifest file. Classes represented by the shared

libraries are then loaded in the application’s class loader, making the classes available to the application.

Chapter 9. Configuring the environment 97

http://java.sun.com/j2se/1.3/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Manifest%20Specification

Read about installed optional packages in “Installed optional packages” on page 96 and in section 8.2 of

the Java 2 Platform, Enterprise Edition (J2EE) specification, Version 1.4 at

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf.

WebSphere Application Server does not support the Java 2 Platform Standard Edition (J2SE) Installed

Optional Package semantics used in the J2SE specification

(http://java.sun.com/j2se/1.3/docs/guide/extensions/spec.html), which primarily serve the applet

environment. WebSphere Application Server ignores applet-specific tags within manifest files.

Installed optional packages expand the existing shared library capabilities of an application server. Prior to

Version 6, an administrator was required to associate a shared library to an application or server. Installed

optional packages enable an administrator to declare a dependency in an application’s manifest file to a

shared library, with installed optional package elements listed in the manifest file, and automatically

associate the application to the shared library. During application installation, the shared library .jar file is

added to the class path of the application class loader.

If you use an installed optional package to associate a shared library with an application, do not associate

the same shared library with an application class loader or a server class loader using the administrative

console.

1. Assemble the library file, including the manifest information that identifies it as an extension. Two

sample manifest files follow. The first sample manifest file has application app1.ear refer to a single

shared library file util.jar:

app1.ear:

 META-INF/application.xml

 ejb1.jar:

 META-INF/MANIFEST.MF:

 Extension-List: util

 util-Extension-Name: com/example/util

 util-Specification-Version: 1.4

 META-INF/ejb-jar.xml

util.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/example/util

 Specification-Title: example.com’s util package

 Specification-Version: 1.4

 Specification-Vendor: example.com

 Implementation-Version: build96

The second sample manifest file has application app1.ear refer to multiple shared library .jar files:

app1.ear:

 META-INF/application.xml

 ejb1.jar:

 META-INF/MANIFEST.MF:

 Extension-List: util1 util2 util3

 Util1-Extension-Name: com/example/util1

 Util1-Specification-Version: 1.4

 Util2-Extension-Name: com/example/util2

 Util2-Specification-Version: 1.4

 Util3-Extension-Name: com/example/util3

 Util3-Specification-Version: 1.4

 META-INF/ejb-jar.xml

util1.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/example/util1

 Specification-Title: example.com’s util package

 Specification-Version: 1.4

 Specification-Vendor: example.com

 Implementation-Version: build96

98 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://java.sun.com/j2se/1.3/docs/guide/extensions/spec.html

util2.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/example/util2

 Specification-Title: example.com’s util package

 Specification-Version: 1.4

 Specification-Vendor: example.com

 Implementation-Version: build96

util3.jar:

 META-INF/MANIFEST.MF:

 Extension-Name: com/example/util3

 Specification-Title: example.com’s util package

 Specification-Version: 1.4

 Specification-Vendor: example.com

 Implementation-Version: build96

2. Create a shared library that represents the library file assembled in step 1. This installs the library file

as a WebSphere Application Server shared library.

3. Assemble the application, declaring in the application manifest file dependencies to the library files

named the manifest created for step 1.

4. Install the application on the server.

During application installation, the shared library .jar files are added to the class path of the application

class loader.

Library reference collection

Use this page to view and manage library references that define how to use global libraries. For example,

you can use this page to associate shared library files with a deployed application.

To view this administrative console page, click Applications > Enterprise Applications

>application_name > Libraries.

If no shared libraries are defined, after you click Add a message is displayed stating that you must define

a shared library before you can create a library reference. A shared library is a container-wide library file

that can be used by deployed applications. To define a shared library, click Environment > Shared

Libraries and specify the scope of the container. Then, click New and specify a name and one or more

paths for the shared library. After you define a shared library, return to this page, click Add, and create a

library reference.

Library name

Specifies a name for the library reference.

Library reference settings

Use this page to define library references, which specify how to use global libraries.

To view this administrative console page, click Applications > Enterprise Applications

>application_name > Libraries >library_reference_name. A shared library must be defined to view this

page.

A shared library is a container-wide library file that can be used by deployed applications. To define a

shared library, click Environment > Shared Libraries and specify the scope of the container. Then, click

New and specify a name and one or more paths for the shared library.

Library name:

Specifies the name of the shared library to use for the library reference.

 Data type String

Chapter 9. Configuring the environment 99

Environment: Resources for learning

Use the following links to find relevant supplemental information about configuring the WebSphere

Application Server environment. The information resides on IBM and non-IBM Internet sites, whose

sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming instructions and examples

v WebSphere Application Server education at http://www.ibm.com/software/websphere/technical.

Administration

v Listing of all IBM WebSphere Application Server Redbooks at http://publib-
b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere.

100 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

http://www-306.ibm.com/software/websphere/technical/
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

Chapter 10. Working with server configuration files

Application server configuration documents define the available application servers, their configurations,

and their contents.

You should periodically save changes to your administrative configuration. You can change the default

locations of configuration files, as needed.

1. Edit configuration files. The master repository is comprised of .xml configuration files. You can edit

configuration files using the administrative console, scripting, wsadmin commands, programming, or by

editing a configuration file directly.

2. Save changes made to configuration files. Using the console, you can save changes as follows:

a. Click Save on the taskbar of the administrative console.

b. On the Save page, click Save.

3. Handle temporary configuration files resulting from a session timing out.

4. Change the location of temporary configuration files.

5. Change the location of backed-up configuration files.

6. Change the location of temporary workspace files.

7. Back up and restore configurations.

Configuration documents

WebSphere Application Server stores configuration data for servers in several documents in a cascading

hierarchy of directories. The configuration documents describe the available application servers, their

configurations, and their contents. Most configuration documents have XML content.

Hierarchy of directories of documents

The cascading hierarchy of directories and the documents’ structure support multinode replication to

synchronize the activities of all servers in a cell. In a Network Deployment environment, changes made to

configuration documents in the cell repository, are automatically replicated to the same configuration

documents that are stored on nodes throughout the cell.

At the top of the hierarchy is the cells directory. It holds a subdirectory for each cell. The names of the cell

subdirectories match the names of the cells. For example, a cell named cell1 has its configuration

documents in the subdirectory cell1.

On the Network Deployment node, the subdirectories under the cell contain the entire set of documents for

every node and server throughout the cell. On other nodes, the set of documents is limited to what applies

to that specific node. If a configuration document only applies to node1, then that document exists in the

configuration on node1 and in the Network Deployment configuration, but not on any other node in the

cell.

Each cell subdirectory has the following files and subdirectories:

v The cell.xml file, which provides configuration data for the cell

v Files such as security.xml, virtualhosts.xml, resources.xml, and variables.xml, which provide

configuration data that applies across every node in the cell

v The clusters subdirectory, which holds a subdirectory for each cluster defined in the cell. The names of

the subdirectories under clusters match the names of the clusters.

Each cluster subdirectory holds a cluster.xml file, which provides configuration data specifically for that

cluster.

v The nodes subdirectory, which holds a subdirectory for each node in the cell. The names of the nodes

subdirectories match the names of the nodes.

© Copyright IBM Corp. 2004 101

Each node subdirectory holds files such as variables.xml and resources.xml, which provide

configuration data that applies across the node. Note that these files have the same name as those in

the containing cell’s directory. The configurations specified in these node documents override the

configurations specified in cell documents having the same name. For example, if a particular variable is

in both cell- and node-level variables.xml files, all servers on the node use the variable definition in the

node document and ignore the definition in the cell document.

Each node subdirectory holds a subdirectory for each server defined on the node. The names of the

subdirectories match the names of the servers. Each server subdirectory holds a server.xml file, which

provides configuration data specific to that server. Server subdirectories might hold files such as

security.xml, resources.xml and variables.xml, which provide configuration data that applies only to

the server. The configurations specified in these server documents override the configurations specified

in containing cell and node documents having the same name.

v The applications subdirectory, which holds a subdirectory for each application deployed in the cell. The

names of the applications subdirectories match the names of the deployed applications.

Each deployed application subdirectory holds a deployment.xml file that contains configuration data on

the application deployment. Each subdirectory also holds a META-INF subdirectory that holds a J2EE

application deployment descriptor file as well as IBM deployment extensions files and bindings files.

Deployed application subdirectories also hold subdirectories for all .war and entity bean .jar files in the

application. Binary files such as .jar files are also part of the configuration structure.

An example file structure is as follows:

cells

 cell1

 cell.xml resources.xml virtualhosts.xml variables.xml security.xml

 nodes

 nodeX

 node.xml variables.xml resources.xml serverindex.xml

 serverA

 server.xml variables.xml

 nodeAgent

 server.xml variables.xml

 nodeY

 node.xml variables.xml resources.xml serverindex.xml

 applications

 sampleApp1

 deployment.xml

 META-INF

 application.xml ibm-application-ext.xml ibm-application-bnd.xml

 sampleApp2

 deployment.xml

 META-INF

 application.xml ibm-application-ext.xml ibm-application-bnd.xml

Changing configuration documents

You can use one of the administrative tools (console, wsadmin, Java APIs) to modify configuration

documents or edit them directly. It is preferable to use the administrative console because it validates

changes made to configurations. ″“Configuration document descriptions”″ states whether you can edit a

document using the administrative tools or must edit it directly.

Configuration document descriptions

Most configuration documents have XML content. The table below describes the documents and states

whether you can edit them using an administrative tool or must edit them directly.

If possible, edit a configuration document using the administrative console because it validates any

changes that you make to configurations. You can also use one of the other administrative tools (wsadmin

or Java APIs) to modify configuration documents. Using the administrative console or wsadmin scripting to

update configurations is less error prone and likely quicker and easier than other methods.

102 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

However, you cannot edit some files using the administrative tools. Configuration files that you must edit

manually have an X in the Manual editing required column in the table below.

Document descriptions

(Locations split for publishing)

 Configuration file Locations Purpose Manual editing required

admin-authz.xml config/cells/

cell_name/

Define a role for

administrative operation

authorization.

X

app.policy config/cells/

cell_name/

nodes/node_name/

Define security permissions

for application code.

X

cell.xml config/cells/

cell_name/

Identify a cell.

cluster.xml config/cells/

cell_name/

clusters/

cluster_name/

Identify a cluster and its

members and weights.

This file is only available

with the Network

Deployment product.

deployment.xml config/cells/

cell_name/

applications/

application_name/

Configure application

deployment settings such

as target servers and

application-specific server

configuration.

filter.policy config/cells/

cell_name/

Specify security

permissions to be filtered

out of other policy files.

X

integral-jms-
authorizations.xml

config/cells/

cell_name/

Provide security

configuration data for the

integrated messaging

system.

X

library.policy config/cells/

cell_name/

nodes/node_name/

Define security permissions

for shared library code.

X

multibroker.xml config/cells/

cell_name/

Configure a data replication

message broker.

namestore.xml config/cells/

cell_name/

Provide persistent name

binding data.

X

naming-authz.xml config/cells/

cell_name/

Define roles for a naming

operation authorization.

X

node.xml config/cells/

cell_name/

nodes/node_name/

Identify a node.

pmirm.xml config/cells/

cell_name/

Configure PMI request

metrics.

X

Chapter 10. Working with server configuration files 103

resources.xml config/cells/

cell_name/

config/cells/

cell_name/

nodes/node_name/

config/cells/

cell_name/

nodes/node_name/

servers/

server_name/

Define operating

environment resources,

including JDBC, JMS,

JavaMail, URL, JCA

resource providers and

factories.

security.xml config/cells/

cell_name/

Configure security, including

all user ID and password

data.

server.xml config/cells/

cell_name/

nodes/

node_name/

servers/

server_name/

Identify a server and its

components.

serverindex.xml config/cells/

cell_name/

nodes/

node_name/

Specify communication

ports used on a specific

node.

spi.policy config/cells/

cell_name/

nodes/

node_name/

Define security permissions

for service provider libraries

such as resource providers.

X

variables.xml config/cells/

cell_name/

config/cells/

cell_name/

nodes/

node_name/

 config/cells/

cell_name/

nodes/node_name/

servers/

server_name/

Configure variables used to

parameterize any part of

the configuration settings.

virtualhosts.xml config/cells/

cell_name/

Configure a virtual host and

its MIME types.

Object names

When you create a new object using the administrative console or a wsadmin command, you often must

specify a string for a name attribute. Most characters are allowed in the name string. However, the name

string cannot contain the following characters. The name string also cannot contain leading and trailing

spaces.

 / forward slash

\ backslash

* asterisk

, comma

: colon

104 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

; semi-colon

= equal sign

+ plus sign

? question mark

| vertical bar

< left angle bracket

> right angle bracket

& ampersand (and sign)

% percent sign

’ single quote mark

″ double quote mark

]]> No specific name exists for this character combination.

. period (not valid if first character; valid if a later character)

Configuration repositories

A configuration repository stores configuration data. By default, configuration repositories reside in the

config subdirectory of the product installation root directory.

Handling temporary configuration files resulting from session timeout

If the console is not used for 15 minutes or more, the session times out. The same thing happens if you

close the browser window without saving the configuration file. Changes to the file are saved to a

temporary file when the session times out, after 15 minutes.

When a session times out, the configuration file in use is saved under the userid/timeout directory under

the ServletContext’s temp area. This is the value of the javax.servlet.context.tempdir attribute of the

ServletContext. By default, it is: install_root/temp/hostname/Administration/admin/admin.war

You can change the temp area by specifying it as a value for the tempDir init-param of the action servlet in

the deployment descriptor (web.xml) of the administrative application.

The next time you log on to the console, you are prompted to load the saved configuration file. If you

decide to load the saved file:

1. If a file with the same name exists in the install_root/config directory, that file is moved to the

userid/backup directory in the temp area.

2. The saved file is moved to the install_root/config directory.

3. The file is then loaded.

If you decide not to load the saved file, it is deleted from the userid/timeout directory in the temp area.

The configuration file is also saved automatically when the same user ID logs into the non-secured

console again, effectively starting a different session. This process is equivalent to forcing the existing user

ID out of session, similar to a session timing out.

Changing the location of temporary configuration files

The configuration repository uses copies of configuration files and temporary files while processing

repository requests. It also uses a backup directory while managing the configuration. You can change the

default locations of these files from the configuration directory to a directory of your choice using system

variables or the administrative console.

Chapter 10. Working with server configuration files 105

The default location for the configuration temporary directory is CONFIG_ROOT/temp. Change the location

by doing either of the following:

v Set the system variable was.repository.temp to the location you want for the repository temporary

directory. Set the system variable when launching a Java process using the -D option. For example, to

set the default location of the repository temporary directory, use the following option:

-Dwas.repository.temp=%CONFIG_ROOT%/temp

v Use the administrative console to change the location of the temporary repository file location for each

server configuration. For example, on the Network Deployment product, to change the setting for a

deployment manager, do the following:

1. Click System Administration > Deployment Manager in the navigation tree of the administrative

console. Then, click Administration Services, Repository Service, and Custom Properties.

2. On the Properties page, click New.

3. On the settings page for a property, define a property for the temporary file location. The key for this

property is was.repository.temp. The value can include WebSphere Application Server variables

such as ${WAS_TEMP_DIR}/config. Then, click OK.

The system property set using the first option takes precedence over the configuration property set using

the second option.

Changing the location of backed-up configuration files

During administrative processes like adding a node to a cell or updating a file, configuration files are

backed up to a backup location. The default location for the backup configuration directory is

CONFIG_ROOT/backup. Change the location by doing either of the following:

v Set the system variable was.repository.backup to the location you want as the repository backup

directory. Set the system variable when launching a Java process using the -D option. For example, to

set the default location of the repository backup directory, use the following option:

-Dwas.repository.backup=%CONFIG_ROOT%/backup

v Use the administrative console to change the location of the repository backup directory for each server

configuration. For example, on the Network Deployment product, do the following to change the setting

for a deployment manager:

1. Click System Administration > Deployment Manager in the navigation tree of the administrative

console. Then, click Administration Services, Repository Service, and Custom Properties.

2. On the Properties page, click New.

3. On the settings page for a property, define a property for the backup file location. The key for this

property is was.repository.backup. The value can include WebSphere Application Server variables

such as ${WAS_TEMP_DIR}/backup. Then, click OK.

The system property set using the first option takes precedence over the configuration property set using

the second option.

Changing the location of temporary workspace files

The administrative console workspace allows client applications to navigate the configuration. Each

workspace has its own repository location defined either in the system property or the property passed to

a workspace manager when creating the workspace: workspace.user.root or workspace.root, which is

calculated as %workspace.root%/user_ID/workspace/wstemp.

The default workspace root is calculated based on the user installation root: %user.install.root%/wstemp.

You can change the default location of temporary workspace files by doing the following:

v Distributed platforms: Change the setting for the system variable workspace.user.root or workspace.root

so its value is no longer set to the default location. Set the system variable when launching a Java

process using the -D option. For example, to set the default location the full path of the root of all users’

directories, use the following option:

106 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

-Dworkspace.user.root=full_path_for_root_of_all_user_directories

Backing up and restoring administrative configurations

WebSphere Application Server represents its administrative configurations as XML files. You should back

up configuration files on a regular basis.

1. Run the backupConfig command to back up configuration files.

2. Run the restoreConfig command to restore configuration files. Specify backup files that do not contain

invalid or inconsistent configurations.

Transformation of configuration files

The WebSphere Application Server master configuration repository stores configuration files for all the

nodes in the cell. When you upgrade the deployment manager from one release of WebSphere Application

Server to another, the configuration files that are stored in the master repository for the nodes on the old

release are converted into the format of the new release.

With this conversion, the deployment manager can process the configuration files uniformly. However,

nodes on an old release cannot readily use configuration files that are in the format of the new release.

WebSphere Application Server addresses the problem when it synchronizes the configuration files from the

master repository to a node on an old release. The configuration files are first transformed into the old

release format before they ship to the node. WebSphere Application Server performs the following

transformations on configuration documents:

v Changes the XML name space from the format of the new release to the format of the old release

v Strips out attributes of cell-level documents that are applicable to the new release only

v Strips out new resource definitions that are not understood by old release nodes

Server configuration files: Resources for learning

Use the following links to find relevant supplemental information about administering WebSphere

Application Server configuration files. The information resides on IBM and non-IBM Internet sites, whose

sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information:

Administration

v IBM WebSphere Application Server Redbooks at http://publib-
b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere.

This site contains a listing of all WebSphere Application Server Redbooks.

v IBM developerWorks WebSphere at http://www.software.ibm.com/wsdd.

This site is the home of technical information for developers working with WebSphere products. You can

download WebSphere software, take a fast path to developerWorks zones, such as VisualAge Java or

WebSphere Application Server, learn about WebSphere products through a newcomers page, tutorials,

technology previews, training, and Redbooks, get answers to questions about WebSphere products, and

join the WebSphere community, where you can keep up with the latest developments and technical

papers.

v WebSphere Application Server Support page at

http://www.ibm.com/software/webservers/appserv/support.html.

Chapter 10. Working with server configuration files 107

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd/
http://www-3.ibm.com/software/webservers/appserv/support.html

Take advantage of the Web-based Support and Service resources from IBM to quickly find answers to

your technical questions. You can easily access this extensive Web-based support through the IBM

Software Support portal at URL http://www-3.ibm.com/software/support/ and search by product

category, or by product name. For example, if you are experiencing problems specific to WebSphere

Application Server, click WebSphere Application Server in the product list. The WebSphere Application

Server Support page appears.

108 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Chapter 11. Administering application servers

An application server configuration provides settings that control how an application server provides

services for running enterprise applications and their components.

This section describes how to create and configure application servers in an existing application server

environment.

A WebSphere Application Server administrator can configure one or more application servers and perform

tasks such as the following:

1. Create application servers.

2. Manage application servers.

3. Configure transport chains.

4. Develop custom services.

5. Define processes for the application server. As part of defining processes, you can define:

6. Use the Java virtual machine.

After preparing a server, deploy an application or component on the server. See “Preparing to host

applications” on page 159 for a sample procedure that you might follow in configuring the application

server runtime and resources.

Application servers

Application servers extend a Web server’s capabilities to handle Web application requests, typically using

Java technology. An application server makes it possible for a server to generate a dynamic, customized

response to a client request.

For example, suppose--

1. A user at a Web browser on the public Internet visits a company Web site. The user requests to use

an application that provides access to data in a database.

2. The user request flows to the Web server.

3. The Web server determines that the request involves an application containing resources not handled

directly by the Web server (such as servlets). It forwards the request to a WebSphere Application

Server product.

4. The WebSphere Application Server product forwards the request to one of its application servers on

which the application is running.

5. The invoked application then processes the user request. For example:

v An application servlet prepares the user request for processing by an enterprise bean that performs

the database access.

v The application produces a dynamic Web page containing the results of the user query.
6. The application server collaborates with the Web server to return the results to the user at the Web

browser.

The WebSphere Application Server product provides multiple application servers that can be either

separately configured processes or nearly identical clones.

Creating application servers

For the Express and Base products, you must use scripting to create a new application server (see the

Administering applications and their environment PDF). The server you create cannot be managed using

the administrative console. Also note that the only server you can manage using the administrative console

is the default server (server1).

© Copyright IBM Corp. 2004 109

With WebSphere Application Server Version 6.0, you can now upgrade a portion of the nodes in a cell,

while leaving others at the older release level. This means that, for a period of time, you may be managing

servers that are at the current release and servers that are running the newer release in the same cell. In

this mixed environment, there are restrictions on what you can do with servers at the older release level.

They are:

v You can only create new server definitions on nodes that are running WebSphere Application Server

Version 6.0.

v When you create a new server definition, you must use a server configuration template, and that

template must be created from a WebSphere Application Server Version 6.0 server instance. You

cannot create (or use) a template from a WebSphere Application Server Version 5.x server instance.

There are no restrictions on what you can do with the servers running on the newer release level.

The steps below describe how to use the Create New Application Server page.

1. Create the new application server using the wsadmin createApplicationServer command. For

information, see the Administering applications and their environment PDF.

2. To use multiple language encoding support in the administrative console, configure an application

server with UTF-8 encoding enabled.

The new application server appears in the list of servers on the Application Servers page.

Note that the application server created has many default values specified for it. An application server has

many properties that can be set and creating an application server on the Create New Application Server

page specifies values for only a few of the important properties. To view all of the properties of your

application server and to customize your application server further, click on the name of your application

server on the Application Servers page and change the settings for your application server as needed.

Configuring application servers for UTF-8 encoding

To use multiple language encoding support in the administrative console, you must configure an

application server with UTF-8 encoding enabled.

1. Create an application server or use an existing application server.

2. On the Application Server page, click on the name of the server you want enabled for UTF-8.

3. On the settings page for the selected application server, under Server Infrastructure, click Java and

Process Management > Process Definition.

4. On the Process Definition page, click Java Virtual Machine.

5. On the Java Virtual Machine page, specify -Dclient.encoding.override=UTF-8 for Generic JVM

Arguments and click OK.

6. Click Save on the console task bar.

7. Restart the application server.

Note that the autoRequestEncoding option does not work with UTF-8 encoding enabled. The default

behavior for WebSphere Application Server is, first, to check if charset is set on content type header. If it

is, then the product uses content type header for character encoding; if it is not, then the product uses

character encoding set on server using the system property default.client.encoding. If charset is not

present and the system property is not set, then the product uses ISO-8859-1. Enabling

autoRequestEncoding on a Web module changes the default behavior: if charset it not present on an

incoming request header, the product checks the Accept-Language header of the incoming request and

does encoding using the first language found in that header. If there is no charset on content type header

and no Accept language header, then the product uses character encoding set on server using the system

property default.client.encoding. As with the default behavior, if charset is not present and the system

property is not set, then the product uses ISO-8859-1.

110 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Managing application servers

To view information about an application server, use the Application Servers panel on the administrative

console.

You must use scripting to create a new application server (see the Administering applications and their

environment PDF). The server you create can not be managed using the administrative console. Also note

that the only server you can manage using the administrative console is the default server (server1).

1. Access the Application Servers page. Click Servers > Application Servers in the console navigation

tree.

2. View information about application servers.

The Application Servers page lists application servers in the cells holding the application servers.

To view additional information about a particular application server or to further configure an application

server, click on the application server name under Name. This accesses the settings page for an

application server.

To view product information for an application server:

a. Verify that the application server is running.

b. Display the Runtime tab on the settings page for an application server.

c. Click Product Information.

The Product Information page displayed lists the WebSphere Application Server products installed for

the application server, the version and build levels for the products, the build dates, and any interim

fixes applied to the application server.

Note: You can also get this information by using the versionInfo command. For more information, see

the Installing your application serving environment PDF.

3. Create an application server using the wsadmin createApplicationServer command. For information,

see the Administering applications and their environment PDF.

4. Monitor the running of application servers.

Server collection

Use this page to view information about and manage application servers, generic servers, Java Message

Service (JMS) servers, and Web servers.

Application Servers

The Application Servers page lists the application servers in the cell. You can use this page to create new

application servers, create application server templates, or delete existing application servers. You can

also use this page to start and stop these application servers.

To view this administrative console page, click Application Servers.

Generic Servers

The Generic Servers page lists the generic servers in the cell. You can use this page to create new

generic servers, create generic server templates, or delete existing generic servers. You can also use this

page to start and stop these generic servers.

The Network Deployment product also shows the status of the generic servers. The status indicates

whether a server is running, stopped, or encountering problems.

You can use this page to add or delete application servers.

Chapter 11. Administering application servers 111

To view this administrative console page, click Generic Servers.

Java Message Service (JMS) Servers

The JMS Servers page lists the JMS servers in the cell. You can use this page to start and stop these

JMS servers.

Each JMS server provides the functions of the JMS provider for a node in your administrative domain.

There can be at most one JMS server on each node in the administration domain, and any application

server within the domain can access JMS resources served by any JMS server on any node in the

domain.

Note: JMS servers apply only to WebSphere Application Server Version 5.x nodes. You cannot create a

JMS server on a node that is running WebSphere Application Server 6.0, but the existing Version

5.x JMS servers will continue to be displayed, and you can modify their properties. You can also

delete Version 5.x JMS servers.

To view this administrative console page, click JMS Servers.

Web Servers

The Web Servers page lists the Web servers in your administrative domain. You can use this page to

generate and propagate a Web server plug-in configuration file, create new Web servers, create new Web

server templates, or delete existing Web servers. You can also use this page to start and stop these Web

servers.

To view this administrative console page, click Web Servers.

Name

Specifies a logical name for the server. For WebSphere Application Server, server names must be unique

within a node.

Node

Specifies the name of the node holding the server.

Version

Specifies the version of the WebSphere Application Server product on which the server runs.

Status

Indicates whether the server is started or stopped. (Network Deployment only)

Note that if the status is Unavailable, the node agent is not running in that node and you must restart the

node agent before you can start the server.

Application server settings

An application server is a server which provides services required to run enterprise applications. Use this

page to view or change the settings of an application server instance.

To view this administrative console page, click Servers > Application Servers >server_name.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when the server is running.

Name:

112 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Specifies a logical name for the server. Server names must be unique within a node. However, for multiple

nodes within a cluster, you may have different servers with the same server name as long as the server

and node pair are unique.

 For example, a server named server1 in a node named node1 in the same cluster with a server named

server1 in a node named node2 is allowed. Configuring two servers named server1 in the same node is

not allowed. WebSphere Application Server uses the server name for administrative actions, such as

referencing the server in scripting.

 Data type String

Default server1

Run in development mode:

Enabling this option may reduce the startup time of an application server. This may include JVM settings

such as disabling bytecode verification and reducing JIT compilation costs. Do not enable this setting on

production servers. This setting is only available on application servers running WebSphere Application

Server Version 6.0 and later.

 Specifies that you want to use the JVM settings -Xverify and -Xquickstart on startup. After selecting this

option, save the configuration and restart the server to activate development mode.

The default setting for this option is false, which indicates that the server will not be started in

development mode. Setting this option to true specifies that the server will be started in development

mode (with settings that will speed server startup time).

 Data type Boolean

Default false

Parallel start:

Select this field to start the server on multiple threads. This might shorten the startup time.

 Specifies that you want the server components, services, and applications to start in parallel rather than

sequentially.

The default setting for this option is true, which indicates that the server be started using multiple threads.

Setting this option to false specifies that the server will not be started in using multiple threads (which

may lengthen startup time).

Note that the order in which the applications start depends on the weights you assigned to each them.

Applications that have the same weight are started in parallel. You set an application’s weight with the

Starting weight option on the Applications > Enterprise Applications > application_name page of the

Administrative Console. For more information about the Starting weight option, see the Installing your

application serving environment PDF.

 Data type Boolean

Default true

Class loader policy:

Select whether there is a single class loader to load all applications or a different class loader for each

application.

Class loading mode:

Chapter 11. Administering application servers 113

Specifies whether the class loader should search in the parent class loader or in the application class

loader first to load a class. The standard for Developer Kit class loaders and WebSphere Application

Server class loaders is Parent first.

 If you select Parent last, your application can override classes contained in the parent class loader, but

this action can potentially result in ClassCastException or linkage errors if you have mixed use of

overridden classes and non-overridden classes.

Process Id:

The native operating system’s process ID for this server.

 The process ID property is read only. The system automatically generates the value.

Cell name:

The name of the cell in which this server is running.

 The Cell name property is read only.

Node name:

The name of the node in which this server is running.

 The Node name property is read only.

State:

The run-time execution state for this server.

 The State property is read only.

Ports collection:

Use this page to view and manage communication ports used by run-time components running within a

process. Communication ports provide host and port specifications for a server.

 To view this administrative console page, click Servers > Application Servers >server_name

Communications > Ports.

Note that this page displays only when you are working with ports for application servers.

Port Name:

Specifies the name of a port. Each name must be unique within the server.

Host:

Specifies the IP address, domain name server (DNS) host name with domain name suffix, or just the DNS

host name, used by a client to request a resource (such as the naming service, or administrative service).

Port:

Specifies the port for which the service is configured to accept client requests. The port value is used in

conjunction with the host name.

Transport Details:

114 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Provides a link to the transport chains associated with this port. If no transport chains are associated with

this port, the string ″No associated transports″ appears in this column.

Ports settings:

Use this to view and change the configuration for a communication port used by run-time components

running within a process. A communication port provides host and port specifications for a server.

 For base WebSphere Application Server, you can view this administrative console page, by clicking

Servers > Application Servers >server_name > Ports >port_name

Port Name:

Specifies the name of the port. The name must be unique within the server.

 Note that this field displays only when you are defining a port for an application server. You can select a

radio button to:

Well-known Port

select a previously defined port from the drop down list

User-defined Port

create a port with a new name by entering the name in the text box

 Data type String

Host:

Specifies the IP address, domain name server (DNS) host name with domain name suffix, or just the DNS

host name, used by a client to request a resource (such as the naming service, administrative service, or

JMS broker).

 For example, if the host name is myhost, the fully qualified DNS name can be myhost.myco.com and the IP

address can be 155.123.88.201.

Host names on the ports can be resolvable names or IP addresses. The server will bind to the specific

host name or IP address that is supplied. That port will only be accessible through the IP address that is

resolved from the given host name or IP address. The IP address may be of the IPv4 (Internet Protocol

Version 4) format for all platforms, and IPv6 (Internet Protocol Version 6) format on specific operating

systems where the server supports IPv6.

 Data type String

Default * (asterisk)

Port:

Specifies the port for which the service is configured to accept client requests. The port value is used in

conjunction with the host name.

 Port numbers in the server can be reused among multiple ports as long as they have host names that

resolve to unique IP addresses and there is not a port with the same port number and a wildcard (*) host

name. A port number is valid in the range of 0 and 65535. 0 specifies that the server should bind to any

ephemeral port available.

 Data type Integer

Default None

Chapter 11. Administering application servers 115

Range 1-65536

Custom property collection:

Use this page to view and manage arbitrary name-value pairs of data, where the name is a property key

and the value is a string value that can be used to set internal system configuration properties.

 The administrative console contains several Custom Properties pages that work similarly. To view one of

these administrative pages, click a Custom Properties link.

Name:

Specifies the name (or key) for the property.

 Do not start your property names with was. because this prefix is reserved for properties that are

predefined in WebSphere Application Server.

Value:

Specifies the value paired with the specified name.

Description:

Provides information about the name-value pair.

Custom property settings:

Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the

value is a string value that can be used to set internal system configuration properties. Defining a new

property enables you to configure a setting beyond that which is available in the administrative console.

 For base WebSphere Application Server you can view this administrative console page by, clicking

Servers > Application Servers >server_name. Then, under Server Infrastructure, click Administration >

Custom Properties

Name:

Specifies the name (or key) for the property.

 Do not start your property names with was. because this prefix is reserved for properties that are

predefined in WebSphere Application Server.

 Data type String

Value:

Specifies the value paired with the specified name.

 Data type String

Description:

Provides information about the name and value pair.

116 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Data type String

Server component collection:

Use this page to view information about and manage server component types such as application servers,

messaging servers, or name servers.

 To view this administrative console page, click Servers > Application Servers >server_name. Then,

under Server Infrastructure, click Administration > Server Components.

Type:

Specifies the type of internal server.

Server component settings:

Use this page to view or configure a server component instance.

 To view this administrative console, click Servers > Application Servers >server_name. Then, under

Server Infrastructure, click Administration > Server Components >server_component_name.

Name:

Specifies the name of the component.

 Data type String

Initial State:

Specifies the desired state of the component when the server process starts. The options are: Started and

Stopped. The default is Started.

 Data type String

Default Started

Thread pool collection:

Use this page to select or create a group of threads that an application server uses. Requests are sent to

the server through any of the HTTP transports. A thread pool enables components of the server to reuse

threads to eliminate the need to create new threads at run time. Creating new threads expends time and

resources.

 To view this administrative console page, click Servers > Application Servers >server_name > Thread

Pools. (You can reach this page through more than one navigational route.)

Thread pool settings:

Use this page to configure a group of threads that an application server uses. Requests are sent to the

server through any of the HTTP transport channels or HTTP transports. A thread pool enables components

of the server to reuse threads to eliminate the need to create new threads at run time. Creating new

threads expends time and resources.

 To view this administrative console page, click Servers > Application Servers >server_name > Thread

Pools, then select the thread pool. (You can reach this page through more than one navigational route.)

Chapter 11. Administering application servers 117

Minimum size:

Specifies the minimum number of threads to allow in the pool.

 Data type Integer

Default 10

Maximum size:

Specifies the maximum number of threads to allow in the pool.

 If your Tivoli Performance Viewer shows the Percent Maxed metric to remain consistently in the double

digits, consider increasing the Maximum size. The Percent Maxed metric indicates the amount of time that

the configured threads are used. If there are several simultaneous clients connecting to the server-side

ORB, increase the size to support up to 1000 clients.

 Data type Integer

Default 50

Recommended 50 (25 on Linux systems)

Thread inactivity timeout:

Specifies the number of milliseconds of inactivity that should elapse before a thread is reclaimed. A value

of 0 indicates not to wait and a negative value (less than 0) means to wait forever.

Note: The administrative console does not allow you to set the inactivity timeout to a negative number. To

do this you must modify the value directly in the server.xml file.

 Data type Integer

Units Milliseconds

Default 3500

Allow thread allocation beyond maximum thread size:

Specifies whether the number of threads can increase beyond the maximum size configured for the thread

pool.

 Data type Boolean

Default Not enabled (false)

Generic server settings

Use this page to view or change the settings of a generic server.

A generic server is a server that is managed in the WebSphere Application Server administrative domain,

although it is not a server that is supplied by the WebSphere Application Server product. The generic

server can be any server or process that is necessary to support the Application Server environment,

including a Java server, a C or C++ server or process, or a Remote Method Invocation (RMI) server.

To view this administrative console page, click Servers > Generic Servers >server_name.

On the Configuration tab, you can edit fields. On the Runtime tab, you can look at read-only information.

The Runtime tab is available only when the server is running.

Name:

118 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Specifies a logical name for the generic server.

 It is highly recommended that you use a naming scheme that makes it easy to distinguish your generic

application servers from regular WebSphere Application Servers. This will enable you to quickly determine

whether to use the Terminate or Stop button in the administrative console to stop a specific application

server.

You must use the Terminate button to stop a generic application server.

 Data type String

Default

Starting servers

Starting a server starts a new server process based on the process definition settings of the current server

configuration.

If you need to restart a server, follow the directions in this article for starting servers. The procedure that

applies to starting servers also applies to restarting servers.

Note: If you created a new server definition using a base WebSphere Application Server, you cannot start,

stop, or manage the new server using the original base Application Server.

There are several options for starting an Application Server:

v

If you are using Windows, you can use the Start menu to start the Application Server. If you are

using the Express version of the product, click Start > Programs > IBM WebSphere > Express v6.0 >

Start the server. You can check that the server has successfully started by checking the

startServer.log file. If the server has successfully started, the last two lines of the startServer.log file

reads:

Server launched. Waiting for initialization status.

Server server1 open for e-business; process id is 1932.

The startServer.log file is located in the <drive>:\Program

Files\IBM\WebSphere\AppServer\profiles\profile_name\logs\server1 directory if you have installed

your server with the default settings. The server name and process id vary depending on your settings.

v On distributed platforms, use the startServer command to start an Application Server from the

command line.

v On AIX, you can use the command line to start the server. Use the startServer command from the

/usr/WebSphere/AppServer/bin directory, as shown below. To start a server that is associated with a

non-default profile, issue the startServer command from the

/opt/WebSphere/AppServer/profiles/profile_name/bin directory.

./startServer.sh server1

You can check that the server has successfully started by checking the startServer.log file. If the

server has successfully started, the last two lines of the startServer.log file reads:

Server launched. Waiting for initialization status.

Server server1 open for e-business; process id is 1932.

On AIX, the startServer.log file is located in the

/usr/IBM/WebSphere/AppServer/profiles/profile_name/logs/server1/ directory.

v Start an Application Server for tracing and debugging.

To start the Application Server with standard Java debugging enabled:

Chapter 11. Administering application servers 119

1. Click Servers > Application Servers from the administrative console navigation tree. Then, click

the Application Server whose processes you want to trace and debug, then Java and Process

Management > Process Definition > Java Virtual Machine.

2. On the Java Virtual Machine page, place a checkmark in the check box for the Debug Mode setting

to enable the standard Java debugger. If needed, set debug arguments. Then, click OK.

3. Save the changes to a configuration file.

4. Stop the Application Server.

5. Start the Application Server again as described previously.

Once the server is started, you can install your applications.

Running application servers from a non-root user

By default, each base WebSphere Application Server server on a Linux and UNIX platform uses the root

user ID to run all application server processes. However, you can run all application server processes

under the same non-root user and user group. This task describes how to run an application server

process from a non-root user.

If global security is enabled, the user registry must not be Local OS. Using the Local OS user registry

requires the application server to run as root. Refer to the Securing applications and their environment

PDF for details.

Run your application servers as non-root when you no longer want to use root authority. For security or

administrative reasons, you may want to change to non-root user IDs. Perform this task at any time to

change the permissions of an application server. You must restart the application server in order for the

changes to take effect. .

Note: If you are using the Tivoli Access Manager (TAM) to perform authentication or authorization for

WebSphere Application Server, it is important to be aware of potential permissions problems. For

more information, see the Securing applications and their environment PDF.

For the following steps, assume that:

v was1 is the user to run the application server

v wasgroup is the primary user group for user was1

v wasnode is the node name

v server1 is the application server

v /opt/WebSphere/AppServer is the installation root

v nodeProfile1 is the profile name.

Note: For information about creating a profile, see the Administering applications and their environment

PDF.

To configure an application server to run as non-root, complete the following steps.

 1. Log on to the application server system as the root user.

 2. Create the user ID was1 with a primary user group of wasgroup. The user ID, was1, is an example. You

can name the user something else.

 3. Log off and back on as root.

 4. Start server1 as root. Run the startServer.sh script from the /bin directory of the installation root:

startServer.sh server1

 5. Specify user and group ID values for the Run As User and Run As Group settings for a server:

a. Start the administrative console.

b. Go to the Process execution page of the administrative console. You must define all three

properties in the following table. Click Servers > Application Servers > server1 > Server

Infrastructure > Java and Process Management > Process Execution and change all of the

120 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

following values:

 Property Value

Run As User was1

Run As Group wasgroup

UMASK 022

c. Click OK.

d. Save the configuration.

 6. Stop the application server. Use the stopServer.sh script from the /bin directory of the installation

root:

stopServer.sh server1

 7. Change file permissions as the root user. The following example assumes that the installation root

directory for WebSphere Application Server is /opt/WebSphere/AppServer:

chgrp wasgroup /opt/WebSphere

chgrp wasgroup /opt/WebSphere/AppServer

chgrp -R wasgroup /opt/WebSphere/AppServer/cloudscape

chgrp -R wasgroup /opt/WebSphere/AppServer/profiles/nodeProfile1

chmod g+wr /opt/WebSphere

chmod g+wr /opt/WebSphere/AppServer

chmod -R g+wr /opt/WebSphere/AppServer/cloudscape

chmod -R g+wr /opt/WebSphere/AppServer/profiles/nodeProfile1

 8. Log on to the application server system as was1.

 9. Start server1 as was1. Run the startServer.sh script from the /bin directory of the installation root:

startServer.sh server1

10. If creating another server with a different user ID, follow this procedure again for the new user ID and

server name.

The two user IDs must share the same group, wasgroup.

You can start an application server from a non-root user.

Detecting and handling problems with run-time components

You must monitor the status of run-time components to ensure that, once started, they remain operational

as needed.

1. Regularly examine the status of run-time components. Browse messages displayed under Websphere

Runtime Messages in the status area at the bottom of the console. The run-time event messages

marked with a red X provide detailed information on event processing. You can also use the Logging

and Tracing page of the administrative console to monitor the status of run-time components. Click

Troubleshooting > Logs and Trace in the console navigation tree to access the page.

2. If an application stops running when it should be operational, examine the application’s status on an

Applications page and try restarting the application.

3. If the run-time components do not restart, reexamine the messages and read information on problem

determination to help you to restart the components.

Stopping servers

Stopping an application server stops a server process based on the process definition settings in the

current application server configuration.

v

In Windows, you can use the Start menu to stop your application server. Click Start > Programs

> IBM WebSphere > Express v6.0 > Stop the server. When the server stops successfully, the

stopServer.log file contains the following in the last two lines:

Chapter 11. Administering application servers 121

Server stop request issued. Waiting for stop status.

Server server1 stop completed.

The server name varies depending on your settings.

v Use the stopServer command to stop an application server from the command line.

A warning message appears if you are stopping the application server that is running the administrative

console application.

v Stop the application server from the command line. In distributed environments, you can use the

stopServer command to stop a single server. In AIX, use the stopServer or the stopManager

command from the /usr/WebSphere/AppServer/bin directory:

./stopServer.sh server1

./stopManager.sh

Creating generic servers

There are two types of generic application servers:

v Non-Java applications or processes.

v Java applications or processes

You can use the wsadmin tool or the Generic servers panel of the administrative console to create either

type.

Note: For the Base WebSphere Application Server product, although you can use the administrative

console to create a generic application server definition, you cannot use it to start, stop or, in any

way, control or manage that application server. The Base product administrative console can only

be used to create server definitions and, if necessary, adjust the server definitions that it creates. To

manage Base generic application servers, use the wsadmin tool.

v Create a non-Java application as a generic server. The following steps describe how to use the

administrative console to create a non-Java application as a generic application server.

 1. Select Servers > Generic servers

 2. Click New. You can then specify the name of the generic server you are creating.

 3. Type in a name for the generic server. The name must be unique within the application server. It is

highly recommended that you use a naming scheme that makes it easy to distinguish your generic

application servers from regular Websphere Application Servers. This will enable you to quickly

determine whether to use the Terminate or Stop button in the administrative console to stop

specific application server. You must use the Terminate button to stop a generic application server.

 4. Select a template to use in creating the new server. You can use a default application server

template for your new server or use an existing application server as a template. The new

application server will inherit all properties of the template server. If you create the new server

using an existing application server do not enable the option to map applications from the existing

server to the new server. This option does not apply for a generic server.

 5. Click Next

 6. Click Finish. The generic server now appears as an option on the Generic servers panel in the

administrative console.

 7. On the Generic servers panel, click on the name of the generic server.

 8. Under Additional Properties click Process Definition.

 9. In the Executable name field under General Properties, enter the name of the non-WebSphere

Application Server program that is to be launched when you start this generic server. Executable

target type and Executable target properties are not used for non-Java applications. Executable

target type and Executable target properties are only used for Java applications

10. Click OK.

122 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

v Create a Java application as a generic server: The following steps describe how to use the

administrative console to create a Java application as a generic application server.

 1. Select Servers > Generic servers

 2. Click New. You can then specify the name of the generic server you are creating.

 3. Type in a name for the generic server. The name must be unique within the application server. It is

highly recommended that you use a naming scheme that makes it easy to distinguish your generic

application servers from regular Websphere Application Servers. This will enable you to quickly

determine whether to use the Terminate or Stop button in the administrative console to stop

specific application server. You must use the Terminate button to stop a generic application server.

 4. Click Next

 5. Click Finish. The generic server now appears as an option on the Applications Server panel in

the administrative console.

 6. Click Finish. The generic server now appears as an option on the Generic servers panel in the

administrative console.

 7. On the Generic servers panel, click on the name of the generic server.

 8. Under Additional Properties click Process Definition.

 9. In the Executable name field under General Properties, enter the path for Websphere Application

Server’s default JVM (${JAVA_HOME}/bin/java), which will be used to run the Java application

when you start this generic server.

10. In the Executable target type field under General Properties, select whether a Java class name,

JAVA_CLASS, or the name of an executable JAR file, EXECUTABLE_JAR, will be used as the

executable target of this Java process. The default for Websphere Application Server is

JAVA_CLASS.

11. In the Executable target field under General Properties, enter the name of the executable target.

(Depending on the executable target type, this will be either a Java class containing a main()

method, or the name of an executable JAR file.) The default for Websphere Application Server is

com.ibm.ws.runtime.WsServer.

12. Click OK.

Note: If the generic server is to run an application server other than the WebSphere Application

Server, leave the Executable name field set to the default value and specify the Java class

containing the main function for your application serve in the Executable target field.

You can now start and terminate the generic server whenever you want to start or terminate the

non-WebSphere Application Server server or process associated with this server.

Starting and terminating generic servers

This topic describes how to start and terminate generic servers.

If you created a generic server on a Base WebSphere Application Server, you cannot start, terminate, or

monitor this server with the Base Application Server administrative console. You must use the wsadmin

tool to manage Base generic servers.

Starting generic servers

There are two ways to start a generic server in a Network Deployment environment:

v Use the administrative console:

1. From the administrative console navigation tree, select Servers > Application Servers.

2. Select the check box beside the name of the generic server, and then click Start.

3. View the Status value and any messages or logs to see whether the generic server starts.

v Use the MBean NodeAgent launchProcess operation of the wsadmin tool.

Chapter 11. Administering application servers 123

Terminating generic servers

There are two ways to terminate a generic server in a Network Deployment environment:

v Use the administrative console:

1. From the administrative console navigation tree, select Servers > Application Servers.

2. Select the check box beside the name of the generic server, and then click Terminate.

3. View the Status value and any messages or logs to see whether the generic server terminates.

Note: The Stop and Stop Immediate buttons on the administrative console do not work for generic

servers.

v Use the MBean terminate launchProcess operation of the wsadmin tool.

Configuring transport chains

You need to configure transport chains to provide networking services to such functions as the service

integration bus component of IBM service integration technologies, WebSphere Secure Caching Proxy,

and the high availability manager core group bridge service.

A transport chain consists of one or more types of channels, each of which supports a different type of I/O

protocol, such as TCP or HTTP. Network ports can be shared among all of the channels within a chain.

The channel framework function automatically distributes a request arriving on that port to the correct I/O

protocol channel for processing. To define these channels:

1. Create a transport chain: You can either use the administrative console or wsadmin commands to

create a transport chain. If you want to use the administrative console:

a. Ensure that a port is available for the new transport chain.

b. In the administrative console, click Servers > Application servers >server_name, and then click

on one of the following:

v Under Web container settings, click Web container transport chains.

v Under Server messaging, click either Messaging engine inbound transports or WebSphere

MQ link inbound transports.

c. Click New. The Create New Transport Chain wizard initializes. During the transport chain creation

process, you are asked to:

v Specify a name for the new chain.

v Select a transport chain template

v Select a port, if one is available to which the new transport chain will be bound. If a port is not

available or you want to define a new port, specify a port name, the host name or IP address for

that port, and a valid port number.

When you click Finish, the new transport chain is added to the list of defined transport chains on

the Transport chain panel.

2. Click on the transport chain’s name to view the configuration settings that are in effect for the transport

channels contained in this chain. To change any of these settings:

a. Click on the channel that requires changes to its settings.

b. Make your changes to the configuration settings. Some of the settings, such as the port number

are determined by what is specified for the transport chain when it is created and cannot be

changed.

c. Click on Custom properties to set any custom properties that have been defined for your system.

3. When you have made all of your changes, click OK.

4. Stop the application server and start it again. You must stop the application server and start it again

before the configuration changes you made take affect.

124 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Transport chains

Transport chains represent a network protocol stack that is used for I/O operations within an application

server environment. Transport chains are part of the channel framework function that provides a common

networking service for all components, including the service integration bus component of IBM service

integration technologies, WebSphere Secure Caching Proxy, and the high availability manager core group

bridge service.

A transport chain consists of one or more types of channels, each of which supports a different type of I/O

protocol, such as TCP, DCS or HTTP. Network ports can be shared among all of the channels within a

chain. The channel framework function automatically distributes a request arriving on that port to the

correct I/O protocol channel for processing.

The transport chain configuration settings determine which I/O protocols are supported for that chain.

Following are some of the more common types of channels. Custom channels that support requirements

unique to a particular customer or environment can also be added to a transport chain.

TCP channel

Used to provide client applications with persistent connections within a Local Area Network (LAN).

When configuring a TCP channel, you can specify a list of IP addresses that are allowed to make

inbound connections and a list of IP addresses that are not allowed to make inbound connections.

You can also specify the thread pool that this channel uses, which allows you to segregate work

by the port that the application server is listening on.

HTTP channel

Used to enable communication with remote servers. It implements the HTTP 1.0 and 1.1

standards and is used by other channels, such as the Web container channel, to server HTTP

requests and to send HTTP specific information to servlets expecting this type of information.

HTTP Tunnel channel

Used to provide client applications with persistent HTTP connections to remote hosts that are

either blocked by firewalls or require an HTTP proxy server (including authentication) or both. An

HTTP Tunnel channel enables the exchange of application data in the body of an HTTP request or

response that is sent to or received from a remote server. An HTTP Tunnel channel also enables

client-side applications to poll the remote host and to use HTTP requests to either send data from

the client or to receive data from an application server. In either case, neither the client nor the

application server is aware that HTTP is being used to exchange the data.

Web container channel

Used to create a bridge in the transport chain between an HTTP inbound channel and a servlet

and JavaServer Pages (JSP) engine.

DCS channel

Used by the core group bridge service, the data replication service (DRS), and the high availability

manger to transfer data, objects, or events among application servers.

MQ channel

Used in combination with other channels, such as a TCP channel, within the confines of

WebSphere MQ support to facilitate communications between a WebSphere System Integration

Bus and a WebSphere MQ client or queue manager.

JFAP channel

Used by the Java Message Service (JMS) server to create connections to JMS resources on a

service integration bus.

SSL channel

Used to associate an SSL configuration repertoire with the transport chain. This channel is only

available when Secure Sockets Layer (SSL) support is enabled for the transport chain. An SSL

configuration repertoire is defined in the administrative console, under security, on the SSL

configuration repertoires > SSL configuration repertoires page.

Chapter 11. Administering application servers 125

HTTP transport channel custom property

If you are using an HTTP transport channel, you can add the following custom property to the

configuration settings for that HTTP transport channel.

To add a custom property:

1. In the administrative console, click Application servers > server_name Web container settings >

Web container transport chains >chain_name > HTTP Inbound Channel > Custom Properties >

New

2. Under General Properties specify the name of the custom property in the Name field and a value for

this property in the Value field. You can also specify a description of this property in the Description

field.

3. Click Apply or OK.

4. Click Save to save your configuration changes.

5. Restart the server.

Following is a list of custom properties provided with the application server. These properties are not

shown on the settings page for an HTTP transport channel.

inProcessLogFilenamePrefix

Use to specify a prefix for the filename of the network log file. Normally, when inprocess optimization is

enabled, requests through the inprocess path are logged based on the logging attributes set up for the

Web container’s network channel chain. You can use this property to add a prefix to the filename of the

network log file. This new filename is then used as the filename for the log file for inprocess requests.

Requests sent through the inprocess path are logged to this file instead of to the network log file. For

example, if the log file for a network transport chain is named .../httpaccess.log, and this property is set

to local for the HTTP channel in that chain, the filename of the log file for inprocess requests to the host

associated with that chain is .../localhttpaccess.log.

 Data type String

HTTP Tunnel transport channel custom property

If you are using an HTTP Tunnel transport channel, you can add the following custom property to the

configuration settings for that HTTP Tunnel transport channel.

To add a custom property:

1. In the administrative console, click Servers > Application servers >server_name > Ports. Click on

View associated transports for the HTTP Tunnel port to whose configuration settings you want to

add this custom property.

2. Click New.

3. Under General Properties specify the name of the custom property in the Name field and a value for

this property in the Value field. You can also specify a description of this property in the Description

field.

4. Click Apply or OK.

5. Click Save to save your configuration changes.

6. Restart the server.

Following is a description of the custom property that is provided with the application server. This property

is not shown on the settings page for an HTTP Tunnel transport channel.

pluginConfigurable

Indicates whether or not the configuration settings for the HTTP Tunnel transport channel are

126 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

included in the plugin-cfg.xml file for the Web server associated with the application server that is

using this channel. Configuration settings for each of the Web container transport channels defined

for an application server are automatically included in the plugin-cfg.xml file for the Web server

associated with that application server.

 Data type Boolean

Default False

Troubleshooting transport chain problems

TCP transport channel fails to bind to a specific host/port combination

If a TCP transport channel fails to bind to a specific port, one of the following situations might have

occurred:

v You are trying to bind the channel to a port that is already bound to another application, such as

another instance of a WebSphere Application Server.

v You are trying to bind to a port that is in a transitional state waiting for closure. This socket must

transition to closed before you restart the server. The port might be in TIME_WAIT, FIN_WAIT_2, or

CLOSE_WAIT state. Issue the netstat -a command from a command prompt window to display the

state of the port to which you are trying to bind. If you need to change the amount of elapse time that

must occur before TCP/IP can release a closed connection and reuse its resources, see the

Troubleshooting and support PDF.

Configuring HTTP transports

Important: On a distributed platform, HTTP transport support is deprecated. Therefore, the administrative

console page used to configure an HTTP transport is not available unless your migrated an

HTTP transport from your V5 environment. You must define an HTTP transport channel

instead of an HTTP transport to handle your HTTP requests.

An HTTP transport is the request queue between a WebSphere Application Server plug-in for Web servers

and a Web container in which the Web modules of an application reside. To define the characteristics of

the connections between that plug-in and the Web container, you must specify:

v How the transport is to handle a set of connections. For example, you must specify the number of

concurrent requests that is to be allowed.

v Whether to secure the connections with SSL.

v The Host and IP information for the transport participants.

1. Change the configuration for an existing HTTP transport.

a. Ensure that virtual host aliases include port values for the transport your are changing.

b. Go to the HTTP Transports page and click on the transport under Host whose configuration you

want to change.

Remember, on a distributed platform, HTTP transport support is deprecated. Therefore you cannot

view this administrative console page unless you are a V5.x user who, during the V6 migration

process, indicated that you want to continue using the HTTP transports that are defined for your V5

environment.

c. On the settings page for an HTTP transport, which might have the page title DefaultSSLSettings,

change the specified values as needed, then click OK.

d. Custom properties page, add and set any custom properties you want to use.

2. Stop the WebSphere Application Server and start it again. You must stop the WebSphere Application

Server and start it again before the configuration changes you made take affect.

Chapter 11. Administering application servers 127

If the Web server is located on a machine remote from the Application Server, copy the plugin-cfg.xml

file to the remote Web server and replace the file that is there. See the Installing your application serving

environment PDF for information about copying the plugin-cfg.xml and binary plug-in module to a remote

Web server and configuring the Web server to use the files.

HTTP transport collection

Use this page to view or manage HTTP transports. Transports provide request queues between

WebSphere Application Server plug-ins for Web servers and Web containers in which the Web modules of

applications reside. When you request an application in a Web browser, the request is passed to the Web

server, then along the transport to the Web container.

On a distributed platform, if, when migrating from WebSphere Application Server Version 5.x, you indicate

that you want to continue using an HTTP transport to handle your HTTP requests, your Version 5.x

transports are migrated for you. If you are not migrating from Version 5.x, you must set up an HTTP

transport channel to handle your HTTP requests.

To view the HTTP Transport administrative console page, click Servers > Application Servers

>server_name > Web Container Settings > Web Container > HTTP Transports.

the HTTP Transport panel on the administrative console

Host:

Specifies the host IP address to bind for transport. If the application server is on a local machine, the host

name might be localhost.

Port:

 Specifies the port to bind for transport. The port number can be any port that currently is not in use on the

system. The port number must be unique for each application server instance on a given machine.

For distributed platforms, there is no limit to the number of HTTP ports that are allowed per process.

SSL Enabled:

Specifies whether to protect connections between the WebSphere plug-in and application server with

Secure Sockets Layer (SSL). The default is not to use SSL.

HTTP transport settings

Use this page to view and configure an HTTP transport. The name of the page might be that of an SSL

setting such as DefaultSSLSettings.

On a distributed platform, if, when migrating from Version 5, you indicate that you want to continue using

an HTTP transport to handle your HTTP requests, your Version 5 transports are migrated for you. If you

are not migrating from WebSphere Application Server Version 5.x, you must set up an HTTP transport

channel to handle your HTTP requests.

To view the HTTP Transport panel on the administrative console, click Servers > Application Servers

>server_name > Web Container Settings > Web Container > HTTP Transports >host_name.

Host:

Specifies the host IP address to bind for transport.

128 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

If the application server is on a local machine, the host name might be localhost.

 Data type String

Port:

Specifies the port to bind for transport. Specify a port number between 1 and 65535. The port number

must be unique for each application server on a given machine.

 Data type Integer

Range 1 to 65535

SSL Enabled:

Specifies whether to protect connections between the WebSphere Application Server plug-in and

application server with Secure Sockets Layer (SSL). The default is not to use SSL.

 Data type Boolean

Default false

SSL:

Specifies the Secure Sockets Layer (SSL) settings type for connections between the WebSphere

Application Server plug-in and application server. The options include one or more SSL settings defined in

the Security Center; for example, DefaultSSLSettings, ORBSSLSettings, or LDAPSSLSettings.

 Data type String

Default An SSL setting defined in the Security Center

Transports

A transport is the request queue between a WebSphere Application Server plug-in for Web servers and a

Web container in which the Web modules of an application reside. When a user at a Web browser

requests an application, the request is passed to the Web server, then along the transport to the Web

container.

Transports define the characteristics of the connections between a Web server and an application server,

across which requests for applications are routed. Specifically, they define the connection between the

Web server plug-in and the Web container of the application server.

Administering transports is closely related to administering WebSphere Application Server plug-ins for Web

servers. Indeed, without a plug-in configuration, a transport configuration is of little use.

On a distributed platform, when migrating from WebSphere Application Server Version 5.x, you indicate

that you want to continue using an HTTP transport to handle your HTTP requests, your Version 5.x

transports are migrated for you. If you are not migrating from Version 5.x, you must set up an HTTP

transport channel to handle your HTTP requests.

The internal transport

The internal HTTP transport allows HTTP requests to be routed to the application server directly through a

Web server plug-in. Logging is provided for debug purposes.

Prior to WebSphere Application Server Version 5.0.2, the HTTP transport functionality existed only as a

means of accepting HTTP requests forwarded by an HTTP plug-in that was connected to a Web server. In

Chapter 11. Administering application servers 129

WebSphere Application Server Version 5.0.2, HTTP transport functionality is now a supported internal Web

server. By default, the internal HTTP transport listens for HTTP requests on port 9080 and for HTTPS

requests on port 9443.

For example, use the URL http://localhost:9080/snoop to send requests to the snoop servlet on the

local machine over HTTP and https://localhost:9443/snoop to send requests to the snoop servlet on the

local machine over HTTPS.

The transport configuration is a part of the Web container configuration. You can configure the internal

transport to use ports other than 9080 and 9443. However, you must also adjust your virtual host alias and

what you type into the Web browser.

HTTP transport custom properties

Use this page to set custom properties for an HTTP transport.

On a distributed platform, HTTP transport support is deprecated. Therefore you cannot create a new HTTP

transport. Instead you must create an HTTP transport channel to handle your HTTP requests. If you are a

WebSphere Application Server Version 5.x user who has migrated to Version 6, and during the migration

process you indicated that you want to continue using an HTTP transport to handle your HTTP requests,

your Version 5.x transports are still available for your use.

If you are using HTTP transports, you can set the following custom properties on either the Web Container

or HTTP Transport Custom Properties panel on the administrative console. When set on the Web

container Custom Properties page, all transports inherit the properties. Setting the same properties on a

transport overrides like settings defined for a Web container.

To specify values for these custom properties for a specific transport on the HTTP Transport Custom

Properties page:

1. In the console navigation tree, click Servers > Application Servers >server_name > Web Container

settings > Web Container >HTTP Transport

To specify a custom property:

1. Click on the HOST whose properties you want to set.

2. Under Additional Properties select Custom Properties.

3. On the Custom Properties page, click New.

4. On the settings page, enter the property you want to configure in the Name field and the value you

want to set it to in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

Following is a list of custom properties provided with the Application Server. These properties are not

shown on the settings page for an HTTP transport.

ConnectionIOTimeOut:

Use the ConnectionIOTimeOut property to specify the maximum number of seconds to wait when trying to

read or process data during a request.

 Data type Integer

Default For distributed platforms: 5 seconds

ConnectionKeepAliveTimeout:

130 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Use the ConnectionKeepAliveTimeout property to specify the maximum number of seconds to wait for the

next request on a keep alive connection.

 Data type Integer

MaxConnectBacklog:

Use the MaxConnectBacklog property to specify the maximum number of outstanding connect requests that

the operating system will buffer while it waits for the application server to accept the connections. If a

client attempts to connect when this operating system buffer is full, the connect request will be rejected.

 Set this value to the number of concurrent connections that you would like to allow. Keep in mind that a

single client browser might need to open multiple concurrent connections (perhaps 4 or 5); however, also

keep in mind that increasing this value consumes more kernel resources. The value of this property is

specific to each transport.

 Data type Integer

Default 511

MaxKeepAliveRequests:

Use the MaxKeepAliveRequests property to specify the maximum number of requests which can be

processed on a single keep alive connection. This parameter can help prevent denial of service attacks

when a client tries to hold on to a keep-alive connection. The Web server plug-in keeps connections open

to the application server as long as it can, providing optimum performance.

 Data type Integer

Default For distributed platforms: 100 requests

KeepAliveEnabled:

This property is only valid in a distributed environment. Use the KeepAliveEnabled property to specify

whether or not to keep connections alive

 Data type String

Default true

Trusted:

This property is only valid in a distributed environment. Use the Trusted property to indicate that the

application server can use the private headers that the Web server plug-in adds to requests.

 Data type String

Default false

Configuring error logging for internal Web server HTTP transport

To debug potential problems with using the HTTP transport as an internal Web server, you can use the

following error logging capabilities.

1. Turn error logging on. To turn error logging on, add the following custom property to the HTTP

Transport’s configuration settings, and set the value to false:

Property name: ErrorLogDisable

Value: True/False

Default: Error log is disabled by default

Chapter 11. Administering application servers 131

When you are ready to turn error logging off, set the value of the ErrorLogDisable property back to

true.

2. To specify your own error log file, add the following property to the transport section of the server.xml

file:

Property name: ErrorLog

Value: <filename>

Default: logs/<server instance>/http.log

The error log property is used to specify where to place the error log. For example:<properties

xmi:id=″WebContainer_Property_6″ name=″ErrorLog″ value=″logs/<server instance>/http.log″/>

Note: The error log should appear in each instance of the server.

If you are going to be using error logging for multiple HTTP transports in a single HTTP server,

make sure you specify a unique filename for the error log file associated with each HTTP

transport.

3. Add the LogLevel property to the transport section of the server.xml file to specify the level of

messages to log in the error log file.

Property name: LogLevel

Value: <level> (Levels include: debug, info, warn, error, crit)

Default: warn (warn includes error and crit; debug includes all levels)

Scope: Virtual/Global

Log levels specify the type of message that appears in the error log. The warn, error, and crit

messages are logged by default.

4. Restart the server.

If you have enabled error logging and encounter an error, there should be an error log message in the

error log file you specified.

Configuring access logging for internal Web server HTTP transport

To debug potential problems with using the HTTP transport as an internal Web server, you can use the

following access logging capabilities.

1. Turn access logging on. To turn access logging on, add the following custom property to the HTTP

Transport’s configuration settings, and set the value to false:

Property name: AccessLogDisable

Values: True/False

Default: Access log is disabled by default

When you are ready to turn access logging off, set the value of the AccessLogDisable property back

to true.

2. To specify your own access log file, add the following property to the transport section of the

server.xml file:

Property name: AccessLog

Value: <filename>

Default Value: logs/<server instance>/http_access.log

The default access log file is logs/<server_instance>/http_access.log. Access log entries should

have the format:

<hostname or IP> <user agent> [<local time> -<status code>] <thread id> <http request> <status code> <bytecount>

Note: If you are going to be using access logging for multiple HTTP transports in a single HTTP

server, make sure you specify a unique filename for the access log file associated with each

HTTP transport.

3. Restart the server.

132 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

If you have enabled access logging, there will be an access log in the location you specified.

Transport chains collection

Use this page to view or manage transport chains. Transport chains enable communication through

transports, or protocol stacks, which are usually socket based.

A transport chain consists of one or more types of channels, each of which supports a different type of I/O

protocol, such as TCP or HTTP. Network ports can be shared among all of the channels within a chain.

The Channel Framework function automatically distributes a request arriving on that port to the correct I/O

protocol channel for processing.

The Transport chains page lists the transport chains defined for the selected application server. Transport

chains represent network protocol stacks operating within this application server.

To view this administrative console page, click Servers > Application servers > server_name > Ports.

Click on View associated transports for the port whose transport chains you want to view.

Name

Specifies a unique identifier for the transport chain. For WebSphere Application Server, transport name

must be unique within a WebSphere Application Server configuration. Click on the name of a transport

chain to change its configuration settings.

Enabled

When set to true, the transport chain is activated at application server startup.

Host

Specifies the host IP address to bind for transport. If the application server is on a local machine, the host

name might be localhost.

Port

Specifies the port to bind for transport. The port number can be any port that currently is not in use on the

system, might be localhost or the wildcard character * (an asterisk). The port number must be unique for

each application server instance on a given machine

SSL Enabled

When set to true, users are notified if there is a channel that enables Secure Sockets Layer (SSL) in the

listed chain. When SSL is enabled, all traffic going through this transport is encrypted and digitally

secured.

Transport chain settings

This page lists the types of transport channels configured for the selected transport chain. A transport

chain consists of one or more types of channels, each of which supports a different type of I/O protocol,

such as TCP, HTTP, or DCS.

To view this administrative console page, click Servers > Application servers > server_name > Ports.

Click on View associated transports for the port whose transport chains you want view and then click on

the name of a specific chain.

Name

Specifies the name of the selected transport chain.

You can edit this field to rename this transport chain. However, remember that the name must be unique

within a WebSphere Application Server configuration.

Enabled

When checked, this transport chain is activated at application server startup.

Chapter 11. Administering application servers 133

Transport channels

Lists the transport channels configured for this transport chain and their configuration settings. To change

a transport channel’s configuration settings, click on the name of that transport channel.

HTTP tunnel transport channel settings

Use this page to view and configure an HTTP tunnel transport channels. Inbound connections sent

through this channel are tunneled over HTTP, allowing intermediates to view this data as the body of an

HTTP message instead of in its natural format. This type of channel is often used to circumvent firewalls

with protocol restrictions.

To view this administrative console page, click Servers > Application servers >server_name > Ports .

Click on View associated transports for the port associated with the HTTP Tunnel transport channel

whose settings you want to look at.

Transport channel name

Specifies the name of the HTTP tunnel transport channel.

This name must be unique across all channels in a WebSphere Application Server environment. For

example DCS and TCP transport channels cannot have the same name if they reside within the same

system.

Discrimination weight

Specifies the priority this channel has in relation to the other channels in this transport chain. This property

is only used when port sharing is enabled and the channel chain includes multiple channels to which it

might forward data. The channel in the chain with the lowest discrimination weight is the first one given the

opportunity to look at incoming data and determine whether or not it owns that data.

 Data type Positive integer

Default 10

HTTP transport channel settings

Use this page to view and configure an HTTP transport channel. This type of transport channel handles

HTTP requests from a remote client.

An HTTP transport channel parses HTTP requests and then finds an appropriate application channel to

handle the request and send a response.

To view this administrative console page, click Servers > Application servers >server_name > Ports .

Click on View associated transports for the port associated with the HTTP transport channel whose

settings you want to look at.

Transport channel name

Specifies the name of the HTTP transport channel.

This name must be unique across all channels in a WebSphere Application Server environment. For

example, an HTTP transport channel and a TCP transport channel cannot have the same name if they

reside within the same system.

Discrimination weight

Specifies the priority this channel has in relation to the other channels in this transport chain. This property

is only used when port sharing is enabled and the channel chain includes multiple channels to which it

might forward data. The channel in the chain with the lowest discrimination weight is the first one given the

opportunity to look at incoming data and determine whether or not it owns that data.

134 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Data type Positive integer

Default 10

Maximum persistent requests

Specifies the maximum number of persistent (keep-alive) requests that are allowed on a single HTTP

connection. If a value of 0 (zero) is specified, only one request is allowed per connection. If a value of -1 is

specified, an unlimited number of requests is allowed per connection.

 Data type Integer

Default 100

Use Keep-Alive

When selected, the HTTP transport channel, when sending an outgoing HTTP message, uses a persistent

connection (keep-alive connection) instead of a connection that closes after one request or response

exchange occurs.

Note: If a value other than 0 is specified for the maximum persistent requests property, the Use

Keep-Alive property setting is ignored.

The default for this property is selected.

Read timeout

Specifies the amount of time, in seconds, the HTTP transport channel waits for a read request to complete

on a socket after the first read request occurs. The read being waited for could be an HTTP body (such as

a POST) or part of the headers if they were not all read as part of the first read request on the socket.

 Data type Integer

Default 60 seconds

Write timeout

Specifies the amount of time, in seconds, that the HTTP transport channel waits on a socket for each

portion of response data to be transmitted. This timeout usually only occurs in situations where the writes

are lagging behind new requests. This can occur when a client has a low data rate or the server’s network

interface card (NIC) is saturated with I/O.

 Data type Integer

Default 60 seconds

Persistent timeout

Specifies the amount of time, in seconds, that the HTTP transport channel allows a socket to remain idle

between requests.

 Data type Integer

Default 30 seconds

Enable NCSA access logging

When selected, the HTTP transport channel performs NCSA access and error logging. Enabling NCSA

access and error logging slows server performance.

To configure NCSA access and error logging, click HTTP error and NCSA access logging under Related

Items. Even if HTTP error and NCSA access logging is configured, it is not enabled unless the Enable

NCSA access logging property is selected.

Chapter 11. Administering application servers 135

The default value for the Enable NCSA access logging property is not selected.

TCP transport channel settings

Use this page to view and configure an TCP transport channels. This type of transport channel handles

inbound TCP/IP requests from a remote client.

To view this administrative console page, click Servers > Application servers >server_name > Ports > .

Click on View associated transports for the port associated with the TCP transport channel whose

settings you want to view.

Transport channel name

Specifies the name of the TCP transport channel.

This name must be unique across all channels in a WebSphere Application Server environment. For

example, a TCP transport channel and an HTTP transport channel cannot have the same name if they

reside within the same system.

Port

Specifies the TCP/IP port this transport channel uses to establish connections between a client and an

application server. The TCP transport channel binds to the hostnames and ports listed for the Port

property. You can specify the wildcard * (an asterisk), for the hostname if you want this channel to listen to

all hosts that are available on this system. However, before specifying the wildcard value, make sure this

TCP transport channel does not have to bind to a specific hostname.

Thread pool

Select from the drop-down list of available thread pools the thread pool you want the TCP transport

channel to use when dispatching work.

Maximum open connections

Specifies the maximum number of connections that can be open at one time.

 Data type Integer between 1 and 20,000 inclusive

Default 20,000

Inactivity timeout

Specifies the amount of time, in seconds, that the TCP transport channel waits for a read or write request

to complete on a socket.

Note: The value specified for this property might be overridden by the wait times established for channels

above this channel. For example, the wait time established for an HTTP transport channel overrides

the value specified for this property for every operation except the initial read on a new socket.

 Data type Integer

Default 60 seconds

Address exclude list

Lists the IP addresses that are not allowed to make inbound connections. Use a comma to separate the

IPv4 or IPv6 or both addresses to which you want to deny access on inbound TCP connection requests.

All four numeric values in an IPv4 address must be represented by a number or the wildcard character *

(an asterisk).

Following are examples of valid IPv4 addresses that can be included in an Address exclude list:

136 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

*.1.255.0

254.*.*.9

1.*.*.*

All eight numeric values of an IPv6 address must be represented by a number or the wildcard character *

(an asterisk). No shortened version of the IPv6 address should be used. Even though a shortened version

is processed with no error given, it does not function correctly in this list. Each numeric entry should be a

1- 4 digit hexadecimal number.

Following are examples of valid IPv6 addresses that can be included in an Address exclude list:

0:*:*:0:007F:0:0001:0001

F:FF:FFF:FFFF:1:01:001:0001

1234:*:4321:*:9F9f:*:*:0000

Note: The Address include list and Host name include list are processed before the Address exclude

list and the Host name exclude list. If all four lists are defined:

v An address that is defined on either inclusion list will be allowed access provided it is not

included on either of the exclusion lists.

v If an address is included in both an inclusion list and in an exclusion list, it will not be allowed

access.

Address include list

Lists the IP addresses that are allowed to make inbound connections. Use a comma to separate the IPv4

or IPv6 or both addresses to which you want to grant access on inbound TCP connection requests.

All four numeric values in an IPv4 address must be represented by a number or the wildcard character *

(an asterisk).

Following are examples of valid IP addresses that can be included in an Address include list:

 *.1.255.0

 254.*.*.9

 1.*.*.*

All eight numeric values of an IPv6 address must be represented by a number or the wildcard character *

(an asterisk). No shortened version of the IPv6 address should be used. Even though a shortened version

is processed with no error given, it does not function correctly in this list. Each numeric entry should be a

1- 4 digit hexadecimal number.

Following are examples of valid IPv6 addresses that can be included in an Address include list:

0:*:*:0:007F:0:0001:0001

F:FF:FFF:FFFF:1:01:001:0001

1234:*:4321:*:9F9f:*:*:0000

Note: The Address include list and Host name include list are processed before the Address exclude

list and the Host name exclude list. If all four lists are defined:

v An address that is defined on either inclusion list will be allowed access provided it is not

included on either of the exclusion lists.

v If an address is included in both an inclusion list and in an exclusion list, it will not be allowed

access.

Host name exclude list

List the host names that are not allowed to make connections. Use a comma to separate the URL

addresses to which you want to deny access on inbound TCP connection requests.

Chapter 11. Administering application servers 137

A URL address can start with the wildcard character * (an asterisk) followed by a period; for example,

*.Rest.Of.Address. If a period does not follow the wildcard character, the asterisk will be treated as a

normal non-wildcard character. The wildcard character can not appear any where else in the address. For

example, ibm.*.com is not a valid hostname.

Following are examples of valid URL addresses that can be included in a Host name exclude list:

*.ibm.com

www.ibm.com

*.com

Note: The Address include list and Host name include list are processed before the Address exclude

list and the Host name exclude list. If all four lists are defined:

v An address that is defined on either inclusion list will be allowed access provided it is not

included on either of the exclusion lists.

v If an address is included in both an inclusion list and in an exclusion list, it is not allowed access.

Host name include list

Lists the host names that are allowed to make inbound connections. Use a comma to separate the URL

addresses to which you want to grant access on inbound TCP connection requests.

A URL address can start with the wildcard character * (an asterisk) followed by a period; for example,

*.Rest.Of.Address. If a period does not follow the wildcard character, the asterisk will be treated as a

normal non-wildcard character. The wildcard character can not appear any where else in the address. For

example, ibm.*.com is not a valid hostname.

Following are examples of valid URL addresses that can be included in a Host name include list:

*.ibm.com

www.ibm.com

*.com

Note: The Address include list and Host name include list are processed before the Address exclude

list and the Host name exclude list. If all four lists are defined:

v An address that is defined on either inclusion list will be allowed access provided it is not

included on either of the exclusion lists.

v If an address is included in both an inclusion list and in an exclusion list, it is not allowed access.

DCS transport channel settings

Use this page to view and configure an DCS transport channels. This type of transport channel handles

inbound Distribution and Consistency Services (DCS) messages.

By default, two channel transport chains are defined for an application server that contains a DCS

channel:

v The chain named DCS contains a TCP and a DCS channel.

v The chain named DCS-Secure contains a TCP, an SSL, and a DCS channel.

Both of these chains terminate in, or use the same TCP channel instance. This TCP channel is associated

with the DCS_UNICAST_ADDRESS port and is not used in any other transport chains. One instance of an

SSL channel is reserved for use in the DCS-Secure chain. It also is not used in any other transport chains.

To view this administrative console page, click Servers > Application servers >server_name > Ports > .

Click on View associated transports for the port associated with the DCS transport channel whose

settings you want to look at.

Transport channel name

Specifies the name of the DCS transport channel.

138 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

This name must be unique across all channels in a WebSphere Application Server environment. For

example DCS and TCP transport channels cannot have the same name if they reside within the same

system.

Discrimination weight

Specifies the priority this channel has in relation to the other channels in this transport chain. This property

is only used when port sharing is enabled and the channel chain includes multiple channels to which it

might forward data. The channel in the chain with the lowest discrimination weight is the first one given the

opportunity to look at incoming data and determine whether or not it owns that data.

The discrimination weight of the DCS channel in a DCS-Secure transport chain should always be less than

the discrimination weight of the SSL channel that is in that chain. Other SSL channels in other chains

might have different discrimination values.

 Data type Positive integer

Default 1 for the DCS channel 2 for the SSL channel

Web container transport channel settings

Use this page to view and configure a Web container inbound channel transport. This type of channel

transport handles inbound Web container requests from a remote client.

To view this administrative console page, click Servers > Application servers > server_instance > Web

container settings > Web container transport chains > transport_chain > Web Container Inbound

Channel .

Transport Channel Name

This name must be unique across all channels in a WebSphere Application Server environment. This

means that TCP transport channels and HTTP transport channels cannot have the same name if they

reside within the same system.

Discrimination weight

Specifies the priority that this transport chain has in relation to other transport chains if this transport

channel is shared amongst several transport chains.

Write buffer size

Specifies the amount of content in bytes to buffer unless the servlet explicitly calls flush/close on the

response/writer output stream.

 Data type bytes

Default 9192 bytes

Custom services

A custom service provides the ability to plug into a WebSphere Application Server application server to

define a hook point that runs when the server starts and shuts down.

A developer implements a custom service containing a class that implements a particular interface. The

administrator configures the custom service in the administrative console, identifying the class created by

the developer. When an application server starts, any custom services defined for the application server

are loaded and the server runtime calls their initialize methods.

Chapter 11. Administering application servers 139

Developing custom services

The following restrictions apply to the WebSphere Application Server custom services implementation:

v The init and shutdown methods must return control to the runtime.

v No work is dispatched into the server instance until all custom service initialize methods return.

v The init and shutdown methods are called only once on each service, and once for each operating

system process that makes up the server instance. File I/O is supported.

v Initialization of process level static data, without leaving the process, is supported.

v Only JDBC RMLT (resource manager local transaction) operations are supported. Every unit of work

(UOW) must be completed before the methods return.

v Creation of threads is not supported.

v Creation of sockets and I/O, other than file I/O, is not supported. Running standard J2EE code (client

code, servlets, enterprise beans) is not supported.

v The JTA interface is not available. This feature is available in J2EE server processes and distributed

generic server processes only.

v While the runtime makes an effort to call shutdown, there is no guarantee that shutdown will be called

prior to process termination.

Note that these restrictions apply to the shutdown and init methods equally. Some JNDI operations are

available.

Develop a custom service class that implements the com.ibm.websphere.runtime.CustomService interface.

The properties passed by the application server runtime to the initialize method can include one for an

external file containing configuration information for the service (retrieved with externalConfigURLKey). In

addition, the properties can contain any name-value pairs that are stored for the service, along with the

other system administration configuration data for the service. The properties are passed to the initialize

method of the service as a Properties object.

There is a shutdown method for the interface as well. Both methods of the interface declare that they may

create an exception, although no specific exception subclass is defined. If an exception is created, the

runtime logs it, disables the custom service, and proceeds with starting the server.

As mentioned above, your custom services class must implement the CustomService interface. In addition,

your class must implement the initialize and shutdown methods. Suppose the name of the class that

implements your custom service is ServerInit, your code would declare this class as shown below. The

code below assumes that your custom services class needs a configuration file. It shows how to process

the input parameter in order to get the configuration file. If your class does not require a configuration file,

the code that processes configProperties is not needed.

public class ServerInit implements CustomService

{

/**

* The initialize method is called by the application server run-time when the

* server starts. The Properties object passed to this method must contain all

* configuration information necessary for this service to initialize properly.

*

* @param configProperties java.util.Properties

*/

 static final java.lang.String externalConfigURLKey =

 "com.ibm.websphere.runtime.CustomService.externalConfigURLKey";

 static String ConfigFileName="";

 public void initialize(java.util.Properties configProperties) throws Exception

 {

 if (configProperties.getProperty(externalConfigURLKey) != null)

 {

140 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

ConfigFileName = configProperties.getProperty(externalConfigURLKey);

 }

 // Implement rest of initialize method

 }

/**

* The shutdown method is called by the application server run-time when the

* server begins its shutdown processing.

*

* @param configProperties java.util.Properties

*/

 public void shutdown() throws Exception

 {

 // Implement shutdown method

 }

Custom service collection

Use this page to view a list of services available to the application server and to see whether the services

are enabled. A custom service provides the ability to plug into a WebSphere application server and define

code that runs when the server starts or shuts down.

To view this administrative console page, click Servers > Application servers >server_name. Then, under

Server Infrastructure, click Administration > Custom Services.

External Configuration URL

Specifies the URL for a custom service configuration file.

If your custom services class requires a configuration file, the value provides a fully-qualified path name to

that configuration file. This file name is passed into your custom service class.

Classname

Specifies the class name of the service implementation. This class must implement the Custom Service

interface.

Display Name

Specifies the name of the service.

Enable service at server startup

Specifies whether the server attempts to start and initialize the service when its containing process (the

server) starts. By default, the service is not enabled when its containing process starts.

Custom service settings

Use this page to configure a service that runs in an application server.

To view this administrative console page, click Servers > Application servers >server_name. Then, under

Server Infrastructure, click Administration > Custom services >custom_service_name.

Enable service at server startup:

Specifies whether the server attempts to start and initialize the service when its containing process (the

server) starts. By default, the service is not enabled when its containing process starts.

 Data type Boolean

Default false

External Configuration URL:

Specifies the URL for a custom service configuration file.

Chapter 11. Administering application servers 141

If your custom services class requires a configuration file, specify the fully-qualified path name to that

configuration file for the value. This file name is passed into your custom service class.

 Data type String

Units URL

Classname:

Specifies the class name of the service implementation. This class must implement the Custom Service

interface.

 Data type String

Units Java class name

Display Name:

Specifies the name of the service.

 Data type String

Description:

Describes the custom service.

 Data type String

Classpath:

Specifies the class path used to locate the classes and JAR files for this service.

 Data type String

Units Class path

Process definition

A process definition specifies the run-time characteristics of an application server process.

A process definition can include characteristics such as JVM settings, standard in, error and output paths,

and the user ID and password under which a server runs.

Defining application server processes

To enhance the operation of an application server, you can define command-line information for starting or

initializing an application server process. Such settings define run-time properties such as the program to

run, arguments to run the program, and the working directory.

1. Go to the settings page for a process definition in the administrative console. Click Servers >

Application Servers in the console navigation tree, click on an application server name and then Java

and Process Management > Process Definition. Note that you can also define application server

processes using the wsadmin tool. For more information, see the Administering applications and their

environment PDF.

142 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

2. On the settings page for a process definition, specify the name of the executable to run, any

arguments to pass when the process starts running, and the working directory in which the process will

run. Then click OK.

3. Specify process execution statements for starting or initializing a UNIX process.

4. Specify monitoring policies to track the performance of a process.

5. Specify process logs to which standard out and standard error streams write. Complete this step if you

do not want to use the default file names.

6. Specify name-value pairs for properties needed by the process definition.

7. Stop the application server and then restart the server.

8. Check the application server to ensure that the process definition runs and operates as intended.

Process definition settings

Use this page to view or change settings for a process definition. For WebSphere Application Server, this

page provides command-line information for starting or initializing a process.

To view this administrative console page, click Servers > Application Servers >server_name. Then under

Server Infrastructure click Java Process Management > Process Definition.

Executable Name

This command applies to base WebSphere Application Server only. It specifies the executable name that

is invoked to start the process.

 Data type String

Executable Arguments

This command applies to base WebSphere Application Server only. It specifies the arguments that are

passed to the executable when starting the process.

For example, the executable target program might expect three arguments: arg1 arg2 arg3.

 Data type String

Units Java command-line arguments

Working Directory

Specifies the file system directory that the process uses as its current working directory.

The process uses this directory to determine the locations of input and output files with relative path

names.

Passivated enterprise beans are placed in the current working directory of the application server on which

the beans are running. Make sure the working directory is a known directory under the root directory of the

WebSphere Application Server product.

 Data type String

Process execution settings

Use this page to view or change the process execution settings for a server process that applies to either

an application server, a node agent or a deployment manager.

To view this administrative console page for an application server, click Servers > Application Servers

>server_name. Then, under Server Infrastructure , click Java and Process Management > Process

Execution.

Chapter 11. Administering application servers 143

To view this administrative console page for a node agent, click System Administration > Node agents

>node_agent_name. Then, under Server Infrastructure , click Java and Process Management > Process

Definition > Process Execution.

To view this administrative console page for a deployment manager, click System Administration >

Deployment manager. Then, under Server Infrastructure , click Java and Process Management >

Process Definition > Process Execution.

Process Priority:

Specifies the operating system priority for the process. The administrative process that launches the server

must have root operating system authority in order to honor this setting.

 Data type Integer

Default 20 for WebSphere Application Server on all operating

systems.

UMASK:

Specifies the user mask under which the process runs (the file-mode permission mask).

 Data type Integer

Run As User:

Specifies the user that the process runs as.

 Data type String

Run As Group:

Specifies the group that the process is a member of and runs as.

 On OS/400, the Run As Group setting is ignored.

 Data type String

Run In Process Group:

Specifies a specific process group for the process. This process group is useful for such things as

processor partitioning. A system administrator can assign a process group to run on, for example, 6 of 12

processors. The default (0) is not to assign the process to any specific group.

 On OS/400, the Run In Process Group setting is ignored.

 Data type Integer

Default 0

Process logs settings

Use this page to view or change settings for specifying the files to which standard out and standard error

streams write.

To view this administrative console page, click Servers > Application Servers >server_name. Then,

under Troubleshooting, click Logging and Tracing > Process Logs.

144 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Stdout File Name:

Specifies the file to which the standard output stream is directed. The file name can include a symbolic

path name defined in the variable entries.

 Use the field on the configuration tab to specify the file name. Use the field on the Runtime tab to select a

file for viewing. View the file by clicking View.

Direct server output to the administrative console or to the process that launched the server, by either

deleting the file name or specifying console on the configuration tab.

 Data type String

Units File path name

Stderr File Name:

Specifies the file to which the standard error stream is directed. The file name can include a symbolic path

name defined in the variable entries.

 Use the field on the configuration tab to specify the file name. Use the field on the runtime tab to select a

file for viewing. View the file by clicking View.

 Data type String

Units File path name

Monitoring policy settings

Use this page to view or change settings that control how the node agent monitors and restarts a process.

To view this administrative console page, click Servers > Application Servers >server_name. Then,

under Server Infrastructure, click Java and Process Management > Process Definition > Monitoring

Policy.

Maximum Startup Attempts:

Specifies the maximum number of times to attempt to start the application server before giving up.

 Data type Integer

Ping Interval:

Specifies the frequency of communication attempts between the parent process, such as the node agent,

and the process it has spawned, such as an application server. Adjust this value based on your

requirements for restarting failed servers. Decreasing the value detects failures sooner; increasing the

value reduces the frequency of pings, reducing system overhead.

 Data type Integer

Range Set the value greater than or equal to 0 (zero) and less

than 2147483.

Ping Timeout:

Chapter 11. Administering application servers 145

When a parent process is spawning a child process, such as when a process manager spawns a server,

the parent process pings the child process to see whether the child was spawned successfully. This value

specifies the number of seconds that the parent process should wait (after pinging the child process)

before assuming that the child process failed.

 Data type Integer

Units Seconds

Range Set the value greater than or equal to 0 (zero) and less

than 2147483.

Automatic Restart:

Specifies whether the process should restart automatically if it fails. The default is to restart the process

automatically.

 Data type Boolean

Default true

Node Restart State:

Specifies the desired state for the process after the node completely shuts down and restarts.

 Data type String

Default STOPPED

Range Valid values are STOPPED, RUNNING, or PREVIOUS. If

you want the process to return to its current state after the

node restarts, use PREVIOUS.

Automatically restarting server processes

There are several server processes related to WebSphere Application Server products that the operating

system can monitor and automatically restart when the server processes stop abnormally. This task

describes how to set up these monitored processes.

To set up this function on a Linux or UNIX-based operating system, you must have root authority to edit

the inittab file.

On a Windows operating system, you must belong to the Administrator group and have the following

advanced user rights:

v Act as part of the operating system

v Log on as a service

The Installation wizard grants you the user rights if your user ID is part of the administrator group. If you

are running on a Microsoft Windows 2000 Operating System, the Installation wizard displays a message

that states that although the advanced user rights are now effective, they do not display as effective until

the next time you log on to the Windows machine.

You can also add the advanced user rights manually if you are performing a silent installation on a

Windows platform. For example, to grant the user rights to your administrator group user ID on a Windows

2000 Server platform, perform the following procedure:

 1. Click Administrative Tools in the Control Panel.

 2. Click Local Security Policy.

 3. Click Local Policies.

 4. Click User Rights Assignments.

146 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

5. Right click Act as part of the operating system.

 6. Click Security.

 7. Click Add.

 8. Click your user ID.

 9. Click Add.

10. Click OK.

11. Click OK.

12. Right click Log on as a service.

13. Click Security.

14. Click Add.

15. Click OK.

16. Click OK.

17. Reboot your machine to make the settings effective.

Consult your Windows help system for more information.

You can use this function to automatically restart base servers. You can restart the server1 process, for

example.

You must manually create a shell script that automatically starts any of the processes previously

mentioned, on a Linux and UNIX-based operating system. Each Windows service or UNIX shell script

controls a single process, such as a stand-alone WebSphere Application Server instance. Multiple

stand-alone Application Server processes require multiple Windows service or UNIX scripts, which you can

define.

If you do not install the WebSphere Application Server base product as a Windows service during

installation, you can use the do so at a later time. The operating system can then monitor each server

process and restart the process if it stops.

1. Use the installation wizard to set up a Windows service to automatically monitor and restart

processes related to the WebSphere Application Server product.

v Perform the following procedure from the installation wizard to select services that the installation

wizard can set up:

a. Click Run WebSphere Application Server as a service.

If you select this option, the installation wizard creates the following service during the

installation:

IBMWAS6Service - node_name

The IBMWAS6Service -node_name service controls the node_name process.

After you complete and verify the installation, use the Windows Services panel to change the

IBMWAS6Service -node_name service to an automatic startup type.

1) Right click IBMWAS6Service -node_name and click Properties.

2) Click Automatic from the Startup type list box and click OK.
b. Click Run IBM HTTP Server as a service.

Select this option on the machine where you are installing the IBM HTTP Server.

If you select this option, the installation wizard creates the following services during the

installation:

– IBM HTTP Server 2.0.x

– IBM HTTP Administration 2.0.x

The installation wizard defines the startup type of these services as automatic. It is not

necessary for you to change the type from manual to automatic.

c. Enter your user ID and password and click Next.

Chapter 11. Administering application servers 147

In a coexistence environment, you can change the default service names to make them unique. In a

same version coexistence scenario for IBM HTTP Server 2.0.x on a Windows platform, you cannot

use the default service names created by the installer because they are common.

To work around this problem:

a. Install the first copy of IBM HTTP Server, either by itself or with WebSphere Application Server

and select to install the services.

b. Customize the service names for the first install by running the following commands from the

first install location:

 apache -k install -n "IHS 2.0(1)"

 apache -k install -f conf\admin.conf -n "IHS 2.0 Administration (1)"

c. Edit the AdminAlias directive in the installLocation 1\conf\admin.conf file to point to the new

service name, such as IHS 2.0(1).

d. Remove the default service names installed by the first install by running the following

commands:

 apache -k uninstall -n "IBM HTTP Server 2.0"

 apache -k uninstall -n "IBM HTTP Administration 2.0"

e. Install the second copy of IBM HTTP Server, either by itself or with WebSphere Application

Server. The default service names correspond to the second install.

Note: Customized service names must be unique on your system.

2. After installing, you can use the WASService.exe utility in the install_root\bin directory to manually

define a Windows service for another installation instance or for another configuration instance of the

server1 process.

You can use the net start and net stop commands to control the IBM HTTP Server services on a

Windows system. For more information about these commands, see the Windows help file. Access these

commands from the Start menu, clicking Start > Programs > IBM HTTP Server.

You can also use the Start the Server and Stop the Server commands to control the IBM WebSphere

Application Server process on a Windows system. Access these commands from the Start menu, clicking

Start > Programs > IBM WebSphere > Application Server V6.

Processes started by a startServercommand are not running as monitored processes, regardless of how

you have configured them.

For example, you can configure a server1 process as a monitored process. However, if you start the

server1 process using the startServer command, the operating system does not monitor or restart the

server1 process because the operating system did not originally start the process as a monitored process.

Return to Defining application server processes to continue.

WASService command

The WASService command line tool lets you create a Windows service for any WebSphere Application

Server Java process.

You can create Windows services for WebSphere Application Server Java processes. Potential Windows

services include the following server processes:

v The default server1 process on an application server node

v Application server processes that you create on an application server node

When the installation wizard creates a Windows service, the uninstaller program can remove the Windows

service. If you use the WASService command to create a service yourself, it is your responsibility to

remove the service when it is no longer valid. The uninstaller program does not remove Windows services

that you create with the WASService command.

148 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Location of the command file: The WASService.exe command file is located in the install_root\bin

directory.

Command syntax:

WASService.exe command syntax for starting an existing service

The command syntax is as follows:

WASService.exe [-start] "service_name" [optional startServer.bat parameters]

WASService.exe command syntax for creating a service or updating an existing service

The command syntax is as follows:

WASService.exe -add "service_name"

 -serverName server

 -profilePath server_profile_directory

 [-wasHome install_root]

 [-configRoot configuration_repository_directory]

 [-startArgs additional_start_arguments]

 [-stopArgs additional_stop_arguments]

 [-userid user_id -password password]

 [-logFile service_log_file]

 [-logRoot server_log_directory]

 [-restart true | -restart false]

 [-startType automatic | manual | disabled]

WASService.exe command syntax for deleting a service

The command syntax is as follows:

WASService.exe -remove "service_name"

WASService.exe command syntax for stopping a running service

The command syntax is as follows:

WASService.exe -stop "service_name" [optional stopServer.bat parameters]

WASService.exe command syntax for retrieving service status

The command syntax is as follows:

WASService.exe -status "service_name"

WASService.exe command syntax for encoding parameters

The command syntax is as follows:

WASService.exe -encodeParams "service_name"

Parameters: Supported arguments include:

-add ″service_name″

Creates a service named service_name or updates an existing Windows service. The syntax is the

same for both cases.

-configRoot configuration_repository_directory

Optional parameter that identifies the configuration directory of the installation root directory of a

WebSphere Application Server product.

Chapter 11. Administering application servers 149

-encodeParams service_name

Optional parameter that forces the service to encode the -startArgs and -stopArgs so that the

arguments cannot be determined by editing the registry. Use the parameter when creating a service

with the -add parameter by adding -encodeParams to the command line with no arguments. Or

encode the parameters of an existing service:

WASService -encodeParams service_name

-logFile service_log_file

Optional parameter that identifies a log file that the WASService command uses to record its activity.

-logRoot server_log_directory

Required parameter that identifies the server log directory for the profile. The WASService command

looks for a file named server_name.pid to determine if the server is running.

-profilePath server_profile_directory

Specifies the directory path of the profile that defines the server process.

-remove service_name

Deletes the specified service.

-restart true | false

Restarts the existing service automatically if the service fails when set to true.

-serverName Server_name

Identifies the server that the service controls.

-start ″service_name″ [optional startServer.bat parameters]

Starts the existing service.

-startArgs additional_start_arguments

Optional parameter that identifies additional parameters.

-startType automatic | manual | disabled

Defines the startup type of the new service. An automatic startup type starts automatically when the

system starts or when the service is called for the first time. You must start a manual service before

the operating system can load it and make it available. You cannot start a disabled service before

changing the startup type.

-status service_name

Returns the current status of the service, which includes whether the service is running or stopped.

-stop service_name [optional stopServer.bat parameters]

Stops the specified service.

-stopArgs additional_stop_arguments

Optional parameter that identifies additional parameters.

-userid user_ID -password password

Optional parameters that identify a privileged user ID and password that the Windows service will run

as.

-wasHome install_root

Optional parameter that identifies the installation root directory of the WebSphere Application Server

product.

Default names for Windows services that are created by the wizard: The name of the Windows

service that is created by the Installation wizard is IBM WebSphere Application Server V6 - DefaultNode.

Viewing the Windows services panel: To view Windows services, open the Control panel and click

Administrative Tools > Services. Select a service to view information about it. Right click the service and

click Properties. Four tabs provide information and functionality. For example, select the Setup type field

on the General tab to change the setup type.

150 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Examples:

Creating an Application Server service

This example creates a service called IBM WebSphere Application Server V6 - server2 that starts an

Application Server process:

WASService -add server2

 -servername server2

 -profilePath "C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile"

 -wasHome "C:\Program Files\IBM\WebSphere\AppServer"

 -logfile "C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile\logs\startNode.log"

 -logRoot "C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile\logs"

 -restart true

After entering the command, messages that are similar to those in the following example display in the

command window:

Adding Service: server2

 Config Root: C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile\config

 Server Name: server2

 Profile Path: C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile

 Was Home: C:\Program Files\IBM\WebSphere\AppServer\

 Start Args:

 Restart: 1

IBM WebSphere Application Server V6 - server2 service successfully added.

Updating an existing Application Server service

This example updates an existing service called IBM WebSphere Application Server V6 - server2 with

additional stop arguments, username and password. The user name and password are required by the

stopServer command to stop the application server with security enabled.

WASService -add server2

 -servername server2

 -profilePath "C:\Program Files\IBM\WebSphere\AppServer\

 profiles\CustomProfile"

 -stopArgs "-username user_name -password password"

 -encodeParams server2

Starting and stopping a server process after creating a Windows service: If you issue the

startServer server1 command or the stopServer server1 after creating a Windows service for server1, a

message that is similar to the following example displays:

Because server1 is registered to run as a Windows Service, the

request to start this server will be completed by starting the

associated Windows Service.

Stopping a server after enabling security

If you enable security while a Windows service is running, you cannot stop the server from the command

line, even when using the username and password parameters on the stopServer command. A message

similar to the following example is displayed:

Could not stop the IBM WebSphere Application Server V6 -

server_name service on Local Computer. The service

did not return an error. This could be an internal Windows

error or an internal service error. If the problem persists,

contact your system administrator.

Chapter 11. Administering application servers 151

The problem is due to the service control of the process. You must change the service to use the proper

stop-server arguments for a secure server.

Use the -stopArgs parameter and the -encodeParams parameter to update the service as described in the

″Updating an existing application server service″ example.

Java virtual machines (JVMs)

The Java virtual machine (JVM) is an interpretive computing engine responsible for running the byte codes

in a compiled Java program. The JVM translates the Java byte codes into the native instructions of the

host machine. The application server, being a Java process, requires a JVM in order to run, and to support

the Java applications running on it. JVM settings are part of an application server configuration.

Using the JVM

As part of configuring an application server, you might define settings that enhance your system’s use of

the Java virtual machine (JVM).

To view and change the JVM configuration for an application server’s process, use the Java Virtual

Machine page of the administrative console or use the wsadmin tool to change the configuration through

scripting.

1. Access the Java Virtual Machine page.

a. Click Servers > Application Servers in the console navigation tree.

b. On the Application Server page, click on the name of the server whose JVM settings you want to

configure.

c. On the settings page for the selected application server, click Java and Process Management >

Process Definition.

d. On the Process Definition page, click Java Virtual Machine.

2. On the Java Virtual Machine page, specify values for the JVM settings as needed and click OK.

3. Click Save on the console task bar.

4. Restart the application server.

″“Configuring application servers for UTF-8 encoding” on page 110″ provides an example that involves

specifying a value for the Generic JVM Arguments property on the Java Virtual Machine page to enable

UTF-8 encoding on an application server. Enabling UTF-8 allows multiple language encoding support to be

used in the administrative console.

″“Configuring JVM sendRedirect calls to use context root” on page 156″ provides an example that involves

defining a property for the JVM.

Java virtual machine settings

Use this page to view and change the Java virtual machine (JVM) configuration for the application server’s

process.

To view this administrative console page, click Servers > Application Servers >server_name > Process

Definition > Java Virtual Machine.

Classpath

Specifies the standard class path in which the Java virtual machine code looks for classes.

Enter each classpath entry into a table row. You do not need to add the colon or semicolon at the end of

each entry.

152 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Data type String

Units Class path

Boot Classpath

Specifies bootstrap classes and resources for JVM code. This option is only available for JVM instructions

that support bootstrap classes and resources. You can separate multiple paths by a colon (:) or semi-colon

(;), depending on operating system of the node.

 Data type String

Verbose Class Loading

Specifies whether to use verbose debug output for class loading. The default is not to enable verbose

class loading.

 Data type Boolean

Default false

Verbose Garbage Collection

Specifies whether to use verbose debug output for garbage collection. The default is not to enable verbose

garbage collection.

 Data type Boolean

Default false

Verbose JNI

Specifies whether to use verbose debug output for native method invocation. The default is not to enable

verbose Java Native Interface (JNI) activity.

 Data type Boolean

Default false

Initial Heap Size

Specifies the initial heap size available to the JVM code, in megabytes.

Increasing the minimum heap size can improve startup. The number of garbage collection occurrences are

reduced and a 10% gain in performance is realized.

Increasing the size of the Java heap improves throughput until the heap no longer resides in physical

memory, in general. After the heap begins swapping to disk, Java performance suffers drastically.

 Data type Integer

Default The default is 50.

Maximum Heap Size

Specifies the maximum heap size available to the JVM code, in megabytes.

Increasing the heap size can improve startup. By increasing heap size, you can reduce the number of

garbage collection occurrences with a 10% gain in performance.

Increasing the size of the Java heap improves throughput until the heap no longer resides in physical

memory, in general. After the heap begins swapping to disk, Java performance suffers drastically. Set the

maximum heap size low enough to contain the heap within physical memory.

Chapter 11. Administering application servers 153

Data type Integer

Default 0 for iSeries, 256 for all other platforms. Keep the value

low enough to avoid paging or swapping-out-memory-to-
disk.

Run HProf

This setting applies to base WebSphere Application Server only. It specifies whether to use HProf profiler

support. To use another profiler, specify the custom profiler settings using the HProf Arguments setting.

The default is not to enable HProf profiler support.

If you set the Run HProf property to true, then you must specify command-line profiler arguments as

values for the HProf Arguments property.

 Data type Boolean

Default false

HProf Arguments

This setting applies to base WebSphere Application Server only. It specifies command-line profiler

arguments to pass to the JVM code that starts the application server process. You can specify arguments

when HProf profiler support is enabled.

HProf arguments are only required if the Run HProf property is set to true.

 Data type String

Debug Mode

Specifies whether to run the JVM in debug mode. The default is not to enable debug mode support.

If you set the Debug Mode property to true, then you must specify command-line debug arguments as

values for the Debug Arguments property.

 Data type Boolean

Default false

Debug Arguments

Specifies command-line debug arguments to pass to the JVM code that starts the application server

process. You can specify arguments when Debug Mode is enabled.

Debug arguments are only required if the Debug Mode property is set to true. If you enable debugging on

multiple application servers on the same server, make sure that the servers are using different address

arguments, which define the port for debugging. For example, if you enable debugging on two servers and

leave the default debug port for each server as address=7777, the servers could fail to start properly.

 Data type String

Units Java command-line arguments

Generic JVM Arguments

Specifies command line arguments to pass to the Java virtual machine code that starts the application

server process.

The following are optional command line arguments that you can use by entering them into the General

JVM Arguments field. If you enter more than one argument, separate each argument by a space.

154 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Note: If the argument says it is for the IBM Developer Kit only, you cannot use the argument with another

JVM, such as the Sun JDK or the HP JDK.

v -Xquickstart: You can use -Xquickstart for initial compilation at a lower optimization level than in

default mode. Later, depending on sampling results, you can recompile to the level of the initial compile

in default mode. Use -Xquickstart for applications where early moderate speed is more important than

long run throughput. In some debug scenarios, test harnesses and short-running tools, you can improve

startup time between 15-20%.

The -Xquickstart option is not supported on OS/400.

v -Xverify:none: When using this value, the class verification stage is skipped during class loading . By

using -Xverify:none with the just in time (JIT) compiler enabled, startup time is improved by 10-15%.

The -Xverify:none option is not supported on OS/400.

v -Xnoclassgc: You can use this value to disable class garbage collection, which leads to more class

reuse and slightly improved performance. The trade-off is that you won’t be collecting the resources

owned by these classes. You can monitor garbage collection using the verbose:gc configuration setting,

which will output class garbage collection statistics. Examining these statistics will help you understand

the trade-off between the reclaimed resources and the amount of garbage collection required to reclaim

the resources. However, if the same set of classes are garbage collected repeatedly in your workload,

you should disable garbage collection. Class garbage collection is enabled by default.

v -Xgcthreads: You can use several garbage collection threads at one time, also known as parallel

garbage collection. When entering this value in the Generic JVM Arguments field, also enter the

number of processors that your machine has, for example, -Xgcthreads=number_of_processors. On a

node with n processors, the default number of threads is n. You should use parallel garbage collection if

your machine has more than one processor. This argument is valid only for the IBM Developer Kit.

The -Xgcthreads option is not supported on OS/400.

v -Xnocompactgc: This value disables heap compaction which is the most expensive garbage collection

operation. Avoid compaction in the IBM Developer Kit. If you disable heap compaction, you eliminate all

associated overhead.

v -Xinitsh: You can use this value to set the initial heap size where class objects are stored. The method

definitions and static fields are also stored with the class objects. Although the system heap size has no

upper bound, set the initial size so that you do not incur the cost of expanding the system heap size,

which involves calls to the operating system memory manager. You can compute a good initial system

heap size by knowing the number of classes loaded in the WebSphere Application Server product,

which is about 8,000 classes, and their average size. Having knowledge of the applications helps you

include them in the calculation. You can use this argument only with the IBM Developer Kit.

v -Xgpolicy: You can use this value to set the garbage collection policy. If the garbage collection policy

(gcpolicy) is set to optavgpause, concurrent marking is used to track application threads starting from

the stack before the heap becomes full. The garbage collector pauses become uniform and long pauses

are not apparent. The trade-off is reduced throughput because threads might have to do extra work.

The default, recommended value is optthruput. Enter the value as

-Xgcpolicy:[optthruput|optavgpause]. You can use this argument only with the IBM Developer Kit.

v -XX: The Sun-based Java Development Kit (JDK) Version 1.4.2 has generation garbage collection,

which allows separate memory pools to contain objects with different ages. The garbage collection cycle

collects the objects independently from one another depending on age. With additional parameters, you

can set the size of the memory pools individually. To achieve better performance, set the size of the

pool containing short lived objects so that objects in the pool do not live through more then one garbage

collection cycle. The size of new generation pool is determined by the NewSize and MaxNewSize

parameters. Objects that survive the first garbage collection cycle are transferred to another pool. The

size of the survivor pool is determined by parameter SurvivorRatio. If garbage collection becomes a

bottleneck, you can try customizing the generation pool settings. To monitor garbage collection statistics,

use the object statistics in Tivoli Performance Viewer or the verbose:gc configuration setting. Enter the

following values: -XX:NewSize (lower bound) , -XX:MaxNewSize (upper bound), and

-XX:SurvivorRatio=NewRatioSize. The default values are:NewSize=2m MaxNewSize=32m SurvivorRatio=2

However, if you have a JVM with more than 1 GB heap size, you should use the values:

-XX:newSize=640m -XX:MaxNewSize=640m -XX:SurvivorRatio=16, or set 50 to 60% of total heap size to a

new generation pool.

Chapter 11. Administering application servers 155

The -XX option is not supported on OS/400.

v -Xminf: You can use this value to specify the minimum free heap size percentage. The heap grows if

the free space is below the specified amount. In reset enabled mode, this option specifies the minimum

percentage of free space for the middleware and transient heaps. This is a floating point number, 0

through 1. The default is .3 (30%).

v -server | -client: Java HotSpot Technology in the Sun-based Java Development Kit (JDK) Version 1.4.2

introduces an adaptive JVM containing algorithms for optimizing byte code execution over time. The

JVM runs in two modes, -server and -client. If you use the default -client mode, there will be a faster

startup time and a smaller memory footprint, but lower extended performance. You can enhance

performance by using -server mode if a sufficient amount of time is allowed for the HotSpot JVM to

warm up by performing continuous execution of byte code. In most cases, use -server mode, which

produces more efficient run-time execution over extended periods. You can monitor the process size

and the server startup time to check the difference between -client and-server.

The -server | -client option is not supported on OS/400.

 Data type String

Units Java command line arguments

Executable JAR File Name

Specifies a full path name for an executable JAR file that the JVM code uses.

 Data type String

Units Path name

Disable JIT

Specifies whether to disable the just in time (JIT) compiler option of the JVM code.

If you disable the JIT compiler, throughput decreases noticeably. Therefore, for performance reasons, keep

JIT enabled.

 Data type Boolean

Default false (JIT enabled)

Recommended JIT enabled

Operating System Name

Specifies JVM settings for a given operating system. When started, the process uses the JVM settings for

the operating system of the server.

 Data type String

Configuring JVM sendRedirect calls to use context root

If the com.ibm.websphere.sendredirect.compatibility property is not set and your application servlet code

has statements such as sendRedirect(″/home.html″), your Web browser might display messages such as

Error 404: No target servlet configured for uri: /home.html. To instruct the server not to use the Web

server’s document root and to use instead the Web application’s context root for sendRedirect() calls,

configure the JVM by setting the com.ibm.websphere.sendredirect.compatibility property to a true or false

value.

1. Access the settings page for a property of the JVM.

a. Click Servers > Application Servers in the console navigation tree.

b. On the Application Server page, click on the name of the server whose JVM settings you want to

configure.

156 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

c. On the settings page for the selected application server, under Server Infrastructure, click Java and

Process Management > Process Definition.

d. On the Process Definition page, click Java Virtual Machine.

e. On the Java Virtual Machine page, click Custom Properties.

f. On the Custom Properties page, click New.

2. On the settings page for a property, specify a name of

com.ibm.websphere.sendredirect.compatibility and either true or false for the value, then click OK.

3. Click Save on the console task bar.

4. Stop the application server and then restart the application server.

Setting custom JVM properties

In the WebSphere Application Server administrative console, you can change the values of the following

custom JVM properties:

com.ibm.websphere.network.useMultiHome

 For a distributed platform:

 Set this property in a multihomed environment where WebSphere Application Server is restricted

to listen only on a specific IP address for Discovery and SOAP messages.

 The settings for the com.ibm.websphere.network.useMultiHome property are as follows:

v Setting this property to false specifies that WebSphere Application Server will listen on all IP

addresses on the host for Discovery and SOAP messages.

v Setting this property to true specifies that WebSphere Application Server will only listen on the

configured host name for Discovery and SOAP messages. If you set this property to true, you

should have a host name configured on WebSphere Application Server that resolves to a

specific IP address.

v Setting this property to null specifies that WebSphere Application Server will only listen on the

default IP address only.

If you cannot contact the server, check the setting for

com.ibm.websphere.network.useMultihome to ensure it is correct.

 You can change the value through the administrative console. Modify the defaults by setting the

value for the server, deployment manager, and node agent. In order for these changes to take

place, you must restart the server.

 Steps for this task

1. To set this property, connect to the administrative console and navigate to the indicated page.

 Application server Servers > Application Servers >server1> Process

Definition >Control > Java Virtual Machine > Custom

Properties

Deployment manager System Administration > Deployment Manager >

Process definition > Control > Java Virtual Machine >

Custom Properties

Node agent System Administration >Node Agent > nodeagent >

Process definition >Control > Java Virtual Machine >

Custom Properties

2. If the com.ibm.websphere.network.useMultiHome property is not present in the list, create a

new property name and indicate its value.

3. Restart the server.

Chapter 11. Administering application servers 157

com.ibm.websphere.deletejspclasses

Deletes JavaServer Pages classes for all applications after those applications have been deleted

or updated. By default, the value of this property is true.

 Steps for this task

1. Connect to the administrative console and navigate to the Java Virtual Machine Custom

Properties panel.

For a distributed platform:

 Base configuration Servers > Application Servers >server1. Then, under

Server Infrastructure, click Java and Process

Management > Process definition > Java Virtual

Machine > Custom Properties

ND configuration System Administration > Node Agents >nodeagent.

Then, under Server Infrastructure, click Java and

Process Management > Process definition > Java

Virtual Machine > Custom Properties

2. If the com.ibm.websphere.deletejspclasses property is not present in the list, create a new

property name.

3. Enter the name and value.

com.ibm.websphere.deletejspclasses.delete

Deletes JavaServer Pages classes for all applications after those applications have been deleted,

but not after they have been updated. By default, the value of this property is true.

 Steps for this task

1. Connect to the administrative console and navigate to the Java Virtual Machine Custom

Properties panel.

For a distributed platform:

 Base configuration Servers > Application Servers >server1 > Process

definition > Java Virtual Machine > Custom Properties

ND configuration System Administration > Node Agents >nodeagent.

Then, under Server Infrastructure, click Java and

Process Management > Process definition > Java

Virtual Machine > Custom Properties

2. If the com.ibm.websphere.deletejspclasses.delete property is not present in the list, create a

new property name.

3. Enter the name and value.

com.ibm.websphere.deletejspclasses.update

Deletes JavaServer Pages classes for all applications after those applications have been updated,

but not after they have been deleted. By default, the value of this property is true.

 Steps for this task

1. Connect to the administrative console and navigate to the Java Virtual Machine Custom

Properties panel.

For a distributed platform:

 Base configuration Servers > Application Servers >server1. Then, under

Server Infrastructure, click Java and Process

Management > Process definition > Java Virtual

Machine > Custom Properties

158 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

ND configuration System Administration > Node Agents >nodeagent.

Then, under Server Infrastructure, click Java and

Process Management > Process definition > Java

Virtual Machine> Custom Properties

2. If the com.ibm.websphere.deletejspclasses.update property is not present in the list, create

a new property name.

3. Enter the name and value.

Tuning Java virtual machines

The application server, being a Java process, requires a Java virtual machine (JVM) to run, and to support

the Java applications running on it. As part of configuring an application server, you can fine-tune settings

that enhance system use of the JVM. In addition to the following tuning parameters, see also “Java

memory tuning tips” on page 160.

Use the following JVM parameters, including garbage collection options for IBM Developer Kit 1.4.2, to

tune the Java virtual machine. For instructions on view and change the JVM configuration , go to “Using

the JVM” on page 152. For information on specifying any of the following settings, go to “Java virtual

machine settings” on page 152.

v Specify any or all of the following generic JVM arguments. These optional command line arguments

are passed to the Java virtual machine code that starts the application server process.

– Quickstart (-Xquickstart)

– Avoiding class verification (-Xverify:none)

– Class garbage collection (-Xnoclassgc)

– Garbage collection threads (-Xgcthreads)

– Garbage collection policy (-Xgcpolicy)

– Sun JDK 1.4.2 Generational Garbage Collection (-XX)

You can find more information about generational garbage collection at

http://java.sun.com/docs/hotspot/gc/index.html.

– Sun Java Development Kit 1.4.2 HotSpot JVM warm-up (-server)

– Heap compaction (-Xnocompactgc)

– Initial system heap size (-Xinitsh)

v Set the initial heap size.

v Set the maximum heap size.

Preparing to host applications

Rather than use the default application server provided with the product, you can configure a new server

and set of resources.

The default application server and a set of default resources are available to help you begin quickly. You

can choose instead to configure a new server and set of resources. Here is what you need to do in order

to set up a run-time environment to support applications.

 1. Create an application server.

 2. Create a virtual host.

 3. Configure a Web container. See the Developing and deploying applications PDF for information on

how to perform this task.

 4. Configure an EJB container. See the Developing and deploying applications PDF for information on

how to perform this task.

 5. Create resources for data access. See the Developing and deploying applications PDF for information

on how to perform this task.

Chapter 11. Administering application servers 159

http://java.sun.com/docs/hotspot/gc/index.html

6. Create a JDBC provider and data source. See the Developing and deploying applications PDF for

information on how to perform this task.

 7. Create a URL and URL provider. See the Developing and deploying applications PDF for information

on how to perform this task.

 8. Create a JavaMail session. See the Developing and deploying applications PDF for information on

how to perform this task.

 9. Create resources for session support. See the Developing and deploying applications PDF for

information on how to perform this task.

10. Configure a Session Manager. See the Developing and deploying applications PDF for information on

how to perform this task.

Java memory tuning tips

Enterprise applications written in the Java language involve complex object relationships and utilize large

numbers of objects. Although, the Java language automatically manages memory associated with object

life cycles, understanding the application usage patterns for objects is important. In particular, verify the

following:

v The application is not over-utilizing objects

v The application is not leaking objects

v The Java heap parameters are set properly to handle a given object usage pattern

Understanding the effect of garbage collection is necessary to apply these management techniques.

The garbage collection bottleneck

Examining Java garbage collection gives insight to how the application is utilizing memory. Garbage

collection is a Java strength. By taking the burden of memory management away from the application

writer, Java applications are more robust than applications written in languages that do not provide

garbage collection. This robustness applies as long as the application is not abusing objects. Garbage

collection normally consumes from 5% to 20% of total execution time of a properly functioning application.

If not managed, garbage collection is one of the biggest bottlenecks for an application, especially when

running on symmetric multiprocessing (SMP) server machines. The Java virtual machine (JVM) uses a

parallel garbage collector to fully exploit an SMP during most garbage collection cycles where the Sun

HotSpot 1.3.1 JVM has a single-threaded garbage collector. For more information about garbage collection

in a Solaris operating environment see the Troubleshooting and support PDF.

The garbage collection gauge

You can use garbage collection to evaluate application performance health. By monitoring garbage

collection during the execution of a fixed workload, you gain insight as to whether the application is

over-utilizing objects. Garbage collection can even detect the presence of memory leaks.

You can monitor garbage collection statistics using object statistics in the Tivoli Performance Viewer, or

using the verbose:gc JVM configuration setting. The verbose:gc format is not standardized between

different JVMs or release levels. For a description of the IBM verbose:gc output and more information

about the IBM garbage collector, see the Troubleshooting and support PDF.

For this type of investigation, set the minimum and maximum heap sizes to the same value. Choose a

representative, repetitive workload that matches production usage as closely as possible, user errors

included.

To ensure meaningful statistics, run the fixed workload until the application state is steady. It usually takes

several minutes to reach a steady state.

Detecting over-utilization of objects

160 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

You can use the Tivoli Performance Viewer to check if the application is overusing objects, by observing

the counters for the JVM runtime. You have to set the -XrunpmiJvmpiProfiler command line option, as

well as the JVM module maximum level in order to enable the Java virtual machine profiler interface

(JVMPI) counters. The best result for the average time between garbage collections is at least 5-6 times

the average duration of a single garbage collection. If you do not achieve this number, the application is

spending more than 15% of its time in garbage collection.

If the information indicates a garbage collection bottleneck, there are two ways to clear the bottleneck. The

most cost-effective way to optimize the application is to implement object caches and pools. Use a Java

profiler to determine which objects to target. If you can not optimize the application, adding memory,

processors and clones might help. Additional memory allows each clone to maintain a reasonable heap

size. Additional processors allow the clones to run in parallel.

Detecting memory leaks

Memory leaks in the Java language are a dangerous contributor to garbage collection bottlenecks.

Memory leaks are more damaging than memory overuse, because a memory leak ultimately leads to

system instability. Over time, garbage collection occurs more frequently until the heap is exhausted and

the Java code fails with a fatal Out of Memory exception. Memory leaks occur when an unused object has

references that are never freed. Memory leaks most commonly occur in collection classes, such as

Hashtable because the table always has a reference to the object, even after real references are deleted.

High workload often causes applications to crash immediately after deployment in the production

environment. This is especially true for leaking applications where the high workload accelerates the

magnification of the leakage and a memory allocation failure occurs.

The goal of memory leak testing is to magnify numbers. Memory leaks are measured in terms of the

amount of bytes or kilobytes that cannot be garbage collected. The delicate task is to differentiate these

amounts between expected sizes of useful and unusable memory. This task is achieved more easily if the

numbers are magnified, resulting in larger gaps and easier identification of inconsistencies. The following

list contains important conclusions about memory leaks:

v Long-running test

Memory leak problems can manifest only after a period of time, therefore, memory leaks are found

easily during long-running tests. Short running tests can lead to false alarms. It is sometimes difficult to

know when a memory leak is occurring in the Java language, especially when memory usage has

seemingly increased either abruptly or monotonically in a given period of time. The reason it is hard to

detect a memory leak is that these kinds of increases can be valid or might be the intention of the

developer. You can learn how to differentiate the delayed use of objects from completely unused objects

by running applications for a longer period of time. Long-running application testing gives you higher

confidence for whether the delayed use of objects is actually occurring.

v Repetitive test

In many cases, memory leak problems occur by successive repetitions of the same test case. The goal

of memory leak testing is to establish a big gap between unusable memory and used memory in terms

of their relative sizes. By repeating the same scenario over and over again, the gap is multiplied in a

very progressive way. This testing helps if the number of leaks caused by the execution of a test case is

so minimal that it is hardly noticeable in one run.

You can use repetitive tests at the system level or module level. The advantage with modular testing is

better control. When a module is designed to keep the private module without creating external side

effects such as memory usage, testing for memory leaks is easier. First, the memory usage before

running the module is recorded. Then, a fixed set of test cases are run repeatedly. At the end of the test

run, the current memory usage is recorded and checked for significant changes. Remember, garbage

collection must be suggested when recording the actual memory usage by inserting System.gc() in the

module where you want garbage collection to occur, or using a profiling tool, to force the event to occur.

v Concurrency test

Chapter 11. Administering application servers 161

Some memory leak problems can occur only when there are several threads running in the application.

Unfortunately, synchronization points are very susceptible to memory leaks because of the added

complication in the program logic. Careless programming can lead to kept or unreleased references.

The incident of memory leaks is often facilitated or accelerated by increased concurrency in the system.

The most common way to increase concurrency is to increase the number of clients in the test driver.

Consider the following points when choosing which test cases to use for memory leak testing:

– A good test case exercises areas of the application where objects are created. Most of the time,

knowledge of the application is required. A description of the scenario can suggest creation of data

spaces, such as adding a new record, creating an HTTP session, performing a transaction and

searching a record.

– Look at areas where collections of objects are used. Typically, memory leaks are composed of

objects within the same class. Also, collection classes such as Vector and Hashtable are common

places where references to objects are implicitly stored by calling corresponding insertion methods.

For example, the get method of a Hashtable object does not remove its reference to the retrieved

object.

Tivoli Performance Viewer can help find memory leaks. For best results, repeat experiments with

increasing duration, like 1000, 2000, and 4000-page requests. The Tivoli Performance Viewer graph of

used memory should have a sawtooth shape. Each drop on the graph corresponds to a garbage

collection. There is a memory leak if one of the following occurs:

v The amount of memory used immediately after each garbage collection increases significantly. The

sawtooth pattern looks more like a staircase.

v The sawtooth pattern has an irregular shape.

Also, look at the difference between the number of objects allocated and the number of objects freed. If

the gap between the two increases over time, there is a memory leak.

Heap consumption indicating a possible leak during a heavy workload (the application server is

consistently near 100% CPU utilization), yet appearing to recover during a subsequent lighter or near-idle

workload, is an indication of heap fragmentation. Heap fragmentation can occur when the JVM can free

sufficient objects to satisfy memory allocation requests during garbage collection cycles, but the JVM does

not have the time to compact small free memory areas in the heap to larger contiguous spaces.

Another form of heap fragmentation occurs when small objects (less than 512 bytes) are freed. The

objects are freed, but the storage is not recovered, resulting in memory fragmentation until a heap

compaction has been run.

To avoid heap fragmentation, turn on the -Xcompactgc flag in the JVM advanced settings command line

arguments. The -Xcompactgc function verifies that each garbage collection cycle eliminates fragmentation.

However, compaction is a relatively expensive operation. See the heap compaction command line

argument (-Xnocompactgc) in “Java virtual machine settings” on page 152 for more information.

Java heap parameters

The Java heap parameters also influence the behavior of garbage collection. Increasing the heap size

supports more object creation. Because a large heap takes longer to fill, the application runs longer before

a garbage collection occurs. However, a larger heap also takes longer to compact and causes garbage

collection to take longer. Refer to the sections on Java Heap sizes in “Java virtual machine settings” on

page 152 for more information.

For performance analysis, the initial and maximum heap sizes should be equal.

When tuning a production system where the working set size of the Java application is not understood, a

good starting value for the initial heap size is 25% of the maximum heap size. The JVM then tries to adapt

the size of the heap to the working set size of the application.

162 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

The illustration represents three CPU profiles, each running a fixed workload with varying Java heap

settings. In the middle profile, the initial and maximum heap sizes are set to 128MB. Four garbage

collections occur. The total time in garbage collection is about 15% of the total run. When the heap

parameters are doubled to 256MB, as in the top profile, the length of the work time increases between

garbage collections. Only three garbage collections occur, but the length of each garbage collection is also

increased. In the third profile, the heap size is reduced to 64MB and exhibits the opposite effect. With a

smaller heap size, both the time between garbage collections and the time for each garbage collection are

shorter. For all three configurations, the total time in garbage collection is approximately 15%. This

example illustrates an important concept about the Java heap and its relationship to object utilization.

There is always a cost for garbage collection in Java applications.

Run a series of test experiments that vary the Java heap settings. For example, run experiments with

128MB, 192MB, 256MB, and 320MB. During each experiment, monitor the total memory usage. If you

expand the heap too aggressively, paging can occur. Use the vmstat command or the Windows NT or

Windows 2000 Performance Monitor to check for paging. If paging occurs, reduce the size of the heap or

add more memory to the system. When all the runs are finished, compare the following statistics:

v Number of garbage collection calls

v Average duration of a single garbage collection call

v Ratio between the length of a single garbage collection call and the average time between calls

If the application is not over-utilizing objects and has no memory leaks, the state of steady memory

utilization is reached. Garbage collection also occurs less frequently and for short duration.

If the heap free space settles at 85% or more, consider decreasing the maximum heap size values

because the application server and the application are under-utilizing the memory allocated for heap.

For more information about garbage collection see the Troubleshooting and support PDF.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Configuring multiple network interface card support

Use this task to first prepare your server for multiple network interface card support and enable multiple

network interface card logic, including configuring multiple network interface cards to coexist on the same

machine.

1. Configure object request broker (ORB) properties to support multiple network interface cards.

v Set the com.ibm.CORBA.LocalHost property to resolve to a valid host name or IP address. The value

should not resolve to a local host or loop back address (for example, 127.0.0.1).

a. In the administrative console, click Servers > Application servers > server_name > Java and

process management > Process Definition > Java Virtual Machine.

b. Add the following generic JVM argument: Add this argument as a single line. It is split here for

printing purposes.

-Dcom.ibm.CORBA.LocalHost=xxxx.xx.xx.xx -Dcom.ibm.websphere.network.useMultiHome=

 false -Dcom.ibm.CORBA.ServerSocketQueueDepth=50 -Dcom.ibm.ws.orb.transport

 .useMultiHome=false

2. Update the host name for all HTTP transport chains. In the administrative console, click Servers >

Application servers > server_name > Web container settings > Web container transport chains.

Update the host name for all of the transport chains listed on this page. The value should not resolve

to a local host or loop back address (for example, 127.0.0.1).

3. Change the initial state to stopped for each of the listener ports. In the administrative console, click:

Chapter 11. Administering application servers 163

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCY
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCY
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCY&q=mustgather

v Servers > Application servers > server_name > Messaging > Message listener service >

Listener ports > SamplePtoPListenerPort

v Servers > Application servers > server_name > Messaging > Message Listener Service >

Listener Ports > SamplePubSubListenerPort

Update the state to stopped for each port.

4. Change the initial state of the JMS server to stopped. In the administrative console, click Servers >

JMS Servers >JMS_server > Initial state > stopped.

5. Apply these changes to all application servers and the deployment manager.

By completing these steps, you enabled multiple network interface card support.

To configure multiple application servers to coexist on a single machine that is using two network interface

cards, perform the following steps:

1. Install the WebSphere Application Server base product for each network interface card. To install on

distributed platforms, see the Installing your application serving environment PDF for more information.

2. Start the server that is on the first network interface card. Follow the preceding steps in this task to

prepare this server for multiple network interface card support and enable multiple network interface

card logic. After you complete this step, stop the server.

3. Start the server that is on the other network interface card. Follow the preceding steps in this task to

prepare this server for multiple network interface card support and enable multiple network interface

card logic. After you complete this step, stop the server.

4. Start the servers on both network interface cards.

By completing these steps, you enabled multiple application servers to coexist on a single machine that

has two network interface cards.

Tuning application servers

The WebSphere Application Server contains interrelated components that must be harmoniously tuned to

support the custom needs of your end-to-end e-business application.

This group of interrelated components is known as the queuing network. The queuing network helps the

system achieve maximum throughput while maintaining the overall stability of the system.

The follow steps describe various tuning tasks that may improve your application server performance. You

can choose to implement any of these application server settings.

v Tune the object request broker. An Object Request Broker (ORB) manages the interaction between

clients and servers, using the Internet InterORB Protocol (IIOP). It supports client requests and

responses received from servers in a network-distributed environment. You can tune the ORB with the

following parameters:

– Set Pass by reference (com.ibm.CORBA.iiop.noLocalCopies) as described in the Developing and

deploying applications PDF.

– Set the Connection cache minimum (com.ibm.CORBA.MaxOpenConnections) as described in

the Developing and deploying applications PDF.

– Set Maximum size as described in the Developing and deploying applications PDF.

– Set com.ibm.CORBA.ServerSocketQueueDepth as described in the Developing and deploying

applications PDF.

– Set the com.ibm.CORBA.FragmentSize as described in the Developing and deploying applications

PDF.

The the Developing and deploying applications PDF offer tips on using these parameters to tune the

ORB.

v Tune the XML parser definitions.

164 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

– Description: Facilitates server startup by adding XML parser definitions to the jaxp.properties and

xerxes.properties files in the ${install_root}/jre/lib directory. The XMLParserConfiguration value

might change as new versions of Xerces are provided.

– How to view or set: Insert the following lines in both files:

javax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFactoryImpl

javax.xml.parsers.DocumentBuildFactory=org.apache.xerces.jaxp.

 DocumentBuilderFactoryImpl

org.apache.xerces.xni.parser.XMLParserConfiguration=org.apache.xerces.parsers.

 StandardParserConfiguration

– Default value: None

– Recommended value: None

v Tune the dynamic cache service. Using the dynamic cache service can improve performance. See the

Developing and deploying applications PDF for information about using the dynamic cache service and

how it can affect your application server performance.

v Tune the Web container. The WebSphere Application Server Web container manages all HTTP

requests to servlets, JSPs and Web services. Requests flow through a transport chain to the Web

container. The transport chain defines the important tuning parameters for performance for the Web

container. There is a transport chain for each TCP port that WebSphere Application Server is listening

on for HTTP requests. For example, the default HTTP port 9080 is defined in Web container inbound

channel chain. Use the following parameters to tune the Web container:

– HTTP requests are processed by a pool of server threads. The minimum and maximum thread pool

size for the Web container can be configured for optimal performance. Generally, 5 to 10 threads per

server CPU will provide the best throughput. The number of threads configured does not represent

the number of requests WebSphere can process concurrently. Requests are queued in the transport

chain when all threads are busy. To specify the thread pool settings:

1. Click Servers > Application Servers >server_name Web Container Settings> Web Container

> Web container transport chains.

2. Select the normal inbound chain for serving requests. This will usually be named

WCInboundDefault, on port 9080.

3. Click TCP Inbound Channel (TCP_2).

4. Set Thread Pools under Related Items.

5. Select WebContainer.

6. Enter values for Minimum Size and Maximum Size.
– The HTTP 1.1 protocol provides a ″keep-alive″ feature to enable the TCP connection between HTTP

clients and the server to remain open between requests. By default WebSphere Application Server

will close a given client connection after a number of requests or a timeout period. After a connection

is closed, it will be recreated if the client issues another request. Early closure of connections can

reduce performance. Enter a value for the maximum number of persistent requests to (keep-alive) to

specify the number of requests that are allowed on a single HTTP connection. Enter a value for

persistent timeouts to specify the amount of time, in seconds, that the HTTP transport channel allows

a socket to remain idle between requests. To specify values for Maximum persistent requests and

Persistent timeout:

1. Click Servers > Application Servers >server_name Web Container Settings> Web Container

> Web container transport chains.

2. Select the normal inbound chain for serving requests. This will usually be named

WCInboundDefault, on port 9080.

3. Click HTTP Inbound Channel (HTTP_2).

4. Enter values for Maximum persistent requests and Persistent timeout.

v Tune the EJB container. An EJB container is automatically created when you create an application

server. After the EJB container is deployed, you can use the following parameters to make adjustments

that improve performance.

– Set the Cleanup interval and the Cache size as described in the Developing and deploying

applications PDF.

– Break CMP enterprise beans into several enterprise bean modules while Assembling EJB

modules. See the Developing and deploying applications PDF for more information on how to

perform this task.

Chapter 11. Administering application servers 165

v Tune the session management. The installed default settings for session management are optimal for

performance. See the Developing and deploying applications PDF for more information about tuning

session management.

v Tune the data sources. A data source is used to access data from the database. The following

parameters reveal how the number of physical connections within a connection pool can change

performance.

– Set the Maximum connection pool and Minimum connection pool as described in the Developing

and deploying applications PDF.

– Set the Statement cache size as described in the Developing and deploying applications PDF.

Web services client to Web container optimized communication

To improve performance, there is an optimized communication path between a Web services client

application and a Web container that are located in the same application server process. Requests from

the Web services client that are normally sent to the Web container using a network connection are

delivered directly to the Web container using an optimized local path. The local path is available because

the Web services client application and the Web container are running in the same process.

This direct communication eliminates the need for clients and web containers that are in the same process

to communicate over the network. For example, a Web services client might be running in an application

server. Instead of accessing the network to communicate with the Web container, the Web services client

can communicate with the Web container using the optimized local path. This optimized local path

improves the performance of the application server by allowing Web services clients and Web containers

to communicate without using network transports.

In a clustered environment, there is typically an HTTP server (such as IBM HTTP server) that handles

incoming client requests, distributing them to the correct application server in the cluster. The HTTP server

uses information about the requested application and the defined virtual hosts to determine which

application server receives the request. The Web services client also uses the defined virtual host

information to determine whether the request can be served by the local Web container. You must define

unique values for the host and port on each application server. You cannot define the values of host and

port as wild cards denoted by the asterisk symbol (*) when you enable the optimized communication

between the Web services application and the Web container. Using wild cards indicate that the local Web

container can handle Web services requests for all destinations.

The optimized local communication path is disabled by default. You can enable the local communication

path with the enableInProcessConnections custom property. Before configuring this custom property, make

sure that you are not using wild cards for host names in your Web container end points. Set this property

to true in the Web container to enabled the optimized local communication path. When disabled, the Web

services client and the Web container communicate using network transports.

For information about how to configure the enableInProcessConnections custom property, see the

Developing and deploying applications PDF.

When the optimized local communication path is enabled, logging of requests through the local path uses

the same log attributes as the network channel chain for the Web container. To use a different log file for

in process requests than the log file for network requests, use a custom property on the HTTP Inbound

Channel in the transport chain. Use the inProcessLogFilenamePrefix custom property to specify a string

that is added to the beginning of the network log file name to create a file name that is unique. Requests

through the local process path are logged to this specified file. For example, if the log filename is

../httpaccess.log for a network chain, and the inProcesslLogFilenamePrefix custom property is set to

“local” on the HTTP channel in that transport chain, the local log file name for requests to the host

associated with that chain is /localhttpaccess.log.

166 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Application servers: Resources for learning

Use the following links to find relevant supplemental information about configuring application servers. The

information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of

the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

v Programming instructions and examples

v Programming specifications

v Administration

Programming instructions and examples

v WebSphere Application Server education at http://www.ibm.com/software/webservers/learn/.

Programming specifications

v The JavaTM Virtual Machine Specification, Second Edition at http://java.sun.com/docs/books/vmspec/.

v Sun’s technology forum for the JavaTM Virtual Machine Specification at

http://forum.java.sun.com/forum.jsp?forum=37

Administration

v Listing of all IBM WebSphere Application Server Redbooks at http://publib-
b.boulder.ibm.com/Redbooks.snf/Portals/WebSphere.

Chapter 11. Administering application servers 167

http://www.ibm.com/software/webservers/learn/
http://java.sun.com/docs/books/vmspec/
http://forum.java.sun.com/forum.jsp?forum=37
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

168 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Licensing

 IBM Corporation

 500 Columbus Avenue

 Thornwood, New York 10594 USA

© Copyright IBM Corp. 2004 169

170 IBM WebSphere Application Server, Version 6: Setting up the application serving environment

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site (http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2004 171

	Contents
	How to send your comments
	Chapter 1. Overview for setting up application serving environments
	Setting up WebSphere Application Server products
	Introduction: System administration
	Introduction: Administrative console
	Introduction: Administrative scripting (wsadmin)
	Introduction: Administrative commands
	Introduction: Administrative programs
	Introduction: Administrative configuration data

	Introduction: Servers
	Introduction: Application servers
	Introduction: Web servers

	Introduction: Environment

	Chapter 2. How do I administer applications and their environments?
	Chapter 3. Setting up the application serving environment
	Chapter 4. Planning the installation (diagrams)
	Planning to install WebSphere Application Server
	Planning to install Web server plug-ins
	Planning to install WebSphere Application Server Clients
	Planning to create application server environments
	Queuing network
	Queuing and clustering
	Queue configuration tips

	Chapter 5. Configuring the product after installation
	firststeps command
	Using the Profile creation wizard
	Using the Profile creation wizard to create an application server
	Deleting a profile

	wasprofile command
	Introduction to terms that describe Version 6 profiles
	Core product files
	WebSphere Application Server profile
	Installed file set
	The profile repository

	Location of the command file
	Logging
	Required disk space
	Concurrent profile creation
	Entering lengthy commands on more than one line
	wasprofile.sh command syntax
	wasprofile.bat command syntax
	Parameters
	Use case scenarios
	Scenario: Deleting a profile
	Scenario: Using predefined port numbers
	Scenario: Incrementing default port numbers from a starting point
	Scenario: Setting up and using the profile environment
	Scenario: Profile creation for a non-root user

	Using the installation verification test
	ivt command

	Chapter 6. Configuring ports
	Port number settings in WebSphere Application Server versions

	Chapter 7. Communicating with Web servers
	Web server plug-in properties settings
	Plug-in log file name
	Plug-in installation location
	Plug-in configuration file name
	Automatically generate plug-in configuration file
	Automatically propagate plug-in configuration file
	Ignore DNS failures during Web server startup
	Refresh configuration interval
	Plug-in logging
	Web server plug-in request and response optimization properties settings
	Maximum chunk size used when reading the response body
	Enable Nagle algorithm for connections to the Application Server
	Enable Nagle Algorithm for the IIS Web Server
	Chunk response to the client
	Accept content for all requests
	Virtual host matching
	Application server port preference
	Priority used by the IIS Web server when loading the plug-in configuration file

	Web server plug-in caching properties settings
	Enable Edge Side Include (ESI) processing to cache the responses
	Enable invalidation monitor to receive notifications
	Maximum cache size

	Web server plug-in request routing properties settings
	Load balancing option
	Retry interval
	Maximum size of request content
	Remove special headers
	Clone separator change

	Web server plug-in custom properties
	Web server plug-in configuration service properties settings
	Enable automated Web server configuration processing

	Application Server property settings for a Web server plug-in
	Server role
	Connect timeout
	Maximum number of connections that can be handled by the Application Server
	Use extended handshake to check whether Application Server is running
	Send the header "100 Continue" before sending the request content

	Web server plug-in configuration properties
	Web server plug-in connections
	Web server plug-in remote user information processing
	Web server plug-ins
	Checking your IBM HTTP Server version
	Web server tuning parameters
	Gskit install images files
	Plug-ins: Resources for learning
	Web server plug-in tuning tips
	Tuning Web servers

	Chapter 8. Setting up the administrative architecture
	Administration service settings
	Standalone
	Preferred Connector
	Extension MBean Providers collection
	Extension MBean Provider settings

	Extension MBean collection
	Extension MBean settings

	Java Management Extensions connector properties
	Java Management Extensions connectors
	Type
	JMX connector settings

	Repository service settings
	Audit Enabled

	Administrative agents: Resources for learning

	Chapter 9. Configuring the environment
	Virtual hosts
	Why you would use virtual hosting
	The default virtual host (default_host)
	How requests map to virtual host aliases

	Configuring virtual hosts
	Virtual host collection
	Name
	Virtual host settings
	Host alias collection
	MIME type collection

	Variables
	Configuring WebSphere variables
	WebSphere variables collection
	Name
	Value
	Scope
	Variable settings

	IBM Toolbox for Java JDBC driver
	Configure and use the jt400.jar file

	Shared library files
	Managing shared libraries
	Creating shared libraries
	Shared library collection
	Name
	Description
	Shared library settings

	Associating shared libraries with applications
	Associating shared libraries with servers
	Installed optional packages
	Using installed optional packages
	Library reference collection
	Library name
	Library reference settings

	Environment: Resources for learning

	Chapter 10. Working with server configuration files
	Configuration documents
	Configuration document descriptions
	Object names
	Configuration repositories
	Handling temporary configuration files resulting from session timeout
	Changing the location of temporary configuration files
	Changing the location of backed-up configuration files
	Changing the location of temporary workspace files
	Backing up and restoring administrative configurations
	Transformation of configuration files
	Server configuration files: Resources for learning

	Chapter 11. Administering application servers
	Application servers
	Creating application servers
	Configuring application servers for UTF-8 encoding

	Managing application servers
	Server collection
	Name
	Node
	Version
	Status
	Application server settings
	Generic server settings

	Starting servers
	Running application servers from a non-root user
	Detecting and handling problems with run-time components
	Stopping servers

	Creating generic servers
	Starting and terminating generic servers

	Configuring transport chains
	Transport chains
	HTTP transport channel custom property
	HTTP Tunnel transport channel custom property
	Troubleshooting transport chain problems
	Configuring HTTP transports
	HTTP transport collection
	HTTP transport settings
	Transports
	HTTP transport custom properties
	Configuring error logging for internal Web server HTTP transport
	Configuring access logging for internal Web server HTTP transport

	Transport chains collection
	Name
	Enabled
	Host
	Port
	SSL Enabled

	Transport chain settings
	Name
	Enabled
	Transport channels

	HTTP tunnel transport channel settings
	Transport channel name
	Discrimination weight

	HTTP transport channel settings
	Transport channel name
	Discrimination weight
	Maximum persistent requests
	Use Keep-Alive
	Read timeout
	Write timeout
	Persistent timeout
	Enable NCSA access logging

	TCP transport channel settings
	Transport channel name
	Port
	Thread pool
	Maximum open connections
	Inactivity timeout
	Address exclude list
	Address include list
	Host name exclude list
	Host name include list

	DCS transport channel settings
	Transport channel name
	Discrimination weight

	Web container transport channel settings
	Transport Channel Name
	Discrimination weight
	Write buffer size

	Custom services
	Developing custom services
	Custom service collection
	External Configuration URL
	Classname
	Display Name
	Enable service at server startup
	Custom service settings

	Process definition
	Defining application server processes
	Process definition settings
	Executable Name
	Executable Arguments
	Working Directory
	Process execution settings
	Process logs settings
	Monitoring policy settings

	Automatically restarting server processes
	WASService command

	Java virtual machines (JVMs)
	Using the JVM
	Java virtual machine settings
	Classpath
	Boot Classpath
	Verbose Class Loading
	Verbose Garbage Collection
	Verbose JNI
	Initial Heap Size
	Maximum Heap Size
	Run HProf
	HProf Arguments
	Debug Mode
	Debug Arguments
	Generic JVM Arguments
	Executable JAR File Name
	Disable JIT
	Operating System Name

	Configuring JVM sendRedirect calls to use context root
	Setting custom JVM properties
	Tuning Java virtual machines

	Preparing to host applications
	Java memory tuning tips
	Configuring multiple network interface card support
	Tuning application servers
	Web services client to Web container optimized communication
	Application servers: Resources for learning

	Notices
	Trademarks and service marks

