
WebSphere® WebSphere Extended Deployment Version 6.0.x

ObjectGrid programming model guide

���

Note

Before using this information, be sure to read the general information under “Notices” on page 359.

Compilation date: February 13, 2006

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments vii

Chapter 1. Getting started with ObjectGrid by running the sample

application . 1

Running the ObjectGrid sample application on the command line 1

Starting the standalone sample ObjectGrid cluster 4

Importing and using the ObjectGrid sample application in Eclipse 5

Loading and running the ObjectGrid sample application with WebSphere

Extended Deployment . 7

Starting a sample ObjectGrid cluster in the WebSphere environment 9

Starting an ObjectGrid server in an application server 9

Chapter 2. ObjectGrid . 13

Chapter 3. ObjectGrid overview 17

ObjectGrid in a single Java virtual machine (JVM) 17

Distributed ObjectGrid . 18

ObjectGrid cluster initialization 20

ObjectGrid configuration with XML 20

Bootstrapping . 21

ObjectGrid clients in a distributed ObjectGrid environment 22

ObjectGrid clustering concepts 23

High availability overview . 27

ObjectGrid clustering configuration sets 28

ObjectGrid clients contacting multiple ObjectGrid clusters 33

ObjectGrid client near caching support 34

ObjectGrid transaction demarcation 34

ObjectGrid relationship to databases 35

Chapter 4. ObjectGrid tutorial : application programming model 37

Getting started with remote ObjectGrid 40

System programming model overview 40

System programming model overview: ObjectGrid interface plug points and

features . 42

System programming model overview: BackingMap interface plug points and

features . 44

System programming model overview: Session interface features 52

System programming model overview: ObjectMap interface features 53

Chapter 5. ObjectGrid samples 57

Chapter 6. ObjectGrid packaging 61

Chapter 7. System management overview 65

Start the ManagementGateway process 66

ObjectGrid managed beans (MBeans) 70

Chapter 8. Command line support 79

Start ObjectGrid servers . 79

Stop ObjectGrid servers . 83

Start the management gateway server 84

Password encoding . 86

© Copyright IBM Corp. 2004, 2005 iii

Chapter 9. ObjectGrid application programming interface overview 87

ObjectGridManager interface . 87

createObjectGrid methods . 87

getObjectGrid methods . 90

removeObjectGrid methods 91

getObjectGridAdministrator method 91

Use the ObjectGridManager interface to control the life cycle of an ObjectGrid

instance . 92

Trace ObjectGrid . 93

ObjectGrid client connect APIs 94

ObjectGrid interface . 100

BackingMap interface . 105

Session interface . 109

ObjectMap and JavaMap interfaces 113

Keywords . 117

LogElement and LogSequence objects 119

Locking . 123

Pessimistic locking . 124

Optimistic locking . 129

None BackingMap locking strategy 130

ObjectGrid security . 131

ObjectGrid security overview 131

Client server security . 136

Local ObjectGrid security . 155

Authorization . 161

ObjectGrid cluster security 170

Gateway security . 174

Security integration with WebSphere Application Server 176

Listeners . 177

Evictors . 182

Loaders . 191

Loader considerations . 197

ObjectTransformer plug-in . 202

TransactionCallback plug-in . 207

OptimisticCallback interface . 213

Replication programming . 217

Partitioning . 224

Indexing . 226

ObjectGrid configuration . 249

Local ObjectGrid configuration 249

Distributed ObjectGrid configuration 261

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 279

Integrating ObjectGrid in a Java 2 Platform, Enterprise Edition environment 279

Local ObjectGrid scenario 280

Distributed ObjectGrid scenario 281

Building ObjectGrid-enabled Java 2 Platform, Enterprise Edition applications 281

Considerations for the integration of Java 2 Platform, Enterprise Edition

applications and ObjectGrid 282

Monitoring ObjectGrid performance with WebSphere Application Server

performance monitoring infrastructure (PMI) 283

ObjectGrid statistics . 283

Enabling ObjectGrid PMI . 286

Retrieving ObjectGrid PMI statistics 288

ObjectGrid and external transaction interaction 289

Integrating ObjectGrid and the partitioning facility 292

iv IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

ObjectGrid and the partitioning facility 293

Installing and running the ObjectGridPartitionCluster sample application 295

Building an integrated ObjectGrid and partitioning facility application 298

Example: ObjectGrid and partitioning facility programming 301

Configuring ObjectGrid to work with container-managed beans 313

Chapter 11. ObjectGrid performance best practices 315

Locking performance best practices 315

copyMode method best practices 316

ObjectTransformer interface best practices 320

Plug-in evictor performance best practices 321

Default evictor best practices 323

Chapter 12. Distributing changes between peer Java virtual machines 325

Java Message Service for distributing transaction changes 328

Chapter 13. Injection-based container integration 331

Chapter 14. Troubleshooting 333

Intermittent and unexplained errors 333

General exception handling technique 333

Specific exception handling techniques 334

Optimistic collision exception 334

LockTimeoutException exception 335

LockDeadlockException . 337

XML configuration problem diagnosis 339

Missing a required attribute . 340

Missing a required element . 341

XML value of attribute is not valid 342

Validating XML without support of an implementation 344

ObjectGrid messages . 344

Notices . 359

Trademarks and service marks 361

Contents v

vi IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information.

v To send comments on articles in the WebSphere Extended Deployment

Information Center, available at:

http://www.ibm.com/software/webservers/appserv/extend/library/

1. Display the article in your Web browser and scroll to the end of the article.

2. Fill out the Feedback link at the bottom of the article and submit.

v To send comments on this or another PDF books, you can e-mail your comments

to: wasdoc@us.ibm.com.

Be sure to include the document name and number, and, if applicable, the

specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any

obligation to you.

© Copyright IBM Corp. 2004, 2005 vii

viii IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 1. Getting started with ObjectGrid by running the

sample application

Use this topic to get started with ObjectGrid, a distributed computing framework that

makes objects available to a set of applications.

WebSphere Extended Deployment Version 6.0 or later and WebSphere Application

Server Version 6.0.2 or later must be installed on at least one machine in your

environment.

Restriction: If you are using ObjectGrid with WebSphere Extended Deployment

Version 6.0, additional licensing arrangements are required to also

use ObjectGrid in a Java 2 Platform, Standard Edition (J2SE) Version

1.4.2 or higher environment or in a WebSphere Application Server

Version 6.02 or higher environment. Contact your sales representative

for details.

If you want to develop ObjectGrid applications without accessing server machines

that have WebSphere Extended Deployment installed, you can run them on your

local machine. The local machine requires the installation of an IBM Software

Developer Kit (SDK) or Eclipse.

To develop ObjectGrid applications on your local machine, copy the following

directories from your installation to your local machine:

v If you are using WebSphere Extended Deployment Version 6.0.1, copy the

/lib/wsobjectgrid.jar file and the

/optionalLibraries/ObjectGrid/objectgridSamples.jar file to your working directory.

v If you installed ObjectGrid through the mixed server environment installation,

copy the /ObjectGrid/lib/objectgrid.jar and the

/ObjectGrid/samples/objectgridSamples.jar files to your working directory.

For more information about the Java archive (JAR) files that are installed with

ObjectGrid, see ObjectGrid packaging.

Use this task to run and step through ObjectGrid sample applications. You can run

the applications in this task in a Java command line, Eclipse, or Java 2 Platform,

Enterprise Edition (J2EE) environment.

v To get the ObjectGrid sample application running on the command line, see

Running the ObjectGrid sample application on the command line.

v To run the ObjectGrid sample application in Eclipse, see Importing and using the

ObjectGrid sample application in Eclipse.

v To run the ObjectGrid sample application on WebSphere Extended Deployment,

see Loading and running the ObjectGrid sample application with WebSphere

Extended Deployment

You got started with ObjectGrid by running the sample application and loading the

sample into your development environment.

Running the ObjectGrid sample application on the command line

Use this topic to run ObjectGrid-enabled applications on a Java command line and

test your ObjectGrid configuration.

© Copyright IBM Corp. 2004, 2005 1

Before you begin this task, install the mixed server environment, including the

standalone ObjectGrid.

You must have a Software Development Kit (SDK) installed. You also must have

access to the ObjectGrid sample applications. See Getting started with ObjectGrid

for more information.

Use this task to quickly run an application with ObjectGrid enabled.

1. Check your Software Development Kit (SDK) version. ObjectGrid requires an

IBM SDK 1.4.2 or higher. To test your Java environment before running the

ObjectGrid sample application, perform the following steps:

a. Open a command-line prompt.

b. Type the following command:

java -version

If the command runs correctly, text similar to the following example displays:

java version "1.4.2"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)

Classic VM (build 1.4.2, J2RE 1.4.2 IBM Windows 32 build cn142-20040820

(JIT enabled: jitc))

Note: You can also run these samples using a Java 2 Platform, Standard

Edition (J2SE) Version 1.3.x Software Development Kit (SDK). For

more information, see ObjectGrid packaging.

If an error displays, ensure that the SDK is installed and is in your

CLASSPATH.

2. Run the ObjectGrid sample application. The sample application illustrates a

simple case that involves employees, offices, and work locations. The sample

application creates an ObjectGrid instance with maps for each object type. Each

map has entries inserted and manipulated to demonstrate the ObjectGrid

caching function.

a. Open a command line and navigate to the working directory. Copy the

objectgrid.jar, asm.jar, and cglib.jar files from the /ObjectGrid/lib folder to a

working directory. Copy the /ObjectGrid/samples/objectgridSamples.jar to the

working directory.

b. Issue the following command:

cd working_directory

java -cp "objectgrid.jar;objectgridSamples.jar;asm.jar;cglib.jar"

 com.ibm.websphere.samples.objectgrid.basic.ObjectGridSample

The system displays output that is similar to the following text. This output

has been shortened for publishing purposes:

Initializing ObjectGridSample ...

resourcePath: META−INF/objectgrid−definition.xml

objectgridUrl:

 jar:file:/C:/temp/objg/objectgridSample.jar!/

 META−INF/objectgrid−definition.xml

EmployeeOptimisticCallback returning version object for employee

 = Perry Cheng, version = 0

EmployeeOptimisticCallback returning version object for employee =

 Hao Lee, version = 0

EmployeeOptimisticCallback returning version object for employee =

 Ken Huang, version = 0

EmployeeOptimisticCallback returning version object for employee =

 Jerry Anderson, version = 0

EmployeeOptimisticCallback returning version object for employee =

 Kevin Bockhold, version = 0

2 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

−−−

com.ibm.websphere.samples.objectgrid.basic.ObjectGridSample status:

ivObjectGrid Name = clusterObjectGrid

ivObjectGrid = com.ibm.ws.objectgrid.ObjectGridImpl@187b81e4

ivSession = com.ibm.ws.objectgrid.SessionImpl@6b0d81e4

ivEmpMap = com.ibm.ws.objectgrid.ObjectMapImpl@6b1841e4

ivOfficeMap = com.ibm.ws.objectgrid.ObjectMapImpl@6ba081e4

ivSiteMap = com.ibm.ws.objectgrid.ObjectMapImpl@6bae01e4

ivCounterMap = com.ibm.ws.objectgrid.ObjectMapImpl@697b41e4

−−−

interactiveMode = false

Action = populateMaps

CounterOptimisticCallback returning version object for

 counter name = Counter1, version = 0

CounterOptimisticCallback returning version object for

 counter name = Counter2, version = 0

CounterOptimisticCallback returning version object for

 counter name = Counter3, version = 0

ivCounterMap operations committed

ivOfficeMap operations committed

... ending with:

CounterOptimisticCallback returning version object for

 counter name = Counter1, version = 0

EmployeeOptimisticCallback returning version object for employee =

 Ken Huang, version = 0

CounterOptimisticCallback returning version object for

 counter name = Counter2, version = 0

EmployeeOptimisticCallback returning version object for employee =

 Perry Cheng, version = 0

CounterOptimisticCallback returning version object for counter name =

 Counter3, version = 0

EmployeeOptimisticCallback returning version object for employee =

 Jerry Anderson, version = 0

CounterOptimisticCallback returning version object for

 counter name = Counter4, version = 0

EmployeeOptimisticCallback returning version object for employee =

 Hao Lee, version = 0

EmployeeOptimisticCallback returning version object for employee =

 Kevin Bockhold, version = 1

DONE cleanup

3. Run the distributed ObjectGrid sample application.

The com.ibm.websphere.samples.objectgrid.basic.ObjectGridSample program

uses a local ObjectGrid instance as the data cache. All objects are cached in

the local Java virtual machine (JVM). To use a distributed ObjectGrid that is

deployed in an ObjectGrid cluster, use the

com.ibm.websphere.samples.objectgrid.distributed.DistributedObjectGridSample

program. The DistributedObjectGridSample program is included in the

objectgridSamples.jar .

a. Start an ObjectGrid cluster. For more information about starting a standalone

ObjectGrid cluster to use with the distributed ObjectGrid sample, see

Starting the standalone sample ObjectGrid cluster.

b. After you have the ObjectGrid server started, you can run the distributed

ObjectGrid sample application with the following command:

 java -cp "objectgrid.jar;objectgridSamples.jar;asm.jar;cglib.jar"

com.ibm.websphere.samples.objectgrid.distributed.DistributedObjectGridSample

After the required ObjectGrid cluster is started, the DistributedObjectGridSample

program has similar output to the ObjectGridSample program.

You ran the ObjectGrid sample application on a Java command line to test the

ObjectGrid functionality.

Chapter 1. Getting started with ObjectGrid by running the sample application 3

The source for this sample is in the objectgridSamples.jar file, specifically in the

com\ibm\websphere\samples\objectgrid\basic\ObjectGridSample.java and

com\ibm\websphere\samples\objectgrid\distributed\DistributedObjectGridSample.java

files.

Starting the standalone sample ObjectGrid cluster

To run the distributed ObjectGrid sample, you must start an ObjectGrid cluster that

hosts the required ObjectGrid.

Verify that WebSphere Extended Deployment for Mixed Server Environment,

Version 6.0.x is installed.

Use this task to start an ObjectGrid server that is based on the

cluster-config-1.xml and cluster-objectgrid-definition.xml files. This task is

required to run the distributed ObjectGrid sample. See Running the ObjectGrid

sample application on the command line and Importing and using the ObjectGrid

sample application in Eclipse for more information. The cluster-config-1.xml only

has one ObjectGrid server definition. This ObjectGrid server represents the sample

ObjectGrid cluster.

1. Locate the objectgridSamples.jar file in the

mse_install_root/ObjectGrid/samples directory.

2. Extract the META-INF/cluster-config-1.xml file and the META-INF/cluster-
objectgrid-definition.xml file from the objectgridSamples.jar file to the

mse_install_root/ObjectGrid/samples directory.

3. Verify that the JAVA_HOME environment variable is set and that the Java

version meets the requirement. The ObjectGrid Server requires a Java 2

Platform, Standard Edition (J2SE) Version 1.4.2 or later environment. To check

your Java environment, perform the following steps:

a. Check the JAVA_HOME environment variable. On a command line prompt,

issue the following command:

echo %JAVA_HOME%

This command displays the path to Java. If you need to set the

JAVA_HOME environment variable, run the following command:

set JAVA_HOME=JDK_INSTALL_ROOT

Set the JDK_INSTALL_ROOT to your Java installation directory, for

example, c:\java.

b. Check your Java version. Run the following command:

java -version

Verify that your version is Java 2 Platform, Standard Edition (J2SE) Version

1.4.2 or later.

4. Start the ObjectGrid server. On a command line prompt, issue the following

commands:

cd mse_install_root/ObjectGrid/bin

startOgServer.bat server1 -objectgridFile mse_install_root/ObjectGrid/

 samples/META-INF/cluster-objectgrid-definition.xml

-clusterFile mse_install_root/ObjectGrid/samples/META-INF/

 cluster-config-1.xml

-jvmArgs -cp mse_install_root/ObjectGrid/samples/objectgridSamples.jar

4 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Important: You must specify the objectgridSamples.jar file in the classpath

through the -jvmArgs option. The objectgridSamples.jar file

contains classes that the sample ObjectGrid server needs for the

plug-in implementations that are defined in the

cluster-objectgrid-definition.xml file. This JAR file is also used

for serializing and deserializing the objects that are stored in maps.

The system displays output that is similar to the following text. This output has

been shortened for publishing purposes:

************ Start Display Current Environment ************

[1/17/06 14:04:34:144 CST] 7daee176 Launcher

I CWOBJ2501I: Launching ObjectGrid server server1.

:

[1/17/06 14:04:37:719 CST] 7daee176 ServerRuntime

I CWOBJ1001I: ObjectGrid Server server1 is ready to process requests.

See Running the ObjectGrid sample application on the command line or Importing

and using the ObjectGrid sample application in Eclipse to run the distributed

ObjectGrid sample application. For more details about starting and stopping the

standalone ObjectGrid server on the command line, see Chapter 8, “Command line

support,” on page 79.

Importing and using the ObjectGrid sample application in Eclipse

Use this task to import and use the ObjectGrid sample application in Eclipse.

Before you begin this task, install the mixed server environment, including the

standalone ObjectGrid.

For this sample application, use Eclipse Version 3.1 or later to import and run the

sample. You can obtain Eclipse from the Application Server Toolkit that is included

with WebSphere Application Server, from installing Rational Application Developer,

or by downloading it directly from Eclipse.org.

By using Eclipse, you can easily debug your applications. You can perform a

step-by-step walk through of the sample application.

1. Import the project into Eclipse:

a. Run the Eclipse program. Use the eclipse.exe file in the Eclipse installation

directory.

b. Using Eclipse, create a new project.

 1) Click File > New > Project > Java > Java Project. Click Next.

 2) Type a project name. For example, type ObjectGridSamples.

 3) Select Create new project in workspace.

 4) In the Project Layout section, click Configure default.

 5) For the source and output folder, select Project and click OK.

 6) Click Next.

 7) Click the Libraries tab.

 8) Click Add External JARs.

 9) Navigate to the /ObjectGrid/lib folder and select the objectgrid.jar,

asm.jar, and cglib.jar files. Click Open in the JAR selection wizard.

10) Click Finish.

2. Import the objectgridSamples.jar file into the Java Project.

a. Right-click on the Java project and select Import.

b. Select Zip file under Select an import source.

Chapter 1. Getting started with ObjectGrid by running the sample application 5

http://www.eclipse.org/

c. Click Next.

d. Click Browse to open the Import From Zip File wizard.

e. Open the objectgridSamples.jar file. Navigate to the /ObjectGrid/samples

directory. Select the objectgridSamples.jar file and click Open.

f. Verify that the check box of the root file tree is selected.

g. Verify that the Into folder contains the Java project that you created in the

previous step, for example, the ObjectGridSamples project.

h. Click Finish.

3. Check the properties of the Java Project.

a. Open the Java Perspective. Click Window > Open Perspective > Java.

b. Go to the console view. Click Window > Show view > Console.

c. Verify that the Package Explorer view is available and selected. Click

Window > Show View > Package Explorer.

d. Right-click on the Java project and select Properties.

e. Click Java Build Path on the left panel.

f. Click the Source tab in the right panel.

g. Verify that the project root is listed in the Source folders on the Build path

panel.

h. Click the Libraries tab in the right panel.

i. Verify that the objectgrid.jar, asm.jar, and cglib.jar files and a JRE

System Library are listed in the JAR and class folders on the Build path

panel.

j. Click OK.

4. Run the ObjectGrid sample.

a. From the Package Explorer view, expand the Java project.

b. Expand the com.ibm.websphere.samples.objectgrid.basic package.

c. Right-click on the ObjectGridSample.java file. Click Run > Java

Application.

d. The console displays similar output to when you run the application on the

Java command line. For an example of the output, see Running the

ObjectGrid sample application on the command line.

5. Run the distributed ObjectGrid sample. To run the distributed ObjectGrid

sample, you must configure an ObjectGrid cluster. For running this sample, you

can use the predefined XML configuration files that are provided in the

objectgridSamples.jar file. See Starting the standalone sample ObjectGrid

cluster for more information.

After the ObjectGrid server is started, you can run the distributed ObjectGrid

sample application with the following steps:

a. From the Package Explorer view, expand the Java project.

b. Expand the com.ibm.websphere.samples.objectgrid.distributed package.

c. Right-click on the DistributedObjectGridSample.java file. Click Run > Java

Application.

d. The console displays output that is similar to the ObjectGrid sample.

The steps to load the project and run the debugger are also in the

SamplesGuide.htm file. The SamplesGuide.htm file is in the doc directory in the

objectgridSamples.jar file.

 Related reference

6 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

ObjectGrid packaging
You can access the ObjectGrid packages in two ways: by installing WebSphere

Extended Deployment, or by installing the mixed server environment.

Loading and running the ObjectGrid sample application with

WebSphere Extended Deployment

Use this task to load and run the Java 2 Platform, Enterprise Edition (J2EE)

ObjectGrid sample within WebSphere Extended Deployment.

WebSphere Application Server and WebSphere Extended Deployment must be

installed.

Use this task to understand and test the integration of ObjectGrid with WebSphere

Extended Deployment.For more information, see Chapter 10, “Integrating

ObjectGrid with WebSphere Application Server,” on page 279.

1. Install the ObjectGridSample.ear file. You can install the enterprise archive

(EAR) file on a single application server or a cluster. To install the

ObjectGridSample.ear file in the administrative console, perform the following

steps:

a. In the administrative console, click Applications > Install New Application.

b. On the Preparing for application installation page, specify the location of

the ObjectGrid sample application. For example, browse to:

<install_root>/installableApps/ObjectGridSample.ear. Click Next.

c. On the second Preparing for application installation page, take the

default settings and click Next.

d. On the Select installation options page, take the default settings and click

Next.

e. On the Map modules to servers page, specify deployment targets where

you want to install the modules that are contained in your application. Select

a target server or cluster from the Clusters and servers list for every

module. Select the Module check box to select all of the application

modules or select individual modules.

f. On the following pages, use the default values and click Finish.

g. Click Save to Master Configuration after finishing the application

installation.

h. Click the Synchronize changes with Nodes option. On the Enterprise

Applications > Save page, click Save.

i. Click OK.

2. Check the HTTP port of the default_host of the servers and add a host alias. By

default, Web modules are bound to the default_host virtual host name, unless

you modify the host name during installation. If you are installing the application

on a cluster, you must configure at least one host alias for the HTTP port of the

default_host for each cluster member. You also must check the HTTP port of

the default_host for each cluster member and add the corresponding host alias

into the Host aliases list in the administrative console. To check the HTTP port

of the default_host of a server, perform the following steps:

a. In the administrative console, click Servers > Application Servers >

server_name.

b. Expand the ports in the Communication section. The WC_defaulthost port

is the default_host virtual host port.

To add a host alias, perform the following steps:

Chapter 1. Getting started with ObjectGrid by running the sample application 7

a. In the administrative console, click Environment > Virtual hosts >

default_host > Host aliases > New.

b. Use the default value of the host name and specify the port.

c. Click OK.

3. Start the ObjectGrid sample application.

v To start the application on a server, click Servers > Application servers.

Select the server that has the ObjectGridSample.ear file installed. Click Start.

v To start the application on a cluster, click Servers > Clusters. Select the

cluster that has the ObjectGridSample.ear file installed. Click Start.

After you start the application on a server or cluster, you can stop and start the

application independently from the host server or cluster. To stop or start the

ObjectGrid sample application, perform the following steps:

a. In the administrative console, click Applications > Enterprise applications.

b. Select the ObjectGrid sample application.

c. Click Start or Stop.

4. Access the ObjectGrid sample. After you install the ObjectGridSample.ear file

on a single server or cluster and start the application, you can access the

ObjectGrid sample at the following Web address:

http://hostname:port/ObjectGridSample

For example, if your host name is localhost and the port value is 9080, use the

http://localhost:9080/ObjectGridSample Web address.

5. Test the functionality of distributed ObjectGrid in the WebSphere Application

Server environment. The ObjectGridSample.ear file also contains the

DistributedObjectGridServlet servlet that demonstrates the use of a distributed

ObjectGrid in the WebSphere Application Server environment. The application

server that hosts the DistributedObjectGridServlet servlet must also host the

ObjectGrid server, which is a member of the required ObjectGrid cluster.

v For more information about configuring an ObjectGrid cluster to get the

DistributedObjectGridServlet running, see Starting a sample ObjectGrid

cluster in the WebSphere environment.

v For more information about starting ObjectGrid servers in application servers,

see Starting an ObjectGrid server in an application server.

After the application server with the ObjectGridSample.ear file installed also

hosts the required ObjectGrid server, the DistributedObjectGridServlet servlet

behaves the same way as other servlets. You can access the servlet at the

following Web address:

http://hostname:port/ObjectGridSample/DistributedObjectGridServlet. For

example, if your host name is localhost and the port value is 9080, use the

http://localhost:9080/ObjectGridSample/DistributedObjectGridServlet Web

address.

You can enable ObjectGrid tracing by using the following trace string:

ObjectGrid*=all=enabled.

You installed and configured the ObjectGrid sample application and the distributed

ObjectGrid sample application on a WebSphere Extended Deployment server.

After you install the application on a server or cluster, you can access the sample

documentation after starting the application at the following Web address:

http://hostname:port/ObjectGridSample/docs/introduction.html

8 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

For example, if your hostname is localhost and the port value is 9080, use the

http://localhost:9080/ObjectGridSample/docs/introduction.html Web address.

Starting a sample ObjectGrid cluster in the WebSphere environment

Use this task to start a simple ObjectGrid cluster to test the functionality of the

distributed ObjectGrid in the WebSphere Application Server environment.

WebSphere Extended Deployment must be installed. You must have the

ObjectGridSample.ear file installed on your application server. For more information

about installing the ObjectGridSample.ear file, see Loading and running the

ObjectGrid sample application with WebSphere Extended Deployment.

Use this task to set up an application server to host an ObjectGrid server that is

based on the cluster-config-1.xml and cluster-objectgrid-definition.xml files.

The cluster-config-1.xml file only has one ObjectGrid server definition. This

ObjectGrid server represents the sample ObjectGrid cluster. You can use either one

standalone application server or a cluster with one cluster member to host the

sample ObjectGrid server.

1. Extract both the META-INF/cluster-config-1.xml and META-INF/cluster-
objectgrid-definition.xml files from the

/optionalLibraries/ObjectGrid/objectgridSamples.jar file to the

/optionalLibraries/ObjectGrid directory.

2. Define the necessary generic JVM arguments.

a. In the administrative console, click Servers > Application servers >

server_name > Process Definition > Java Virtual Machine.

b. In the Generic JVM arguments panel, type the following text:

-Dobjectgrid.server.name=server1

-Dobjectgrid.xml.url=file:///<INSTALL_ROOT>\optionalLibraries\ObjectGrid\

 META-INF\cluster-objectgrid-definition.xml

-Dobjectgrid.cluster.xml.url=file:///<INSTALL_ROOT>\optionalLibraries\

 ObjectGrid\META-INF\cluster-config-1.xml

The INSTALL_ROOT is your WebSphere Application Server install root

directory.

c. Click Save.

d. Click Save to Master Configuration.

e. Select the Synchronize changes with Nodes option. Click Save.

3. Copy the /optionalLibraries/ObjectGrid/objectgridSamples.jar file to the /classes

or the lib/ext directory. The objectgridSamples.jar contains classes that the

sample ObjectGrid server needs for the plug-in implementations that are defined

in the cluster-objectgrid-definition.xml file. This JAR file is also used for

serializing and deserializing the objects that are stored in maps .

4. Restart server to make the change takes effect.

For more details about starting and stopping ObjectGrid servers in application

servers, see Starting an ObjectGrid server in an application server.

Starting an ObjectGrid server in an application server

An ObjectGrid server can be configured to start within an application server.

WebSphere Application Server detects the ObjectGrid component and automatically

starts the ObjectGrid server.

Chapter 1. Getting started with ObjectGrid by running the sample application 9

You can configure ObjectGrid servers in WebSphere Application Server Version

6.0.2 and later, including when add-ons such as WebSphere Extended Deployment

or WebSphere Business Integration Server are installed. Earlier versions of

WebSphere Application Server, such as WebSphere Application Server Version

5.0.2, can have applications that use the ObjectGrid as clients, but the ObjectGrid

server function cannot be collocated with the earlier application server versions.

If you are using cluster configurations that enable replication, the high availability

manager is required. ObjectGrid servers use the high availability manager differently

than normal application servers. When the ObjectGrid server is in an application

server, the ObjectGrid server does not configure, initialize or create the high

availability manager service, but uses the existing high availability service in the

application server. For replication between ObjectGrid servers, the ObjectGrid

servers must be running in application servers that are members of the same core

group.

All other functions of the ObjectGrid server are the same when the server runs in

WebSphere Application Server. If your ObjectGrid cluster specification includes

three servers, any three application servers in a single core group can host these

ObjectGrid servers. The application servers can also span clusters, as long as the

clusters belong to the same core group. The most important step is to correlate the

server TCP/IP host name and port information in the cluster.xml file.

Use this task to run ObjectGrid servers within the application servers in your

WebSphere Application Server environment.

1. Add the required custom properties on the Java Virtual Machine (JVM). In the

administrative console, click Servers > Application servers > server_name >

Java and Process Management > Process Definition > Java Virtual

Machine > Custom Properties. Click New. Create the following custom

properties:

 Table 1. JVM custom properties for ObjectGrid servers

Custom property name Description Example value

objectgrid.server.name Specifies the ObjectGrid

server name to be used

within this application server.

The name provided must be

one of the server names that

is defined in the ObjectGrid

cluster XML file.

server1

objectgrid.xml.url Specifies the Universal

Resource Locator (URL) for

the ObjectGrid XML file. This

property is required.

file:///d:/was/etc/test/

objectGridMatch.xml

objectgrid.cluster.xml.url Specifies the URL for the

ObjectGrid cluster XML file.

This property is required

file:///d:/was/etc/test/

csCluster0.xml

10 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Table 1. JVM custom properties for ObjectGrid servers (continued)

Custom property name Description Example value

objectgrid.security.

server.props

Specifies the URL for the

ObjectGrid server security

properties file. This property

is required only if security is

enabled in the ObjectGrid

cluster xml file. To determine

if security is enabled in your

cluster XML file, look for the

following text:

<cluster name="cluster1"

 securityEnabled="true"

....

If the securityEnabled

attribute is set to false, you

do not need to define this

property.

Use the

security.ogserver.props file

as a template. See the

“ObjectGrid security” on page

131 for the meaning of these

properties in this file and how

they can be used.

file:///d:/was/

optionalLibraries/

ObjectGrid/properties/

security.ogserver.props

You can also define these JVM properties in the Generic JVM Arguments field

on the Java Virtual Machine panel in the administrative console. Following is

an example value for the Generic JVM Arguments field:

-Dobjectgrid.server.name=server1

-Dobjectgrid.xml.url=file:///<INSTALL_ROOT>\optionalLibraries\ObjectGrid\

META-INF\cluster-objectgrid-definition.xml

-Dobjectgrid.cluster.xml.url=file:///<INSTALL_ROOT>\optionalLibraries\

ObjectGrid\META-INF\cluster-config-1.xml

2. Save the changes and restart the application server. WebSphere Application

Server detects the ObjectGrid component and automatically starts the

ObjectGrid server.

The ObjectGrid in the application server uses the channel framework to interact

with ObjectGrid clients, specifically called the Client Access port. When the

ObjectGrid server is started, it detects collocation with WebSphere Application

Server and uses the channel framework that is already running in the

application server. The ObjectGrid server creates and starts its own channel

framework only if a channel framework is not created or started in the

application server.

3. Stop the ObjectGrid server. Stop the ObjectGrid server by stopping the

associated application server. You cannot stop the ObjectGrid sever by using

the ObjectGrid system management commands.

The application servers in your WebSphere Application Server environment are

running ObjectGrid servers.

Chapter 1. Getting started with ObjectGrid by running the sample application 11

12 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 2. ObjectGrid

ObjectGrid is an extensible transactional object caching framework for Java 2

Platform, Standard Edition (J2SE) and Java 2 Platform, Enterprise Edition (J2EE)

applications.

You can use the ObjectGrid API when developing your applications to retrieve,

store, delete, and update objects in the ObjectGrid framework. You can also

implement customized plug-ins that monitor updates to the cache, retrieve and store

data with external data sources, manage eviction of entries from the cache, and

handle background cache functionality for your own ObjectGrid application

environment.

Map-based API

The ObjectGrid provides an API that is based on the java.util.Map interface. The

API is extended to support the grouping of operations into transactional blocks. This

interface is a superset of the java.util.Map interface and adds support for batch

operations, invalidation, keyword association, and explicit insert and update. The

Java Map semantics are enhanced with extension points so that you can implement

the following enhancements:

v Cache evictors to fine-tune cache entry lifetimes

v Transaction callback interfaces to carefully control transaction management and

optionally integrate with the WebSphere transaction manager in J2EE

environments

v Loader implementations that automatically retrieve and place data to and from a

database when an application programmer uses the ObjectGrid Map get and put

operations

v Listener interfaces that can provide information about all committed transactions

as they occur and are applied towards the ObjectGrid framework as a whole or

are applied for particular Map instances.

v Object transformer interfaces that allow for more efficient copying and serializing

of keys and values.

The ObjectGrid environment

You can use ObjectGrid framework by installing one of the existing offerings:

v ObjectGrid is integrated with WebSphere Extended Deployment Version 6.0.1

and is a part of the full installation.

v Standalone ObjectGrid is a part of the Mixed Server Environment (MSE)

installation.

In both offerings, ObjectGrid supports client/server features. The server runtime

supports full clustering, replication, and partitioning of distributed object caches. The

client runtime supports the concept of a near cache and workload management

routing logic to remote clusters. The client runtime also supports local object map

creation.

The level of support varies depending on if you are running the client runtime,

server runtime, integrated ObjectGrid, or the standalone ObjectGrid.

© Copyright IBM Corp. 2004, 2005 13

ObjectGrid integrated with WebSphere Extended Deployment offering

Server runtime: The server runtime is integrated. For WebSphere Extended

Deployment Version 6.0.1, the integrated runtime is not supported on the

z/OS platform.

 Client runtime: The client runtime is supported on J2SE and J2EE at JDK

level 1.3.1 and greater, including WebSphere Application Server Version

5.0.2 and later. The client runtime is fully supported on the z/OS platform.

Standalone ObjectGrid offering

Server runtime: The server runtime can run in standalone Java Virtual

Machines (JVM) as a single server or as a cluster of servers. The

standalone server is supported on most J2SE and J2EE platforms at JDK

level 1.4.2 and greater. The standalone server is supported on WebSphere

Application Server Version 6.0.2 and later. The standalone server runtime is

not supported on the z/OS platform for WebSphere Extended Deployment

Version 6.0.1.

 Client runtime: The client runtime is supported on J2SE and J2EE platforms

at JDK level 1.3.1 and greater, including WebSphere Application Sever

Version 5.0.2 and later.

Session management

A fully distributed HTTP Session management implementation is provided that

stores HTTP Session objects in the ObjectGrid.

Simple installation

You can install and configure ObjectGrid in a few simple steps. These steps include

copying the Java archive (JAR) files to your class path and defining a few

configuration directives.

Transactional changes

All changes are made in the context of a transaction to ensure a robust

programmatic interface. The transaction can either be explicitly controlled within the

application, or the application can use the automatic commit programming mode.

These transactional changes can be replicated across an ObjectGrid cluster in

asynchronous and synchronous modes to provide scalable and fault tolerant

access.

You can scale ObjectGrid from a simple grid running in a single Java virtual

machine (JVM) to a grid that involves one or more ObjectGrid clusters of Java

virtual machines. These servers make data available through the Map APIs to a

large set of ObjectGrid-enabled clients. The ObjectGrid clients use the basic Java

Map APIs. However, the application developer does not need to develop Java

TCP/IP and remote method invocation (RMI) APIs because the ObjectGrid client

can reach the other ObjectGrid servers that are holding information across the

network. If your data set is too large for a single JVM, you can use ObjectGrid to

partition the data.

ObjectGrid also offers your application solution added high availability capabilities.

The object sharing is based on a replication model where a primary server, one or

more replication servers, and one or more standby servers exist. This cluster of

replication servers is referred to as a replication group. If the access to the

replication group is a write operation, then the request is routed to the primary

14 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

server. If the access is a read operation, or if the map is a read-only map, the

request can route to the primary or replication servers. The standby servers are

defined as potential replication servers if a server fails. If a primary server fails, then

a replication server becomes the primary server to minimize any outage. This

behavior is configurable and extensible based on your needs.

If you want to use a simpler object propagation approach, a lower quality of service

peer to peer model is also available, as it was in Extended Deployment Version 6.0.

With this simpler distributed transactional support, peers can be notified of changes

by using a message transport. The message transport is built in if you are running

WebSphere Application Server Version 6.0.2 or later. If you are not running

WebSphere Application Server Version 6.0.2 or later, another message transport

must be supplied, such as a Java Message Service (JMS) provider.

Injection container compatible APIs

Configure the ObjectGrid using a simple XML file or programmatically using Java

APIs. The Java APIs are designed to also work in environments where you are

using injection−based frameworks to configure your applications. The APIs and

interfaces of the ObjectGrid objects can also be invoked by an Inversion of Control

(IoC) container and then references to key ObjectGrid objects can be injected into

the application.

Extensible architecture

You can extend most elements of the ObjectGrid framework by developing plug-ins.

You can tune the ObjectGrid to allow an application to make trade-off decisions

between consistency and performance. Plug-in customized code can also support

the following application-specific behaviors:

v Listen to ObjectGrid instance events for initialization, transaction begin,

transaction end, and destroy.

v Invoke transaction callbacks to enable transaction-specific processing.

v Implement specific common transaction policies with generic ObjectGrid

transactions.

v Use loaders for transparent and common entry and exit points to external data

stores and other information repositories.

v Handle non-serializable objects in a specific way with ObjectTransformer

interfaces.

You can implement each of these behaviors without affecting the use of the basic

ObjectGrid cache API interfaces. With this transparency, applications that are using

the cache infrastructure can have data stores and transaction processing greatly

changed without affecting these applications.

Use ObjectGrid as a primary API or second-level cache

The ObjectGrid APIs can be used directly by the application as a lookaside cache

or as a write through cache. In write through mode, the application plugs in a

Loader object so that the ObjectGrid can apply changes and fetch data directly and

transparently to the application. ObjectGrid can also be used as a second-level

cache for popular object relational mappers by writing an adapter. The cache is

invisible to the application in this mode because the application uses the APIs from

the object relational mapper as the primary API for accessing the data.

Chapter 2. ObjectGrid 15

16 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 3. ObjectGrid overview

ObjectGrid provides a Java Map-based data access model and a distributed

caching technology. With ObjectGrid, you can configure a highly available clustering

environment. ObjectGrid clients can contact many different ObjectGrid clusters

concurrently for large scale integration solutions. ObjectGrid also provides a rich,

distributed data partitioning solution for large amounts of normalized information

with data in more than one Java Virtual Machine. Fundamentally, ObjectGrid is a

set of standardized Java APIs and network services that allow local and distributed

caching. The solution scales from a single Java virtual machine (JVM) where a

richer Java Map solution is required to a vast array of distributed and scalable data

services are required from several ObjectGrid clusters throughout an entire

enterprise.

ObjectGrid in a single Java virtual machine (JVM)

The most basic usage of the ObjectGrid is in a single JVM.

You can use ObjectGrid to create a set of ObjectGrid instances. Each ObjectGrid

instance can contain one or more Java Map-compatible instances. The Java Map

instances provide the get and put interfaces that Java programmers are

accustomed to, plus additional features that the current Java Map interface and

functionality does not offer. The following diagram illustrates the most basic usage

of ObjectGrid.

An ObjectGrid and ObjectGrid Map include many features that are not currently

provided in the standard Java Map interface. These features include transactional

access, various types of locking strategies (None, Optimistic and Pessimistic), Plug

and Play Eviction, seamless interaction with databases as a side effect of using get

and put APIs, and many other capabilities. You can also develop your own

extensions to ObjectGrid. For example, you can develop a Map Listener that

provides results for each transaction that is committed against a given Map

instance. Users can log the changes, for example, to a file in a branch office

location to ensure against lost transactions, or propagate the changes with Java

message service (JMS) or some other infrastructure.

ObjectGrid

key objectkey object

key objectkey object

key objectkey object

key object

key object

key objectkey object

key objectkey object

Java virtual machine (JVM)

Red ObjectGrid Purple ObjectGrid

ObjectGrid maps

Figure 1. ObjectGrid JVM Usage

© Copyright IBM Corp. 2004, 2005 17

In the previous diagram, the JVM has two ObjectGrid instances, one with two Java

Map-like objects for use and the other with three Map objects. The Map objects are

two dimensional, allowing for a key and an object pairings to be manipulated like a

normal Java Map. A single ObjectGrid instance can support many specific map

instances.

The following configuration is a basic ObjectGrid configuration for the Red and

Purple ObjectGrid instances:

<?xml version="1.0" encoding="UTF-8" ?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd

xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="Red">

 <backingMap name="FirstRedMap" readOnly="false" />

 <backingMap name="SecondRedMap readOnly="false" />

 </objetGrid>

 <objectGrid name="Purple">

 <backingMap name="FirstPurpleMap readOnly="false" />

 <backingMap name="SecondPurpleMap readOnly="false" />

 <backingMap name="ThirdPurpleMap readOnly="false" />

 </objectGrid>

 </objectGrids>

</objectGridConfig>

Distributed ObjectGrid

In addition to using the ObjectGrid Java archive (JAR) file within a single JVM, you

can use ObjectGrid in a distributed environment. In this environment, you can

create an ObjectGrid cluster. An ObjectGrid cluster is made up of a set of

ObjectGrid servers, each its own single JVM.

The “ObjectGrid in a single Java virtual machine (JVM)” on page 17 topic describes

that ObjectGrid supports the concept of a Java Map. This concept is also supported

locally in a single JVM and in a Java client that connects to one or more remote

ObjectGrid cache clusters. The ObjectGrid servers offer the ability to distribute the

basic functionality that is already described above in the single JVM case. For

example, several clients can share the same ObjectGrid instance Map, using a

locking strategy of None, Optimistic or Pessimistic. In addition, an evictor in the

ObjectGrid cluster servers can manage eviction for the server side Map instance

data. All clients can use the common get and put semantics, and the Loader that is

configured on the ObjectGrid cluster server does all the interaction with the

database instead of deploying and managing Java database connectivity (JDBC)

drivers on each client.

In the following diagram, the JVM has two ObjectGrid instances: one with two Java

Map-like objects for use and the other with three Java Map-like objects. The Maps

each are two dimensional objects that allow a key and an object. A single

ObjectGrid instance can support a large number of Maps, primarily depending on

the application’s requirements. The difference in this case is that the Maps are

housed within an ObjectGrid cluster server. The clients can be a normal Java

application or Java 2 Platform, Enterprise Edition (J2EE) application servers.

18 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

ObjectGrid clients

ObjectGrid clients consist of a set of APIs to connect to an ObjectGrid cluster,

bootstrap through the ObjectGrid cluster wide configuration, and then perform

ObjectGrid map operations that are actually distributed. An ObjectGrid client is any

Java application within its own JVM instance that is using the ObjectGrid in a

distributed way. A distributed ObjectGrid client can also still use the non-distributed

functionality in the same Java Virtual Machine. An ObjectGrid client usage can be

as complicated as an entire application server with several parallel ObjectGrid

connections, each with security enabled and acting on a different user’s behalf.

To enable the distributed behavior, an ObjectGrid cluster (server side services of the

ObjectGrid solution) must be created. The additional configuration required is an

ObjectGrid Cluster XML file in addition to the ObjectGrid configuration file.

Following is the ObjectGrid Cluster XML that configures the ObjectGrid network

deployment in the previous diagram:

<?xml version="1.0" encoding="UTF-8" ?>

<clusterConfig xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=http://ibm.com/ws/objectgrid/config/cluster

../objectGridCluster.xsd

xmlns="http://ibm.com/ws/objectgrid/config/cluster">

<cluster name="cluster1">

 <!– single server ->

 <serverDefinition name="server1" host="localhost" clientAccessPort="12053"

 peerAccessPort="12500" />

</cluster>

 <objectGridBinding ref="Red">

 <mapSet name="RedMapSet" partitionSetRef="ColorMapsPartitioningSet">

 <map ref="FirstRedMap" />

 <map ref="SecondRedMap" />

 </mapSet>

 </objectGridBinding>

ObjectGrid Server 1 (JVM)

Client tier

Primary

Server tier

key objectkey object

key objectkey object

key objectkey object

JVM 2

Application

JVM 2

Application

node 1

JVM 1

Application

node 1

JVM 1

Application

Primary

key object

key object

key objectkey object

key objectkey object

Cluster (single member cluster)

PurpleMapSet

RedMapSet

Red ObjectGrid

Purple ObjectGrid

Figure 2. Distributed ObjectGrid single server topology (with two MapSets)

Chapter 3. ObjectGrid overview 19

<objectGridBinding ref="Purple">

 <mapSet name="PurpleMapSet" partitionSetRef="ColorMapsPartitioningSet">

 <map ref="FirstPurpleMap" />

 <map ref="SecondPurpleMap" />

 <map ref="ThirdPurpleMap" />

 </mapSet>

 </objectGridBinding>

 <partitionSet name="ColorMapsParitioningSet">

 <partition name="partition1" replicationGroupRef="ColorMapsReplicationGroup" />

 </partitionSet>

 <replicationGroup name="ColorMapsReplicationGroup">

 <replicationGroupMember serverRef="server1" priority="1" />

 </replicationGroup>

</clusterConfig>

This configuration describes a single cluster, ″cluster1″, which contains the server1

server. The server1 server hosts two ObjectGrids, ″Red″ and ″Purple″. The

configuration file specifies information for partitioning and replication as well. The

ObjectGrid client-server support in ObjectGrid requires the programmer to connect

to one server defined in the ObjectGrid cluster. During the connect processing, the

ObjectGrid and ObjectGrid cluster configuration is dynamically downloaded to the

client, greatly simplifying preparing the client for usage and having to manage client

side configuration content. Other than the ObjectGrid client performing a ″Connect″

operation, the programming APIs and concepts to use an ObjectGrid that is scoped

to the local JVM and a JVM that is actually hosted in the ObjectGrid cluster are

generally the same.

ObjectGrid cluster initialization

You can start ObjectGrid servers within a cluster with the command line tools that

are provided with ObjectGrid. An ObjectGrid application can include an ObjectGrid

client and be integrated as any other Java API Library would be integrated into your

application development framework. However, in both cases, ObjectGrid usage

must be initialized.

To work within either the local Java virtual machine (JVM) usage scenario or in a

distributed ObjectGrid cluster, you must obtain a valid configuration for bootstrap

through a manageable approach. ObjectGrid clients and ObjectGrid cluster servers

must use a uniform configuration. As a programmer, you might start with a very

simple configuration, possibly bounded within a single Java application in a JVM.

Then, as you prepare to begin multi-client, concurrent user testing, create your first

single server ObjectGrid cluster. After the initial client-server based testing is

complete, you can work with the administrative staff and experiment with replication

and other high availability solution requirements. Each of these normal progressions

in development requirements require a richer configuration file.

The configuration file changes to enable each of these advanced features for each

of the development stages described are relatively modest, but each stage in your

solution development requires a different version of the configuration file. The intent

is that the changes build upon each other. You can unit test a replicated solution on

a single machine if the amount of data to develop the solution does not overwhelm

a single system or can be artificially constrained for development purposes.

ObjectGrid configuration with XML

A distributed ObjectGrid configuration, with one or more clients and one or more

ObjectGrid servers, requires XML configuration. In addition to the base ObjectGrid

XML configuration file, you must create an ObjectGrid cluster XML description.

20 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

A single ObjectGrid XML configuration description and an ObjectGrid Cluster XML

configuration description provide the clients and the servers in a single ObjectGrid

cluster the information that they need to function as expected. You can have any

number of ObjectGrid clusters in your environment, however, a cluster-specific

ObjectGrid cluster XML document must describe the particular cluster.

The configuration files that are required for the ObjectGrid to start can be acquired

through any normal URL approach. For example, clients and servers can acquire

the XML files with a physical file or an HTTP URL.

Within a distributed ObjectGrid environment as depicted in the following diagrams,

an initial set of ObjectGrid servers can be configured with the command line to

retrieve their configuration through a URL or, because the file URL can be

complicated, a simple file on the file system. However, a better approach is to start

subsequent servers within the same ObjectGrid cluster by bootstrapping them from

other servers that are already operational within the cluster. This approach is much

more manageable because administrators do not need to track configuration files

on each machine that is hosting either an ObjectGrid client or server. In addition, a

server that starts by bootstrapping can be assured that the XML has already been

processed successfully, reducing XML configuration errors.

Bootstrapping

ObjectGrid server bootstrap

The following diagram depicts bootstrapping a typical ObjectGrid cluster

environment hosting the same ObjectGrid configuration, but offering a richer

replication cluster configuration. In this case, the first server bootstraps through an

HTTP URL, and the second and third server are started from the first. The second

and third servers can also be started from the same URL as the first server.

Server tier

ObjectGrid Server 1 (JVM)

Primary

key object

key object

key objectkey object

key objectkey object

ObjectGrid Server 2 (JVM) ObjectGrid Server 3 (JVM)

ObjectGrid Cluster

File System

Web

*1 or *2
Initial Server Bootstrap:

*1 – XML File acquired by XML file through the file system

*2 – XML file acquired through HTTP URL

Subsequent Server Bootstrap:

*1 and *2 – Valid options for subsequent server bringup

*3 – Bootstrap from other servers in the same cluster

*3

*3

Primary

Replica 1 Standby 1Primary 1

key object

key object

key object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Primary Replica

key object

key object

key objectkey object

key objectkey object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Replica Standby

key object

key object

key objectkey object

key objectkey object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Standby
Purple ObjectGrid Purple ObjectGrid Purple ObjectGridRed ObjectGrid Red ObjectGrid

Red ObjectGrid

Figure 3. Initial server bootstrap though XML file configuration or from an existing server

Chapter 3. ObjectGrid overview 21

As illustrated in the previous diagram, the server1 server in the cluster1 cluster is

the initial server to bootstrap. The server1 server can bootstrap through an XML file

on the file system, or through a URL to a local file, remote HTTP server or other

valid URL option. The server2 server and server3 server can be started through

these means or by targeting the server1 server as a configuration bootstrap host. In

general, bootstrapping subsequent servers from other servers ensures that the

configuration is consistent across cluster members.

In this particular scenario, if the server1 server fails, and server2 and server3 are

still operational, server1 can be bootstrapped from server2 or server3, or again

through the file or URL approaches. See “ObjectGrid client connect APIs” on page

94 for more details on bootstrapping and the specific configuration options.

ObjectGrid client bootstrap

The ObjectGrid client, to use the ObjectGrid cluster server members services, must

bootstrap from one of the ObjectGrid servers within the cluster. Each client can

″connect″ to any active member of the cluster. Administrators can configure specific

servers to perform that service. For large client deployments, the sole purpose for

any configured ObjectGrid cluster servers is to provide client bootstrap support. This

approach is helpful if the number of clients is large and they connecting and

disconnecting often. After the client ″connects″, they can get a distributed reference

to the ObjectGrids defined in the cluster configuration. See “ObjectGridManager

interface” on page 87 for more information.

Clients acquire their standard configuration from the ObjectGrid cluster, so that the

administrator does not have to manage the XML for the client community. The

ObjectGrid client can use a remote URL just as the ObjectGrid cluster servers do

for bring-up to override specific settings that should be client specific.

ObjectGrid clients in a distributed ObjectGrid environment

ObjectGrid clients can connect to more than one ObjectGrid cluster concurrently. A

single Java application within a Java virtual machine (JVM) can connect to the

same remote cluster multiple times. This application can also attach to different

remote clusters at the same time. This capability is important because it enables

client functionality to access many different resources of information that are

exported through one or more ObjectGrid clusters.

The first case, in which the same ObjectGrid client can contact the same ObjectGrid

server is important for secure environments where the client might be an application

server, and each connection from the application server to the remote ObjectGrid

cluster uses different security credentials. Another example is an ObjectGrid client

that needs to correlate data from several different ObjectGrid clusters for a single

purpose.

The following diagram depicts a scenario where the corporate Web-based client

user, through a Web application, is generating a report from three different

corporate divisions. The servlet engine uses the application server ObjectGrid client

functionality to contact three different ObjectGrid clusters, managed by each

corporate division. In many corporations, data can be collected, and a key goal of

ObjectGrid is to make the information more available in an easy way. After the

information is externalized, other users who have the interest and security

credentials can acquire and use the information in new ways. The data can be

provided in a read-only mode, or when appropriate, for read-write update scenarios.

22 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

In this scenario, the data can be acquired in a secure manner. ObjectGrid caching

in this scenario is not only enabling flexible data sharing in a common programmatic

way within each corporate division, but also enabling cross-division data access for

information acquired through a very secure, simple and clean programming model

that many Java developers have used often.

ObjectGrid clustering concepts

The term distributed ObjectGrid includes the concept that clients that can interact

with one or more ObjectGrid clusters. An ObjectGrid cluster consists of one to many

ObjectGrid servers.

ObjectGrid client

An ObjectGrid client can be thought of in two ways. You can think of a client as a

Java virtual machine (JVM) that uses the ObjectGrid API to connect to an

ObjectGrid cluster and perform Java Map operations against that cluster. The

second, more formal way to think about a client is to consider the concept of

multiple clients within the same JVM. If you fully use the provided ObjectGrid

function, you can use multiple clients within the same JVM.

Each time a programmer runs the ObjectGrid client connect operation in a JVM, a

cluster context returns. This context is actually one client instance. Under the

covers, asynchronous threads handle many aspects of the caching per context. For

each context, ObjectGridManager can be used to acquire ObjectGrids that are

hosted in the specific remote ObjectGrid cluster instances. So, in general, if you

connect to three remote clusters in the same JVM, you implement a three client

solution within the same JVM.

Important considerations for this scenario are the following. A single transaction

session cannot span a Map set within the same cluster. Users cannot have a single

ObjectGrid

development

cluster

Corporate Web
Reporting Application
(ObjectGrid Client)

application server

Development IT Infrastructure
- Database data (see Loader Section)

- Experiment data

- Schedule data

Development IT Infrastructure
- Database data (see Loader Section)
- Experiment data
- Schedule data

ObjectGrid

back office

cluster

Back Office IT Infrastructure
- Database (see Loader Section)

- Customer data

- Warranty data

- Profit and loss data

Back Office IT Infrastructure
- Database (see Loader Section)
- Customer data
- Warranty data
- Profit and loss data

ObjectGrid

customer

service

cluster

Customer service IT infrastructure
- Database (see Loader section)

- Problem reports

- Customer concerns

- Critical situations

Customer service IT infrastructure
- Database (see Loader section)
- Problem reports
- Customer concerns
- Critical situations

Figure 4. A Web-based client user generates a report from three different corporate divisions.

Chapter 3. ObjectGrid overview 23

transaction across different clients attached to the same or different ObjectGrid

cluster. However, for users trying to integrate silos of information, users can use a

transaction to pull information from each of the remote ObjectGrid clusters, and

print consolidation reports or join the information and send through a ObjectGrid

transaction data to another ObjectGrid cluster, or simply update the individual

ObjectGrid clusters in a customer specific fashion. This is primarily because

ObjectGrid offers single phase transaction support, as opposed to two phase

transaction support separate transaction managers typically offer. For more

information on this topic, see “ObjectGrid transaction demarcation” on page 34.

Replication

You can replicate between ObjectGrid servers that are within the same ObjectGrid

cluster. With replication, you can recover from a failure more quickly when the

primary ObjectGrid server that has the particular information the user requires fails

or is shutdown for maintenance. In the following diagram, the Red ObjectGrid and

Purple ObjectGrid are in two different ObjectGrid replication group members. In

ObjectGrid, each MapSet, a subset of an ObjectGrid can be replicated as a unit.

PartitionSets are an exception to this rule,as discussed in the following section. The

single server configuration described is modified in the following diagram to

describe replication.

 The diagram depicts an application server as a client application and standalone

Java application. Both clients require access to two ObjectGrid instances, the Red

and Purple instances in a single server ObjectGrid cluster. Each of these instances

actually is contained in a replication group member. A replication group member is a

key concept, and is the boundary for ObjectGrid transaction demarcation. A

transaction can only commit changes to a single replication group member.

ObjectGrid Server 1 (JVM)

Client tier

Primary

Server tier

key objectkey object

key objectkey object

key objectkey object

JVM 2

Application

JVM 2

Application

node 1

JVM 1

Application

node 1

JVM 1

Application

Primary

key object

key object

key objectkey object

key objectkey object

Cluster (single member cluster)

PurpleMapSet

RedMapSet

Red ObjectGrid

Purple ObjectGrid

Figure 5. Distributed ObjectGrid single server topology with two MapSets

24 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

In an ObjectGrid cluster, the Java client can start an ObjectGrid transaction (a

Session), and update data within a single replication group member. Each

replication group member can be replicated as a unit, both synchronously or

asynchronously or not all depending on your requirements. Each ObjectGrid client

request is routed to a specific replication group member within the ObjectGrid

Cluster servers. The ObjectGrid instance within the replication group member that is

receiving the requests processes the request and returns a result to the client. For

synchronous replication, each request, before returning to the client, is sent to the

replica, or ObjectGrid server 2 in the following diagram, to confirm that the replica

replication group member correctly applied the update, and then returns the result

to the client. In asynchronous mode, the ObjectGrid client is able to apply a change,

and the ObjectGrid servers primary replication group member returns the result to

the client and does not wait for the replica to confirm that the changes were

received and applied correctly. In asynchronous mode, the update will be sent to

the remote server’s replica replication group member after the transaction was

committed successfully on the primary replication group member.

The following diagram is a different version of the bootstrap example. In this case,

three servers, each having a unique role in the replication of the two ObjectGrid

instances the users expect to interact with. The ObjectGrid Cluster is made of three

servers, each hosting two replication group members. The server1 server hosts two

primaries, the server2 server hosts two replicas, and the server 3 server hosts two

standbys.

 The “High availability overview” on page 27 describes these concepts, however, a

key concept to understand is the configuration differences required to move from

the single server to three server replicated solution depicted in the previous

diagram.

Multi-Server replication configuration overview

Following configuration is a basic ObjectGrid configuration for the Red and Purple

ObjectGrid instances.

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="Red">

Server tier

ObjectGrid Server 1 (JVM)

Primary

key object

key object

key objectkey object

key objectkey object

ObjectGrid Server 2 (JVM) ObjectGrid Server 3 (JVM)

ObjectGrid Cluster

Primary

Replica StandbyPrimary

key object

key object

key object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Primary Replica

key object

key object

key objectkey object

key objectkey object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Replica Standby

key object

key object

key objectkey object

key objectkey object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Standby
Purple ObjectGrid Purple ObjectGrid

Purple ObjectGridRed ObjectGrid
Red ObjectGridRed ObjectGrid

Figure 6. Replicating the basic sample configuration

Chapter 3. ObjectGrid overview 25

<backingMap name="FirstRedMap" readOnly="false" />

 <backingMap name="SecondRedMap" readOnly="false" />

 </objectGrid>

 <objectGrid name="Purple">

 <backingMap name="FirstPurpleMap" readOnly="false" />

 <backingMap name="SecondPurpleMap" readOnly="false" />

 <backingMap name="ThirdPurpleMap" readOnly="false" />

 </objectGrid>

 </objectGrids>

</objectGridConfig>

Converting this configuration to a distributed ObjectGrid cluster requires an

additional configuration file, the Cluster XML file. To convert the original

configuration for the Red and Purple Object instances on a single server requires

only the additions displayed in the following example. Specifically, only two server

references were added. The replication group was already present from the initial

configuration file, which cross referenced to the ColorMapsReplicationGroup

replication group, as illustrated in the following sample:

<?xml version="1.0" encoding="UTF-8"?>

<clusterConfig xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xsi:schemaLocation=http://ibm.com/ws/objectgrid/config/cluster ../objectGridCluster.xsd

 xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="cluster1">

 <!- single server –>

 <serverDefinition name="server1" host="localhost" clientAccessPort="12503“

 peerAccessPort="12504" />

 <serverDefinition name="server2" host="localhost" clientAccessPort="12504“

 peerAccessPort="12506" />

 <serverDefinition name="server3" host="localhost" clientAccessPort="12507“

 peerAccessPort="12508" />

 </cluster>

 <objectgridBinding ref="Red">

 <mapSet name="RedMapSet" partitionSetRef="ColorMapsPartitioningSet">

 <map ref="FirstRedMap" />

 <map ref="SecondRedMap" />

 </mapSet>

 </objectgridBinding>

 <objectgridBinding ref="Purple">

 <mapSet name="PurpleMapSet" partitionSetRef="ColorMapsPartitioningSet">

 <map ref="FirstPurpleMap" />

 <map ref="SecondPurpleMap" />

 <map ref="ThirdPurpleMap" />

 </mapSet>

 </objectgridBinding>

 <partitionSet name="ColorMapsPartitioningSet">

 <partition name="partition1" replicationGroupRef="ColorMapsReplicationGroup" />

 </partitionSet>

 <replicationGroup name="ColorMapsReplicationGroup" maxReplicas="1"

 minReplicas="1">

 <replicationGroupMember serverRef="server1" priority="1" />

 <replicationGroupMember serverRef="server2" priority="2" /><!–New–>

 <replicationGroupMember serverRef="server3" priority="3" /><!–New->

 </replicationGroup>

</clusterConfig>

In the previous example, both MapSets (described below) refer to the

ColorMapsReplicationGroup ReplicationGroup, which defines the servers to be

included in the replication group. The configuration file could have been expanded

to include another ReplicationGroup, with each of the MapSets having the same

servers in different orders or different servers to meet customer requirements.

ObjectGrid cluster configuration supports the reuse of stanzas. By default, because

the MapSet replication attributes are not set, and the replication group has more

than one server, replication is enabled and the mode is asynchronous.

26 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

High availability overview

Replication enables high availability within an ObjectGrid cluster.

To understand replication and high availability, you must understand the ObjectGrid

replication group member types. The replication group member types that

ObjectGrid supports include primary, replica, and standby. Each of these types

have a particular role in high availability configurations.

ObjectGrid replication group member types

Primary replication group member

The primary replication group member holds the client’s latest view of the

data that is in use. As the data is updated, the data is propagated to the

replicas. The primary is the instance that communicates with any

connection database through the ObjectGrid Loader interface, propagates

commits synchronously, asynchronously, or not all depending on the

replication configuration.

Replica replication group member

A replica replication group member holds a version of the data that has

been propagated from the primary. The primary can be configured to send

over the changes in various ways. The replication group must have at least

two servers listed to have a primary and a replica, otherwise replication is

not enabled.

Standby replication group member

A standby replication group member does not receive updates as changes

are made to the primary like a replica does. It simply is configured and

ready to receive updates if the primary or replica fail. If the primary fails, the

replica becomes the new primary and the standby needs to be converted to

a replica.

 High availability scenario

In general, replication enables high availability within an ObjectGrid cluster. The two

following illustrations depict primary failure scenarios and recovery. If a primary

replication group member is replicated, and a failure occurs, one of the replicas is

chosen to become the new primary. In this scenario one replica exists.

Server tier

ObjectGrid Server 1 (JVM)

Primary

key object

key object

key objectkey object

key objectkey object

ObjectGrid Server 2 (JVM) ObjectGrid Server 3 (JVM)

ObjectGrid Cluster

Primary

Replica StandbyPrimary

key object

key object

key object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Primary Replica

key object

key object

key objectkey object

key objectkey object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Replica Standby

key object

key object

key objectkey object

key objectkey object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Standby
Purple ObjectGrid Purple ObjectGrid

Purple ObjectGridRed ObjectGrid
Red ObjectGridRed ObjectGrid

Figure 7. ObjectGrid high availability scenario

Chapter 3. ObjectGrid overview 27

When a failure is detected, the primary becomes unavailable. The replica becomes

the primary. If a standby exists, it becomes a Replica, similar to the example

recovery in the following diagram:

The ObjectGrid clients become aware of this adjustment during their next

connection to any of the affected servers. Clients that contact the failed server use

their runtime configuration, and can try the other servers in the cluster dynamically.

The client contacts the next server in the configuration. If the server is up and not

operational, the client waits for a timeout period. The clients assume the replicated

replication group members are recovering from a failure. After an amount of time,

the clients retry, and after the replication group, now having two members, is

operational, a new routing table is provided to the client. The routing table describes

where the current primary is located, its replica locations and which replication

group members of this group are currently standbys.

ObjectGrid clustering configuration sets

When configuring ObjectGrid clustering, you can separate ObjectGrids into

MapSets. This separation is important because an ObjectGrid can contain many

maps. MapSets can be partitioned with a PartitionSet and replicated with a

ReplicationGroup. Each of these configuration options affects how many replication

group members are created during the ObjectGrid server startup. A quick overview

of each type of Set helps to explain the role of each type.

ObjectGrid MapSet

Each ObjectGrid map might have different usage and availability requirements, yet

is correlated by typical application usage. For example, one map might be read only

with no changes after preload is complete, and another might be read-write and

partitioned for scalability purposes. In this case, each map is included within a

unique MapSet. In the previous example, the PurpleMapSet and RedMapSet hold

all the maps for each given ObjectGrid, which is the simplest option.

A MapSet is a unit that can replicate across ObjectGrid Servers, and correlates to a

replication group member that is not partitioned. Each replication group server

Server tier

ObjectGrid Server 1 (JVM)

Primary

key object

key object

key objectkey object

key objectkey object

ObjectGrid Server 2 (JVM) ObjectGrid Server 3 (JVM)

ObjectGrid Cluster

Primary

Replica StandbyPrimary

key object

key object

key object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Primary Replica

key object

key object

key objectkey object

key objectkey object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Replica Standby

key object

key object

key objectkey object

key objectkey object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Standby
Purple ObjectGrid Purple ObjectGrid

Purple ObjectGridRed ObjectGrid
Red ObjectGridRed ObjectGrid

Primary
Replica

Figure 8. ObjectGrid failover

28 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

associated to a MapSet through a PartitionSet hosts a replication group member as

appropriate to support the requested configuration. A replication group member is a

unique end point within the ObjectGrid Cluster, and hosts all maps a given MapSet

dictates in the configuration.

For example, in the previous diagram, the server1 server has the primary, the

server2 server has the replica, and the server3 server has a standby unit that can

become a replica or a primary depending on the replication recovery scenarios. The

Mapsets correlate to the PartitionSet that describes three servers. Therefore, both

MapSets, even though they have a different number of maps in each, are mapped

to the same server because the PartitionSet and ReplicationGroup stanzas are the

same.

ObjectGrid PartitionSet

Typically, the Mapset and the enumerated replication group servers determine the

number of servers that support a particular MapSet in an ObjectGrid cluster. A

replication group member is created within in each hosting replication group server.

However, partitioning can affect the number of replication group members for a

MapSet. Partitioning is managed in the configuration file through the PartitionSet

relationship between the MapSet and the ReplicationGroup.

A PartitionSet divides a MapSet into portions so that one Java virtual machine

(JVM) does not have hold the entire MapSet in a single primary replication group

member. For example, imagine a database of 1,000,000 keys. If each object

referred to by each key was large, there is a reasonable chance that a single 32-bit

JVM could not hold the map in memory in a single primary, replica or standby

replication group member. However, large data sets are often required. To avoid

having to artificially partition the data yourself, for example to avoid manually

partitioning the Purple ObjectGrid first map instance into PurpleFirstMapMap1,

PurpleFirstMap2, PurpleFirstMapN maps, and put each in a different Mapset,

ObjectGrid can do this work to a great extent.

Later in this document, the concept of a PartitionKey is defined. This effectively

amounts to an API that ObjectGrid can invoke to determine what the key hashcode

is for a particular entry during insert. If a MapSet has two partitions, then two

replication group members are created for that MapSet. Often, because the data is

large, these replication group members are located on different servers. For

developers, these members might be on the same server during early prototyping.

Each replication group member holds keys that hash to the same value across the

partitioned replication group members that are available. As a simple example,

assume that the MapSet was partitioned in three ways, 0, 1, and 2. Three primary

replication group members are established, and one holds all keys that hash to a

given value modulus the number of the primary replication group members. If a

key’s hash value is 7 for example, 7 modulus 3 is 1, so the primary replication

group member with the partition index of 1 would contain the instance.

PartitionSet example

The following diagram illustrates separating the purple map into two partitions. Each

key in the map is hashed to an integer, and assigned to a specific partition set upon

insert into the appropriate replication group member. Each partition is in a different

replication group member because it might exist in a different JVM, and ObjectGrid

lets the programmer in general treat the PurpleFirstMap as a non-partitioned, logical

Chapter 3. ObjectGrid overview 29

single map instance. ObjectGrid client and server support manages routing the

requests correctly between the replication group members.

The partition set configuration change to enable this configuration follows:

<?xml version="1.0" encoding="UTF-8"?>

<clusterConfig xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xsi:schemaLocation=http://ibm.com/ws/objectgrid/config/cluster

 ../objectGridCluster.xsd xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="cluster1">

 <!- single server –>

 <serverDefinition name="server1" host="localhost" clientAccessPort="12503“

 peerAccessPort="12504" />

 </cluster>

 <objectGridBinding ref="Purple">

 <mapSet name="PurpleMapSet" partitionSetRef="ColorMapsPartitioningSet">

 <map ref=“FirstPurpleMap" />

 <map ref=“SecondPurpleMap" />

 <map ref=“ThirdPurpleMap" />

 </mapSet>

 </objectGridBinding>

 <partitionSet name="ColorMapsPartitioningSet">

 <partition name="partition1" replicationGroupRef="ColorMapsReplicationGroup" />

 <partition name="partition2" replicationGroupRef="ColorMapsReplicationGroup" />

 </partitionSet>

 <replicationGroup name="ColorMapsReplicationGroup" maxReplicas="1"

 minReplicas="1">

 <replicationGroupMember serverRef="server1" priority="1" />

 </replicationGroup>

</clusterConfig>

The example configuration reflects how to establish a replicated, partitioned Purple

ObjectGrid. In the following case three servers exist, and each of the primary

replication group members are mapped in the same manner to the set of three

servers. They could just as easily be mapped differently if another ReplicationGroup

stanza was used.

node 1

Client tier

JVM 1

JVM 2

Application

Application

key objectkey object

1

2

0

3

key objectkey object

1

2
3

0

ObjectGrid Server 1 (JVM)

Primary

Server tier

key objectkey object

key objectkey object

key objectkey object

Hash=1

1
3
5
7

1
3
5
7

Primary

key object

key object

key object

Hash=0

0
2
4
6
8

key objectkey object

key objectkey object

key objectkey object

Hash=0

0
2
4
6
8

cluster

Figure 9. Distributed ObjectGrid topology: single server with partitioning

30 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

<?xml version="1.0" encoding="UTF-8"?>

<clusterConfig xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xsi:schemaLocation=http://ibm.com/ws/objectgrid/config/cluster

 ../objectGridCluster.xsd xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="cluster1">

 <!- single server –>

 <serverDefinition name="server1" host="localhost" clientAccessPort="12503“

 peerAccessPort="12504" />

 <serverDefinition name="server2" host="localhost" clientAccessPort="12504“

 peerAccessPort="12506" />

 <serverDefinition name="server3" host="localhost" clientAccessPort="12507“

 peerAccessPort="12508" />

 </cluster>

 <objectGridBinding ref="Purple">

 <mapSet name="PurpleMapSet" partitionSetRef="ColorMapsPartitioningSet">

 <map ref=“FirstPurpleMap" />

 <map ref=“SecondPurpleMap" />

 <map ref=“ThirdPurpleMap" />

 </mapSet>

 </objectGridBinding>

 <partitionSet name="ColorMapsPartitioningSet">

 <partition name="partition1" replicationGroupRef="ColorMapsReplicationGroup" />

 <partition name="partition2" replicationGroupRef="ColorMapsReplicationGroup" />

 </partitionSet>

 <replicationGroup name="ColorMapsReplicationGroup" maxReplicas="1"

 minReplicas="1">

 <replicationGroupMember serverRef="server1" priority="1" />

 <replicationGroupMember serverRef="server2" priority="2" />

 <replicationGroupMember serverRef="server3" priority="3" />

 </replicationGroup>

</clusterConfig>

Notice in the previous example, again, only a small change to the configuration file

yields a new level of capability and does require application modification to achieve

the result. The following diagram illustrates the ObjectGrid cluster view and how the

replication group members are laid out to support the previous partitioning

configuration:

Server tier

ObjectGrid Server 1 (JVM)

Primary

key object

key object

key object

Hash=1

1
3
5
7

Primary

key object

key object

key object

Hash=0

0
2
4
6
8

ObjectGrid Server 1 (JVM)

Primary

key objectkey object

key objectkey object

key objectkey object

Hash=1

1
3
5
7

1
3
5
7

Primary

key object

key object

key object

Hash=0

0
2
4
6
8

key objectkey object

key objectkey object

key objectkey object

Hash=0

0
2
4
6
8

ObjectGrid Server 2 (JVM)

Replica

key objectkey object

key objectkey object

key objectkey object

Hash=1

1
3
5
7

1
3
5
7

Replica

key object

key object

key object

Hash=0

0
2
4
6
8

key objectkey object

key objectkey object

key objectkey object

Hash=0

0
2
4
6
8

ObjectGrid Server 3 (JVM)

Standby

key objectkey object

key objectkey object

key objectkey object

Hash=1

1
3
5
7

1
3
5
7

Standby

key object

key object

key object

Hash=0

0
2
4
6
8

key objectkey object

key objectkey object

key objectkey object

Hash=0

0
2
4
6
8

partitioned ObjectGrid cluster

Figure 10. Distributed ObjectGrid topology: multi-server with partitioning

Chapter 3. ObjectGrid overview 31

To complete the PartitionSet discussion, following is another variation of the

previous example. In this case, a second ReplicationGroup was created. Each

PartitionSet is now included in its own replication group, on separate servers.

 The configuration for this topology is very similar to the previous examples. The

changes include three more server instances, and a new ReplicationGroup that is

referenced by the second PartitionSet.

<?xml version="1.0" encoding="UTF-8"?>

<clusterConfig xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xsi:schemaLocation=http://ibm.com/ws/objectgrid/config/cluster

 ../objectGridCluster.xsd xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="cluster1">

 <!- single server –>

 <serverDefinition name="server1" host="localhost" clientAccessPort="12503“

 peerAccessPort="12504" />

 <serverDefinition name="server2" host="localhost" clientAccessPort="12504“

 peerAccessPort="12506" />

 <serverDefinition name="server3" host="localhost" clientAccessPort="12507“

 peerAccessPort="12508" />

 <serverDefinition name="server4" host="localhost" clientAccessPort="12513“

 peerAccessPort="12514" /><!-*New*->

 <serverDefinition name="server5" host="localhost" clientAccessPort="12514“

 peerAccessPort="12516" /><!-*New*->

 <serverDefinition name="server6" host="localhost" clientAccessPort="12517“

 peerAccessPort="12518" /><!-*New*->

 </cluster>

 <objectGridBinding ref="Purple">

 <mapSet name="PurpleMapSet" partitionSetRef="ColorMapsPartitioningSet">

 <map ref=“FirstPurpleMap" />

 <map ref=“SecondPurpleMap" />

 <map ref=“ThirdPurpleMap" />

 </mapSet>

 </objectGridBinding>

 <partitionSet name="ColorMapsPartitioningSet">

 <partition name="partition1" replicationGroupRef="ColorMapsReplicationGroup" />

 <partition name="partition2" replicationGroupRef="ColorMapsReplicationGroup" />

 <!-NEW->

 </partitionSet>

 <replicationGroup name="ColorMapsReplicationGroup" maxReplicas="1"

Server tier

ObjectGrid Server 1 (JVM)

Primary

key objectkey object

key objectkey object

key objectkey object

Hash=1

1
3
5
7

1
3
5
7

Primary

key object

key object

key object

Hash=0

0
2
4
6
8

Primary

key object

key object

key object

Hash=0

0
2
4
6
8

Primary

key object

key object

key object

Hash=0

0
2
4
6
8

key objectkey object

key objectkey object

key objectkey object

Hash=0

0
2
4
6
8

ObjectGrid Server 2 (JVM)

Replica

key objectkey object

key objectkey object

key objectkey object

Hash=1

1
3
5
7

1
3
5
7

Replica

key object

key object

key object

Hash=0

0
2
4
6
8

key objectkey object

key objectkey object

key objectkey object

Hash=0

0
2
4
6
8

ObjectGrid Server 3 (JVM)

Standby

key objectkey object

key objectkey object

key objectkey object

Hash=1

1
3
5
7

1
3
5
7

Partitioned ObjectGrid Cluster

ObjectGrid Server 4 (JVM)

Standby

key object

key object

key object

Hash=0

0
2
4
6
8

key objectkey object

key objectkey object

key objectkey object

Hash=0

0
2
4
6
8

ObjectGrid Server 5 (JVM) ObjectGrid Server 6 (JVM)

Figure 11. Distributed ObjectGrid topology: multi-server with partitioning

32 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

minReplicas="1">

 <replicationGroupMember serverRef="server1" priority="1" />

 <replicationGroupMember serverRef="server2" priority="2" />

 <replicationGroupMember serverRef="server3" priority="3" />

 </replicationGroup>

 <replicationGroup name="ColorMapsReplicationGroupNew" maxReplicas="1"

 minReplicas="1"> <!-*NEW*->

 <replicationGroupMember serverRef="server4" priority="1" />

 <replicationGroupMember serverRef="server5" priority="2" />

 <replicationGroupMember serverRef="server6" priority="3" />

 </replicationGroup>

</clusterConfig>

This configuration results in the same number of replication group members, but

forces the second replication group to be specifically configured through its own

XML stanza, and at the same time attributes each of the instances to different

server instances rather than collocating as was done in the earlier example.

The advantage of this configuration is that each partition, in this case can hold

upwards of 1.5+ gigabytes of data, a total of 3 gigabytes or more because the two

replication group members are in their own JVM instances. This then makes best

use of 32-bit JVM 2 gigabytes of addressable memory space.

ObjectGrid clients contacting multiple ObjectGrid clusters

ObjectGrid was specifically designed not only to scale in terms of partitioned

support across Java virtual machines (JVMs), but also to extend the reach in which

a normal Java Map interface can be taken to acquire information. You can contact

many ObjectGrid clusters with a single client.

In the following scenario, a server tier contains two ObjectGrid clusters. One of the

Java application clients and one of the application servers need to contact multiple

clusters. This is a powerful feature and allows for a great deal of scalability.

Server tier

ObjectGrid Cluster 2

ObjectGrid Server 1 (JVM)

Primary

key objectkey object

key objectkey object

Primary

Primary

key object

key object

key object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Primary

ObjectGrid Server 2 (JVM)

Replica

Replica

key objectkey object

key objectkey object

key object

key object

key object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Replica

ObjectGrid Server 3 (JVM)

Standby

Standby

key objectkey object

key objectkey object

key objectkey object

key objectkey object

key objectkey object

Standby

ObjectGrid Cluster 1

ObjectGrid Server 1 (JVM)

Primary

key object

key object

key objectkey object

key objectkey object

Primary

Primary

key object

key object

key object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Primary

ObjectGrid Server 2 (JVM)

Replica

Replica

key object

key object

key objectkey object

key objectkey object

key object

key object

key object

key object

key object

key object

key objectkey object

key objectkey object

key objectkey object

Replica

ObjectGrid Server 3 (JVM)

Standby

Standby

key object

key object

key objectkey object

key objectkey object

key objectkey object

key objectkey object

key objectkey object

Standby

Client tier
Application JVM 1

Application

Application JVM 1

ApplicationApplication JVM 2

Application

Application JVM 2

ApplicationApplication JVM 3

Application

Application Server JVM 1

Application

Application Server JVM 1

ApplicationApplication Server JVM 2

Application

Application Server JVM 2

ApplicationApplication Server JVM 3

Application

Figure 12. ObjectGrid clients interacting with multiple ObjectGrid clusters

Chapter 3. ObjectGrid overview 33

An ObjectGrid Cluster can support many ObjectGrids, each containing many

MapSet and PartitionSet configurations. Each ObjectGrid cluster can be made of

one or more JVMs - possibly many more. For a large enterprise, the ability for the

ObjectGrid Client to contact not only one, but several ObjectGrid clusters at the

same time is very valuable feature.

A note of caution however, the ObjectGrid Client cannot reference data from

multiple Clusters within a single transaction. The ObjectGrid Client application must

run one or more transactions to cache the data in the Java virtual machine

instance, and correlate the information retrieved as Java object. Updates based on

the information must be also contained within in a single transaction for each

cluster. See “ObjectGrid transaction demarcation” for more details on this issue.

ObjectGrid client near caching support

The ObjectGrid client is actually a caching tier. You can design your application to

leverage the local caching capability if you know if the data that was previously

acquired from the remote server is not stale. For example, if the data has been

updated in the ObjectGrid cluster but not in this client (this would take a new get(...)

request), the client should update the local cache to be consistent (not all

applications require this) with the ObjectGrid cluster.

After a get operation is performed, a subsequent request to get operation for the

same key and object pair results in the ObjectGrid client detecting that the data has

already been retrieved and use the ″in Java virtual machine (JVM)″ cached version

instead of going across the network to the ObjectGrid cluster to access the data.

After the data is retrieved once over the network, the data continues to be provided

from the local cache until the local entry is evicted, manually or through a normal

configured evictor.

For example, if you understand that the data on the server is refreshed once every

six hours, you can control when the local cache, or near cache client update

occurs. The user invalidates the near cache entry, then issue the get request. The

get request contacts the server and acquires the information if all goes well.

Assume the object is an image file. The first time the image is downloaded after the

update window, every subsequent request does not result in a remote procedure

call to the server to get the image.

The near caching support does not apply in pessimistic mode because the client

might require locking on the ObjectGrid cluster data to enforce the requested

locking strategy. Review the beginNoWriteThrough() method for more details on

clearing or invalidating near cache entries that should be removed without modifying

the ObjectGrid cluster’s view of the information.

ObjectGrid transaction demarcation

A key concept to keep in mind as a programmer is the concept of transaction

demarcation. ObjectGrid does not support two phase commit protocol for

transaction commit processing across replication group members in an ObjectGrid

cluster. In a single ObjectGrid cluster based session, read-write updates must be

applied to a single primary replication group member. If multiple replication group

members were involved, it would not be possible to make the updates atomic

during the transaction commit processing. This is slightly different than the local

ObjectGrid JAR programming model, which allows committing against all maps in a

single ObjectGrid.

34 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

A special case to take note of is a PartitionSet in which more than one partition is

defined. In these scenarios, key 1 could be on server 1, key 2 on server 2, and so

on. If, within one transaction there are updates to key 1 and key 2, the updates

would fail because an ObjectGrid session cannot commit against two replication

group members. As noted previously, a PartitionSet that supports two or more

partitions must be used carefully in the application. Take care to ensure that the

transaction sequence does not update data from more than a single transaction.

ObjectGrid relationship to databases

This overview has not addressed specifically ObjectGrid servers that acquire

initialized data from places other than from other Java clients. When an ObjectGrid

is started, a loader is initialized for each Map in a MapSet. This loader allows user

requests in the form of a Java Map get or put to be retrieved or written to the

database as appropriate. The database operations are invisible to the Java Map

user, and no special coding is required in their application. However, the loader

functionality must be developed by a programmer and configured for use in the

ObjectGrid before the end user programmer can use this function. See “Loaders” on

page 191 for more details.

In addition, preload support exists to preload from a database after an ObjectGrid

Cluster initializes, as well as a partitioned preload to ensure that the correct data is

read for the particular replication group member partition for a given MapSet. Users

can access and update the read-write information with varying locking strategies,

including none, optimistic and pessimistic. Read-only data access is supported, and

is the fastest model as several optimizations can be provided.

Chapter 3. ObjectGrid overview 35

36 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 4. ObjectGrid tutorial : application programming

model

Use this task to learn about the ObjectGrid application programming model.

Prepare your environment to run ObjectGrid applications. See Chapter 1, “Getting

started with ObjectGrid by running the sample application,” on page 1 to learn about

the Java archive (JAR) file locations, Java requirements, and how to run a simple

file to verify that your environment is set up properly.

Decide what programming environment to use for this task. You can use an

integrated development environment (IDE) such as Eclipse, but the command line

Java environment works also. Incorporate the ObjectGrid into enterprise beans and

servlets after you are more familiar with ObjectGrid. The examples in the Tutorial do

not assume any particular Java environment, so you can use any familiar

environment.

At its most basic definition, ObjectGrid is a cache and an in-memory repository for

objects. Using a java.util.Map map to store and access objects is similar to using

ObjectGrid. At the same time, ObjectGrid is more than just a cache. By exploring

the various features and plug-ins in this task, you discover that ObjectGrid is very

extensible and flexible. You can use ObjectGrid as a simple look-aside cache or a

more elaborate cache backed by a resource manager.

The examples in this tutorial are not complete programs. Imports, exception

processing, and even some of the variables are not fully declared in every example.

You can use the samples to write your own programs.

Use this task to use ObjectGrid from a Java program.

1. Locate the ObjectGrid APIs and exceptions. All of the public ObjectGrid APIs

and Exceptions are contained in the com.ibm.websphere.objectgrid package.

For more advanced system or configuration topics, see the additional APIs and

Exceptions in the com.ibm.websphere.objectgrid.plugins package. Where

there are provided plug-in implementations, locate those classes in the

com.ibm.websphere.objectgrid.plugins.builtins package. For the ObjectGrid

security features, look for packages with security in the name, such as

com.ibm.websphere.objectgrid.security,

com.ibm.websphere.objectgrid.security.plugins, and

com.ibm.websphere.objectgrid.security.plugins.builtins.

This task focuses on the APIs that are in the com.ibm.websphere.objectgrid

package. The complete JavaDoc for ObjectGrid can be found at the following

location: <install_root>/web/xd/apidocs .

com.ibm.websphere.objectgrid

com.ibm.websphere.objectgrid.plugins

com.ibm.websphere.objectgrid.plugins.builtins

com.ibm.websphere.objectgrid.security

com.ibm.websphere.objectgrid.security.plugins

com.ibm.websphere.objectgrid.security.plugins.builtins

2. Get or create an ObjectGrid instance. Use the ObjectGridManagerFactory to get

the ObjectGridManager singleton instance. Then, create an ObjectGrid instance

with the following statements:

© Copyright IBM Corp. 2004, 2005 37

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid objectGrid =

 objectGridManager.createObjectGrid("someGrid");

The ObjectGridManager interface has several methods for creating, retrieving,

and removing ObjectGrid instances. See the “ObjectGridManager interface” on

page 87 topic to choose a variation for your situation. You can also set trace

settings with the ObjectGridManager interface. If you are running within

WebSphere Extended Deployment or WebSphere Application Server, these

methods are not necessary because trace is managed by the included facilities.

If you are running outside of WebSphere Application Server, these methods can

be useful. See the “Trace ObjectGrid” on page 93 topic for more complete

information for these methods.

3. Initialize the ObjectGrid.

a. Set a name for the ObjectGrid, if you did not set the name with the create

methods.

b. Define the BackingMaps, by using the default configuration for a

BackingMap for your initial applications.

c. After you have defined your BackingMaps, initialize the ObjectGrid.

Initializing the ObjectGrid signals that all of the configuration is complete and

you want to start using the ObjectGrid.

d. After the ObjectGrid has been initialized, get a Session object. Reference

“ObjectGrid interface” on page 100 and the JavaDoc for more information.

Use the following example as guidance in this step:

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid objectGrid =

 objectGridManager.createObjectGrid("someGrid");

objectGrid.defineMap("someMap");

objectGrid.initialize();

Session session = objectGrid.getSession();

4. Use sessions to manage transactional operations. All access to an ObjectGrid

cache is transactional: multiple accesses, inserts, updates, and removals of

Objects from the cache are contained within a single unit of work, referred to as

a session. At the end of a session, you can either commit all of the changes

within this unit of work, or roll back and forget all of the changes within the unit

of work.

You can also use automatic commit for single atomic operations against the

cache. In the absence of an active session context, individual accesses to the

cache contents are enclosed in their own automatically committed sessions.

Another important aspect of the Session interface is to get transactional access,

or handle, to the BackingMap with the ObjectMap interface. You can use the

getMap method to create an ObjectMap handle to a predefined BackingMap. All

operations against the cache, such as inserts, updates, deletes, are completed

with the ObjectMap instance. Reference the “Session interface” on page 109

topic for more information. Use the following example to obtain and manage a

session:

Session session = objectGrid.getSession();

ObjectMap objectMap = session.getMap("someMap");

session.begin();

objectMap.insert("key1", "value1");

objectMap.insert("key2", "value2");

session.commit();

objectMap.insert("key3", "value3"); // auto−commit

38 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

5. Use the ObjectMap interface to access and update the cache. As you look at

the ObjectMap interface, notice several methods for accessing and updating the

cache. the ObjectMap interface is modeled as a map-like interface. However,

checked exceptions are introduced as an aid with developing ObjectGrid

applications with an IDE, such as Eclipse. If you want to use a java.util.Map

interface without checked exceptions, you can use the getJavaMap method.

See “ObjectMap and JavaMap interfaces” on page 113 for more information.

Explicit insert and update methods get around the vague put operation. You can

still use the put method, but using the explicit insert and update methods

convey your intent much more clearly. The use of the put method is clarified by

defining a put method without a preceding get operation as an insert method. If

a preceding get operation is attempted before the put operation, then the put

operation is treated as an insert or an update depending on whether the entry

exists in the cache.

You can perform the following basic ObjectMap operations: get, put, insert,

update, remove, touch, invalidate, and containsKey. Various details and

variations can be found in the “System programming model overview” on page

40 topic or the ObjectMap API documentation. The following example

demonstrates the use of the ObjectMap to modify the cache:

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid objectGrid =

 objectGridManager.createObjectGrid("someGrid");

objectGrid.defineMap("someMap");

objectGrid.initialize();

Session session = objectGrid.getSession();

ObjectMap objectMap = session.getMap("someMap");

// Start a transaction/session...

session.begin();

objectMap.insert("key1", "value1");

objectMap.put("key2", "value2");

session.commit();

// Verify changes did commit

String value1 = (String)objectMap.get("key1");

String value2 = (String)objectMap.get("key2");

System.out.println("key1 = " + value1 + ", key2 = " + value2);

//Start a new transaction/session...

session.begin();

objectMap.update("key2", "newValue2");

objectMap.remove("key1");

session.rollback();

// Verify changes didn’t commit

String newValue1 = (String)objectMap.get("key1");

String newValue2 = (String)objectMap.get("key2");

System.out.println("key1 = " + newValue1 + ", key2 = " + newValue2);

6. Use the index to search for cached objects. By using the index, your

applications can find objects by a specific value or a range of values. The

BackingMap map must have the index plug-in configured before applications

can use the index function. Applications must obtain the index object from the

getIndex() method of the ObjectMap interface and cast it to the right index

interface such as the MapIndex interface, the MapRangeIndex interface, or a

custom index interface.

Currently, the indexing feature is supported in the local cache only. The indexing

feature is not supported in the distributed cache. If you try to perform any

indexing operation against a distributed cache, the

UnsupportedOperationException exception results.

The following example demonstrates how to use the index:

Chapter 4. ObjectGrid tutorial : application programming model 39

MapRangeIndex myIndex = (MapRangeIndex) objectMap.getIndex("indexName");

Object searchCriteria = "targetAttributeValue";

Iterator iter = myIndex.findAll(searchCriteria);

while (iter.hasNext()) {

 Object key = iter.next();

 System.out.println(objectMap.get(key));

}

As you finish reading this section and experiment with the example code, you

become more comfortable with the essential ObjectGrid programming model.

For more specific information, see the Chapter 9, “ObjectGrid application

programming interface overview,” on page 87.

Getting started with remote ObjectGrid

Put your short description here; used for first paragraph and abstract.

The Chapter 4, “ObjectGrid tutorial : application programming model,” on page 37

generally dealt with a ″local″ or within an application usage of an ObjectGrid. An

application created an instance of an ObjectGrid and used that instance. When the

application Java virtual machine (JVM) terminated, the ObjectGrid cache also

terminated. Remote ObjectGrid, as the name suggests, allows access to an

ObjectGrid residing on different JVM. Multiple clients can connect to the remote

ObjectGrid and access the ObjectGrid using the same API transparently.

1. Review the following sections to get started:

v Chapter 3, “ObjectGrid overview,” on page 17

v “ObjectGrid configuration” on page 249

v “ObjectGrid client connect APIs” on page 94

v Chapter 8, “Command line support,” on page 79

2. To start the servers, you must define the ObjectGrid XML file and the Cluster

XML file. See “Distributed ObjectGrid configuration” on page 261. This topic

refers to the university.xml and universityCluster.xml files. You can use

these files as an example, modifying the host and port to launch or start the

server. See Chapter 8, “Command line support,” on page 79 for details on

launching ObjectGrid servers.

3. When the server is running, a client can connect to this running server. See

“ObjectGrid client connect APIs” on page 94 for details on how a client can

connect and perform ObjectGrid operations.

System programming model overview

The system programming model provides several additional features and extension

points for the ObjectGrid.

The following diagram illustrates how the system programming model provides

several additional features and extension points.

40 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

A plug-in in ObjectGrid is a component that provides a certain type of function to

the pluggable ObjectGrid components that include ObjectGrid and BackingMap. A

feature represents a specific function or characteristic of an ObjectGrid component,

including ObjectGrid, Session, BackingMap, ObjectMap, and so on. If a feature

represents a function, it can be used to achieve a specific computing objective. If a

feature is a characteristic, it can be used to tune the behavior of the ObjectGrid

components.

Each of the following sections describes some of the features and extensions that

are illustrated in the preceding diagram:

v “System programming model overview: ObjectGrid interface plug points and

features” on page 42

The ObjectGrid interface has several plug points and features for more extensible

interactions with the ObjectGrid.

v “System programming model overview: BackingMap interface plug points and

features” on page 44

The BackingMap interface has several optional plug points and features for more

extensible interactions with the ObjectGrid.

v “System programming model overview: Session interface features” on page 52

The Session interface has several features for more extensible interactions with

the ObjectGrid. Each of the sections in this topic describe the feature and provide

some brief code snippets for the usage scenario.

v “System programming model overview: ObjectMap interface features” on page 53

Application

ObjectGrid

Session

Plug-ins

ObjectgridEventListener
TransactionCallback
SubjectSource
SubjectValidation
MapAuthorization

Plug-ins

Evictor
Loader
MapEventListener
ObjectTransformer
OptimisticCallback
MapIndexPlugin

Features

JavaMap and java.util.map
Map extensions

Keyword processing
CopyMode

Evictor settings
index

Features

Keyword processing
BackingMap access

Slot processing
Security

Features

No Write Through mode
Pushing data to the loader only

Logsequence processing
Performance Monitoring

Features

readOnly
numberOfBuckets

preloadMode
lockStrategy

numberOfLockBuckets
lockTimeout
copyMode

valueinterfaceClassName
copyKey

nullValuesSupported
itlEvictorType

timeToLive

BackingMap

Transactional operations

Configuration operations

ObjectMap

Co-related
by name

Figure 13. ObjectGrid overview

Chapter 4. ObjectGrid tutorial : application programming model 41

The ObjectMap interface has several features for more extensible interactions

with the ObjectGrid. Each of the sections in this topic describe the feature and

provide some brief code snippets for the usage scenario.

Fore more information about the individual features and plug-ins, see Chapter 9,

“ObjectGrid application programming interface overview,” on page 87.

System programming model overview: ObjectGrid interface plug

points and features

The ObjectGrid interface has several plug points and features for more extensible

interactions with the ObjectGrid.

Each of the following sections describe the feature and provide some brief code

snippets for the usage scenario. Where appropriate, an XML snippet is provided to

show the alternative XML configuration. For more extensive information, see the

“ObjectGrid interface” on page 100 and “ObjectGrid configuration” on page 249

topics.

Keyword processing

The ObjectGrid interface provides a flexible invalidation mechanism that is

based around keywords. A keyword is a non-null instance of any

serializable object. You are free to associate keywords with BackingMap

entries in any way. Most of the keyword processing is performed at the

ObjectMap level, but the association of one keyword to another keyword to

form a hierarchical tree of keywords is performed at the ObjectGrid level.

 The associateKeyword(java.io.Serializable parent, java.io.Serializable child)

method links the two keywords together in a directional relationship. If a

parent is invalidated, then the child is also invalidated. Invalidating the child

has no impact on the parent. For example, this method is used to add a

New York map entry as a child of the USA map entry, so that if USA is

invalidated then all New York entries are also invalidated. See the following

code sample:

 :

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

// associate several cities with "USA" keyword

objectGrid.associateKeyword("USA", "New York");

objectGrid.associateKeyword("USA", "Rochester");

objectGrid.associateKeyword("USA", "Raleigh");

:

// insert several entries with various keywords

objectMap.insert("key1", "value1", "New York");

objectMap.insert("key2", "value2", "Mexico");

objectMap.insert("key3", "value3", "Raleigh");

objectMap.insert("key4", "value4", "USA");

objectMap.insert("key5", "value5", "Rochester");

objectMap.insert("key6", "value6", "France");

:

// invalidate all entries associated with "USA" keyword, leaving

// "key2" and "key6" entries

objectMap.invalidateUsingKeyword("USA", true);

:

For more information, see “Keywords” on page 117.

BackingMap access

The ObjectGrid provides access to the BackingMap objects. You can get

access to a BackingMap with either the defineMap or getMap methods. See

“BackingMap interface” on page 105 for more information. The following

example creates two BackingMap references:

42 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

BackingMap backingMap = objectGrid.getMap("someMap");

BackingMap newBackingMap = objectGrid.defineMap("newMap");

:

Slot processing

You can reserve a slot for storing objects that are used in the course of the

transaction, such as the transaction ID object (TxID) or a database

connection object (Connection). These stored objects are then referenced

with a specific index, which is provided by the reserveSlot method. You can

find additional information about using slots in the “Loaders” on page 191

and “TransactionCallback plug-in” on page 207 topics. The following code

snippet demonstrates slot processing:

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

int index = objectGrid.reserveSlot

 (com.ibm.websphere.objectgrid.TxID.SLOT_NAME);

:

// Use the index later when storing or retrieving objects from

//the TxID object ...

TxID tx = session.getTxID();

tx.putSlot(index, someObject);

:

Object theTxObject = tx.getSlot(index);

:

Security processing

Maps can be protected using security mechanisms. The following methods

are available on an ObjectGrid for configuring and using the security

features.

v getSession(Subject)

v SubjectSource

v SubjectValidation

v AuthorizationMechanism

v MapAuthorization

v PermissionCheckPeriod

See “ObjectGrid security” on page 131 for more information on the available

security mechanisms.

ObjectGridEventListener

The ObjectGridEventListener listener provides a way for applications to

receive notification in the event of a transaction begin or commit. An

instance of an ObjectGridEventListener can be set on the ObjectGrid.

Reference the “Listeners” on page 177 topic for more information. Following

is an example of how to implement the ObjectGridEventListener interface

programmatically:

class MyObjectGridEventListener implements

com.ibm.websphere.objectgrid.plugins.ObjectGridEventListener { ... }

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

objectGrid.addEventListener(new MyObjectGridEventListener());

:

You can also perform the same configuration with XML:

:

<objectGrids>

 <objectGrid name="someGrid">

 <bean id="ObjectGridEventListner" className=

Chapter 4. ObjectGrid tutorial : application programming model 43

"com.somecompany.MyObjectGridEventListener" />

 :

 </objectGrid>

</objectGrids>

:

TransactionCallback plug-in

Calling methods on the session sends corresponding events to the

TransactionCallback plug-in. An ObjectGrid can have zero or one

TransactionCallback plug-ins. BackingMaps that are defined on an

ObjectGrid with a TransactionCallback plug-in must have a corresponding

Loader. See “TransactionCallback plug-in” on page 207 for more

information. The following code snippet demonstrates how to implement the

TransactionCallback plug-in programmatically:

class MyTransactionCallback implements

com.ibm.websphere.objectgrid.plugins.TransactionCallback { ... }

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

objectGrid.setTransactionCallback(new MyTransactionCallback());

:

You can perform the same configuration with XML:

:

<objectGrids>

 <objectGrid name="someGrid">

 <bean id="TransactionCallback" className=

 "com.somecompany.MyTransactionCallback" />

 </objectGrid>

</objectGrids>

:

System programming model overview: BackingMap interface plug

points and features

The BackingMap interface has several optional plug points for more extensible

interactions with the ObjectGrid.

Each of the following sections describe the feature and provide some brief code

snippets for the usage scenario. Where appropriate, an XML snippet is provided to

show the alternative XML configuration. More extensive information is the

“BackingMap interface” on page 105 and “ObjectGrid configuration” on page 249

topics or in the API documentation.

Configuration attributes

Several configuration items are associated with BackingMaps:

v ReadOnly (defaults to false): Setting this attribute to true makes the backing

map read-only. Setting to false will makes the backing map a read and write. If

you do not specify a value, the default of read and write results.

v NullValuesSupported (defaults to true): Supporting null value means a null

value can be put in a map. If this attribute is set to true, null values are

supported in the ObjectMap; otherwise null values are not supported. If null

values are supported, a get operation that returns null can mean that the value is

null or the map does not contain the passed-in key.

v NumberOfBuckets (defaults to 503): Specifies the number of buckets that are

used by this BackingMap. The BackingMap implementation uses a hash map for

its implementation. If many entries exist in the BackingMap then more buckets

44 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

lead to better performance because the risk of collisions is lower as the number

of buckets grows. More buckets also lead to more concurrency.

v NumberOfLockBuckets (defaults to 383): Specifies the number of lock buckets

that are used by the lock manager for this BackingMap. When the lockStrategy

attribute is set to OPTIMISTIC or PESSIMISTIC, a lock manager is created for

the BackingMap. The lock manager uses a hash map to keep track of entries

that are locked by one or more transactions. If many entries exist in the hash

map, then more lock buckets lead to better performance as the risk of collisions

is lower as the number of buckets grows. More lock buckets also means more

concurrency. When the lockStrategy is NONE, no lock manager is used by this

BackingMap. In this case, setting the numberOfLockBuckets attribute has no

effect.

Programmatic configuration example

The following example configures properties on a backing map:

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

BackingMap backingMap = objectGrid.getMap("someMap");

 // override default of read/write

backingMap.setReadOnly(true);

// override default of allowing Null values

backingMap.setNullValuesSupported(false);

// override default (prime numbers work best)

backingMap.setNumberOfBuckets(251);

// override default (prime numbers work best)

backingMap.setNumberOfLockBuckets(251);

:

XML configuration example

The following XML configuration example configures the same properties that are

demonstrated in the preceding programmatic sample.

:

<objectGrids>

 <objectGrid name="someGrid">

 <backingMap name="someMap" readOnly="true" nullValuesSupported="false"

 numberOfBuckets="251" numberOfLockBuckets="251" />

 </objectGrid>

</objectGrids>

:

Lock strategy

When the lock strategy is set to OPTIMISTIC or PESSIMISTIC, a lock manager is

created for the BackingMap. To prevent deadlocks from occurring, the lock manager

has a default timeout value for waiting for a lock to be granted. If this timeout limit is

exceeded, a LockTimeoutException exception results. The default value of 15

seconds is sufficient for most applications, but on a heavily loaded system, a

timeout might occur when no actual deadlock exists. In that case, the

setLockTimeout method can be used to increase the lock timeout value from the

default to whatever is needed to prevent false timeout exceptions from occurring.

When the lock strategy is NONE, no lock manager is used by this BackingMap. In

this case, setting the lockTimeout attribute has no effect. For more information, see

the “Locking” on page 123 topic.

Programmatic configuration example

Chapter 4. ObjectGrid tutorial : application programming model 45

The following example sets the lock strategy:

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

BackingMap backingMap = objectGrid.getMap("someMap");

// override default value of OPTIMISTIC

backingMap.setLockStrategy(LockStrategy.PESSIMISTIC);

backingMap.setLockTimeout(30); // sets lock timeout to 30 seconds

:

XML configuration example

The following example sets the same lock strategy that is defined in the preceding

programmatic example.

:

<objectGrids>

 <objectGrid name="someGrid">

 <backingMap name="someMap" lockStrategy="PESSIMISTIC" lockTimeout="30" />

 </objectGrid>

</objectGrids>

:

Copy keys and values

Making copies of keys and values can be expensive, both from a resource and

performance perspective. Without the capability to make these copies, strange and

difficult-to-debug problems can occur. ObjectGrid has provided the ability to

configure whether to and when to make copies of keys or values. Normally, keys

are considered immutable so there is no need to copy the key objects. The default

mode for key objects is not to make copies. Value objects are more likely to be

modified by the application. When to provide a copy of the Value object versus the

actual reference to the Value object is a configurable option. Reference the

Chapter 11, “ObjectGrid performance best practices,” on page 315 topic and the

JavaDoc for additional details on the CopyKey and CopyMode settings.

Programmatic configuration example

Following is an example of setting the copy mode and copy key settings:

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

BackingMap backingMap = objectGrid.getMap("someMap");

backingMap.setCopyKey(true); // make a copy of each new key

backingMap.setCopyMode(NO_COPY); // Most efficient − trust the application

:

XML configuration example

The following example results in the same configuration as in the preceding

programmatic configuration example:

:

<objectGrids>

 <objectGrid name="someGrid">

 <backingMap name="someMap" copyKey="true" copyMode="NO_COPY" />

 </objectGrid>

</objectGrids>

:

46 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Evictors

Evictors are used to periodically clean out unnecessary entries in the map. The

entries that are removed are defined by the Evictor. The built-in Evictors are

time-based, so the eviction strategy is based on the amount of time that an entry

has been alive in the map. Other eviction strategies are based on usage, size, or a

combination of factors.

v Built-in Time To Live (TTL) Evictor: The built-in Time To Live evictor provides

for a couple of configuration items that are set on the BackingMap with the

setTtlEvictorType and setTimeToLive methods. By default, this built-in TimeToLive

evictor is not active. You can activate it by calling the setTtlEvictorType method

with one of three values: CREATION_TIME, LAST_ACCESS_TIME, or NONE

(default). Then, depending on the type of TimeToLive evictor selected, the value

for the setTimeToLive method is used to set the lifetime for each map entry.

v Evictor plug-ins: In addition to the built-in Time To Live Evictor, an application

can provide its own Evictor implementation plug-in. You can use any algorithm

periodically to invalidate map entries.

Programmatic configuration

The following class creates an evictor:

class MyEvictor implements com.ibm.websphere.objectgrid.plugins.Evictor { ... }

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

BackingMap backingMap = objectGrid.getMap("someMap");

// timer starts when entry is first created

backingMap.setTtlEvictorType(CREATION_TIME);

// Allow each map entry to live 30 seconds before invalidation

backingMap.setTimeToLive(30);

// Both builtin and custom Evictors will be active

backingMap.setEvictor(new MyEvictor()); :

XML configuration

The following XML code creates a configuration that is identical to the preceding

programmatic configuration:

:

<objectGrids>

 <objectGrid name="someGrid">

 <backingMap name="someMap" pluginCollection="default"

 ttlEvictorType="CREATION_TIME" timeToLive="30" />

 </objectGrid>

</objectGrids>

:

<backingMapPluginCollections>

 <backingMapPluginCollection id="default">

 <bean id="Evictor" className="com.somecompany.MyEvictor" />

 </backingMapPluginCollection>

</backingMapPluginCollections>

:

For more information, see “Evictors” on page 182.

Loaders

An ObjectGrid Loader is a pluggable component that enables an ObjectGrid map to

behave as a memory cache for data that is normally kept in a persistent store on

Chapter 4. ObjectGrid tutorial : application programming model 47

either the same system or another system. Typically, a database or file system is

used as the persistent store. A loader has the logic for reading and writing data

from and to persistent store.

A Loader is an optional plug-in for an ObjectGrid backing map. Only one Loader

can ever be associated with a given backing map and each backing map has its

own Loader instance. The backing map requests any data that it does not have

from its Loader. Any changes to the map are pushed out to the Loader. The Loader

plug-in provides a way for the backing map to move data between the map and its

persistent store.

Programmatic configuration

Following is an example of a loader implementation:

class MyLoader implements com.ibm.websphere.objectgrid.plugins.Loader { .. }

:

Loader myLoader = new MyLoader();

myLoader.setDataBaseName("testdb");

myLoader.setIsolationLevel("ReadCommitted");

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

BackingMap backingMap = objectGrid.getMap("someMap");

backingMap.setLoader(myLoader);

backingMap.setPreloadMode(true);

:

XML configuration

The following XML sample results in the same configuration as the preceding

programmatic example:

:

<objectGrids>

 <objectGrid name="someGrid">

 <backingMap name="someMap" pluginCollectionRef="default" preloadMode="true" />

 </objectGrid>

</objectGrids>

:

<backingMapPluginCollections>

 <backingMapPluginCollection id="default">

 <bean id="Loader" classname="com.somecompany.MyLoader">

 <property name="dataBaseName" type="java.lang.String" value="testdb" />

 <property name="isolationLevel" type="java.lang.String" value="ReadCommitted" />

 </bean>

 </backingMapPluginCollection>

</backingMapPluginCollections>

:

For more information, see the “Loaders” on page 191 topic.

MapEventListener interface

The MapEventListener callback interface is implemented by the application when it

wants to receive events about a Map such as the eviction of a map entry or data

preload completion. The following code example demonstrates how to set a

MapEventListener instance on a BackingMap instance:

Programmatic configuration

class MyMapEventListener implements

 com.ibm.websphere.objectgrid.plugins.MapEventListener { ... }

:

48 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

BackingMap backingMap = objectGrid.getMap("someMap");

backingMap.addMapEventListener(new MyMapEventListener());

XML configuration

The following example results in the same configuration as the preceding

programmatic example:

:

<objectGrids>

 <objectGrid name="someGrid">

 <backingMap name="someMap" pluginCollectionRef="default" />

 </objectGrid>

</objectGrids>

:

<backingMapPluginCollections>

 <backingMapPluginCollection id="default">

 <bean id="MapEventListener" classname="com.somecompany.MyMapEventListener" />

 </backingMapPluginCollection>

</backingMapPluginCollections>

:

See the “Listeners” on page 177 topic for more information.

ObjectTransformer interface

The ObjectTransformer can be used to serialize cache entry keys and values that

are not defined as serializable so that you can define your own serialization scheme

without extending or implementing the Serializable interface directly. This interface

also provides methods for performing the copy function on keys and values.

Following is a class that implements the ObjectTransformer interface:

Programmatic configuration

class MyObjectTransformer implements

 com.ibm.websphere.objectgrid.plugins.ObjectTransformer { ... }

:

ObjectTransformer myObjectTransformer = new MyObjectTransformer();

myObjectTransformer.setTransformType("full");

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

BackingMap backingMap = objectGrid.getMap("someMap");

backingMap.setObjectTransformer(myObjectTransformer);

:

XML configuration

The following XML example results in the same configuration as the preceding

programmatic sample:

:

<objectGrids>

 <objectGrid name="someGrid">

 <backingMap name="someMap" pluginCollectionRef="default" />

 </objectGrid>

</objectGrids>

:

<backingMapPluginCollections>

 <backingMapPluginCollection id="default">

 <bean id="ObjectTransformer" className="com.somecompany.MyObjectTransformer">

 <property name="transformType" type="java.lang.String" value="full"

 description="..." />

Chapter 4. ObjectGrid tutorial : application programming model 49

</bean>

 </backingMapCollection>

</backingMapCollections>

:

For more information, see the “ObjectTransformer plug-in” on page 202 topic.

OptimisticCallback interface

The OptimisticCallback interface can be used to create and process a version field

that is associated with a given Value object. In many cases, using the Value object

directly to determine if another cache client has modified the value since it was

retrieved is very inefficient and error-prone. An alternative is to provide another field

that represents the state of the Value object. The intent of the OptimisticCallback

interface is to provide an alternative Versioned Value object that represents the

Value object. Following is a sample configuration of the OptimisticCallback interface:

Programmatic configuration

class MyOptimisticCallback implements

 com.ibm.websphere.objectgrid.plugins.OptimisticCallback { ... }

:

OptimisticCallback myOptimisticCallback = new MyOptimisticCallback();

myOptimisticCallback.setVersionType("Integer");

backingMap.setOptimisticCallback(myOptimisticCallback);

:

XML configuration

The following example results in the same configuration as the preceding

programmatic example:

:

<objectGrids>

 <objectGrid name="someGrid">

 <backingMap name="someMap" pluginCollectionRef="default" />

 </objectGrid>

</objectGrids>

:

<backingMapPluginCollections>

 <backingMapPluginCollection id="default">

 <bean id="OptimisticCallBack" classname="com.somecompany.MyOptimisticCallback">

 <property name="versionType" type="java.lang.string" value="Integer"

 description="..." />

 </bean>

 </backingMapPluginCollection>

</backingMapPluginCollections>

:

Indices

A MapIndexPlugin, or an Index in short, is an option that is used by the

BackingMap to build index based on the specified attribute of the stored object. The

index allows applications to find objects by a specific value or a range of values. To

use the index, Applications have to obtain the index object from the getIndex()

method of the ObjectMap interface and cast it to the right index interface such as

MapIndex or MapRangeIndex or a custom index interface.

Currently, the indexing feature is only supported in the local cache, not the

distributed cache. If trying to perform any indexing operation against a distributed

cache, the UnsupportedOperationException will be raised.

50 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

There are two types of index: static and dynamic index. Static indices can be

created via both Programmatic configuration and XML configuration. Dynamic

indices can only be created programmatically.

Programmatic configuration

The following code example demonstrates how to add static index into a

BackingMap instance:

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("indexSampleGrid");

BackingMap personBackingMap= objectGrid.getMap("person");

//use the builtin com.ibm.websphere.objectgrid.plugins.index.HashIndex

//class as the index plugin class.

HashIndex mapIndexPlugin = new HashIndex();

mapIndexPlugin.setName("CODE");

mapIndexPlugin.setAttributeName("EmployeeCode");

mapIndexPlugin.setRangeIndex(true);

personBackingMap.addMapIndexPlugin(mapIndexPlugin);

//Note: the previous Index configuration assumes that the stored object has

// an attribute named EmployeeCode and a method named getEmployeeCode()

//that returns the value of the EmployeeCode attribute.

:

The following code example demonstrates how to create dynamic index on a

BackingMap instance:

class DynamicIndexCallbackImpl implements

com.ibm.websphere.objectgrid.plugins.index.DynamicIndexCallback { ... }

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("indexSampleGrid");

BackingMap personBackingMap= objectGrid.getMap("person");

objectGrid.initiallize();

:

//insert, update, or remove data

//Dynamic index can be created after the containing ObjectGrid instance has

//been initialized

//If there is a need to create a dynamic index, create it without

//DynamicIndexCallback

personBackingMap.createDynamicIndex("CODE2", true, "employeeCode", null);

:

//Another option is to create dynamic index with DynamicIndexCallback

//Assuming there is a DynamicIndexCallbackImpl class implements

//DynamicIndexCallback interface

personBackingMap.createDynamicIndex("CODE3", true, "employeeCode",

new DynamicIndexCallbackImpl());

:

XML configuration

The following example results in the same configuration as the preceding

programmatic example of static index:

:

<objectGrids>

 <objectGrid name="indexSampleGrid">

 <backingMap name="person" pluginCollectionRef="person" />

 </objectGrid>

</objectGrids>

<backingMapPluginCollections>

 <backingMapPluginCollection id="person">

 <bean id="MapIndexPlugin

 className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">

 <property name="Name" type="java.lang.String" value="CODE"

 description="index name" />

Chapter 4. ObjectGrid tutorial : application programming model 51

<property name="RangeIndex" type="boolean" value="true"

 description="true for MapRangeIndex />

 <property name="AttributeName" type="java.lang.String"

 value="employeeCode" description="attriubte name" />

 </bean>

 </backingMapPluginCollection>

</backingMapPluginCollections>

:

See the Indexing topic for more information.

System programming model overview: Session interface features

The Session interface has several features for more extensible interactions with the

ObjectGrid. Each of the following sections describe the feature and provide some

brief code snippets for the usage scenario.

For more information about the Session interface, see “Session interface” on page

109.

No write through mode

Sometimes, applications just want to apply changes to the base map but not the

Loader. The beginNoWriteThrough method of Session interface is designed to

achieve this objective. The isWriteThroughEnabled method of Session interface can

be used to verify if the current session is writing to the back end Loader. This might

be useful to other users of the Session object to know what type of session is

currently being processed. The following example enables the no write through

mode:

:

ObjectGrid objectGrid = objectGridManager.createObjectGrid("someGrid");

objectGrid.defineMap("someMap");

objectGrid.initialize();

Session session = objectGrid.getSession();

session.beginNoWriteThrough();

boolean isWriteThroughEnabled = session.isWriteThroughEnabled();

// make updates to the map ...

session.commit();

:

Push data to the Loader only

Applications can apply local changes in the session to the Loader without

committing these changes permanently by invoking the flush method, as in the

following example:

:

Session session = objectGrid.getSession();

session.begin();

// make some changes ...

session.flush(); // push these changes to the Loader, but don’t commit yet

// make some more changes ...

session.commit();

:

processLogSequence method

The processLogSequence method is used to process a LogSequence. Each

LogElement within the LogSequence is examined and the appropriate operation,

such as the insert, update, invalidate operations, is performed against the

BackingMap identified by the LogSequence MapName. An ObjectGrid Session must

52 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

be active before this method is invoked. The caller is then responsible for issuing

the appropriate commit or rollback calls to complete the Session. Autocommit

processing is not available for this method invocation.

The main use of this method is to process a LogSequence that was received by a

remote JVM. For example, using the distributed commit support, the LogSequences

that are associated with a given committed session are then distributed to other

listening ObjectGrids in other Java virtual machines (JVM). After receiving the

LogSequences at the remote JVM, the listener can start a Session using the

beginNoWriteThrough method, invoke this processLogSequence method, and then

perform the commit method on the Session. An example follows:

:

session.beginNoWriteThrough();

try {

 session.processLogSequence(inputSequence);

}

catch (Exception e) {

 session.rollback();

 throw e;

}

session.commit();

:

Performance monitoring

Maps can optionally be instrumented for performance monitoring while running

within WebSphere Application Server. The setTransactionType method is available

on a Session for configuring and using the performance monitoring features. See

“Monitoring ObjectGrid performance with WebSphere Application Server

performance monitoring infrastructure (PMI)” on page 283 for more information.

System programming model overview: ObjectMap interface features

The ObjectMap interface has several features for more extensible interactions with

the ObjectGrid.

For more information about the ObjectMap interface, see “ObjectMap and JavaMap

interfaces” on page 113.

The JavaMap interface and the java.util.Map interface

For applications that want to use the java.util.Map interface, the ObjectMap has the

getJavaMap method, so that applications can get the implementation of the

java.util.Map interface that is backed by the ObjectMap. The returned Map instance

can then be cast to the JavaMap interface, which extends the java.util.Map

interface. The JavaMap interface has the same method signatures as ObjectMap,

but with different exception handling. The JavaMap interface extends the

java.util.Map interface, so all exceptions are instances of the

java.lang.RuntimeException class. Because the JavaMap interface extends the

java.util.Map interface, it is easy to quickly use ObjectGrid with an existing

application that uses a java.util.Map interface for object caching. A code snippet

follows:

:

JavaMap javaMap = (JavaMap)objectMap.getJavaMap();

:

Chapter 4. ObjectGrid tutorial : application programming model 53

Map extensions

The ObjectMap interface also provides additional functional capabilities in addition

to the checked exceptions capabilities. For example, a user can specify that a given

map entry is updated with the getForUpdate method, which indicates to the

ObjectGrid runtime and Loader plug-in that the entry can be locked during the

processing, if appropriate. Batch processing is another additional capability with the

getAll, putAll, and removeAll methods. For more information about these methods,

see the API documentation.

Keyword processing

Most map operations have the keyword parameter version, such as insert, get,

getForUpdate, put, remove, and invalidate. For ease of use, the setDefaultKeyword

method is also provided. This method associates entries with a keyword without

using the keyword version of the map operation. A keyword example follows:

:

// setDefaultKeyword

session.begin();

objectMap.setDefaultKeyword("New York");

Person p = (Person) objectMap.get("Billy"); // "Billy" entry has "New York" keyword

p = (Person) objectMap.get("Bob", "Los Angeles"); // "Bob" entry

//has "Los Angeles" keyword

objectMap.setDefaultKeyword(null);

p = (Person) objectMap.get("Jimmy"); // "Jimmy" entry has no keyword

session.commit();

:

// keyword parameter version of insert operation

session.begin();

Person person = new Person("Joe", "Bloggs", "Manhattan");

objectMap.insert("BillyBob", person, "Rochester"); // "BillyBob" has

//"Rochester" keyword

session.commit();

:

See “Keywords” on page 117 for more information.

Copy mode method

The setCopyMode method allows the copy mode for the Map to be overridden on

this map for this session or transaction only. This method allows an application to

use an optimal copy mode on a per session basis, as its needs dictate. The copy

mode cannot be changed during an active session. A corresponding

clearCopyMode method exists that resets the copy mode back to the one defined

on the BackingMap. You can call this method only when no active sessions exist.An

example of setting the copy mode follows:

:

objectMap.setCopyMode(CopyMode.COPY_ON_READ, null);

session.begin();

// modify objectMap ...

session.commit();

objectMap.clearCopyMode(); // reset CopyMode to BackingMap setting

session.begin();

// modify objectMap ...

session.commit();

:

For more information, see the “ObjectTransformer plug-in” on page 202 and

Chapter 11, “ObjectGrid performance best practices,” on page 315 topics.

54 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Evictor settings

You can override the TimeToLive timeout value for the built-in TimeToLive evictor at

the ObjectMap level. The setTimeToLive method establishes the number of seconds

that any given cache entry can live. When modified, the previous TimeToLive value

is returned. This TimeToLive value is the minimum time an entry remains in the

cache before being considered for eviction and indicates to the built-in TimeToLive

evictor how long an entry should remain after last access time. The new TimeToLive

value only applies to ObjectMap entries that are accessed by the transaction started

by the Session object that was used to obtain the ObjectMap instance. The new

TimeToLive value applies to any transaction that is in progress for the Session and

future transactions that are run by the Session. The new TimeToLive value does not

affect entries of an ObjectMap instance that are accessed by a transaction started

by some other Session. By calling this method on the ObjectMap, any previous

value set by the setTimeToLive method on the BackingMap is overridden for this

ObjectMap instance. An example follows:

:

session.begin();

int oldTTL = objectMap.setTimeToLive(60); // set TTL to 60 seconds

Person person = new Person("Joe", "Bloggs", "Manhattan");

objectMap.insert("BillyBob", person); // "BillyBob" entry will have a TTL

//of 60 seconds

session.commit();

:

objectMap.setTimeToLive(oldTTL); // reset TTL to original value

Person person2 = new Person("Angelina", "Jolie", "somewhere");

objectMap.insert("Brad", person2); // "Brad" entry will use original TTL value

:

For more information, see the “Evictors” on page 182 topic.

Chapter 4. ObjectGrid tutorial : application programming model 55

56 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 5. ObjectGrid samples

This topic describes the ObjectGrid samples that are provided when installing the

WebSphere Extended Deployment product.

Overview

Several ObjectGrid samples illustrate the integration with Java 2 Platform,

Enterprise Edition (J2EE) applications and the partitioning facility (WPF). This topic

describes each of the samples, the features that each sample demonstrates, the

location of each sample, and the environments where the sample runs.

This topic describes samples that are provided when installing WebSphere

Extended Deployment. Other samples will be provided related to using Java

Message Service (JMS) integration and integration of ObjectGrid with other open

source frameworks at the following Web address:http://www-
1.ibm.com/support/docview.wss?uid=swg27006432 .

Samples

v ObjectGridSamplesSA : This sample is a set of Java 2 Platform, Standard

Edition (J2SE) examples that are packaged in the objectgridSamples.jar file for

demonstrating the ObjectGrid functions. These J2SE samples can be run in a

J2SE environment. The objectgridSamples.jar file contains the

SamplesGuide.htm file, which has instructions for running these samples.

v ObjectGridSample : This sample is a J2EE example that demonstrates how

servlets and Session enterprise beans use the ObjectGrid functions. This sample

is shipped in the ObjectGridSample.ear enterprise archive (EAR) file. The

ObjectGridSample.ear file contains the readme.txt file, which has instructions for

setting up and running this sample.

v ObjectGridPartitionCluster : This sample is a J2EE sample for demonstrating

how the WPF and ObjectGrid work together and how to use the

ObjectGridEventListener to propagate object changes and how to enable

context-based routing to maintain ObjectGrid integrity and consistency. This

sample is shipped in the D_ObjectGridPartitionClusterSample.ear EAR file. The

D_ObjectGridPartitionClusterSample.ear file contains the readme.txt file, which

has instructions for setting up and running this sample.

v ObjectGridJMSSamples: This is a set of J2EE samples packaged in the

ObjectGridJMSSamples.zip file that demonstrate how to use JMS function to

transmit changes in one ObjectGrid instance to another ObjectGrid instance in a

single JVM or a cluster environment. These J2EE samples are only available on

the Web at the following Web address:http://www-
1.ibm.com/support/docview.wss?uid=swg27006432 .

Sample functionality

 Table 2. Sample functionalities

Functional Area ObjectGrid

SamplesSA

sample

ObjectGrid

Sample

sample

ObjectGridPartition

Cluster sample

ObjectGrid

JMSSamples

sample

ObjectGrid

EventListener

x x

Transaction

callback

x x x

© Copyright IBM Corp. 2004, 2005 57

http://www-1.ibm.com/support/docview.wss?uid=swg27006432
http://www-1.ibm.com/support/docview.wss?uid=swg27006432
http://www-1.ibm.com/support/docview.wss?uid=swg27006432
http://www-1.ibm.com/support/docview.wss?uid=swg27006432

Table 2. Sample functionalities (continued)

Functional Area ObjectGrid

SamplesSA

sample

ObjectGrid

Sample

sample

ObjectGridPartition

Cluster sample

ObjectGrid

JMSSamples

sample

Loader x x x

MapEvent

Listener

x

Object

Transformer

x x x x

Optimistic

callback

x x x

BackingMap

copy mode

x x

Distributed

invalidation

x x

Distributed

update

x x

LogSequence

processing

x

Partitioning

facility (WPF)

x

Java Message

Service (JMS)

x

Map index x

ObjectGrid

cluster

x x

ObjectGrid

ClusterClient

Context

x x

Distributed

ObjectGrid

x x

ObjectGrid

management

x

ObjectGrid

security

x x

Location

After WebSphere Extended Deployment has been installed, the following .jar files

are located in the following directories:

 Table 3. Sample locations

Sample Location

ObjectGridSamplesSA install_root\optionalLibraries\ObjectGrid\

objectgridSamples.jar

ObjectGridSample install_root\installableApps\ObjectGridSample.ear

ObjectGridPartitionCluster install_root\installableApps\

D_ObjectGridPartitionClusterSample.ear

58 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Updated versions of the listed shipped samples, and additional samples such as

ObjectGridJMSSamples, can be found on the Web at the following Web

address:http://www-1.ibm.com/support/docview.wss?uid=swg27006432 . You can

also find articles on IBM DeveloperWorks that describe topics of interest at the

following Web address: http://www.ibm.com/developerworks. Search for ObjectGrid.

Sample environments

Some samples can run in a J2SE environment, but some have to run in a J2EE

environment. Some can run in a single server instance, others have to run in a

cluster. The following table shows the running environment of the samples.

Restriction: If you are using ObjectGrid in a WebSphere Extended Deployment

Version 6.0 environment, you can also use ObjectGrid in a Java 2

Platform, Standard Edition (J2SE) Version 1.4.2 or higher environment

or in a WebSphere Application Server Version 6.02 or higher

environment with additional licensing arrangements. Contact your

sales representative for details.

 Table 4. Sample running environments

ObjectGrid

SamplesSA

ObjectGrid

Sample

ObjectGrid

Partition

Cluster

ObjectGrid

JMSSamples

J2SE Eclipse x

command line x

WebSphere

Application

Sever Version

6.0.x

single server x x

cluster x x

Rational

Application

Developer

unit test

environment

(UTE)

x

WebSphere

Application

Server

Version

5.0.2.x and

Version 5.1.x

single server x

cluster x

WebSphere

Extended

Deployment

Version 6.0.x

single server x x

cluster x x x

Chapter 5. ObjectGrid samples 59

http://www-1.ibm.com/support/docview.wss?uid=swg27006432
http://www.ibm.com/developerworks/

60 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 6. ObjectGrid packaging

You can access the ObjectGrid packages in two ways: by installing WebSphere

Extended Deployment, or by installing the mixed server environment.

WebSphere Extended Deployment Version 6.0.1 ObjectGrid

package

When you install WebSphere Extended Deployment Version 6.0.1 or later, the

following runtime files are installed:

 Table 5. WebSphere Extended Deployment ObjectGrid runtime files

File name Runtime environment Description

/lib/asm.jar

/lib/cglib.jar

Local, client and server These jars are for the cglib

utility function when using the

copy on write copy mode.

/lib/wsobjectgrid.jar Local, client and server This Java archive (JAR) file

contains the ObjectGrid local,

client and server runtime for

use in the WebSphere

Extended Deployment

Version 6.0.1 and later

environment.

WebSphere Extended Deployment for Mixed Server Environment

Version 6.0.1 ObjectGrid package

When you install WebSphere Extended Deployment for Mixed Server Environment,

the following runtime files are installed:

 Table 6. WebSphere Extended Deployment for Mixed Server Environment ObjectGrid

runtime files

File name Runtime environment Description

/ObjectGrid/lib/asm.jar

/ObjectGrid/lib/cglib.jar

Local, client and server These JAR files are for the

cglib utility function when

you are using the copy on

write copy mode. Include

these JAR files in your

CLASSPATH if you are

using the copy on write

copy mode and you want to

use the cglib proxy

function. These JAR files

are automatically included

in the server runtime. Add

these files to your client or

local ObjectGrid runtime.

© Copyright IBM Corp. 2004, 2005 61

Table 6. WebSphere Extended Deployment for Mixed Server Environment ObjectGrid

runtime files (continued)

File name Runtime environment Description

/ObjectGrid/lib/mx4j.jar

/ObjectGrid/lib/mx4j-remote.jar

/ObjectGrid/lib/mx4j-tools.jar

Management gateway

client and server

These JAR files are for the

mx4j utility function that is

used by the ObjectGrid

management gateway

server as well as the

management gateway client

programs. Add these JAR

files to the management

gateway client CLASSPATH

when you are connecting to

the management gateway

server.

/ObjectGrid/lib/objectgrid.jar Local, client and server This JAR file is used by the

standalone server runtime

for Java 2 Platform,

Standard Edition (J2SE)

Version 1.4.2 and later. You

can also use this JAR file

for client and local runtime

for J2SE version 1.3 and

later.

/ObjectGrid/lib/ogclient.jar Local and client This JAR file contains only

the local and client

ObjectGrid runtimes when

running outside of a

WebSphere process. It may

be more desireable to use

this JAR file over

objectgrid.jar due to the

smaller footprint. You can

use this jar with J2SE

version 1.3 and later.

/ObjectGrid/lib/wsobjectgrid.jar Local, client and server Use this JAR file on

WebSphere Application

Server Version 6.0.2 or

later. This JAR file is the

same JAR file that is

installed with WebSphere

Extended Deployment.

/ObjectGrid/lib/wsogclient.jar Local and client Use this JAR file for

WebSphere Application

Server Version 5.0.2 and

later. This JAR file contains

only the local and client

ObjectGrid runtimes.

Considerations for using ObjectGrid with J2SE Version 1.3

When using the ogclient.jar or objectgrid.jar file in a J2SE Version 1.3.x

environment, you must add the following requirements to your J2SE 1.3.x

environment to make it functional with ObjectGrid:

v Java Authentication and Authorization Service (JAAS) implementation.

J2SE Version 1.3 did not include the javax.security.Subject object, a part of the

62 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

JAAS specificiation. The ObjectGrid and Session interfaces require this object.

Place the JAAS implementation in the jre/lib/ext Java extensions directory.

v Java API for XML Processing (JAXP) implementation. If you are passing XML

files to the ObjectGrid runtime, a JAXP implementation is necessary for the

ObjectGrid runtime to parse the XML file. ObjectGrid uses XML schema definition

syntax validation so an implementation that supports schema validation is

required. The Apache Xerces product is an example of an implementation that

supports schema validation.

v Java Secure Socket Extension (JSSE) implementation. When you are using

the client runtime, a JSSE implementation is required. Verify that the JSSE

implementation used is compatible with the ObjectGrid server Java Development

Kit (JDK) implementation if you are running with security enabled.

If your local or client ObjectGrid runtime is included in a J2EE Version 1.3

compatible environment that uses J2SE Version 1.3, all of these requirements are

met because all the required specification implementations were required as part of

J2EE Version 1.3.

Chapter 6. ObjectGrid packaging 63

64 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 7. System management overview

With the release of WebSphere Extended Deployment Version 6.0.1, ObjectGrid

provides a system management infrastructure to allow users to monitor and

administer ObjectGrid environments. The system management architecture is a

three-tiered approach: a user client connects to the Management Gateway server,

which makes an ObjectGrid client connection to an ObjectGrid cluster.

 The management gateway client tier contains any program that uses Java

Management Extensions (JMX) to connect to the Management Gateway server. Any

third-party JMX console as well as a client program that uses MX4J APIs are

included. The ObjectGrid client tier consists of the management gateway server.

The management gateway acts as a server for the management gateway client tier

and as a client to a functioning ObjectGrid cluster in the server tier. Also, an

ObjectGrid client program can call the same APIs that the management gateway

server calls if the user does not want to involve JMX. Finally the Server Tier

consists of an ObjectGrid cluster.

The management gateway houses a set of managed beans (MBeans) and uses

JMX to administer and monitor the ObjectGrid environment and is implemented by

the MX4J open source project . MX4J is shipped with ObjectGrid.

The ObjectGrid JMX and MBean administration model was created to take

advantage of the various JMX consoles that are available for administering JMX

environments. You can put together dashboards using the JMX console of your

choice. Consoles can be attached to the MBeans running on the

ObjectGrid server1 (JVM)

ObjectGrid server2 (JVM)

ObjectGrid server3 (JVM)

key object

key object

key objectkey object

key objectkey object

key object

key object

key objectkey object

key objectkey object

key object

key object

key objectkey object

key objectkey object

ObjectGrid cluster

Java Management Extensions
(JMX) console

ManagementGateway

J
M

X
c
o
n
n
e
c
to

r
c
lie

n
t

J
M

X
c
o
n
n
e
c
to

r
s
e
rv

e
r

J
M

X
M

B
e
a
n

s
e
rv

e
r

O
b
je

c
tG

rid
c
lie

n
t

O
b
je

c
tG

rid
c
lie

n
t

J
M

X
c
o
n
n
e
c
to

r
c
lie

n
t

Remote User Client

JMX

JM
X

User client

Server tierObjectGrid client tier

ManagementGateway

client tier

Java virtual machine (JVM)

JVM

JVM

JVM

ObjectGrid

ObjectGrid

ObjectGrid

Figure 14. System management diagram

© Copyright IBM Corp. 2004, 2005 65

ManagementGateway Java virtual machine (JVM) and dashboards can be

assembled using these MBeans. Consoles offer graphical histories or charts of

numerical and string values.

There are two options for executing system management commands.

v Call any command through the client-server infrastructure currently in place using

the ObjectGridAdministrator interface.

v Use JMX to call these same commands, with the ObjectGrid MBeans acting as a

wrapper to the ObjectGridAdministrator.

Start the ManagementGateway process

After a cluster (or single server) is started, the ManagementGateway process can

be started. The ManagementGateway acts as a server to user client requests, and

an ObjectGrid client to the cluster to which it is connected.

Options

Following is list of options that can be passed to the ManagementGateway process:

v connectorPort (required) - Specifies the port number for the JMX connector.

v clusterHost (required) - Specifies the host name of one of the servers in the

ObjectGrid cluster.

v clusterPort (required) - Specifies the client access port of one of the servers in

the ObjectGrid cluster.

v clusterName (required) - Specifies the name of the ObjectGrid cluster.

v traceEnabled - Specifies if trace is enabled for the ManagementGateway

process.

v traceSpec - Indicates the trace specification of the ManagementGateway.

v traceFile - Specifies the file to which trace output is printed.

v sslEnabled - Specifies if SSL is enabled on the ManagementGateway.

v csConfig - Specifies the ClientSecurityConfiguration object for secure

ManagementGateway.

v refreshInterval - Specifies the time interval at which the management gateway

refreshes the MBean attributes.

ManagementGateway interface

The ManagementGateway process needs to be started to make the MBeans

available. The ManagementGateway interface shows what options can be passed in

when starting the ManagementGateway.

public interface ManagementGateway {

 /**

 * Start the JMX MBean connector server

 */

 void startConnector();

 /**

 * Stop the JMX MBean connector server

 */

 void stopConnector();

 /**

 * @param JMX connector port

 */

66 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

void setConnectorPort(int port);

 /**

 * @return JMX connector port

 */

 int getConnectorPort();

 /**

 * @param a {@link com.ibm.websphere.objectgrid.security.config.

 ClientSecurityConfiguration} object.

 */

 void setCsConfig(ClientSecurityConfiguration csConfig);

 /**

 * @return a {@link com.ibm.websphere.objectgrid.security.config.

 ClientSecurityConfiguration} object.

 */

 ClientSecurityConfiguration getCsConfig();

 /**

 * @param port of server to which gateway client connects

 */

 void setPort(String port);

 /**

 * @return port of server to which gateway client connects

 */

 String getPort();

 /**

 * @param host of server to which gateway client connects

 */

 void setHost(String host);

 /**

 * @return host of server to which gateway client connects

 */

 String getHost();

 /**

 * @param boolean true if SSL enabled on gateway

 */

 void setSSLEnabled(boolean sslEnabled);

 /**

 * @return boolean true if SSL enabled on gateway

 */

 boolean getSSLEnabled();

 /**

 * @param cluster to which gateway client connects

 */

 void setClusterName(String clusterName);

 /**

 * @return cluster to which gateway client connects

 */

 String getClusterName();

 /**

 * @param true if trace is enabled on gateway

 */

 void setTraceEnabled(boolean traceEnabled);

 /**

 * @return true if trace is enabled on gateway

 */

 boolean getTraceEnabled();

Chapter 7. System management overview 67

/**

 * @param trace specification on gateway

 */

 void setTraceSpec(String traceSpec);

 /**

 * @return trace specification on gateway

 */

 String getTraceSpec();

 /**

 * @param trace output file for gateway trace

 */

 void setTraceFile(String traceFile);

 /**

 * @return trace output file for gateway trace

 */

 String getTraceFile();

 /**

 * @param interval (in seconds) to refresh cluster MBean attributes

 */

 void setRefreshInterval(int refreshInterval);

 /**

 * @return interval (in seconds) to refresh cluster MBean attributes

 */

 int getRefreshInterval();

}

Options for starting the ManagementGateway process

Programmatically using the ManagementGatewayFactory

Here is sample code for using this option:

ManagementGateway gw = ManagementGatewayFactory.getManagementGateway();

gw.setConnectorPort(1099);

gw.setClusterName("cluster1");

gw.setHost("localhost");

gw.setPort("12503");

gw.startConnector();

This code should be in a user program that is run after the ObjectGrid

cluster that you are trying to connect to has been started.

On the command line with the startManagementGateway batch file

An example follows:

 startManagementGateway.bat -connectorPort 1099 -clusterName cluster1

 -clusterHost localhost -clusterPort 12503

For more information about the startManagementGateway scripts, see

“Start the management gateway server” on page 84.

The ManagementGateway acts as a server for a client process that wants to make

JMX calls, but also as an ObjectGrid client to the cluster to which the user wants to

connect. After the ManagementGateway is started, a connection is established to

the cluster and the JMX Connector service becomes available. You can then access

the JMX Connector service through MX4J or Java 2 Platform, Standard Edition

(J2SE) Version 5 APIs.

68 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Example

Here is sample code of how to get a MapStatsModule from a server called Server1

through a ManagementGateway with connector port 1.

Run the following code in a user program that is run in the remote user client

section of the previous diagram:

JMXServiceURL url = new

 JMXServiceURL("service:jmx:rmi://host/jndi/rmi://localhost:1099/jmxconnector");

JMXConnector c = JMXConnectorFactory.connect(url);

MBeanServerConnection mbsc = c.getMBeanServerConnection();

Iterator it = mbsc

 .queryMBeans(new ObjectName

 ("ManagementMap:type=ObjectGrid,OG=OG1,Map=map1,S=server1"), null)

 .iterator();

ObjectInstance oi = (ObjectInstance) it.next();

ObjectName mapMBean = oi.getObjectName();

MapStatsModule stats = (MapStatsModule) mbsc.invoke(

 mapMBean,

 "retrieveStatsModule",

 new Object[] { },

 new String[] { });

To stop the server1 server through the ManagementGateway:

ObjectGrid server1 (JVM)

ObjectGrid server2 (JVM)

ObjectGrid server3 (JVM)

key object

key object

key objectkey object

key objectkey object

key object

key object

key objectkey object

key objectkey object

key object

key object

key objectkey object

key objectkey object

ObjectGridcluster

ManagementGateway

J
a
v
a

M
a
n
a
g
e
m

e
n
t
E

x
te

n
s
io

n
s

(J
M

X
)

c
o
n
n
e
c
to

r
c
lie

n
t

J
M

X
C

o
n
n
e
c
to

r
S

e
rv

e
r

J
M

X
M

B
e
a
n

S
e
rv

e
r

O
b

je
c
tG

rid
C

lie
n

t

Remote user client

JMX

ManagementGateway

client tier

ObjectGrid client tier Server tier

Java virtual machine (JVM)

JVM

ObjectGrid

ObjectGrid

ObjectGrid

ObjectGrid

Figure 15. Get map statistics from the server1 server

Chapter 7. System management overview 69

Run the following code in a user program that is run in the remote user client in the

previous diagram:

JMXServiceURL url = new JMXServiceURL(

 "service:jmx:rmi://host/jndi/rmi://localhost:1099/jmxconnector");

JMXConnector c = JMXConnectorFactory.connect(url);

 MBeanServerConnection mbsc = c.getMBeanServerConnection();

Iterator it = mbsc

 .queryMBeans(new ObjectName("ManagementServer:type=ObjectGrid,S=Server1"), null)

 .iterator();

ObjectInstance oi = (ObjectInstance) it.next();

ObjectName server1MBean = oi.getObjectName();

boolean stop = ((Boolean) mbsc.invoke(

 server1MBean,

 "stopServer",

 new Object[] { },

 new String[] { })).booleanValue();

After running the previous code sample, the server1 server stops. After the server1

server is stopped, it cannot be restarted with the ManagementGateway. The server

can be restarted using the command line. See “Stop ObjectGrid servers” on page

83 for more information.

ObjectGrid managed beans (MBeans)

Five types of MBeans exist in the ObjectGrid environment. Each MBean refers to a

specific entity, such as a map, object grid, server, replication group, or replication

group member, and has attributes and operations.

Each MBean in ObjectGrid has getxxx methods that represent attribute values.

These getxxx methods cannot be called from a user program directly. This is

because the Java management extensions (JMX) specification treats attributes

differently from operations. Attributes can be viewed through any third-party JMX

console, and operations can be performed either through a user program or a

third-party JMX console.

ObjectGrid Server1 (JVM)

ObjectGrid Server2 (JVM)

ObjectGrid Server3 (JVM)

key object

key object

key objectkey object

key objectkey object

key object

key object

key objectkey object

key objectkey object

key object

key object

key objectkey object

key objectkey object

ObjectGridcluster

ManagementGateway

J
M

X
c
o
n
n
e
c
to

r
s
e
rv

e
r

J
M

X
M

B
e
a
n

s
e
rv

e
r

O
b
je

c
tG

rid
c
lie

n
t

Remote User Client

JMX

ManagementGateway

client tier
ObjectGrid client tier Server tier

J
a
v
a

M
a
n
a
g
e
m

e
n
t
E

x
te

n
s
io

n
s

(J
M

X
)

c
o
n
n
e
c
to

r
c
lie

n
t

ObjectGrid

ObjectGrid

ObjectGrid

Figure 16. Stop the server1 server

70 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

MapMbean Mbean

The MapMBean allows the user to monitor the statistics of each map defined for the

cluster. Each map has the following statistics associated with it:

v Batch update time (min/max/mean/total)

v Count

v Hit rate

Also, because maps can be partitioned across servers, you can scope the map

statistics to a particular server or replication group member. You can also map

statistics for the entire cluster. The ObjectName for a MapMBean can be specified

in several ways:

v "ManagementMap:type=ObjectGrid,OG=ObjectGridName,Map=MapName"

v "ManagementMap:type=ObjectGrid,OG=ObjectGridName,Map=MapName,

S=ServerName"

v "ManagementMap:type=ObjectGrid,OG=ObjectGridName,Map=MapName,

RG=ReplicationGroup,IDX=Index"

Take an example configuration with the OG1 ObjectGrid, a Map1 map, with two

servers in replication group RG1, server1 and server2. Also assume the server1

server is the primary and the server2 server is a replica. To get the statistics for the

Map1 map on the primary, use either of these ObjectNames:

v "ManagementMap:type=ObjectGrid,OG=OG1,Map=Map1,S=server1"

v "ManagementMap:type=ObjectGrid,OG=OG1,Map=Map1,RG=RG1,IDX=0"

In any ObjectName for ObjectGrid MBeans, when IDX=0, it refers to the primary of

the replication group. IDX=1-10 refers to replicas for the replication group.

A listing of the MapMBean interface follows:

public interface MapMBean {

 /**

 * Operation to get MapStatsModule associated with the MBean.

 *

 * @return MapStatsModule

 */

 MapStatsModule retrieveStatsModule();

 /**

 * Operation will only go to server to get StatsModule if the

 * StatsModule is not cached in the ObjectGridAdministrator.

 *

 */

 void refreshStatsModule();

 /**

 * Map.

 *

 * @return name of map

 */

 String getMapName();

 /**

 * ObjectGrid containing the map.

 *

 * @return name of the object grid

 */

 String getObjectGridName();

 /**

 * Server name of the replication group member for the map.

Chapter 7. System management overview 71

*

 * @return name of server of the replication group member

 */

 String getServerName();

 /**

 * Name of replication group for the map.

 *

 * @return name of replication group

 */

 String getReplicationGroup();

 /**

 * Index of replication group member for the map.

 *

 * @return index of replication group member

 */

 int getIndex();

 /**

 * MapStatsModule attribute loaded up by the

 * retrieveStatsModule call.

 *

 * @return String form of MapStatsModule

 */

 String getMapStatsModule();

 /**

 * Map count attribute loaded up by the

 * retrieveStatsModule call.

 *

 * @return number of entries in map

 */

 long getMapCountStatistic();

 /**

 * Hit rate attribute loaded up by the

 * retrieveStatsModule call.

 *

 * @return hit rate for map

 */

 double getMapHitRateStatistic();

 /**

 * Mean batch update time attribute loaded up by the

 * retrieveStatsModule call.

 *

 * @return mean batch update time for map

 */

 double getMapBatchUpdateMeanTime();

 /**

 * Maximum batch update time attribute loaded up by the

 * retrieveStatsModule call.

 *

 * @return maximum batch update time for map

 */

 double getMapBatchUpdateMaxTime();

 /**

 * Minimum batch update time attribute loaded up by the

 * retrieveStatsModule call.

 *

 * @return minimum batch update time for map

 */

 double getMapBatchUpdateMinTime();

72 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

/**

 * Total batch update time attribute loaded up by the

 * retrieveStatsModule call.

 *

 * @return total batch update time for map

 */

 double getMapBatchUpdateTotalTime();

}

ObjectGridMBean MBean

The ObjectGridMBean MBean allows the user to monitor the statistics for all the

maps in each ObjectGrid that is defined for the cluster. Each ObjectGrid has the

following statistics associated with it:

v Transaction time (min/max/mean/total)

v Count

Also, because ObjectGrids can be partitioned across servers, you can scope the

ObjectGrid statistics to a particular server or replication group member. You can

also get ObjectGrid statistics for the entire cluster. The ObjectName for a

ObjectGridMBean can be specified in several ways:

v "ManagementObjectGrid:type=ObjectGrid,OG=ObjectGridName"

v "ManagementObjectGrid:type=ObjectGrid,OG=ObjectGridName,

S=ServerName"

v "ManagementObjectGrid:type=ObjectGrid,OG=ObjectGridName,

RG=ReplicationGroup,IDX=Index"

Following is a listing of the ObjectGridMbean interface:

public interface ObjectGridMBean {

 /**

 * Operation to get OGStatsModule associated with the MBean.

 *

 * @return OGStatsModule

 */

 OGStatsModule retrieveStatsModule();

 /**

 * Operation will only go to server to get StatsModule if the

 * StatsModule is not cached in the ObjectGridAdministrator.

 *

 */

 void refreshStatsModule();

 /**

 * ObjectGrid.

 *

 * @return name of the object grid

 */

 String getObjectGridName();

 /**

 * Server name of the replication group member for the ObjectGrid.

 *

 * @return name of server of the replication group member

 */

 String getServerName();

 /**

 * Name of replication group for the ObjectGrid.

 *

 * @return name of replication group

 */

Chapter 7. System management overview 73

String getReplicationGroup();

 /**

 * Index of replication group member for the ObjectGrid.

 *

 * @return index of replication group member

 */

 int getIndex();

 /**

 * OGStatsModule attribute loaded up by the retrieveStatsModule call.

 *

 * @return String form of OGStatsModule

 */

 String getOGStatsModule();

 /**

 * ObjectGrid count attribute loaded up by the retrieveStatsModule call.

 *

 * @return number of transactions

 */

 long getOGCount();

 /**

 * Maximum transaction time attribute loaded up by the retrieveStatsModule call.

 *

 * @return maximum transaction time for the ObjectGrid

 */

 long getOGMaxTranTime();

 /**

 * Minimum transaction time attribute loaded up by the retrieveStatsModule call.

 *

 * @return minimum transaction time for the ObjectGrid

 */

 long getOGMinTranTime();

 /**

 * Mean transaction time attribute loaded up by the retrieveStatsModule call.

 *

 * @return mean transaction time for the ObjectGrid

 */

 double getOGMeanTranTime();

 /**

 * Total transaction time attribute loaded up by the retrieveStatsModule call.

 *

 * @return total transaction time for the ObjectGrid

 */

 long getOGTotalTranTime();

}

ServerMBean MBean

The ServerMBean Mbean allows the user to perform operations on servers in the

cluster. The ObjectName for a ServerMBean can be specified in the following way:

v ″ManagementServer:type=ObjectGrid,S=ServerName″

A listing of the ServerMBean interface follows:

public interface ServerMBean {

 /**

 * Operation to load the replication status for the server.

 *

 */

74 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

void retrieveReplicationStatus();

 /**

 * Return the name of the server.

 *

 * @return server name

 */

 String getServerName();

 /**

 * Operation to get the status of the server.

 *

 * @return status of server (true if running, false if not)

 */

 boolean retrieveServerStatus();

 /**

 * Operation to stop the server.

 *

 * @return true if server was stopped, false if not

 */

 boolean stopServer();

 /**

 * Operation to force the server stop.

 *

 * @return true if server was stopped, false if not

 */

 boolean forceStopServer();

 /**

 * Operation to stop the cluster the server is a part of.

 *

 * @param determines if servers are stopped with force

 * @return true if cluster was stopped, false if not

 */

 boolean stopCluster(Boolean force);

 /**

 * Operation to modify the trace spec for all servers in

 * the cluster the server is a part of.

 *

 * @param trace specification

 */

 void modifyClusterTraceSpec(String spec);

 /**

 * Operation to modify the trace spec for the server.

 *

 * @param trace specification

 */

 void modifyServerTraceSpec(String spec);

}

ReplicationGroupMBean Mbean

The ReplicationGroupMBean allows you to monitor the status for all the replication

group members associated with a specific replication group including which server

is the primary and up to ten replicas. The ObjectName for a

ReplicationGroupMBean can be specified:

v ″ManagementReplicationGroup:type=ObjectGrid,RG=ReplicationGridName″

A listing of the ReplicationGroupMBean interface follows:

Chapter 7. System management overview 75

public interface ReplicationGroupMBean {

 /**

 * Operation to load up the status of the replication group attributes.

 *

 */

 String[] retrieveReplicationGroupStatus();

 /**

 * ReplicationGroupName attribute.

 *

 * @return name of the ReplicationGroup

 */

 String getReplicationGroupName();

 /**

 * Primary attribute.

 *

 * @return name of the Primary

 */

 String getPrimary();

 /**

 * Replica1 attribute.

 *

 * @return server name of Replica1

 */

 String getReplica1();

 /**

 * Replica2 attribute.

 *

 * @return server name of Replica2

 */

 String getReplica2();

 /**

 * Replica3 attribute.

 *

 * @return server name of Replica3

 */

 String getReplica3();

 /**

 * Replica4 attribute.

 *

 * @return server name of Replica4

 */

 String getReplica4();

 /**

 * Replica5 attribute.

 *

 * @return server name of Replica5

 */

 String getReplica5();

 /**

 * Replica6 attribute.

 *

 * @return server name of Replica6

 */

 String getReplica6();

 /**

 * Replica7 attribute.

 *

76 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

* @return server name of Replica7

 */

 String getReplica7();

 /**

 * Replica8 attribute.

 *

 * @return server name of Replica8

 */

 String getReplica8();

 /**

 * Replica9 attribute.

 *

 * @return server name of Replica9

 */

 String getReplica9();

 /**

 * Replica10 attribute.

 *

 * @return server name of Replica10

 */

 String getReplica10();

 /**

 * All replicas for this replication group comma delimited

 *

 * @return server names of all replicas

 */

 String getReplicas();

}

ReplicationGroupMemberMBean Mbean

The ReplicationGroupMemberMBean allows you to monitor the following statistics

for a replication group member:

v Status of a replication group member. You can monitor primary or replica

members.

v Replica weight ratio. This statistic only applies to replication group members that

are replicas. This ratio is a quantification of how close a replica’s maps are to

being synchronized with the primary’s maps. The higher the ratio, the closer a

replica is to having the primary’s up-to-date information.

The ObjectName for a ReplicationGroupMemberMBean can be specified in the

following ways:

v "ManagementReplicationGroupMember:type=ObjectGrid,

RG=ReplicationGridName,S=ServerName"

v "ManagementReplicationGroupMember:type=ObjectGrid,

RG=ReplicationGridName,IDX=Index"

Specifying IDX=0 returns the primary of the replication group and IDX=1 up to 10

are replicas. A listing of the ReplicationGroupMBean interface follows:

public interface ReplicationGroupMemberMBean {

 /**

 * Operation to load up the status of the replication group member attributes.

 *

 */

 void retrieveReplicationGroupMemberStatus();

 /**

Chapter 7. System management overview 77

* Operation to load up the status of the replication group member

 * attributes.

 * Will use the cache as opposed to the retrieveReplicationGroupMemberStatus

 * method which will go to the server to get status.

 *

 */

 void refreshReplicationGroupMemberStatus();

 /**

 * ReplicationGroupName attribute.

 *

 * @return name of the ReplicationGroup this member belongs to

 */

 String getReplicationGroupName();

 /**

 * Status of the ReplicationGroupMember: primary/replica/standby.

 *

 * @return status of the ReplicationGroupMember

 */

 String getStatus();

 /**

 * Statistic representing the percentage how close a replica is

 * to being up to date with the primary maps.

 *

 * @return Replica statistic of the ReplicationGroupMember

 */

 double getReplicaWeightRatio();

 /**

 * Name of server on which this ReplicationGroupMember resides.

 *

 * @return server name

 */

 String getServerName();

 /**

 * Index of ReplicationGroupMember.

 *

 * @return index of replica

 */

 int getIndex();

}

78 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 8. Command line support

Use command line scripts to manage your ObjectGrid servers.

A set of script files is provided in the /ObjectGrid/bin directory of a mixed server

environment installation. These scripts can be used to start or stop an ObjectGrid

server, start a management gateway server, and encode passwords in a property

file. Before attempting to use the scripts, verify that the JAVA_HOME environment

variable is set, and that its value is an ObjectGrid-supported version of Java. You

can update JAVA_HOME in the setupCmdLine.bat|sh file to point to an appropriate

version of Java if you do not want to change your environment variable globally.

See the following topics for more information about the command line scripts:

v “Start ObjectGrid servers”

v “Stop ObjectGrid servers” on page 83

v “Start the management gateway server” on page 84

v “Password encoding” on page 86

Start ObjectGrid servers

The startOgServer script is provided to start an ObjectGrid server.

Usage

Use the startOgServer.bat file to start a server on a Windows machine. Use the

startOgServer.sh file to start an ObjectGrid server on Linux and Unix platforms.

Using XML files

A valid ObjectGrid XML file must be paired with a valid cluster XML file to

successfully start an ObjectGrid server. XML files can be passed into the

startOgServer script using a regular file name or a Uniform resource locator (URL).

The URL option allows for different protocols besides the file protocol, for example

http, ftp, or jarfile.

The startOgServer script arguments for starting a server using XML files follows:

startOgServer.bat <server> -objectgridFile <XML file> | -objectgridUrl

 <XML file URL> -clusterFile <XML file> | -clusterUrl <XML file URL> [options]

Example

Following are a few examples of starting the server1 ObjectGrid server. These

examples make use of the startOgServer.bat file.

startOgServer.bat server1 -objectgridFile c:\objectgrid\xml\university.xml

-clusterFile c:\objectgrid\xml\universityCluster3Servers.xml

startOgServer.bat server1 -objectgridFile ..\xml\university.xml

-clusterUrl file:///c:/objectgrid/xml/universityCluster3Servers.xml

startOgServer.bat server1 -objectgridUrl file:///c:/objectgrid/xml/university.xml

 -clusterFile ..\xml\universityCluster3Servers.xml

startOgServer.bat server1 -objectgridUrl file:///c:/objectgrid/xml/university.xml

-clusterUrl file:///c:/objectgrid/xml/universityCluster3Servers.xml

© Copyright IBM Corp. 2004, 2005 79

The examples use the universityCluster3Servers.xml file. Because the server1

server is specified as the server to start, the universityCluster3Servers.xml file

must have a serverDefinition value with the name server1.

The universityCluster3Servers.xml file follows. Notice the server1

serverDefinition, and that its host is lion.ibm.com. The server1 server must be

started on the lion.ibm.com host. This file also defines the server2 and server3

servers. These servers must be started on the tiger.ibm.com and bear.ibm.com

hosts, respectively.

universityCluster3Servers.xml file

<?xml version="1.0" encoding="UTF-8"?>

<clusterConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/cluster

 ../objectGridCluster.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="universityCluster">

 <serverDefinition name="server1" host="lion.ibm.com" clientAccessPort="12501"

 peerAccessPort="12502" />

 <serverDefinition name="server2" host="tiger.ibm.com" clientAccessPort="12503"

 peerAccessPort="12504" />

 <serverDefinition name="server3" host="bear.ibm.com" clientAccessPort="12505"

 peerAccessPort="12506" />

 </cluster>

 <objectgridBinding ref="academics">

 <mapSet name="academicsMapSet" partitionSetRef="partitionSet1">

 <map ref="faculty" />

 <map ref="student" />

 <map ref="course" />

 </mapSet>

 </objectgridBinding>

 <objectgridBinding ref="athletics">

 <mapSet name="athleticsMapSet" partitionSetRef="partitionSet1">

 <map ref="athlete" />

 <map ref="equipment" />

 </mapSet>

 </objectgridBinding>

 <partitionSet name="partitionSet1">

 <partition name="partition1" replicationGroupRef="replicationGroup1" />

 </partitionSet>

 <replicationGroup name="replicationGroup1">

 <replicationGroupMember serverRef="server1" priority="1" />

 <replicationGroupMember serverRef="server2" priority="2" />

 <replicationGroupMember serverRef="server3" priority="3" />

 </replicationGroup>

</clusterConfig>

Bootstrapping

After one ObjectGrid server in the cluster is available, other servers in the cluster

can bootstrap to the available server. The startOgServer script must be supplied

with the host and client access port of an already available server to bootstrap to it.

Because the first server in a cluster is launched with XML, it already has the

configuration information for all of the servers in the cluster. Bootstrapping allows

the launching server to connect to the available server and download the

configuration.

80 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Here are the startOgServer script arguments for starting a server by bootstrapping

to an available server.

startOgServer.bat <server> -bootstrap <host:port,host:port> [options]

Following are a few examples of starting a server by bootstrapping to another

server. For the first example, assume that the server1 server from the

universityCluster3Servers.xml file has been starting using XML files and is

available. This example shows how to bootstrap to the server1 server to start the

server2 server.

startOgServer.bat server2 -bootstrap lion.ibm.com:12501

For the next example, assume that the server2 server started successfully, but the

server1 server becomes unavailable. A comma-separated list of host:port

combinations can be used when bootstrapping to another server. An attempt is

made to contact each host and port in the list until an available server is found. In

the following example, the server3 attempts to contact the host and port of server1

server. However, because the server1 server is unavailable in this scenario, the

connection fails. Taking the next item in the list, the server3 server attempts to

bootstrap to the host and port for the server2 server. This bootstrap attempt should

succeed because the server2 server is available.

startOgServer.bat server3 -bootstrap lion.ibm.com:12501,tiger.ibm.com:12503

Optional arguments

Several optional arguments exist that can be passed to the startOgServer script.

The valid startOgServer arguments follow.

Options:

v -traceSpec <trace specification>

v -traceFile <trace file>

v -serverSecurityFile <server security properties file>

v -timeout <seconds>

v -script <script file name>

v -jvmArgs <JVM arguments>

-traceSpec

The -traceSpec argument can be used to set a trace specification that takes

effect almost immediately during server startup. During normal server

startup, the trace specification is not set until it can be read from the cluster

XML file or from the bootstrapped configuration. If problems occur during

server startup, it might be helpful to set the trace specification earlier.

 Following is an example of how to set the -traceSpec option:

startOgServer.bat server1 -objectgridFile c:\objectgrid\xml\university.xml

 -clusterFile c:\objectgrid\xml\universityCluster3Servers.xml

 -traceSpec ObjectGrid=all=enabled

-traceFile

The -traceFile argument can be used to specify a location for trace that is

output during server startup. After the configuration for this server is read,

its trace settings as specified by the cluster XML file takes effect.

 Following is an example of how to set the -traceFile option:

startOgServer.bat server2 -bootstrap lion.ibm.com:12501 -traceFile

 c:\objectgrid\trace.log

Chapter 8. Command line support 81

-serverSecurityFile

The -serverSecurityFile argument can be used to pass a server its security

properties file. This option is required when security is enabled on the

server. Following is an example of how to set the -serverSecurityFile option:

startOgServer.bat server1 -objectgridUrl file:///c:/objectgrid/xml/

 university.xml

 -clusterFile ..\xml\universityCluster3Servers.xml

 -serverSecurityFile c:\objectgrid\props\serverSecurity.props

-timeout

The -timeout argument can be used to specify the amount of time, in

seconds, that is allowed to pass before the launching of the server is

aborted. By default, the server is allowed 90 seconds to become available

from the time it was launched. If this time is too short for a particular

scenario, use the -timeout argument to set it to a more appropriate value.

An example of how to use the timeout argument follows:

startOgServer.bat server1 -objectgridFile ..\xml\university.xml

 -clusterUrl file:///c:/objectgrid/xml/universityCluster3Servers.xml

 -timeout 120

-script

The -script argument can be used to create a script that launches an

ObjectGrid server process and keeps its output in the current command

prompt. In normal circumstances, when an ObjectGrid server is launched,

the startOgServer script displays output from the server process to the

command prompt until the server is available. After the server is available,

startOgServer stops displaying the output from the server process and

exits. In some cases, you might want to launch a server process that

outputs to the current command prompt.

 When specifying a file name for the script, do not give a path to the file.

The file is placed in the bin directory of the OBJECTGRID_HOME path.

Supply the name of the file. The script file that is created includes the

arguments that were passed to the startOgServer script so it is not

necessary to supply those same arguments when running the created

script.

 Following is an example of how to use the -script option:

startOgServer.bat server1 -objectgridUrl

 file:///c:/objectgrid/xml/university.xml

 -clusterUrl file:///c:/objectgrid/xml/universityCluster3Servers.xml

 -script universityClusterServer1.bat

This example creates a universityClusterServer1.bat script in the

OBJECTGRID_HOME/bin directory. To run the newly created script, navigate to

the proper directory on the command prompt, type the name of the script,

and press Enter.

-jvmArgs

The -jvmArgs argument can be used to send arguments to the ObjectGrid

server Java virtual machine (JVM) that is being launched. Any argument

that can be passed to the JVM normally can be passed to the server using

the -jvmArgs argument.

 The -jvmArgs argument must be the last ObjectGrid optional argument

specified as an argument to the startOgServer script. Everything that comes

after the -jvmArgs argument is passed to the server JVM as a JVM

argument. An example of how to set the -jvmArgs argument follows:

startOgServer.bat server2 -bootstrap lion.ibm.com:12501

 -jvmArgs -Xms768M -DmyProp=value1

82 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

If the -jvmArgs argument includes a -classpath or a -cp JVM argument, the

classpath specified is appended to the ObjectGrid classpath. Following is

an example of using the -jvmArgs argument to include the Xerces Java

archive (JAR) files in the classpath that are used to launch an ObjectGrid

server.

startOgServer.bat server2 -bootstrap lion.ibm.com:12501 -jvmArgs -cp

 C:\xerces2_7_1\xml-apis.jar;c:\xerces2_7_1\xercesImpl.jar

Stop ObjectGrid servers

Use the stopOgServer script to stop ObjectGrid servers.

Usage

Use the stopOgServer.bat file to stop a server on a Windows machine. Use the

stopOgServer.sh file to stop an ObjectGrid server on Linux and Unix platforms. The

stopOgServer script creates a client that can stop a server by connecting to any

available server in the cluster. The behavior of this script is similar to bootstrapping

to an available server to start another server. Following are the stopOgServer script

arguments for stopping a server.

stopOgServer.bat <server> -bootstrap <host:port,host:port> [options]

Examples

Following are a few of examples of stopping different ObjectGrid servers. These

examples make use of the stopOgServer.bat file. For these examples, assume that

three servers are up and running: the server1, server2, and server3 servers as

defined by the universityCluster3Servers.xml file in “Start ObjectGrid servers” on

page 79.

This first example stops the server1 server by bootstrapping to its host and client

access port.

stopOgServer.bat server1 -bootstrap lion.ibm.com:12501

Assume that the server1 server stopped successfully. The next example stops the

server2 by first attempting to bootstrap to the server1 server. Because the server1

server has already been stopped, the bootstrap is unsuccessful. The next host and

port in the list belongs to the server3 server. Because the server3 server is

available, the bootstrap to the server3 server is successful and the server2 is

stopped.

stopOgServer.bat server2 -bootstrap lion.ibm.com:12501,bear.ibm.com:12505

Optional arguments

There are a few optional arguments that can be passed to the stopOgServer script.

This section will show how to use each of these optional arguments. Here are the

valid stopOgServer arguments followed by the optional arguments.

stopOgServer.bat <server> -bootstrap <host:port,host:port> [options]

Options:

v -traceSpec <trace specification>

v -traceFile <trace file>

v -clientSecurityFile <client security properties file>

Chapter 8. Command line support 83

-traceSpec

The -traceSpec argument can be used to set a trace specification on the

client that attempts to stop an ObjectGrid server. Following is an example of

how to set the -traceSpec argument:

stopOgServer.bat server1 -bootstrap lion.ibm.com:12501 -traceSpec

ObjectGrid=all=enabled

-traceFile

The -traceFile argument can be used to specify a location for the client

trace that is output during server shutdown. Following is an example of how

to set the traceFile argument:

stopOgServer.bat server2 -bootstrap lion.ibm.com:12501,bear.ibm.com:12505

-traceFile c:\objectgrid\trace.log

-clientSecurityFile

The -clientSecurityFile argument can be used to pass the client its security

properties file. This argument is required when attempting to connect to a

server with security enabled.

 Following is an example of how to set the -clientSecurityFile argument:

stopOgServer.bat server1 -bootstrap lion.ibm.com:12501 -clientSecurityFile

 c:\objectgrid\props\clientSecurity.props

Start the management gateway server

To monitor and administer an ObjectGrid cluster using Java management

extensions (JMX), the management gateway must be started either through the

command line script or programmatically.

Purpose

To start the Management Gateway through the command line, use the

startManagementGateway script. Use the startManagementGateway.bat file to start

a ManagementGateway server on a Windows machine. Use the

startManagementGateway.sh file to start a ManagementGateway server on Linux

and Unix platforms. For more information on Management Gateway function,

ObjectGrid MBeans, and JMX, see Chapter 7, “System management overview,” on

page 65.

The startManagementGateway script creates a JMX connector server and an

ObjectGrid client that connects to an ObjectGrid cluster to stop servers, gather

status and statistics, and perform several more functions.

Following are the startManagementGateway script arguments for starting a

management gateway server.

startManagementGateway.bat -connectorPort <port> -clusterHost <host>

 -clusterPort <port> -clusterName <cluster> [options]

Optional arguments

A few optional arguments can be passed to the startManagementGateway script.

The valid startManagementGateway arguments are followed by the optional

arguments.

startManagementGateway.bat -connectorPort <port> -clusterHost <host>

 -clusterPort <port> -clusterName <cluster> [options]

Options

84 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

v -traceEnabled <true/false trace enabled>

v -traceSpec <trace specification>

v -traceFile <trace file>

v -refreshInterval <MBean attribute refresh interval>

v -sslEnabled <true/false SSL enabled for management gateway>

v -clientSecurityFile <path to client security file>

-traceEnabled

The -traceEnabled argument can be used to set whether trace is turned on

for the Management Gateway server. The default is false, so the only way

to see ObjectGrid trace is to enable it by setting -traceEnabled to ″true″ and

providing valid -traceSpec and -traceFile values.

-traceSpec

The -traceSpec argument can be used to set a trace specification for the

management gateway server.

-traceFile

The -traceFile argument can be used to specify a location for the

Management Gateway trace output. Following is an example of how to set

the traceEnabled, traceSpec, and traceFile arguments.

startManagementGateway.bat -connectorPort 1099 -clusterHost lion.ibm.com

 -clusterPort 12501 -clusterName universityCluster -traceEnabled true

 -traceSpec ObjectGrid=all=enabled -traceFile \\objectgrid\\trace.log

-refreshInterval

The -refreshInterval argument can be used to pass the amount of time (in

seconds) that the management gateway waits between refreshes of the

MBean attribute values. The default value is 120 seconds. Following is an

example of how to set the refreshInterval argument:

startManagementGateway.bat -connectorPort 1099 -clusterHost lion.ibm.com

 -clusterPort 12501 -clusterName universityCluster -refreshInterval 60

-sslEnabled

The -sslEnabled argument can be used to set whether SSL is enabled for

the management gateway. If the value for this argument is true, any user

client that connects to the management gateway server needs to provide

SSL properties:

v -Djavax.net.ssl.trustStore

v -Djavax.net.ssl.trustStorePassword

The default value if the -sslEnabled argument is not provided is ″false″.

-clientSecurityFile

The -clientSecurityFile argument can be used to pass the file name that

contains the client security properties for secure client access between the

Management Gateway server and the ObjectGrid cluster. This argument is

required when attempting to connect to a cluster with security enabled.

ObjectGrid ships the following client security property file template:

security.ogclient.props.

Here is an example of how to set the sslEnabled and clientSecurityFile properties:

startManagementGateway.bat -connectorPort 1099 -clusterHost lion.ibm.com

-clusterPort 12501 -clusterName universityCluster -sslEnabled true

-clientSecurityFile ..\\properties\\security.ogclient.props

Chapter 8. Command line support 85

Password encoding

Password encoding deters the casual observation of passwords in the ObjectGrid

security property files.

Usage

ObjectGrid contains several encoded passwords that are not encrypted. ObjectGrid

provides the FilePasswordEncoder utility, which you can use to encode these

passwords. Use the FilePasswordEncoder.bat file to encode passwords on a

Windows machine. Use the FilePasswordEncoder.sh file to encode passwords on

Linux and Unix platforms.

The command syntax is as follows:

FilePasswordEncoder.bat file_name password_properties_list [file_type]

Options

The following options are available for the FilePasswordEncoder command:

file_name

The file_name is used to specify the file name which has passwords to be

encoded. For example, security.ogserver.props.

password_prop_list

The password_prop_list is a list of password property names separated by

commas, for example, ″trustStorePassword,keyStorePassword″.

file_type

This argument is optional. The file_type can either be an xml or property

value, indicating whether the supplied file is a property file or an XML file.

The default value is property. Currently, ObjectGrid does not store any

passwords in an XML file, so this option is not required. The following

examples demonstrate the correct syntax:

v FilePasswordEncoder.bat security.ogclient.props

″trustStorePassword,keyStorePassword″

v FilePasswordEncoder.bat security.ogserver.props

″trustStorePassword,keyStorePassword,secureTokenKeyStorePassword,

secureTokenKeyPairPassword,secureTokenSecretKeyPassword″

This FilePasswordEncoder utility is not shipped with WebSphere Extended

Deployment. You can use the PropFilePasswordEncoder utility provided by the

WebSphere Application Server to encode these passwords. Refer to the

PropFilePasswordEncoder command reference for more details.

86 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/rsec_propfilepwdencoder.html

Chapter 9. ObjectGrid application programming interface

overview

This section discusses the how to configure the ObjectGrid with XML or through

programmatic interfaces. In addition, information is included to implement the

external interfaces that ObjectGrid provides. In all cases, an overview, API

interfaces, and examples are described.

API documentation

The JavaDoc for ObjectGrid is the definitive source of information about the APIs.

Find the JavaDoc in the following directory of your WebSphere Extended

Deployment installation: install_root\web\xd\apidocs

ObjectGridManager interface

The ObjectGridManagerFactory class and the ObjectGridManager interface provide

a mechanism to create, access, and cache ObjectGrid instances. The

ObjectGridManagerFactory class is a static helper class to access the

ObjectGridManager interface, a singleton. The ObjectGridManager interface

includes several convenience methods to create instances of an ObjectGrid object.

The ObjectGridManager interface also facilitates creation and caching of ObjectGrid

instances that can be accessed by several users.

createObjectGrid methods

Use this topic to learn about the seven createObjectGrid methods that are in the

ObjectGridManager interface.

createObjectGrid methods

The ObjectGridManager interface has seven createObjectGrid methods. Following

is a simple scenario:

Simple case with default configuration

Following is a simple case of creating an ObjectGrid to share among many users.

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridException;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

import com.ibm.websphere.objectgrid.ObjectGridManager;

final ObjectGridManager oGridManager=

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid employees = oGridManager.createObjectGrid("Employees",true);

employees.initialize();

employees.

/*sample continues..*/

The preceding Java code snippet creates and caches the Employees ObjectGrid.

The Employees ObjectGrid is initialized with the default configuration and is ready

to be used. The second parameter in the createObjectGrid method is set to true,

which instructs the ObjectGridManager to cache the ObjectGrid instance it creates.

If this parameter is set to false, the instance is not cached. Every ObjectGrid

instance has a name, and the instance can be shared among many clients or users

based on that name.

© Copyright IBM Corp. 2004, 2005 87

If the objectGrid instance is used in peer-to-peer sharing, the caching must be set

to true. For more information on peer-to-peer sharing, see Chapter 12, “Distributing

changes between peer Java virtual machines,” on page 325.

XML configuration

ObjectGrid is highly configurable. The previous example demonstrates how to

create a simple ObjectGrid without any configuration. With this example, you can

create a pre-configured ObjectGrid instance that is based on an XML configuration

file. You can configure an ObjectGrid instance programmatically or using an

XML-based configuration file. You can also configure ObjectGrid using a

combination of both approaches.

The ObjectGridManager interface allows creation of an ObjectGrid instance based

on the XML configuration. The ObjectGridManager interface has several methods

that take a URL as an argument. Every XML file that is passed into the

ObjectGridManager must be validated against the schema. XML validation can be

disabled only when the file has been previously validated and no changes have

been made to the file since its last validation. Disabling validation saves a small

amount of overhead but introduces the possibility of using an invalid XML file. The

IBM Java Developer Kit (JDK) 1.4.2 has support for XML validation. When using a

JDK that does not have this support, Apache Xerces might be required to validate

the XML.

The following Java code snippet demonstrates how to pass in an XML configuration

file to create an ObjectGrid.

import java.net.MalformedURLException;

import java.net.URL;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridException;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

boolean validateXML = true; // turn XML validation on

boolean cacheInstance = true; // Cache the instance

String objectGridName="Employees"; // Name of Object Grid URL

allObjectGrids = new URL("file:test/myObjectGrid.xml");

final ObjectGridManager oGridManager=

 ObjectGridManagerFactory.getObjectGridManager();

 ObjectGrid employees = oGridManager.createObjectGrid(objectGridName,

 allObjectGrids,

 validateXML,

 cacheInstance);

The XML file can contain configuration information for several ObjectGrids. The

previous code snippet specifically returns ObjectGrid ″Employees″, assuming that

the ″Employees″ configuration is defined in the file. For the XML syntax, see

“ObjectGrid configuration” on page 249.

Seven createObjectGrid methods exist. The methods are documented in the

following code block.

/**

* A simple factory method to return an instance of an

* Object Grid. A unique name is assigned.

* The instance of ObjectGrid is not cached.

* Users can then use {@link ObjectGrid#setName(String)} to change the

* ObjectGrid name.

*

* @return ObjectGrid an instance of ObjectGrid with a unique name assigned

* @throws ObjectGridException any error encountered during the ObjectGrid creation

* @ibm−api

88 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

*/

public ObjectGrid createObjectGrid() throws ObjectGridException;

/**

* A simple factory method to return an instance of an ObjectGrid with the

* specified name. The instances of ObjectGrid can be cached. If an ObjectGrid

* with the this name has already been cached, an ObjectGridException

* will be thrown.

*

* @param objectGridName the name of the ObjectGrid to be created.

* @param cacheInstance true, if the ObjectGrid instance should be cached

* @return an ObjectGrid instance

* @this name has already been cached or

* any error during the ObjectGrid creation.

* @ibm−api

*/

public ObjectGrid createObjectGrid(String objectGridName, boolean cacheInstance)

 throws ObjectGridException;

/**

* Create an ObjectGrid instance with the specified ObjectGrid name. The

* ObjectGrid instance created will be cached.

* @param objectGridName the Name of the ObjectGrid instance to be created.

* @return an ObjectGrid instance

* @throws ObjectGridException if an ObjectGrid with this name has already

* been cached, or any error encountered during the ObjectGrid creation

* @ibm−api

*/

public ObjectGrid createObjectGrid(String objectGridName)

 throws ObjectGridException;

/**

* Create an ObjectGrid instance based on the specified ObjectGrid name and the

* XML file. The ObjectGrid instance defined in the XML file with the specified

* ObjectGrid name will be created and returned. If such an ObjectGrid

* cannot be found in the xml file, an exception will be thrown.

*

* This ObjecGrid instance can be cached.

*

* If the URL is null, it will be simply ignored. In this case, this method behaves

* the same as {@link #createObjectGrid(String, boolean)}.

*

* @param objectGridName the Name of the ObjectGrid instance to be returned. It

* must not be null.

* @param xmlFile a URL to a wellformed xml file based on the ObjectGrid schema.

* @param enableXmlValidation if true the XML is validated

* @param cacheInstance a boolean value indicating whether the ObjectGrid

* instance(s)

* defined in the XML will be cached or not. If true, the instance(s) will

* be cached.

*

* @throws ObjectGridException if an ObjectGrid with the same name

* has been previously cached, no ObjectGrid name can be found in the xml file,

* or any other error during the ObjectGrid creation.

* @return an ObjectGrid instance

* @see ObjectGrid

* @ibm−api

*/

public ObjectGrid createObjectGrid(String objectGridName, final URL xmlFile,

final boolean enableXmlValidation, boolean cacheInstance) throws

 ObjectGridException;

/**

* Process an XML file and create a List of ObjectGrid objects based

* upon the file.

* These ObjecGrid instances can be cached.

* An ObjectGridException will be thrown when attempting to cache a

* newly created ObjectGrid

* that has the same name as an ObjectGrid that has already been cached.

*

* @param xmlFile the file that defines an ObjectGrid or multiple

Chapter 9. ObjectGrid application programming interface overview 89

* ObjectGrids

* @param enableXmlValidation setting to true will validate the XML

* file against the schema

* @param cacheInstances set to true to cache all ObjectGrid instances

* created based on the file

* @return an ObjectGrid instance

* @throws ObjectGridException if attempting to create and cache an

* ObjectGrid with the same name as

* an ObjectGrid that has already been cached, or any other error

* occurred during the

* ObjectGrid creation

* @ibm−api

*/

public List createObjectGrids(final URL xmlFile,

final boolean enableXmlValidation,

boolean cacheInstances)

throws ObjectGridException;

/*** Create all ObjectGrids that are found in the XML file. The XML file will be

* validated against the schema. Each ObjectGrid instance that is created will

* be cached. An ObjectGridException will be thrown when attempting to cache a

* newly created ObjectGrid that has the same name as an ObjectGrid that has

* already been cached.

* @param xmlFile The XML file to process. ObjectGrids will be created based

* on what is in the file.

* @return A List of ObjectGrid instances that have been created.

* @throws ObjectGridException if an ObjectGrid with the same name as any of

* those found in the XML has already been cached, or

* any other error encounterred during ObjectGrid creation.

* @ibm−api

*/

public List createObjectGrids(final URL xmlFile) throws ObjectGridException;

/**

* Process the XML file and create a single ObjectGrid instance with the

* objectGridName specified only if an ObjectGrid with that name is found in

* the file. If there is no ObjectGrid with this name defined in the XML file,

* an ObjectGridException

* will be thrown. The ObjectGrid instance created will be cached.

* @param objectGridName name of the ObjectGrid to create. This ObjectGrid

* should be defined in the XML file.

* @param xmlFile the XML file to process

* @return A newly created ObjectGrid

* @throws ObjectGridException if an ObjectGrid with the same name has been

* previously cached, no ObjectGrid name can be found in the xml file,

* or any other error during the ObjectGrid creation.

* @ibm−api

*/

public ObjectGrid createObjectGrid(String objectGridName, URL xmlFile)

throws ObjectGridException;

getObjectGrid methods

Use the getObjectGrid methods to retrieve cached instances.

Retrieve a cached instance

Since the Employees ObjectGrid instance was cached by the ObjectGridManager

interface, any other user can access it with the following code snippet:

ObjectGrid myEmployees = oGridManager.getObjectGrid("Employees");

Following are the two getObjectGrid methods that return cached ObjectGrid

instances.

/**

* Get a List of the ObjectGrid instances that have been previously cached.

* Returns null if no ObjectGrid instances have been cached.

* @return a List of ObjectGrid instances that have been previously cached

90 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

* @ibm−api

*/

public List getObjectGrids();

/**

* Use this if a ObjectGrid already exists. It returns a cached

* ObjectGrid instance by name. This method returns null if no

* ObjectGrid with this objectGridName has been cached.

*

* @param objectGridName the cached objectgrid name.

* @return a cached ObjectGrid which currently exists.

*

* @since WAS XD 6.0

* @ibm−api

*

*/

public ObjectGrid getObjectGrid(String objectGridName);

removeObjectGrid methods

This topic describes how to use the two removeObjectGrid methods.

Remove an ObjectGrid instance

To remove ObjectGrid instances from the cache, use one of the removeObjectGrid

methods. The ObjectGridManager does not keep a reference of the instances that

are removed. Two remove methods exist. One method takes a boolean parameter.

If the boolean parameter is set to true, the destroy method is called on the

ObjectGrid. The call to the destroy method on the ObjectGrid shuts down the

ObjectGrid and frees up any resources it is using. Following is a description of how

to use the two removeObjectGrid methods:

/**

* Remove an ObjectGrid from the cache of ObjectGrid instances

* @param objectGridName the name of the ObjectGrid instance to remove

* from the cache

* @throws ObjectGridException if an ObjectGrid with the objectGridName

* was not found in the cache

* @ibm−api

*/

public void removeObjectGrid(String objectGridName) throws ObjectGridException;

/**

* Remove an ObjectGrid from the cache of ObjectGrid instances and

* destroy its associated resources

* @param objectGridName the name of the ObjectGrid instance to remove

* from the cache

* @param destroy destroy the objectgrid instance and its associated

* resources

* @throws ObjectGridException if an ObjectGrid with the objectGridName

* was not found in the cache

* @ibm−api

*/

public void removeObjectGrid(String objectGridName, boolean destroy)

throws ObjectGridException;

getObjectGridAdministrator method

Return an ObjectGridAdministrator instance for the cluster

public ObjectGridAdministrator getObjectGridAdministrator(ClientClusterContext ctx)

/**

* Return an ObjectGridAdministrator instance for this cluster. Each

* cluster will require the use of a different ObjectGridAdministrator.

*

* @param clientClusterContext. A unique cluster context, with which the client

* needs to interact.

Chapter 9. ObjectGrid application programming interface overview 91

* @param objectGridName the cached objectgrid name.

* @return an ObjectGrid

*

* @since WAS XD 6.0.1

* @ibm-api

*

*/

public ObjectGridAdministrator getObjectGridAdministrator(ClientClusterContext

ontext);

See Chapter 7, “System management overview,” on page 65 for more information

on this method.

Use the ObjectGridManager interface to control the life cycle of an

ObjectGrid instance

This topic demonstrates how the ObjectGridManager interface can be used to

control the life cycle of an ObjectGrid instance using startup beans and a servlet.

Manage an ObjectGrid instance life cycle in a startup bean

A startup bean can be used to control the life cycle of an ObjectGrid instance. A

startup bean loads when an application starts. With a startup bean, code can run

whenever an application starts or stops as expected. To create a startup bean, use

the home com.ibm.websphere.startupservice.AppStartUpHome interface and use

the remote com.ibm.websphere.startupservice.AppStartUp interface. Implement

the start and stop methods on the bean. The start method is invoked whenever

the application starts up. The stop method is invoked when the application shuts

down. The start method can be used to create ObjectGrid instances. Thestop

method can be used to destroy ObjectGrid instances. Following is a code snippet

that demonstrates this ObjectGrid life cycle management in a startup bean.

public class MyStartupBean implements javax.ejb.SessionBean {

private ObjectGridManager objectGridManager;

/*

* The methods on the SessionBean interface have been

* left out of this example for the sake of brevity

*/

public boolean start(){

 // Starting the startup bean

 // This method is called when the application starts

 objectGridManager = ObjectGridManagerFactory.getObjectGridManager();

 try {

 // create 2 ObjectGrids and cache these instances

 ObjectGrid bookstoreGrid =

 objectGridManager.createObjectGrid("bookstore", true);

 bookstoreGrid.defineMap("book");

 ObjectGrid videostoreGrid =

 objectGridManager.createObjectGrid("videostore", true);

 // within the JVM,

 // these ObjectGrids can now be retrieved from the

 //ObjectGridManager using the getObjectGrid(String) method

 } catch (ObjectGridException e) {

 e.printStackTrace();

 return false;

 }

 return true;

}

public void stop(){

 // Stopping the startup bean

 // This method is called when the application is stopped

 try {

 // remove the cached ObjectGrids and destroy them

92 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

objectGridManager.removeObjectGrid("bookstore", true);

 objectGridManager.removeObjectGrid("videostore", true);

 } catch (ObjectGridException e) {

 e.printStackTrace();

 }

 }

}

After the start method is called, the newly created ObjectGrid instances can be

retrieved from the ObjectGridManager. For example, if a servlet is included in the

application, the servlet can access these ObjectGrids using the following code

snippet:

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid bookstoreGrid = objectGridManager.getObjectGrid("bookstore");

ObjectGrid videostoreGrid = objectGridManager.getObjectGrid("videostore");

Managing an ObjectGrid life cycle in a servlet

One method to manage the life cycle of an ObjectGrid in a Servlet is to create the

ObjectGrid instance in the init method and destroy the ObjectGrid in the destroy

method. If the ObjectGrid instance is cached, it can be retrieved and manipulated in

the servlet code. Following is some sample code that demonstrates ObjectGrid

creation, manipulation, and destruction within a servlet.

public class MyObjectGridServlet extends HttpServlet implements Servlet {

 private ObjectGridManager objectGridManager;

 public MyObjectGridServlet() {

 super();

}

public void init(ServletConfig arg0) throws ServletException {

 super.init();

 objectGridManager = ObjectGridManagerFactory.getObjectGridManager();

 try {

 // create and cache an ObjectGrid named bookstore

 ObjectGrid bookstoreGrid =

 objectGridManager.createObjectGrid("bookstore", true);

 bookstoreGrid.defineMap("book");

 } catch (ObjectGridException e) {

 e.printStackTrace();

 }

}

protected void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

 ObjectGrid bookstoreGrid = objectGridManager.getObjectGrid("bookstore");

 BackingMap bookMap = bookstoreGrid.getMap("book");

 // perform operations on the cached ObjectGrid

 // ...

}

public void destroy() {

 super.destroy();

 try {

 // remove and destroy the cached bookstore ObjectGrid

 objectGridManager.removeObjectGrid("bookstore", true);

 } catch (ObjectGridException e) {

 e.printStackTrace();

 }

 }

}

Trace ObjectGrid

This topic explains how to set up tracing for ObjectGrid.

Chapter 9. ObjectGrid application programming interface overview 93

Java 2 Platform, Standard Edition (J2SE) environment

When it is necessary to send debug information to IBM, use the tracing mechanism

to get the debug trace. Following is an example of how to get the debug trace in a

J2SE environment:

oGridManager.setTraceFileName("debug.log");

oGridManager.setTraceSpecification("ObjectGrid=all=enabled");

The previous example does not include tracing of built-in evictor plug-ins for

ObjectGrid. If you are using one or more of the evictor plug-ins that are provided by

ObjectGrid and you are having problems that might be related to eviction, enable

tracing for both ObjectGrid plus the evictors of ObjectGrid as the following example

illustrates:

oGridManager.setTraceFileName("debug.log");

oGridManager.setTraceSpecification

 ("ObjectGridEvictors=all=enabled:ObjectGrid=all=enabled");

WebSphere Application Server environment

It is not necessary to use ObjectGridManager to set the trace within an WebSphere

Application Server environment. You can use the administrative console to set the

trace specification.

ObjectGrid client connect APIs

The basics

A client connects to an active, or running, server process within a cluster. A client

minimally needs the host name and port number of the server to which it connects.

The host name and port information is available from the cluster definition XML file

that was initially used to start the server. See “ObjectGrid configuration” on page

249 for the XML configuration details. Following is a snippet of the cluster XML

definition, which is used as a sample for this section. By using the APIs

documented in this section, the client connects to a remote ObjectGrid that is

configured to receive and process client requests. Note that the client ″downloads″

both the ObjectGrid and Cluster XML definitions to bootstrap itself. Client

configuration is based on the server configuration to which it connects.

<?xml version="1.0" encoding="UTF-8"?>

<clusterConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/cluster ../

 objectGridCluster.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="cluster1" securityEnabled="false" clientMaxRetries="15"

 tcpConnectionTimeout="180"

 singleSignOnEnabled="true" loginSessionExpirationTime="300"

 statisticsEnabled="true" statisticsSpec="all=enabled">

 <serverDefinition name="server1" host="s1.myco.com" clientAccessPort="12503"

 peerAccessPort="12500" workingDirectory="/tmp/s1/"

 traceSpec="ObjectGrid=all=disabled"

 systemStreamToFileEnabled="true" />

 <serverDefinition name="server2" host="s2.myco.com" clientAccessPort="12504"

 peerAccessPort="12501" workingDirectory="/tmp/s2/"

 traceSpec="ObjectGrid=all=disabled"

 systemStreamToFileEnabled="true" />

 <serverDefinition name="server3" host="10.5.1.22" clientAccessPort="12505"

 peerAccessPort="12502" workingDirectory="/tmp/s3/"

 traceSpec="ObjectGrid=all=disabled"

 systemStreamToFileEnabled="true"/>

 </cluster>

94 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

<objectgrid-binding

 .

 .

 .

This cluster definition is incomplete, but sufficient enough for this example. Within

the cluster1 cluster are three servers, the server1, server2 and server3 servers. The

clientAccessPort attribute specifies the listener port that the server is listening to

and the port to which the client first establishes a connection. From the previous

XML snippet, the ports for the server1, server2, and server3 servers are 12503,

12504, and 12504 respectively.

Connect APIs

The ObjectGridManager interface has connect methods that are documented in the

following sample. The following connect APIs are available from the

ObjectGridManager interface. See the API documentation for a description of these

methods.

/**

* This allows a client to connect to a remote ObjectGrid

* The remote ObjectGrid is hosted as specified by the parameters:

* @param clusterName: The name of the cluster to which this client

* attaches itself

* @param host: The host on which to connect

* @param port: The clientAceess port that is listening

* @param ClientSecurityConfiguration: Security configuration,can be

* null if security is not configured

* @param overRideObjectGrid xml. This parameter can be null. If it is not null,

* the client side configuration of ObjectGrid plug-in is overridden.

* Not all plug-ins can be overridden. For details see the

* ObjectGrid documents

* @throws ConnectException

*

*/

public ClientClusterContext connect(String clusterName,

 String host,

 String port,

 ClientSecurityConfiguration securityProps,

 URL overRideObjectGrid) throws ConnectException ;

/**

*

* @param clusterName

* @param attributes Host and Port pair attributes that are tried in sequential

* order to connect. If an attempt to connect fails to one server, the next pair

* of host and port attributes is picked to retry the connect.

* @param ClientSecurityConfiguration: Security configuration. It can be null if

* security is not configured.

* @param overRideObjectGrid xml. This parameter can be null. If it is not null,

* the client side configuration of ObjectGrid plug-in is overridden.

* Not all plug-ins can be overridden. For details see the ObjectGrid documents.

* @return ClientClusterContext

* @throws ConnectException

*

*

*/

public ClientClusterContext connect(String clusterName,

 HostPortConnectionAttributes[] attributes,

 ClientSecurityConfiguration securityProps,

 URL overRideObjectGrid) throws ConnectException ;

Chapter 9. ObjectGrid application programming interface overview 95

/**

* This method can be used only if a client is colocated with

* an ObjectGrid server, especially in a Java 2 Platform,

* Enterprise Edition (J2EE) environment with IBM WebSphere

* Application Server, which supports the

* embedded ObjectGrid server.

* This method connects the client to the Server which is running

* in the same Java virtual machine (JVM).

* @param securityProps. It can be null if not running in secure mode.

* @param overRideObjectGrid xml. This parameter can be null. If it is

* not null, the client side configuration of ObjectGrid plug-in is overridden.

* Not all plug-ins can be overridden. For details see the

* ObjectGrid documents

* @return ClientClusterContext

* @throws ConnectException

*

*/

public ClientClusterContext connect(ClientSecurityConfiguration securityProps,

 URL overRideObjectGrid) throws ConnectException;

/**

* This allows a client to connect to a Remote ObjectGrid

* @param clusterConfigFile A URL to the clusterConfig File. This is the

* same file that is used to start servers.

* This is used to retrieve host port information. It cannot be null. If it is

* null a IllegalArgumentException exception results.

* @param serverName A String, the name of the specific server to connect to.

*If the server name is not in the configuration, IllegalArgumentException

* results.

* This parameter can be null, in which case an attempt is made to connect

* to one of servers specified in the cluster

* XML file. If an attempt fails to connect to one, another server is picked,

* It is done, until such time the list is exhausted.

* @param securityProps

* @param overRideObjectGrid xml. This parameter can be null. If it is not

* null, the client side configuration of ObjectGrid plug-in is overridden.

* Not all plug-ins can be overridden. For details, see the ObjectGrid

* documents

* @return ClientClusterContext

* @throws ConnectException

*

* @ibm-api

*/

public ClientClusterContext connect(URL clusterConfigFile,

 String serverName,

 ClientSecurityConfiguration securityProps,

 URL overRideObjectGrid) throws ConnectException ;

Example using Host and Port parameters

The following code uses the cluster XML documented in “The basics” on page 94.

This client connects to host s1.myco.com at port 12503.

import com.ibm.websphere.objectgrid.ClientClusterContext;

import com.ibm.websphere.objectgrid.ConnectException;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

public class C1 {

96 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

/**

 * @param args

 */

 public static void main(String[] args) {

 final ObjectGridManager oGridManager=ObjectGridManagerFactory.

 getObjectGridManager(); //step 1

 ClientClusterContext ctx = null;

 try {

 ctx=oGridManager.connect("cluster1","s1.myco.com","12503",null,null);

 //step 2

 ObjectGrid employees = oGridManager.getObjectGrid(ctx,"employees");

 // step 3

 // Do objectGrid operations

 // get

 // update

 // commit...etc..

 } catch (ConnectException e) {

 //connect failed

 e.printStackTrace();

 //terminate

 }finally {

 if(ctx !=null) {

 oGridManager.disconnect(ctx); // step 4

 }

 }

 }

}

1. Get the ObjectGridManager singleton object from the

ObjectGridManagerFactory.

2. Call the connect API.

3. Assuming objectGrid employees exist on the remote ObjectGrid, call the

getObjectGrid method, by passing the ClientClusterContext parameter.

4. Call the disconnect method. As a last step, all clients must call disconnect, if the

work is complete. This is a very important step.

Providing multiple hosts to automatically re-try connect, in case of a

ConnectException exception

In this example, HostPortConnectionAttributes attributes are used to provide an

array of host port attributes, that a client can connect to. The API uses this host and

port pair attributes in sequential order to connect. If an attempt to connect fails to

one server, the next pair of host and port attributes is picked to retry the connect.

import com.ibm.websphere.objectgrid.ClientClusterContext;

import com.ibm.websphere.objectgrid.ConnectException;

import com.ibm.websphere.objectgrid.HostPortConnectionAttributes;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

public class C2 {

 /**

 * @param args

 */

 public static void main(String[] args) {

 final ObjectGridManager oGridManager=ObjectGridManagerFactory.

 getObjectGridManager();

 ClientClusterContext ctx = null;

 HostPortConnectionAttributes[] hca = new HostPortConnectionAttributes[3];

Chapter 9. ObjectGrid application programming interface overview 97

hca[0]=new HostPortConnectionAttributes("s1.myco.com","12503");

 hca[1]=new HostPortConnectionAttributes("s2.myco.com","12504");

 hca[2]=new HostPortConnectionAttributes("10.5.1.22","12505");

 try {

 ctx=oGridManager.connect("cluster1",hca,null,null);

 ObjectGrid employees = oGridManager.getObjectGrid(ctx,"employees");

 // Do objectGrid operations such as

 // get

 // update

 // commit.... etc...

 } catch (ConnectException e) {

 e.printStackTrace();

 }finally {

 if(ctx !=null) {

 oGridManager.disconnect(ctx);

 }

 }

 }

}

Client and server in the same process

If client is in the same JVM as the server, the following connect method can be

used.

ctx=oGridManager.connect(null,null);

Specify cluster XML

If the client has access to the Cluster XML file, you do not need to specify the host

name or port number, This API retrieves the server name and port number, and

uses those to connect. Server name is optional and can be null, in which case, the

API tries to connect to one of the servers defined in the cluster XML file.

ctx=oGridManager.connect(urlToClusterxml,"server1",null,null);

// connect to server1

// or

ctx=oGridManager.connect(urlToClusterxml,null,null,null);

//connect to any server in the cluster

Client security with the connect API

In all the examples, the as ClientSecurityConfiguration parameter was null. Passing

the null value implies security is disabled. If security is enabled, pass the

ClientSecurityConfiguration object as an argument. See “ObjectGrid security” on

page 131 for more information.

Override ObjectGrid XML configuration

The client ″downloads″ the ObjectGrid definitions from the server to configure itself.

All plug-ins that are defined in the ObjectGrid are made available to the client.

Essentially, a local ObjectGrid exists on the client side that communicates with

server side ObjectGrid. By providing an overriding XML file on the connect API, you

can ″override″ the plug-in configuration, which are specific for a client use only.

These plug-ins are:

ObjectGrid plug-ins:

v TransactionCallback plug-in

98 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

v ObjectGridEventListener plug-in

BackingMap plug-ins:

v Evictor plug-in

v MapEventListener plug-in

Any other plug-ins that are defined in the override XML are ignored.

Example

Assume that the client needs to override Evictor configuration for a specific

BackingMap. That is, on the client side, the Evictor needs to be different than the

one configured on the server side.

Assume the server side Evictor is used as follows. It uses the built-in LFUEvictor

evictor:

<bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.LFUEvictor">

 <property name="maxSize" type="int" value="100" description="..." />

</bean>

The client side requirements are different. It is required that a user defined,

myco.og.MyEvictor Evictor be used instead. The override XML can include snippet

shown below. All the backingMaps configured to use LFUEvictor, use the user

defined:

<bean id="Evictor" className="myco.og.MyEvictor">

 <property name="name" type="java.lang.String" value="MyEvictor"

 description="..." />

</bean>

Complete XML

The following XML code displays two XML files: one used for server side, and the

second for client. This configuration allows a client to override the Evictor

configuration for the dow BackingMap.

Server side ObjectGrid XML file

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="market">

 <backingMap name="dow" ttlEvictorType="NONE" readOnly="false"

 pluginCollectionRef="default" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="default">

 <bean id="Evictor" className="com.ibm.websphere.objectgrid.plugins.

 builtins.LRUEvictor">

 <property name="maxSize" type="int" value="2"

 description="set max size for LRU Evictor" />

 <property name="numberOfLRUQueues" type="int" value="1"

 description="set number of LRU queues" />

 <property name="sleepTime" type="int" value="2" description="evictor

 thread sleep time" />

Chapter 9. ObjectGrid application programming interface overview 99

</bean>

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

Client side ObjectGrid XML file to override during connect

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="market">

 <backingMap name="dow" pluginCollectionRef="default" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="default">

 <bean id="Evictor" className="myco.og.MyEvictor">

 <property name="name" type="java.lang.String" value="MyEvictor"

 description="" />

 </bean>

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

Application design consideration

The client connect() API is an expensive operation. Depending on the work, a client

establishes one or more physical connections to a single server. The number of

client connections vary between the values specified by the tcpMinConnections and

tcpMaxConnections attributes that are defined within cluster element of the cluster

configuration XML definition. This is the same cluster XML definition that was used

to start the server. The connection manager pools these physical connections, and

ObjectGrid reuses them as necessary. The tcpMinConnections and

tcpMaxConnections attributes specify the number of client connections to a single

server only. If a client connects to more than one server, the maximum number of

client connections is less than or equal to the tcpMaxConnections attribute times

number of servers the client connects to. For example, if the client connects to

three servers and tcpMaxConnections is specified to be five, then the client has a

maximum of (5*3)=15 connections and a minimum of three connections, assuming

setting of tcpMinConnection is 1. Connections are shared among all clients.

The threadsPerClientConnect attribute specifies the number of worker threads.

These worker threads dispatch the work through the physical connections. They

process configuration data, client requests, server responses and system

administration requests. Its default value is 5. This attribute is available in the first

iFix. If the iFix is not available, use the -Dthreads Java virtual machine (JVM)

system property to specify the number of worker threads. Depending on your

application, increasing this number can help with performance. As a rule, this

number should not be less than the number of physical connections that the client

uses.

If your application design permits, a client can create multiple threads to complete

the work within one connect call by reusing the ClientClusterContext method.

ObjectGrid interface

Use this topic to reference the methods that are needed to modify an ObjectGrid.

100 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Introduction

ObjectGrid is an extensible, transactional object caching framework that is based on

the Java Map interface. The ObjectGrid API operations are grouped into a

transactional unit of work and allow extensibility through custom designed plug-in

support. ObjectGrid is a named logical container that contains a number of

BackingMaps. For more information about backing maps, see “BackingMap

interface” on page 105.

Create and initialize

See the ObjectGridManager interface topic for the steps that are required for

creating an ObjectGrid instance. Two distinct methods exist to create an ObjectGrid:

programmatically or with XML configuration files. See “ObjectGridManager interface”

on page 87 for more information.

Get or set and factory methods

Attention: Any set methods must be called before you initialize the ObjectGrid

instance. If you call a set method after the initialize method is called, a

java.lang.IllegalStateException results. Each of the getSession methods of the

ObjectGrid interface also implicitly call the initialize method. Therefore, you must

call the set methods before calling any of the getSession methods. The only

exception this rule is with the setting, adding, and removing of the EventListener

objects. These objects are allowed to be processed after the ″initialize″ processing

has completed.

The ObjectGrid interface contains the following methods:

 Table 7. ObjectGrid interface methods

Method Description

BackingMap defineMap(String name); defineMap: is a factory method to define a

uniquely named BackingMap. For more

information about backing maps, see

“BackingMap interface” on page 105.

BackingMap getMap(String name); getMap: Returns a BackingMap previously

defined by calling defineMap. By using this

method, you can configure the BackingMap,

if it is not already configured through XML

configuration.

BackingMap createMap(String name); createMap: Creates a BackingMap, but does

not cache it for use by this ObjectGrid. Use

this method with the in tandem with the

setMaps(List) method of the ObjectGrid

interface, which caches BackingMaps for use

with this ObjectGrid. Use these methods

when you are configuring an ObjectGrid with

the Spring Framework.

void setMaps(List mapList); setMaps: Clears any BackingMaps that have

been previously defined on this ObjectGrid

and replaces them with the list of

BackingMaps that is provided.

Chapter 9. ObjectGrid application programming interface overview 101

Table 7. ObjectGrid interface methods (continued)

Method Description

public Session getSession() throws

ObjectGridException,

TransactionCallbackException;

getSession: Returns a Session, which

provides begin, commit, rollback functionality

for a Unit of Work. For more information

about Session objects, see “Session

interface” on page 109.

Session getSession(CredentialGenerator cg); getSession(CredentialGenerator cg): Get a

session with a CredentialGenerator object.

This method can only be called by the

ObjectGrid client in a client server

environment.

Session getSession(Subject subject); getSession(Subject subject): Allows the use

of a specific Subject object rather than the

one configured on the ObjectGrid to get a

Session.

void initialize() throws ObjectGridException; initialize: ObjectGrid is initialized and

available for general use. This method is

called implicitly when the getSession method

is called, if the ObjectGrid is not in an

initialized state.

void destroy(); destroy: The framework is disassembled and

cannot be used after this method is called.

102 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Table 7. ObjectGrid interface methods (continued)

Method Description

void setTxTimeout(int timeout); setTxTimeout: Use this method to set the

amount of time, in seconds, that a

transaction that is started by a Session that

this ObjectGrid instance created is allowed

for completion. If a transaction does not

complete within the specified amount of time,

the Session that started the transaction is

marked as being ″timed out″.

Marking a Session as timed out causes the

next ObjectMap method that is invoked by

the timed out Session to result in a

com.ibm.websphere.objectgrid.

TransactionTimeoutException

exception. The Session is marked as rollback

only, which causes the transaction to be

rolled back even if the application calls the

commit method instead of the rollback

method after the

TransactionTimeoutException exception is

caught by the application.

A timeout value of 0 indicates that the

transaction is allowed unlimited amount of

time to complete. The transaction does not

time out if a time out value of 0 is used. If

this method is not called, then any Session

that is returned by the getSession method of

this interface has a transaction timeout value

set to 0 by default. An application can

override the transaction timeout setting on a

per Session basis by using the

setTransactionTimeout method of the

com.ibm.websphere.objectgrid.Session

interface.

int getTxTimeout(); getTxTimeout: Returns the transaction

timeout value in seconds. This method

returns the same value that is passed as the

timeout parameter on the setTxTimeout

method. If the setTxTimeout method was not

called, then the method returns 0 to indicate

that the transaction is allowed an unlimited

amount of time to complete.

//Keywords.

void associateKeyword(Serializable parent,

Serializable child);

associateKeyword: ObjectGrid keyword

provides a flexible invalidation mechanism

based on keywords. For more information

about keywords, see “Keywords” on page

117. This method links the two keywords

together in a directional relationship. If parent

is invalidated, then the child is also

invalidated. Invalidating the child has no

impact on the parent.

//Security

Chapter 9. ObjectGrid application programming interface overview 103

Table 7. ObjectGrid interface methods (continued)

Method Description

void setSecurityEnabled() setSecurityEnabled: Enables security.

Security is disabled by default.

void setPermissionCheckPeriod(long period); setPermissionCheckPeriod: This method

takes a single parameter that indicates how

often to check the permission that is used to

allow a client access. If the parameter is 0,

all methods ask the authorization

mechanism, either JAAS authorization or

custom authorization, to check if the current

subject has permission. This strategy might

cause performance issues depending on the

authorization implementation. However, this

type of authorization is available if it is

required. Alternatively, if the parameter is

less than 0, it indicates the number of

milliseconds to cache a set of permissions

before returning to the authorization

mechanism to refresh them. This parameter

provides much better performance, but if the

backend permissions are changed during this

time the ObjectGrid might allow or prevent

access even though the backend security

provider has been modified.

void setAuthorizationMechanism(int

authMechanism);

setAuthorizationMechanism: Set the

authorization mechanism. The default is

SecurityConstants.JAAS_AUTHORIZATION.

setMapAuthorization(MapAuthorization ma); setMapAuthorization: Sets the

MapAuthorization plug-in for this ObjectGrid

instance. This plug-in can be used to

authorize ObjectMap or JavaMap accesses

to the principals that are contained in the

Subject object. A typical implementation of

this plug-in is to retrieve the principals from

the Subject object, and then check if the

specified permissions are granted to the

principals.

setSubjectSource(SubjectSource ss); setSubjectSource: Sets the SubjectSource

plugin. This plug-in can be used to get a

Subject object that represents the ObjectGrid

client. This subject is used for ObjectGrid

authorization. The SubjectSource.getSubject

method is called by the ObjectGrid runtime

when the ObjectGrid.getSession method is

used to get a session and the security is

enabled. This plug-in is useful for an already

authenticated client: it can retrieve the

authenticated Subject object and then pass

to the ObjectGrid instance. Another

authentication is not necessary.

104 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Table 7. ObjectGrid interface methods (continued)

Method Description

setSubjectValidation(SubjectValidation sv); setSubjectValidation: Sets the

SubjectValidation plugin for this ObjectGrid

instance. This plug-in can be used to validate

that a javax.security.auth.Subject subject that

is passed to the ObjectGrid is a valid subject

that has not been tampered with. An

implementation of this plug-in needs support

from the Subject object creator, because only

the creator knows if the Subject object has

been tampered with. However, a subject

creator might not know if the Subject has

been tampered with. In this case, this plug-in

should not be used.

ObjectGrid interface: plug-ins

ObjectGrid interface has several optional plug-in points for more extensible

interactions.

void addEventListener(ObjectGridEventListener cb);

void setEventListeners(List cbList);

void removeEventListener(ObjectGridEventListener cb);

void setTransactionCallback(TransactionCallback callback);

int reserveSlot(String);

// Security related plug-ins

void setSubjectValidation(SubjectValidation subjectValidation);

void setSubjectSource(SubjectSource source);

void setMapAuthorization(MapAuthorization mapAuthorization);

v ObjectGridEventListener: An ObjectGridEventListener interface is used to receive

notifications when significant events occur on the ObjectGrid. These events

include ObjectGrid initialization, beginning of a transaction, ending a transaction,

and destroying an ObjectGrid. To listen for these events, create a class that

implements the ObjectGridEventListener interface and add it to the ObjectGrid.

These listeners are associated with each Session. See “Listeners” on page 177

and “Session interface” on page 109 for more information.

v TransactionCallback: A TransactionCallback listener interface allows transactional

events such as begin, commit and rollback signals to send to this interface.

Typically, a TransactionCallback listener interface is used with a Loader. For

more information, see “TransactionCallback plug-in” on page 207 and “Loaders”

on page 191. These events can then be used to coordinate transactions with an

external resource or within multiple loaders.

v reserveSlot: Allows plug-ins on this ObjectGrid to reserve slots for use in object

instances that have slots like TxID.

v SubjectValidation. If security is enabled, this plug-in can be used to validate a

javax.security.auth.Subject class that is passed to the ObjectGrid.

v MapAuthorization. If security is enabled, this plug-in can be used to authorize

ObjectMap accesses to the principals that are represented by the Subject object.

v SubjectSource If security is enabled, this plug-in can be used to get a Subject

object that represents the ObjectGrid client. This subject is then used for

ObjectGrid authorization.

BackingMap interface

Each ObjectGrid instance contains a collection of BackingMap objects.

Chapter 9. ObjectGrid application programming interface overview 105

Each BackingMap is named and is added to an ObjectGrid instance by using the

defineMap method or the createMap method of the ObjectGrid interface. These

methods return a BackingMap instance that is then used to define the behavior of

an individual Map. See “ObjectGrid interface” on page 100 for more information.

The Session interface is used to begin a transaction and to obtain the ObjectMap or

JavaMap that is required for performing transactional interaction between an

application and a BackingMap object. However, the transaction changes are not

applied to the BackingMap object until the transaction is committed. A BackingMap

can be considered as an in-memory cache of committed data for an individual Map.

For more information about the Session interface, see Session interface.

The com.ibm.websphere.objectgrid.BackingMap interface provides methods for

setting BackingMap attributes. Some of the set methods allow extensibility of a

BackingMap through several custom designed plug-ins. Following is a list of the set

methods for setting attributes and providing custom designed plug-in support:

 // For setting BackingMap attributes.

public void setReadOnly(boolean readOnlyEnabled);

public void setNullValuesSupported(boolean nullValuesSupported);

public void setLockStrategy(LockStrategy lockStrategy);

public void setCopyMode(CopyMode mode, Class valueInterface);

public void setCopyKey(boolean b);

public void setNumberOfBuckets(int numBuckets);

public void setNumberOfLockBuckets(int numBuckets);

public void setLockTimeout(int seconds);

public void setTimeToLive(int seconds);

public void setTtlEvictorType(TTLType type);

// For setting an optional custom plug-in provided by application.

public abstract void setObjectTransformer(ObjectTransformer t);

public abstract void setOptimisticCallback(OptimisticCallback checker);

public abstract void setLoader(Loader loader);

public abstract void setPreloadMode(boolean async);

public abstract void setEvictor(Evictor e);

public void setMapEventListeners(List /*MapEventListener*/ eventListenerList);

public void addMapEventListener(MapEventListener eventListener);

public void removeMapEventListener(MapEventListener eventListener);

public void addMapIndexPlugin(MapIndexPlugin index);

public void setMapIndexPlugins(List /* MapIndexPlugin */ indexList);

public void createDynamicIndex(String name, boolean isRangeIndex,

String attributeName, DynamicIndexCallback cb);

public void createDynamicIndex(MapIndexPlugin index, DynamicIndexCallback cb);

public void removeDynamicIndex(String name);

A corresponding get method exists for each of the set methods listed.

BackingMap attributes

Each BackingMap has the following attributes that can be set to modify or control

the BackingMap behavior:

v ReadOnly attribute. This attribute indicates if the Map is a read-only Map or a

read and write Map. If this attribute is never set for the Map, then the Map is

defaulted to be a read and write Map. When a BackingMap is set to be read

only, ObjectGrid optimizes performance for read only when possible.

v NullValuesSupported attribute. This attribute indicates if a null value can be put

into the Map. If this attribute is never set, the Map does not support null values. If

null values are supported by the Map, a get operation that returns null can mean

that either the value is null or the map does not contain the key specified by the

get operation.

106 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

v LockStrategy attribute. This attribute determines if a lock manager is used by this

BackingMap. If a lock manager is used, then the LockStrategy attribute is used to

indicate whether an optimistic locking or pessimistic locking approach is used for

locking the map entries. If this attribute is not set, then the optimistic

LockStrategy is used. See the “Locking” on page 123 topic for details on the

supported lock strategies.

v CopyMode attribute. This attribute determines if a copy of a value object is made

by the BackingMap when a value is read from the map or is put into the

BackingMap during the commit cycle of a transaction. Various copy modes are

supported to allow the application to make the trade-off between performance

and data integrity. If this attribute is not set, then the COPY_ON_READ_AND_COMMIT

copy mode is used. This copy mode does not have the best performance, but it

has the greatest protection against data integrity problems. For more information

about the copy modes, see copyMode method best practices.

v CopyKey attribute. This attribute determines if the BackingMap makes a copy of

a key object when an entry is first created in the map. The default action is to not

make a copy of key objects because keys are normally unchangeable objects.

v NumberOfBuckets attribute. This attribute indicates the number of hash buckets

to be used by the BackingMap. The BackingMap implementation uses a hash

map for its implementation. If a lot of entries exist in the BackingMap, then more

buckets means better performance. The number of keys that have the same

bucket becomes lower as the number of buckets grows. More buckets also mean

more concurrency. This attribute is useful for fine tuning performance. A default

value of 503 is used if the application does not set the NumberOfBuckets

attribute.

v NumberOfLockBuckets attibute. This attribute indicates the number of lock

buckets that are be used by the lock manager for this BackingMap. When the

LockStrategy is set to OPTIMISTIC or PESSIMISTIC, a lock manager is created

for the BackingMap. The lock manager uses a hash map to keep track of entries

that are locked by one or more transactions. If a lot of entries exist in the hash

map, more lock buckets lead to better performance because the number of keys

that collide on the same bucket is lower as the number of buckets grows. More

lock buckets also means more concurrency. When the LockStrategy attribute is

set to NONE, no lock manager is used by this BackingMap. In this case, setting

numberOfLockBuckets has no effect. If this attribute is not set, a default value of

383 is used .

v LockTimeout attribute. This attribute is used when the BackingMap is using a

lock manager. The BackingMap uses a lock manager when the the LockStrategy

attribute is set to either OPTIMISTIC or PESSIMISTIC. The attribute value is in

seconds and determines how long the lock manager waits for a lock to be

granted. If this attribute is not set, then 15 seconds is used a the LockTimeout

value. See Pessimistic locking for details regarding the lock wait timeout

exceptions that can occur.

v TtlEvictorType attribute. Every BackingMap has its own built in time to live evictor

that uses a time-based algorithm to determine which map entries to evict. By

default, the built in time to live evictor is not active. You can activate the time to

live evictor by calling the setTtlEvictorType method with one of three values:

CREATION_TIME, LAST_ACCESS_TIME, or NONE. A value of CREATION_TIME indicates

that the evictor adds the TimeToLive attribute to the time that the map entry was

created in the BackingMap to determine when the evictor should evict the map

entry from the BackingMap. A value of LAST_ACCESS_TIME indicates that the

evictor adds the TimeToLive attribute to the time that the map entry was last

accessed by some transaction that the application is running to determine when

evictor should evict the map entry. The map entry is evicted only if a map entry is

Chapter 9. ObjectGrid application programming interface overview 107

never accessed by any transaction for a period of time that is specified by the

TimeToLive attribute. A value of NONE indicates the evictor should remain

inactive and never evict any of the map entries. If this attribute is never set, then

NONE is used as the default and the time to live evictor is not active. See

Evictors for details regarding the built-in time to live evictor.

v TimeToLive attribute. This attribute is used to specify the number of seconds that

the built in time to live evictor needs to add to the creation or last access time for

each entry as described for the TtlEvictorType attribute. If this attribute is never

set, then the special value of zero is used to indicate the time to live is infinity. If

this attribute is set to infinity, map entries are never evicted by the evictor.

The following example illustrates defining The someMap BackingMap in the

someGrid ObjectGrid instance and setting various attributes of the BackingMap by

using the set methods of the BackingMap interface:

import com.ibm.websphere.objectgrid.BackingMap;

import com.ibm.websphere.objectgrid.LockStrategy;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

...

ObjectGrid og =

 ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("someGrid");

BackingMap bm = objectGrid.getMap("someMap");

bm.setReadOnly(true); // override default of read/write

bm.setNullValuesSupported(false); // override default of allowing Null values

bm.setLockStrategy(LockStrategy.PESSIMISTIC); // override default of OPTIMISTIC

bm.setLockTimeout(60); // override default of 15 seconds.

bm.setNumberOfBuckets(251); // override default (prime numbers work best)

bm.setNumberOfLockBuckets(251); // override default (prime numbers work best)

...

BackingMap plug-ins

The BackingMap interface has several optional plug points for more extensible

interactions with the ObjectGrid:

v ObjectTransformer plug-in: For some map operations, a BackingMap might

need to serialize, deserialize, or copy a key or value of an entry in the

BackingMap. The BackingMap can perform these actions by providing a default

implementation of the ObjectTransformer interface. An application can improve

performance by providing a custom designed ObjectTransformer plug-in that is

used by the BackingMap to serialize, deserialize, or copy a key or value of an

entry in the BackingMap. See “ObjectTransformer plug-in” on page 202 for more

information.

v Evictor plug-in: The built in time to live evictor uses a time-based algorithm to

decide when an entry in BackingMap must be evicted. Some applications might

need to use a different algorithm for deciding when an entry in a BackingMap

needs to be evicted. The Evictor plug-in makes a custom designed Evictor

available to the BackingMap to use. The Evictor plug-in is in addition to the built

in time to live evictor. It does not replace the time to live evictor. ObjectGrid

provides a custom Evictor plug-in that implements well-known algorithms such as

″least recently used″ or ″least frequently used″. Applications can either plug-in

one of the provided Evictor plug-ins or it can provide its own Evictor plug-in. See

“Evictors” on page 182 for more information.

v MapEventListener plug-in: An application might want to know about

BackingMap events such as a map entry eviction or a preload of a BackingMap

completion. A BackingMap calls methods on the MapEventListener plug-in to

108 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

notify an application of BackingMap events. An application can receive

notification of various BackingMap events by using the setMapEventListener

method to provide one or more custom designed MapEventListener plug-ins to

the BackingMap. The application can modify the listed MapEventListener objects

by using the addMapEventListener method or the removeMapEventListener

method. See “MapEventListener interface” on page 180 for more information.

v Loader plug-in: A BackingMap is an in-memory cache of a Map. A Loader

plug-in is an option that is used by the BackingMap to move data between

memory and is used for a persistent store for the BackingMap. For example, a

Java database connectivity (JDBC) Loader can be used to move data in and out

of a BackingMap and one or more relational tables of a relational database. A

relational database does not need to be used as the persistent store for a

BackingMap. The Loader can also be used to moved data between a

BackingMap and a file, between a BackingMap and a Hibernate map, between a

BackingMap and a Java 2 Platform, Enterprise Edition (J2EE) entity bean,

between a BackingMap and another application server, and so on. The

application must provide a custom-designed Loader plug-in to move data

between the BackingMap and the persistent store for every technology that is

used. If a Loader is not provided, the BackingMap becomes a simple in-memory

cache. See “Loaders” on page 191 for more information about this plug-in.

v OptimisticCallback plug-in: When the LockStrategy attribute for a BackingMap

is set to OPTIMISTIC, either the BackingMap or a Loader plug-in must perform

comparison operations for the values of the map. The OptimisticCallback plug-in

is used by the BackingMap and the Loader to perform the optimistic versioning

comparison operations. See “OptimisticCallback interface” on page 213 for more

information.

v MapIndexPlugin plug-in: A MapIndexPlugin plug-in, or an Index in short, is an

option that is used by the BackingMap to build an index that is based on the

specified attribute of the stored object. The index allows the application to find

objects by a specific value or a range of values. There are two types of index:

static and dynamic. Refer to “Indexing” on page 226 for detailed information.

Session interface

This section describes how applications begin and end transactions using the

Session interface. The Session interface also provides access to the application

based ObjectMap and JavaMap interfaces.

Introduction

Each ObjectMap or JavaMap instance is directly tied to a specific Session object.

Each thread that wants access to an ObjectGrid must first obtain a Session from

the ObjectGrid object. A Session instance cannot be shared concurrently between

threads. ObjectGrid does not use any thread local storage, but platform restrictions

might limit the opportunity to pass a Session from one thread to another.

Methods

The following methods are available with the Session interface. See the API

documentation for more information about the following methods:

public interface Session {

 ObjectMap getMap(String cacheName)

 throws UndefinedMapException;

 void begin()

 throws TransactionAlreadyActiveException, TransactionException;

Chapter 9. ObjectGrid application programming interface overview 109

void beginNoWriteThrough()

 throws TransactionAlreadyActiveException, TransactionException;

 public void commit()

 throws NoActiveTransactionException, TransactionException;

 public void rollback()

 throws NoActiveTransactionException, TransactionException;

 public void flush()

 throws TransactionException; ObjectGrid getObjectGrid();

 TxID getTxID()

 throws NoActiveTransactionException;

 boolean isWriteThroughEnabled();

 void setTransactionType(String tranType);

 public void processLogSequence(LogSequence logSequence)

 throws NoActiveTransactionException, UndefinedMapException, ObjectGridException;

public ObjectGrid getObjectGrid();

public void setTransactionTimeout(int timeout);

public int getTransactionTimeout();

public boolean transactionTimedOut();

public boolean isCommitting();

public boolean isFlushing();

public void markRollbackOnly(Throwable t) throws NoActiveTransactionException;

public boolean isMarkedRollbackOnly();

}

Get method

An application obtains a Session instance from an ObjectGrid object using the

ObjectGrid.getSession method. The following code snippet demonstrates how to

obtain a Session instance:

ObjectGrid objectGrid = ...;

Session sess = objectGrid.getSession();

After a Session is obtained, the thread keeps a reference to the session for its own

use. Calling the getSession method multiple times returns a new Session object

each time.

Transactions and sessions methods

A Session can be used to begin, commit, or rollback transactions. Operations

against BackingMaps using ObjectMaps and JavaMaps are most efficiently

performed within a Session transaction. After a transaction has started, any

changes to one or more BackingMaps in that transaction scope are stored in a

special transaction cache until the transaction is committed. When a transaction is

committed, the pending changes are applied to the BackingMaps and Loaders and

become visible to any other clients of that ObjectGrid.

ObjectGrid also supports the ability to automatically commit transactions, also

known as auto-commit. If any ObjectMap operations are performed outside of the

110 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

context of an active transaction, an implicit transaction is started before the

operation and the transaction is automatically committed before returning control to

the application.

Session session = objectGrid.getSession();

ObjectMap objectMap = session.getMap("someMap");

session.begin();

objectMap.insert("key1", "value1");

objectMap.insert("key2", "value2");

session.commit();

objectMap.insert("key3", "value3"); // auto−commit

Session.flush method

The Session.flush method only makes sense when a Loader is associated with a

BackingMap. The flush method invokes the Loader with the current set of changes

in the transaction cache. The Loader applies the changes to the backend. These

changes are not committed when the flush is invoked. If a Session transaction is

committed after a flush invocation, only updates that happen after the flush

invocation are applied to the Loader. If a Session transaction is rolled back after a

flush invocation, the flushed changes are discarded with all other pending changes

in the transaction. Use the Flush method sparingly because it limits the opportunity

for batch operations against a Loader. Following is an example of the usage of the

Session.flush method:

Session session = objectGrid.getSession();

session.begin();

// make some changes

...

session.flush(); // push these changes to the Loader, but don’t commit yet

// make some more changes

...

session.commit();

No write through method

Some ObjectGrid maps are backed by a Loader, which provides persistent storage

for the data in the map. Sometimes it is useful to commit data just to the ObjectGrid

map and not push data out to the Loader. The Session interface provides the

beginNoWriteThough method for this purpose. The beginNoWriteThrough method

starts a transaction like the begin method. With the beginNoWriteThrough method,

when the transaction is committed, the data is only committed to the ObjectGrid

in-memory map and is not committed to the persistent storage that is provided by

the Loader. This method is very useful when performing data preload on the map.

When using a distributed ObjectGrid instance, the beginNoWriteThrough method is

useful for making changes to the near cache only, without modifying the far cache

on the server. If the data is known to be stale in the near cache, using the

beginNoWriteThrough method can allow entries to be invalidated on the near cache

without invalidating them on the server as well.

The Session interface also provides the isWriteThroughEnabled method to

determine what type of transaction is currently active.

Session session = objectGrid.getSession();

session.beginNoWriteThrough();

// make some changes ...

session.commit(); // these changes will not get pushed to the Loader

Chapter 9. ObjectGrid application programming interface overview 111

Obtain the TxID object method

The TxID object is an opaque object that identifies the active transaction. Use the

TxID object for the following purposes:

v For comparison when you are looking for a particular transaction.

v To store shared data between the TransactionCallback and Loader objects.

See “TransactionCallback plug-in” on page 207 and “Loaders” on page 191 for

additional information about the Object slot feature.

Set the transaction type for performance monitoring method

If you are using ObjectGrid within a WebSphere Application Server application

server, it might be necessary to reset the transaction type for performance

monitoring. You can set the transaction type with the setTransactionType method.

See “Monitoring ObjectGrid performance with WebSphere Application Server

performance monitoring infrastructure (PMI)” on page 283 for more information

about the setTransactionType method.

Process a complete LogSequence method

ObjectGrid can propagate sets of map changes to other ObjectGrid listeners as a

means of distributing maps from one Java Virtual Machine (JVM) to another. To

make it easier for the listener to process the received LogSequences, the Session

interface provides the processLogSequence method. This method examines each

LogElement within the LogSequence and performs the appropriate operation, for

example, insert, update, invalidate, and so on, against the BackingMap that is

identified by the LogSequence MapName. An ObjectGrid Session must be active

before the processLogSequence method is invoked. The application is also

responsible for issuing the appropriate commit or rollback calls to complete the

Session. Autocommit processing is not available for this method invocation.

Normal processing by the receiving ObjectGridEventListener at the remote JVM

would be to start a Session using the beginNoWriteThrough method, which

prevents endless propagation of changes, followed by a call to this

processLogSequence method, and then committing or rolling back the transaction.

// Use the Session object that was passed in during

//ObjectGridEventListener.initialization...

session.beginNoWriteThrough();

// process the received LogSequence

try {

 session.processLogSequence(receivedLogSequence);

} catch (Exception e) {

 session.rollback(); throw e;

}

// commit the changes

session.commit();

markRollbackOnly method

This method is used to mark the current transaction as ″rollback only″. Marking a

transaction ″rollback only″ ensures that even if the commit method is called by

application, the transaction is rolled back. This method is typically used by

ObjectGrid itself or by the application when it knows that data corruption could

occur if the transaction was allowed to be committed.

112 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

After this method is called, the Throwable object that is passed to this method is

chained to the com.ibm.websphere.objectgrid.TransactionException exception

that results by the commit method if it is called on a Session that was previously

marked a ″rollback only″. Any subsequent calls to this method for a transaction that

is already marked as ″rollback only″ is ignored. That is, only the first call that

passes a non-null Throwable reference is used. Once the marked transaction is

completed, the ″rollback only″ mark is removed so that the next transaction that is

started by the Session can be committed.

isMarkedRollbackOnly method

Returns if Session is currently marked as ″rollback only″. Boolean true is returned

by this method if and only if markRollbackOnly method was previously called on this

Session and the transaction started by the Session is still active.

setTransactionTimeout method

Set transaction timeout for next transaction started by this Session to a specified

number of seconds. This method does not affect the transaction timeout of any

transactions previously started by this Session. It only affects transactions that are

started after this method is called. If this method is never called, then the timeout

value that was passed to the setTxTimeout method of the

com.ibm.websphere.objectgrid.ObjectGrid method is used.

getTransactionTimeout method

This method returns the transaction timeout value in seconds. The last value that

was passed as the timeout value to the setTransactionTimeout method is returned

by this method. If the setTransactionTimeout method is never called, then the

timeout value that was passed to the setTxTimeout method of the

com.ibm.websphere.objectgrid.ObjectGrid method is used.

transactionTimedOut

This method returns boolean true if the current transaction that was started by this

Session has timed out.

isFlushing method

This method returns boolean true if and only if all transaction changes are being

flushed out to the Loader plugin as a result of the flush method of Session interface

being invoked. A Loader plugin may find this method useful when it needs to know

why its batchUpdate method was invoked.

isCommitting method

This method returns boolean true if and only if all transaction changes are being

committed as a result of the commit method of Session interface being invoked. A

Loader plug-in might find this method useful when it needs to know why its

batchUpdate method was invoked.

ObjectMap and JavaMap interfaces

This topic describes how applications interact with ObjectGrid using the ObjectMap

and JavaMap interfaces. These two interfaces are used for transactional interaction

between applications and BackingMaps.

Chapter 9. ObjectGrid application programming interface overview 113

ObjectMap interface

An ObjectMap instance is obtained from a Session object that corresponds to the

current thread. The ObjectMap interface is the main vehicle that applications use to

make changes to entries in a BackingMap.

Obtain an ObjectMap instance

An application gets an ObjectMap instance from a Session object using the

Session.getMap(String) method. The following code snippet demonstrates how to

obtain an ObjectMap instance:

ObjectGrid objectGrid = ...;

BackingMap backingMap = objectGrid.defineMap("mapA");

Session sess = objectGrid.getSession();

ObjectMap objectMap = sess.getMap("mapA");

Each ObjectMap instance corresponds to a particular Session object. Calling the

getMap method multiple times on a particular Session object with the same

BackingMap name always returns the same ObjectMap instance.

Autocommit Transactions

As previously stated, operations against BackingMaps that use ObjectMaps and

JavaMaps are most efficiently performed within a Session transaction. ObjectGrid

provides autocommit support when methods on the ObjectMap and JavaMap

interfaces are called outside of a Session transaction. The methods start an implicit

transaction, perform the requested operation, and commit the implicit transaction.

Method Semantics

Following is an explanation of the semantics behind each method on the ObjectMap

and JavaMap interfaces. The setDefaultKeyword method, the

invalidateUsingKeyword method, and the methods that have a Serializable

argument are discussed in the “Keywords” on page 117 topic. The setTimeToLive

method is discussed in the “Evictors” on page 182 topic. See the API

documentation for more information on these methods.

containsKey method

Determines if a key has a value in the BackingMap or Loader. If null values

are supported by an application, this method can be used to determine if a

null reference that is returned from a get operation refers to a null value or

indicates that the BackingMap and Loader do not contain the key.

flush method

The semantics of this method are similar to the flush method on the

Session interface. The notable difference is that the Session flush applies

the current pending changes for all of the maps that have been modified in

the current session. With this method, only the changes in this ObjectMap

are flushed to the loader.

get method

Fetches the entry from the BackingMap. If the entry is not found in the

BackingMap but a Loader is associated with the BackingMap, it attempts to

fetch the entry from the Loader. The getAll method is provided to allow

batch fetch processing.

getForUpdate method

The getforUpdate method is the same as the get method, but using the

114 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

getForUpdate method tells the BackingMap and Loader that the intention is

to update the entry. A Loader can use this hint to issue a SELECT for

UPDATE query to a database backend. If a Pessimistic LockingStrategy is

defined for the BackingMap, the lock manager locks the entry. The

getAllForUpdate method is provided to allow batch fetch processing.

insert method

Inserts an entry into the BackingMap and the Loader. Using this method

tells the BackingMap and Loader that you want to insert a previously

nonexistent entry. When you invoke this method on an existing entry, an

exception occurs when the method is invoked or when the current

transaction is committed.

invalidate method

The semantics of the invalidate method depend on the value of the

isGlobal parameter that is passed to the method. The invalidateAll method

is provided to allow batch invalidate processing.

 Local invalidation is specified when the value false is passed as the

isGlobal parameter of the invalidate method. Local invalidation discards

any changes to the entry in the transaction cache. If the application issues

a get method, the entry is fetched from the last committed value in the

BackingMap. If no entry is present in the BackingMap, the entry is fetched

from the last flushed or committed value in the Loader. When a transaction

is committed, any entries that are marked as being locally invalidated have

no impact on the BackingMap. Any changes that were flushed to the Loader

are still committed even if the entry was invalidated.

 Global invalidation is specified when true is passed as the isGlobal

parameter of the invalidate method. Global invalidation discards any

pending changes to the entry in the transaction cache and bypasses the

BackingMap value on subsequent operations that are performed on the

entry. When a transaction is committed, any entries that are marked as

globally invalidated are evicted from the BackingMap.

 Consider the following use case for invalidation as an example: The

BackingMap is backed by a database table that has an auto increment

column. Increment columns are useful for assigning unique numbers to

records. The application inserts an entry. After the insert, the application

needs to know the sequence number for the inserted row. It knows that its

copy of the object is old, so it uses global invalidation to get the value from

the Loader. The following code demonstrates this use case:

Session sess = objectGrid.getSession();

ObjectMap map = sess.getMap("mymap");

sess.begin();

map.insert("Billy", new Person("Joe", "Bloggs", "Manhattan"));

sess.flush();

map.invalidate("Billy", true);

Person p = map.get("Billy");

System.out.println("Version column is: " + p.getVersion());

map.commit();

This code sample adds an entry for Billy. The version attribute of Person is

set using an auto-increment column in the database. The application does

an insert command first. It then issues a flush, which causes the insert to

be sent to the Loader and database. The database sets the version column

to the next number in the sequence, which makes the Person object in the

transaction outdated. To update the object, the application performs a global

invalidate. The next get method that is issued gets the entry from the

Chapter 9. ObjectGrid application programming interface overview 115

Loader ignoring the transaction’s value. The entry is fetched from the

database with the updated version value.

put method

The semantics of the put method are dependent on whether a previous get

method was invoked in the transaction for the key. If the application issues

a get operation that returns an existent entry in the BackingMap or Loader,

the put method invocation is interpreted as an update and returns the

previous value in the transaction. A put method invocation without a

previous get method invocation or a previous get method invocation that did

not find an entry is interpreted as an insert. The semantics of the insert and

update methods apply when the put operation is committed. The putAll

method is provided to enable batch insert and update processing.

remove method

Removes the entry from the BackingMap and the Loader, if one is plugged

in. The value of the object that was removed is returned by this mehtod. If

the object does not exist, this method returns a null value. The removeAll

method is provided to enable batch deletion processing without the return

values.

setCopyMode method

Specifies a CopyMode for this ObjectMap. With this method, an application

can override the CopyMode that is specified on the BackingMap. The

specified CopyMode is in effect until clearCopyMode method is invoked.

Both methods are invoked outside of transactional bounds. A CopyMode

cannot be changed in the middle of a transaction.

touch method

Updates the last access time for an entry. This method does not retrieve the

value from the BackingMap. Use this method in its own transaction. If the

provided key does not exist in the BackingMap due to invalidation or

removal, an exception occurs during commit processing.

update method

Explicitly updates an entry in the BackingMap and the Loader. Using this

method indicates to the BackingMap and Loader that you want to update an

existing entry. An exception occurs if you invoke this method on an entry

that does not exist when the method is invoked or during commit

processing.

getIndex method

Attempts to obtain a named index that is built on the BackingMap. The

index cannot be shared between threads and works on the same rules as a

Session. The returned index object should be cast to the right application

index interface such as the MapIndex interface, the MapRangeIndex

interface, or a custom index interface.

JavaMap interface

A JavaMap instance is obtained from an ObjectMap object. The JavaMap interface

has the same method signatures as ObjectMap, but with different exception

handling. JavaMap extends the java.util.Map interface, so all exceptions are

instances of the java.lang.RuntimeException class. Because JavaMap extends the

java.util.Map interface, it is easy to quickly use ObjectGrid with an existing

application that uses a java.util.Map interface for object caching.

Obtain a JavaMap instance

116 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

An application gets a JavaMap instance from an ObjectMap object using the

ObjectMap.getJavaMap method. The following code snippet demonstrates how to

obtain a JavaMap instance.

ObjectGrid objectGrid = ...;

BackingMap backingMap = objectGrid.defineMap("mapA");

Session sess = objectGrid.getSession();

ObjectMap objectMap = sess.getMap("mapA");

java.util.Map map = objectMap.getJavaMap();

JavaMap javaMap = (JavaMap) javaMap;

A JavaMap is backed by the ObjectMap from which it was obtained. Calling

getJavaMap multiple times using a particular ObjectMap always returns the same

JavaMap instance.

Supported methods

The JavaMap interface only supports a subset of the methods on the java.util.Map

interface. The the java.util.Map interface supports the following methods:

v containsKey(java.lang.Object)

v get(java.lang.Object)

v put(java.lang.Object, java.lang.Object)

v putAll(java.util.Map)

v remove(java.lang.Object)

All other methods inherited from the java.util.Map interface result in the

java.lang.UnsupportedOperationException exception.

Keywords

ObjectGrid provides a flexible invalidation mechanism based around keywords. A

keyword is a non-null instance of any serializable object. You can associate

keywords with BackingMap entries in any way you choose.

Associate keywords with entries

A set of entries can be associated with zero or more keywords. The methods on

ObjectMap and JavaMap that manipulate entries, including the get, update, put,

insert, and touch methods, all have versions that allow a single keyword to be

associated with all of the entries that the method alters. New keyword associations

are only visible in the current transaction until the transaction is committed. After a

commit, the new association is applied to the BackingMap and is visible to other

transactions. If an error occurs during commit processing resulting in a rollback or if

a user rolls back an active transaction, the new keyword associations are rolled

back. The following code demonstrates how a new entry is associated with a

keyword:

Session sess = objectGrid.getSession();

ObjectMap map = sess.getMap("MapA");

sess.begin();

map.insert("Billy", new Person("Joe", "Bloggs", "Manhattan"), "New York");

sess.commit();

The previous example code inserts a new entry into the BackingMap and

associates it with the keyword ″New York″. An application that inserts entries must

also associate keywords when the entries are retrieved. The application must

associate keywords with entries every time it gets them. Consider the following

code sample:

Chapter 9. ObjectGrid application programming interface overview 117

sess.begin();

Person p = (Person)map.get("Billy", "New York");

sess.commit();

The previous example code ensures that the retrieved entry is associated with the

″New York″ keyword. An application can associate multiple keywords with an entry,

but only one keyword per method invocation. To associate more keywords issue

another method invocation, like the following sample:

sess.begin();

Person p = (Person)map.get("Billy", "New York");

map.touch("Billy", "Another keyword");

map.get("Billy", "Yet another keyword");

sess.commit();

Default keywords

The setDefaultKeyword method on the ObjectMap and JavaMap interfaces provides

a way to associate entries with a particular keyword without using the keyword

version of the get, insert, put, update, or touch methods. If the keyword version

of a method is used, the default keyword is ignored, and the supplied keyword

object is used.

sess.begin();

map.setDefaultKeyword("New York");

Person p = (Person)map.get("Billy");

p = (Person)map.get("Bob", "Los Angeles");

map.setDefaultKeyword(null);

p = (Person)map.get("Jimmy");

sess.commit();

In the preceding example Billy is associated with the default keyword, ″New York″.

Bob is not associated with the default keyword because an explicit keyword was

passed to the get invocation to retrieve the Bob entry. No keywords are associated

with ″Jimmy″ because the default keyword was reset and no explicit keyword

argument was passed to the get method invocation.

Invalidate entries with keywords

Using the invalidateUsingKeyword method on the ObjectMap and JavaMap

interfaces invalidates all entries that are associated with a keyword in the

corresponding BackingMap. With this approach you can efficiently invalidate related

entries in a single operation.

sess.begin();

map.insert("Billy", new Person("Joe", "Bloggs", "Manhattan"), "New York");

map.invalidateUsingKeyword("New York", false);

map.insert("Bob", new Person("Paul", "Henry", "Albany"), "New York");

sess.commit();

In the preceding example, the entry for ″Billy″ is invalidated and is not inserted into

the BackingMap. The entry for ″Bob″ is not invalidated because it was inserted after

the invalidateUsingKeyword method invocation. The invalidateUsingKeyword

method invalidates entries based on the keyword associations when the method is

invoked.

Keyword grouping

Keywords can also be grouped together in a parent-child relationship. A parent

keyword can have multiple children, and a child keyword can have multiple parents.

118 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

For example, if an application uses the keywords ″Dublin″, ″Paris″, ″New York″, and

″Los Angeles″, it can add the following keyword groupings:

v ″USA″ groups ″New York″ and ″Los Angeles″

v ″Europe″ groups ″Dublin″ and ″Paris″

v ″World″ groups ″USA″ and ″Europe″

Invalidating the keyword ″USA″ invalidates all entries that are associated with the

″New York″ and ″Los Angeles″ keywords. Invalidating the ″World″ keyword

invalidates all entries that are associated with the ″USA″ and ″Europe″ groupings.

Keyword associations are defined using the associateKeyword method on the

ObjectGrid interface. Adding child keywords to a parent keyword after an

invalidateUsingKeyword method invocation does not cause the entries associated

with the child keyword to be invalidated. The following example code defines the set

of keyword associations that are described:

ObjectGrid objectGrid = ...;

objectGrid.associateKeyword("USA", "New York");

objectGrid.associateKeyword("USA", "Los Angeles");

objectGrid.associateKeyword("Europe", "Dublin");

objectGrid.associateKeyword("Europe", "Paris");

objectGrid.associateKeyword("World", "USA");

objectGrid.associateKeyword("World", "Europe");

LogElement and LogSequence objects

When an application is making changes to a Map during a transaction, a

LogSequence object tracks those changes. If the application changes an entry in

the map, a corresponding LogElement exists to provide the details of the change.

Loaders are given a LogSequence object for a particular map whenever an

application calls for a flush or commit to the transaction. The Loader iterates over

the LogElements within the LogSequence and applies each LogElement to the

backend.

ObjectGridEventListeners registered with an ObjectGrid also make use of

LogSequence objects. These listeners are given a LogSequence object for each

map in a committed transaction. Applications can use these listeners to wait for

certain entries to change, like a trigger in a conventional database.

This topic describes four log-related interfaces or classes that are provided by the

ObjectGrid framework:

v com.ibm.websphere.objectgrid.plugins.LogElement

v com.ibm.websphere.objectgrid.plugins.LogSequence

v com.ibm.websphere.objectgrid.plugins.LogSequenceFilter

v com.ibm.websphere.objectgrid.plugins.LogSequenceTransformer

LogElement interface

A LogElement represents an operation on an entry during a transaction. A

LogElement object has the following attributes. The most commonly used attributes

the type and the current value attributes:

type attribute

A log element type indicates the kind of operation that this log element

represents. The type can be one of the following constants that are defined

in the LogElement interface: INSERT, UPDATE, DELETE, EVICT, FETCH, or

TOUCH.

Chapter 9. ObjectGrid application programming interface overview 119

undo type attribute

Returns what operation must be performed to ″undo″ a prior change that

the transaction made to the map entry.

current value attribute

The current value represents the new value for the operation INSERT,

UPDATE or FETCH. If the operation is TOUCH, DELETE, or EVICT, the current

value is null. This value can be cast to ValueProxyInfo when a

ValueInterface is in use.

CacheEntry attribute

You can get a reference to the CacheEntry object from the LogElement and

use the methods defined on the CacheEntry object to retrieve needed

information.

pending state attribute

If the pending state is true, the change represented by this log element

has not been applied to the loader yet. If it is false, the change has been

applied to the loader, most likely by the flush operation.

versioned value attribute

Versioned value is a value that can be used for versioning.

new keywords attribute

The new keyword collection contains any new keywords that have been

associated with this entry.

last access time attribute

Represents the last access time for the entry.

before image / after image attributes

Getter methods are available to get the image of the value object before or

after the changes were applied to the map.

LogSequence interface

In most transactions, operations to more than one entry in a map occur, so multiple

LogElement objects are created. It makes sense to have an object that acts as a

composite of multiple LogElement objects. The LogSequence interface serves this

purpose by containing a list of LogElement objects. The LogSequence interface has

the following methods:

size method

Returns the number of LogElement objects in the specified sequence.

getAllChanges method

Returns an iterator of all the changes in the specified log sequence.

getPendingChanges method

Returns an iterator of all the pending changes. This is most likely to be

used by a loader to only apply pending changes to the persistent store.

getChangesByKeys method

Returns an iterator of the LogElement objects that have the target key,

based on the input parameter.

getChangesByTypes method

Returns an iterator of the LogElement objects that are of the specified

LogElement type.

120 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

getMapName method

Returns the name of the backing map to which the changes apply. The

caller can use this name as input to the Session.getMap(string) method.

isDirty method

Returns whether this LogSequence has any LogElements that would dirty a

Map. That is, if the LogSequence contains any LogElement objects that are

of any type other than Fetch or Get, then the LogSequence is considered

″dirty″.

isRollback method

Returns if this LogSequence was generated to roll back a transaction.

getObjectGridName method

Returns the name of the ObjectGrid that houses the map for which these

changes apply.

LogElement and LogSequence are widely used in ObjectGrid and by ObjectGrid

plug-ins that are written by users when operations are propagated from one

component or server to another component or server. For example, a LogSequence

object can be used by the distributed ObjectGrid transaction propagation function to

propagate the changes to other servers, or it can be applied to the persistence

store by the loader. LogSequence is mainly used by the following interfaces.

v com.ibm.websphere.objectgrid.plugins.ObjectGridEventListener

v com.ibm.websphere.objectgrid.plugins.Loader

v com.ibm.websphere.objectgrid.plugins.Evictor

v com.ibm.websphere.objectgrid.Session

For more details about these interfaces, please refer to the API documentation.

Loader example

This section demonstrates how the LogSequence and LogElement objects are used

in a Loader. A Loader is used to load data from and persist data into a persistent

store. The batchUpdate method of the Loader interface uses LogSequence:

void batchUpdate(TxID txid, LogSequence sequence)

throws LoaderException, OptimisticCollisionException;

The batchUpdate method is called whenever an ObjectGrid needs to apply all

current changes to the Loader. The Loader is given a list of LogElement objects for

the map, encapsulated in a LogSequence object. The implementation of the

batchUpdate method must iterate over the changes and apply them to the backend.

The following code snippet shows how a Loader uses a LogSequence object. The

snippet iterates over the set of changes and builds up three batch Java database

connectivity (JDBC) statements: one that has inserts, one that has updates and, a

third statement that has deletes:

public void batchUpdate(TxID tx, LogSequence sequence)

throws LoaderException

{

 // Get a SQL connection to use.

 Connection conn = getConnection(tx);

 try

 {

 // Process the list of changes and build a set of prepared

 // statements for executing a batch update, insert, or delete

 // SQL operations. The statements are cached in stmtCache.

 Iterator iter = sequence.getPendingChanges();

 while (iter.hasNext())

Chapter 9. ObjectGrid application programming interface overview 121

{

 LogElement logElement = (LogElement)iter.next();

 Object key = logElement.getCacheEntry().getKey();

 Object value = logElement.getCurrentValue();

 switch (logElement.getType().getCode())

 {

 case LogElement.CODE_INSERT:

 buildBatchSQLInsert(key, value, conn);

 break;

 case LogElement.CODE_UPDATE:

 buildBatchSQLUpdate(key, value, conn);

 break;

 case LogElement.CODE_DELETE:

 buildBatchSQLDelete(key, conn);

 break;

 }

 }

 // Run the batch statements that were built by above loop.

 Collection statements = getPreparedStatementCollection(tx, conn);

 iter = statements.iterator();

 while (iter.hasNext())

 {

 PreparedStatement pstmt = (PreparedStatement) iter.next();

 pstmt.executeBatch();

 }

}

catch (SQLException e)

{

 LoaderException ex = new LoaderException(e);

 throw ex;

}

}

The previous sample illustrates the high level logic of processing the LogSequence

argument and the details of how an SQL insert, update, or delete statement is

built are not illustrated. This example illustrates that the getPendingChanges method

is called on LogSequence argument to obtain an iterator of LogElement objects that

a Loader needs to process, and the LogElement.getType().getCode() method is

used to determine whether a LogElement is for a SQL insert, update, or delete

operation.

Evictor sample

This example explores how LogSequence and LogElement are used in an Evictor.

An Evictor is used to evict the map entries from the backing map based on certain

criteria. The apply method of the Evictor interface uses LogSequence:

/**

* This is called during cache commit to allow the evictor to track object usage

* in a backing map. This will also report any entries that have been successfully

* evicted.

*

* @param sequence LogSequence of changes to the map

*/

void apply(LogSequence sequence);

For information on how the apply method uses LogSequence, refer to the code

sample in the “Evictors” on page 182 topic.

LogSequenceFilter and LogSequenceTransformer interfaces

Sometimes, it is necessary to filter the LogElement objects so that only LogElement

objects with certain criteria are accepted, and reject other objects. For example, you

122 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

might want to serialize a certain LogElement based on some criterion.

LogSequenceFilter solves this problem with the following method:

public boolean accept (LogElement logElement);

This method returns true if the given LogElement should be used in the operation,

and returns false if the given LogElement should not be used.

LogSequenceTransformer is a class which utilizes the LogSequenceFilter function

described above. It uses the LogSequenceFilter to filter out some LogElement

objects and then serialize the accepted LogElement objects. This class has two

methods. The first method follows:

public static void serialize(Collection logSequences, ObjectOutputStream stream,

LogSequenceFilter filter, DistributionMode mode)

throws IOException

This method allows the caller to provide a filter for determining which LogElements

to include in the serialization process. The DistributionMode parameter allows the

caller to control the serialization process. For example, if the distribution mode is

invalidation only, then there is no need to serialize the value. The second method of

this class follows:

public static Collection inflate(ObjectInputStream stream, ObjectGrid objectGrid)

throws IOException, ClassNotFoundException.

This method reads the log sequence serialized form, which was created by the

serialize method, from the provided object input stream.

Locking

This topic describes the locking strategy that is supported by an ObjectGrid

BackingMap.

Each BackingMap can be configured to use one of the following locking strategies:

v Pessimistic locking

v Optimistic locking

v None

Following is an example of how the lock strategy can be set on the map1, map2, and

map3 BackingMaps, where each map is using a different locking strategy:

import com.ibm.websphere.objectgrid.BackingMap;

import com.ibm.websphere.objectgrid.LockStrategy;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

...

ObjectGrid og =

 ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("test");

BackingMap bm = og.defineMap("map1");

bm.setLockStrategy(LockStrategy.PESSIMISTIC);

bm = og.defineMap("map2");

bm.setLockStrategy(LockStrategy.OPTIMISTIC);

bm = og.defineMap("map3");

bm.setLockStrategy(LockStrategy.NONE);

To avoid a java.lang.IllegalStateException exception, the setLockStrategy

method must be called before calling the initialize or getSession methods on the

ObjectGrid instance.

Chapter 9. ObjectGrid application programming interface overview 123

When either PESSIMISTIC or OPTIMISTIC lock strategy is used, a lock manager is

created for the BackingMap. The lock manager uses a hash map to keep track of

entries that are locked by one or more transactions. If many map entries exist in the

hash map, more lock buckets means better performance. The risk of Java

synchronization collisions is lower as the number of buckets grows. More lock

buckets also lead to more concurrency. The following example shows how an

application can set the number of lock buckets to use for a given BackingMap:

bm.setNumberOfLockBuckets(503);

Again, to avoid a java.lang.IllegalStateException exception, the

setNumberOfLockBuckets method must be called before calling the initialize or

getSession methods on the ObjectGrid instance. The setNumberOfLockBuckets

method parameter is a Java primitive integer that specifies the number of lock

buckets to use. Using a prime number ensures a uniform distribution of map entries

over the lock buckets. A good starting point for best performance is set the number

of lock buckets to about ten percent of the expected number of BackingMap entries.

Pessimistic locking

Use the pessimistic locking strategy for read and write maps when other locking

strategies are not possible.

When an ObjectGrid Map is configured to use the PESSIMISTIC locking strategy, a

pessimistic transaction lock for a map entry is obtained when a transaction first gets

the entry from the BackingMap. The pessimistic lock is held until the application

completes the transaction. Typically, the pessimistic locking strategy is used in the

following situations:

v The BackingMap is configured with or without a loader and versioning information

is not available.

v The BackingMap is used directly by an application that needs help from the

ObjectGrid for concurrency control.

v Versioning information is available, but update transactions frequently collide on

the backing entries, resulting in optimistic update failures.

Because the pessimistic locking strategy has the greatest impact on performance

and scalability, this strategy should only be used for read and write maps when

other locking strategies are not viable. For example, optimistic update failures occur

frequently, or recovery from optimistic failure is difficult for an application to handle.

ObjectMap methods and lock modes

When an application uses the methods of the ObjectMap interface, ObjectGrid

automatically attempts a pessimistic lock for the map entry being accessed.

ObjectGrid uses the following lock modes based on which method the application

calls in the ObjectMap interface:

v The get and getAll methods acquire an S lock, or a shared lock mode for the

key of a map entry. The S lock is held until the transaction completes. An S lock

mode allows concurrency between transactions that attempt to acquire an S or

an upgradeable lock (U lock) mode for the same key, but blocks other

transactions that attempt to get an exclusive lock (X lock) mode for the same

key.

v The getForUpdate and getAllForUpdate methods acquire a U lock, or an

upgradeable lock mode for the key of a map entry. The U lock is held until the

transaction completes. A U lock mode allows concurrency between transactions

124 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

that acquire an S lock mode for the same key, but blocks other transactions that

attempt to acquire a U lock or X lock mode for the same key.

v The put, putAll, remove, removeAll, insert, update, and touch acquire an X

lock, or exclusive lock mode for the key of a map entry. The X lock is held until

the transaction completes. An X lock mode ensures that only one transaction is

inserting, updating, or removing a map entry of a given key value. An X lock

blocks all other transactions that attempt to acquire a S, U, or X lock mode for

the same key.

v The global invalidate and global invalidateAll methods acquire an X lock

for each map entry that is invalidated. The X lock is held until the transaction

completes. No locks are acquired for the local invalidate and local

invalidateAll methods because none of the BackingMap entries are invalidated

by local invalidate method calls.

From the preceding definitions, it is obvious that an S lock mode is weaker than a U

lock mode because it allows more transactions to run concurrently when accessing

the same map entry. The U lock mode is slightly stronger than the S lock mode

because it blocks other transactions that are requesting either a U or X lock mode.

The S lock mode only blocks other transactions that are requesting an X lock mode.

This small difference is important in preventing some deadlocks from occurring. The

X lock mode is the strongest lock mode because it blocks all other transactions

attempting to get an S, U, or X lock mode for the same map entry. The net affect of

an X lock mode is to ensure that only one transaction can insert, update, or remove

a map entry and to prevent updates from being lost when more than one

transaction is attempting to update the same map entry.

The following table is a lock mode compatibility matrix that summarizes the

described lock modes and is used to determine which lock modes are compatible

with each other. To read this matrix, the row in the matrix indicates a lock mode that

is already granted. The column indicates the lock mode that is requested by

another transaction. If Yes is displayed in the column, the lock mode requested by

the other transaction is granted because it is compatible with the lock mode that is

already granted. No indicates that the lock mode is not compatible and the other

transaction must wait for the first transaction to release the lock that it owns.

 Table 8. Locking mode compatibility and strength

lock compatible locks strength

S (shared) U (upgradeable) X (exclusive)

S (Shared) Yes Yes No weakest

U (Upgradeable) Yes No No normal

X (Exclusive) No No No strongest

Lock wait timeout

Each ObjectGrid BackingMap has a default lock wait timeout value. The timeout

value is used to ensure that an application does not wait forever for a lock mode to

be granted because of a deadlock condition that occurs due to an application error.

The application can use the BackingMap interface to override the default lock wait

timeout value. The following example illustrates how to set the lock wait timeout

value for the map1 backing map to 60 seconds:

import com.ibm.websphere.objectgrid.BackingMap;

import com.ibm.websphere.objectgrid.LockStrategy;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

Chapter 9. ObjectGrid application programming interface overview 125

...

ObjectGrid og =

 ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("test");

BackingMap bm = og.defineMap("map1");

bm.setLockStrategy(LockStrategy.PESSIMISTIC);

bm.setLockTimeout(60);

To avoid a java.lang.IllegalStateException exception, call both the

setLockStrategy method and the setLockTimeout method before calling either the

initialize or getSession methods on the ObjectGrid instance. The setLockTimeout

method parameter is a Java primitive integer that specifies the number of seconds

that ObjectGrid waits for a lock mode to be granted. If a transaction waits longer

than the lock wait timeout value configured for the BackingMap, a

com.ibm.websphere.objectgrid.LockTimeoutException exception results.

When a LockTimeoutException occurs, the application must determine if the timeout

is occurring because the application is running slower than expected or if the

timeout occurred because of a deadlock condition. If an actual deadlock condition

occurred, then increasing the lock wait timeout value does not eliminate the

exception. Increasing the timeout results in the exception taking longer to occur.

However, if increasing the lock wait timeout value does eliminate the exception,

then the problem occurred because the application was running slower than

expected. The application in this case must determine why performance is slow.

See Chapter 14, “Troubleshooting,” on page 333 and Chapter 11, “ObjectGrid

performance best practices,” on page 315 for more information.

Deadlocks

Consider the following sequence of lock mode requests:

X lock is granted to transaction 1 for key1.

X lock is granted to transaction 2 for key2.

X lock requested by transaction 1 for key2.

 (Transaction 1 blocks waiting for lock owned by transaction 2.)

X lock requested by transaction 2 for key1.

 (Transaction 2 blocks waiting for lock owned by transaction 1.)

The preceding sequence is the classic deadlock example of two transactions that

attempt to acquire more than a single lock and each transaction acquires the locks

in a different order. To prevent this deadlock, each transaction must obtain the

multiple locks in the same order. If the OPTIMISTIC lock strategy is used and the

flush method on the ObjectMap interface is never used by the application, then lock

modes are requested by the transaction only during the commit cycle. During the

commit cycle, the ObjectGrid determines the keys for the map entries that need to

be locked and requests the lock modes in key sequence. With this method,

ObjectGrid prevents the large majority of the classic deadlocks. However,

ObjectGrid does not and cannot prevent all possible deadlock scenarios. A couple

of scenarios exist that the application needs to consider. Following are the

scenarios that the application must be aware of and take preventative action

against.

One scenario exists where ObjectGrid is able to detect a deadlock without having to

wait for a lock wait timeout to occur. If this scenario does occur, a

com.ibm.websphere.objectgrid.LockDeadlockException exception results. Consider

the following code snippet:

Session sess = ...;

ObjectMap person = sess.getMap("PERSON");

sess.begin();

Person p = (IPerson)person.get("Billy");

126 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

// Billy had a birthday, so we make him 1 year older.

p.setAge(p.getAge() + 1);

person.put(“Billy”, p);

sess.commit();

In this situation, Billy’s wife wants to make him older than he is, and both Billy and

his wife run this transaction concurrently. In this situation, both transactions own an

S lock mode on the Billy entry of the PERSON map as a result of the

person.get(“Billy”) method invocation. As a result of the person.put (“Billy”, p)

method call, both transactions attempt to upgrade the S lock mode to an X lock

mode. Both transactions block waiting for the other transaction to release the S lock

mode it owns. As a result, a deadlock occurs because a circular wait condition

exists between the two transactions. A circular wait condition results when more

than one transaction attempts to promote a lock from a weaker to a stronger mode

for the same map entry. In this scenario, the ObjectGrid throws a

LockDeadlockException exception rather than a LockTimeoutException exception.

See “LockDeadlockException” on page 337 for more information.

The application can prevent the LockDeadlockException exception for the preceding

example by using the OPTIMISTIC lock strategy rather than the PESSIMISTIC lock

strategy. Using the OPTIMISTIC lock strategy is the preferred solution when the

map is mostly read and updates to the map are infrequent. See “Optimistic locking”

on page 129 for more details on the optimistic strategy. If the PESSIMISTIC lock

strategy must be used, the getForUpdate method can be used instead of the get

method in the above example. By doing so, the first transaction to call the

getForUpdate method acquires a U lock mode rather than a S lock mode. This lock

mode causes the second transaction to block when it calls the getForUpdate

method because only one transaction is granted a U lock mode. Because the

second transaction is blocked, it does not own any lock mode on the Billy map

entry . The first transaction does not block when it attempts to upgrade the U lock

mode to an X lock mode as a result of the put method call from the first transaction.

This feature demonstrates why U lock mode is called the ″upgradeable″ lock mode.

When the first transaction is completed, the second transaction unblocks and is

granted the U lock mode. An application can prevent the lock promotion deadlock

scenario by using the getForUpdate method instead of the get method when

PESSIMISTIC lock strategy is being used.

Important: This solution does not prevent read only transactions from being able to

read a map entry. Read only transactions call the get method, but

never call the put, insert, update, or remove methods. Concurrency is

just as high as when the regular get method is used. The only

reduction in concurrency occurs when the getForUpdate method is

called by more than one transaction for the same map entry.

You must take care when a transaction calls the getForUpdate method on more

than one map entry to ensure that the U locks are acquired in the same order by

each transaction. For example, suppose that the first transaction calls the

getForUpdate method for the key 1 and the getForUpdate method for key 2.

Another concurrent transaction calls the getForUpdate method for the same keys,

but in reverse order. This sequence causes the classic deadlock because multiple

locks are obtained in different orders by different transactions. The application still

needs to ensure that every transaction accesses multiple map entries in key

sequence to ensure that deadlock does not occur. Because the U lock is obtained

at the time that the getForUpdate method is called rather than at commit time, the

ObjectGrid cannot order the lock requests like it does during the commit cycle. The

application must control the lock ordering in this case.

Chapter 9. ObjectGrid application programming interface overview 127

Using the flush method on the ObjectMap interface before a commit can introduce

additional lock ordering considerations. The flush method is typically used to force

changes made to the map out to the backend through the Loader plug-in. In this

situation, the backend uses its own lock manager to control concurrency, so the

lock wait condition and deadlock can occur in backend rather than in the ObjectGrid

lock manager. Consider the following transaction:

Session sess = ...;

ObjectMap person = sess.getMap("PERSON");

boolean activeTran = false;

try

{

 sess.begin();

 activeTran = true;

 Person p = (IPerson)person.get("Billy");

 p.setAge(p.getAge() + 1);

 person.put(“Billy”, p);

 person.flush();

 ...

 p = (IPerson)person.get("Tom");

 p.setAge(p.getAge() + 1);

 sess.commit();

 activeTran = false;

}

finally

{

 if (activeTran) sess.rollback();

}

Suppose that some other transaction also updated the Tom person, called the flush

method, and then updated the Billy person. If this situation occurred, the following

interleaving of the two transactions results in a database deadlock condition:

X lock is granted to transaction 1 for "Billy" when flush is executed.

X lock is granted to transaction 2 for "Tom" when flush is executed..

X lock requested by transaction 1 for "Tom" during commit processing.

(Transaction 1 blocks waiting for lock owned by transaction 2.)

X lock requested by transaction 2 for "Billy" during commit processing.

(Transaction 2 blocks waiting for lock owned by transaction 1.)

This example demonstrates that the use of the flush method can cause a deadlock

to occur in the database rather than in ObjectGrid. This deadlock example can

occur regardless of what lock strategy is used. The application must take care to

prevent this kind of deadlock from occurring when using the flush method and when

a Loader is plugged into the BackingMap. The preceding example also illustrates

another reason why ObjectGrid has a lock wait timeout mechanism. A transaction

that is waiting for a database lock might be waiting while it owns an ObjectGrid map

entry lock. Consequently, problems at database level can cause excessive wait

times for an ObjectGrid lock mode and result in a LockTimeoutException exception.

Exception handling

The examples in this topic do not have any exception handling. To prevent locks

from being held for excessive amounts of time when a LockTimeoutException

exception or a LockDeadlockException occurs, an application needs to ensure that it

catches unexpected exceptions and calls the rollback method when something

unexpected occurs. Change the preceding code snippet as demonstrated in the

following example:

Session sess = ...;

ObjectMap person = sess.getMap("PERSON");

boolean activeTran = false;

try

128 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

{

 sess.begin();

 activeTran = true;

 Person p = (IPerson)person.get("Billy");

 // Billy had a birthday, so we make him 1 year older.

 p.setAge(p.getAge() + 1);

 person.put(“Billy”, p);

 sess.commit();

 activeTran = false;

}

finally

{

 if (activeTran) sess.rollback();

}

The finally block in the snippet of code ensures that a transaction is rolled back

when an unexpected exception occurs. It not only handles a

LockDeadlockException exception, but any other unexpected exception that might

occur. The finally block handles the case where an exception occurs during a

commit method invocation. This example is not the only way to deal with

unexpected exceptions, and there might be cases where an application wants to

catch some of the unexpected exceptions that can occur and display one of its

application exceptions. You can add catch blocks as appropriate, but the application

must ensure that the snippet of code does not exit without completing the

transaction.

Optimistic locking

The optimistic locking strategy believes that no two transactions might attempt to

update the same map entry while running concurrently. Because of this belief, it is

not necessary to hold a lock mode for the life of the transaction because it is

unlikely that more than one transaction might update the map entry concurrently.

The optimistic locking strategy is typically used when:

v A BackingMap is configured with or without a loader and versioning information is

available.

v A BackingMap is mostly read. That is, transactions frequently read map entries,

and only occasionally insert, update, or remove a map entry.

v A BackingMap is inserted, updated, or removed more frequently than it is read,

but transactions rarely collide on the same map entry.

Like the pessimistic locking strategy, the methods on the ObjectMap interface

determine how ObjectGrid automatically attempts to acquire a lock mode for the

map entry being accessed. However, here are some very important differences

between the pessimistic and optimistic strategies:

v Like the pessimistic locking strategy, a S lock mode is acquired by the get and

getAll methods when the method is invoked. However, with optimistic locking,

the S lock mode is not held until the transaction is completed. Instead, the S lock

mode is released before the method returns to the application. The purpose of

acquiring the lock mode is so that the ObjectGrid can ensure only committed

data from other transactions is visible to the current transaction. After ObjectGrid

has verified the data is committed, the S lock mode is released. At commit time

an optimistic versioning check is performed to ensure that no other transaction

changed the map entry after the current transaction released its S lock mode. If

an entry is not fetched from the map before it is updated, invalidated, or deleted,

the ObjectGrid runtime implicitly fetches the entry from the map. This implicit get

operation is performed to get the current value at the time the entry was

requested to be modified.

Chapter 9. ObjectGrid application programming interface overview 129

v Unlike pessimistic locking strategy, the getForUpdate and getAllForUpdate

methods are handled exactly like the get and getAll methods when the

optimistic locking strategy is used. That is, a S lock mode is acquired at the start

of the method and the S lock mode is released before returning to the

application.

v All other ObjectMap methods are handled exactly like they are handled for the

pessimistic locking strategy. That is, when the commit method is invoked, an X

lock mode is obtained for any map entry that is inserted, updated, removed,

touched, or invalidated and the X lock mode is held until the transaction

completes commit processing.

This locking strategy is called optimistic because an optimistic outlook exists. The

optimistic locking strategy is that no two transactions might attempt to update the

same map entry while running concurrently. Because of this belief, it is not

necessary to hold a lock mode for the life of the transaction because it is unlikely

that more than one transaction might update the map entry concurrently. However,

since a lock mode was not held, another concurrent transaction could potentially

update the map entry after the current transaction has released its S lock mode. To

handle this possibility, ObjectGrid gets an X lock at commit time and performs an

optimistic versioning check to verify that no other transaction has changed the map

entry since the current transaction read the map entry from the BackingMap. If

another transaction changes the map entry, the version check fails and an

OptimisticCollisionException exception occurs. This exception forces the current

transaction to be rolled back and the entire transaction must be retried by the

application. The optimistic locking strategy is very useful when a map is mostly read

and it is unlikely that updates for the same map entry might occur.

None BackingMap locking strategy

When a BackingMap is configured to use a locking strategy of NONE, no

transaction locks for a map entry are obtained. A scenario where this strategy is

useful is when an application is a persistence manager such as a Java 2 Platform,

Enterprise Edition (J2EE) Enterprise JavaBeans (EJB) container or uses Hibernate

to obtain persistent data. In this scenario, the BackingMap is configured without a

loader and is being used as a data cache by the persistence manager. The

persistence manager in this scenario provides concurrency control between

transactions that are accessing the same ObjectGrid Map entries. The ObjectGrid

does not need to obtain any transaction locks for the purpose of concurrency

control. This is assuming that the persistence manager does not release its

transaction locks prior to updating the ObjectGrid map with committed changes. If

that is not the case, then a PESSIMISTIC or OPTIMISTIC lock strategy must be

used. For example, suppose the persistence manager of an EJB container is

updating ObjectGrid map with data that was committed in the EJB

container-managed transaction. If the update of ObjectGrid map occurs before the

persistence manager transaction locks are released, then NONE lock strategy can

be used. If theObjectGrid map update occurs after the persistence manager

transaction locks are released, then either the OPTIMISTIC or PESSIMISTIC lock

strategy is required.

Another scenario where the NONE locking strategy can be used is when the

application uses a BackingMap directly and a Loader is configured for the map. In

this scenario, the loader uses the concurrency control support provided by a

relational database management system (RDBMS) by using either Java database

connectivity (JDBC) or Hibernate to access data in a relational database. The

loader implementation can use either an optimistic or pessimistic approach.

130 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

A loader that uses an optimistic locking or versioning approach helps to achieve the

greatest amount of concurrency and performance. For more information about

implementing an optimistic locking approach, see the “OptimisticCallback” on page

200 section in the “Loader considerations” on page 197 topic.

A loader that makes use of the pessimistic locking support of the underlying

backend may want to make use of the forUpdate parameter that is passed on the

get method on the Loader interface. This parameter is set to true if the

getForUpdate method of the ObjectMap interface was used by the application to get

the data. The loader can use this parameter to determine whether to request an

upgradeable lock on the row being read. For example, DB2 obtains an upgradeable

lock when an SQL select statement contains a for update clause. This approach

offers the same deadlock prevention that is described in the Pessimistic locking

topic.

ObjectGrid security

Use ObjectGrid security mechanisms to secure map data access and management

tasks through configuration or programming.

ObjectGrid provides security mechanisms to secure accesses to map data and

management tasks. ObjectGrid security is built upon Java Authentication and

Authorization Services (JAAS) mechanism. JAAS is an integral part of Java 2

Security.

This section describes ObjectGrid security mechanisms and how to use the

ObjectGrid security APIs.

v “ObjectGrid security overview” gives an overview of the ObjectGrid security.

v “Client server security” on page 136 describes the client server security for the

distributed ObjectGrid programming model.

v “Local ObjectGrid security” on page 155 describes the local ObjectGrid security.

v “Authorization” on page 161 describes the authorization mechanism and related

plug-ins that apply to both distributed and local ObjectGrid programming model.

v “ObjectGrid cluster security” on page 170 describes ObjectGrid cluster security

mechanism and related plug-ins.

v “Gateway security” on page 174 discusses the gateway security.

v “Security integration with WebSphere Application Server” on page 176 highlights

the integration with WebSphere Application Server.

Most of the sample code shown in this section is from the ObjectGrid shipped

samples. You can find the security sample overview in Chapter 5, “ObjectGrid

samples,” on page 57.

ObjectGrid security overview

ObjectGrid is a distributed caching system. The access to the cache data can be

secured. Generally, security is based on three key concepts:

v Trustable authentication: reliably determine the identity of the requester.

v Authorization: grant access rights to the requestor with permissions.

v Secure transport: safely transmit the data over the networks.

ObjectGrid provides security on the following aspects:

Chapter 9. ObjectGrid application programming interface overview 131

v “Client server security” addresses the authentication and client server

communication security using Secure Sockets Layer (SSL).

v “Authorization” mechanisms guarantee that only authorized clients can access

the ObjectGrid map data and management tasks.

v “ObjectGrid cluster security” verifies that only authorized servers can join the

ObjectGrid cluster.

v “Gateway security” on page 133 addresses the gateway client authentication.

v “Local ObjectGrid security” on page 133 provides security mechanism when the

application directly instantiates the ObjectGrid instance.

ObjectGrid security is built upon on open architecture and provides several plug-in

points for customization. The plug-in mechanism plays an important role. ObjectGrid

also provides some built-in implementation for these plug-ins. Some

implementations are for out-of-box production use, and others are for testing or

sample purposes. See “Security plug-ins” on page 133 for a summary of plug-ins

and built-in implementations.

Client server security

ObjectGrid supports distributed client server framework. A client server security

infrastructure is in place to secure the access to ObjectGrid servers.

An ObjectGrid client can use any credential it wants to authenticate to the

ObjectGrid server. A contract must be established between clients and servers so

that this credential is understood by the server authentication mechanism. When

Secure Sockets Layer (SSL) is used, the client can also use SSL certificates to

authenticate to the ObjectGrid server.

To secure the client server communication, ObjectGrid supports SSL. The SSL

protocol provides transport layer security with authenticity, integrity, and

confidentiality, for a secure connection between an ObjectGrid client and server.

Some of the security features that are provided by SSL are: data encryption to

prevent the exposure of sensitive information while data flows, data signing to

prevent unauthorized modification of data while data flows, and client and server

authentication to ensure that you talk to the appropriate person or machine. SSL

can be effective in securing an enterprise environment.

See “Client server security” on page 136 for more information.

Authorization

ObjectGrid authorizations are based on subjects and permissions. In ObjectGrid,

two categories of permissions exist: permissions for data access, and permissions

for management tasks. You can use the Java Authentication and Authorization

Services (JAAS) to authorize the access or plug in your own mechanisms to handle

the authorizations.

See “Authorization” on page 161 for more information.

ObjectGrid cluster security

In a secure environment, a server must be able to check the authenticity of another

server. ObjectGrid uses a shared secret key string mechanism for this purpose.

This secret key mechanism is similar to a shared password. All the ObjectGrid

servers agree on a shared secret. When a server joins the cluster, it is challenged

132 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

to present the secret string. If the secret string of the joining server matches the

one in the master server, the joining server can join the cluster; otherwise the join

request is rejected.

Sending a clear text secret is not secure. ObjectGrid security infrastructure provides

a SecureTokenManager plug-in to allow the server to “secure” this secret before

sending it. How you implement the “secure” operation is open. ObjectGrid provides

an out-of-box implementation, in which the “secure” operation is implemented to

encrypt and sign the secret.

See “ObjectGrid cluster security” on page 170 for more information

Gateway security

An ObjectGrid gateway serves as a point to delegate the client management

requests to the ObjectGrid server. The management gateway houses a set of

mbeans. The gateway client invokes these mbeans to administer or monitor

ObjectGrid servers.

The management gateway and server communication uses the ObjectGrid client

server communication mechanism, in which the gateway is treated as an ObjectGrid

client. The gateway client and gateway (MBean server) communication can be

secured by SSL. This capability is provided by the JMX connector layer, which is

implemented by the open source project mx4j. ObjectGrid requires mx4j in place to

make gateway work.

For the authentication, the gateway propagates the credential presented by the

gateway client to the ObjectGrid server. Both authentication and authorization are

enforced on ObjectGrid servers.

See “Gateway security” on page 174 for more information.

Local ObjectGrid security

In WebSphere Extended Deployment Server release 6.0, the local ObjectGrid

programming model was introduced. In this model, the application directly

instantiates and uses an ObjectGrid instance. Your application and ObjectGrid

instances are in the same Java virtual machine (JVM). No client or server concept

exists in this model.

Authentication is not supported in the local ObjectGrid programming model. Your

applications must manage their own authentication, and then pass the authenticated

Subject object to the ObjectGrid.

The same authorization mechanism is used for the local ObjectGrid programming

model as that used for the client server model.

See “Local ObjectGrid security” on page 155 for more information.

Security plug-ins

ObjectGrid security framework is supplemented by security plug-ins. These plug-ins

can be implemented to extend or customize the security framework.

One example is the CredentialGenerator plug-in, represented by the

com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface. When

Chapter 9. ObjectGrid application programming interface overview 133

an ObjectGrid client connects to an ObjectGrid server, the getCredential() method of

this plug-in is called to generate a Credential object. This Credential object is then

sent to the server. The server then uses this Credential object to authenticate using

the Authenticator plug-in, which is represented by

thecom.ibm.websphere.objectgrid.security.plugins.CredentialGenerator.Authenticator

interface.

Plug-ins play an important role in the ObjectGrid security framework. You can

implement the CredentialGenerator to generate a specific credential, for example,

user ID and password pair, a kerberos ticket, or a security token. You can

implement the Authenticator plug-in to authenticate the client. If you want, you can

implement the Authenticator plug-in to support both the user password or a security

token.

All the plug-ins for security that you can use are in the following table:

 Table 9. Security plug-ins

Category Plug-in class name Instance

Authentication

com.ibm.websphere.objectgrid.security.

plugins.CredentialGenerator

client

com.ibm.websphere.objectgrid.security.

plugins.Credential

client

com.ibm.websphere.objectgrid.security.plugins.

Authenticator

server

Authorization

com.ibm.websphere.objectgrid.security.

plugins.MapAuthorization

ObjectGrid

com.ibm.websphere.objectgrid.security.

plugins.AdminAuthorization

cluster

ObjectGrid cluster

security

com.ibm.websphere.objectgrid.security.

plugins.SecureTokenManager

server

other

com.ibm.websphere.objectgrid.security.

plugins.SubjectSource

local

ObjectGrid

com.ibm.websphere.objectgrid.security.

plugins.SubjectValidation

local

ObjectGrid

The following diagram shows the plug-ins and the instances applied. For example,

the MapAuthorization plug-in applies on the ObjectGrid instances, but the

AdminAuthorization applies on the server instances.

134 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

The following table displays the built-in implementation. The purpose column

displays the purpose. The purpose can be for out-of-box production or for testing.

 Table 10. Security built-in implementations

Plug-in built-in class name purpose

Credential

Generator

Credential

com.ibm.websphere.objectgrid.security.plugins.builtins.

UserPasswordCredentialGenerator

production

com.ibm.websphere.objectgrid.security.plugins.builtins.

WSTokenCredentialGenerator

production

com.ibm.websphere.objectgrid.security.plugins.builtins.

UserPasswordCredential

production

com.ibm.websphere.objectgrid.security.plugins.builtins.

WSTokenCredential

production

com.ibm.websphere.objectgrid.security.plugins.builtins.

ClientCertificateCredential

production

Authenticator

com.ibm.websphere.objectgrid.security.plugins.builtins.

WSTokenAuthenticator

production

com.ibm.websphere.objectgrid.security.plugins.builtins.

KeyStoreLoginAuthenticator

testing

com.ibm.websphere.objectgrid.security.plugins.builtins.

CertificateMappingAuthenticator

testing

com.ibm.websphere.objectgrid.security.plugins.builtins.

LDAPAuthenticator

testing

Map

Authorization

com.ibm.websphere.objectgrid.security.plugins.builtins.

JAASMapAuthorizationImpl

production

com.ibm.websphere.objectgrid.security.plugins.builtins.

TAMMapAuthorizationImpl

testing

SubjectSource

com.ibm.websphere.objectgrid.security.plugins.builtins.

WSSubjectSourceImpl

production

node 1

Client

Java virtual
machine(JVM)

Application ObjectGridObjectGrid

Server tier

ObjectGrid Server 1 (JVM)

Primary

key objectkey object

key objectkey object1
3
5
7

1
3
5
7

Local

ObjectGrid

Local

ObjectGrid

node 1

JVM 1
ObjectGridObjectGrid

Gateway - a special client

ObjectGrid Server 2 (JVM)

Primary

key objectkey object

key objectkey object1
3
5
7

1
3
5
7

SubjectSource

plug-in

SubjectValidation

plug-in

CredentialGenerator

plug-in

MapAuthorization

plug-in

AdminAuthorization

plug-in

Authenticator

plug-in

SecureTokenManager

plug-in

ObjectGridcluster

Figure 17. Security plug-ins

Chapter 9. ObjectGrid application programming interface overview 135

Table 10. Security built-in implementations (continued)

Plug-in built-in class name purpose

Subject

Validation

com.ibm.websphere.objectgrid.security.plugins.builtins.

WSSubjectValidationImpl

production

Client server security

This topic describes the authentication mechanism and how to secure the client

server communication.

The client server security has the following important aspects:

v How to “Enable client server security”

v How to get a credential representing the client with the “Credential and credential

generator” on page 137

v How to configure parameters used for the SSL configuration using “Secure

communication” on page 153

v How to authenticate the client on the server side using an “Authenticator” on

page 143

Enable client server security

Enable client security

To enable the security on the client security, set the securityEnabled

property in the security.ogclient.props file to true. ObjectGrid ships a

client security property template file, the security.ogclient.props file, in

the [WAS_HOME]/optionalLibraries/ObjectGrid/properties directory for a

WebSphere installation, or the /ObjectGrid/properties directory in a mixed

server installation. You can modify this template file with appropriate values.

 The description of the securityEnabled property follows:

securityEnabled (true, false+)

This property indicates if security is enabled. When a client

connects to a server, the securityEnabled value on the client and

server side must be both true or both false. For example, if the

connected server security is enabled, the client has to set this

property to true to connect to the server.

 The

com.ibm.websphere.objectgrid.security.config.ClientSecurityConfiguration

interface represents the security.ogclient.props file. You can use the

com.ibm.websphere.objectgrid.security.config.

ClientSecurityConfigurationFactory public API to create an instance of this

interface with default values, or you can create an instance by passing the

ObjectGrid client security property file. The security.ogclient.props file

contains other properties.

Enable server security

To enable the security on the server side, you can set the securityEnabled

property in the cluster XML to true. Here is an example:

<cluster>

 <objectGrid name="cluster" securityEnabled="true"

 singleSignOnEnabled="true" loginSessionExpirationTime="300">

136 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Credential and credential generator

When connecting a server, a client needs to present its own credential. A client

credential is represented by a

com.ibm.websphere.objectgrid.security.plugins.Credential interface. The credential

can contain a user password pair, a Kerberos ticket, and so on.

The credential interface follows:

package com.ibm.websphere.objectgrid.security.plugins;

import java.io.Serializable;

/**

 * This interface represents a credential used by an ObjectGrid client. It

 * represents one client identity. This credential is sent to the

 * ObjectGrid server for authentication. It must be serializable.

 *

 * A credential has to implement the equals(Object)and

 * hashCode() methods. Two Credential objects are considered equal

 * if and only if they represent the same identity and security information. For

 * example, if the credential contains a user ID and password. Two credentials

 * are equal if and only if both their user IDs and passwords are equal.

 *

 * ObjectGrid provides three built-in implementations for this interface:

 * com.ibm.websphere.objectgrid.security.plugins.builtins.

 * ClientCertificateCredential:

 * A credential containing an SSL certificate chain.

 * com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredential:

 * A credential containing a user ID and password pair.

 * com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenCredential:

 * A credential containing WebSphere Application Server specific authentication

 * and authorization tokens.

 *

 * Refer to the respective API documentation for more details.

 *

 * @ibm-api

 * @since WAS XD 6.0.1

 *

 * @see CredentialGenerator

 */

public interface Credential extends Serializable {

 /**

 * Checks two Credential objects for equality.

 *

 * Two Credential objects are considered equal if and only if

 * they represent the same identity and security information.

 *

 * @param o the object we are testing for equality with this object.

 *

 * @return true if both Credential objects are equivalent.

 */

 boolean equals(Object o);

 /**

 * Returns the hashcode of the Credential object

 *

 * @return the hash code of the Credential object

 */

 int hashCode();

}

Chapter 9. ObjectGrid application programming interface overview 137

This interface explicitly defines the equals(Object) and hashCode() methods. These

methods are important to guarantee the behavior. The authenticated Subject objects

are cached based on the Credential objects on the server side.

ObjectGrid provides three default implementations for the Credential interfaces:

1. The

com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredential

implemenation. This credential contains a user ID and password pair.

2. The

com.ibm.websphere.objectgrid.security.plugins.builtins.ClientCertificateCredential

implementation. This credential contains a client certificate chain. This credential

can be used for ObjectGrid client certificate authentication. You cannot create

this credential on the client side. It has to be generated by the server as part of

the SSL handshake.

3. The com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenCredential

implementation. This credential contains WebSphere Application Server-specific

authentication and authorization tokens. These tokens can be used to propagate

the security attributes across the application servers in the same security

domain.

Refer to the API documentation for more details.

ObjectGrid also provides a plug-in to generate a credential. This plug-in is

represented by the

com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface.

Following are the CredentialGenerator interfaces:

/**

 * This plug-in is used to get a Credential representing this client. It is a

 * factory for the Credential object.

 * One example implementation is to return a Credential object

 * containing a user ID and password pair. The implementation of the Credential

 * generated by an implementation of this class must to be understood by the

 * server’s Authenticator plug-in.

 *

 * An implementation class of this interface must have a default constructor.

 * When launching the client in a secure environment, set the

 * implementation class name (credentialGeneratorClass) in the client security

 * configuration property file. The client runtime constructs an object of

 * this implementation class and calls getCredential() to get the Credential

 * to connect to an ObjectGrid cluster.

 *

 *Users can also specify the additional properties for this factory using the

 * credentialGeneratorProps property in the client security configuration

 * property file.

 * These properties are be passed to this

 * factory by using the setProperties(String) method. This way, you can

 * customize your factory.

 *

 * You can also set CredentialGenerator programmatically by calling

 * ClientSecurityCinfiguration.setCredentialGenerator

 * (CredentialGenerator) method.

 *

 *

 * For example, you can have the following settings in the client security

 * configuration property file:

 * credentialGeneratorClass=com.myco.CredGenFactory

 *

 * credentialGeneratorProps=user1 password1

 *

 *

 * , a String "user1 password1" is passed to the setProperties(String)

138 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

* method, with the "user1" indicating the user name, and "password1"

 * indicating the password.

 *

 * ObjectGrid provides two built-in implementations for this interface:

 * com.ibm.websphere.objectgrid.security.plugins.builtins.

 * UserPasswordCredentialGenerator:

 * A credential generator generating a UserPasswordCredential

 * containing a user ID and password pair.

 * com.ibm.websphere.objectgrid.security.plugins.builtins.

 * WSTokenCredentialGenerator:

 * A credential generator generating a WSTokenCredential containing WebSphere

 * Application Server

 * specific authentication and authorization tokens.

 *

 *

 * The relationship between CredentialGenerator and Credential can be

 * one to one relationship or one to many relationship. For example, the

 * UserPasswordCredentialGenerator

 * has a one to one relationship with UserPasswordCredential, but the

 * WSTokenCredentialGenerator

 * has a one to many relationship with WSTokenCredential because it could generate

 * different WSTokenCredential based on what Subject is associated with the current

 * thread.

 *

 * Refer to the respective API documentation for more details.

 *

 * @ibm-api

 * @since WAS XD 6.0.1

 *

 * @see Authenticator

 * @see ClientSecurityConfiguration#setCredentialGenerator(CredentialGenerator)

 * @see Credential

 * @see CredentialGeneratorFactory#getCredentialGenerator()

 */

public interface CredentialGenerator {

 /**

 * Gets a Credential which represents the client.

 *

 * @return the Credential representing the client

 *

 * @throws CannotGenerateCredentialException if a failure occurs when

 * generating the Credential for the client.

 *

 * @see Credential

 */

 Credential getCredential() throws CannotGenerateCredentialException;

 /**

 * Set the user defined properties to the factory

*

* This method is used to add addtional CredentialGenerator properties

* to the object. These properties can be set using the credentialGeneratorProps

* property in the client security configuration property file.

* This way, you can customize your factory.

*

* @param properties user defined properties

*/

void setProperties(String properties);

}

ObjectGrid provides two default built-in implementations:

1. The com.ibm.websphere.objectgrid.security.plugins.builtins.

UserPasswordCredentialGenerator constructor takes a user ID and a password.

When the getCredential() method is called, it returns a UserPasswordCredential

object that contains the user ID and password.

Chapter 9. ObjectGrid application programming interface overview 139

2. The com.ibm.websphere.objectgrid.security.plugins.builtins.

WSTokenCredentialGenerator represents a credential (security token) generator

when running in WebSphere Application Server. When the getCredential()

method is called, the Subject associated with the current thread is retrieved.

Then the security information in this Subject object is converted into a

WSTokenCredential object. You can specify whether to retrieve a runAs subject

or a caller subject from the thread by using the constant

WSTokenCredentialGenerator.RUN_AS_SUBJECT or

WSTokenCredentialGenerator.CALLER_SUBJECT.

Refer to the API documentation for more details.

Connect

If an ObjectGrid client wants to connect to a server securely, you can use the any

connect method in the ObjectGridManager interface. Take the following connect

method as an example:

/**

* This allows client to connect to a Remote ObjectGrid

* The RemoteObject Grid is hosted as specified by the paramaters

* @param clusterName: The name of the cluster to which this client

* will attach iteself

* @param host: The host on which to connect to

* @param port: The clientAceess port which is listening.

* @param ClientSecurityConfiguration: Security configuration. It can be null

* if security is not configured

* @param overRideObjectGrid xml. This parameter can be null. If it is not

* null, the client side configuration of objectgrid plug-in is overridden.

* Not all plug-ins can be overridden. For details see the ObjectGrid documents

* @throws ConnectException

* @ibm-api

*/

public ClientClusterContext connect(String clusterName, String host, String port,

ClientSecurityConfiguration securityProps, URL overRideObjectGrid) throws

ConnectException ;

This method takes a parameter of type ClientSecurityConfiguration among others.

This interface represents a client security configuration. You can use the

com.ibm.websphere.objectgrid.security.config.ClientSecurityConfigurationFactory

public API to create an instance of this with default values, or you can create an

instance by passing the ObjectGrid client security property file. The

security.ogclient.props file contains the following properties related to

authentication. The value marked with + is the default value.

v securityEnabled (true, false+): This property indicates if the security is

enabled. When a client connects to a server, the securityEnabled value on the

client and server side must be both true or both false. For example, if the

connected server security is enabled, the client has to set this property to true to

connect to the server.

v credentialAuthentication (Never, Supported+, Required): This property

indicates if the client supports credential authentication.

– If the property value is Never, no credential authentication is supported by this

client.

– If the property value is Supported, client authentication is performed when

communicating with any server that supports or requires credential

authentication. Client credential authentication transmits a credential or a

single sign-on (SSO) token

– If the property value is Required, the client must send a credential to the

server for authentication.

140 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

v authenticationRetryCount (an integer value, 0+). This property determines

how many retries are attempted for login when a credential is expired. If the

value is 0, no retries are attempted. The authentication retry only applies to the

case when the credential is expired. If the credential is not valid, there is not any

retry. Your application is responsible for retrying the operation.

v clientCertificateAuthentication (Never+, Supported, Required): This

property indicates if the client supports client certificate authentication.

– If the property value is Never, no client certification authentication is

supported on the client side.

– If the property value is Supported, transport layer client authentication can be

performed and the client sends digital certificate to the server during the

authentication stage.

– If the property value is Required, the client only authenticates with servers

that support transport-layer client authentication.

v transportType (TCP/IP, SSL-Supported+, SSL-Required): This indicates which

transport protocol the client wants to connect to the server. Which protocol a

client connects to a server also depends on the transportType setting on the

server side. See “Secure communication” on page 153 for more details. .

– If the value is TCP/IP, the client has to use TCP/IP to connect to the server.

– If the value is SSL-Supported, the client may use TCP/IP or SSL to connect

to the server. The client first tries to use SSL to connect to the server. If the

SSL connect fails, the client tries to use TCP/IP.

– If the value is SSL-Required, the client must use SSL to connect to the

server.

v SSOEnabled: Specifies if the client supports passing single sign-on tokens to the

server. Set this property to false if the client authenticates to every server. Set

this property to true if the client only authenticates to one server. If you set

SSOEnabled true on the client, verify that the single-sign-on-enabled property in

the cluster XML configuration is also set to true.

You can also set these properties using setters in the ClientSecurityConfiguration

interface.

After you create a ClientSecurityConfiguration type object, set the

credentialGenerator on the object using the following method:

/**

* Set the {@link CredentialGenerator} object for this client.

* @param generator the CredentialGenerator object associated with this client

*/

void setCredentialGenerator(CredentialGenerator generator);

You can set the CredentialGenerator in the ObjectGrid client security property file

too. Here are the properties:

v credentialGeneratorClass: the class implementation name for the

CredentialGenerator. It must have a default constructor.

v credentialGeneratorProps: the properties for the CredentialGenerator class. If

the value is not null, it is set to the constructed CredentialGenerator object using

the setProperties(String) method.

Here is a sample to instantiate a ClientSecurityConfiguration and then use it to

connect to the server.

/**

* Get a secure ClientClusterContext

* @return a secure ClientClusterContext object

*/

Chapter 9. ObjectGrid application programming interface overview 141

protected ClientClusterContext connect() throws ConnectException {

 ClientSecurityConfiguration csConfig = ClientSecurityConfigurationFactory

 .getClientSecurityConfiguration("/properties/security.ogclient.props");

 UserPasswordCredentialGenerator gen= new

 UserPasswordCredentialGenerator("manager", "manager1");

 csConfig.setCredentialGenerator(gen);

 return objectGridManager.connect(csConfig, null);

}

When the connect is called, the ObjectGrid client calls the

CredentialGenerator.getCredential() method to get the client credential. This

credential is sent along with the connect request to the server for authentication.

Use a different CredentialGenerator per session

In some cases, an ObjectGrid client represents just one client identity; in other

cases, it might represent multiple identities. Here is one scenario for the latter case:

An ObjectGrid client is created and shared in a Web server. All servlets in this web

server use this one ObjectGrid client. Because every servlet represents a different

web client, use different credentials when sending requests to ObjectGrid servers.

ObjectGrid provides changing the credential on the session level. That is, every

session can uses a different CredentialGenerator. Therefore, the previous scenarios

can be done by letting the servlet get a session with a different

CredentialGenerator. Following is the method in the ObjectGridManager interface.

/**

* Get a session with a CredentialGenerator. This method can only be called

* by the ObjectGrid client in a client server environment.

*

* If ObjectGrid is used in a core model, that is, within the same JVM with

* no client or server existing, getSession(Subject) should be used to secure

* the ObjectGrid.

*

* @since WAS XD 6.0.1

*/

Session getSession(CredentialGenerator credGen) throws

 ObjectGridException, TransactionCallbackException;

Here is an example:

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();

CredentialGenerator credGenManager = new UserPasswordCredentialGenerator

("manager", "xxxxxx");

CredentialGenerator credGenEmployee = new UserPasswordCredentialGenerator

("employee", "xxxxxx");

ObjectGrid og = ogManager.getObjectGrid(ctx, "accounting");

// Get a session with CredentialGenerator;

Session session = og.getSession(credGenManager);

// Get the employee map

ObjectMap om = session.getMap("employee");

// start a transaction.

session.begin();

Object rec1 = map.get("xxxxxx");

session.commit();

142 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

// Get another session with a different CredentialGenerator;

session = og.getSession(credGenEmployee);

// Get the employee map

om = session.getMap("employee");

// start a transaction.

session.begin();

Object rec2 = map.get("xxxxx");

session.commit();

If you use ObjectGird.getSession() method to get a Session object, the session

uses the CredentialGenerator set on the ClientConfigurationSecurity object.

Therefore, you can treat the CredentialGenerator passed to the

ObjectGird.getSession(CredentialGenerator) method overrides the

CredentialGenerator set in the ClientConfigurationSecurity object.

If you can reuse the Session object, a performance gain results. However, calling

the ObjectGrid.getSession(CredentialGenerator) method is not very expensive; the

major overhead is the increased object garbage collection time. Make sure you

release the references after you are done with the Session objects. In summary, if

your Session object can share the identity, try to reuse the Session object; if your

Session object can not share the identity, use the

ObjectGrid.getSession(CredentialGenerator) method.

Authenticator

After the ObjectGrid client retrieves the Credential object using the

CredentialGenerator object, the Credential object is sent along with the client

request to the ObjectGrid server. The ObjectGrid server authenticates the

Credential object before processing the request. If the Credential object is

authenticated successfully, a Subject object is returned to represent this Credential

object. This Subject object is then used for authorizing the request.

This Subject object is also cached. It expires after its lifetime reaches the session

time out value. The login session timeout value can be set using the

loginSessionExpirationTime property in the cluster XML file. For example, setting

loginSessionExpirationTime=″300″ makes the Subject object expire in 300 seconds.

ObjectGrid server uses the Authenticator plug-in to authenticate the Credential

object. Following is the Authenticator interface:

/**

 * This plug-in can be used to authenticate an ObjectGrid client to an ObjectGrid

 * server based on the credential provided by the client. A Subject

 * object is returned as a result of authentication.

 *

 * This plug-in is used in an ObjectGrid server. It can be configured in the

 * ObjectGrid cluster XML file.

 *

 * The Credential passed in the authenticate(Credential)

 * method can contain any credential information users desire. For example, it could be a

 * Credential object containing a user password pair.

 *

 * ObjectGrid provides several built-in implementations for this interface:

 * * com.ibm.websphere.objectgrid.security.plugins.builtins.

 * CertificateMappingAuthenticator:

 * An authenticator that simply maps a SSL certficate to a Subject.

 * com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginAuthenticator:

Chapter 9. ObjectGrid application programming interface overview 143

* An authenticator that authenticates a user ID and password to a key file.

 * com.ibm.websphere.objectgrid.security.plugins.builtins.LDAPAuthenticator:

 * An authenticator that authenticates a user ID and password to a LDAP server.

 * com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenAuthenticator:

 * An authenticator that authenticates a WebSphere Application Server securty token.

 *

 * Refer to the respective API documentation for more details.

 *

 * @ibm-api

 * @since WAS XD 6.0.1

 *

 * @see Credential

 */

public interface Authenticator {

 /**

 * Authenticates a user represented by the credential object.

 *

 * @param credential the user Credential

 *

 * @return a Subject object representing the user

 *

 * @throws InvalidCredentialException if the credential is invalid

 * @throws ExpiredCredentialException if the credential is expired

 *

 * @see Credential

 */

 Subject authenticate(Credential credential)

 throws InvalidCredentialException, ExpiredCredentialException;

}

This is where the implementation gets the Credential object and then authenticate it

to a user registry, for example, a Lightweight Directory Access Protocol (LDAP)

server, and so on. ObjectGrid does not provide an out-of-box user registry

configuration. Connecting to a user registry and authenticating to it must be

implemented in this plug-in.

For example, one Authenticator implementation extracts the user ID and password

from the credential, uses them to connect and validate to an LDAP server, and

creates a Subject object as a result of the authentication. The implementation could

utilize JAAS login modules. A Subject object is returned as a result of

authentication.

Notice that this method throws two exceptions: InvalidCredentialException and

ExpiredCredentialException. The InvalidCredentialException exception indicates

the credential is not valid. The ExpiredCredentialException exception indicates the

credential is expired. If one of these two exceptions result from the authenticate

method, the exceptions are sent back to the client. However, the client runtime

deals with these two exceptions differently:

v If the exception is an InvalidCredentialException, the client runtime displays this

exception. Your application is expected to handle the exception. You can correct

the CredentialGenerator, for example, and then retry the operation.

v If the exception is an ExpiredCredentialException, and the retry count is not 0,

the client runtime calls the CredentialGenerator.getCredential() method again,

and sends the new Credential object to the server. If the new credential

authentication succeeds, the server processes the request. If the new credential

authentication fails, the exception is sent back to the client. If the number of

authentication retry reaches the allowed value and the client still gets an

ExpiredCredentialException , the ExpiredCredentialException results. Your

application must handle the exception.

144 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

The Authenticator interface provides a great flexibility. You can implement the

Authenticator interface in any way. For example, you can implement this interface to

do both credential authentication and client certificate authentication, to support

both authentications. Or you can implement the interface to support two different

user registries.

ObjectGrid supports two kinds of authentications: credential authentication and

client certificate authentication. Which mechanism to use depends on the client and

server side security property setting. These properties follow:

v credentialAuthentication on the security.ogclient.props file

v credentialAuthentication on the security.ogserver.props file

v clientCertificateAuthentication on the security.ogclient.props file

v clientCertificateAuthentication on the security.ogserver.props file

Remember that you can also setting these properties using programming APIs.

The following two tables display which authentication mechanism is used under

different settings.

 Table 11. Credential authentication under client and server settings

Client

credentialAuthentication

Server

credentialAuthentication Result

No

Never disabled

Supported disabled

Required Error case

Supported

Never disabled

Supported enabled

Required enabled

Required

Never Error case

Supported enabled

Required enabled

When no credential authentication exists (the result is disabled), the client certificate

authentication could happen.

The following table shows whether client certificate authentication are used under

different settings. Notice client certificate authentication is only possible if SSL is

used as the communication protocol, and the credential authentication is not used.

 Table 12. Client certificate authentication under client and server settings.

Client clientCertificate

Authentication

Server clientCertificate

Authentication Result

No

Never disabled

Supported disabled

Required Error case

Supported

Never disabled

Supported enabled*

Required enabled*

Chapter 9. ObjectGrid application programming interface overview 145

Table 12. Client certificate authentication under client and server settings. (continued)

Client clientCertificate

Authentication

Server clientCertificate

Authentication Result

Required

Never Error case

Supported enabled*

Required enabled*

* ClientCertificateAuthentication only happens when SSL is used as the protocol

and CredentialAuthentication is not used.

Notice that subtlety exists: When both credential authentication and client certificate

authentication are used, but the credential sent from the client is null, the client

certificate authentication is used.

The authenticator can be configured in the cluster XML file. An example follows:

<cluster name="cluster1" securityEnabled="true" singleSignOnEnabled="true"

 loginSessionExpirationTime="300" statisticsEnabled="true"

 statisticsSpec="map.all=enabled">

 <serverDefinition name="server1" host="localhost" clientAccessPort="12503"

 peerAccessPort="12500" workingDirectory="" traceSpec="ObjectGrid=all=disabled"

 systemStreamToFileEnabled="true" />

 <serverDefinition name="server2" host="localhost" clientAccessPort="12504"

 peerAccessPort="12501" workingDirectory=""

 traceSpec="ObjectGrid=all=disabled"

 systemStreamToFileEnabled="true" />

 <authenticator

 className ="com.ibm.websphere.objectgrid.security.plugins.builtins.

 WSTokenAuthenticator">

 </authenticator>

</cluster>

ObjectGrid provides four default authentication built-in implementations for the

following: user ID and password authentication to a key file user registry, user ID

and password authentication to an LDAP server, SSL client certificate simple

mapping authentication, and WebSphere Application Server Security mechanism.

Except the Authenticator implementation for the WebSphere Application Server

security mechanism, the built-in implementations are for testing purposes only. The

main purpose of these two built-ins is to allow you to do simple testing without

writing any code. WebSphere Application Server Authenticator implementation is an

out-of-box implementation that can be plugged in when both ObjectGrid servers and

clients are in the same security domain.

For ObjectGrid servers that want to use WebSphere Application Server user

registries, you can use WebSphere Application Server APIs to get the user registry

configured in the application server, and then use that in your Authenticator

implementation. However, this implementation is out of scope of this programming

guide.

Key file registry authenticator implementation

You can store user ID and password in a file called a key store file. You can

use the keytool tool to create a keystore file and entries. For example, the

following command creates an entry with alias user1:

keytool -genkey -v -keystore ./keys.jks -storepass password -alias user1

-keypass password -dname CN=user1,O=MyCompany,L=MyCity,ST=MyState

146 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

For testing purposes, ObjectGrid provides the

com.ibm.websphere.objectgrid.security.plugins.builtins.

KeyStoreLoginAuthenticator default implementation for this plug-in to handle

the user name and password authentication. This implementation uses login

name KeyStoreLogin to log the user into a key store file.

 Following is a code snippet shows the implementation of the

authenticate(Credential) method in the KeyStoreLoginAuthenticator class.

public Subject authenticate(Credential credential)throws

 InvalidCredentialException,

ExpiredCredentialException {

 UserPasswordCredential cred = (UserPasswordCredential) credential;

 LoginContext lc = null;

 lc = new LoginContext("KeyStoreLogin",

 new UserPasswordCallbackHandlerImpl(cred.getUserName(),

 cred.getPassword().toCharArray()));

 lc.login();

 Subject subject = lc.getSubject();

This snippet first casts the Credential to a UserPasswordCredential, which

is an implementation of the Credential interface, because it has a contract

with the client that the client can only pass a UserPasswordCredential type

object. It then calls the KeyStoreLogin login module to log in.

 ObjectGrid ships a

com.ibm.websphere.objectgrid.security.plugins.builtins.KeystoreLoginModule

login module for this purpose. You need to provide a key store file that

contains the user name and password pair for each user. The key store file

is configured as an option to the login module.

 Following is the code snippet that shows how the login model log into the

key file.

/**

* Authenticates a user based on the keystore file.

*

* @see javax.security.auth.spi.LoginModule#login()

*/

public boolean login() throws LoginException {

 if (debug) {

 System.out.println("[KeyStoreLoginModule] login: entry");

 }

 String name = null;

 char pwd[] = null;

 if (keyStore == null || subject == null || handler == null) {

 throw new LoginException("Module initialization failed");

 }

 NameCallback nameCallback = new NameCallback("Username:");

 PasswordCallback pwdCallback = new PasswordCallback("Password:", false);

 try {

 handler.handle(new Callback[] { nameCallback, pwdCallback });

 }

 catch (Exception e) {

 throw new LoginException("Callback failed: " + e);

 }

Chapter 9. ObjectGrid application programming interface overview 147

name = nameCallback.getName();

 char[] tempPwd = pwdCallback.getPassword();

 if (tempPwd == null) {

 // treat a NULL password as an empty password

 tempPwd = new char[0];

 }

 pwd = new char[tempPwd.length];

 System.arraycopy(tempPwd, 0, pwd, 0, tempPwd.length);

 pwdCallback.clearPassword();

 if (debug) {

 System.out.println("[KeyStoreLoginModule] login: "

 + "user entered user name: " + name);

 }

 if (ObjectGridManagerImpl.isTraceEnabled && TC.isDebugEnabled())

 Tr.debug(TC, "login", "userName="+name);

 // Validate the user name and password

 try {

 validate(name, pwd);

 }

 catch (SecurityException se) {

 principals.clear();

 publicCreds.clear();

 privateCreds.clear();

 LoginException le = new LoginException(

 "Exception encountered during login");

 le.initCause(se);

 throw le;

 }

 if (debug) {

 System.out.println("[KeyStoreLoginModule] login: exit");

 }

 return true;

}

/**

* Validate the user name and password based on the keystore.

*

* @param userName user name

* @param password password

* @throws SecurityException if any exceptions encountered

*/

protected void validate(String userName, char password[])

throws SecurityException {

 PrivateKey privateKey = null;

 // Get the private key from the keystore

 try {

 privateKey = (PrivateKey) keyStore.getKey(userName, password);

 }

 catch (NoSuchAlgorithmException nsae) {

 SecurityException se = new SecurityException();

 se.initCause(nsae);

 throw se;

 }

 catch (KeyStoreException kse) {

 SecurityException se = new SecurityException();

 se.initCause(kse);

148 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

throw se;

 }

 catch (UnrecoverableKeyException uke) {

 SecurityException se = new SecurityException();

 se.initCause(uke);

 throw se;

 }

 if (privateKey == null) {

 throw new SecurityException("Invalid name: " + userName);

 }

 // Check the certificats

 Certificate certs[] = null;

 try {

 certs = keyStore.getCertificateChain(userName);

 }

 catch (KeyStoreException kse) {

 SecurityException se = new SecurityException();

 se.initCause(kse);

 throw se;

 }

 if (certs != null && certs.length > 0) {

 // If the first certificate is an X509Certificate

 if (certs[0] instanceof X509Certificate) {

 try {

 // Get the first certificate which represents the user

 X509Certificate certX509 = (X509Certificate) certs[0];

 // Create a principal

 X500Principal principal = new X500Principal(certX509

 .getIssuerDN()

 .getName());

 principals.add(principal);

 if (debug) {

 System.out.println(" Principal added: " + principal);

 }

 }

 catch (CertificateException ce) {

 SecurityException se = new SecurityException();

 se.initCause(ce);

 throw se;

 }

 }

 }

}

You must create a login name “KeyStoreLogin” in the JAAS authentication

configuration file. If you are not familiar with the JAAS authentication

configuration file, see the JAAS Authentication Tutorial for more details.

KeyStoreLogin {

 com.ibm.websphere.objectgrid.jaas.KeystoreLoginModule required

 keyStoreFile="${user.dir}${/}security${/}.keystore";

};

This implementation is for testing purposes only.

LDAP authenticator implementation

ObjectGrid provides the

com.ibm.websphere.objectgrid.security.plugins.builtins.LDAPAuthenticator

Chapter 9. ObjectGrid application programming interface overview 149

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/tutorials/GeneralAcnOnly.html

default implementation for this plug-in to handle the user name and

password authentication to an LDAP server. This implementation uses the

LDAPLogin login module to log the user into an LDAP server.

 The following snippet demonstrates how the authenticate method is

implemented:

/**

* @see com.ibm.ws.objectgrid.security.plugins.Authenticator#

* authenticate(LDAPLogin)

*/

public Subject authenticate(Credential credential) throws

InvalidCredentialException, ExpiredCredentialException {

 UserPasswordCredential cred = (UserPasswordCredential) credential;

 LoginContext lc = null;

 try {

 lc = new LoginContext("LDAPLogin",

 new UserPasswordCallbackHandlerImpl(cred.getUserName(),

 cred.getPassword().toCharArray()));

 lc.login();

 Subject subject = lc.getSubject();

 return subject;

 }

 catch (LoginException le) {

 throw new InvalidCredentialException(le);

 }

 catch (IllegalArgumentException ile) {

 throw new InvalidCredentialException(ile);

 }

}

ObjectGrid ships a login module

com.ibm.websphere.objectgrid.security.plugins.builtins.LDAPLoginModule for

this purpose. You must provide the following two options in the JAAS login

configuration file:

v providerURL: The LDAP server provider URL

v factoryClass: The LDAP context factory implementation class

The LDAPLoginModule calls the

com.ibm.websphere.objectgrid.security.plugins.builtins.

LDAPAuthentcationHelper.authenticate method. The following code snippet

shows how the authenticate method of LDAPAuthentcationHelper is

implemented:

/**

* Authenticate the user to the LDAP directory.

* @param user the user ID, e.g., uid=xxxxxx,c=us,ou=bluepages,o=ibm.com

* @param pwd the password

*

* @throws NamingException

*/

public String[] authenticate(String user, String pwd)

 throws NamingException {

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, factoryClass);

 env.put(Context.PROVIDER_URL, providerURL);

 env.put(Context.SECURITY_PRINCIPAL, user);

 env.put(Context.SECURITY_CREDENTIALS, pwd);

 env.put(Context.SECURITY_AUTHENTICATION, "simple");

 InitialContext initialContext = new InitialContext(env);

150 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

// Look up for the user

 DirContext dirCtx = (DirContext) initialContext.lookup(user);

 String uid = null;

 int iComma = user.indexOf(",");

 int iEqual = user.indexOf("=");

 if (iComma > 0 && iComma > 0) {

 uid = user.substring(iEqual + 1, iComma);

 }

 else {

 uid = user;

 }

 Attributes attributes = dirCtx.getAttributes("");

 // Check the UID

 String thisUID = (String) (attributes.get(UID).get());

 String thisDept = (String) (attributes.get(HR_DEPT).get());

 if (thisUID.equals(uid)) {

 return new String[] { thisUID, thisDept };

 }

 else {

 return null;

 }

}

If authentication succeeds, the ID and password are considered valid. Then

the login module gets the UID info and department info from this

authenticate method. The login module creates two principals:

SimpleUserPrincipal and SimpleDeptPrincipal. You can use the

authenticated subject for group authorization (in this case, the department is

a group) and individual authorization.

 Following is a login module configuration example that is used to log in to

the LDAP server:

LDAPLogin { com.ibm.websphere.objectgrid.security.plugins.builtins.

 LDAPLoginModule required

providerURL="ldap://directory.acme.com:389/"

factoryClass="com.sun.jndi.ldap.LdapCtxFactory";

};

In the previous configuration, the LDAP server points to the

ldap://directory.acme.com:389/ server. Change this setting to your LDAP

server. This login module uses the provided user ID and password to

connect to the LDAP server. This implementation is for testing purposes

only.

WebSphere Application Server authenticator implementation

ObjectGrid also provides the

com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenAuthenticator

built-in implementation to use the WebSphere Application Server security

infrastructure. This built-in implementation can be used when the following

conditions exist:

v The WebSphere Application Server global security is turned on.

v Both ObjectGrid clients and ObjectGrid servers are launched in the

WebSphere application server Java virtual machines.

v These application servers are in the same security domain.

Chapter 9. ObjectGrid application programming interface overview 151

v The ObjectGrid client is already authenticated in the WebSphere

Application Server.

The ObjectGrid client can use the

com.ibm.websphere.objectgrid.security.plugins.builtins.

WSTokenCredentialGenerator class to generate a credential and the

ObjectGrid server uses this Authenticator implementation class to

authenticate the credential. If the token is authenticated successfully, a

Subject object returns.

 This scenario takes advantage of the fact that the ObjectGrid client has

already been authenticated. Because the application servers that have the

ObjectGrid servers are in the same security domain as the application

servers housing the ObjectGrid clients, the security tokens can be

propagated from the ObjectGrid client to the ObjectGrid server so the same

user registry does not need to be re-authenticated.

Simple certificate mapping authenticator implementation

ObjectGrid also provides a built-in implementation

com.ibm.websphere.objectgrid.security.plugins.builtins.

CertificateMappingAuthenticator to map the certificate to an Subject object.

The implementation extracts the Distinguished Name (DN) of the first

certificate in the chain and creates a principal with that name. This

implementation is for testing purposes only.

Tivoli Access Manager Authenticator Implementation

Tivoli Access Manager has been widely as a security server. You can also

implement Authenticator using the Tivoli Access Manager-provided login

modules.

 To authenticate a user using Tivoli Access Manager, the Tivoli provided

LoginModule, com.tivoli.mts.PDLoginModule, requires that the calling

application provide the following:

v A principal name, specified as either a short name or an X.500 name

(DN)

v A password

The LoginModule authenticates the principal and returns the Tivoli Access

Manager credential. The LoginModule expects the calling application to

provide the following information:

v The user name, through a javax.security.auth.callback.NameCallback

v The password, through a javax.security.auth.callback.PasswordCallback.

When the Tivoli Access Manager credential is successfully retrieved, the

JAAS LoginModule creates a Subject and a PDPrincipal. No built-in for TAM

authentication is provided, because it is just trivial with the PDLoginModule.

Refer to the IBM Tivoli Access Manager Authorization Java Classes

Developer Reference for more details.

Single sign-on

After an ObjectGrid client successfully authenticates to a server, the ObjectGrid

server creates a Subject object. If both the client and server support single sign-on

(SSO), this Subject object is then converted to an SSO token. This token is passed

back to the client side to associate with the socket. This SSO token can be passed

to a new server for authentication so there is no need to re-authenticate on a

different server.

152 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

http://publib.boulder.ibm.com/tividd/td/ITAME/SC32-1350-00/en_US/HTML/am51_authJ_devref.html
http://publib.boulder.ibm.com/tividd/td/ITAME/SC32-1350-00/en_US/HTML/am51_authJ_devref.html

SSO token is implemented using ObjectGrid secure token manager mechanism. For

more details about secure token manager, see “ObjectGrid cluster security” on page

170. Basically, the secure token mechanism uses cryptographic keys (secret keys)

to encrypt and decrypt user data that passes between the servers, and

public-private keys to sign the data.

The SSO token also contains an expiration time. All product servers participating in

a protection domain must have their time, date, and time zone synchronized. If not,

the SSO tokens appear prematurely expired and cause authentication or validation

failures. (This is not necessary if universal time is used).

When an ObjectGrid client connects to a different server, this SSO token can be

passed to the new server. This server will validate the SSO token to make sure it

hasn’t been tampered with by unsigning and decrypting it. It also checks its

timestamp to make sure it has not been expired. If the token is valid, the client does

not need to authenticate to this server.

If an SSO token is expired, the server has to re-authenticate the client. The server

asks the client provide the credential again.

Enable single-sign-on for client

Enabling client single sign on can be done in two ways:

v Configuration. Use the SSOEnabled property in the

security.ogclient.props file to enable single sign-on on the client side.

v Programming. Use the ClientSecurityConfiguration to enable single

sign-on with the following method.

/**

* Set whether single sign on is enabled.

* @param enabled whether single sign on is enabled for this

* client or not.

*/

void setSingleSignOnEnabled(boolean enabled);

Enable single-sign-on for server

To enable single sign-on on the server side, set the singleSignOnEnabled

attribute to true in the cluster XML file. An example follows:

<cluster>

 <objectGrid name="cluster" securityEnabled="true"

 singleSignOnEnabled="true" loginSessionExpirationTime="300">

Notice that single sign-on is only enabled if security is enabled.

Secure communication

ObjectGrid supports both TCP/IP and SSL for secure communication. SSL provides

a secure communication between client and server. Which communication

mechanism is used depends on the settings of the following properties:

v The transportType property in the security.ogclient.props file

v The transportType property in the security.ogserver.props file

 Table 13. Transport protocol to use under client transport and server transport settings

Client transportType Server transportType Resulted protocol

TCP/IP

TCP/IP TCP/IP

SSL supported TCP/IP

SSL required Error

Chapter 9. ObjectGrid application programming interface overview 153

Table 13. Transport protocol to use under client transport and server transport

settings (continued)

Client transportType Server transportType Resulted protocol

SSL supported

TCP/IP TCP/IP

SSL supported SSL (if SSL fails, then

TCP/IP)

SSL required SSL

SSL required

TCP/IP Error

SSL supported SSL

SSL required SSL

When SSL is used, the SSL configuration must be provided on both the client and

server side.

Configure SSL parameters for ObjectGrid clients

SSL parameters on the client side can be configured in the following ways:

v Create a com.ibm.websphere.objectgrid.security.config.SSLConfiguration

object by using the factory class

com.ibm.websphere.objectgrid.security.config.

ClientSecurityConfigurationFactory. For more details, refer to the API

documentation.

v Configure the parameters in the security.ogclient.props file, and then

use

ClientSecurityConfigurationFactory.getClientSecurityConfiguration(String)

method to populate the object instance.

The following properties are for SSL configurations in the

security.ogclient.props file.

v provider: Specifies the SSL JSSE provider. Possible values are

IBMJSSE+, IBMJSSE2, SunJSSE, and so on. Set this value based on

the Java Development Kit (JDK) that you use.

v protocol: Specifies the SSL protocol. Possible values are SSL+, SSLV2,

SSLV3, TLS, TLSv1, and so on. Set this protocol value based on which

Java Secure Socket Extension (JSSE) provider you use.

v alias: The string represents the alias in the key store. No default value

exists. This property is used if the key store has multiple key pair

certificates and you want to select one of the certificates.

v keyStoreType: Specifies the SSL key store type. Possible values are

JKS+, JCEK, PKCS12 etc. Set this value based on which Java Secure

Socket Extension (JSSE) provider you use.

v keyStore: Specifies the key store path file name that has the client

public certificates and private keys. For example,

[OBJECTGRID_HOME]/properties/DummyClientKeyFile.jks. In this release,

hardware support is not supported.

v keyStorePassword: Specifies the password to protect the key store

path. The password is encoded simply using “xor” algorithm by

ObjectGrid. Use the PropFilePasswordEncoder tool to encode this

property file. Here is an example of encoded password: {x0r}CDo9Hgw\\.

v trustStoreType: Specifies the trust store type. Possible values are JKS+,

JCEK, PKCS12 etc. You can set this value based on which JSSE

provider they use.

154 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

v trustStore: Specifies the trust store path file name which has the server

public certificates. For example,

[OBJECTGRID_HOME]/properties/DummyClientTrustFile.jks

v trustStorePassword: Specifies the password to protect the trust store

path. The password is encoded simply using xor algorithm by ObjectGrid.

Use tool PropFilePasswordEncoder to encode this property file. Here is

an example of encoded password: {x0r}CDo9Hgw\

v certReqSubjectDN: This is the string that is required in the certificate

subject distinguished name (DN) from the server. A client is allowed to

connect to the server only if the server certificate DN contains this string.

If the value is null, the client does not require a particular subject DN in

the server certificate. For example, if the certificate subject DN is

″CN=Server1, OU=Your Organizational Unit, O=Your Organization,

S=Your State,C=Your Country″, then ″CN=server1″, ″O=Your

Organization″, ″OU=Your Organizational Unit, O=Your Organization,

S=Your State,C=Your Country″ results in a match, but ″CN=server2″ and

″OU=Your Organizational Unit, L=smething, O=Your Organization,

S=Your State,C=Your Country″ does not match. Wild card matching is

not supported.

Configure SSL Parameters for Object Servers

SSL parameters on the client side can be configured in the

security.ogserver.props file. This property file can be passed as an

parameter when you launch an ObjectGrid server.

 Except the previous SSL properties, the server side SSL configuration has

an additional property:

v clientAuthentication (true+, false). If this property is set to true, the SSL

client must be authenticated. This is different from the client certificate

authentication. Client certificate authentication means authenticating a

client to a user registry based on the certificate chain, while this property

ensures the server connects to the right client.

Local ObjectGrid security

This topic describes the security of local ObjectGrid programming model. In the

local ObjectGrid programming model, the main security function is the authorization.

The local ObjectGrid programming model does not support any authentication. You

must authenticate outside of ObjectGrid. However, ObjectGrid does provide plug-ins

to get and validate Subject objects.

Enabling ObjectGrid security can be done in two ways:

v Configuration. You can use the ObjectGrid XML file to define an ObjectGrid and

enable the security for that ObjectGrid. Following is the secure-objectgrid-
definition.xml file that is used in the ObjectGridSample enterprise application

sample. In this XML file, security is enabled by setting the securityEnabled

attribute to true.

<objectGrids>

 <objectGrid name="secureClusterObjectGrid" securityEnabled="true"

 authorizationMechanism="AUTHORIZATION_MECHANISM_JASS">

 <bean id="TransactionCallback"

 classname="com.ibm.websphere.samples.objectgrid.HeapTransactionCallback" />

 ...

</objectGrids>

v Programming. If you want to create an ObjectGrid using APIs, call the following

method on the ObjectGrid interface to enable the security:

Chapter 9. ObjectGrid application programming interface overview 155

/**

* Enable the ObjectGrid security

*/

void setSecurityEnabled();

In the local ObjectGrid programming model, no authentication exists. When you

set security with this method, you are configuring authorization. This condition is

consistent with the client server model. Enabling security for an ObjectGrid in the

client server model only enables the authorization on that ObjectGrid instance.

Authentication

In the local ObjectGrid programming model, ObjectGrid does not provide any

authentication mechanism. ObjectGrid relies on the environment, either application

servers or applications, for authentications. When an ObjectGrid is used in

WebSphere Application Server or WebSphere Extended Deployment, applications

can use the WebSphere Application Server security authentication mechanism.

When an ObjectGrid is running in a Java 2 Platform, Standard Edition (J2SE)

environment, the application has to manage authentications with Java

Authentication and Authorization Service (JAAS) authentication or other

authentication mechanisms. For more information about using JAAS authentication,

see the JAAS reference guide.

The contract between an application and an ObjectGrid instance is the

javax.security.auth.Subject object. After the client is authenticated by the application

server or the application, the application can retrieve the authenticated

javax.security.auth.Subject object and use this Subject object to get a session from

the ObjectGrid instance by calling the ObjectGrid.getSession(Subject) method. This

Subject object is used to authorize accesses to the map data. This contract is

called a subject passing mechanism. Following is the

ObjectGrid.getSession(Subject) API:

/**

* This API allows the cache to use a specific subject rather than the one

* configured on the ObjectGrid to get a session.

* @param subject

* @return An instance of Session

* @throws ObjectGridException

* @throws TransactionCallbackException

* @throws InvalidSubjectException the subject passed in is invalid based

* on the SubjectValidation mechanism.

*/

public Session getSession(Subject subject)

throws ObjectGridException, TransactionCallbackException, InvalidSubjectException;

The getSession method in the ObjectGrid interface can also be used to get a

Session object:

/**

* This returns a Session object that can be used by a single thread at a time.

* It’s not allowed to share this Session object between threads without placing a

* critical section around it. While the core framework allows the object to move

* between threads, the TransactionCallback and Loader may prevent this usage,

* especially in J2EE environments. When security is enabled, this will use the

* SubjectSource to get a Subject object.

*

* If the initialize() method has not been invoked prior to the first

* getSession invocation, then an implicit initialization will occur. This ensures

* that all of the configuration is complete before any runtime usage is required.

*

* @see #initialize()

* @return An instance of Session

156 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html

* @throws ObjectGridException

* @throws TransactionCallbackException

* @throws IllegalStateException if this method is called after the

* destroy() method is called.

*/

public Session getSession()

throws ObjectGridException, TransactionCallbackException;

As the API documentation specifies, when security is enabled, this method uses the

SubjectSource plug-in to get a Subject object. The SubjectSource plug-in is one of

the security plug-ins defined in ObjectGrid to support propagating Subject objects.

See “Security-related plug-ins” for more information.

The getSession(Subject) method can only be called on the local ObjectGrid

instance. If you call the getSession(Subject) method on a client side in a distributed

ObjectGrid configuration, an exception results.

Security-related plug-ins

ObjectGrid provides two security plug-ins that are related to the subject passing

mechanism: the SubjectSource and SubjectValidation plug-ins.

SubjectSource plug-in

The SubjectSource plug-in, represented by the

com.ibm.websphere.objectgrid.security.plugins.SubjectSource interface, is a

plug-in that is used to get a Subject object from an ObjectGrid running

environment. This ObjectGrid environment can be an application that uses

the ObjectGrid or an application server that hosts the application. The

interface follows:

/**

* This plug-in can be used to get a Subject object which represents the

* ObjectGrid client.

* This subject is then used for ObjectGrid authorization. The method

* getSubject is called by the ObjectGrid runtime when the

* ObjectGrid.getSession() method is used to get a session and the

* security is enabled.

*

* This plug-in is useful for an already authenticated client: it

* can retrieve the authenticated Subject object and then pass to the

* ObjectGrid instance. Therefore, there is no need for another

* authentication.

*

* For example, use

* Subject.getSubject(AccessControlContext)

* to get the subject associated with the AccessControlContext and

* then return it in the getSubject implementation.

*

* This plug-in can only be used in a secure domain, such as in a

* ObjectGrid server.

*

* @ibm-api

* @since WAS XD 6.0

*/

public interface SubjectSource {

 /**

 * Get a Subject object which can represent the ObjectGrid client.

 *

 * @return a Subject object

 * @throws ObjectGridSecurityException any exception during the subject

Chapter 9. ObjectGrid application programming interface overview 157

* retrieving

 */

 Subject getSubject() throws ObjectGridSecurityException;

}

Consider the SubjectSource plug-in an alternative to the subject passing

mechanism. Using the subject passing mechanism, the application retrieves

the Subject object and uses it to get the ObjectGrid session object. With the

SubjectSource plug-in, the ObjectGrid runtime that retrieves the Subject

object and uses it to get the session object. The subject passing

mechanism gives the control of Subject objects to applications, while the

SubjectSource plug-in mechanism frees applications from retrieving the

Subject object.

 This SubjectSource plug-in can be used to get a Subject object that

represents an ObjectGrid client that is used for ObjectGrid authorization.

When the ObjectGrid.getSession() method is called, the Subject

getSubject() throws ObjectGridSecurityException() method is called by the

ObjectGrid runtime, if security is enabled.

 ObjectGrid provides a default implementation of this plug-in:

com.ibm.websphere.objectgrid.security.plugins.builtins.

WSSubjectSourceImpl. This implementation can be used to retrieve a caller

subject or RunAs subject from the thread when an application is running in

WebSphere Application Server. You can configure this class as the

SubjectSource implementation class when using ObjectGrid in WebSphere

Application Server. Following is a code snippet that shows the main flow of

the WSSubjectSourceImpl.getSubject():

Subject s = null;

try {

 if (finalType == RUN_AS_SUBJECT) {

 // get the RunAs subject

 s = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

 }

 else if (finalType == CALLER_SUBJECT) {

 // get the callersubject

 s = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

 }

}

catch (WSSecurityException wse) {

 throw new ObjectGridSecurityException(wse);

}

return s;

For other details, refer to the API Documentation for the SubjectSource

plug-in and the WSSubjectSourceImpl implementation.

SubjectValidation plug-in

The SubjectValidation plug-in, represented by the

com.ibm.websphere.objectgrid.security.plugins.SubjectValidation interface, is

another security plug-in. The SubjectValidation plug-in can be used to

validate that a javax.security.auth.Subject, either passed to the ObjectGrid

or retrieved by the SubjectSource plug-in, is a valid Subject which has not

been tampered with. Here is the interface.

/**

* This plug-in can be used to validate a javax.security.auth.Subject

* passed to the ObjectGrid is a valid subject which has not been

* tampered with.

*

158 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

* An implementation of this plug–in needs support from the Subject

* object creator, because only the creator knows whether the Subject object

* has been tampered with. However, a subject creator may

* not know whether the Subject has been tampered with. In this

* case, this plug-in should not be used.

*

* This plug-in can only be used in a secure domain, such as in a

* application server. Do not put this plug-in on the client side, it is

* ignored.

*

* @ibm-api

*

* @since WAS XD 6.0

*/

public interface SubjectValidation {

 /**

 * Validate the Subject has not been tampered with.

 * @param subject a subject to be validated

 * @return the validated Subject object

 * @throws InvalidSubjectException

 */

 Subject validateSubject(Subject subject) throws

 InvalidSubjectException;

}

The Subject validateSubject (Subject subject) throws

InvalidSubjectException; method in the SubjectValidation interface takes a

Subject object and returns a Subject object. Whether a Subject object is

considered valid and what Subject object is returned are all up to your

implementations. If the Subject object is not valid, an

InvalidSubjectException results.

 You can use this plug-in if you do not trust the Subject object passed to this

method. This case is rare considering that we trust the application

developers who develop the code to retrieve the Subject object.

 An implementation of this plug-in needs support from the Subject object

creator because only the creator knows if the Subject object has been

tampered with. However, some subject creator might not know if the

Subject has been tampered with. In this case, this plug-in is not useful.

 ObjectGrid provides a default implementation of SubjectValidation:

com.ibm.websphere.objectgrid.security.plugins.builtins.WSSubjectValidationImpl.

This implementation can be used to validate the WebSphere authenticated

subject. Users can configure this class as the SubjectValidation

implementation class when using ObjectGrid in WebSphere Application

Server. The WSSubjectValidationImpl implementation considers a Subject

object valid if and only if the credential token associated with this Subject

has not been tampered with. In other words, you could change other parts

of the Subject object. The WSSubjectValidationImpl implementation asks

WebSphere Application Server for the original Subject corresponding to the

credential token and returns the original Subject object as the validated

Subject object. Therefore, the changes made to the Subject contents other

than the credential token have no effects. The code snippet below shows

the basic flow of the WSSubjectValidationImpl.validateSubject(Subject):

// Create a LoginContext with scheme WSLogin and

// pass a Callback handler.

LoginContext lc = new LoginContext("WSLogin",

new WSCredTokenCallbackHandlerImpl(subject));

Chapter 9. ObjectGrid application programming interface overview 159

// When this method is called, the callback handler methods

// will be called to log the user in.

lc.login();

// Get the subject from the LoginContext

return lc.getSubject();

In the previous code snippet, a credential token callback handler object,

WSCredTOkenCallbackHandlerImpl, is created with the Subject object to be

validated. Then a LoginContext is created with login scheme ″WSLogin″.

When the lc.login() method is called, WebSphere Application Server security

retrieves the credential token from the Subject object and then returns the

correspondent Subject as the validated Subject object.

 For other details, refer to the API documentation of SubjectValidation and

WSSubjectValidationImpl.

Plug-in configuration

The SubjectValidation plug-in and SubjectSource plug-in can be configured

in two ways:

v Configuration. You can use the ObjectGrid XML file to define an

ObjectGrid and set these two plug-ins. Here is an example, in which the

WSSubjectSourceImpl class is configured as the SubjectSource plug-in

and the WSSubjectValidation class is configured as the SubjectValidation

plug-in.

<objectGrids>

 <objectGrid name="secureClusterObjectGrid" securityEnabled="true"

 authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS">

 <bean id="SubjectSource"

className="com.ibm.websphere.objectgrid.security.plugins.builtins.

 WSSubjectSourceImpl" />

 <bean id="SubjectValidation"

 className="com.ibm.websphere.objectgrid.security.plugins.builtins.

 WSSubjectValidationImpl" />

 <bean id="TransactionCallback"

className="com.ibm.websphere.samples.objectgrid.

 HeapTransactionCallback" />

...

</objectGrids>

v Programming. If you want to create an ObjectGrid through APIs, you

can call the following methods to set the SubjectSource or

SubjectValidation plug-ins.

/**

* Set the SubjectValidation plug-in for this ObjectGrid instance. A

* SubjectValidation plug-in can be used to validate the Subject object

* passed in is a valid Subject. Refer to {@link SubjectValidation}

* for more details.

* @param subjectValidation the SubjectValidation plug-in

*/

void setSubjectValidation(SubjectValidation subjectValidation);

/**

* Set the SubjectSource plug-in. A SubjectSource plug-in can be used

* to get a Subject object from the environment to represent the

* ObjectGrid client.

*

* @param source the SubjectSource plug-in

*/

void setSubjectSource(SubjectSource source);

160 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Write your own JAAS authentication code

You can write you own JAAS authentication code to handle the authentication. You

need to write your own login modules and then configure the login modules for your

authentication module.

The login module receives information about a user and authenticates the user.

This information can be anything that can identify the user. For example, it can be a

user ID and password, client certificate, and so on. After receiving the information,

the login module verifies that it represents a valid subject and then creates a

Subject object. Currently, several implementations of login modules are available to

public.

After a login module is written, configure this login module so it can be used by the

runtime. A JAAS login module configuration file must be configured. This login

module contains the login module and its authentication scheme. For example:

FileLogin

{

 com.acme.auth.FileLoginModule required

};

The authentication scheme is ″FileLogin″ and the login module is

com.acme.auth.FileLoginModule. The required token indicates that the

FileLoginModule module must validate this login or the scheme as a whole fails.

Setting the JAAS login module configuration file can be done by one of the

following ways:

v Set the JAAS login module configuration file in the login.config.url in the

java.security file, for example,

login.config.url.1=file:${java.home}/lib/security/file.login

v Set the JAAS login module configuration file from the command line by using

JVM arguments -Djava.security.auth.login.config, for example

-Djava.security.auth.login.config ==$JAVA_HOME/lib/security/file.login

For more information about how to write and configure login modules, see the JAAS

Authentication Tutorial.

If your code is running in WebSphere Application Server, you must configure the

JAAS login in the administrative console and store this login configuration in the

application server configuration. See Login configuration for Java Authentication and

Authorization Service for details.

Authorization

After the client is authenticated, you can use ObjectGrid authorization mechanisms

to authorize access to the ObjectGrid map data and the management tasks.

ObjectGrid authorization is based on the Subject object. ObjectGrid supports two

kinds of authorization mechanisms: Java Authentication and Authorization Service

(JAAS) authorization and custom authorization.

Permission class

Two different kinds of ObjectGrid authorization exist: authorization to the data in the

map, and authorization to the management tasks. Each authorization uses a

Permission class. The permission to access the map is represented by the

MapPermission class, and the permission to run the management tasks is

represented by the AdminPermission class.

Chapter 9. ObjectGrid application programming interface overview 161

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/tutorials/GeneralAcnOnly.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/tutorials/GeneralAcnOnly.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rsec_logmod.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rsec_logmod.html

MapPermission class

In ObjectGrid, the com.ibm.websphere.objectgrid.security.MapPermission

public class represents permissions to the ObjectGrid resources, specifically

the methods of ObjectMap or JavaMap interfaces. ObjectGrid defines the

following permission strings to access the methods of ObjectMap and

JavaMap:

v read: Grants permission to read the data from the map. The integer

constant is defined as MapPermission.READ

v write: Grants permission to update the data in the map. The integer

constant is defined as MapPermission.WRITE.

v insert: Grants permission to insert the data into the map. The integer

constant is defined as MapPermission.INSERT.

v remove: Grants permission to remove the data from the map. The

integer constant is defined as MapPermission.REMOVE.

v invalidate: Grants permission to invalidate the data from the map. The

integer constant is defined as MapPermission.INVALIDATE.

v all: Grants all permissions: read, write, insert, remote, and invalidate.

The integer constant is defined as MapPermission.ALL.

You can construct a MapPermission object by passing the fully qualified

ObjectGrid map name (in format [ObjectGrid_name].[ObjectMap_name])

and the permission string or integer value. A permission string can be a

comma-delimited string of the above permissions strings such as ″read,

insert″, or it can be ″all″ which means all permissions are granted. A

permission integer value can be any above permission integer constants or

a mathematical “or” value of several integer permission constants, such as

DGMapPermission.GET|DGMapPermission.PUT.

 The authorization occurs when a client calls a method of ObjectMap or

JavaMap. The ObjectGrid runtime checks different permissions for different

methods. If the required permissions are not granted to the client, an

AccessControlException results.

 Table 14. List of methods and their required permissions

com.ibm.websphere.objectgrid.ObjectMap

com.ibm.websphere.objectgrid.JavaMap

read

boolean containsKey(Object)

boolean equals(Object)

Object get(Object)

Object get(Object, Serializable)

List getAll(List)

List getAll(List keyList, Serializable)

List getAllForUpdate(List, Serializable)

Object getForUpdate(Object)

Object getForUpdate(Object, Serializable)

162 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Table 14. List of methods and their required permissions (continued)

com.ibm.websphere.objectgrid.ObjectMap

com.ibm.websphere.objectgrid.JavaMap

write

Object put(Object key, Object value)

void put(Object, Object, Serializable)

void putAll(Map)

void putAll(Map, Serializable)

void update(Object, Object)

void update(Object, Object, Serializable)

insert

public void insert (Object, Object)

void insert(Object, Object, Serializable)

remove Object remove (Object)

void removeAll(Collection)

invalidate

public void invalidate (Object, boolean)

void invalidateAll(Collection, boolean)

void invalidateUsingKeyword(Serializable)

int setTimeToLive(int)

Authorization is based solely on which method is used, instead on what the

method really does. For example, a put method can insert or update an

record based on whether the record exists. However, the insert or update

case are not distinguished at this moment.

 Notice also that an operation type could be achieved by combinations of

other types. For example, an update can be achieved by a remove and

then an insert. Design your authorization policies with this in mind.

AdminPermission

The administration permission is represented by the

com.ibm.websphere.objectgrid.security.AdminPermission class. ObjectGrid

defines two permission actions for administration permissions:

v admin: Grant permissions to do any administration tasks.

v monitor: Grant permissions to actions that only are read-access-only

administration tasks.

The detailed operations granted to users with different permissions are

listed in the following table. These operations correspond to the methods in

the ManagementMBean interface:

 Table 15. Relationship between management tasks and admin permissions

operations admin monitor

startServer Y N

stopServer Y N

forceStopServer Y N

setServerTrace Y N

retrieveServerStatus Y Y

getMapStats Y Y

getOGStats Y Y

getReplicationStats Y Y

Chapter 9. ObjectGrid application programming interface overview 163

If the client has admin permission, it can run the startServer task; if the

client has monitor permission, it cannot run the startServer task.

Authorization mechanisms

ObjectGrid supports two kinds of authorization mechanisms: JAAS authorization

and custom authorization. This applies to both map data access authorization and

admin authorization. JAAS authorization augments the Java security policies with

user-centric access controls. Permissions can be granted based not just on what

code is running but also on who (principal) is running it. It is part of the JDK 1.4.

ObjectGrid also supports custom authorization with the

com.ibm.websphere.objectgrid.security.plugins.MapAuthorization plug-in and

com.ibm.websphere.objectgrid.security.plugins.AdminAuthorization plug-in. You can

implement your own authorization mechanism if you do not want to use JAAS

authorization. By using custom authorization mechanism, you can use the policy

database, policy server, or Tivoli Access Manager to manage the ObjectGrid

authorizations.

ObjectGrid authorization mechanism can be configured in two ways:

v Configuration. You can use the ObjectGrid XML file to define an ObjectGrid and

set the authorization mechanism to either

AUTHORIZATION_MECHANISM_JAAS or

AUTHORIZATION_MECHANISM_CUSTOM. Here is the secure-objectgrid-
definition.xml file that is used in the ObjectGridSample enterprise application

sample.

<objectGrids>

 <objectGrid name="secureClusterObjectGrid" securityEnabled="true"

 authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS">

 <bean id="TransactionCallback"

classname="com.ibm.websphere.samples.objectgrid.HeapTransactionCallback" />

...

</objectGrids>

v Programming. If you want to create an ObjectGrid using APIs, you can call the

following method to set the authorization mechanism. This only applies to the

local ObjectGrid programming model when you directly instantiates the

ObjectGrid instance.

/**

* Set the authorization Mechanism. The default is

* com.ibm.websphere.objectgrid.security.SecurityConstants.

* AUTHORIZATION_MECHANISM_JAAS.

* @param authMechanism the map authorization mechanism

*/

void setAuthorizationMechanism(int authMechanism);

JAAS Authorization

A javax.security.auth.Subject object represents an authenticated user. A

Subject is comprised of a set of principals, and each Principal represents

an identity for that user. For example, a Subject could have a name

principal (″Joe Smith″) and a group principal (″manager″).

 Using JAAS authorization policy, permissions can be granted to specific

Principals. ObjectGrid associates the Subject with the current access

control context. For each method call to the ObjectMap or Javamap, the

Java runtime automatically determines if the policy grants the required

164 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

permission only to a specific Principal and if so, the operation is allowed

only if the Subject associated with the access control context contains the

designated Principal.

 You must be familiar with the policy syntax of the policy file. For detailed

description of JAAS authorization, refer to theJAAS Authorization Tutorial.

 ObjectGrid has a special codebase used for checking the JAAS

authorization to the ObjectMap and JavaMap method calls. This special

codebase is

http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction.

Use this code base when granting ObjectMap or JavaMap permissions to

principals. This special code was created because the ObjectGrid Java

archive (JAR) file is granted with all permissions.

 The template of the policy to grant MapPermission is:

grant codeBase "http://www.ibm.com/com/ibm/ws/objectgrid/security/

 PrivilegedAction"

 <Principal field(s)>{

 permission com.ibm.websphere.objectgrid.security.MapPermission

 "[ObjectGrid_name].[ObjectMap_name]", "action";

 permission com.ibm.websphere.objectgrid.security.MapPermission

 "[ObjectGrid_name].[ObjectMap_name]", "action";

 };

A Principal field looks like the following:

Principal Principal_class "principal_name"

That is, it is the word ″Principal″ followed by the fully qualified name of a

Principal class and a principal name. The map_name is the fully qualified

map name in the format of [ObjectGrid Name].[Map Name], for example,

″secureClusterObjectGrid.employees″. The action is a comma-delimited

string of the permissions strings defined in MapPermission class, such as

“read, insert”, or “all”.

 Limited wildcard function is supported. You can replace the ObjectGrid

name or map name with “*” to indicate “any”. However, ObjectGrid does not

support replacing part of the ObjectGrid name or map name with “*”.

Therefore, “*.employees”, “clusterObjectGrid.*”, and “*.*” are all valid

names, but “cluster*.employees” is not valid

 For example, in the ObjectGridSample.ear sample application, two

authorization policy files are defined: fullAccessAuth.policy and

readInsertAccessAuth.policy. The content of

readInsertAccessAuth.policy is as follows:

grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/

 PrivilegedAction"

 Principal com.ibm.ws.security.common.auth.WSPrincipalImpl

 "principal_name" {

 permission com.ibm.websphere.objectgrid.security.MapPermission

 "secureClusterObjectGrid.employees", "read,insert";

 permission com.ibm.websphere.objectgrid.security.MapPermission

 "secureClusterObjectGrid.offices", "read,insert";

 permission com.ibm.websphere.objectgrid.security.MapPermission

 "secureClusterObjectGrid.sites", "read,insert";

 permission com.ibm.websphere.objectgrid.security.MapPermission

 "secureClusterObjectGrid.counters", "read,insert";

};

Chapter 9. ObjectGrid application programming interface overview 165

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/tutorials/GeneralAcnAndAzn.html

In this policy, only ″insert″ and ″read″ permissions are granted to these four

maps to a certain principal. The other policy file, fullAccessAuth.policy,

grants ″all″ permissions to these maps to a principal. Before running the

application, change the principal_name and principal class to appropriate

values. The value of the principal_name depends on the user registry. For

example, if local OS is used as user registry , the machine name is

MACH1, and the user ID is user1, the principal_name is ″MACH1/user1″.

 JAAS authorization policy can be directly put in the Java policy file, or it can

be put in a separate JAAS authorization file and then set it by using the

-Djava.security.auth.policy=file:[JAAS_AUTH_POLICY_FILE] JVM

argument or using auth.poliyc.url.x=file:[JAAS_AUTH_POLICY_FILE] in

the java.security file.

 The description of JAAS authorization also applies when you want to write

and configure the policies for authorizing access to the management tasks.

The only difference will be that instead of using

″com.ibm.websphere.objectgrid.security.MapPermission map name,

actions;″ format, you use

″com.ibm.websphere.objectgrid.security.AdminPermission action;″. The

action could be either ″admin″ or ″monitor″.

Custom map authorization

ObjectGrid also supports the custom map authorization by the

MapAuthorization plug-in. The interface follows:

/**This plugin can be used to authorize ObjectMap/JavaMap accesses to the

 * principals represented by the Subject object.

 *

 * A typical implementation of this plug-in is to retrieve the

 * principals from the Subject object, and then check whether

 * the specified permissions are granted to the principals.

 *

 *

 * @ibm-api

 * @since WAS XD 6.0

 */

public interface MapAuthorization {

 /**

 * Check whether the principals represented by the Subject object

 * in the subject has the specified MapPermission. If

 * the permissions are granted, true is returned; otherwise a false

 * is returned.

 *

 * @param subject the subject

 * @param permission the permission to access ObjectMap

 *

 * @return true if the permission is granted; false otherwise.

 */

 boolean checkPermission(Subject subject, MapPermission permission);

}

This plug-in can be used to authorize ObjectMap and JavaMap accesses to

the principals contained in the Subject object. The following method:

boolean checkPermission(Subject subject, MapPermission permission)

166 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

The MapAuthorization interface is called by the ObjectGrid runtime to check

whether the passed-in subject object has the passed-in permission. The

implementation of the MapAuthorization interface returns true if so and false

otherwise.

 A typical implementation of this plug-in is to retrieve the principals from the

Subject object and check whether the specified permissions are granted to

the principals by consulting specific policies. These policies are defined by

users. For example, the policies can be defined in a database, a plain file,

or a Tivoli Access Manager policy server.

 ObjectGrid provides two default implementations for this plug-in. The

com.ibm.websphere.objectgrid.security.plugins.builtins.

JAASMapAuthorizationImpl class is an implementation of MapAuthorization

that uses JAAS mechanism for authorization. Another implementation class

is the com.ibm.websphere.objectgrid.security.plugins.builtins.

TAMMapAuthorizationImpl class. It shows how Tivoli Access Manager can

be used to manage the ObjectGrid authorizations. Following is a code

snippet that shows the basic flow of the

JAASMapAuthorizationImpl.checkPermission(Subject, MapPermission):

// Creates a PrivilegedExceptionAction to check the permssions.

PrivilegedExceptionAction action =

 MapPermissionCheckAction.getInstance(permission);

Subject.doAsPrivileged(subject, action, null);

See the IBM Tivoli Access Manager Authorization Java Classes Developer

Reference for more details.

 Do not use this TAMMapAuthorizationImpl plug-in in an out-of-box scenario.

Use this plug-in for testing purposes only. It requires certain restrictive

preconditions:

v The Subject object contains a com.tivoli.mts.PDPrincipal principal.

v The TAM policy server has defined the following permissions for the

ObjectMap or JavaMap name object. The object defined in the policy

server should have the same name as the ObjectMap or JavaMap name

in the format of [ObjectGrid_name].[ObjectMap_name]. The permission is

the first character of the permission strings defined in the

MapPermission. For example, the permission ″r″ defined in the policy

server represents the ″read″ permission to the ObjectMap.

The following snippet demonstrates how to implement the checkPermission

method:

/**

* @see com.ibm.websphere.objectgrid.security.plugins.

* MapAuthorization#checkPermission

* (javax.security.auth.Subject, com.ibm.websphere.objectgrid.security.

* MapPermission)

*/

public boolean checkPermission(final Subject subject,

 MapPermission permission) {

 String[] str = permission.getParsedNames();

 StringBuffer pdPermissionStr = new StringBuffer(5);

 for (int i=0; i<str.length; i++) {

 pdPermissionStr.append(str[i].substring(0,1));

 }

Chapter 9. ObjectGrid application programming interface overview 167

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame3.doc_5.1/am51_authJ_devref.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame3.doc_5.1/am51_authJ_devref.pdf

PDPermission pdPerm = new PDPermission(permission.getName(),

 pdPermissionStr.toString());

 Set principals = subject.getPrincipals();

 Iterator iter= principals.iterator();

 while(iter.hasNext()) {

 try {

 PDPrincipal principal = (PDPrincipal) iter.next();

 if (principal.implies(pdPerm)) {

 return true;

 }

 }

 catch (ClassCastException cce) {

 // Handle exception

 }

 }

 return false;

}

The MapAuthorization plug-in can be configured in the following ways:

v Configuration. You can use the ObjectGrid XML file to define an

MapAuthorization plug-in. Here is an example:

<objectGrids>

 <objectGrid name="secureClusterObjectGrid" securityEnabled="true"

 authorizationMechanism="AUTHORIZATION_MECHANISM_CUSTOM">

...

 <bean id="MapAuthorization"

className="com.ibm.websphere.objectgrid.security.plugins.builtins.

JAASMapAuthorizationImpl" />

</objectGrids>

v Programming. If you want to create an ObjectGrid using APIs, you can

call the following method to set the authorization plug-in. This only

applies to the local ObjectGrid programming model when you directly

instantiate the ObjectGrid instance.

/**

* Sets the MapAuthorization plug-in for this ObjectGrid instance.

*

* A {@link MapAuthorization} plug-in can be used to authorize

* access to the maps. Refer to {@link MapAuthorization}

* for more details.

* @param mapAuthorization the MapAuthorization plug-in

*/

void setMapAuthorization(MapAuthorization mapAuthorization);

Custom admin authorization

Like the custom map data access authorization support, ObjectGrid

supports the custom admin authorization. The plug-in is

com.ibm.websphere.objectgrid.security.plugins.AdminAuthorization.

/**

 * This plug-in can be used to authorize management operations to the

 * principals contained in the Subject object. The permissions for the

 * management operations are represented by AdminPermission

 * objects.

 *

 * This plug-in is used in an ObjectGrid server. It can be configured in the

 * ObjectGrid cluster XML file.

 *

 * A typical implementation of this plug-in is to retrieve the

 * Principal set from the Subject object, and then

 * check whether the specified permissions are granted to these principals.

168 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

*

 *

 * @ibm-api

 * @since WAS XD 6.0.1

 *

 * @see AdminPermission

 */

public interface AdminAuthorization {

 /**

 * Checks whether the user represented by the Subject object has the

 * specified AdminPermission or not.

 *

* If the permissions are granted, true is returned; otherwise

* false is returned.

*

* @param subject the Subject object representing the user

* @param permission the administration permission to check

*

* @return true if the permission is granted; false otherwise.

*

* @see AdminPermission

*/

boolean checkPermission(Subject subject, AdminPermission permission);

}

This plug-in can be used to authorize admin accesses to the principals

contained in the Subject object. The method

boolean checkPermission(Subject subject, AdminPermission permission)

in the AdminAuthorization interface, is called by the ObjectGrid runtime to

check whether the passed-in Subject object has the passed-in admin

permission. The implementation of the AdminAuthorization interface should

return true if so and false otherwise.

 You can implement this interface based on your security requirements.

ObjectGrid does not ship an implementation class for this interface.

 You can set the AdminAuthorization plug-in on the cluster level in the

cluster XML. An example follows:

<cluster name="cluster1" securityEnabled="true"

 singleSignOnEnabled="true" loginSessionExpirationTime="300"

 statisticsEnabled="true"

 statisticsSpec="map.all=enabled">

 <serverDefinition name="server1" host="localhost"

 clientAccessPort="12503" peerAccessPort="12500" workingDirectory=""

 traceSpec="ObjectGrid=all=disabled"

 systemStreamToFileEnabled="true" />

 <serverDefinition name="server2" host="localhost"

 clientAccessPort="12504" peerAccessPort="12501" workingDirectory=""

 traceSpec="ObjectGrid=all=disabled"

 systemStreamToFileEnabled="true" />

 <authenticator className ="com.ibm.websphere.objectgrid.security.plugins.

 builtins.WSTokenAuthenticator"></authenticator>

 <adminAuthorization className= "com.ibm.ws.objectgrid.test.security.util.

 TestAdminAuthorization"></adminAuthorization>

</cluster>

Permission checking period

ObjectGrid supports caching the map permission checking results for performance

reason. Without this mechanism, when a method listed on Table 14 on page 162 is

Chapter 9. ObjectGrid application programming interface overview 169

called, ObjectGrid runtime calls the configured authorization mechanism to

authorize the access. With this permission checking period being set, the

authorization mechanism is called periodically based on the permission checking

period.

We cache the permission authorization information based on the Subject object.

When a client tries to access the methods, the ObjectGrid runtime will look up the

cache based on the Subject object. If it cannot be found in the cache, the runtime

will check the permissions granted for this Subject object, and then store the

permissions in a cache.

The permission checking period must be defined before the ObjectGrid is initialized.

The permission checking period can be configured in two ways:

v Configuration. You can use the ObjectGrid XML file to define an ObjectGrid and

set the permission check period. Here is an example to set the permission check

period to 45 seconds.

<objectGrids>

 <objectGrid name="secureClusterObjectGrid" securityEnabled="true"

 authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS"

 permissionCheckPeriod="45">

 <bean id="bean id="TransactionCallback"

className="com.ibm.websphere.samples.objectgrid.HeapTransactionCallback" />

...

</objectGrids>

v Programming. If you want to create an ObjectGrid with APIs, call the following

method to set the permission checking period. This method can only be called

before the ObjectGrid instance is initialized. This method only applies to the local

ObjectGrid programming model when you instantiate the ObjectGrid instance

directly.

/**

* This method takes a single parameter indicating how often the customer

* wants to check the permission used to allow a client access. If the

* parameter is 0 then every single get/put/update/remove/evict call will

* ask the authorization mechanism, either JAAS authorization or custom

* authorization to check if the current subject has permission. This may be

* prohibitively expensive from a performance point of view depending on

* the authorization implementation but if this is required then you can do it.

* Alternatively, if the parameter is > 0 then it indicates the number

* of seconds to cache a set of permissions before returning to

* the authorization mechanism to refresh them. This provides much

* better performance but you run the risk that if the backend

* permissions are changed during this time then the ObjectGrid will

* possibly allow or prevent access even though the backend security

* provider has been modified.

*

* @param period the permission check period in seconds.

*/

void setPermissionCheckPeriod(int period);

ObjectGrid cluster security

The ObjectGrid cluster security ensures that a joining server has the right

credential, so a malicious server cannot join the cluster. ObjectGrid uses a shared

secret string mechanism for this purpose.

All the ObjectGrid servers agree on a shared secret string. When a server joins the

cluster, it is challenged to present the secret string. If the secret string of the joining

server matches the one in the president server, the joining server can join the

cluster; otherwise the join request is rejected.

170 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Sending a clear text secret is not secure. ObjectGrid security infrastructure provides

a secure token manager plug-in to allow the server to “secure” this secret before

sending it. You must decide how to implement the “secure” operation. ObjectGrid

provides an out-of-box implementation, in which the “secure” operation is

implemented to encrypt and signing the secret.

The secret string (authenticationSecret) is set on the security.ogserver.props file:

v authenticationSecret: the secret string to challenge the server. When a server

starts up, it needs to present this string to the president server. If the secret

string matches what in the president server, this server is allowed to join the

cluster.

SecureTokenManager plug-in

A secure token manager plug-in is represented by the

com.ibm.websphere.objectgrid.security.plugins.SecureTokenManager interface. The

interface follows:

package com.ibm.websphere.objectgrid.security.plugins;

import com.ibm.websphere.objectgrid.security.ObjectGridSecurityException;

import com.ibm.websphere.objectgrid.security.SecurityConstants;

/**

 * This interface is used by ObjectGrid servers to transform an object to a

 * secure token and vice versa. A secure token is a byte array.

* Here is one example of a possible usage: When a server joins the cluster,

* the joining server needs to present a password to the president server in the

* cluster. Before sending the password out, the joining server calls the

* generateToken(Object) method to generate a token for this

* password. The token should be hard to break so the password can be protected

* securely. The token will then be sent across the wire. Usually the token is

* associated with a time stamp so the malicious replay attack will be difficult.

* On the receving side, the server calls the verifyToken(byte[])

* method to verfiy the token and reconstruct the corresponding object from the

* token.

*

*ObjectGrid utilizes JCE to provide a default implementation of this

* interface. In this implementation, when generating the token, the object is

* encrypted with a time stamp and then signed. To verify a token, the token’s

* signature is verified and then decrypted. This implementation will need a key

* store configured in the ObjectGrid servers to support the data

* encrypting and decrypting and signature signing and verifying. Please use

* security.ogserver.props for the secure token key settings.

*

* An implementation class should have a default constructor. Users can set the

* CustomSecureTokenManagerProps property in the server security configuration

* property file. This property will be set on the object using the

* setProperties(String) method.

*

* @ibm-api

* @since WAS XD 6.0.1

*

* @see SecurityConstants#SECURE_TOKEN_MANAGER_CUSTOM_STRING

* @see SecurityConstants#SECURE_TOKEN_MANAGER_DEFAULT_STRING

*/

public interface SecureTokenManager {

/**

*

Set the user defined properties to the factory

*

*

Chapter 9. ObjectGrid application programming interface overview 171

This method is used to set addtional SecureTokenManager properties

* to the object. These properties can be set using the SecureTokenManagerProps

* property in the server security configuration property file.

* This way, you can customize your factory.

*

* @param properties user defined properties

*/

void setProperties(String properties);

/**

* Generates the token for the specified object.

*

* The generated token should be hard to break.

*

* @param o the object to be protected

*

* @return a token representing the object to be protected

*

* @throws ObjectGridSecurityException if any exception occurs during

* generation of the token byte array

*/

byte[] generateToken(Object o) throws ObjectGridSecurityException;

/**

* Verifies the token and reconstruct the object.

*

* @param bytes the token byte array representing the protected object.

*

* @return the protected object

*

* @throws ObjectGridSecurityException if any exception occurs during

* verification of the token byte array

*/

Object verifyToken(byte[] bytes) throws ObjectGridSecurityException;

}

The generateToken(Object) method takes an object to be protected, and then

generates a token that cannot be understood by others. The verifyTokens(byte[])

method does the reverse process: it converts the token back to the original object.

A simple SecureTokenManager implementation is to use a simple encoding

algorithm (such as the XOR algorithm) to encode the object in serialized form, and

then use corresponding decoding algorithm to decode the token. This

implementation is not secure and is easy to break.

ObjectGrid provides an out-of-box implementation for this interface. The

implementation is not a public API and is transparent to you.

The default implementation uses a key pair to sign and verify the signature, and

uses a secret key to encrypt the content. To do this, every server has a JCKES

type keystore to store the key pair (private key and public key) and a secret key.

The keystore has to be JCKES type to store secret keys.

These keys are used to encrypt and sign or verify the secret string on the sending

end. Also, the token is associated with an expiration time, so it expires after certain

amount of time. On the receiving end, the data is verified, decrypted, and compared

to the receiver’s secret string. SSL-like communication protocols are not required

between a pair of servers for authentication, because the private keys and public

keys serves the same purpose. However, if server communication is not encrypted,

172 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

the data could be stolen by poking at the communication. Because the token

expires soon, the replay attack threat is minimized. This possibility is significantly

decreased if all servers are deployed behind a firewall.

The disadvantage of this approach is that the ObjectGrid administrators have to

generate keys and transport them to all servers, which could cause security

problems.

Configurations

To use the secure token manager, the following properties should be configured in

the security.ogserver.props file:

v secureTokenManagerType property: This property indicates which secure token

manager to use.

– If the value is none, no secure token manager is used.

– If the value is default, the default out-of-box provided secure token manager

is used.

– If the value is custom, the user-provided secure token manager is used.

v customSecureTokenManagerClass property: This property specifies the

SecureTokenManager implementation class. It is only used if the

secureTokenManagerType value is ″custom″. The implementation class must

have a default constructor to be instantiated.

v customSecureTokenManagerProps property: This property specifies the

custom SecureTokenManager properties. It is only used if the

secureTokenManagerType value is ″custom″. The value is set to the

SecureTokenManager Object with the setProperties(String) method.

v If the secureTokenManagerType value is set to default, then the following

configurations for the signing and ciphering keys are needed:

– secureTokenKeyStore: Specifies the file path name for the key store that

stores the public-private key pair and the secret key.

– secureTokenKeyStoreType: Specifies the key store type, for example, JCKES.

You can set this value based on the Java Secure Socket Extension (JSSE)

provider that you use. However, this key store should be able to support

secret keys.

– secureTokenKeyStorePassword: Specifies the password to protect the key

store.

– secureTokenKeyPairAlias: Specifies the alias of the public-private key pair

used for the singing and verifying.

– secureTokenKeyPairPassword: Specifies the password to protect the key pair

alias used for signing and verifying.

– secureTokenSecretKeyAlias: Specifies the secret key alias used for ciphering.

– secureTokenSecretKeyPassword: Specifies the password to protect the secret

key.

– secureTokenCipherAlgorithm: Specifies the algorithm used for the ciphering.

You can set this value based on the JSSE provider you use.

– secureTokenSignAlgorithm: Specifies the algorithm used for signing the

object. You can set this value based on the JSSE provider you use.

Chapter 9. ObjectGrid application programming interface overview 173

Gateway security

ObjectGrid management gateway serves as a point to delegate the client

administration requests to the ObjectGrid server. This topic describes how to secure

the gateway access.

The following diagram is an example. If the ObjectGrid client wants to get the

statistics from the a cluster, it first sends a request to the gateway. The gateway

sends this request to both servers to get the statistics and then combines the

statistics. The combined statistics send back to the client.

The gateway and server communication uses the ObjectGrid client server

communication mechanism. The gateway is treated as an ObjectGrid client. The

client and gateway communication can be secured by SSL. This capability is

provided by the JMX connector layer, which is the open source project mx4j.

ObjectGrid requires mx4j in place to make gateway work.

For the authentication, the gateway propagates the credential, for example, a user

ID and password, that is presented by the client to the server. Both authentication

and authorization are enforced on ObjectGrid servers.

Client certificate authentication for the gateway client is not supported.

Gateway server security

A gateway server is an ObjectGrid client. All the security aspects are the same as

an ObjectGrid client. Refer to “Start the management gateway server” on page 84

for more details on how to start a gateway server from a command line.

Client tier
Server tier

Gateway tier

Credential
Credential

SSLSecure Sockets Layer (SSL)

node node

node

node

Java virtual
machine (JVM)

JVM

JVM

JVM

Figure 18. Gateway security

174 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

The following code snippet demonstrates how to start the secure gateway

programmatically:

// Get the ClientSecurityConfiguration from the client security property file

ClientSecurityConfiguration csConfig = ClientSecurityConfigurationFactory

.getClientSecurityConfiguration("etc/test/security/security.client.props");

CredentialGenerator creGen = new UserPasswordCredentialGenerator("admin",

 "xxxxxx");

csConfig.setCredentialGenerator(credGen);

// Initialize the gateway

ManagementGateway gateway = ManagementGatewayFactory.getManagementGateway();

gateway.setConnectorPort(namingPort);

gateway.setClusterName("cluster1");

gateway.setHost("localhost");

gateway.setPort("12503");

gateway.setTraceEnabled(true);

gateway.setTraceSpec("ObjectGrid=all=enabled");

gateway.setTraceFile("logs/GatewayTrace.log");

// Set the ClientSecurityConfiguration object

gateway.setCsConfig(csConfig);

// Start the gateway

gateway.startConnector();

In the previous code, a ClientSecurityConfiguration object is created and set on the

ManagementGateway instance.

Gateway client security

The gateway client needs to pass a credential to a gateway server at the connect

time. The following code snippet demonstrates how to pass a credential:

/**

* retrieve the server status from the gateway

*/

public boolean retrieveServerStatus()

throws Exception {

 String serverProtocol = "rmi";

 String serverHost = "host";

 String namingHost = "localhost";

 String jndiPath = "/jmxconnector";

 JMXServiceURL url = new JMXServiceURL("service:jmx:" + serverProtocol + "://"

 + serverHost + "/jndi/rmi://" + namingHost + ":" + namingPort + jndiPath);

 // Create the JMXCconnectorServer

 JMXConnector cntor = JMXConnectorFactory.newJMXConnector(url, null);

 // The connection environment map

 Map environment = new HashMap();

 // create a credential

 UserPasswordCredential gatewayClientCred =

 new UserPasswordCredential("admin", "admin1");

 environment.put(JMXConnector.CREDENTIALS, gatewayClientCred);

 // Connect and invoke an operation on the remote MBeanServer

 try {

 cntor.connect(environment);

 }

 catch (SecurityException x) {

 // Uh-oh ! Bad credentials !

Chapter 9. ObjectGrid application programming interface overview 175

throw x;

 }

 // Obtain a stub for the remote MBeanServer

 mbsc = cntor.getMBeanServerConnection();

 Iterator it = mbsc.queryMBeans(

 new ObjectName("ManagementServer:type=ObjectGrid,S=server1"),

 null).iterator();

 ObjectInstance oi = (ObjectInstance) it.next();

 server1MBean = oi.getObjectName();

 boolean status = ((Boolean) mbsc.invoke(

 server1MBean,

 "retrieveServerStatus",

 new Object[] {},

 new String[] {})).booleanValue();

 return status;

}

In this code snippet, a gatewayClientCred object is created and put in the

environment. This environment is then used to connect to the gateway server.

If you want use SSL to connect from the gateway client to the gateway server, you

have to use system properties to store the trust store and the trust store password.

For example, you can pass in the following properties when you start a gateway

client.

v -Djavax.net.ssl.trustStore=etc/test/security/

client.public

v -Djavax.net.ssl.trustStorePassword=public

See the MX4J - Open Source Java Management Extensions Web site for more

information.

Security integration with WebSphere Application Server

ObjectGrid provides several security features to integrate with the WebSphere

Application Server security infrastructure.

Distributed ObjectGrid security integration with WebSphere

Application Server

For the distributed ObjectGrid model, the security integration can be done by using

the following classes:

v com.ibm.websphere.objectgrid.security.plugins.builtins.

WSTokenCredentialGenerator.

v com.ibm.websphere.objectgrid.security.plugins.builtins.

WSTokenAuthenticator

v com.ibm.websphere.objectgrid.security.plugins.builtins.

WSTokenCredential

.

These classes are discussed in “Client server security” on page 136. Following is

an example of how to use the WSTokenCredentialGenerator class.

/**

* connect to the ObjectGrid Server.

*/

protected ClientClusterContext connect() throws ConnectException {

 ClientSecurityConfiguration csConfig = ClientSecurityConfigurationFactory

 .getClientSecurityConfiguration(proFile);

176 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

http://mx4j.sourceforge.net/

CredentialGenerator gen = getWSCredGen();

 csConfig.setCredentialGenerator(gen);

 return objectGridManager.connect(csConfig, null);

}

/**

* Get a WSTokenCredentialGenerator

*

private CredentialGenerator getWSCredGen() {

WSTokenCredentialGenerator gen = new WSTokenCredentialGenerator(

WSTokenCredentialGenerator.RUN_AS_SUBJECT);

return gen;

}

On the server side, WSTokenAuthentication can be used as the authenticator to

authenticate the WSTokenCredential object.

Local ObjectGrid security integration with WebSphere

Application Server

For the local ObjectGrid model, the security integration can be done by using the

following two classes:

v com.ibm.websphere.objectgrid.security.plugins.builtins.

WSSubjectSourceImpl

v

com.ibm.websphere.objectgrid.security.plugins.builtins.

WSSubjectValidationImpl

For more information about these classes, see “Local ObjectGrid security” on page

155. You can configure the WSSubjectSourceImpl class as the SubjectSource

plug-in, and the WSSubjectValidationImpl class as the SubjectValidation plug-in.

Listeners

ObjectGrid provides two listener-type interfaces that you can extend. The

extensions can advise you through the extension interface and describe operations

that are run on an ObjectGrid instance or a map instance.

ObjectGridEventListener interface

Use the ObjectGridEventListener interface to receive notifications when significant

events occur on an ObjectGrid. These events include ObjectGrid initialization,

beginning of a transaction, ending a transaction, and destroying an ObjectGrid. To

listen for these events, create a class that implements the ObjectGridEventListener

interface and add it to the ObjectGrid.

The ObjectGridEventListener interface

The ObjectGridEventListener interface has the following methods. These

methods are called when certain significant events occur on the ObjectGrid.

/**

* This method is invoked when the ObjectGrid itself is initialized.

* A usable Session instance is passed into this Listener to allow the

* optional replaying of a received LogSequence into a Map.

*

* @param session The Session instance that this Listener is associated with.

*/

void initialize(Session session);

Chapter 9. ObjectGrid application programming interface overview 177

/**

* This event signals the beginning of a transaction (session).

* A stringified version of the TxID is provided for

* correlating with the end of the transaction

* (session), if you want to use this version. The type of

* transaction (session) is

* also provided via the isWriteThroughEnabled boolean parameter.

*

* @param txid Stringified version of the TxID

* @param isWriteThroughEnabled Boolean flag indicating whether the

* Session was started via beginNoWriteThrough

*/

void transactionBegin(String txid, boolean isWriteThroughEnabled);

/**

* This signals the ending of a transaction (session). A stringified

* version of the TxID is provided for correlating with the

* begin of the transaction

* (session), if so desired. Changes are also reported. Typical uses of

* this event are for custom peer invalidation

* or peer commit push. This event

* listener outputs the changes. Calls to this method are made

* after commit and are sequenced so that they are delivered one by one,

* not in parallel. The event order is the commit order.

*

* @param txid Stringified version of the TxID

* @param isWriteThroughEnabled a boolean flag indicating

* whether the Sesison was

* started via beginNoWriteThrough

* @param committed a boolean flag indicating whether the Session

* was committed

* (true) or rolled back (false)

* @param changes A Collection of LogSequences that have been

* processed for the current Session.

*/

void transactionEnd(String txid, boolean isWriteThroughEnabled,

boolean committed, Collection /*/* <LogSequence> */*/ changes);

/**

* This method will be invoked when the ObjectGrid is destroyed. It’s the

* opposite of initialize. When this method is called, the

* ObjectGridEventListener can free up any resource it uses.

*/

void destroy();

Add and remove ObjectGridEventListeners objects

An ObjectGrid can have multiple ObjectGridEventListeners. Two methods

exist on the ObjectGrid that allow ObjectGridEventListeners to be added.

ObjectGridEventListeners that have been added can also be removed from

an ObjectGrid.

 The addEventListener method can be used to add an

ObjectGridEventListener to an ObjectGrid.

/**

* Add an EventListener to the Session. Significant events

* will be communicated to interested listeners via this callback.

* Multiple event listeners are allowed to be registered, with no

* implied ordering of event notifications.

*

* Note, this method is allowed to be invoked before and after the

* {@link ObjectGrid#initialize()} method.

*

* @param cb An instance of ObjectGridEventListener

*/

void addEventListener(ObjectGridEventListener cb);

To add a list of ObjectGridEventListeners, use the setEventListeners

method:

178 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

/**

* This overwrites the current list of callbacks and replaces it with the

* supplied list of callbacks.

*

* Note, this method is allowed to be invoked before and after the

* {@link ObjectGrid#initialize()} method.

* @param callbacks

*/

void setEventListeners(List callbacks);

To remove an ObjectGridEventListener from an ObjectGrid use the

removeEventListener method:

/**

* Removes an EventListener from the Session. If the desired EventListener

*is not found on the Session, no error will be returned.

*

* Note, this method is allowed to be invoked before and after the

* {@link ObjectGrid#initialize()} method.

* @param cb An instance of ObjectGridEventListener

*/

void removeEventListener(ObjectGridEventListener cb);

Create a custom ObjectGrid event listener

To use a custom ObjectGrid event listener, first create a class that

implements the

com.ibm.websphere.objectgrid.plugins.ObjectGridEventListener interface.

Add the custom listener to an ObjectGrid to receive notification of significant

events. An ObjectGridEventListener can be configured programmatically or

with XML:

v Programatically. Assume that the class name of the ObjectGrid event

listener is the com.company.org.MyObjectGridEventListener class. This

class implements the ObjectGridEventListener interface. The following

code snippet creates the custom ObjectGridEventListener and adds it to

an ObjectGrid:

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);

MyObjectGridEventListener myListener = new MyObjectGridEventListener();

myGrid.addEventListener(myListener);

v With XML. An ObjectGridEventListner can also be configured using XML.

The following XML creates a configuration that is equivalent to the

described program-created ObjectGrid event listener. The following text

must be in the myGrid.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="myGrid">

 <bean id="ObjectGridEventListener"

 className="com.company.org.MyObjectGridEventListener" />

 </objectGrid>

 </objectGrids>

</objectGridConfig>

Provide this file to the ObjectGridManager to facilitate the creation of this

configuration. The following code snippet demonstrates how to create an

ObjectGrid using this XML file. The ObjectGrid that is created has an

ObjectGridEventListener set on the myGrid ObjectGrid.

Chapter 9. ObjectGrid application programming interface overview 179

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid myGrid =

 objectGridManager.createObjectGrid("myGrid", new URL(

 "file:etc/test/myGrid.xml"), true, false);

Watch for changes in a Map

The transactionEnd method on the ObjectGridEventListener interface is

very useful for applications that are interested in watching entries in the

local Maps. An application can add one of these listeners and then use the

transactionEnd method to see when the entries are changed. For example,

if the ObjectGrid is working in distributed mode, an application can watch

for incoming changes. Suppose that the replicated entries were for latest

stock prices. This listener can watch for these changes arriving and update

a second Map that keeps the value of a position in a portfolio. The listener

must make all changes using the Session provided to the listener in the

initialize method on the ObjectGridEventListener interface. The listener can

distinguish between local changes and incoming remote changes usually by

checking if the transaction is write through. The incoming changes from

peer ObjectGrids are always write through.

MapEventListener interface

Use the MapEventListener interface to receive significant events about a map.

Events are sent to the MapEventListener when an entry is evicted from the map

and when the preload of a map completes.

MapEventListener interface

The MapEventListener interface has the following methods. Implement the

com.ibm.websphere.objectgrid.plugins.MapEventListener interface to create

a custom MapEventListener.

/**

* This method is invoked when the specified entry is evicted from

* the map. The eviction could have occurred either by Evictor

* processing or by invoking one of the invalidate methods on the

* ObjectMap.

*

* @param key The key for the map entry that was evicted.

* @param value The value that was in the map entry evicted. The value

* object should not be modified.

*

*/

void entryEvicted(Object key, Object value);

/**

* This method is invoked when preload of this map has completed.

*

* @param t A Throwable object that indicates if preload completed without

* any Throwable occurring during the preload of the map. A null reference

* indicates preload completed without any Throwable objects occurring

* during the preload of the map.

*/

void preloadCompleted(Throwable t);

Add and remove MapEventListeners

The following BackingMap methods allow MapEventListeners to be added

to and removed from a map:

/**

* Adds a MapEventListener to this BackingMap.

*

* Note, this method is allowed to be invoked before and after the

* ObjectGrid.initialize() method.

* @param eventListener A non−null reference to a MapEventListener to add

180 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

* to the list.

*

* @throws IllegalArgumentException if eventListener is null.

*

* @see MapEventListener

*/

public void addMapEventListener(MapEventListener

 eventListener);

/**

* Sets the list of MapEventListener objects.

*

* If this BackingMap already has a List of

* MapEventListeners, that list is replaced by the

* List passed as an argument to the current invocation

* of this method. This method can be called before and

* after the ObjectGrid.initialize() method.

*

* @param eventListenerList A non−null reference to a List of

* MapEventListener objects.

*

* @throws IllegalArgumentException is thrown if

* eventListenerList is null

* or the eventListenerList contains either a null

* reference or an object that is not an instance of

* MapEventListener.

*

* @see MapEventListener

*/

public void setMapEventListeners(List /*MapEventListener*/

 eventListenerList);

/**

* Removes a MapEventListener from this BackingMap.

*

* Note, this method is allowed to be invoked before and after the

* ObjectGrid.initialize() method.

*

* @param eventListener A non−null reference to an event listener

* that was previously added by invoking either the

* addMapEventListener(MapEventListener) or

* setMapEventListeners(List) method of this interface.

*

* @throws IllegalArgumentException if eventListener is null.

*

* @see MapEventListener

*/

public void removeMapEventListener(MapEventListener eventListener);

Create a MapEventListener

To create a custom MapEventListener, implement the

com.ibm.websphere.objectgrid.plugins.MapEventListener interface. To use

the MapEventListener, add it to a BackingMap. A MapEventListener can be

created and configured programmatically or with XML:

v Programmatically. The class name for the custom MapEventListener is

the com.company.org.MyMapEventListener class. This class implements

the MapEventListener interface. The following code snippet creates the

custom MapEventListener and adds it to a BackingMap:

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);

BackingMap myMap = myGrid.defineMap("myMap");

MyMapEventListener myListener = new MyMapEventListener();

myMap.addMapEventListener(myListener);

Chapter 9. ObjectGrid application programming interface overview 181

v XML creation. A MapEventListner can also be configured using XML.

The following XML achieves a configuration that is equivalent to the

preceding programmatic creation. The following XML must be in the

myGrid.xml file:

<?xml version="1.0" encoding="UTF-8" ?>

<objectGridconfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config

 ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="myGrid">

 <backingMap name="myMap" pluginCollectionRef="myPlugins" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="myPlugins">

 <bean id="MapEventListener"

 classname="com.company.org.MyMapEventListener" />

 </backingMapPluginCollection>

 </backingMapPluginCollection>

</objectGridConfig>

Providing this file to the ObjectGridManager facilitates the creation of this

configuration. The following code snippet shows how to create an

ObjectGrid using this XML file. The newly created ObjectGrid has a

MapEventListener set on the myMap BackingMap.

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid myGrid =

 objectGridManager.createObjectGrid("myGrid", new URL(

 "file:etc/test/myGrid.xml"), true, false);

Evictors

ObjectGrid provides a default evictor mechanism. You can also provide a pluggable

evictor mechanism.

An evictor controls the membership of entries in each BackingMap. The default

evictor uses a time to live eviction policy for each BackingMap. If you provide a

pluggable evictor mechanism, it typically uses an eviction policy that is based on

the number of entries instead of on time. This topic describes both types of evictors.

Default time to live evictor

ObjectGrid provides a time to live (TTL) evictor for every BackingMap. The TTL

evictor maintains an expiration time for each entry that is created. When the

expiration time for an entry comes, the evictor removes the entry from the

BackingMap. To minimize performance impact, the TTL evictor might wait to evict

an entry after the expiration time, but never before the entry expires.

The BackingMap has attributes that are used to control how the time to live evictor

computes the expiration time for each entry. Applications set the ttlType attribute to

specify how the TTL evictor should calculate the expiration time. The ttlType

attribute can be set to one of the following values:

v None indicates that an entry in the BackingMap never expires. The TTL evictor

does not evict these entries.

v Creation time indicates that the time an entry is created is used in the expiration

time calculation.

182 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

v Last access time indicates that the time that an entry has been last accessed is

used in the expiration time calculation.

If the ttlType attribute is not set on a BackingMap, the default type of None is used

so that the TTL evictor does not evict any entries. If the ttlType attribute is set to

either creation time or last access time, the value of the time to live attribute on

the BackingMap is added to either the creation time or last access time to compute

the expiration time. The time precision of the time to live map attribute is in

seconds. A value of 0 for the time to live attribute is a special value that is used to

indicate that the map entry can live forever, that is, the entry stays in the map until

the application explicitly removes or invalidates the map entry.

Specify attributes for TTL evictors

TTL evictors are associated with BackingMap instances. The following snippet of

code demonstrates how the BackingMap interface can be used to set the needed

attributes so that when each entry is created, it has an expiration time set to ten

minutes after it was created.

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.BackingMap;

import com.ibm.websphere.objectgrid.TTLType;

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid og = ogManager.createObjectGrid("grid");

BackingMap bm = og.defineMap("myMap");

bm.setTtlEvictorType(TTLType.CREATION_TIME);

bm.setTimeToLive(600);

The setTimeToLive method argument is 600 because it indicates the time to live

value is in seconds. The preceding code must run before the initialize method is

invoked on the ObjectGrid instance. These BackingMap attributes cannot be

changed after the ObjectGrid instance is initialized. After the code runs, any entry

that is inserted into the myMap BackingMap has an expiration time. After the

expiration time is reached, the TTL evictor purges the entry.

If an application requires that the expiration time be set to the last access time plus

ten minutes, one line of the preceding code must be changed. The argument that is

passed to the setTtlEvictorType method is changed from TTLType.CREATION_TIME to

TTLType.LAST_ACCESS_TIME. With this value, the expiration time is computed as the

last access time plus 10 minutes. When an entry is first created, the last access

time is the creation time.

When TTLType.LAST_ACCESS_TIME is used, the ObjectMap and JavaMap interfaces

can be used to override the BackingMap time to live value. This mechanism allows

an application to use a different time to live value for each entry that is created.

Assume the preceding snippet of code was used to set the ttlType attribute to

LAST_ACCESS_TIME and the time to live value was set to ten minutes on the

BackingMap. An application can then override the time to live value for each entry

by running the following code prior to creating or modifying an entry:

import com.ibm.websphere.objectgrid.Session;

import com.ibm.websphere.objectgrid.ObjectMap;

Session session = og.getSession();

ObjectMap om = session.getMap("myMap");

int oldTimeToLive1 = om.setTimeToLive(1800);

om.insert("key1", "value1");

int oldTimeToLive2 = om.setTimeToLive(1200);

om.insert("key2", "value2");

Chapter 9. ObjectGrid application programming interface overview 183

In the previous snippet of code, the entry with the key1 key has an expiration time

of the insert time plus 30 minutes as a result of the setTimeToLive(1800) method

invocation on the ObjectMap. The oldTimeToLive1 variable is set to 600 because

the time to live value from the BackingMap is used as a default value if the

setTimeToLive method was not previously called on the ObjectMap.

The entry with the key2 key has an expiration time of insert time plus 20 minutes as

a result of the setTimeToLive(1200) method call on the ObjectMap. The

oldTimeToLive2 variable is set to 1800 because the time to live value from the

previous ObjectMap.setTimeToLive method invocation set the time to live to 1800.

The previous example shows two map entries being inserted in the myMap map for

key values key1 and key2. At a later point in time the application from a new thread

might want to update these map entries with new map values. However, the

application wants to retain the time-to-live values that are used at insert time for

each map entry. The following example illustrates how to retain the time-to-live

values by using a constant defined in the ObjectMap interface for this very purpose:

Session session = og.getSession();

ObjectMap om = session.getMap("myMap");

om.setTimeToLive(ObjectMap.USE_DEFAULT);

session.begin();

om.update("key1", "updated value1");

om.update("key2", "updated value2");

om.insert("key3", "value3");

session.commit();

Because the ObjectMap.USE_DEFAULT special value is used on the setTimeToLive

method call, key1 retains its time-to-live value of 1800 seconds and key2 retains its

time-to-live value of 1200 seconds because those values were used when these

map entries were inserted by the prior transaction.

The previous example also shows a new map entry for key3 being inserted. In this

case, the USE_DEFAULT special value indicates to use the default setting of

time-to-live value for this map. The default value is defined by the time-to-live

BackingMap attribute. See “BackingMap attributes” on page 106 for information

about how the time-to-live attribute is defined on the BackingMap.

See the API documentation for the setTimeToLive method on the ObjectMap and

JavaMap interfaces. It warns you that an IllegalStateException exception results

if the BackingMap.getTtlEvictorType() method returns anything other than the

TTLType.LAST_ACCESS_TIME value. ObjectMap and JavaMap can only be used to

override the time to live value when you are using the LAST_ACCESS_TIME TTL

evictor type. This method cannot be used to override the time to live value when

you are using the CREATION_TIME TTL evictor type or the NONE TTL evictor type.

Use an XML file to specify attributes for the TTL evictor

Instead of using the BackingMap interface to programmatically set the BackingMap

attributes to be used by the TTL evictor, an XML file can be used to configure each

BackingMap. The following code demonstrates how to set these attributes for three

different BackingMaps:

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>

 <objectGrid name="grid1">

 <backingMap name="map1" ttlEvictorType="NONE" />

184 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

<backingMap name="map2" ttlEvictorType="LAST_ACCESS_TIME" timeToLive="1800" />

 <backingMap name="map3" ttlEvictorType="CREATION_TIME" timeToLive="1200" />

 </objectgrid>

</objectGrids>

The preceding example shows that the map1 BackingMap uses a NONE TTL evictor

type. The map2 BackingMap uses a LAST_ACCESS_TIME TTL evictor type and has a

time to live value of 1800 seconds, or 30 minutes. The map3 BackingMap is

defined to use a CREATION_TIME TTL evictor type and has a time to live value of

1200 seconds, or 20 minutes.

Optional pluggable evictors

The default TTL evictor uses an eviction policy that is based on time, and the

number of entries in the BackingMap has no affect on the expiration time of an

entry. An optional pluggable evictor can be used to evict entries based on the

number of entries that exist instead of based on time. The following optional

pluggable evictors provide some commonly used algorithms for deciding which

entries to evict when a BackingMap grows beyond some size limit.

v LRUEvictor is an evictor that uses a least recently used algorithm to decide

which entries to evict when the BackingMap exceeds a maximum number of

entries.

v LFUEvictor is an evictor that uses a least frequently used algorithm to decide

which entries to evict when the BackingMap exceeds a maximum number of

entries.

The BackingMap informs an evictor as entries are created, modified, or removed in

a transaction. The BackingMap keeps track of these entries and chooses when to

evict one or more entries from the BackingMap.

A BackingMap has no configuration information for a maximum size. Instead, evictor

properties are set to control the evictor behavior. Both the LRUEvictor and the

LFUEvictor have a maximum size property that is used to cause the evictor to begin

to evict entries after the maximum size is exceeded. Like the TTL evictor, the LRU

and LFU evictors might not immediately evict an entry when the maximum number

of entries is reached to minimize impact on performance.

If the LRU or LFU eviction algorithm is not adequate for a particular application, you

can write your own evictors to achieve the eviction strategy that you want.

Specify a pluggable evictor

Because evictors are associated with BackingMaps, the BackingMap interface is

used to specify the pluggable evictor to use. The following code snippet is an

example of specifying a LRUEvictor evictor for the map1 BackingMap and a

LFUEvictor evictor for the map2 BackingMap:

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.BackingMap;

import com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor;

import com.ibm.websphere.objectgrid.plugins.builtins.LFUEvictor;

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid og = ogManager.createObjectGrid("grid");

BackingMap bm = og.defineMap("map1");

LRUEvictor evictor = new LRUEvictor();

evictor.setMaxSize(1000);

evictor.setSleepTime(15);

Chapter 9. ObjectGrid application programming interface overview 185

evictor.setNumberOfLRUQueues(53);

bm.setEvictor(evictor);

bm = og.defineMap("map2");

LFUEvictor evictor2 = new LFUEvictor();

evictor2.setMaxSize(2000);

evictor2.setSleepTime(15);

evictor2.setNumberOfHeaps(211);

bm.setEvictor(evictor2);

The preceding snippet shows an LRUEvictor evictor being used for map1

BackingMap with a maximum number of entries of 1000. The LFUEvictor evictor is

used for the map2 BackingMap with a maximum number of entries of 2000. Both

the LRU and LFU evictors have a sleep time property that indicates how long the

evictor sleeps before waking up and checking to see if any entries need to be

evicted. The sleep time is specified in seconds. A value of 15 seconds is a good

compromise between performance impact and preventing BackingMap from growing

too large. The goal is to use the largest sleep time possible without causing the

BackingMap to grow to an excessive size.

The setNumberOfLRUQueues method sets the LRUEvictor property that indicates

how many LRU queues the evictor uses to manage LRU information. A collection of

queues is used so that every entry does not keep LRU information in the same

queue. This approach can improve performance by minimizing the number of map

entries that need to synchronize on the same queue object. Increasing the number

of queues is a good way to minimize the impact that the LRU evictor can cause on

performance. A good starting point is to use ten percent of the maximum number of

entries as the number of queues. Using a prime number is typically better than

using a number that is not prime.

The setNumberOfHeaps method sets the LFUEvictor property to set how many

binary heap objects the LFUEvictor uses to manage LFU information. Again, a

collection is used to improve performance. Using ten percent of the maximum

number of entries is a good starting point and a prime number is typically better

than using a number that is not prime.

Use XML to specify a pluggable evictor

Instead of using various APIs to programmatically plug in an evictor and set its

properties, an XML file can be used to configure each BackingMap as illustrated in

the following sample:

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="grid">

 <backingMap name="map1" ttlEvictorType="NONE" pluginCollectionRef="LRU" />

 <backingMap name="map2" ttlEvictorType="NONE" pluginCollectionRef="LFU" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPlugincollection id="LRU">

 <bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor">

 <property name="maxSize" type="int" value="1000"

 description="set max size for LRU evictor">

 <property name="sleepTime" type="int" value="15"

 description="evictor thread sleep time" />

 <property name="numberOfLRUQueues" type="int" value="53"

 description="set number of LRU queues" />

186 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

</bean>

 </backingMapPluginCollection>

 <backingMapPluginCollection id="LFU">

 <bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.LFUEvictor">

 <property name="maxSize" type="int" value="2000"

 description="set max size for LFU evictor">

 <property name="sleepTime" type="int" value="15"

 description="evictor thread sleep time" />

 <property name="numberOfHeaps" type="int" value="211"

 description="set number of LFU heaps" />

 </bean>

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

Write a custom evictor

ObjectGrid can be extended to use any eviction algorithm. You must create a

custom evictor that implements the com.ibm.websphere.objectgrid.plugins.Evictor

interface. The interface follows:

public interface Evictor

{

void initialize(BackingMap map, EvictionEventCallback callback);

void destroy();

void apply(LogSequence sequence);

}

v The initialize method is invoked during initialization of the BackingMap object.

This method initializes an Evictor plug-in with a reference to the BackingMap and

a reference to an object that implements the

com.ibm.websphere.objectgrid.plugins.EvictionEventCallback interface.

v The apply method is invoked when transactions that access one or more entries

of the BackingMap are committed. The apply method is passed a reference to an

object that implements the com.ibm.websphere.objectgrid.plugins.LogSequence

interface. The LogSequence interface allows an Evictor plug-in to determine

which BackingMap entries were created, modified, or removed by the transaction.

An Evictor uses this information in deciding when and which entries to evict.

v The destroy method is invoked when the BackingMap is being destroyed. This

method allows an Evictor to terminate any threads that it might have created.

The EvictionEventCallback interface has the following methods:

public interface EvictionEventCallback

{

 void evictMapEntries(List evictorDataList) throws ObjectGridException;

 void evictEntries(List keysToEvictList) throws ObjectGridException;

 void setEvictorData(Object key, Object data);

 Object getEvictorData(Object key);

}

The EvictionEventCallback methods are used by an Evictor plug-in to call back to

the ObjectGrid framework as follows:

v The setEvictorData method is used by an evictor to request the framework that is

used to store and associate some evictor object it creates with the entry

indicated by the key argument. The data is evictor specific and is determined by

the information the evictor needs to implement the algorithm it is using. For

example, in a least frequently used algorithm, the evictor maintains a count in the

evictor data object for tracking how many times the apply method is invoked with

a LogElement that refers to an entry for a given key.

Chapter 9. ObjectGrid application programming interface overview 187

v The getEvictorData method is used by an evictor to retrieve the data it passed to

the setEvictorData method during a prior apply method invocation. If evictor data

for the specified key argument is not found, a special KEY_NOT_FOUND object that

is defined on the EvictorCallback interface is returned.

v The evictMapEntries method is used by an evictor to request the eviction of one

or more map entries. Each object in the evictorDataList parameter must

implement the com.ibm.websphere.objectgrid.plugins.EvictorData interface. Also,

the same EvictorData instance that is passed to the setEvictorData method must

be in the evictor data list parameter of this method. The getKey method of the

EvictorData interface is used to determine which map entry to evict. The map

entry is evicted if the cache entry currently contains the exact same EvictorData

instance that is in the evictor data list for this cache entry.

v The evictEntries method is used by an evictor to request eviction of one or more

map entries. This method is used only if the object that is passed to the

setEvictorData method does not implement the

com.ibm.websphere.objectgrid.plugins.EvictorData interface.

ObjectGrid calls the apply method of the Evictor interface after a transaction

completes. All transaction locks that were acquired by the completed transaction are

no longer held. Potentially, multiple threads can call the apply method at the same

time, and each thread can complete its own transaction. Because transaction locks

are already released by the completed transaction, the apply method must provide

its own synchronization to ensure the apply method is thread safe.

The reason to implement the EvictorData interface and use the evictMapEntries

method instead of the evictEntries method is to close a potential timing window.

Consider the following sequence of events:

1. Transaction 1 completes and calls the apply method with a LogSequence that

deletes the map entry for key 1.

2. Transaction 2 completes and calls the apply method with a LogSequence that

inserts a new map entry for key 1. In other words, transaction 2 recreates the

map entry that was deleted by transaction 1.

Because the evictor runs asynchronously from threads that run transactions, it is

possible that when the evictor decides to evict key 1, it might be evicting either the

map entry that existed prior to transaction 1 completion, or it might be evicting the

map entry that was recreated by transaction 2. To eliminate timing windows and to

eliminate uncertainty as to which version of the key 1 map entry the evictor

intended to evict, implement the EvictorData interface by the object that is passed

to the setEvictorData method. Use the same EvictorData instance for the life of a

map entry. When that map entry is deleted and is then recreated by another

transaction, the evictor should use a new instance of the EvictorData

implementation. By using the EvictorData implementation and by using the

evictMapEntries method, the evictor can ensure that the map entry is evicted if and

only if the cache entry that is associated with the map entry contains the correct

EvictorData instance.

The Evictor and EvictonEventCallback interfaces allow an application to plug in an

evictor that implements a user-defined algorithm for eviction. The following snippet

of code illustrates how you can implement the initialize method of Evictor interface:

import com.ibm.websphere.objectgrid.BackingMap;

import com.ibm.websphere.objectgrid.plugins.EvictionEventCallback;

import com.ibm.websphere.objectgrid.plugins.Evictor;

import com.ibm.websphere.objectgrid.plugins.LogElement;

import com.ibm.websphere.objectgrid.plugins.LogSequence;

import java.util.LinkedList;

188 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

// Instance variables

private BackingMap bm;

private EvictionEventCallback evictorCallback;

private LinkedList queue;

private Thread evictorThread;

public void initialize(BackingMap map, EvictionEventCallback callback)

{

 bm = map;

 evictorCallback = callback;

 queue = new LinkedList();

 // spawn evictor thread

 evictorThread = new Thread(this);

 String threadName = "MyEvictorForMap−" + bm.getName();

 evictorThread.setName(threadName);

 evictorThread.start();

}

The preceding code saves the references to the map and callback objects in

instance variables so that they are available to the apply and destroy methods. In

this example, a linked list is created that is used as a first in, first out queue for

implementing a least recently used (LRU) algorithm. A thread is spawned off and a

reference to the thread is kept as an instance variable. By keeping this reference,

the destroy method can interrupt and terminate the spawned thread.

Ignoring synchronization requirements to make code thread safe, the following

snippet of code illustrates how the apply method of the Evictor interface can be

implemented:

import com.ibm.websphere.objectgrid.BackingMap;

import com.ibm.websphere.objectgrid.plugins.EvictionEventCallback;

import com.ibm.websphere.objectgrid.plugins.Evictor;

import com.ibm.websphere.objectgrid.plugins.EvictorData;

import com.ibm.websphere.objectgrid.plugins.LogElement;

import com.ibm.websphere.objectgrid.plugins.LogSequence;

public void apply(LogSequence sequence)

{

 Iterator iter = sequence.getAllChanges();

 while (iter.hasNext())

 {

 LogElement elem = (LogElement)iter.next();

 Object key = elem.getCacheEntry().getKey();

 LogElement.Type type = elem.getType();

 if (type == LogElement.INSERT)

 {

 // do insert processing here by adding to front of LRU queue.

 EvictorData data = new EvictorData(key);

 evictorCallback.setEvictorData(key, data);

 queue.addFirst(data);

 }

 else if (type == LogElement.UPDATE || type == LogElement.FETCH ||

 type == LogElement.TOUCH)

 {

 // do update processing here by moving EvictorData object to

 // front of queue.

 EvictorData data = evictorCallback.getEvictorData(key);

 queue.remove(data);

 queue.addFirst(data);

 }

 else if (type == LogElement.DELETE || type == LogElement.EVICT)

 {

 // do remove processing here by removing EvictorData object

 // from queue.

 EvictorData data = evictorCallback.getEvictorData(key);

 if (data == EvictionEventCallback.KEY_NOT_FOUND)

 {

 // Assumption here is your asynchronous evictor thread

Chapter 9. ObjectGrid application programming interface overview 189

// evicted the map entry before this thread had a chance

 // to process the LogElement request. So you probably

 // need to do nothing when this occurs.

 }

 else

 {

 // Key was found. So process the evictor data.

 if (data != null)

 {

 // Ignore null returned by remove method since spawned

 // evictor thread may have already removed it from queue.

 // But we need this code in case it was not the evictor

 // thread that caused this LogElement to occur.

 queue.remove(data);

 }

 else

 {

 // Depending on how you write you Evictor, this possibility

 // may not exist or it may indicate a defect in your evictor

 // due to improper thread synchronization logic.

 }

 }

 }

 }

}

Insert processing in the apply method typically handles the creation of an evictor

data object that is passed to the setEvictorData method of the

EvictionEventCallback interface. Because this evictor illustrates a LRU

implementation, the EvictorData is also added to the front of the queue that was

created by the initialize method. Update processing in the apply method typically

updates the evictor data object that was created by some prior invocation of the

apply method (for example, by the insert processing of the apply method). Because

this evictor is an LRU implementation, it needs to move the EvictorData object from

its current queue position to the front of the queue. The spawned evictor thread

removes the last EvictorData object in the queue because the last queue element

represents the least recently used entry. The assumption is that the EvictorData

object has a getKey method on it so that the evictor thread knows the keys of the

entries that need to be evicted. Keep in mind that this example is ignoring

synchronization requirements to make code thread safe. A real custom evictor is

more complicated because it deals with synchronization and performance

bottlenecks that occur as a result of the synchronization points.

The following snippets of code illustrate the destroy method and the run method of

the runnable thread that the initialize method spawned:

// Destroy method simply interrupts the thread spawned by the initialize method.

public void destroy()

{

 evictorThread.interrupt();

}

// Here is the run method of the thread that was spawned by the initialize method.

public void run()

{

 // Loop until destroy method interrupts this thread.

 boolean continueToRun = true;

 while (continueToRun)

 {

 try

 {

 // Sleep for a while before sweeping over queue.

 // The sleepTime is a good candidate for a evictor

 // property to be set.

190 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Thread.sleep(sleepTime);

 int queueSize = queue.size();

 // Evict entries if queue size has grown beyond the

 // maximum size. Obviously, maximum size would

 // be another evictor property.

 int numToEvict = queueSize − maxSize;

 if (numToEvict > 0)

 {

 // Remove from tail of queue since the tail is the

 // least recently used entry.

 List evictList = new ArrayList(numToEvict);

 while(queueSize > ivMaxSize)

 {

 EvictorData data = null;

 try

 {

 EvictorData data = (EvictorData) queue.removeLast();

 evictList.add(data);

 queueSize = queue.size();

 }

 catch (NoSuchElementException nse)

 {

 // The queue is empty.

 queueSize = 0;

 }

 }

 // Request eviction if key list is not empty.

 if (! evictList.isEmpty())

 {

 evictorCallback.evictMapEntries(evictList);

 }

 }

 }

 catch (InterruptedException e)

 {

 continueToRun = false;

 }

 } // end while loop

} // end run method.

Optional RollBackEvictor interface

The com.ibm.websphere.objectgrid.plugins.RollbackEvictor interface can be

optionally implemented by an Evictor plug-in. By implementing this interface, an

evictor can be invoked not only when transactions are committed, but also when

transactions are rolled back.

public interface RollbackEvictor

{

 void rollingBack(LogSequence ls);

}

The apply method is called only if a transaction is committed. If a transaction is

rolled back and the RollbackEvictor interface is implemented by the evictor, the

rollingBack method is invoked. If the RollbackEvictor interface is not implemented

and the transaction rolls back, the apply method and the rollingBack method are not

called.

Loaders

An ObjectGrid loader is a pluggable component that allows an ObjectGrid map to

behave as a memory cache for data that is typically kept in a persistent store on

either the same system or some other system.

Chapter 9. ObjectGrid application programming interface overview 191

Typically, a database or file system is used as the persistent store. A remote Java

virtual machine (JVM) can also be used as the source of data allowing hub based

caches to be built using ObjectGrid. A loader has the logic for reading and writing

data from and to a persistent store.

A Loader is a plug-in for an ObjectGrid backing map. Only one Loader can ever be

associated with a given backing map. Each backing map has its own Loader

instance. The backing map requests any data that it does not contain from its

loader. Any changes to the map are pushed out to the loader. The loader plug-in

allows the backing map to move data between the map and its persistent store.

Plug in a loader

The following snippet of code illustrates how an application-provided Loader is

plugged into the backing map for map1 using the ObjectGrid API:

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.BackingMap;

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid og = ogManager.createObjectGrid("grid");

BackingMap bm = og.defineMap("map1");

MyLoader loader = new MyLoader();

loader.setDataBaseName("testdb");

loader.setIsolationLevel("read committed");

bm.setLoader(loader);

The assumption is that MyLoader is the application-provided class that implements

the com.ibm.websphere.objectgrid.plugins.Loader interface. Because the

association of a Loader with a backing map cannot be changed after ObjectGrid is

initialized, the code must be run before invoking the initialize method of the

ObjectGrid interface that is being called. An IllegalStateException exception

occurs on a setLoader method call if it is called after initialization has occurred.

The application-provided Loader can have set properties. In the example, the

MyLoader loader is used to read and write data from a table in a relational

database. The loader must have the name of the database and the SQL isolation

level to use. The MyLoader loader has the setDataBaseName and setIsolationLevel

methods that allow the application to set these two Loader properties.

An application provided Loader could also be plugged in by using an XML file. The

following example illustrates how the MyLoader loader is plugged into the map1

backing map with the same database name and isolation level Loader properties

being set:

<?xml version="1.0" encoding="UTF-8" ?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="grid">

 <backingMap name="map1" pluginCollectionRef="map1" lockStrategy="OPTIMISTIC" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="map1">

 <bean id="Loader" className="com.myapplication.MyLoader">

 <property name="dataBaseName" type="java.lang.String" value="testdb"

 description="database name" />

 <property name="isolationLevel" type="java.lang.String"

 value="read committed" description="iso level" />

192 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

</bean>

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

Implement the Loader interface

An application provided Loader must implement the

com.ibm.websphere.objectgrid.plugins.Loader interface. The Loader interface has

the following definition:

public interface Loader

{

 static final SpecialValue KEY_NOT_FOUND;

 List get(TxID txid, List keyList, boolean forUpdate)

 throws LoaderException;

 void batchUpdate(TxID txid, LogSequence sequence)

 throws LoaderException, OptimisticCollisionException;

 void preloadMap(Session session, BackingMap backingMap)

 throws LoaderException;

}

Each of the following sections gives an explanation and considerations when

implementing each of the methods on the Loader interface.

get method

The backing map calls the Loader get method to get the values associated

with a key list that is passed as the keyList argument. The get method is

required to return a java.lang.util.List list of values, one for each key that is

in the key list. The first value returned in the value list corresponds to the

first key in the key list, the second value returned in the value list

corresponds to the second key in the key list, and so on. If the loader does

not find the value for a key in the key list, the Loader is required to return

the special KEY_NOT_FOUND value object that is defined in the Loader

interface. Because a backing map can be configured to allow null as a

valid value, it is very important for the Loader to return the special

KEY_NOT_FOUND object when the Loader is unable to find the key. This value

allows the backing map to distinguish between a null value and a value

that does not exist because the key was not found. If a backing map does

not support null values, a Loader that returns null instead of the

KEY_NOT_FOUND object for a key that does not exist results in an exception.

 The forUpdate argument tells the Loader if the application called a get

method on the map or a getForUpdate method on the map. See the

com.ibm.websphere.objectgrid.ObjectMap interface for more information.

The Loader is responsible for implementing a concurrency control policy

that controls concurrent access to the persistent store. For example, many

relational database management systems support the for update syntax on

the SQL select statement that is used to read data from a relational table.

The Loader can choose to use the for update syntax on the SQL select

statement based on whether boolean true is passed as the argument value

for the forUpdate parameter of this method. Typically, the Loader uses the

for update syntax only when using a pessimistic concurrency control policy.

For an optimistic concurrency control, the Loader never uses for update

syntax on the SQL select statement. The Loader is responsible to decide to

use the forUpdate argument based on the concurrency control policy that is

being used by the Loader.

 For an explanation of the txid parameter, see the “TransactionCallback

plug-in” on page 207 topic.

Chapter 9. ObjectGrid application programming interface overview 193

batchUpdate method

The batchUpdate method is critical on the Loader interface. This method is

called whenever the ObjectGrid needs to apply all current changes to the

Loader. The Loader is given a list of changes for this Map. The changes are

iterated and applied to the backend. The method receives the current TxID

value and the changes to apply. The following sample iterates over the set

of changes and batches three Java database connectivity (JDBC)

statements, one with insert, another with update, and one with delete.

import java.util.Collection;

import java.util.Map;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import com.ibm.websphere.objectgrid.TxID;

import com.ibm.websphere.objectgrid.plugins.Loader;

import com.ibm.websphere.objectgrid.plugins.LoaderException;

import com.ibm.websphere.objectgrid.plugins.LogElement;

import com.ibm.websphere.objectgrid.plugins.LogSequence;

public void batchUpdate(TxID tx, LogSequence sequence)

throws LoaderException

{

 // Get a SQL connection to use.

 Connection conn = getConnection(tx);

 try

 {

 // Process the list of changes and build a set of prepared

 // statements for executing a batch update, insert, or delete

 // SQL operation.

 Iterator iter = sequence.getPendingChanges();

 while (iter.hasNext())

 {

 LogElement logElement = (LogElement)iter.next();

 Object key = logElement.getCacheEntry().getKey();

 Object value = logElement.getCurrentValue();

 switch (logElement.getType().getCode())

 {

 case LogElement.CODE_INSERT:

 buildBatchSQLInsert(tx, key, value, conn);

 break;

 case LogElement.CODE_UPDATE:

 buildBatchSQLUpdate(tx, key, value, conn);

 break;

 case LogElement.CODE_DELETE:

 buildBatchSQLDelete(tx, key, conn);

 break;

 }

 }

 // Execute the batch statements that were built by above loop.

 Collection statements = getPreparedStatementCollection(tx, conn);

 iter = statements.iterator();

 while (iter.hasNext())

 {

 PreparedStatement pstmt = (PreparedStatement) iter.next();

 pstmt.executeBatch();

 }

 }

 catch (SQLException e)

 {

 LoaderException ex = new LoaderException(e);

 throw ex;

 }

}

194 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

The preceding sample illustrates the high level logic of processing the

LogSequence argument, but the details of how a SQL insert, update, or

delete statement is built are not illustrated. Some of the key points that are

illustrated include:

v The getPendingChanges method is called on the LogSequence argument

to obtain an iterator over the list of LogElements that the Loader needs

to process.

v The LogElement.getType().getCode() method is used to determine if

the LogElement is for a SQL insert, update, or delete operation.

v An SQLException exception is caught and is chained to a

LoaderException exception that prints to report that an exception

occurred during the batch update.

v JDBC batch update support is used to minimize the number of queries to

the backend that must be made.

preloadMap method

During the ObjectGrid initialization, each backing map that is defined is

initialized. If a Loader is plugged into a backing map, the backing map

invokes the preloadMap method on the Loader interface to allow the loader

to pre-fetch data from its backend and load the data into the map. The

following sample assumes the first 100 rows of an Employee table is read

from the database and is loaded into the map. The EmployeeRecord class

is an application provided class that holds the employee data read from the

employee table.

import java.util.Map;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import com.ibm.websphere.objectgrid.Session;

import com.ibm.websphere.objectgrid.TxID;

import com.ibm.websphere.objectgrid.plugins.Loader;

import com.ibm.websphere.objectgrid.plugins.LoaderException;

public void preloadMap(Session session, BackingMap backingMap)

throws LoaderException

{

 boolean tranActive = false;

 ResultSet results = null;

 Statement stmt = null;

 Connection conn = null;

 try

 {

 session.beginNoWriteThrough();

 tranActive = true;

 ObjectMap map = session.getMap(backingMap.getName());

 TxID tx = session.getTxID();

 // Get a auto−commit connection to use that is set to

 // a read committed isolation level.

 conn = getAutoCommitConnection(tx);

 // Preload the Employee Map with EmployeeRecord

 // objects. Read all Employees from table, but

 // limit preload to first 100 rows.

 stmt = conn.createStatement();

 results = stmt.executeQuery(SELECT_ALL);

 int rows = 0;

 while (results.next() && rows < 100)

 {

 int key = results.getInt(EMPNO_INDEX);

 EmployeeRecord emp = new EmployeeRecord(key);

 emp.setLastName(results.getString(LASTNAME_INDEX));

 emp.setFirstName(results.getString(FIRSTNAME_INDEX));

 emp.setDepartmentName(results.getString(DEPTNAME_INDEX));

 emp.updateSequenceNumber(results.getLong(SEQNO_INDEX));

Chapter 9. ObjectGrid application programming interface overview 195

emp.setManagerNumber(results.getInt(MGRNO_INDEX));

 map.put(new Integer(key), emp);

 ++rows;

 }

 // Commit the transaction.

 session.commit();

 tranActive = false;

 }

 catch (Throwable t)

 {

 throw new LoaderException("preload failure: " + t, t);

 }

 finally

 {

 if (tranActive)

 {

 try

 {

 session.rollback();

 }

 catch (Throwable t2)

 {

 // Tolerate any rollback failures and

 // allow original Throwable to be thrown.

 }

 }

 // Be sure to clean up other databases resources here

 // as well such a closing statements, result sets, etc.

 }

}

This sample illustrates the following key points:

v The preloadMap backing map uses the Session object that is passed to

it as the session argument.

v The Session.beginNoWriteThrough() method is used to begin the

transaction rather than the begin method. The Loader cannot be called

for each put operation that occurs in this method for loading the map.

v The Loader can map columns of employee table to a field in the

EmployeeRecord java object.

v The Loader catches all throwable exceptions that occur and throws a

LoaderException exception with the caught throwable exception chained

to it.

v The finally block ensures that any throwable exception that occurs

between the time the beginNoWriteThrough method is called and the

commit method is called cause the finally block to roll back the active

transaction. This action is critical to ensure that any transaction that has

been started by the preloadMap method is completed before returning to

the caller. The finally block is a good place to perform other clean up

actions that might be needed, like closing the JDBC connection and

other JDBC objects.

The preloadMap sample is using a SQL select statement that selects all

rows of the table. In your application provided Loader, you might need to

set one or more Loader properties to control how much of the table needs

to be preloaded into the map.

 Because the preloadMap method is only called one time during the

BackingMap initialization, it is also a good place to run the one time Loader

initialization code. Even if a Loader chooses not to pre-fetch data from the

backend and load the data into the map, it probably needs to perform some

196 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

other one time initialization to make other methods of the Loader more

efficient. The following is an example of caching the TransactionCallback

object and OptimisticCallback object as instance variables of the Loader so

that the other methods of the Loader do not have to make method calls to

get access to these objects. This caching of the ObjectGrid plug-in values

can be done because after the BackingMap is initialized, the

TransactionCallback and the OptimisticCallback objects cannot be changed

or replaced. It is acceptable to cache these object references as instance

variables of the Loader.

import com.ibm.websphere.objectgrid.Session;

import com.ibm.websphere.objectgrid.BackingMap;

import com.ibm.websphere.objectgrid.plugins.OptimisticCallback;

import com.ibm.websphere.objectgrid.plugins.TransactionCallback;

// Loader instance variables.

MyTransactionCallback ivTcb; // MyTransactionCallback

// extends TransactionCallback

MyOptimisticCallback ivOcb; // MyOptimisticCallback

// implements OptimisticCallback

...

public void preloadMap(Session session, BackingMap backingMap)

 throws LoaderException

{

 // Cache TransactionCallback and OptimisticCallback objects

 // in instance variables of this Loader.

 ivTcb = (MyTransactionCallback)

 session.getObjectGrid().getTransactionCallback();

 ivOcb = (MyOptimisticCallback) backingMap.getOptimisticCallback();

 // The remainder of preloadMap code (such as shown in prior example).

}

For information on preloading and recoverable preloading as it pertains to

replication failover, see “Replication programming” on page 217.

Loader considerations

Use the following considerations when implementing a loader.

Preload considerations

Each backing map has a boolean preloadMode attribute that can be set to indicate

if preload of a map completes asynchronously. By default, the preloadMode

attribute is set to false, which indicates that the backing map initialization does not

complete until the preload of the map is complete. For example, backing map

initialization is not complete until the preloadMap method returns. If the preloadMap

method is going to read a large amount of data from its back end and load it into

the map, it might take a relatively long time to complete. In this case, you can

configure a backing map to use asynchronous preload of the map by setting the

preloadMode attribute to true. This setting causes the backing map initialization

code to spawn a thread that invokes the preloadMap method, allowing initialization

of a backing map to complete while the preload of the map is still in progress.

The following snippet of code illustrates how the preloadMode attribute is set to

enable asynchronous preload:

BackingMap bm = og.defineMap("map1");

bm.setPreloadMode(true);

The preloadMode attribute can also be set by using a XML file as illustrated in the

following example:

Chapter 9. ObjectGrid application programming interface overview 197

<backingMap name="map1" preloadMode="true"

 pluginCollectionRef="map1" lockStrategy="OPTIMISTIC" />

TxID and use of the TransactionCallback interface

Both the get method and batchUpdate methods on the Loader interface are passed

a TxID object that represents the Session transaction that requires the get or

batchUpdate operation to be performed. It is possible that the get and batchUpdate

methods are called more than once per transaction. Therefore, transaction-scoped

objects that are needed by the Loader are typically kept in a slot of the TxID object.

A Java database connectivity (JDBC) Loader is used to illustrate how a Loader

uses the TxID and TransactionCallback interfaces.

It is also possible that several ObjectGrid maps are stored in the same database.

Each map has its own Loader and each Loader might need to connect to the same

database. When connecting to the same database, each Loader wants to use the

same JDBC connection so that the changes to each table are committed as part of

the same database transaction. Typically, the same person who writes the Loader

implementation also writes the TransactionCallback implementation. The best

method is if the TransactionCallback interface is extended to add methods that the

Loader needs for getting a database connection and for caching prepared

statements. The reason for this methodology becomes apparent as you look at how

the TransactionCallback and TxID interfaces are used by the Loader.

As an example, the Loader might need the TransactionCallback interface to be

extended as follows:

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import com.ibm.websphere.objectgrid.TxID;

public interface MyTransactionCallback extends TransactionCallback

{

 Connection getAutoCommitConnection(TxID tx, String databaseName)

 throws SQLException;

 Connection getConnection(TxID tx, String databaseName,

 int isolationLevel) throws SQLException;

 PreparedStatement getPreparedStatement(TxID tx, Connection conn,

 String tableName, String sql) throws SQLException;

 Collection getPreparedStatementCollection(TxID tx, Connection conn,

 String tableName);

}

Using these new methods, the Loader get and batchUpdate methods can get a

connection as follows:

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import com.ibm.websphere.objectgrid.TxID;

private Connection getConnection(TxID tx, int isolationLevel)

{

 Connection conn = ivTcb.getConnection(tx, databaseName, isolationLevel);

 return conn;

}

In the previous example and the examples that follow, ivTcb and ivOcb are Loader

instance variables that were initialized as described in the “Preload considerations”

on page 197 section. The ivTcb variable is a reference to the

MyTransactionCallback instance and the ivOcb is a reference to the

MyOptimisticCallback instance. The databaseName variable is an instance variable

of the Loader that was set as a Loader property during the initialization of the

198 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

backing map. The isolationLevel argument is one of the JDBC Connection

constants that are defined for the various isolation levels that JDBC supports. If the

Loader is using an optimistic implementation, the get method typically uses a JDBC

auto−commit connection to fetch the data from the database. In that case, the

Loader might have a getAutoCommitConnection method that is implemented as

follows:

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import com.ibm.websphere.objectgrid.TxID;

private Connection getAutoCommitConnection(TxID tx)

{

 Connection conn = ivTcb.getAutoCommitConnection(tx, databaseName);

 return conn;

}

Recall that the batchUpdate method has the following switch statement:

switch (logElement.getType().getCode())

{

 case LogElement.CODE_INSERT:

 buildBatchSQLInsert(tx, key, value, conn);

 break;

 case LogElement.CODE_UPDATE:

 buildBatchSQLUpdate(tx, key, value, conn);

 break;

 case LogElement.CODE_DELETE:

 buildBatchSQLDelete(tx, key, conn);

 break;

}

Each of the buildBatchSQL methods uses the MyTransactionCallback interface to

get a prepared statement. Following is a snippet of code that shows the

buildBatchSQLUpdate method building an SQL update statement for updating an

EmployeeRecord entry and adding it for the batch update:

private void buildBatchSQLUpdate(TxID tx, Object key, Object value, Connection

 conn)

throws SQLException, LoaderException

{

 String sql = "update EMPLOYEE set LASTNAME = ?, FIRSTNAME = ?, DEPTNO = ?,

 SEQNO = ?, MGRNO = ? where EMPNO = ?";

 PreparedStatement sqlUpdate = ivTcb.getPreparedStatement(tx, conn, "employee",

 sql);

 EmployeeRecord emp = (EmployeeRecord) value;

 sqlUpdate.setString(1, emp.getLastName());

 sqlUpdate.setString(2, emp.getFirstName());

 sqlUpdate.setString(3, emp.getDepartmentName());

 sqlUpdate.setLong(4, emp.getSequenceNumber());

 sqlUpdate.setInt(5, emp.getManagerNumber());

 sqlUpdate.setInt(6, key);

 sqlUpdate.addBatch();

}

After the batchUpdate loop has built all of the prepared statements, it calls the

getPreparedStatementCollection method. This method can be implemented as

follows:

private Collection getPreparedStatementCollection(TxID tx, Connection conn)

{

 return (ivTcb.getPreparedStatementCollection(tx, conn, "employee"));

}

When the application invokes the commit method on the Session, the Session code

calls the commit method on the TransactionCallback method after it has pushed all

Chapter 9. ObjectGrid application programming interface overview 199

the changes made by the transaction out to the Loader for each map that was

changed by the transaction. Because all of the Loaders used the

MyTransactionCallback method to get any connection and prepared statements

they needed, the TransactionCallback method knows which connection to use to

request that the back end commits the changes. So, extending the

TransactionCallback interface with methods that are needed by each of the Loaders

has the following advantages:

v The TransactionCallback object encapsulates the use of TxID slots for

transaction-scoped data, and the Loader does not require information about the

TxID slots. The Loader only needs to know about the methods that are added to

TransactionCallback using the MyTransactionCallback interface for the supporting

functions needed by the Loader.

v The TransactionCallback object can ensure that connection sharing occurs

between each Loader that connects to the same backend so that a two phase

commit protocol can be avoided.

v The TransactionCallback object can ensure that connecting to the backend is

driven to completion through a commit or rollback invoked on the connection

when appropriate.

v TransactionCallback can ensure that the cleanup of database resources occurs

when a transaction completes.

v TransactionCallback can hide if it is obtaining a managed connection from a

managed environment such as WebSphere Application Server or some other

Java 2 Platform, Enterprise Edition (J2EE) compliant application server. This

advantage allows the same Loader code to be used in both a managed and

unmanaged environments. Only the TransactionCallback plug-in must be

changed.

For detailed information about how the TransactionCallback implementation uses

the TxID slots for transaction-scoped data, see “TransactionCallback plug-in” on

page 207.

OptimisticCallback

As mentioned earlier, the Loader might decide to use an optimistic approach for

concurrency control. If that is the case, the buildBatchSQLUpdate method example

needs to be modified slightly for implementing an optimistic approach. Several

possible ways exist for using an optimistic approach. A typical way is to have either

a timestamp column or sequence number counter column for versioning each

update of the row. Assume that the employee table has a sequence number column

that increments each time the row is updated.

You then modify the signature of the buildBatchSQLUpdate method so that it is

passed the LogElement object instead of the key and value pair. It also needs to

use the OptimisticCallback object that is plugged into the backing map for getting

both the initial version object and for updating the version object. The following is

an example of a modified buildBatchSQLUpdate method that uses the ivOcb

instance variable that was initialized as described in the preloadMap section:

private void buildBatchSQLUpdate(TxID tx, LogElement le,

 Connection conn)throws SQLException, LoaderException

{

 // Get the initial version object when this map entry was last read

 // or updated in the database.

 Employee emp = (Employee) le.getCurrentValue();

 long initialVersion = ((Long) le.getVersionedValue()).longValue();

 // Get the version object from the updated Employee for the SQL update

 //operation.

 Long currentVersion = (Long)ivOcb.getVersionedObjectForValue(emp);

200 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

long nextVersion = currentVersion.longValue();

 // Now build SQL update that includes the version object in where clause

 // for optimistic checking.

 String sql = "update EMPLOYEE set LASTNAME = ?, FIRSTNAME = ?,

 DEPTNO = ?,SEQNO = ?, MGRNO = ? where EMPNO = ? and SEQNO = ?";

 PreparedStatement sqlUpdate = ivTcb.getPreparedStatement(tx, conn,

 "employee", sql);

 sqlUpdate.setString(1, emp.getLastName());

 sqlUpdate.setString(2, emp.getFirstName());

 sqlUpdate.setString(3, emp.getDepartmentName());

 sqlUpdate.setLong(4, nextVersion);

 sqlUpdate.setInt(5, emp.getManagerNumber());

 sqlUpdate.setInt(6, key);

 sqlUpdate.setLong(7, initialVersion);

 sqlUpdate.addBatch();

}

The example shows that the LogElement is used to obtain the initial version value.

When the transaction first accesses the map entry, a LogElement is created with

the initial Employee object that is obtained from the map. The initial Employee

object is also passed to the getVersionedObjectForValue method on the

OptimisticCallback interface and the result is saved in the LogElement. This

processing happens before an application is given a reference to the initial

Employee object and has a chance to call some method that changes the state of

the initial Employee object.

The example shows that the Loader uses the getVersiondObjectForValue method to

obtain the version object for the current updated Employee object. Before calling

the batchUpdate method on the Loader interface, ObjectGrid calls the

updateVersionedObjectForValue method on the OptimisticCallback interface to

cause a new version object to be generated for the updated Employee object. After

the batchUpdate method returns to the ObjectGrid, the LogElement is updated with

the current version object so it becomes the new initial version object. This step is

necessary because the application might have called the flush method on the map

instead of the commit method on the Session. It is possible for the Loader to be

called multiple times by a single transaction for the same key. For that reason,

ObjectGrid ensures that the LogElement is updated with the new version object

each time the row is updated in the employee table.

Now that the Loader has both the initial version object and the next version object,

it can run an SQL update statement that sets the SEQNO column to the next

version object value and uses the initial version object value in the where clause.

This approach is sometimes referred to as being an overqualified update statement.

The use of the overqualified update statement allows the relational database to

verify that the row was not changed by some other transaction in between the time

that this transaction read the data from the database and the time that this

transaction updates the database. If another transaction modified the row, then the

count array that is returned by the batch update indicates that zero rows were

updated for this key. The Loader is responsible for verifying that the SQL update

operation did in fact update the row. If it does not, the Loader displays a

com.ibm.websphere.objectgrid.plugins.OptimisticCollisionException exception

to inform the Session that the batchUpdate method failed due to more than one

concurrent transaction trying to update the same row in the database table. This

exception causes the Session to roll back and the application must retry the entire

transaction. The rationale is that the retry will be successful, which is why this

approach is called optimistic. The optimistic approach does in fact perform better if

data is infrequently changed or concurrent transactions rarely try to update the

same row.

Chapter 9. ObjectGrid application programming interface overview 201

It is important for the Loader to use the key parameter of the

OptimisticCollisionException constructor to identify which key or set of keys caused

the optimistic batchUpdate method to fail. The key parameter can either be the key

object itself or an array of key objects if more than one key resulted in optimistic

update failure. ObjectGrid uses the getKey method of the

OptimisticCollisionException constructor to determine which map entries contain

stale data and caused the exception to result. Part of the rollback processing is to

evict each stale map entry from the map. Evicting stale entries is necessary so that

any subsequent transaction that accesses the same key or keys results in the get

method of the Loader interface being called to refresh the map entries with the

current data from the database.

Other ways for a Loader to implement an optimistic approach include:

v No timestamp or sequence number column exists. In this case, the

getVersionObjectForValue method on the OptimisticCallback interface simply

returns the value object itself as the version. With this approach, the Loader

needs to build a where clause that includes each of the fields of the initial version

object. This approach is not very efficient, and not all column types are eligible to

be used in the where clause of an overqualified SQL update statement. This

approach is typically not used.

v No timestamp or sequence number column exists. However, unlike the prior

approach, the where clause only contains the value fields that were modified by

the transaction. One way to detect which fields are modified is to set the copy

mode on the backing map to be CopyMode.COPY_ON_WRITE mode. This copy mode

requires that a value interface to be passed to the setCopyMode method on the

BackingMap interface. The BackingMap creates dynamic proxy objects that

implement the provided value interface. With this copy mode, the Loader can

cast each value to a com.ibm.websphere.objectgrid.plugins.ValueProxyInfo

object. The ValueProxyInfo interface has a method that allows the Loader to

obtain the List of attribute names that were changed by the transaction. This

method enables the Loader to call the get methods on the value interface for the

attribute names to obtain the changed data and to build an SQL update

statement that only sets the changed attributes. The where clause can now be

built to have the primary key column plus each of the changed attribute columns.

This approach is more efficient than the prior approach, but it requires more code

to be written in the Loader and leads to the possibility that the prepared

statement cache needs to be larger to handle the different permutations.

However, if transactions typically only modify a few of the attributes, this limitation

might not be a problem.

v Some relational databases might have an API to assist in automatically

maintaining column data that is useful for optimistic versioning. Consult your

database documentation to determine if this possibility exists.

ObjectTransformer plug-in

Use the ObjectTransformer plug-in when you require high performance. If you see

performance issues with CPU usage, add an ObjectTransformer plug-in to each

map. If you do not provide an ObjectTransformer plug-in, up to 60-70% of the total

CPU time is spent serializing and copying entries.

Purpose

The purpose of the ObjectTransformer plug-in is to allow applications to provide

custom methods for the following operations:

v Serialize or deserialize the key for an entry

202 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

v Serialize or deserialize the value for an entry

v Copy a key or value for an entry

If no ObjectTransformer plug-in is provided, you must be able to serialize the keys

and values because the ObjectGrid uses a serialize and deserialize sequence to

copy the objects. This method is expensive, so use an ObjectTransformer plug-in

when performance is critical. The copying occurs when an application looks up an

object in a transaction for the first time. You can avoid this copying by setting the

copy mode of the Map to NO_COPY or reduce the copying by setting the copy mode

to COPY_ON_READ. Optimize the copy operation when needed by the application by

providing a custom copy method on this plug-in. Such a plug-in can reduce the

copy overhead from 65−70% to 2/3% of total CPU time.

The default copyKey and copyValue method implementations first attempt to use

the clone() method, if provided. If no clone() method implementation is provided, the

implementation defaults to serialization.

Object serialization is also used directly when the ObjectGrid is running in

distributed mode. The LogSequence uses the ObjectTransformer plug-in to help it

serialize keys and values before transmitting the changes to peers in the

ObjectGrid. You must take care when providing a custom serialization method

instead of using the built-in JDK serialization. Object versioning is a complex issue

and you might encounter problems with version compatibility if you do not ensure

that your custom methods are designed for versioning.

The following list details how the ObjectGrid tries to serialize both keys and values:

v If a custom ObjectTransformer plug-in is written and plugged in, ObjectGrid calls

methods in the ObjectTransformer methods to serialize keys and values and get

copies of object keys and values..

v If a custom ObjectTransformer plug-in is not used, ObjectGrid serializes and

deserializes according to the default. If the default is used, each object is

implemented as externalizable or is implemented as serializable.

– If the object supports the Externalizable interface, the writeExternal method

is called. Objects that are implemented as externalizable lead to better

performance.

– If the object does not support the Externalizable interface and does implement

Serializable, the object is saved using the ObjectOutputStream method.

ObjectTransformer interface

See the API documentation for more information about the ObjectTransformer

interface. The ObjectTransformer interface contains the following methods that

serialize and deserialize keys or values and copy keys or values:

public interface ObjectTransformer

{

 void serializeKey(Object key, ObjectOutputStream stream)

 throws IOException;

 void serializeValue(Object value, ObjectOutputStream stream)

 throws IOException;

 Object inflateKey(ObjectInputStream stream)

 throws IOException, ClassNotFoundException;

 Object inflateValue(ObjectInputStream stream)

 throws IOException, ClassNotFoundException;

 Object copyKey(Object value);

 Object copyValue(Object value);

}

Chapter 9. ObjectGrid application programming interface overview 203

ObjectTransformer interface usage

You can use the ObjectTransformer interface in the following situations:

v non-serializable object

v serializable object but improve serialization performance

v key or value copy

In the following example, ObjectGrid is used to store the Stock class:

/**

* Stock object for ObjectGrid demo

*

*

*/

public class Stock implements Cloneable {

 String ticket;

 double price;

 String company;

 String description;

 int serialNumber;

 long lastTransactionTime;

 /**

 * @return Returns the description.

 */

 public String getDescription() {

 return description;

 }

 /**

 * @param description The description to set.

 */

 public void setDescription(String description) {

 this.description = description;

 }

 /**

 * @return Returns the lastTransactionTime.

 */

 public long getLastTransactionTime() {

 return lastTransactionTime;

 }

 /**

 * @param lastTransactionTime The lastTransactionTime to set.

 */

 public void setLastTransactionTime(long lastTransactionTime) {

 this.lastTransactionTime = lastTransactionTime;

 }

 /**

 * @return Returns the price.

 */

 public double getPrice() {

 return price;

 }

 /**

 * @param price The price to set.

 */

 public void setPrice(double price) {

 this.price = price;

 }

 /**

 * @return Returns the serialNumber.

 */

 public int getSerialNumber() {

 return serialNumber;

 }

 /**

 * @param serialNumber The serialNumber to set.

204 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

*/

 public void setSerialNumber(int serialNumber) {

 this.serialNumber = serialNumber;

 }

 /**

 * @return Returns the ticket.

 */

 public String getTicket() {

 return ticket;

 }

 /**

 * @param ticket The ticket to set.

 */

 public void setTicket(String ticket) {

 this.ticket = ticket;

 }

 /**

 * @return Returns the company.

 */

 public String getCompany() {

 return company;

 }

 /**

 * @param company The company to set.

 */

 public void setCompany(String company) {

 this.company = company;

 }

 //clone

 public Object clone() throws CloneNotSupportedException

 {

 return super.clone();

 }

}

You can write a custom object transformer class for the Stock class:

/**

* Custom implementation of ObjectGrid ObjectTransformer for stock object

*

*/

public class MyStockObjectTransformer implements ObjectTransformer {

 /* (non−Javadoc)

 * @see

 * com.ibm.websphere.objectgrid.plugins.ObjectTransformer#serializeKey

 * (java.lang.Object,

 * java.io.ObjectOutputStream)

 */

 public void serializeKey(Object key, ObjectOutputStream stream)

 throws IOException {

 String ticket= (String) key;

 stream.writeUTF(ticket);

 }

 /* (non−Javadoc)

 * @see com.ibm.websphere.objectgrid.plugins.

 ObjectTransformer#serializeValue(java.lang.Object,

 java.io.ObjectOutputStream)

 */

 public void serializeValue(Object value, ObjectOutputStream stream)

 throws IOException {

 Stock stock= (Stock) value;

 stream.writeUTF(stock.getTicket());

 stream.writeUTF(stock.getCompany());

 stream.writeUTF(stock.getDescription());

 stream.writeDouble(stock.getPrice());

 stream.writeLong(stock.getLastTransactionTime());

Chapter 9. ObjectGrid application programming interface overview 205

stream.writeInt(stock.getSerialNumber());

 }

/* (non−Javadoc)

* @see com.ibm.websphere.objectgrid.plugins.

ObjectTransformer#inflateKey(java.io.ObjectInputStream)

*/

 public Object inflateKey(ObjectInputStream stream) throws IOException,

 ClassNotFoundException {

 String ticket=stream.readUTF();

 return ticket;

 }

/* (non−Javadoc)

* @see com.ibm.websphere.objectgrid.plugins.

ObjectTransformer#inflateValue(java.io.ObjectInputStream)

*/

 public Object inflateValue(ObjectInputStream stream) throws IOException,

 ClassNotFoundException {

 Stock stock=new Stock();

 stock.setTicket(stream.readUTF());

 stock.setCompany(stream.readUTF());

 stock.setDescription(stream.readUTF());

 stock.setPrice(stream.readDouble());

 stock.setLastTransactionTime(stream.readLong());

 stock.setSerialNumber(stream.readInt());

 return stock;

 }

/* (non−Javadoc)

* @see com.ibm.websphere.objectgrid.plugins.

ObjectTransformer#copyValue(java.lang.Object)

*/

 public Object copyValue(Object value) {

 Stock stock = (Stock) value;

 try{

 return stock.clone();

 }

 catch (CloneNotSupportedException e)

 {

 //streamize one

 }

 }

/* (non−Javadoc)

* @see com.ibm.websphere.objectgrid.plugins.

ObjectTransformer#copyKey(java.lang.Object)

*/

 public Object copyKey(Object key) {

 String ticket=(String) key;

 String ticketCopy= new String (ticket);

 return ticketCopy;

 }

}

Then, plug in this custom MyStockObjectTransformer class into the BackingMap:

ObjectGridManager ogf=ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid og = ogf.getObjectGrid("NYSE");

BackingMap bm = og.defineMap("NYSEStocks");

MyStockObjectTransformer ot = new MyStockObjectTransformer();

bm.setObjectTransformer(ot);

206 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

TransactionCallback plug-in

An application usually plugs in both a TransactionCallback plug-in and a Loader as

a pair. The Loader is responsible for fetching data from the back end as well as

applying changes to the back end. This fetching and flushing usually take place

within the context of an ObjectGrid transaction.

The TransactionCallback plug-in has the following responsibilities:

v Reserves slots for a transaction-specific state that is needed for the transaction

and the Loader

v Translates or maps an ObjectGrid transaction to a platform transaction

v Sets up the per transaction state when the ObjectGrid begins a transaction

v Commits the transaction when the ObjectGrid transaction commits

v Rolls back the transaction when the ObjectGrid transaction rolls back

The ObjectGrid is not a XA transaction coordinator. The ObjectGrid relies on the

platform to provide that capability. The ObjectGrid begin, commit, and rollback

methods that are presented on a Session are lifecycle calls. The

TransactionCallback plug-in must receive these events and make the platform

provide the transactional capability for the resources used by the Loaders. This

topic examines various scenarios and discusses how the TransactionCallback

plug-in can be written to work for these scenarios.

TransactionCallback plug-in overview

The TransactionCallback plug-in is a POJO that implements the

TransactionCallback interface. The TransactionCallback interface looks like the

following sample:

public interface TransactionCallback

{

 void initialize(ObjectGrid objectGrid) throws TransactionCallbackException;

 void begin(TxID id) throws TransactionCallbackException;

 void commit(TxID id) throws TransactionCallbackException;

 void rollback(TxID id) throws TransactionCallbackException;

 boolean isExternalTransactionActive(Session session);

}

initialize method

The initialize method is called when the ObjectGrid is initialized. The

callback reserves slots for the TxID object that it needs. Usually, it reserves

a slot for each piece of the state or Object that it wants to create in the

begin method when a transaction starts. For example, you want to use a

Persistence Manager with the ObjectGrid as a Loader. Assuming that this

persistence manager has session and transaction state objects, the

TransactionCallback would obtain a session and transaction and keep

references to those two objects in slots on the TxID. In this case, the

initialize method looks like the following sample:

/**

* This is called when the grid first initializes. We’ll just

* reserve our slots in the TxID.

*/

public void initialize(ObjectGrid objectGrid) throws

 TransactionCallbackException

{

 // reserve a slot for the persistence manager transaction

Chapter 9. ObjectGrid application programming interface overview 207

TXslot = objectGrid.reserveSlot(TxID.SLOT_NAME);

 // reserve a slot for the persistence manager session

 SessionSlot = objectGrid.reserveSlot(TxID.SLOT_NAME);

}

A TxID has slots. The slots are entries on an ArrayList array. Plug-ins can

reserve an entry in the ArrayList array by calling the

ObjectGrid.reserveSlot method and indicating that it wants a slot on the

TxID object. The method then returns the next entry index to the

application. The application can then store information in this slot. The next

methods demonstrate this technique.

begin method

The ObjectGrid calls this method when it starts a new transaction. The

plug-in maps this event to a real transaction that the Loaders can then use

for the get and update method calls that arrive before the commit method is

called. Following is an example begin method that maps an ObjectGrid

begin to a persistence manager transaction begin:

/**

* This is called when the grid starts a new transaction. We just create a

* persistence manager transaction and call begin on it. We then store

* the transaction in the TxID slot so we can get it again later

* without needing ThreadLocal etc.

*/

public void begin(TxID id) throws TransactionCallbackException

{

 Session PMsession = getPMcurrentSession();

 Transaction tx = PMsession.beginTransaction();

 id.putSlot(TXslot, tx);

 id.putSlot(SessionSlot, PMsession);

}

This sample relies on the fact that the initialize method has reserved two

slots on the TxID object. One slot is for the persistence manager session

and the other slot is for the persistence manager Transaction. The begin

method calls the persistence manager to get a session, stores it in the

indexed SessionSlot slot, and creates a Transaction on the session and

stores a reference to this transaction using the indexed TXSlot slot.

commit method

The commit method is called when an ObjectGrid transaction is committing.

All Loaders have already been flushed. The plug-in responsibility is to

communicate this commit event to the platform.

/**

* This is called when the grid wants to commit a transaction.

* We just pass it on to persistence manager.

*/

public void commit(TxID id) throws TransactionCallbackException

{

 Transaction tx = (Transaction)id.getSlot(TXslot);

 tx.commit();

}

The method looks up the persistence manager transaction stored in the slot

and then calls the commit method.

rollback method

This method is called when an ObjectGrid transaction wants to roll back a

transaction. The plug-in forwards this to the platform transaction manager.

Following is the code snippet:

208 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

/**

* This is called when the grid wants to rollback a transaction.

* We just pass it on to persistence manager.

*/

public void rollback(TxID id) throws TransactionCallbackException

{

 Transaction tx = (Transaction)id.getSlot(TXslot);

 tx.rollback();

}

This method is very similar to the commit method. It gets a reference to the

persistence manager transaction from a slot and then invokes the rollback

method.

isExternalTransactionActive method

An ObjectGrid session normally works in autocommit mode or in transaction

mode. Autocommit mode means an implicit transaction is created around

every method call to the ObjectMap instances for the session. If no

transaction is active and an application makes a call on an ObjectMap

method, the framework calls this method on the TransactionCallback plug-in

to check if there is a proper transaction active. If this method returns true

then the framework does an automatic begin otherwise, it does autocommit.

This method allows the ObjectGrid to be integrated in environments where

the application invokes begin, commit, or rollback methods on the platform

APIs instead of the ObjectGrid APIs.

Scenario: Simple Java database connectivity (JDBC)-based Java

2 Platform, Standard Edition (J2SE) environment

This example uses a J2SE environment where the application has a JDBC-based

Loader. Two Maps exist, each with a Loader that backs each Map by a different

table in the database. The TransactionCallback plug-in gets a JDBC connection and

then invokes the begin, commit, and rollback methods on the connection. Following

is the sample TransactionCallback implementation:

public class JDBCTCB implements TransactionCallback

{

 DataSource datasource;

 int connectionSlot;

 public JDBCTCB(DataSource ds)

 {

 datasource = ds;

 }

 public void initialize(ObjectGrid objectGrid)

 throws TransactionCallbackException

 {

 connectionSlot = objectGrid.reserveSlot(TxID.SLOT_NAME);

 }

 public void begin(TxID id) throws TransactionCallbackException

 {

 try

 {

 Connection conn = datasource.getConnection();

 conn.setAutoCommit(false);

 id.putSlot(connectionSlot, conn);

 }

 catch(SQLException e)

 {

 throw new TransactionCallbackException("Cannot start transaction", e);

 }

 }

 public void commit(TxID id) throws TransactionCallbackException

 {

Chapter 9. ObjectGrid application programming interface overview 209

Connection conn = null;

 try

 {

 conn = (Connection)id.getSlot(connectionSlot);

 conn.commit();

 conn.close();

 }

 catch(SQLException e)

 {

 throw new TransactionCallbackException("Cannot commit transaction", e);

 }

 finally {

 if (conn!=null) {

 try {

 conn.close();

 }

 catch (SQLException closeE) {

 }

 }

 }

 }

 public void rollback(TxID id) throws TransactionCallbackException

 {

 Connection conn = null;

 try

 {

 conn = (Connection)id.getSlot(connectionSlot);

 conn.rollback();

 conn.close();

 }

 catch(SQLException e)

 {

 throw new TransactionCallbackException("Cannot rollback transaction", e);

 }

 finally {

 if (conn!=null) {

 try {

 conn.close();

 }

 catch (SQLException closeE) {

 }

 }

 }

 }

 public boolean isExternalTransactionActive(Session session)

 {

 return false;

 }

 public int getConnectionSlot()

 {

 return connectionSlot;

 }

}

This example shows a TransactionCallback plug-in that converts the ObjectGrid

transaction events to a JDBC connection. When the plug-in is initialized, it reserves

a single slot to keep a JDBC connection reference. The begin method then obtains

a JDBC connection for the new transaction, turns auto commit off, and then stores

a reference to the connection in the TxID slot. The commit and rollback methods

retrieve the connection from the TxID slot and call the appropriate method on the

connection. The isExternalTransaction method always returns false, indicating that

the application must use the ObjectGrid transaction APIs explicitly to control

transactions. A Loader that is paired with this plug-in obtains the JDBC connection

from the TxID. A Loader looks like the following example:

210 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

public class JDBCLoader implements Loader

{

 JDBCTCB tcb;

 public void preloadMap(Session session, BackingMap backingMap)

 throws LoaderException

 {

 tcb = (JDBCTCB)session.getObjectGrid().getTransactionCallback();

 }

 public List get(TxID txid, List keyList, boolean forUpdate)

 throws LoaderException

 {

 Connection conn = (Connection)txid.getSlot(tcb.getConnectionSlot());

 // implement get here

 return null;

 }

 public void batchUpdate(TxID txid, LogSequence sequence)

 throws LoaderException, OptimisticCollisionException

 {

 Connection conn = (Connection)txid.getSlot(tcb.getConnectionSlot());

 // TODO implement batch update here

 }

}

The Loader obtains a reference to the JDBCTCB instance when the initialize

method is called. It then obtains the Connection obtained by the JDBCTCB when it

is required in the get and batchUpdate methods. TransactionCallback

implementations and Loaders are typically written in pairs that cooperate with each

other. The TransactionCallback implementation handles the Transaction and stores

objects needed by the Loaders in slots in the TxID. The Loaders then implement

get and batchUpdate methods in the context of a transaction managed by the

TransactionCallback using resources obtained by the TCB usually.

Scenario: Servlet engine environment

In this scenario, the ObjectGrid is using a JDBC-based Loader but in a managed

servlet engine. The container expects us to use the UserTransaction method to

begin and commit transactions. This is slightly different from the J2SE case

because storing a reference to the JDBC connection in a TxID slot is not necessary.

The container manages the JDBC connection. When a container transaction is

active, a connection that is looked up using a data source results in the same

connection each time because the container remembers which connections are

used by this transaction and returns the same connection each time the

DataSource.getConnection method is called. Assume that the data source reference

is configured as Shareable in the following example:

public class ManagedJDBCTCB implements TransactionCallback {

 UserTransaction tx;

 public void initialize(ObjectGrid objectGrid)

 throws TransactionCallbackException

 {

 try

 {

 InitialContext ic = new InitialContext();

 tx = (UserTransaction)ic.lookup("java:comp/UserTransaction");

 }

 catch(NamingException e)

 {

 throw new TransactionCallbackException("Cannot find UserTransaction", e);

 }

 }

 public void begin(TxID id) throws TransactionCallbackException

 {

 try

Chapter 9. ObjectGrid application programming interface overview 211

{

 tx.begin();

 }

 catch(SystemException e)

 {

 throw new TransactionCallbackException("Cannot begin tx", e);

 }

 catch(NotSupportedException e)

 {

 throw new TransactionCallbackException("Cannot begin tx", e);

 }

 }

 public void commit(TxID id) throws TransactionCallbackException

 {

 try

 {

 tx.commit();

 }

 catch(SystemException e)

 {

 throw new TransactionCallbackException("Cannot commit tx", e);

 }

 catch(HeuristicMixedException e)

 {

 throw new TransactionCallbackException("Cannot commit tx", e);

 }

 catch(RollbackException e)

 {

 throw new TransactionCallbackException("Cannot commit tx", e);

 }

 catch(HeuristicRollbackException e)

 {

 throw new TransactionCallbackException("Cannot commit tx", e);

 }

 }

 public void rollback(TxID id) throws TransactionCallbackException

 {

 try

 {

 tx.rollback();

 }

 catch(SystemException e)

 {

 throw new TransactionCallbackException("Cannot commit tx", e);

 }

 }

 public boolean isExternalTransactionActive(Session session) {

 return false;

 }

}

This example obtains a reference to the UserTransaction method in the initialize

method and then maps begin, commit, and rollback on to the appropriate

UserTransaction methods. Slots are not needed because the container verifies that

the correct connection information is retrieved for this transaction. Following is the

JDBC Loader that works with this TransactionCallback implementation:

public class ManagedJDBCLoader implements Loader

{

 DataSource myDataSource;

 ManagedJDBCLoader(DataSource ds)

 {

 myDataSource = ds;

 }

 public void preloadMap(Session session, BackingMap backingMap)

 throws LoaderException

212 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

{

 }

 public List get(TxID txid, List keyList, boolean forUpdate)

 throws LoaderException

 {

 try

 {

 Connection conn = myDataSource.getConnection();

 // TODO implement get here with this connection

 return null;

 }

 catch(SQLException e)

 {

 throw new LoaderException("Cannot get objects", e);

 }

 }

 public void batchUpdate(TxID txid, LogSequence sequence)

 throws LoaderException, OptimisticCollisionException

 {

 try

 {

 Connection conn = myDataSource.getConnection();

 // TODO implement update here using this connection

 }

 catch(SQLException e)

 {

 throw new LoaderException("Cannot update objects", e);

 }

 }

}

This example can be simpler than the basic JDBC version because the container

manages the connections and verifies that within the same transaction, the

DataSource.getConnection method always returns the same connection when it is

called with the same transaction active each time. Do not try to cache the

connection in a slot as a result, although the application can cache the connection if

it chooses to.

OptimisticCallback interface

You can provide a pluggable optimistic callback object that implements the

com.ibm.websphere.objectgrid.plugins.OptimisticCallback interface.

Purpose

The OptimisticCallback interface is used to provide optimistic comparison operations

for the values of a map. An OptimisticCallback is required when the optimistic lock

strategy is being used as described in “Optimistic locking” on page 129. ObjectGrid

provides a default OptimisticCallback implementation. However, usually the

application must plug in its own implementation of the OptimisticCallback interface.

Plug in an application-provided OptimisticCallback object

The following example demonstrates how an application can plug in an

OptimisticCallback object for the employee backing map in the grid1 ObjectGrid

instance:

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.BackingMap;

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();

Chapter 9. ObjectGrid application programming interface overview 213

ObjectGrid og = ogManager.createObjectGrid("grid1");

BackingMap bm = dg.defineMap("employees");

EmployeeOptimisticCallbackImpl cb = new EmployeeOptimisticCallbackImpl();

bm.setOptimisticCallback(cb);

The EmployeeOptimisticCallbackImpl object in the preceding example must

implement the OptimisticCallback interface. The application can also use an XML

file to plug in its OptimisticCallback object as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>

 <objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="grid1">

 <backingMap name="employees" pluginCollectionRef="employees"

 lockStrategy="OPTIMISTIC" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="employees">

 <bean id="OptimisticCallback"

 className="com.xyz.EmployeeOptimisticCallbackImpl" />

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

Default implementation

The ObjectGrid framework provides a default implementation of the

OptimisticCallback interface that is used if the application does not plug in an

application-provided OptimisticCallback object, as demonstrated in the previous

section. The default implementation always returns the special value of

NULL_OPTIMISTIC_VERSION as the version object for the value and never

updates the version object. This action makes optimistic comparison a ″no

operation″ function. In most cases, you do not want the ″no operation″ function to

occur when you are using the optimistic locking strategy. Your applications must

implement the OptimisticCallback interface and plug in their own OptimisticCallback

implementations so that the default implementation is not used. However, at least

one scenario exists where the default provided OptimisticCallback implementation is

useful. Consider the following situation:

v A loader is plugged in for the backing map.

v The loader knows how to perform the optimistic comparison without assistance

from an OptimisticCallback plug-in.

How can the Loader know how to deal with optimistic versioning without assistance

from an OptimisticCallback object? The Loader has knowledge of the value class

object and knows which field of the value object is used as an optimistic versioning

value. For example, suppose the following interface is used for the value object for

the employees map:

public interface Employee

{

// Sequential sequence number used for optimistic versioning.

public long getSequenceNumber();

public void setSequenceNumber(long newSequenceNumber);

// Other get/set methods for other fields of Employee object.

}

In this case, the Loader knows that it can use the getSequenceNumber method to

get the current version information for an Employee value object. It increments the

214 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

returned value to generate a new version number before updating the persistent

storage with the new Employee value. For a Java database connectivity (JDBC)

Loader, the current sequence number in the where clause of an overqualified SQL

update statement is used, and it uses the new generated sequence number to set

the sequence number column to the new sequence number value. Another

possibility is that the Loader makes use of some backend-provided function that

automatically updates a hidden column that can be used for optimistic versioning. In

some cases, a stored procedure or trigger can possibly be used to help maintain a

column that holds versioning information. If the Loader is using one of these

techniques for maintaining optimistic versioning information, then the application

does not need to provide an OptimisticCallback implementation. The default

OptimisticCallback is usable in this case because the Loader is able to handle

optimistic versioning without any assistance from an OptimisticCallback object.

Implement the OptimisticCallback interface

The OptimisticCallback interface contains the following methods and special values:

public interface OptimisticCallback

{

 final static Byte NULL_OPTIMISTIC_VERSION;

 Object getVersionedObjectForValue(Object value);

 void updateVersionedObjectForValue(Object value);

 void serializeVersionedValue(Object versionedValue,

 ObjectOutputStream stream) throws IOException;

 Object inflateVersionedValue(ObjectInputStream stream) throws

 IOException, ClassNotFoundException;

}

The following list provides a description or consideration for each of the methods in

the OptimisticCallback interface:

NULL_OPTIMISTIC_VERSION

This special value is returned by getVersionedObjectForValue method if the

default OptimisticCallback implementation is used instead of an

application-provided OptimisticCallback implementation.

getVersionedObjectForValue method

This method might return a copy of the value or it might return an attribute

of the value that can be used for versioning purposes. This method is called

whenever an object is associated with a transaction. When no Loader is

plugged into a backing map, the backing map uses this value at commit

time to perform an optimistic version comparison. The optimistic version

comparison is used by the backing map to ensure that the version has not

changed since this transaction first accessed the map entry that was

modified by this transaction. If another transaction had already modified the

version for this map entry, the version comparison fails and the backing

map displays an OptimisticCollisionException exception to force rollback of

the transaction. If a Loader is plugged in, the backing map does not use the

optimistic versioning information. Instead, the Loader is responsible for

performing the optimistic versioning comparison and updating the versioning

information when necessary. The Loader typically gets the initial versioning

object from the LogElement passed to the Loader’s batchUpdate method,

which is called when a flush operation occurs or a transaction is committed.

 The following code shows the implementation used by the

EmployeeOptimisticCallbackImpl object:

public Object getVersionedObjectForValue(Object value)

{

 if (value == null)

Chapter 9. ObjectGrid application programming interface overview 215

{

 return null;

 }

 else

 {

 Employee emp = (Employee) value;

 return new Long(emp.getSequenceNumber());

 }

}

As demonstrated in the previous example, the sequenceNumber attribute is

returned in a java.lang.Long object as expected by the Loader, which

implies that the same person that wrote the Loader either wrote the

EmployeeOptimisticCallbackImpl implementation or worked closely with the

person that implemented the EmployeeOptimisticCallbackImpl - for

example, agreed on the value returned by the getVersionedObjectForValue

method.

 As previously described, the default OptimisticCallback returns the special

value NULL_OPTIMISTIC_VERSION as the version object.

updateVersionedObjectForValue method

This method is called whenever a transaction has updated a value and a

new versioned object is needed. If the getVersionedObjectForValue returns

an attribute of the value, this method typically updates the attribute value

with a new version object. If getVersionedObjectForValue returns a copy of

the value, this method typically would do nothing. The default

OptimisticCallback does nothing since the default implementation of

getVersionedObjectForValue always returns the special value

NULL_OPTIMISTIC_VERSION as the version object.

 The following shows the implementation used by the

EmployeeOptimisticCallbackImpl object that is used in the

OptimisticCallback section:

public void updateVersionedObjectForValue(Object value)

{

 if (value != null)

 {

 Employee emp = (Employee) value;

 long next = emp.getSequenceNumber() + 1;

 emp.updateSequenceNumber(next);

 }

}

As demonstrated in the previous example, the sequenceNumber attribute is

incremented by one so that the next time the getVersionedObjectForValue

method is called, the java.lang.Long value that is returned has a long value

that is the original sequence number value plus one, for example, is the

next version value for this employee instance. Again, this example implies

that the same person that wrote the Loader either wrote

EmployeeOptimisticCallbackImpl or worked closely with the person that

implemented the EmployeeOptimisticCallbackImpl.

serializeVersionedValue method

This method writes the versioned value to the specified stream. Depending

on the implementation, the versioned value can be used to identify

optimistic update collisions. In some implementations, the versioned value

is a copy of the original value. Other implementations might have a

sequence number or some other object to indicate the version of the value.

216 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Since the actual implementation is unknown, this method is provided to

perform the proper serialization. The default implementation does a

writeObject call.

inflateVersionedValue method

This method takes the serialized version of the versioned value and returns

the actual versioned value object. Depending on the implementation, the

versioned value can be used to identify optimistic update collisions. In some

implementations, the versioned value is a copy of the original value. Other

implementations might have a sequence number or some other object to

indicate the version of the value. Because the actual implementation is

unknown, this method is provided to perform the proper deserialization. The

default implementation does a readObject.

Replication programming

Replication is configured by associating a MapSet with a ReplicationGroup and

replication policy attributes. The ReplicationGroup defines the server members that

are used for the primary and associated replicas and standbys. It also defines the

minimum and maximum number of replicas that are required for this configuration.

The replication policy attributes indicate whether synchronous or asynchronous

replication is required, whether to allow read access to the replicas, and whether to

use compression when sending replication data to the replicas. Replication has a

minimal impact on the programming model. The main impact is on the applications

that preload data into their Maps.

Map preloading

You can associate a Loader with each Map. A Loader is used to fetch objects when

they cannot be found in the Map and also to write changes to a back end when a

transaction commits. Loaders can also be used for pre-loading data into a map. The

preload method of the Loader interface is called when the Java virtual machine

(JVM) becomes a primary for the replication group. The preload method is not

called on replicas or standbys. The preload method attempts to load all the

intended referenced data from the back end into the Map using the provided

Session. The Map to be used is identified by the BackingMap argument that is

passed to the preload method.

void preloadMap(Session session, BackingMap backingMap) throws LoaderException;

Preloading in a partitioned MapSet

Maps can be partitioned in to N partitions. Maps can be stored across multiple

servers, with each entry identified by a key that is only stored on one of those

servers. Very large Maps can be held in an ObjectGrid because the application is

no longer limited by the heap size of a single JVM to hold all the entries of a Map.

Applications that want to preload with the preload method of the Loader interface

must identify the subset of the data that it should preload. A fixed number of

partitions always exists. This can be determined using the following code snippet:

 int numPartitions = backingMap.getPartitionManager().getNumOfPartitions();

int myPartition = backingMap.getPartitionId();

This code snippet shows how an application can identify the subset of the data to

preload from the database. Applications must always use these methods even when

the map is not initially partitioned. These methods allow flexibility: if the Map is later

partitioned by the administrators, then the Loader continues to work correctly.

Chapter 9. ObjectGrid application programming interface overview 217

The application must issue queries to retrieve the subset myPartition from the

backend. If a database is being used then it might be easier to have a column with

the partition identifier for a given record unless there is some natural query that

allows the data in the table to be partitioned easily.

Performance

The preload implementation should copy data from the back end into the Map by

storing multiple objects in the Map in a single transaction. The next question is,

″How many records to store per transaction?″ and, unfortunately, the answer is, ″It

depends.″ After the transaction includes more than blocks of 100 entries then the

performance benefit diminishes. The optimal number depends on a number of

factors including object complexity and size. Start with 100 entries and then

increase the number until no more performance gains are seen. Larger transactions

result in better replication performance. Remember, only the primary runs the

preload code. The preloaded data is replicated from the primary to any replicas that

are online.

Preloading MapSets

If the application uses a MapSet with multiple Maps then each Map has its own

Loader. Each Loader has a preload method. Each Map is loaded serially by the

ObjectGrid. It might be more efficient to preload all the Maps by designating a

single Map as the preloading Map. This is just an application convention. For

example, two Maps, department and employee, might use the department Loader to

preload both the department and the employee Maps. This ensures that,

transactionally, if an application wants a department then the employees for that

department are in the cache. Of course, this means that when the department

Loader preloads a department from the back end then it also fetches the employees

for that department. The department object and its associated employee objects

should then be added to the Map using a single transaction for this to be true.

Recoverable preloading

Some customers have very large data sets that need to be cached. Preloading this

data can be very time consuming. Sometimes, the preloading must complete before

the application can go online. This might mean that you want to make preloading

recoverable. Suppose there were a million records to preload. The primary is

preloading them and fails at the 800,000th record. Normally, the replica chosen to

be the new primary clears any replicated state and start from the beginning.

ObjectGrid can do better than that by using a ReplicaPreloadController. The Loader

for the application would also need to implement the ReplicaPreloadController

interface. This adds a single method to the Loader:

 Status checkPreloadStatus(Session session, BackingMap bmap);

This method is called by the ObjectGrid runtime before preload method of the

Loader interface is normally called. The ObjectGrid tests the result of this method

(Status) to determine its behavior whenever a replica is promoted to a primary.

 Returned status value ObjectGrid behavior in reaction

Status.PRELOADED_ALREADY ObjectGrid does not call the preload method

at all because this status value indicates that

the Map is fully preloaded.

Status.FULL_PRELOAD_NEEDED ObjectGrid clears the Map and calls the

preload method normally.

218 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Returned status value ObjectGrid behavior in reaction

Status.PARTIAL_PRELOAD_NEEDED ObjectGrid leaves the Map as-is and calls

preload. This strategy allows the application’s

Loader to continue preloading from that point

onwards.

Clearly, while a primary is preloading the Map, it must leave some state in a Map in

the MapSet being replicated so that the replica can figure out what status to return.

You can use an extra Map called, for example, RecoveryMap. This RecoveryMap

must be part of the same MapSet that is being preloaded. This ensures that it is

replicated consistently with the data being preloaded.

A suggested implementation follows. As the preload commits each block of records,

it should also update a counter/value in the RecoveryMap as part of that

transaction. This means the preloaded data and the RecoveryMap data are

replicated atomically to the replicas. When the replica is promoted to primary, it can

now check the RecoveryMap to see what has happened. The RecoveryMap may

simply hold a single entry with key ’state’. If no object exists for this key then we

need a full preload (checkPreloadStatus returns FULL_PRELOAD_NEEDED). If an

object exists for this ’state’ key then if the value is ’COMPLETE’ then the preload is

done and the checkPreloadStatus returns PRELOADED_ALREADY. Otherwise, the

value object indicates where preload should restart from and the

checkPreloadStatus method should return PARTIAL_PRELOAD_NEEDED. The

Loader may store the recovery point in an instance variable for the Loader so that

when preload is called, it knows the starting point. The RecoveryMap could also

hold an entry per Map if each Map is preloaded independently.

Handling recovery in synchronous replication mode with a

Loader

The ObjectGrid runtime is designed to not lose committed data when the primary

fails. The following section shows the algorithms used to achieve this. These

algorithms apply only when a replication group uses synchronous replication. A

Loader is optional.

The ObjectGrid runtime can be configured to replicate all changes from a primary to

the replicas synchronously. When a JVM is promoted to be a replica, the primary

first sends a snapshot of the Map to the replica. Once the replica has processed

this snapshot, the primary starts sending all the changes (completed transactions)

since the generation of the snapshot. Eventually, the replica will catch up with the

primary. This initial replication processing is asynchronous. Once a replica catches

up with the primary then the pair enters peer mode and, finally, synchronous

replication begins. From this point on, each transaction committed on the primary

will be sent to all replicas in peer mode and the primary waits for an acknowledge

message. This slows down the primary when compared with an asynchronous

replication scenario because of the latency involved in receiving acknowledge

messages. A synchronous commit sequence on the primary looks like this:

 Step with Loader Step without Loader

Get locks for entries same

Flush changes to the Loader NOOP

Save changes to the cache same

Chapter 9. ObjectGrid application programming interface overview 219

Step with Loader Step without Loader

Sent changes to replicas and wait for

acknowledgement

same

Commit to the loader through the

TransactionCallback plug-in

The TransactionCallBack plug-in commit is

still called but typically does not do anything.

Release locks for entries same

Notice that the changes are sent to the replica before they are committed to the

Loader. When are the changes committed on the replica? Revise this sequence:

At initialize time, initialize the tx lists on the primary.

v Set CommitedTx = {}, RolledBackTx = {}

During synchronous commit processing:

 Step with Loader Step without loader

Get locks for entries same

Flush changes to the Loader NOOP

Save changes to the cache same

Send changes with a committed transaction

and rolled back transaction to replica and

wait for acknowledgement

same

Clear list of committed transactions and

rolled back transactions

same

Commit the Loader through the

TransactionCallBack plug-in

TransactionCallBack plug-in commit is still

called but typically does not do anything

If commit succeeds, add the transaction to

the committed transactions, otherwise add to

the rolled back transactions

NOOP

Release locks for entries same

Replica processing

v Receive changes

v Commit all received transactions in the committed transaction list

v Roll back all received transactions in the rolled back transaction list

v Start a transaction or session

v Apply changes to the transaction or session

v Save the transaction or session to the pending list

v Send back reply

Notice that on the replica there are no Loader interactions while it is in replica

mode. The primary must push all changes through the Loader. The replica is a

drone.

A side effect of this algorithm is that the replica always has the transactions but

they are not committed until the next primary transaction sends the commit status of

those transactions. They are then committed or rolled back on the replica. But, until

then, the transactions are not committed. We may add a timer on the primary that

will send the transaction outcome after a small period of time (a few seconds). This

will limit any staleness to that time window, but it will not eliminate it completely.

220 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

This staleness is only a problem when using replica read mode. Otherwise, it’s

invisible and has no impact on the application.

When the primary fails, it’s likely there are a few transactions that were

committed/rolled back on the primary but the message never made it to the replica

with these outcomes. When a replica is promoted to the new primary, one of it’s

first actions is to handle this condition. Each pending transaction is reprocessed

against the new primary’s set of Maps. If there is a Loader then each transaction is

given to the Loader. These transactions are applied in strict FIFO order. If a

transactions fails then it’s ignored. If there are 3 transactions pending, A B and C,

then A may commit, B may rollback and C may also commit. No one transaction

has any impact on the others. We assume they are independent.

A Loader may want to use slightly different logic when in ’failover recovery’ mode

versus ’normal’ mode. The Loader can easily know when it’s in failover recovery

mode by implementing the ReplicaPreloadController interface. The

checkPreloadStatus method is only called when failover recovery completes.

Therefore, if the apply method of the Loader interface is called before

checkPreloadStatus then it is a recovery transaction. After the checkPreloadStatus

method is called then failover recovery has completed.

Stateful singletons using replication

WebSphere Extended Deployment added support for singletons in its first release

with the partitioning facility. This allowed applications to create singletons in a

cluster. The ObjectGrid runtime enables a similar feature using replicated MapSets.

While the ObjectGrid singleton pattern has many advantages, it also has a few

disadvantages. The partition facility provides an event to the application when the

singleton/partition is activated locally, this is communicated using the partitionLoad

method of the partition facility. A replicated MapSet also has a singleton, the

primary. The application is notified when it becomes the primary by the

ReplicaPreloadController#checkPreloadStatus method on the Loader. This can be

used in a similar way to the partitioning facility but has the advantage of being

portable across different versions of WebSphere Application Server or competitive

application servers.

The partition facility has a deactivate event, but the ObjectGrid runtime does not

offer this capability. A primary in the ObjectGrid normally runs until it fails. You

cannot move it around. This is an advantage of the partitioning facility over the

ObjectGrid. Here is a table of capabilities:

 Table 16.

Capability Partitioning facility ObjectGrid singletons

Singleton start event Yes Yes

Singleton stop event Yes No

Replication of singleton state No Yes

Variable quality of service

(QoS) for replication

No Yes

Flexible singleton placement Yes No

Can move singleton at

runtime

Yes No

IIOP routing of work to

singleton

Yes No

Chapter 9. ObjectGrid application programming interface overview 221

Table 16. (continued)

Capability Partitioning facility ObjectGrid singletons

Requires a Java 2 Platform,

Enterprise Environment

(J2EE) server

Yes No

Requires a full version of

WebSphere Extended

Deployment

Yes No

Requires Enterprise

JavaBeans (EJB)

Yes No

Application is portable to

other application servers

No Yes

Singleton state

The partitioning facility offered no built-in support for state management.

Applications were left to their own devices if the singleton required state. Typically,

this meant the state was pushed to a database. If the partition failed then the server

that was elected to host and recover the partition needed to retrieve this state from

that database. If an application uses the ObjectGrid instead, then the singleton can

keep its state in the Map associated with the ReplicaPreloadController managing

the singleton. If the primary or singleton fails, then the replica that is elected to be

the new primary already has the state locally because of the replication.

Synchronous replication should be used unless data loss is acceptable to the

application.

Flexible singleton placement

The partitioning facility uses the high availability manager policy mechanism to

determine where a partition will be hosted and these policies can be changed at

runtime with immediate effect. The ObjectGrid replication group policies are not as

flexible as those with the high availability manager and cannot be changed without

restarting all the servers. You lose the ability to move around singletons at runtime if

you are using the ObjectGrid.

Variable QoS replication

The partition facility doe not offer state management. The ObjectGrid offers a

variety of replication approaches:

v No replication

v Asynchronous replication

v Synchronous replication

The replication policy of the MapSet associated with the Map you are using for the

state determines the policy. Synchronous replication means no data loss, but it is

slower. Asynchronous replication is fast but means one or more transactions

committed on the primary can be lost if the primary fails.

Load balancing across replicas

The ObjectGrid, unless configured otherwise, sends all read and write requests to

the primary server for a given replication group. This means the primary alone must

service all requests from clients. You might want to allow read requests to be sent

222 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

to replicas of the primary. This allows the load of the read requests to be shared by

multiple JVMs, however, but sending read requests to the replicas are at the

expense of consistency.

This is typically only used when clients are caching data which is changing all the

time or clients are using pessimistic locking.

If the data is continually changing then being invalidated in client near caches and

the primary should see a relatively high get request rate from clients as a result.

Likewise, in pessimistic locking mode, there is no local cache so all requests are

sent to the primary.

If the data is relatively static or pessimistic mode is not used then replica read does

not have a big impact on performance as the frequency of get requests from clients

with warm caches will not be high.

However, when a client first starts, its near cache is empty and cache requests to

that empty cache are forwarded to the primary. The client cache gets data over

time, causing this request load will drop. If there is a large number of clients and

many of them start concurrently, then this load might be significant and replica read

may be an appropriate performance choice.

Reads from replicas and asynchronous replication

If the data in the replication group does not change often then this is usually a good

trade off. This allows get requests from clients to be directed to the data on any

replicas that are online. A get request might be sent to a replica that does not have

a copy, and the key/value might not have been replicated to the replica at that

point. If the data is not on the replica then the get request is redirected to the

primary.

If the data changes, then it is very likely that gets from the replicas return stale

data. This might or might not be acceptable to the application. If it is not acceptable

then do not enable reads from replicas.

Reads from replicas in synchronous replication mode

Synchronous replication tries to keep the replica exactly the same as the primary. If

the primary fails then all the committed data on the primary is guaranteed to be

available on all replicas that were in peer mode when the failure occurred. While

this is the case when failures occur, allowing reads from replicas exposes some

side effects of the algorithms used.

When the primary is about to commit a transaction, a copy of the changes is sent to

the replica and the replica commits this transaction in the following two cases:

v The primary fails

v The next transaction on the primary is sent

When the primary fails, all pending transactions on the replica are committed.

Pending transactions are only committed when a subsequent transaction is

committed on the primary. The primary piggy backs on this replica message the

outcome of committing. When the replica receives one of these messages, it

commits or rolls back any pending transactions that had outcomes specified in that

message.

Chapter 9. ObjectGrid application programming interface overview 223

Pending transactions only become visible to read on a replica when they are

committed. Obviously, if the primary is loaded and has regular modifications made

to it, then these pending transactions are committed very quickly. If the modification

load on the primary is low then there are periods where pending transactions are

not committed, until the next primary modification is made.

Clearly, the replica for a primary that is taking modifications is normally at least one

transaction behind the primary from a read point of view. No data is lost, these

transactions are physically on the replica, they are simply not committed until the

outcome of those pending transactions is sent from the primary. This commit

happens when the next read and write transaction runs.

Summary

If read from replica is enabled, then the application must be prepared to tolerate

some gets returning stale data. This issue is true whether synchronous or

asynchronous replication is being used.

Partitioning

Use partitioning when the objects in your MapSet require more memory than is

available in a single Java virtual machine (JVM), or if the JVM is not able to provide

the required throughput for updates.

Where are entries held?

A hashing algorithm determines which server holds each entry. The administrator

specifies the number of partitions to use with the PartitionSet definition. This

configuration cannot be changed after the JVMs start. A simple hash value is

obtained from the key for an entry and the result of this value modulo (%) the

number of partitions indicates which server ″owns″ that entry.

Normally, the Java hashCode method on the key object is used. Override this value

by overriding the hashCode implementation.

Sometimes, an application might not want to modify the value for normal hashing

but might still want to use a different hash algorithm for entry distribution. The

com.ibm.websphere.objectgrid.plugins.PartitionableKey interface allows this

situation. This interface has a single method:

 Object ibmGetPartition();

If the key implements this interface, the ObjectGrid runtime uses the hash of the

object that is returned by this method rather than the hash on the key object.

Partitioning at runtime

The com.ibm.websphere.objectgrid.PartitionManager interface provides APIs to

allow an application to determine information about partitioning at runtime. An

application can obtain a reference to an instance of this interface by using the

getPartitionManager method of the BackingMap interface. A reference to the

BackingMap for a Map can be obtained using the getMap(String) method of the

ObjectGrid interface on any ObjectGrid instance. Or, it is passed as a parameter on

some of the plug-in callbacks, such as the preload(Session, BackingMap) of the

Loader interface.

224 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Methods of the PartitionManager interface

The PartitionManager instance allows an application to determine the following facts

about partitioning:

 Method name Description

int getNumOfPartitions() Returns the number of partitions that the

Map is being split into.

int getPartition(Object key) This returns the 0-based partition number

that is used for the entry with the specified

key.

List /*Integer*/ getPartitions(List /*Object*/

keys)

This method is the same as the getPartition

method but operates on a List of keys

instead. The returned List of Integers contain

the partition number for each corresponding

input key.

List /*List Integer*/ getPartitionLists(List /*

Object */ keys)

This method is the same as the getPartitions

method but returns an ordered List of

partition Lists. For example, the first entry in

the returned List contains a List of the input

keys that correspond to partition 0. The next

entry would contain a List of input keys that

correspond to partition 1, and so on.

List /*LogSequence*/

partitionLogSequence(LogSequence ls)

This method splits a LogSequence into a list

of LogSequences for specified partitions. The

input LogSequence is examined and the

appropriate partition is determined for each

LogElement within it. After the sequence has

been examined then for each partition which

has a LogElement, a LogSequence of those

LogElements is returned.

Partitioning limitations

A transaction can only modify entries in a single partition per transaction. If a

transaction modifies multiple entries in a MapSet and those entries hash to different

partitions, the transaction rolls back when an attempt is made to commit the

transaction. A transaction can read objects from different partitions. However, a

transaction can only modify entries within a single partition.

Application events when the primary for a partition is elected

If a Loader is supplied for a Map and the ReplicaPreloadController is also

implemented by the Loader then the application can use the checkPreloadStatus

callback to receive an event indicating that the JVM receiving that method call is

now the primary for that partition. The partition ID can be identified using the

getPartitionId method of the BackingMap interface. See “Loaders” on page 191 for

more information about preload.

Partitioning on a client versus running on a server

Partitioning only works when the application is using an ObjectGrid that is obtained

using the connect methods of the ObjectGrid interface. If the ObjectGrid is provided

to the application by a callback on a plug-in, then it is a local ObjectGrid that does

not do routing. If you are running on a server and want to take advantage of the

Chapter 9. ObjectGrid application programming interface overview 225

partitioning capabilities transparently, then use an ObjectGrid that is obtained using

a connect method for all transactions. However, there is a performance loss when

compared with using the local ObjectGrid reference supplied by the framework. If

you do not need the partitioning capability then use the local reference that is

provided to the plug-in when possible.

Indexing

The indexing feature can be used to build an index or several indices on a

BackingMap. An index is built from an attribute of an object in the BackingMap. This

feature provides a way for applications to find certain objects more quickly. Without

an index, applications have to locate objects by their keys. The indexing feature

allows applications to find objects with a specific value or within a range of values.

This is similar to Enterprise JavaBeans (EJB) Query that can locate EJB objects by

querying with a specified criteria. Indexing provides applications the convenience of

finding objects more easily and a performance improvement in the object searching

process.

There are two types of indexing: static and dynamic. With Static indexing, you must

configure the index plug-in on the BackingMap before initializing the ObjectGrid

instance. You can do this configuration with XML or programmatic configuration of

the BackingMap. Static indexing starts building an index during ObjectGrid

initialization. The index is always synchronized with the BackingMap and ready for

use. After the static indexing process has started, the maintenance of the index is

part of ObjectGrid transaction management process. When transactions commit

changes, these changes also update the static index. The index changes are rolled

back if the transaction is rolled back.

Dynamic indexing allows an index to be created on a BackingMap before or after

the initialization of the containing ObjectGrid instance. Applications have life cycle

control over the dynamic indexing process. A dynamic index can be removed when

it is no longer needed. When an application creates a dynamic index, the index

might not be ready for immediate use because of the time it takes to complete the

index building process. Because the amount of time is dependent upon the amount

of data indexed, the DynamicIndexCallback interface is provided for applications

that want to receive notifications when certain indexing event occur. These events

include ready, error, and destroy. Applications can implement this callback interface

and register with the dynamic indexing process.

The indexing feature is represented by the MapIndexPlugin plug-in, or Index for

short. The MapIndexPlugin is a BackingMap plug-in. A BackingMap can have

multiple Index plug-ins configured as long as they follow the Index configuration

rules.

If a BackingMap has an index plug-in configured, the index proxy object can be

retrieved from the corresponding ObjectMap. Calling the getIndex method on the

ObjectMap and passing in the name of the index plug-in returns the index proxy

object. The index proxy object has to be cast to an appropriate application index

interface, such as MapIndex, MapRangeIndex, or customized index interface.

Currently, the indexing feature is only supported in the local cache, not the

distributed cache. If an indexing operation is attempted against a distributed cache,

the UnsupportedOperationException exception results.

226 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Index plug-in implementation

The HashIndex class in the com.ibm.websphere.objectgrid.plugins.index package is

the built in index plug-in implementation that can support both built-in application

index interfaces: MapIndex and MapRangeIndex.

Applications can provide their own index plug-in implementation to allow more

complex indices to be programmed. The index implementation class needs to

implement com.ibm.websphere.objectgrid.plugins.index.MapIndexPlugin interface.

The MapIndexPlugin has the following definition:

/**

* An index implementation must implement this interface so that modifications

* to the Map are propagated to it so that it can maintain the index as

* transactions are committed. Only attributes that implement the

* {@link java.lang.Comparable} interface are eligible to be indexed.

*

* @see com.ibm.websphere.objectgrid.plugins.index.MapIndex

* @see com.ibm.websphere.objectgrid.plugins.index.MapRangeIndex

*/

public interface MapIndexPlugin

{

 /**

 * This should be the name of the attribute to be indexed. If the object

 * has an attribute called EmployeeName then the index will call the

 * "getEmployeeName" method. The attribute name must be the name

 * as that in the get method and the attribute must implement the

 * {@link java.lang.Comparable} interface.

 *

 * @param attributeName

 * The name of the attribute to set.

 */

 public void setAttributeName(String attributeName);

 /**

 * This index name.

 *

 * @return The name of the index.

 *

 * @see com.ibm.websphere.objectgrid.ObjectMap#getIndex

 */

 String getName();

 /**

 * Gets an index proxy object for performing index lookup operations. The

 * caller must cast the object returned to either a MapIndex or MapRangeIndex

 * object to perform the lookup operations.

 *

 * @param map The MapIndexInfo object required for maintaining the index.

 * .

 * @return a proxy to either an object that implements MapIndex or MapRangeIndex.

 */

 Object getIndexProxy(MapIndexInfo map);

 /**

 * This is called by the core to allow the index to be updated as the result

 * of changes applied to map during the commit cycle of a transaction.

 * Use the {@link LogElement#getType()} method to determine what operation is

 * required to for updating the index. Use the {@link LogElement#getBeforeImage()}

 * to get the value object that existed prior to committing transaction applying

 * a change to the map and the {@link LogElement#getAfterImage()} to get the value

 * object after the committing transaction applied the change to the map entry.

 *

* Note, the {@link #undoBatchUpdate(TxID, LogSequence)} method may be called

* later to undo these changes if an exception occurs that causes committing

Chapter 9. ObjectGrid application programming interface overview 227

* transactions to be rolled back instead.

 *

 * @param txid The transaction for the changes.

 * @param sequence The log sequence that contains changes from transaction.

 *

 * @throws ObjectGridRuntimeException is a failure occurs that requires transaction

 * to be rolled back.

 */

 void doBatchUpdate(TxID txid, LogSequence sequence) throws

 ObjectGridRuntimeException;

/**

 * This is called by the core to undo any changes made to the index as a result of

 * a prior call to the {@link #doBatchUpdate(TxID, LogSequence)} method. This

 * method is called when an exception or error condition that requires all

 * changes made by transaction to be rolled back. For this reason, the

 * implementation of this method should catch all Throwable and continue with

 * next LogElement in the LogSequence until all LogElements are processed so that

 * as many changes to the index is undone as possible. An ObjectGridException

 * should only be thrown after processing the entire LogSequence and this method

 * was unable to successfully undo 1 or more changes in the LogSequence.

 *

* Use the {@link LogElement#getUndoType()} method to determine what operation is

* required to undo any change made to the index. Use the

* {@link LogElement#getBeforeImage()} to get the value object that existed prior

* to committing transaction applying a change to the map and the {@link

* LogElement#getAfterImage()} to get the value object after the committing

* transaction applied the change to the map entry.

*

* @param txid The transaction for the changes.

* @param sequence The log sequence that contains changes from transaction.

*

*/

void undoBatchUpdate(TxID txid, LogSequence sequence) throws ObjectGridException;

}

The setAttributeName and getName methods are straightforward and revealed by

their names. The other methods require more attention.

getIndexProxy method

The getIndexProxy method should return an index proxy object that implements

either the MapIndex interface, the MapRangeIndex interface, or a custom Index

interface. The implementation of the index proxy object is the core part of the index

plug-in.

A MapIndexInfo object is passed into this method to provide transactional change

information. This is the data that is visible only to the current transaction that

invokes the getIndexProxy method. The index proxy object can use this

MapIndexInfo object to search this transactional data.

The following is the definition of the MapIndexInfo interface:

/**

* This interface is used to provide an index with detailed change information

* for a specific Map in a transaction.

*/

public interface MapIndexInfo

{

 /**

 * An index contains the key values of a set of map entries that have a

 * a specific attribute value. This method returns the ObjectMap the

 * index is referring to ObjectMap that the index is associated with.

228 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

*

 * @return ObjectMap this index is associated with.

 */

 ObjectMap getMap();

 /**

 * Returns the set of all changes made by the current transaction to the

 * ObjectMap that is returned by the {@link #getMap()} method.

 *

 * @param includeRemoved must be set to true to include LogElement.DELETE types

 * in the list returned by this method.

 *

 * @return a List of LogElement created for each ObjectMap entry that was

 * either inserted, updated, or removed by current transaction.

 *

 * @throws ObjectGridRuntimeException

 */

 List getTransactionChanges(boolean includeRemoved) throws

 ObjectGridRuntimeException;

 /**

 * This returns the set of changes as they apply to a particular set of keys

 * in the current transaction for the ObjectMap that is returned by the

 * {@link #getMap()} method. If a key has not been referenced

 * in the transaction then null is returned.

 *

 * @param keys The list of keys for which the data is required.

 * @return a List of LogElement corresponding to the keys or null if the keys

 * was not referenced.

 *

 * @throws ObjectGridRuntimeException

 *

 * @see com.ibm.websphere.objectgrid.plugins.LogElement

 * @see com.ibm.websphere.objectgrid.ObjectMap

 */

 List getTransactionChanges(List keys) throws ObjectGridRuntimeException;

}

The getIndexProxy method is designed to support the getIndex(String name)

method of the ObjectMap interface. The returned index proxy object will be the one

returned by the the getIndex method of the ObjectMap. For example, the application

invokes the getIndex method of the ObjectMap, which then invokes this

getIndexProxy method and returns the Object that is returned by this getIndexProxy

method. The application has to cast the returned index proxy object to an

application index interface, such as MapIndex, MapRangeIndex, or another

customized index interface.

The following code example illustrates some index proxy object implementations

that can be returned by the getIndexProxy method:

/**

* A class used to return a proxy to this map index

* so that applications can perform query operations

* using MapIndex interface.

*/

class Proxy implements MapIndex

{

 /**

 * The MapIndexInfo object associated with this index proxy object.

 */

 protected MapIndexInfo ivMap;

 /**

 * Maximum number of retries when concurrent transactions

Chapter 9. ObjectGrid application programming interface overview 229

* modify index during a query operation.

 */

 protected static final int RETRY_LIMIT = 10;

 /**

 * EQUAL comparator to use.

 */

 final protected ProxyEQComparator ivEQ = new ProxyEQComparator();

 final protected ProxyGTComparator ivGT = new ProxyGTComparator();

 final protected ProxyRangeComparator ivRange = new ProxyRangeComparator();

 /**

 * Construct a proxy object for a given ObjectMap.

 *

 * @param map

 * is the MapIndexInfo object.

 */

 Proxy(MapIndexInfo map)

 {

 ivMap = map;

 }

 /**

 *

 * @see com.ibm.websphere.objectgrid.plugins.index.MapIndex#findAll

 */

 public Iterator findAll(Object attributeValue) throws FinderException

 {

 if (attributeValue == null)

 {

 throw new IllegalArgumentException(

 "the attributeValue must be a non null reference");

 }

 // Use the greater than comparator for range check.

 ivEQ.ivAttribute = (Comparable) attributeValue;

 ArrayList resultList = null;

 int retryCount = 0;

 boolean retry;

 do

 {

 // Variables that need to be re-initialize each time thru loop.

 retry = false;

 resultList = new ArrayList();

 // Use index to obtains the Set of keys for map entries that

 // contain the specified attribute value.

 Set s = (Set) index.get(attributeValue);

 Set keySet = processSet(s, ivEQ);

 if (keySet != null)

 {

 resultList.addAll(keySet);

 }

 else

 {

 // Whoops, another transaction modified Set obtained from index

 // while the above was iterating over the Set to perform the

 // addAll operation. Therefore, we need to retry by starting

 // over beginning with getting Set from index to pickup changes

 // from the transaction that just modified the Set.

 ++retryCount;

 if (retryCount >= RETRY_LIMIT)

 {

 throw new FinderException("query retry limit exceeded");

230 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

}

 retry = true;

 }

 } while (retry);

 // Return iterator for result list created by above loop.

 Iterator result = resultList.iterator();

 return result;

 }

 /**

 * Process a Set obtained from index to determine if which of the keys

 * are for map entries that meet the query select criteria.

 *

 * @param s

 * is the Set of key values for entries in BackingMap

 * this index is built over. A null reference indicates only

 * changes from current transaction needs to be processed.

 *

 * @param comparator

 * is the comparator to use for making range check.

 *

 * @return Set of keys that met the select criteria or a null reference

 * if a Exception occurs while iterating over the Set.

 *

 * @throws FinderException

 * if an error condition prevents processing of Set

 * from being performed.

 */

 protected Set processSet(Set s, ProxyComparator comparator)

 throws FinderException {

 HashSet resultSet = new HashSet();

 //...

 //process the s Set, use comparator and prepare the resultSet.

 //...

 return resultSet;

 }

} // end class Proxy

/**

* A class used to return a proxy to this map index so that applications can

* perform query operations using MapRangeIndex interface.

*/

class RangeProxy extends Proxy implements MapRangeIndex

{

 /**

 * Various comparators needed by proxy to perform the

 * the range check of attribute value.

 */

 final private ProxyLTComparator ivLT = new ProxyLTComparator();

 final private ProxyLEComparator ivLE = new ProxyLEComparator();

 final private ProxyGEComparator ivGE = new ProxyGEComparator();

 /**

 * Index is a synchronized SortedMap.

 */

 final SortedMap ivIndexSortedMap;

 /**

 * Construct a MapRangeIndex proxy.

 */

 RangeProxy(MapIndexInfo map)

Chapter 9. ObjectGrid application programming interface overview 231

{

 super(map);

 ivIndexSortedMap = (SortedMap) index;

 }

 /**

 * Execute query operation on a specified Map and ProxyComparator object.

 *

 * @param map

 * is a subset of the index to perform finder operation on.

 * @param proxyComparator

 * is a comparator used to perform range check on attribute value.

 *

 * @return Set of keys required to be returned by finder method.

 *

 * @throws FinderException

 * is any failure occurs during execution of the query.

 */

 private Set executeQuery(Map map, ProxyComparator proxyComparator)

 throws FinderException {

 HashSet resultList = null;

 int retryCount = 0;

 boolean retry;

 do

 {

 // Variables that need to be re-initialize each time thru loop.

 retry = false;

 resultList = new HashSet();

 // Use index to obtains the Set of keys for map entries that

 // contain the specified attribute value.

 SortedMap treeMap = (SortedMap) index;

 Collection values = map.values();

 if (values.isEmpty())

 {

 // Nothing in range currently in index, so we only

 // need to check changes from current transaction.

 Set keySet = processSet(null, proxyComparator);

 if (keySet != null)

 {

 resultList.addAll(keySet);

 }

 }

 else

 {

 // Index does contains some keys in range, so we need to query

 // both index entries as well as current transaction changes.

 Iterator iter = values.iterator();

 while (iter.hasNext())

 {

 Set keySet;

 try

 {

 Set s = (Set) iter.next();

 keySet = processSet(s, proxyComparator);

 }

 catch (ConcurrentModificationException e)

 {

 // Indicate unable to get keySet.

 keySet = null;

 }

 if (keySet != null)

 {

 resultList.addAll(keySet);

 }

 else

232 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

{

 ++retryCount;

 if (retryCount >= RETRY_LIMIT)

 {

 throw new FinderException("query retry limit exceeded");

 }

 retry = true;

 }

 }

 }

 } while (retry);

 return resultList;

 }

 /*

 * (non-Javadoc)

 *

 * @see com.ibm.websphere.objectgrid.plugins.index.MapRangeIndex#findGreater

 */

 public Iterator findGreater(Object attributeValue)

 throws FinderException {

 if (attributeValue == null)

 {

 throw new IllegalArgumentException(

 "the attributeValue must be a non null reference");

 }

 // Use the greater than comparator for range check.

 ivGT.ivAttribute = (Comparable) attributeValue;

 SortedMap tailMap = ivIndexSortedMap.tailMap(attributeValue);

 Set resultSet = executeQuery(tailMap, ivGT);

 Iterator result = resultSet.iterator();

 return result;

 }

 /*

 * (non-Javadoc)

 *

 * @see com.ibm.websphere.objectgrid.plugins.index.MapRangeIndex#findGreaterEqual

 */

 public Iterator findGreaterEqual(Object attributeValue)

 throws FinderException {

 if (attributeValue == null)

 {

 throw new IllegalArgumentException(

 "the attributeValue must be a non null reference");

 }

 // Use the greater than comparator for range check.

 ivGE.ivAttribute = (Comparable) attributeValue;

 SortedMap tailMap = ivIndexSortedMap.tailMap(attributeValue);

 Set resultSet = executeQuery(tailMap, ivGE);

 Iterator result = resultSet.iterator();

 return result;

 }

 /*

 * (non-Javadoc)

 *

 * @see com.ibm.websphere.objectgrid.plugins.index.MapRangeIndex#findLess

 */

 public Iterator findLess(Object attributeValue) throws FinderException

 {

Chapter 9. ObjectGrid application programming interface overview 233

if (attributeValue == null)

 {

 throw new IllegalArgumentException(

 "the attributeValue must be a non null reference");

 }

 // Use the greater than comparator for range check.

 ivLT.ivAttribute = (Comparable) attributeValue;

 SortedMap headMap = ivIndexSortedMap.headMap(attributeValue);

 Set resultSet = executeQuery(headMap, ivLT);

 Iterator result = resultSet.iterator();

 return result;

 }

 /*

 * (non-Javadoc)

 *

 * @see com.ibm.websphere.objectgrid.plugins.index.MapRangeIndex#findLessEqual

 */

 public Iterator findLessEqual(Object attributeValue) throws FinderException

 {

 if (attributeValue == null)

 {

 throw new IllegalArgumentException(

 "the attributeValue must be a non null reference");

 }

 // Use the greater than comparator for range check.

 ivLE.ivAttribute = (Comparable) attributeValue;

 Set resultSet;

 int retryCount = 0;

 boolean retry;

 do

 {

 // re-initialize for each retry that occurs.

 retry = false;

 SortedMap headMap = ivIndexSortedMap.headMap(attributeValue);

 resultSet = executeQuery(headMap, ivLE);

 Set s = (Set) ivIndexSortedMap.get(attributeValue);

 ivEQ.ivAttribute = (Comparable) attributeValue;

 Set equalSet = processSet(s, ivEQ);

 if (equalSet != null)

 {

 if (! equalSet.isEmpty())

 {

 resultSet.addAll(equalSet);

 }

 }

 else

 {

 // Whoops, another transaction modified index while processSet

 // was executing. Therefore, we need to retry the entire query.

 ++retryCount;

 retry = true;

 if (retryCount >= RETRY_LIMIT)

 {

 throw new FinderException("query retry limit exceeded");

 }

 }

 } while (retry);

 // Return iterator for result list created by above loop.

 Iterator result = resultSet.iterator();

 return result;

 }

234 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

/*

 * (non-Javadoc)

 *

 * @see com.ibm.websphere.objectgrid.plugins.index.MapRangeIndex#findRange

 */

 public Iterator findRange(Object lowAttributeValue, Object highAttributeValue)

 throws FinderException {

 if (lowAttributeValue == null)

 {

 throw new IllegalArgumentException(

 "the lowAttributeValue must be a non null reference");

 }

 if (highAttributeValue == null)

 {

 throw new IllegalArgumentException(

 "the highAttributeValue must be a non null reference");

 }

 // Use the greater than comparator for range check.

 ivRange.ivLowAttribute = (Comparable) lowAttributeValue;

 ivRange.ivHighAttribute = (Comparable) highAttributeValue;

 SortedMap subMap = ivIndexSortedMap.

 subMap(lowAttributeValue, highAttributeValue);

 Set resultSet = executeQuery(subMap, ivRange);

 Iterator result = resultSet.iterator();

 return result;

 }

}

/**

* Abstract base class used for determining if attribute value is in range.

*/

abstract class ProxyComparator

{

 abstract boolean inRange(Object attribute);

}

/**

* Performs less than range check.

*/

class ProxyLTComparator extends ProxyComparator

{

 Comparable ivAttribute;

 boolean inRange(Object attribute)

 {

 if (attribute == null)

 {

 return false;

 }

 else

 {

 Comparable attr = (Comparable) attribute;

 return (attr.compareTo(ivAttribute) < 0);

 }

 }

}

/**

* Performs less than or equal range check.

*/

class ProxyLEComparator extends ProxyComparator

{

Chapter 9. ObjectGrid application programming interface overview 235

Comparable ivAttribute;

 boolean inRange(Object attribute)

 {

 if (attribute == null)

 {

 return false;

 }

 else

 {

 Comparable attr = (Comparable) attribute;

 return (attr.compareTo(ivAttribute) <= 0);

 }

 }

}

/**

* Performs equal range check.

*/

class ProxyEQComparator extends ProxyComparator

{

 Comparable ivAttribute;

 boolean inRange(Object attribute)

 {

 if (attribute == null)

 {

 return false;

 }

 else

 {

 return (ivAttribute.compareTo(attribute) == 0);

 }

 }

}

/**

* Performs greater than range check.

*/

class ProxyGTComparator extends ProxyComparator

{

 Comparable ivAttribute;

 boolean inRange(Object attribute)

 {

 if (attribute == null)

 {

 return false;

 }

 else

 {

 Comparable attr = (Comparable) attribute;

 return (attr.compareTo(ivAttribute) > 0);

 }

 }

}

/**

* Performs greater than or equal range check.

*/

class ProxyGEComparator extends ProxyComparator

{

 Comparable ivAttribute;

 boolean inRange(Object attribute)

 {

 if (attribute == null)

236 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

{

 return false;

 }

 else

 {

 Comparable attr = (Comparable) attribute;

 return (attr.compareTo(ivAttribute) >= 0);

 }

 }

}

/**

* Performs lowAttribute <= attribute < highAttribute range check.

*/

class ProxyRangeComparator extends ProxyComparator

{

 Comparable ivLowAttribute;

 Comparable ivHighAttribute;

 boolean inRange(Object o)

 {

 if (o == null)

 {

 return false;

 }

 Comparable attribute = (Comparable) o;

 if (attribute.compareTo(ivLowAttribute) < 0)

 {

 return false; // attribute < ivLowAttribute

 }

 else

 {

 // ivLowAttribute <= attribute

 if (attribute.compareTo(ivHighAttribute) < 0)

 {

 return true; // ivLowAttribute <= attribute < ivHighAttribute

 }

 else

 {

 return false; // attribute >= ivHighAttribute

 }

 }

 }

}

doBatchUpdate and undoBatchUpdate methods

The doBatchUpdate and undoBatchUpdate methods are critical methods in the

MapIndexPlugin interface. The doBatchUpdate method is invoked as the result of

changes applied to map during the commit cycle of a transaction. The

undoBatchUpdate method is used to undo any changes made to the index as a

result of a prior call to the doBatchUpdate method. It is called when an exception or

error condition occurs that requires all changes made by transaction to be rolled

back. Both methods are given the current TxID and a list of changes for this Map.

They should iterate over the changes and process them.

The following code example shows how to implement these two methods and

supporting methods.

/**

* The synchronized Map used as the index implementation where

* the attribute value object is the key and a Java Set is the value.

* A Set member is the key of a BackingMap entry that matches attribute value.

Chapter 9. ObjectGrid application programming interface overview 237

*/

Map index; //<Object attribute, Set keys>

public void doBatchUpdate(TxID txid, LogSequence sequence)

throws ObjectGridRuntimeException

{

 Iterator iter = sequence.getAllChanges();

 while (iter.hasNext())

 {

 LogElement elem = (LogElement) iter.next();

 Object key = elem.getCacheEntry().getKey();

 LogElement.Type doType = elem.getType();

 if (doType == LogElement.INSERT)

 {

 Object newAttribute = getAttribute(elem.getAfterImage());

 insertIntoIndex(key, newAttribute);

 }

 else if (doType == LogElement.UPDATE)

 {

 Object newAttribute = getAttribute(elem.getAfterImage());

 Object oldAttribute = getAttribute(elem.getBeforeImage());

 updateIndex(key, oldAttribute, newAttribute);

 }

 else if (doType == LogElement.DELETE)

 {

 Object oldAttribute = getAttribute(elem.getBeforeImage());

 removeFromIndex(key, oldAttribute);

 }

 else if (doType == LogElement.EVICT)

 {

 Object beforeImage = elem.getBeforeImage();

 if (beforeImage != null)

 {

 Object oldAttribute = getAttribute(beforeImage);

 removeFromIndex(key, oldAttribute);

 }

 }

 }

}

public void undoBatchUpdate(TxID txid, LogSequence sequence)

throws ObjectGridException

{

 int errors = 0;

 Iterator iter = sequence.getAllChanges();

 while (iter.hasNext())

 {

 try

 {

 LogElement elem = (LogElement) iter.next();

 Object key = elem.getCacheEntry().getKey();

 LogElement.Type undoType = elem.getUndoType();

 if (undoType == LogElement.INSERT)

 {

 Object newAttribute = getAttribute(elem.getBeforeImage());

 insertIntoIndex(key, newAttribute);

 }

 else if (undoType == LogElement.UPDATE)

 {

 Object oldAttribute = getAttribute(elem.getAfterImage());

 Object newAttribute = getAttribute(elem.getBeforeImage());

 updateIndex(key, oldAttribute, newAttribute);

 }

 else if (undoType == LogElement.DELETE)

 {

 Object oldAttribute = getAttribute(elem.getAfterImage());

 removeFromIndex(key, oldAttribute);

238 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

}

 }

 catch (Throwable t)

 {

 ++errors;

 }

 }

 if (errors > 0)

 {

 throw new ObjectGridException(errors

 + " exceptions occurred during rollback of index changes.");

 }

}

/**

* Extracts the attribute from a specified value Object.

*

* @param value The value Object.

*

* @return attribute from the value Object, which may be a null reference.

*

* @throws ObjectGridRuntimeException is thrown if any exception occurs

* attempting to extract the attribute value from the value Object.

*/

private Object getAttribute(Object value) throws ObjectGridRuntimeException

{

 try

 {

 Object attribute = null;

 if (value != null)

 {

 Method m = getAttributeMethod(value);

 attribute = getAttributeMethod.invoke(value, emptyArray);

 }

 return attribute;

 }

 catch (InvocationTargetException e)

 {

 Throwable t = e.getTargetException();

 throw new ObjectGridRuntimeException("Caught unexpected Throwable", t);

 }

 catch (Throwable t)

 {

 throw new ObjectGridRuntimeException("Caught unexpected Throwable", t);

 }

}

private void updateIndex(Object key, Object oldAttribute, Object newAttribute)

{

 // Was attributed changed by the update?

 if (newAttribute != null && oldAttribute != null &&

 oldAttribute.equals(newAttribute))

 {

 // Nope, then nothing needs to be changed in index.

 return;

 }

 // Unless we restrict Loader to only access tables with non-nullable columns,

 // we have to handle the possibility that the attribute is null.

 Set oldKeys = null;

 if (oldAttribute != null)

 {

 // Remove oldAttribute from index entry.

 oldKeys = (Set) index.get(oldAttribute);

 if (oldKeys != null)

Chapter 9. ObjectGrid application programming interface overview 239

{

 oldKeys.remove(key);

 if (oldKeys.isEmpty())

 {

 index.remove(oldAttribute);

 }

 }

 }

 // Unless we restrict Loader to only access tables with non-nullable columns,

 // we have to handle the possibility that the attribute is null.

 Set keys = null;

 if (newAttribute != null)

 {

 keys = (Set) index.get(newAttribute);

 // Add newAttribute to index.

 if (keys == null)

 {

 // Since different transactions can be updating different BackingMap

 // entries and multiple map entries can have same attribute value,

 // we need to use a synchronized Set object to ensure only

 // one transaction at a time can make changes to the Set.

 keys = Collections.synchronizedSet(new HashSet());

 index.put(newAttribute, keys);

 }

 // Add key for this map entry to the Set of keys for the new attribute value.

 keys.add(key);

 }

}

private void insertIntoIndex(Object key, Object newAttribute)

{

 // Unless we restrict Loader to only access tables with non-nullable columns,

 // we have to handle the possibility that the attribute is null.

 if (newAttribute != null)

 {

 Set keys = (Set) index.get(newAttribute);

 if (keys == null)

 {

 // Since different transactions can be updating different

 // Map entries and multiple map entries can have same attribute

 // value, we need to use a synchronized Set object to ensure only

 // one transaction at a time can make changes to the Set.

 keys = Collections.synchronizedSet(new HashSet());

 index.put(newAttribute, keys);

 }

 // Add key for this map entry to the Set of keys for the new attribute value.

 keys.add(key);

 }

}

private void removeFromIndex(Object key, Object oldAttribute)

{

 // Extract the old attribute value

 Set oldKeys = null;

 // Unless we restrict Loader to only access tables with non-nullable columns,

 // we have to handle the possibility that the attribute is null.

 if (oldAttribute != null)

 {

 oldKeys = (Set) index.get(oldAttribute);

 if (oldKeys != null)

 {

 oldKeys.remove(key);

240 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

if (oldKeys.isEmpty())

 {

 index.remove(oldAttribute);

 }

 }

 }

}

Application index interfaces

Application index interfaces are designed to support query methods. Currently, there

are two application index interfaces defined: MapIndex and MapRangeIndex.

MapIndex

The MapIndex is a simple index for looking up objects by an attribute value.

It allows any attribute value on a Map to be indexed. This lets the

application quickly find all objects in the Map that have a specific attribute

value. The following is the definition of the MapIndex interface:

/**

* This is an abstract index that can be created on an empty Map. The

* index can be used to perform efficient look ups and possibly other

* operations such as relational operations on an attribute in a Map.

* The MapIndex is provided with all update events and maintains an

* index that can be used to issue simple queries against the index

* later. The index could use an index defined callback to make an

* index on composite attributes.

*/

public interface MapIndex

{

 /**

 * Returns the Keys for the entries that have the specified attribute

 * value.

 *

 * @param attributeValue

 * a non-null reference to the attribute value to search for.

 *

 * @return A list of the keys for the entries with that attribute.

 *

 * @throws IllegalArgumentException if attributeValue argument is null.

 * @throws FinderException is thrown if exception or retry limit is

 * reached when concurrent transactions updating the index

 * prevent findAll from completing.

 */

 Iterator findAll(Object attributeValue) throws FinderException;

}

MapRangeIndex

The MapRangeIndex is a simple index for looking up objects with an

attribute value in a certain range. It allows any attribute value on a Map to

be indexed. It differs from MapIndex in that it allows queries using value

ranges and value comparison operations. This allows queries to find all

objects with an attribute value less or greater than a specific value. The

following is the definition of the MapRangeIndex interface:

/**

* This is an index that allows comparison type searches.

*/

public interface MapRangeIndex extends MapIndex

{

 /**

 * This find all keys with entries with an attribute greater than the

 * specified value.

 *

Chapter 9. ObjectGrid application programming interface overview 241

* @param attributeValue is the low endpoint of range excluding the

 * low attribute value.

 *

 * @return The set of keys with values greater than the attribute.

 *

 * @throws IllegalArgumentException if attributeValue argument is null.

 * @throws FinderException is thrown if exception or retry

 * limit is reached

 * when concurrent transactions updating the index prevent

 * findAll from completing.

 */

 Iterator findGreater(Object attributeValue) throws FinderException;

 /**

 * This find all keys with entries with an attribute greater or equal

 * to the specified value.

 *

 * @param attributeValue is the low endpoint of range including the

 * low attribute value.

 *

 * @return The set of keys with attributes meeting the criteria

 *

 * @throws IllegalArgumentException if attributeValue argument is null.

 * @throws FinderException is thrown if exception or retry

 * limit is reached

 * when concurrent transactions updating the index prevent findAll

 * from completing.

 */

 Iterator findGreaterEqual(Object attributeValue) throws FinderException;

 /**

 * This find all keys with entries with an attribute less than the

 * specified value.

 *

 * @param attributeValue is the high endpoint of range excluding high

 * endpoint value.

 *

 * @return The set of keys with attributes meeting the criteria

 *

 * @throws IllegalArgumentException if attributeValue argument is null.

 * @throws FinderException is thrown if exception or retry limit

 * is reached

 * when concurrent transactions updating the index prevent

 * findAll from completing.

 */

 Iterator findLess(Object attributeValue) throws FinderException;

 /**

 * This find all keys with entries with an attribute less than or equal

 * to the specified value.

 *

 * @param attributeValue is the high endpoint of range including high

 * endpoint value.

 *

 * @return The set of keys with attributes meeting the criteria

 *

 * @throws IllegalArgumentException if attributeValue argument is null.

 * @throws FinderException is thrown if exception or retry limit

 * is reached

 * when concurrent transactions updating the index prevent

 * findAll from completing.

 */

 Iterator findLessEqual(Object attributeValue) throws FinderException;

 /**

 * This returns all keys for the entries with the attribute inclusively

242 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

* within the specified range such that lowAttributeValue <= attribute

 * < highAattributeValue.

 *

 * @param lowAttributeValue is the low endpoint of range including the

 * low attribute value.

 * @param highAttributeValue is the high endpoint of range excluding

 * high attribute value.

 *

 * @return The list of keys with entries in that range, in ascending order.

 *

 * @throws IllegalArgumentException if either lowAttributeValue or

 * highAttributeValue

 * argument is null or lowAttributeValue > highAttributeValue.

 * @throws FinderException is thrown if exception or retry limit is reached

 * when concurrent transactions updating the index prevent

 * findAll from completing.

 */

 Iterator findRange(Object lowAttributeValue, Object highAttributeValue)

 throws FinderException;

}

Applications need to cast the obtained index object from the getIndex

method of ObjectMap instance to the desired application index interface. If

the index plug-in is designed to support the MapRangeIndex interface, the

index object can be cast to the MapRangeIndex type; otherwise, it should

be cast to the MapIndex type.

 You can define a customized application index interface. Implement the

custom application index as the index proxy object that can be returned by

the getIndexProxy method of the MapIndexPlugin. Cast the obtained index

object from the getIndex method of ObjectMap instance to this customized

application index interface and use it.

Adding static index plug-ins

There are two approaches to add static index plug-ins into BackingMap

configuration: XML configuration and programmatic configuration. The following

example illustrates the XML Configuration approach:

<backingMapPluginCollection id="person">

 <bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.

 plugins.index.HashIndex">

 <property name="Name" type="java.lang.String" value="CODE"

 description="index name" />

 <property name="RangeIndex" type="boolean" value="true" description="true

 for MapRangeIndex" />

 <property name="AttributeName" type="java.lang.String" value="employeeCode"

 description="attribute name" />

 </bean>

</backingMapPluginCollection>

The BackingMap interface has two methods that can be used to add static index

plug-ins: addMapIndexPlugin and setMapIndexPlugins method. The following is the

definition of these two methods.

/**

* This method adds an index plugin to this Map. We assume the index implementation

* was constructed

* with the name of the attribute to index. The name of the index is specified when

* the index is constructed.

*

* Note, to avoid an {@link IllegalStateException}, this method must be called

* prior to {@link ObjectGrid#initialize()} method. Also, keep in mind that the

Chapter 9. ObjectGrid application programming interface overview 243

* {@link ObjectGrid#getSession()} method implicitly calls the

* {@link ObjectGrid#initialize()} method if it has yet to be called by the

* application.

*

* @param index The index implementation.

*

* @throws IndexAlreadyDefinedException This index already exists.

* @throws IllegalStateException if this method is called after the

* {@link ObjectGrid#initialize()} method is called.

*/

public void addMapIndexPlugin(MapIndexPlugin index)

throws IndexAlreadyDefinedException;

/**

* This method sets the list of MapIndexPlugin objects for this BackingMap.

* If the BackingMap already has a List of MapIndexPlugin objects,

* that list is replaced by the List passed as

* an argument to the current invocation of this method.

*

* Note, to avoid an {@link IllegalStateException}, this method must be called

* prior to {@link ObjectGrid#initialize()} method. Also, keep in mind that the

* {@link ObjectGrid#getSession()} method implicitly calls the

* {@link ObjectGrid#initialize()} method if it has yet to be called by the

* application.

*

* @param indexList A non-null reference to a List of {@link MapIndexPlugin}

* objects.

*

* @throws IllegalArgumentException is thrown if indexList is null

* or the indexList contains an object that is not

* an instanceof {@link MapIndexPlugin}.

*/

public void setMapIndexPlugins(List indexList);

The following snippet of code illustrates the programmatic configuration approach:

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.BackingMap;

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid ivObjectGrid = ogManager.createObjectGrid("grid");

BackingMap personBackingMap = ivObjectGrid.getMap("person");

//use the builtin HashIndex class as the index plugin class.

HashIndex mapIndexPlugin = new HashIndex();

mapIndexPlugin.setName("CODE");

mapIndexPlugin.setAttributeName("EmployeeCode");

mapIndexPlugin.setRangeIndex(true);

personBackingMap.addMapIndexPlugin(mapIndexPlugin);

Using Static Indices

After a static index plug-in has been added to a BackingMap configuration and the

containing ObjectGrid instance has been initialized, applications can get the index

object by name from the ObjectMap instance for the BackingMap. Cast the index

object to the application index interface. Index operations supported by the

application index interface can now run. The following is the definition of the

getIndex method of the ObjectMap interface:

/**

* This returns a reference to the named index that can be used with this Map.

* This index cannot be shared between threads and works on the same rules as

* Session. The returned value should be cast to the right index interface

* such as MapIndex or MapRangeIndex or a custom index interface such as geo

* spatial index.

244 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

*

* @param name The index name

*

* @return A reference to the index, it must be cast to the appropriate index

* interface.

*

* @throws IndexUndefinedException if the index is not defined on the BackingMap

* @throws IndexNotReadyException if the index is not ready

* @throws UnsupportedOperationException if the map is a distributed map

*/

Object getIndex(String name)

throws IndexUndefinedException, IndexNotReadyException,

 UnsupportedOperationException;

The following snippet of code illustrates the way to get and use static indices:

Session session = ivObjectGrid.getSession();

ObjectMap map = session.getMap("person ");

MapRangeIndex codeIndex = (MapRangeIndex) m.getIndex("CODE");

Iterator iter = codeIndex.findLessEqual(new Integer(15));

while (iter.hasNext()) {

 Object key = iter.next();

 Object value = map.get(key);

}

Adding and removing dynamic indices

Dynamic indices can be created on and removed from a BackingMap instance

programmatically at anytime. A dynamic index differs from a static index in that the

dynamic index can be created even after the containing ObjectGrid instance has

been initialized. Unlike the static indexing, the dynamic indexing is an asynchronous

process and needs to be in ready state before serving its purpose. The way to get

and use the dynamic indices is same as static indices. If a dynamic index is no

longer needed, it can be removed. The BackingMap interface has methods to

create and remove dynamic indices. The following is the definition of these

methods:

/**

* Create a dynamic index on the BackingMap

*

* @param name the name of the index. The name can not be null.

* @param isRangeIndex Indicate whether to create a MapRangeIndex or a MapIndex.

* If set to true, the index will be type of MapRangeIndex.

* @param attributeName The name of the attribute to be indexed.

* The attributeName can not be null.

* @param dynamicIndexCallback The callback that will invoke upon dynamic

* index events.

* The dynamicIndexCallback is optional and can be null.

*

* @throws IndexAlreadyDefinedException if a MapIndexPlugin with the specified

* name already exists.

* @throws UnsupportedOperationException if the map is a distributed map.

*

*/

public void createDynamicIndex(String name, boolean isRangeIndex,

String attributeName, DynamicIndexCallback cb)

throws IndexAlreadyDefinedException, UnsupportedOperationException;

/**

* Create a dynamic index on the BackingMap.

*

* @param index The index implementation. The index can not be null.

* @param dynamicIndexCallback The callback that will invoke upon dynamic

* index events.

* The dynamicIndexCallback is optional and can be null.

Chapter 9. ObjectGrid application programming interface overview 245

*

* @throws IndexAlreadyDefinedException if a MapIndexPlugin with the

* specified name already exists.

* @throws UnsupportedOperationException if the map is a distributed map.

*/

public void createDynamicIndex(MapIndexPlugin index, DynamicIndexCallback

dynamicIndexCallback)

throws IndexAlreadyDefinedException, UnsupportedOperationException;

/**

* remove a dynamic index from the BackingMap

*

* @param name the name of the index. The name can not be null.

*

* @throws IndexUndefinedException if a MapIndexPlugin with the specified name

* does not exists.

* @throws OperationNotSupportedException if the map is a distributed map.

*/

public void removeDynamicIndex(String name) throws IndexUndefinedException;

The following snippet of code illustrates the programmatic approach of creating,

using and removing a dynamic index:

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.BackingMap;

ObjectGridManager ogManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid og = ogManager.createObjectGrid("grid");

BackingMap bm = og.getMap("person");

og.initialize();

//create index after ObjectGrid initialization without DynamicIndexCallback.

bm.createDynamicIndex("CODE", true, "employeeCode", null);

try {

 //If not using DynamicIndexCallback, need to wait for the Index to be ready.

 //The waiting time depends on the current size of the map

 Thread.sleep(3000);

} catch (Throwable t) {

 //...

}

//Once the index is ready, applications can try to get application index

//interface instance.

//Applications have to find a way to ensure the index is ready to use,

//if not using DynamicIndexCallback interface.

//The following demonstrates the way to wait for the index to be ready

//The total waiting time should consider the size of the map

Session session = og.getSession();

ObjectMap m = session.getMap("person");

MapRangeIndex codeIndex = null;

int counter = 0;

int maxCounter = 10;

boolean ready = false;

while(!ready && counter < maxCounter){

 try {

 counter++;

 codeIndex = (MapRangeIndex) m.getIndex("CODE");

 ready = true;

 } catch (IndexNotReadyException e) {

 //implies index is not ready, ...

246 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

System.out.println("Index is not ready. continue to wait.");

 try {

 Thread.sleep(3000);

 } catch (Throwable tt) {

 //...

 }

 } catch (Throwable t) {

 //unexpected exception

 t.printStackTrace();

 }

}

if(!ready){

 System.out.println("Index is not ready. Need to handle this situation.");

}

//use the index to peform queries

//Refer to MapIndex or MapRangeIndex interface for supported operations.

//The object attribute that the index created on is the EmployeeCode.

//Assuming the EmployeeCode attribute is Integer type, which should be

//the data type of the parameter passed into index operations.

Iterator iter = codeIndex.findLessEqual(new Integer(15));

//remove the dynamic index when no longer needed

bm.removeDynamicIndex("CODE");

DynamicIndexCallback interface

The DynamicIndexCallback interface is designed for applications that wish to get

notifications at the indexing events of ready, error, or destroy. It is an optional

parameter for the createDynamicIndex() method of the BackingMap. With a

registered DynamicIndexCallback instance, applications can execute business logic

upon receiving notification of an indexing event. For example, the ready event

means the index is ready for use. When a notification for this event is received, an

application can try to get the application index interface instance and use it. The

following shows the definition of the DynamicIndexCallback Interface:

/**

* This is the callback interface for dynamic indexing process.

* If applications wish to get notification at the event of ready, error,

* or destroy, they can implement this callback interface and register with

* the dynamic indexing process when creating dynamic index.

*

*/

public interface DynamicIndexCallback {

 /**

 * This callback method will be invoked when the dynamic index is ready.

 *

 * @param indexName

 * The index name

 *

 */

 public void ready(String indexName);

 /**

 * Invoked when the dynamic indexing process encounters an unexpected error.

 *

 * @param indexName the index name

 * @param t A Throwable object that causes the error situation in dynamic

 * indexing process.

 */

 public void error(String indexName, Throwable t);

Chapter 9. ObjectGrid application programming interface overview 247

/**

 * This callback method will be invoked when the dynamic index is removed

 *

 * @param indexName

 * The index name

 */

 public void destroy(String indexName);

}

The following code snippet illustrates the use of the DynamicIndexCallback

interface:

BackingMap personBackingMap = ivObjectGrid.getMap("person");

DynamicIndexCallback callback = new DynamicIndexCallbackImpl();

personBackingMap.createDynamicIndex("CODE", true, "employeeCode", callback);

class DynamicIndexCallbackImpl implements DynamicIndexCallback {

 public DynamicIndexCallbackImpl() {

 }

 public void ready(String indexName) {

 System.out.println("DynamicIndexCallbackImpl.ready() -> indexName = " +

 indexName);

 ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();

 ObjectGrid og = ogManager.createObjectGrid("grid");

 Session session = og.getSession();

 ObjectMap map = session.getMap("person");

 MapIndex codeIndex = (MapIndex) map.getIndex(“CODE”);

 Iterator iter = codeIndex.findAll(codeValue);

 }

 public void error(String indexName, Throwable t) {

 System.out.println("DynamicIndexCallbackImpl.error() ->

 indexName = " + indexName);

 t.printStackTrace();

 }

 public void destroy(String indexName) {

 System.out.println("DynamicIndexCallbackImpl.destroy() -> indexName = " +

 indexName);

 }

}

Performance considerations

Although one of the main objectives of the indexing feature is to improve overall

BackingMap performance, there are some factors that need to be considered before

using this feature. If indexing is not used properly, the performance of the

application might be compromised.

v The number of concurrent write transactions. Index processing can occur every

time a transaction writes data into a BackingMap. Performance will degrade if

there are many transactions writing data into the map concurrently when an

application attempts index query operations.

v The size of the resultset returned by a query operation. As the size of the

resultset increases, the query performance declines. One experiment has shown

that performance degrades when the size of the resultset is 15% or more of the

BackingMap.

v The number of indices built over the same BackingMap. Each index consumes

system resources. As the number of the indices built over the BackingMap

increases, the performance declines.

248 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

The conclusion is the indexing function can improve the BackingMap performance

dramatically in certain environments. An ideal case for indexing is when the

BackingMap is read-mostly, the query resultset is of a smaller percentage of the

BackingMap entries, and only few indices are built over the BackingMap.

ObjectGrid configuration

ObjectGrid can be configured to run in a distributed environment or as a local cache

available only within a single JVM. A local ObjectGrid can be configured

programmatically or with an ObjectGrid XML file. The ObjectGrid XML file is the

place to define ObjectGrids, BackingMaps and their respective plug-ins.

A local ObjectGrid can be migrated to a distributed environment. To configure a

distributed ObjectGrid, a cluster XML must be provided in conjunction with the

ObjectGrid XML. The cluster XML file defines the servers in the ObjectGrid topology

and how the ObjectGrid data is partitioned and replicated across the servers. This

section details how to configure local and distributed ObjectGrids.

Local ObjectGrid configuration

To configure a local ObjectGrid, see “Local ObjectGrid configuration.”

Distributed ObjectGrid

To configure a distributed ObjectGrid, see “Distributed ObjectGrid configuration” on

page 261.

Local ObjectGrid configuration

A local ObjectGrid can be configured programmatically or with XML. The

ObjectGridManager is the entry point for both means of configuration.

Several methods on the ObjectGridManager exist that can be used to create a local

ObjectGrid. For a complete description of each method, see “ObjectGridManager

interface” on page 87.

Use the following topics to configure a local ObjectGrid:

v “Basic ObjectGrid configuration” discusses how to create a very simple XML file

with one ObjectGrid and one BackingMap defined.

v “Complete ObjectGrid configuration” on page 250 defines each element and

attribute of the XML file and discusses how to achieve the same result as the

XML file programmatically.

v “Mixed mode ObjectGrid configuration” on page 260 describes how to use a

combination of XML and programmatic configuration methods.

Basic ObjectGrid configuration

This topic demonstrates how to create a very simple ObjectGrid XML file, the

bookstore.xml file, with one ObjectGrid and one BackingMap defined.

The first few lines of the file are the required header for each ObjectGrid XML file.

The following XML defines the bookstore ObjectGrid with the book BackingMap:

bookstore.xml

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

Chapter 9. ObjectGrid application programming interface overview 249

xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore">

 <backingMap name="book" />

 </objectGrid>

 </objectGrids>

</objectGridConfig>

The XML file is sent to the ObjectGridManager interface to create an ObjectGrid

instance based on the file. The following code snippet validates the bookstore.xml

file against the XML schema, and creates the bookstore ObjectGrid. The newly

created ObjectGrid instance is not cached.

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid bookstoreGrid = objectGridManager.createObjectGrid("bookstore",

new URL("file:etc/test/bookstore.xml"), true, false);

The following code accomplishes the same task without XML. Use this code to

programmatically define a BackingMap on an ObjectGrid. This code creates the

book BackingMap on the bookstoreGrid ObjectGrid:

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid bookstoreGrid = objectGridManager.createObjectGrid

 ("bookstore", false);

BackingMap bookMap = bookstoreGrid.defineMap("book");

Complete ObjectGrid configuration

This topic is a complete guide to configuring an ObjectGrid. Each element and

attribute of the XML file is defined. Sample XML files are given, along with code that

accomplishes the same task programmatically.

The following XML file, bookstore.xml, is referred to throughout this topic. The

elements and attributes of this file are described in detail following this example.

bookstore.xml file

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore">

 <bean id="ObjectGridEventListener"

 className="com.company.organization.MyObjectGridEventListener" />

 <backingMap name="books" pluginCollectionRef="collection1" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="collection1">

 <bean id="Evictor"

 classname="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor">

 <property name="maxSize" type="int" value="321" />

 </bean>

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

objectGridConfig element

Number of occurrences: one

Child elements: objectGrids element and backingMapPluginCollections element

250 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

The objectGridConfig element is the top level element of the XML file. It must be

written in the XML document as shown in the preceding example. This element sets

up the namespace of the file and the schema location. The schema is defined in

the objectGrid.xsd file. ObjectGrid looks for this file in the root directory of the

ObjectGrid Java archive (JAR) files.

objectGrids element

Number of occurrences: one

Child element: objectGrid element

The objectGrids element is a container for all the objectGrid elements. In the

sample1.xml file, the objectGrids element contains one objectGrid that has the

name bookstore.

objectGrid element

Number of occurrences: one to many

Child elements: bean element and backingMap element

Use the objectGrid element to define an ObjectGrid in an XML file. Each of the

attributes on the objectGrid element corresponds to a method on the ObjectGrid

interface.

<objectGrid

(1) name="objectGridName"

(2) securityEnabled="true|false"

(3) authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS|

 AUTHORIZATION_MECHANISM_CUSTOM"

(4) permissionCheckPeriod="permission check period"

(5) txTimeout="seconds"

/>

Attributes:

1. name attribute (required): Specifies the name that is assigned to the ObjectGrid.

If this attribute is missing, the XML validation fails.

2. securityEnabled attribute (optional, default is false): Setting this attribute to

true enables security for the ObjectGrid. Enabling security on the ObjectGrid

level means enabling the access authorizations to the data in the map. By

default, security is disabled.

3. authorizationMechanism attribute (optional, defaults to

AUTHORIZATION_MECAHNISM_JAAS): Sets the authorization mechanism for this

ObjectGrid. This attribute can be set to one of two values:

AUTHORIZATION_MECHANISM_JAAS or AUTHORIZATION_MECHANISM_CUSTOM. Set to

AUTHORIZATION_MECHANISM_CUSTOM when using a custom MapAuthorization

plug-in. This setting takes effect if the securityEnabled attribute is set to true.

4. permissionCheckPeriod (optional, defaults to 0): Specifies an integer value in

seconds that indicates how often to check the permission that is used to allow a

client access. If the attribute value is 0, then every get, put, update, remove, or

evict method call asks the authorization mechanism, either JAAS authorization

or custom authorization, to check if the current subject has permission. A value

greater than 0 indicates the number of seconds to cache a set of permissions

before returning to the authorization mechanism to refresh. This setting takes

effect if the securityEnabled attribute is set to true. For more details, see

“ObjectGrid security” on page 131.

Chapter 9. ObjectGrid application programming interface overview 251

5. txTimeout (optional, defaults to 0): The amount of time in seconds, that a

transaction is allowed for completion. If a transaction does not complete in this

amount of time, the transaction is marked for roll back and a

TransactionTimeoutException exception results. If the value is set to 0,

transactions never time out.

The following example XML file, the bookstoreObjectGridAttr.xml file,

demonstrates one way to configure the attributes of an objectGrid. In this example,

security is enabled, the authorization mechanism is set to JAAS, and the permission

check period is set to 45 seconds.

bookstoreObjectGridAttr.xml file

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore" securityEnabled="true"

 authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS"

 permissionCheckPeriod="45">

 </objectGrid>

 </objectGrids>

</objectGridConfig>

The following code demonstrates the programmatic approach to achieve the same

configuration as the bookstoreObjectGridAttr.xml file in the previous example.

ObjectGridManager objectGridManager = ObjectGridManagerFactory

.getObjectGridManager();

ObjectGrid bookstoreGrid = objectGridManager.createObjectGrid("bookstore", false);

bookstoreGrid.setSecurityEnabled();

bookstoreGrid.setAuthorizationMechanism(

SecurityConstants.AUTHORIZATION_MECHANISM_JAAS);

bookstoreGrid.setPermissionCheckPeriod(45);

backingMap element

Number of occurrences: zero to many

Child elements: none

The backingMap element is used to define a BackingMap on an ObjectGrid. Each

of the attributes on the backingMap element corresponds to a method on the

BackingMap interface.

<backingMap

(1) name="backingMapName"

(2) readOnly="true|false"

(3) pluginCollectionRef="reference to backingMapPluginCollection"

(4) numberOfBuckets="number of buckets"

(5) preloadMode="true|false"

(6) lockStrategy="OPTIMISTIC|PESSIMISTIC|NONE"

(7) numberOfLockBuckets="number of lock buckets"

(8) lockTimeout="lock timeout"

(9) copyMode="COPY_ON_READ_AND_COMMIT|COPY_ON_READ|

 COPY_ON_WRITE|NO_COPY"

(10) valueInterfaceClassName="value interface class name"

(11) copyKey="true|false"

(12) nullValuesSupported="true|false"

(13) ttlEvictorType="CREATION_TIME|LAST_ACCESS_TIME|NONE"

(14) timeToLive="time to live"

/>

252 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Attributes:

 1. name attribute (required): Specifies the name that is assigned to the

BackingMap. If this attribute is missing, XML validation fails.

 2. readOnly attribute (optional, defaults to false): Setting this attribute to true

makes a read-only BackingMap. Setting the attribute to false makes a

read-write BackingMap. If a value is not specified, the default of read-write

results.

 3. pluginCollectionRef attribute (optional): Specifies a reference to a

backingMapPluginCollection plug-in. The value of this attribute must match the

id attribute of a backingMapCollection plug-in. Validation fails if no matching id

exists. This reference is designed to be an easy way to reuse BackingMap

plug-ins.

 4. numberOfBuckets attribute (optional, defaults to 503): The number of buckets

to be used by the BackingMap. The BackingMap uses a hash map for its

implementation. If a lot of entries exist in the BackingMap more buckets lead to

better performance because the risk of collisions is lower as the number of

buckets grows. More buckets also lead to more concurrency.

 5. preloadMode attribute (optional, defaults to false): Sets the preload mode if a

Loader plug-in is set for this BackingMap. If the attribute is set to true, the

Loader.preloadMap(Session, BackingMap) method is invoked asynchronously.

Otherwise it blocks running the method when loading data so that the cache is

unavailable until preload completes. Preloading occurs during ObjectGrid

initialization.

 6. lockStrategy attribute (optional, defaults to OPTIMISTIC): Sets the LockStrategy

that is used for the BackingMap. The locking strategy determines if the internal

ObjectGrid lock manager is used whenever a map entry is accessed by a

transaction. This attribute can be set to one of three values: OPTIMISTIC,

PESSIMISTIC, or NONE.

OPTIMISTIC is typically used for a map that does not have a Loader plug-in, the

map is mostly read, and the locking is not provided by persistence manager

using the objectGrid as a side cache or by the application. For the optimistic

locking strategy, an exclusive lock is obtained on a map entry being inserted,

updated, or removed at commit time. The lock ensures version information

cannot be changed by another transaction while the transaction being

committed is performing an optimistic versioning check.

PESSIMISTIC is typically used for a map that does not have a Loader plug-in

and locking is not provided by a persistence manager using the objectGrid as

a side cache, by a Loader plug-in, or by the application. The pessimistic

locking strategy is used when the optimistic approach fails too often because

update transactions frequently collide on the same map entry. The optimistic

approach can fail when the map is not mostly read, or a large number of

clients access a small map.

NONE indicates that internal LockManager use is not needed because

concurrency control is provided outside of the ObjectGrid, either by the

persistence manager using ObjectGrid as a side cache, application, or by

Loader plug-in that uses database locks to control concurrency.

 7. numberOfLockBuckets attribute (optional, defaults to 383): Sets number of

lock buckets that are used by the lock manager for this BackingMap. When the

lockStrategy attribute is set to OPTIMISTIC or PESSIMISTIC, a lock manager is

created for the BackingMap. The lock manager uses a hash map to keep track

of entries that are locked by one or more transactions. If many entries exist,

then more lock buckets lead to better performance because the risk of

collisions is lower as the number of buckets grows. More lock buckets also

Chapter 9. ObjectGrid application programming interface overview 253

lead to more concurrency. When the lockStrategy attribute is set to NONE, no

lock manager is used by this BackingMap. In this case, setting

numberOfLockBuckets attribute is not needed.

 8. lockTimeout attribute (optional, defaults to 15): Sets the lock timeout that is

used by the lock manager for this BackingMap. When the lockStrategy

attribute is set to OPTIMISTIC or PESSIMISTIC, a lock manager is created for the

BackingMap. To prevent deadlocks from occurring, the lock manager has a

default timeout value for waiting for a lock to be granted. If this timeout limit is

exceeded, a LockTimeoutException exception occurs. The default value of 15

seconds is sufficient for most applications, but on a heavily loaded system, a

timeout might occur when no deadlock exists. In that case, this method can be

used to increase the lock timeout value from the default to prevent false

timeout exceptions from occurring. When the lock strategy is NONE, no lock

manager is used by this BackingMap. In this case, setting the lockTimeout

attribute is not needed.

 9. copyMode attribute (optional, defaults to COPY_ON_READ_AND_COMMIT): The

copyMode attribute determines if a get operation of an entry in the

BackingMap returns the actual value, a copy of the value, or a proxy for the

value. The copyMode attribute can be set to one of four values:

COPY_ON_READ_AND_COMMIT, COPY_ON_READ, COPY_ON_WRITE, or NO_COPY.

The COPY_ON_READ_AND_COMMIT mode ensures that an application never has a

reference to the value object that is in the BackingMap, and instead the

application is always working with a copy of the value that is in the

BackingMap.

The COPY_ON_READ mode improves performance over the

COPY_ON_READ_AND_COMMIT mode by eliminating the copy that occurs when a

transaction is committed. To preserve integrity of BackingMap data, the

application promises to destroy every reference that it has to an entry after the

transaction is committed. This mode results in a ObjectMap.get method

returning a copy of the value instead of a reference to the value to ensure that

changes that are made by the application to the value does not affect the

BackingMap value until the transaction is committed.

The COPY_ON_WRITE mode improves performance over the

COPY_ON_READ_AND_COMMIT mode by eliminating the copy that occurs when

ObjectMap.get method is called for the first time by a transaction for a given

key. Instead, the ObjectMap.get method returns a proxy to the value instead of

a direct reference to the value object. The proxy ensures that a copy of the

value is not made unless the application calls a set method on the value

interface.

The NO_COPY mode allows an application to promise that it never modifies a

value object that is obtained using an ObjectMap.get method in exchange for

performance improvements. If this mode is used, the value is not copied.

10. valueInterfaceClassName attribute (optional): When the copyMode attribute is

set to COPY_ON_WRITE, a valueInterfaceClassName attribute is required. It is

ignored for all other modes. Copy on write uses a proxy when ObjectMap.get

method calls are made. The proxy ensures that a copy of the value is not

made unless the application calls a set method on the class that is specified

as the valueInterfaceClassName attribute.

11. copyKey attribute (optional, defaults to false): This attribute determines if the

key needs to be copied when a map entry is created. Copying the key object

allows the application to use the same key object for each ObjectMap

operation. Setting to true copies the key object when a map entry is created.

12. nullValuesSupported attribute (optional, defaults to true): Supporting null

values means that a null value can be put in a map. If set to true, null values

254 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

are supported in the ObjectMap, otherwise null values are not supported. If null

values are supported, a get operation that returns null could mean that the

value is null or that the map does not contain the passed-in key.

13. ttlEvictorType attribute (optional, defaults to NONE): The ttlEvictorType attribute

determines how the expiration time of a BackingMap entry is computed. This

attribute can be set to one of three values: CREATION_TIME, LAST_ACCESS_TIME,

or NONE.

NONE indicates that an entry has no expiration time and is allowed to live in the

BackingMap until the application explicitly removes or invalidates the entry.

CREATION_TIME indicates that an entry expiration time is the sum of the creation

time of the entry plus the timeToLive attribute value.

LAST_ACCESS_TIME indicates that an entry expiration time is the sum of the last

access time of the entry plus the timeToLive attribute value.

14. timeToLive attribute (optional, defaults to 0): The time to live of each map

entry, in seconds. The default value of 0 means that the map entry lives

forever, or until the application explicitly removes or invalidates the entry. If the

attribute is not 0, the TTL evictor is used to evict the map entry based on this

value.

The following XML file, the bookstoreBackingMapAttr.xml file, demonstrates a

sample backingMap configuration. This example makes use of all the optional

attributes except the pluginCollectionRef attribute. For an example that shows how

to use the pluginCollectionRef, see “backingMapPluginCollection element” on page

259.

bookstoreBackingMapAttr.xml file

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore">

 <backingMap name="book" readOnly="true" numberOfBuckets="641"

 preloadMode="false" lockStrategy="OPTIMISTIC"

 numberOfLockBuckets="409" lockTimeout="30" copyMode="COPY_ON_WRITE"

 valueInterfaceClassName=

 "com.ibm.websphere.samples.objectgrid.CounterValueInterface"

 copyKey="true" nullValuesSupported="false"

 ttlEvictorType="LAST_ACCESS_TIME" timeToLive="3000" />

 </objectGrid>

 </objectGrids>

</objectGridConfig>

The following sample code demonstrates the programmatic approach to achieve the

same configuration as the bookstoreBackingMapAttr.xml file in the preceding

example:

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid bookstoreGrid = objectGridManager.createObjectGrid("bookstore", false);

BackingMap bookMap = bookstoreGrid.defineMap("book");

bookMap.setReadOnly(true);

bookMap.setNumberOfBuckets(641);

bookMap.setPreloadMode(false);

bookMap.setLockStrategy(LockStrategy.OPTIMISTIC);

bookMap.setNumberOfLockBuckets(409);

bookMap.setLockTimeout(30);

// when setting copy mode to COPY_ON_WRITE, a valueInterface class is required

Chapter 9. ObjectGrid application programming interface overview 255

bookMap.setCopyMode(CopyMode.COPY_ON_WRITE,

com.ibm.websphere.samples.objectgrid.CounterValueInterface.class);

bookMap.setCopyKey(true);

bookMap.setNullValuesSupported(false);

bookMap.setTtlEvictorType(TTLType.LAST_ACCESS_TIME);

bookMap.setTimeToLive(3000); // set time to live to 50 minutes

bean element

Number of occurrences (within the objectGrid element): zero to many

Number of occurrences (within the backingMapPluginCollection element): zero

to many

Child element: property element

Use the bean element to define plug-ins. Plug-ins can be attached to ObjectGrids

and BackingMaps.

The ObjectGrid plug-ins:

v TransactionCallback plug-in

v ObjectGridEventListener plug-in

v SubjectSource plug-in

v MapAuthorization plug-in

v SubjectValidation plug-in

The BackingMap plug-ins:

v Loader plug-in

v ObjectTransformer plug-in

v OptimisticCallback plug-in

v Evictor plug-in

v MapEventListener plug-in

v MapIndex plug-in

bean element attributes

<bean

(1) id="TransactionCallback|ObjectGridEventListener|SubjectSource|

 MapAuthorization|SubjectValidation|Loader|ObjectTransformer|

 OptimisticCallback|Evictor|MapEventListener|MapIndexPlugin"

(2) className="class name"

/>

1. id attribute (required): Specifies the type of plug-in to create. For a bean that is

a child element of the objectGrid element, the valid values are

TransactionCallback, ObjectGridEventListener, SubjectSource,

MapAuthorization, and SubjectValidation plug-ins. For a bean that is a child

element of the backingMapPluginCollection element, the valid values are

Loader, ObjectTransformer, OptimisticCallback, Evictor, and

MapEventListener plug-ins. Each of the valid values for the id attribute represent

an interface.

2. className attribute (required): Specifies the name of the class to instantiate to

create the plug-in. The class must implement the plug-in type interface.

The following bean.xml file sample demonstrates how to use the bean element to

configure plug-ins. In this XML file, an ObjectGridEventListener plug-in is added to

256 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

the bookstore ObjectGrid. The className attribute for this bean is the

com.ibm.websphere.objectgrid.plugins.builtins.TranPropListener class. This class

implements the com.ibm.websphere.objectgrid.plugins.ObjectGridEventListener

interface as required.

A BackingMap plug-in is also defined in the following bookstoreBean.xml file

sample. An evictor plug-in is added to the book BackingMap. Because the bean id

is Evictor, the className attribute must specify a class that implements the

com.ibm.websphere.objectgrid.plugins.Evictor interface. The

com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor class implements this

interface. The backingMap references its plug-ins using the pluginCollectionRef

attribute. See “BackingMap interface” on page 105 for more information on how to

add plug-ins to a BackingMap.

bookstoreBean.xml file

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore">

 <bean id="ObjectGridEventListener"

 className="com.ibm.websphere.objectgrid.plugins.builtins.TranPropListener" />

 <backingMap name="book" pluginCollectionRef="bookPlugins" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="bookPlugins">

 <bean id="Evictor"

 classnName="com.ibm.websphere.objectGrid.plugins.builtins.LRUEvictor" />

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

The following code demonstrates the programmatic approach to achieve the same

configuration as the previous bookstoreBean.xml file.

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid bookstoreGrid = objectGridManager.createObjectGrid

 ("bookstore", false);

TranPropListener tranPropListener = new TranPropListener();

bookstoreGrid.addEventListener(tranPropListener);

BackingMap bookMap = bookstoreGrid.defineMap("book");

Evictor lruEvictor = new

 com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor();

bookMap.setEvictor(lruEvictor);

property element

Number of occurrences: zero to many

Child element: none

The property element is used to add properties to plug-ins. The name of the

property corresponds to a set method on the className attribute of the bean that

contains the property.

property element attributes

Chapter 9. ObjectGrid application programming interface overview 257

<property

(1) name="name"

(2) type="java.lang.String|boolean|java.lang.Boolean|int|

 java.lang.Integer|double|java.lang.Double|byte|

 java.lang.Byte|short|java.lang.Short|long|

 java.lang.Long|float|java.lang.Float|char|

 java.lang.Character"

(3) value="value"

(4) description="description"

/>

1. name attribute (required): Specifies the name of the property. The value that is

assigned to this attribute must correspond to a set method on the class that is

provided as the className attribute on the bean element. For example, if the

className attribute of the bean is set to com.ibm.MyPlugin and the name of

the property provided is size, then the com.ibm.MyPlugin class must have a

setSize method.

2. type attribute (required): Specifies the type of the property. It is the type of the

parameter that is passed to the set method that is identified by the name

attribute. The valid values are the Java primitives, their java.lang counterparts,

and java.lang.String. The name and type attributes must correspond to a

method signature on the className attribute of the bean. For example, if name

is size and type is int, then a setSize(int) method must exist on the class

that is specified as the className attribute for the bean.

3. value attribute (required): Specifies the value of the property. This value is

converted to the type that is specified by the type attribute, and is then used as

a parameter in the call to the set method that is identified by the name and type

attributes. The value of this attribute is not validated in any way. The plug-in

implementor must verify that the value passed in is valid. The implementor can

display an IllegalArgumentException exception in the set method if the

parameter is not valid.

4. description attribute (optional): Use this attribute to write a description of the

property.

The following bookstoreProperty.xml file demonstrates how to add a property

element to a bean. In this example, a property with the name maxSize and type int

is added to an Evictor. The

com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor Evictor has a method

signature that matches the setMaxSize(int) method. An integer value of 499 is

passed to the setMaxSize(int) method on the

com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor class.

bookstoreProperty.xml file

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore">

 <backingMap name="book" pluginCollectionRef="bookPlugins" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="bookPlugins">

 <bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor">

 <property name="MaxSize" type="int" value="449"

 description="The maximum size of the LRU Evictor" />

258 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

</bean>

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

The following code achieves the same configuration as the bookstoreProperty.xml

file:

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid bookstoreGrid = objectGridManager.createObjectGrid

 ("bookstore", false);

BackingMap bookMap = bookstoreGrid.defineMap("book");

LRUEvictor lruEvictor =

new com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor();

// if the XML file were used instead,

// the property that was added would cause the following call to be made

lruEvictor.setMaxSize(449);

bookMap.setEvictor(lruEvictor);

backingMapPluginCollections element

Number of occurrences: zero to one

Child element: backingMapPluginCollection element

The backingMapPluginCollections element is a container for all the

backingMapPluginCollection elements. In the bookstore.xml file, the

backingMapPluginCollections element contains one backingMapPluginCollection

element with the id collection1.

backingMapPluginCollection element

Number of occurrences: zero to many

Child element: bean element

The backingMapPluginCollection element defines the BackingMap plug-ins. Each

backingMapPluginCollection element is identified by its id attribute. Each

backingMap element must reference its plug-ins using the pluginCollectionRef

attribute on the backingMap element. If several BackingMaps exist that must have

their plug-ins configured similarly, each of them can reference the same

backingMapPluginCollection element.

backingMapPluginCollection element attributes

<backingMapPluginCollection

(1) id="id"

/>

1. id attribute (required): The identifier for the backingMapPluginCollection. Each id

must be unique. The id is referenced by the pluginCollectionRef attribute of the

backingMap element. If the value of a pluginCollectionRef attribute does not

match the id of one backingMapPluginCollection element, XML validation fails.

Any number of backingMap elements can reference a single

backingMapPluginCollection element.

The following bookstoreCollection.xml file demonstrates how to use the

backingMapPluginCollection element. In this file, three backingMap elements are

Chapter 9. ObjectGrid application programming interface overview 259

defined. The book and customer BackingMaps both use the collection1

backingMapPluginCollection. Each of these two BackingMaps have their own

LRUEvictor evictor. The employee BackingMap references the collection2

backingMapPluginCollection. This BackingMap has an LFUEvictor evictor set as an

Evictor plug-in and the EmployeeOptimisticCallbackImpl class set as an

OptimisticCallback plug-in.

bookstoreCollection.xml file

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore">

 <backingMap name="book" pluginCollectionRef="collection1" />

 <backingMap name="customer" pluginCollectionRef="collection1" />

 <backingMap name="employee" pluginCollectionRef="collection2" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="collection1">

 <bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" />

 </backingMapPluginCollection>

 <backingMapPluginCollection id="collection2">

 <bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.LFUEvictor" />

 <bean id="OptimisticCallback"

 className="com.ibm.websphere.samples.objectgrid.

 EmployeeOptimisticCallBackImpl" />

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

The following code demonstrates how to programmatically achieve the same

configuration as the bookstoreCollection.xml file.

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid bookstoreGrid = objectGridManager.createObjectGrid

 ("bookstore", false);

BackingMap bookMap = bookstoreGrid.defineMap("book");

LRUEvictor bookEvictor = new LRUEvictor();

bookMap.setEvictor(bookEvictor);

BackingMap customerMap = bookstoreGrid.defineMap("customer");

LRUEvictor customerEvictor = new LRUEvictor();

customerMap.setEvictor(customerEvictor);

BackingMap employeeMap = bookstoreGrid.defineMap("employee");

LFUEvictor employeeEvictor = new LFUEvictor();

employeeMap.setEvictor(employeeEvictor);

OptimisticCallback employeeOptCallback =

 new EmployeeOptimisticCallbackImpl();

employeeMap.setOptimisticCallback(employeeOptCallback);

Mixed mode ObjectGrid configuration

ObjectGrid can be configured using a combination of XML configuration and

programmatic configuration.

To accomplish a mixed configuration, first create an XML file to pass to the

ObjectGridManager interface. After an ObjectGrid has been created based on the

XML file, the ObjectGrid can be manipulated programmatically, as long as the

260 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

ObjectGrid.initialize() method has not been called. The ObjectGrid.getSession()

method implicitly calls the ObjectGrid.initialize() method if it has not been called by

the application.

Example

Following is a demonstration of how to achieve a mixed mode configuration. The

following mixedBookstore.xml, file is used.

mixedBookstore.xml file

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/ ..objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore">

 <backingMap name="book" readOnly="true" numberOfBuckets="641"

 pluginCollectionRef="bookPlugins" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="bookPlugins">

 <bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.LFUEvictor" />

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

The following code snippet that shows the XML being passed to the

ObjectGridManager, and the newly created ObjectGrid is further manipulated.

ObjectGridManager objectGridManager =

 ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid bookstoreGrid = objectGridManager.createObjectGrid("bookstore",

new URL("file:etc/test/document/mixedBookstore.xml"), true, false);

// at this point, we have the ObjectGrid that was defined in the XML

// now modify the BackingMap that was created and configured

BackingMap bookMap = bookstoreGrid.getMap("book");

// the XML set readOnly to true

// here the readOnly attribute is changed to false

bookMap.setReadOnly(false);

// the XML did not set nullValuesSupported, so

// it would default to true. Here the

// value is set to false

bookMap.setNullValuesSupported(false);

// get the Evictor that was set in the XML,

// and set its maxSize

LFUEvictor lfuEvictor = (LFUEvictor) bookMap.getEvictor();

lfuEvictor.setMaxSize(443);

bookstoreGrid.initialize();

// further configuration is not allowed

// to this ObjectGrid after the initialize call

Distributed ObjectGrid configuration

To create a distributed ObjectGrid, a cluster XML file must be created and paired

with an ObjectGrid XML file.

With the cluster XML and ObjectGrid XML files, you can start an ObjectGrid server.

Chapter 9. ObjectGrid application programming interface overview 261

Before creating a cluster XML file, create an ObjectGrid XML file as you would for a

local ObjectGrid. For details on how to construct an ObjectGrid XML file see “Local

ObjectGrid configuration” on page 249. The following university.xml file is used as

the ObjectGrid XML for the examples in “Cluster configuration” on page 263.

university.xml file

<?xml version="1.0" encoding="UTF-8">

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="academics">

 <backingMap name="faculty" />

 <backingMap name="student" />

 <backingMap name="course" />

 </objectGrid>

 <objectGrid name="athletics">

 <backingMap name="athlete" />

 <backingMap name="equipment" />

 </objectGrid>

 </objectGrids>

</objectGridConfig>

Following is the universityCluster.xml cluster XML file that can be used with the

university.xml file to start an ObjectGrid server. The universityCluster.xml file is

a very basic cluster XML file with all of the optional XML attributes stripped away.

universityCluster.xml file

<?xml version="1.0" encoding="UTF-8"?>

<clusterConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/cluster

 ../objectGridCluster.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="universityCluster">

 <serverDefinition name="server1" host="lion.ibm.com" clientAccessPort="12501"

 peerAccessPort="12502" />

 </cluster>

 <objectgridBinding ref="academics">

 <mapSet name="academicsMapSet" partitionSetRef="partitionSet1">

 <map ref="faculty" />

 <map ref="student" />

 <map ref="course" />

 </mapSet>

 </objectgridBinding>

 <objectgridBinding ref="athletics">

 <mapSet name="athleticsMapSet" partitionSetRef="partitionSet1">

 <map ref="athlete" />

 <map ref="equipment" />

 </mapSet>

 </objectgridBinding>

 <partitionSet name="partitionSet1">

 <partition name="partition1" replicationGroupRef="replicationGroup1" />

 </partitionSet>

 <replicationGroup name="replicationGroup1">

 <replicationGroupMember serverRef="server1" priority="1" />

 </replicationGroup>

</clusterConfig>

262 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Sample usage of many of the optional XML elements and attributes is in the

“Cluster configuration” section.

Cluster configuration

Each element and attribute of the cluster XML is described in this section.

Examples are also provided that show how to use the cluster XML with the

ObjectGrid XML to achieve a configuration. The university.xml file is used as the

ObjectGrid XML for these examples.

clusterConfig element

Number of occurrences: one

Child elements: cluster, objectgridBinding, partitionSet, and replicationGroup

elements

The clusterConfig element is the top level element of the cluster XML file. It must be

at the top of the file as demonstrated in the universityCluster.xml file. This

element sets up the namespace of the file and the schema location. The schema is

defined in the objectGridCluster.xsd file.

cluster element

Number of occurrences: one

Child elements: serverDefinition, authenticator, and adminAuthorization elements

The cluster element is used to define an ObjectGrid cluster. Each of the servers in

the cluster is defined within the cluster element. The cluster element is also used to

define security and network-related attributes.

<cluster

(1) name="clusterName"

(2) securityEnabled="true|false"

(3) statisticsEnabled="true|false"

(4) statisticsSpec="statisticsSpecification"

(5) singleSignOnEnabled="true|false"

(6) loginSessionExpirationTime="seconds"

(7) adminAuthorizationEnabled="true|false"

(8) adminAuthorizationMechanism=""

(9) clientMaxRetries="numberOfRetries"

(10) clientMaxForwards="numberOfForwards"

(11) clientStartupRetries="numberOfRetries"

(12) clientRetryInterval="seconds"

(13) tcpConnectionTimeout="seconds"

(14) tcpMinConnections="numberOfConnections"

(15) tcpMaxConnections="numberOfConnections"

(16) tcpInactivityTimeout="seconds"

(17) tcpMaxWaitTime="seconds"

(18) peerHeartbeatInterval="seconds"

(19) peerTransportBufferSize="sizeInMBs"

(20) threadPoolMinSize="minThreads"

(21) threadPoolMaxSize="maxThreads"

(22) threadPoolInactivityTimeout="seconds"

(23) managementTimeout="seconds"

(24) threadsPerClientConnect="numberOfThreads"

/>

Attributes:

Chapter 9. ObjectGrid application programming interface overview 263

1. name attribute (required): This is the name that is assigned to the cluster. If

this attribute is missing, XML validation fails.

 2. securityEnabled attribute (optional, defaults to false): Enables security for the

cluster when set to true. If it is set to false, cluster-wide security is disabled.

For more information, see “ObjectGrid security” on page 131.

 3. statisticsEnabled attribute (optional, defaults to false): Enables statistics for

the cluster when set to true. When statistics is enabled, the statisticsSpec

attribute is used to set the statistics specification.

 4. statisticsSpec attribute (optional): Specifies the string that is used to set the

statistics specification. This string determines what statistics are gathered.

 5. singleSignOnEnabled attribute (optional, defaults to false): Setting the

singleSignOnEnabled attribute to true allows a client to connect to any server

after it has authenticated with one of the servers. When this attribute is set to

false, a client must authenticate with each server before it is allowed to

connect.

 6. loginSessionExpirationTime attribute (optional): The amount of time in

seconds before the login session expires. If the login session expires, the

client must re-authenticate.

 7. adminAuthorizationEnabled attribute (optional, defaults to false): This value

is used to enable administrative authorization. If the value is true, all of the

administrative tasks need authorization. The authorization mechanism used is

specified by the value of adminAuthorizationMechanism attribute.

 8. adminAuthorizationMechanism attribute (optional, defaults to

AUTHORIZATION_MECHANISM_JAAS): This attribute indicates which

authorization mechanism is used. ObjectGrid supports two authorization

mechanisms: Java Authentication and Authorization Service (JAAS) and

custom. The JAAS authorization mechanism uses the standard JAAS

policy-based approach. To specify JAAS as the authorization mechanism, set

the value to AUTHORIZATION_MECHANISM_JAAS. The custom authorization

mechanism uses a user-plugged-in AdminAuthorization implementation. To

specify a custom authorization mechanism, set the value to

AUTHORIZATION_MECHANISM_CUSTOM. For more information on how

these two mechanisms are used, see “ObjectGrid security” on page 131.

 9. clientMaxRetries attribute (optional, defaults to 4): The maximum number of

times a request for a server can be retried automatically when service is not

available.

10. clientMaxForwards attribute (optional, defaults to 5): The maximum number of

times a failed request is forwarded to another server.

11. clientStartupRetries attribute (optional, defaults to 8): The maximum number

of times a request is automatically retried while waiting for server startup to

complete. Because the high availability manager requires a significant amount

of time to start, set this number to be sufficiently high. If the number is not

large enough, client requests that are submitted before the server is completely

started fail.

12. clientRetryInterval attribute (optional, defaults to 10): The time interval, in

seconds, between a client retries. This is used for both the clientMaxRetries

and clientStartupRetries attributes.

13. tcpConnectionTimeout attribute (optional, defaults to 180): The

tcpConnectionTimeout attribute is the a socket connection timeout. The value

is in seconds.

14. tcpMinConnections attribute (optional, defaults to 2): The minimum number of

connections for the connection pool.

264 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

15. tcpMaxConnections attribute (optional, defaults to 20): The maximum number

of connections for the connection pool.

16. tcpInactivityTimeout attribute (optional, defaults to infinity): The number of

seconds of inactivity on a connection that must pass before the connection is

removed from the connection pool.

17. tcpMaxWaitTime attribute (optional, defaults to 120): The maximum number of

seconds a system waits for an available connection when all connections are

in use and the number of connections has reached the tcpMaxConnections

attribute value.

18. peerHeartbeatInterval attribute (optional, defaults to 120): The

peerHeartbeatInterval attribute is the heartbeat interval used by the high

availability manager. The value is in seconds.

19. peerTransportBufferSize attribute (optional, defaults to 10): The

peerTransportBufferSize attributes represents the transportation message

buffer size used by the high availability manager. This value is specified in

megabytes.

20. threadPoolMinSize attribute (optional, defaults to 6): Specifies the minimum

size of the high availability manager thread pool.

21. threadPoolMaxSize attribute (optional, defaults to 20): Specifies the maximum

size of the high availability manager thread pool.

22. threadPoolInactivityTimeout attribute (optional, defaults to 6000): Specifies

the thread inactivity timeout for the high availability manager thread pool. The

timeout value is in seconds.

23. managementTimeout attribute (optional, defaults to 30): Several of the

ObjectGrid MBean functions send messages to servers in the cluster to either

gather information from or perform operations on the servers. The

managementTimeout value dictates how long the client attempts to receive a

message back from the server. If communication problems exist between client

and server, or if the server is busy, the client retries for the amount of time that

is specified by the managementTimeout value. The managementTimeout value

is specified in seconds.

24. threadsPerClientConnect attribute (optional, defaults to 5): The number of

threads that are created per ClientClusterContext. Each call to the connect

method on the ObjectGridManager interface results in a new

ClientClusterContext.

The following universityClusterAttr.xml file is a sample configuration that makes

use of the various optional attributes on the cluster element. In this example,

security is disabled. The various client, tcp, peer, and thread related attributes are

also changed. The universityClusterAttr.xml is not a recommendation of what

values to assign to attributes. It is an example of how to set attribute values.

universityClusterAttr.xml file

<?xml version="1.0" encoding="UTF-8"?>

<clusterConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/cluster

 ../objectGridCluster.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="universityCluster" securityEnabled="false" statisticsEnabled="true"

 statisticsSpec="map.all=enabled" singleSignOnEnabled="false"

 loginSessionExpirationTime="1800" adminAuthorizationEnabled="false"

 adminAuthorizationMechanism="AUTHORIZATION_MECHANISM_JAAS" clientMaxRetries="2"

 clientMaxForwards="2" clientStartupRetries="2" clientRetryInterval="5"

 tcpConnectionTimeout="160" tcpMinConnections="2" tcpMaxConnections="15"

 tcpInactivityTimeout="3600" tcpMaxWaitTime="160" peerHeartbeatInterval="130"

Chapter 9. ObjectGrid application programming interface overview 265

peerTransportBufferSize="15" threadPoolMinSize="8" threadPoolMaxSize="25"

 threadPoolInactivityTimeout="6050" managementTimeout="60">

 <serverDefinition name="server1" host="lion.ibm.com" clientAccessPort="12501"

 peerAccessPort="12502" />

 <serverDefinition name="server2" host="tiger.ibm.com" clientAccessPort="12503"

 peerAccessPort="12504" />

 </cluster>

 <objectGridBinding ref="academics">

 <mapSet name="academicsMapSet" partitionSetRef="partitionSet1">

 <map ref="faculty" />

 <map ref="student" />

 <map ref="course" />

 </mapSet>

 </objectGridBinding>

 <objectGridBinding ref="athletics">

 <mapSet name="athleticsMapSet" partitionSetRef="partitionSet1">

 <map ref="athlete" />

 <map ref="equipment" />

 </mapSet>

 </objectGridBinding>

 <partitionSet name="partitionSet1">

 <partition name="partition1" replicationGroupRef="replicationGroup1" />

 </partitionSet>

 <replicationGroup name="replicationGroup1">

 <replicationGroupMember serverRef="server1" priority="1" />

 </replicationGroup>

</clusterConfig>

serverDefinition element

Number of occurrences: one to many

Child elements: none

The serverDefinition element is used to define an ObjectGrid server. Each server

runs in its own Java virtual machine (JVM) and requires two ports.

Attributes:

<serverDefinition

(1) name="serverName"

(2) host="hostname"

(3) clientAccessPort="portNumber"

(4) peerAccessPort="portNumber"

(5) traceSpec="traceSpecification"

(6) systemStreamToFileEnabled="true|false"

(7) workingDirectory="logsDirectory"

/>

1. name attribute (required): This is the name that is assigned to the server. If this

attribute is missing, XML validation fails.

2. host attribute (required): The host name of the machine where the server JVM

runs. Each machine can host multiple ObjectGrid servers. If this attribute is

missing, XML validation fails.

3. clientAccessPort attribute (required): The port on the server that is used for

client connections. If this attribute is missing, XML validation fails.

266 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

4. peerAccessPort attribute (required): The port on the server that is used for

communication among ObjectGrid servers. If this attribute is missing, XML

validation fails.

5. traceSpec attribute (optional, defaults to *=all=disabled): Setting the traceSpec

attribute enables trace for the server using the specified string.

6. systemStreamToFileEnabled attribute (optional, defaults to true): If this

attribute is set to true, System.out, System.err, and trace output steams go to a

file. When this attribute is set to false, System.out goes to the stdout stream and

System.err goes to the stderr stream. If trace is enabled, trace output goes to a

file regardless of the value of the systemStreamToFileEnabled attribute.

7. workingDirectory attribute (optional): The workingDirectory attribute specifies

where log files are written. If a workingDirectory attribute is not specified, logs

are written to the current directory.

The universityClusterServerAttr.xml file demonstrates the use of the

serverDefinition attributes. In this XML file, the server1 server is configured to run

on the lion.ibm.com host. Port 12501 is used for client access to the server and port

12502 is used for server to server communications. Because the

systemStreamToFileEnabled attribute is set to true, System.out, System.err and

trace are output to a file within the directory specified with the workingDirectory

attribute. In this example, the files are in the /objectgrid/ directory. Because the

traceSpec attribute is set to ″ObjectGrid=all=enabled″, all ObjectGrid related trace is

captured and output to a file.

universityClusterServerAttr.xml file

<?xml version="1.0" encoding="UTF-8" ?>

<clusterConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/cluster

 ../objectGridCluster.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="universityCluster">

 <serverDefinition name="server1" host="lion.ibm.com" clientAccessPort="12501"

 peerAccessPort="12502" systemStreamToFileEnabled="true"

 workingDirectory="/objectgrid/" traceSpec="ObjectGrid=all=enabled" />

 <serverDefinition name="server2" host="tiger.ibm.com" clientAccessPort="12503"

 peerAccessPort="12504" />

 </cluster>

<objectGridBinding ref="academics">

 <mapSet name="academicsMapSet" partitionSetRef="partitionSet1">

 <map ref="faculty" />

 <map ref="student" />

 <map ref="course" />

 </mapSet>

 </objectGridBinding>

 <objectGridBinding ref="athletics">

 <mapSet name="athleticsMapSet" partitionSetRef="partitionSet1">

 <map ref="athlete" />

 <map ref="equipment" />

 </mapSet>

 </objectGridBinding>

 <partitionSet name="partitionSet1">

 <partition name="partition1" replicationGroupRef="replicationGroup1" />

 </partitionSet>

 <replicationGroup name="replicationGroup1">

 <replicationGroupMember serverRef="server1" priority="1" />

 </replicationGroup>

</clusterConfig>

Chapter 9. ObjectGrid application programming interface overview 267

objectgridBinding element

Number of occurrences: one to many

Child element: mapSet element

The objectgridBinding element is used to bind the objectGrid elements in the

ObjectGrid XML to the topology defined in the cluster XML. The value assigned to

the ref attribute must match the name attribute of one of the objectGrid elements in

the ObjectGrid XML. An objectGrid element from the ObjectGrid XML can be

referenced in only one objectgridBinding in the cluster XML.

Attributes

<objectgridBinding

(1) ref="objectGridReference"

(2) minThreadPoolSize="minSize"

(3) maxThreadPoolSize="maxSize"

/>

1. ref attribute (required): The ref attribute is used to reference an objectGrid

element that is defined in the ObjectGrid XML file. Each objectgridBinding

element must reference one of the objectGrid elements from the ObjectGrid

XML. The ref attribute must match the name attribute of one of the objectGrid

elements in the ObjectGrid XML.

2. minThreadPoolSize attribute (optional, defaults to 3): The minThreadPoolSize

attribute is the minimum number of threads that are allowed in the thread pool

for each replication group member. The number of threads is controlled by a

thread pool manager, but the number is not allowed to drop below the

minThreadPoolSize value. In general, more threads allow the client to receive a

response faster from the server. More threads also result in more contention.

However, faster machines are able to handle additional concurrent threads

effectively.

3. maxThreadPoolSize attribute (optional, defaults to 10): The

maxThreadPoolSize attribute is the maximum number of threads that are

allowed in the thread pool for each replication group member. The number of

threads is controlled by a thread pool manager, but the number is not allowed to

climb above the maxThreadPoolSize value. In general, more threads allow the

client to receive a response faster from the server. More threads also result in

more contention. However, faster machines are able to handle additional

concurrent threads effectively.

The universityClusterOGBinding.xml file demonstrates how to use the

objectgridBinding element and its attributes. In this example, one objectgridBinding

element is defined. The objectgridBinding element is referring to the ″academics″

defined in the university.xml file. Notice that even though the ″athletics″

objectGrid is in the university.xml file, no objectgridBinding element is referring to

the athletics ObjectGrid in the universityClusterOGBinding.xml file. The ″athletics″

ObjectGrid is not clustered because it is not included in the

universityClusterOGBinding.xml filel. Only the ″academics″ ObjectGrid is created

and clustered in this case because it is in the university.xml file and is referenced

in the universityClusterOGBinding.xml file.

The minThreadPoolSize and maxThreadPoolSize attributes are also set in this

example. The minThreadPoolSize value is set to 2, and the maxThreadPoolSize

value is set to 11. The thread pool manager on each replication group member

keeps the number of threads within these boundaries for all maps in this

ObjectGrid.

268 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

universityClusterOGBinding.xml file

<?xml version="1.0" encoding="UTF-8" ?>

<clusterConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/cluster

 ../objectGridCluster.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="universityCluster">

 <serverDefinition name="server1" host="lion.ibm.com" clientAccessPort="12501"

 peerAccessPort="12502" />

 </cluster>

 <objectgridBinding ref="academics" minThreadPoolSize="2" maxThreadPoolSize="11">

 <mapSet name="academicsMapSet" partitionSetRef="partitionSet1">

 <map ref="faculty" />

 <map ref="student" />

 <map ref="course" />

 </mapSet>

 </objectgridBinding>

 <partitionSet name="partitionSet1">

 <partition name="partition1" replicationGroupRef="replicationGroup1" />

 </partitionSet>

 <replicationGroup name="replicationGroup1">

 <replicationGroupMember serverRef="server1" priority="1" />

 </replicationGroup>

</clusterConfig>

mapSet element

Number of occurrences: one to many

Child element: map element

The mapSet element is used to group maps together. The maps within a mapSet

are partitioned similarly. In a distributed ObjectGrid, each map must belong to one

and only one mapSet.

Attributes

<mapSet

(1) name="mapSetName"

(2) partitionSetRef="partitionSetReference"

(3) synchronousReplication="true|false"

(4) replicaReadEnabled="true|false"

(5) replicaDeliveryRate="deliveryRate"

(6) compression="true|false"

/>

1. name attribute (required): Specifies the name that is assigned to the mapSet.

2. partitionSetRef attribute (required): Each mapSet must be associated with a

partitionSet through the partitionSetRef attribute. The partitionSetRef value must

match the value of the name attribute of one of the partitionSet elements. By

using the partitionSetRef attribute and its corresponding partitionSet, the maps

in the mapSet are partitioned.

3. synchronousReplication attribute (optional, defaults to false): When this

attribute is set to true, replication among replication group members occurs

synchronously. When set to false, replication occurs asynchronously.

4. replicaReadEnabled attribute (optional, defaults to false): If the

synchronousReplication value is set false and the replicaReadEnabled value is

true, clients are allowed to read data from replicas. A best effort is made to

Chapter 9. ObjectGrid application programming interface overview 269

distribute read requests among the primary and its replicas. If the

synchronousReplication attribute is set to true, the replicaReadEnabled attribute

is ignored.

5. replicaDeliveryRate (optional, defaults to 1000): The replicaDeliveryRate value

represents the maximum number of records per LogSequence that are delivered

to each replica.

6. compressReplicationEnabled attribute (optional, defaults to true): When

compressReplicationEnabled is set to true, replication messages are

compressed.

The universityClusterMapSet.xml file is a bit more complex than the previous XML

file examples. In this file the academics ObjectGrid is divided into two map sets.

The academicsMapSet1 map set contains the faculty and the course maps. These

two maps are partitioned according to the partitionSet1 partitionSet. The replication

settings for these maps are also the same because they are in the same mapSet.

The academics objectgridBinding also contains the academicsMapSet2 mapSet.

This mapSet contains only the student map. The student map is partitioned

differently than the maps in the academicsMapSet1 mapSet. The student map is

partitioned according to the studentPSet partitionSet. Because the

academicsMapSet2 has not explicitly stated values for the replication-related

attributes, including the synchronousReplication, replicaReadEnabled,

replicaDeliveryRate, and compressReplicationEnabled attributes, it is assigned the

default values. This is another way that the behavior of the two mapSets within the

academics objectgridBinding differ.

The athletics objectgridBinding contains the athleticsMapSet mapSet. Like the

academicsMapSet1 mapSet in the academics objectgridBinding, it is partitioned

according to the partitionSet1 partitionSet. The replication related attributes for this

mapSet are set to the default values because they are not explicitly stated.

universityClusterMapSet.xml file

<?xml version="1.0" encoding="UTF-8"?>

<clusterConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/cluster

 ../objectGridCluster.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="universityCluster">

 <serverDefinition name="server1" host="lion.ibm.com" clientAccessPort="12501"

 peerAccessPort="12502" />

 <serverDefinition name="server2" host="tiger.ibm.com" clientAccessPort="12503"

 peerAccessPort="12504" />

 </cluster>

 <objectgridBinding ref="academics"

 <mapSet name="academicsMapSet1" partitionSetRef="partitionSet1"

 synchronousReplication="true" replicaReadEnabled="true"

 replicaDeliveryRate="1500" compressReplicationEnabled="true">

 <map ref="faculty" />

 <map ref="course" />

 </mapSet>

 <mapSet name="academicsMapSet2" partitionSetRef="studentPSet">

 <mapRef="student" />

 </mapSet>

 </objectGridBinding>

 <objectgridBinding ref="athletics">

 <mapSet name="athleticsMapSet" partitionSetREf="partitionSet1">

 <map ref="athlete" />

 <map ref="equipment" />

270 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

</mapSet>

 </objectgridBinding>

 <partitionSet name="partitionSet1">

 <partition name="partition1" replicationGroupRef="replicationGroup1" />

 </partitionSet>

 <partitionSet name="studentPSet">

 <partition name="studentPartition1" replicationGroupRef="replicationGroup1" />

 <partition name="studentPartition2" replicationGroupRef="replicationGroup2" />

 </partitionSet>

 <replicationGroup name="replicationGroup1">

 <replicationGroupMember serverRef="server1" priority="1" />

 </replicationGroup>

 <replicationGroup name="replicationGroup2" minReplicas="1" maxReplicas="2">

 <replicationGroupMember serverRef="server1" priority="2" />

 <replicationGroupMember serverRef="server2" priority="1" />

 </replicationGroup>

</clusterConfig>

map element

Number of occurrences: one to many

Child elements: none

Each map in a mapSet references one of the backingMap elements that is defined

in the ObjectGrid XML file. When defining a distributed ObjectGrid, each

backingMap within the objectGrid elment of the ObjectGrid XML must be referenced

by a map in the cluster XML. Every map in a distributed ObjectGrid must belong to

one and only one mapSet.

Attributes

<map

(1) ref="backingMapReference"

/>

1. ref attribute (required): A reference to a backingMap in the ObjectGrid XML.

Each map in a mapSet must reference a backingMap from the ObjectGrid XML

file. The value assigned to ref must match the name attribute of one of the

backingMap elements in the ObjectGrid XML.

See the universityClusterMapSet.xml file for sample usage of the map element.

Every backingMap from the academics objectGrid in the university.xml is

referenced by a map in one and only one mapSet in the

universityClusterMapSet.xml. The same is true of the athletics objectGrid. An

ObjectGridException exception results if an objectgridBinding references an

objectGrid from the ObjectGrid XML, but does not include all of its maps in a

mapSet.

partitionSet element

Number of occurrences: one to many

Child element(s): partition

The partitionSet element is used to define partitions for a mapSet. Each map in the

mapSet is partitioned across the partitions of a partitionSet. A mapSet is associated

Chapter 9. ObjectGrid application programming interface overview 271

with a partitionSet with the partitionSetRef attribute on the mapSet element. When

only one partition is defined within a partitionSet, the data contained within the

maps of an associated mapSet is not partitioned.

Attributes

<partition-set

(1) name="partitionSetName"

/>

1. name attribute (required): This attribute is used to assign a name to a

partitionSet. The name of the partitionSet is referenced by the partitionSetRef

attribute of the mapSet.

Refer to the universityClusterMapSet.xml file for sample usage of the partitionSet.

In the universityClusterMapSet.xml, two partitionSets are defined: partitionSet1

and studentPSet. The partitionSet1 partitionSet has only one partition defined.

Because only one partition is defined, any mapSet that makes use of the

partitionSet1 partitionSet does have its data partitioned. Two mapSets exist in the

universityClusterMapSet.xml file that are partitioned according to the partitionSet1

partitionSet. Through the partitionSetRef on the mapSet element, the

academicsMapSet1 and athleticsMapSet mapSets are bound to the partitionSet1

partitionSet.

The studentPSet partitionSet contains two partitions. Any mapSet that uses this

partitionSet has its map data divided across two partitions. In the

universityClusterMapSet.xml file, the academicsMapSet2 mapSet uses the

studentPSet partitionSet.

partition element

Number of occurrences: one to many

Child elements: none

The partition element is used to define partitions within a partitionSet. Partitions are

used to divide the data in the maps of a mapSet.

Attributes

<partition

(1) name="partitionName"

(2) replicationGroupRef="replicationGroupReference"

/>

1. name attribute (required): The name attribute is used to assign a name to a

partition. A partition name must be unique within its partitionSet.

2. replicationGroupRef attribute (required): The replicationGroupRef attribute is

used to associate a replicationGroup with a partition. The replicationGroupRef

must match the name attribute of one of the replicationGroup elements.

Refer to the universityClusterMapSet.xml file for sample usage of the partition

element. In the universityClusterMapSet.xml file, several partitions are defined.

The partitionSet1 partitionSet has one partition named partition1. The studentPSet

partitionSet contains two partitions: studentPartition1 and studentPartition2.

Each partition is associated with a replicationGroup through the replicationGroupRef

attribute. In the universityClusterMapSet.xml file, the studentPartition1 partition is

replicated across the replicationGroup1 replicationGroup. The studentPartition2

partition is replicated across the replicationGroup2 replicationGroup.

272 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

replicationGroup element

Number of occurrences: one to many

Child element: replicationGroupMember element

A replicationGroup is used to define how a map or its partitions are replicated. The

partitions of a map are replicated amongst the replication group members within a

replicationGroup.

Attributes

<replicationGroup

(1) name="replicationGroupName"

(2) minReplicas="minNumberOfReplicas"

(3) maxReplicas="maxNumberOfReplicas"

1. name attribute (required): The name attribute is used to assign a name to a

replicationGroup.

2. minReplicas attribute (optional, defaults to 0 only one replicationGroupMember

is in the replicationGroup; defaults to 1 more than one replicationGroupMember

is in the replicationGroup): The minReplicas attribute is used to indicate how

many replicationGroupMembers must be available before write access is

allowed to map data in this replicationGroup. If the number of available replicas

falls below the number of minReplicas specified, only read access to the maps

is allowed. If minReplicas is set to 0, write access is still allowed on the primary

even if all replicas are unavailable.

To activate replication, at least two replication group members must be

available, and the minReplicas attribute must be at least 1. It is important to be

aware of how a replicationGroup behaves during the ″bringup″ stage of an

ObjectGrid cluster. If you want map data to be available after starting only one

server, then define a replicationGroup with only one replicationGroupMember. In

a replicationGroup with only one replicationGroupMember, data is not replicated.

Here are some rules for setting the minReplicas value.

minReplicas >= 0

minReplicas <= maxReplicas

minReplicas <= # of members in the replicationGroup -1

3. maxReplicas attribute (optional, defaults to 0 if only one

replicationGroupMember is in the replicationGroup; defaults to 1 more than one

replicationGroupMember is in the replicationGroup): The maxReplicas attribute

represents the maximum number of replicas that are activated in the

replicationGroup. Within a replicationGroup, replication occurs amongst the

number of maxReplicas specified if that many members are available. If

maxReplicas is less than the number of replication group members in the group,

the extra members are standbys; that is, they are dormant until one of the

replicas becomes unavailable.

Here are some rules for setting the maxReplicas value.

maxReplicas >= 0

maxReplicas >= minReplicas

Refer to the universityClusterMapSet.xml file for sample usage of the partition

element. In the universityClusterMapSet.xmll, two replicationGroups are defined:

replicationGroup1 and replicationGroup2. The replicationGroup1 replicationGroup

contains only one replicationGroupMember. Any partitions that are bound to this

replicationGroup are not replicated because more than one

replicationGroupMember is required for replication.

Chapter 9. ObjectGrid application programming interface overview 273

The replicationGroup2 replicationGroup contains two replicationGroupMembers. The

studentPartition2 partition of the studentPSet partitionSet is using this

replicationGroup. Therefore, the studentPartition2 partition is replicated across the

two replicationGroupMembers. The replicationGroup2 replicationGroup also has its

minReplicas and maxReplicas attributes set. Because minReplicas is set to 1, the

map data that is housed in this replicationGroup is read-only until a primary and at

least one replica become available. The maxReplicas value of 1 indicates that the

primary of this replicationGroup replicates its data to at most one replica. In the

case of the replicationGroup2 replicationGroup, it is not possible to exceed one

replica because the group only contains two members. One member is the primary

and the other is a replica.

replicationGroupMember element

Number of occurrences: one to many

Child elements: none

A replicationGroupMember element is used to refer to a server definition. Each

replicationGroupMember element also has an associated priority. This priority is

used to determine which replicationGroupMember is the primary server and which

members are replicas.

Attributes

<replicationGroupMember

(1) serverRef="serverDefinitionReference"

(2) priority="priority"

/>

1. serverRef attribute (required): The serverRef attribute is used to associate a

server definition with a replicationGroupMember element. The serverRef

attribute associates each replicationGroupMember with a specific server.

2. priority element (required): The priority attribute is used to determine which of

the replication group members are the primary. The priority values range from 1

to the number of replication group members, with 1 being the highest priority.

ObjectGrid makes a best effort to honor the priority for each replication group

member. The replicationGroupMember element with a priority of 1 is the primary

unless the circumstances prevent it. If all the servers and their

replicationGroupMembers become available at approximately the same time, the

priority settings are honored. However, if a replicationGroupMember with a

priority of 2 is available long before any other repliationGroupMember, then it

becomes the primary.

If the primary starts successfully and fails after a period of time, a new primary

must be selected. The replicationGroupMember element with the next highest

priority is likely to become the new primary. However, a different replica might

be selected as the new primary if the replica with the next highest priority is

determined to be behind in its replication.

Refer to the universityClusterMapSet.xml file for sample usage of the partition

element. In the universityClusterMapSet.xml, the replicationGroup1

replicationGroup has only one replicationGroupMember. Because of this defintion,

this replicationGroup only has a primary. There are no replicas within this group.

The replicationGroupMember defined is active on the server1 server as the

serverRef value states.

The replicationGroup2 replicationGroup has more than one

replicationGroupMember. The first replicationGroupMember listed is activated on the

274 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

server1 server. This member has a priority of 2. The second

replicationGroupMember listed is activated on the sever2 server. Because the

second member has a priority of 1, it is the primary of this replicationGroup if the

group members become available at approximately the same time. The first

replicationGroupMember that is listed serves as a replica because it has a priority

of 2.

It is also important to understand how the minReplicas value affects the

replicationGroup2 replicationGroup. Consider the scenario where both the server1

and server2 servers are running. In this case, both replicationGroupMembers are

available. Therefore, the minReplicas and maxReplicas values are both satisfied

and data is replicated between the primary and the replica of this group. If the

server1 becomes unavailable, one of the replicationGroupMembers becomes

unavailable. In this situation, the data in the replicationGroup2 replicationGroup

becomes read-only because the minReplicas value is no longer met.

authenticator element

Number of occurrences: zero to one

Child element: property element

An authenticator element is used to authenticate clients to ObjectGrid servers in the

cluster. The class specified by className attribute must implement the

com.ibm.websphere.objectgrid.security.plugins.Authenticator interface. The

authenticator can use properties to call methods on the class specified by the

className attribute. See “property element” on page 277 for more information on

using properties.

Attributes

<authenticator

(1) className="authenticatorClassName"

/>

1. className attribute (required): The className attribute is used to specify a

class that implements the

com.ibm.websphere.objectgrid.security.plugins.Authenticator interface. This class

is used to authenticate clients to the servers in the ObjectGrid cluster.

The following universityClusterSecurity.xml file demonstrates how to use the

authenticator element. In this example, the

com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginAuthenticator

class is specified as the authenticator. This class implements the

com.ibm.websphere.objectgrid.security.plugins.Authenticator interface.

universityClusterSecurity.xml file

<?xml version="1.0" encoding="UTF-8"?>

<clusterConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config/cluster

 ../objectGridCluster.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config/cluster">

 <cluster name="universityCluster" securityEnabled="true"

 singleSignOnEnabled="true"

 loginSessionExpirationTime="1800" adminAuthorizationEnabled="true"

 adminAuthorizationMechanism="AUTHORIZATION_MECHANISM_CUSTOM">

 <serverDefinition name="server1" host="lion.ibm.com"

 clientAccessPort="12501" peerAccessPort="12502" />

 <authenticator

Chapter 9. ObjectGrid application programming interface overview 275

className ="com.ibm.websphere.objectgrid.security.plugins.builtins.

 KeyStoreLoginAuthenticator" />

 <adminAuthorization className= "com.ibm.MyAdminAuthorization">

 <property name="interval" type="int" value="60" description="Set the

 interval to 60 seconds" />

 </adminAuthorization>

 </cluster>

 <objectgridBinding ref="academics">

 <mapSet name="academicsMapSet" partitionSetRef="partitionSet1">

 <map ref="faculty" />

 <map ref="student" />

 <map ref="course" />

 </mapSet>

 </objectgridBinding>

 <objectgridBinding ref="athletics">

 <mapSet name="athleticsMapSet" partitionSetRef="partitionSet1">

 <map ref="athlete" />

 <map ref="equipment" />

 </mapSet>

 </objectgridBinding>

 <partitionSet name="partitionSet1">

 <partition name="partition1" replicationGroupRef="replicationGroup1" />

 </partitionSet>

 <replicationGroup name="replicationGroup1">

 <replicationGroupMember serverRef="server1" priority="1" />

 </replicationGroup>

</clusterConfig>

adminAuthorization element

Number of occurrences: zero to one

Child element: property element

An adminAuthorization element is used to set up administrative access to the

ObjectGrid cluster. Administrative tasks can be performed after administration

access has been provided.

Attributes

<adminAuthorization

(1) className="adminAuthClassName"

/>

1. className attribute (required): The className attribute is used to specify a

class that implements the

com.ibm.websphere.objectgrid.security.plugins.AdminAuthorization interface.

Refer to the universityClusterSecurity.xml file in the authenticator section for

sample usage of the adminAuthorization element. In the

universityClusterSecurity.xml, a custom adminAuthorization is used. The

com.ibm.MyAdminAuthorization class is used as the adminAuthorization class. To

use a custom adminAuthorization, the securityEnabled attribute must be true,

adminAuthorizationMechanism must be set to AUTHORIZATION_MECHANISM_CUSTOM,

and an adminAuthorization element must be provided. This adminAuthorization

element also uses a property. For more information on how to use properties, see

“property element” on page 277.

276 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

property element

Number of occurrences: zero to many

Child elements: none

The property element is used to call set methods on the authenticator and

adminAuthorization. The name of the property corresponds to a set method on the

className of the authenticator or adminAuthorization element that contains the

property.

Attributes

<property

(1) name="propertyName"

(2) type="java.lang.String|boolean|java.lang.Boolean|int|

 java.lang.Integer|double|java.lang.Double|byte|

 java.lang.Byte|short|java.lang.Short|long|

 java.lang.Long|float|java.lang.Float|char|

 java.lang.Character"

(3) value="propertyValue"

(4) description="description"

/>

1. name attribute (required): The name of the property. The value assigned to this

attribute must correspond to a set method on the class that is provided as the

className for the authenticator or adminAuthorization. For example, if the

className of the authenticator is set to com.ibm.MyAuthenticator and the name

of the property provided is interval, then the com.ibm.MyAuthenticator class

must have a setInterval method.

2. type attribute (required): The type of the property. It is the type of the parameter

that is passed to the set method that is identified by the name attribute. The

valid values are the Java primitives, their java.lang counterparts, and

java.lang.String. The name and type must correspond to a method signature on

the className of the bean. For example, if name is interval and type is int, then

a setInterval(int) method must exist on the class that is specified as the

className for the authenticator or adminAuthorization.

3. value attribute (required): The value of the property. This value is converted to

the type that is specified by the type attribute, and then used as a parameter in

the call to the set method that is identified by the name and type attributes. It is

important to know that the value of this attribute is not be validated in any way.

The plug-in implementer must verify that the value passed in is valid. The

implementer can display an IllegalArgumentException exception in the set

method if the parameter is not valid.

4. description attribute (optional): Use this attribute to write a description of the

property.

Refer to the universityClusterSecurity.xml file for sample usage of the

adminAuthorization element. The property element can be used within the

authenticator or the adminAuthorization elements in the cluster XML. In the

universityClusterSecurity.xml file, the property is used to call a set method on

adminAuthorization. In this case, a setInterval method is called on the

com.ibm.MyAdminAuthorization class. It is passed an integer value of 60.

Chapter 9. ObjectGrid application programming interface overview 277

278 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 10. Integrating ObjectGrid with WebSphere

Application Server

Use ObjectGrid with the features that are provided with WebSphere Application

Server to enhance your applications with ObjectGrid capability.

Install WebSphere Application Server and WebSphere Extended Deployment. After

WebSphere Extended Deployment is installed, you can add ObjectGrid functions to

your Java 2 Platform, Enterprise Edition (J2EE) applications.

The ObjectGrid API can be used in a WebSphere Application Server-targeted J2EE

application. The wsobjectgrid.jar file is in the \base\lib directory after

WebSphere Extended Deployment is installed. In addition to integrating the

ObjectGrid API with the J2EE application programming model, you can leverage the

distributed transaction propagation support. With this support, you can configure

ObjectGrid instances to coordinate transaction commit results across a WebSphere

Application Server cluster.

1. Perform the basic programming steps for enabling a J2EE application with

ObjectGrid. See “Integrating ObjectGrid in a Java 2 Platform, Enterprise Edition

environment” for more information.

2. Monitor performance data for your ObjectGrid applications. See “Monitoring

ObjectGrid performance with WebSphere Application Server performance

monitoring infrastructure (PMI)” on page 283 for more information.

3. When ObjectGrid is embedded, the transactions might be started and ended by

an external transaction coordinator. See “ObjectGrid and external transaction

interaction” on page 289 for more information.

4. Use the partitioning facility with ObjectGrid. The ObjectGrid feature provides the

capacity of caching key and value pairs in the transactional fashion, and the

Partition Facility feature provides the capacity of context-based routing

according to object characteristics. See “Integrating ObjectGrid and the

partitioning facility” on page 292 for more information.

5. You can use container-managed persistence (CMP) beans in WebSphere

Application Server Version 6.0.2 and later, taking advantage of ObjectGrid as an

external cache instead of a built-in cache. See “Configuring ObjectGrid to work

with container-managed beans” on page 313 for more information.

You can also use ObjectGrid with JMS to distribute changes between different tiers

or in environments with mixed platforms. See “Java Message Service for distributing

transaction changes” on page 328 for more information.

Integrating ObjectGrid in a Java 2 Platform, Enterprise Edition

environment

ObjectGrid supports both servlet and Enterprise JavaBeans (EJB) programming

models in the Java 2 Platform, Enterprise Edition (J2EE) environment.

This topic explores the common programming steps for enabling a J2EE application

with ObjectGrid.

© Copyright IBM Corp. 2004, 2005 279

Local ObjectGrid scenario

1. Define an ObjectGrid configuration. Define an ObjectGrid configuration either

with XML files, through programmatic interface or with a mixed usage of XML

files and programmatic configuration. For more information, see ObjectGrid

configuration.

2. Create a URL object. If the ObjectGrid configuration is in an XML file, create a

URL object that points to that XML file. You can use this URL object to create

ObjectGrid instances by using the ObjectGridManager API. If the ObjectGrid

configuration XML file is included in a Web archive (WAR) or Enterprise

JavaBeans (EJB) Java archive (JAR) file, it is accessible as a resource to the

class loader for both the Web and EJB module. For example, if the ObjectGrid

configuration XML file is in the WEB−INF folder of the Web module WAR file,

servlets that are in that WAR file can create a URL object with the following

pattern:

URL url =className.class.getClassLoader().

getResource("META−INF/objectgrid−definition.xml");

URL objectgridUrl = ObjectGridCreationServlet.class.getClassLoader().

getResource("WEB−INF/objectgrid−definition.xml");

3. Create or get ObjectGrid instances. Use the ObjectGridManager API to get and

create ObjectGrid instances. With the ObjectGridManager API, you can create

ObjectGrid instances with XML and use utility methods to quickly create a

simple ObjectGrid instance. Applications must use the

ObjectGridManagerFactory API to get a reference to the ObjectGridManager

API. See the following coding example:

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory ;

...

ObjectGridManager objectGridManager = ObjectGridManagerFactory.

getObjectGridManager();

ObjectGrid ivObjectGrid = objectGridManager.

createObjectGrid(objectGridName, objectgridUrl, true, true);

For more information about the ObjectGridManager API, see the

ObjectGridManager interface topic.

4. Initialize the ObjectGrid instances. Use the initialize method in the ObjectGrid

interface to begin bootstrapping the ObjectGrid and Session instances. This

initialize method is considered optional because the first call to the getSession

method performs an implicit initialization. After this method is invoked, the

ObjectGrid configuration is considered complete and is ready for runtime usage.

Any additional configuration method invocations, such as calling the

defineMap(String mapName) method, result in an exception.

5. Get a Session and ObjectMap instance. A session is a container for ObjectMap

instances. A thread must get its own Session object to interact with the

ObjectGrid core. You can think of this technique as a session that can only be

used by a single thread at a time. The session is shareable across threads if it

uses only one thread at a time. However, if a J2EE connection or transaction

infrastructure is used, the session object is not shareable across threads. A

good analogy for this object is a Java Database Connectivity (JDBC) connection

to a database.

An ObjectMap map is a handle to a named map. Maps must have homogenous

keys and values. An ObjectMap instance can be used only by the thread that is

currently associated with the session that was used to get this ObjectMap

instance. Multiple threads cannot share Session and ObjectMap objects

280 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

concurrently. Keywords are applied within a transaction. A transaction rollback

rolls back any keyword association that is applied during this transaction.The

coding example follows:

Session ivSession = ivObjectGrid.getSession();

ObjectMap ivEmpMap = ivSession.getMap("employees");

ObjectMap ivOfficeMap = ivSession.getMap("offices");

ObjectMap ivSiteMap = ivSession.getMap("sites");

ObjectMap ivCounterMap = ivSession.getMap("counters");

6. Begin a session, read or write objects, and commit or roll back the session. Map

operations must be within a transactional context. The begin method of the

Session object is used to begin an explicit transactional context. After the

session begins, applications can start performing map operations. The most

common operations include get, update, insert, and remove method calls for

objects against maps. At the end of map operations, the commit or rollback

method of the Session object is called to either commit an explicit transactional

context or roll back an explicit transactional context. A programming example

follows:

ivSession.begin();

Integer key = new Integer(1);

if (ivCounterMap.containsKey(key) == false) {

 ivCounterMap.insert(key, new Counter(10));

}

ivSession.commit();

Distributed ObjectGrid scenario

This distributed ObjectGrid scenario differs from local ObjectGrid scenario only in

the way to get the ObjectGrid instance. The following code examples demonstrates

how to get a distributed ObjectGrid instance:

 //Use ObjectGridManagerFactory to get the reference to the ObjectGridManager API

ObjectGridManager objectGridManager = ObjectGridManagerFactory.

 getObjectGridManager();

//Obtain the ClientClusterContext represents the ObjectGrid cluster from

//ObjectGridManager

//Assuming the WebSphere server also host an ObjectGrid server

//that is a member of the ObjectGrid cluster.

ClientClusterContext context = objectGridManager.connect(null, null);

//Get the ObejctGrid instance from the ObjectGridManager a specific

//ClientClusterContext.

ObjectGrid ivObjectGrid= objectGridManager.getObjectGrid(context,

 "objectgridName");

You performed the basic programming steps for enabling a J2EE application with

ObjectGrid.

See Building ObjectGrid-enabled Java 2 Platform, Enterprise Edition (J2EE)

applications and Considerations for the integration of Java 2 Platform, Enterprise

Edition (J2EE) applications and ObjectGrid for more information.

Building ObjectGrid-enabled Java 2 Platform, Enterprise Edition

applications

Use this task to configure the build path, or class path, of ObjectGrid-enabled Java

2 Platform, Enterprise Edition (J2EE) applications. The class path must include the

wsobjectgrid.jar file that is located in the $install_root/lib directory.

Develop an ObjectGrid enabled J2EE application. See Integrating ObjectGrid in a

J2EE environment for more information.

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 281

This task demonstrates how to set the build path to include the wsobjectgrid.jar

file in IBM Rational Software Development Platform Version 6.0.

1. In the Project Explorer view of the J2EE perspective, right-click the WEB or

Enterprise JavaBeans (EJB) project, and select Properties. The Properties

window is displayed.

2. Select the Java build path in the left panel, click the Libraries tab in the right

panel, and click Add Variable. The New Variable Classpath Entry window is

displayed.

3. Click Configure Variables to open the Preference window.

4. Add a new variable entry.

a. Click New.

b. Type OBJECTGRID_JAR in the name field. Click File to open the JAR

Selection window.

c. Browse to the /lib directory, click the wsobjectgrid.jar file, and click Open

to close the JAR Selection window.

d. Click OK to close the New Variable Entry window.

The OBJECTGRID_JAR variable is displayed in the Classpath variables list.

5. Click OK to close the Preference window.

6. Select the OBJECTGRID_JAR variable from the variables list and click OK to close

the New Variable Classpath Entry window. The OBJECTGRID_JAR variable is

displayed in the Libraries panel.

7. Click OK to close the Properties window.

You set the build path to include the wsobjectgrid.jar file in IBM Rational Software

Development Platform Version 6.0.

Considerations for the integration of Java 2 Platform, Enterprise

Edition applications and ObjectGrid

Use these considerations when integrating a Java 2 Platform, Enterprise Edition

(J2EE) application with ObjectGrid.

Startup beans and ObjectGrid

You can use startup beans for an application to bootstrap an ObjectGrid instance

when an application starts and destroy the ObjectGrid instance when the application

stops. A startup bean is a stateless session bean with a

com.ibm.websphere.startupservice.AppStartUpHome remote home and a

com.ibm.websphere.startupservice.AppStartUp remote interface. When WebSphere

Application Server sees an Enterprise JavaBean (EJB), it recognizes the startup

bean. The remote interface has two methods, the start method and the stop

method. Use the start method to bootstrap the grid, and call the grid destroy

method with the stop method. The application can keep a reference to the grid by

using the ObjectGridManager.getObjectGrid method to get a reference when

needed. For more information, see the ObjectGridManager interface topic.

Class loaders and ObjectGrid instances

You must take care when sharing a single ObjectGrid instance between application

modules that use different class loaders. Application modules that use different

class loaders do not work and result in class cast exceptions in the application. An

ObjectGrid must be shared only by application modules that use the same class

282 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

loader or when the application objects, for example the plug-ins, keys, and values

are on a common class loader.

Manage the life cycle of ObjectGrid instances in a servlet

You can manage the life cycle of ObjectGrid instances with the init method and

destroy method of a servlet. Use the init method to create and initialize ObjectGrid

instances that are needed by the application. After the ObjectGrid instances are

created and cached, you can obtain the instances by their names with the

ObjectGridManager API. Use the destroy method to destroy these ObjectGrid

instances and to release system resources. For more information, see the

ObjectGridManager interface topic.

Monitoring ObjectGrid performance with WebSphere Application

Server performance monitoring infrastructure (PMI)

ObjectGrid supports performance monitoring infrastructure (PMI) when running in a

WebSphere Application Server or WebSphere Extended Deployment application

server. PMI collects performance data on runtime applications and provides

interfaces that support external applications to monitor performance data.

For more information about the statistics that ObjectGrid provides, see ObjectGrid

statistics.

ObjectGrid uses the custom PMI feature of WebSphere Application Server to add its

own PMI instrumentation. With this approach, you can enable and disable

ObjectGrid PMI with the administrative console or with Java Management

Extensions (JMX) interfaces. In addition, you can access ObjectGrid statistics with

the standard PMI and JMX interfaces that are used by monitoring tools, including

the Tivoli Performance Viewer.

1. Enable ObjectGrid PMI. You must enable PMI to view the PMI statistics. See

“Enabling ObjectGrid PMI” on page 286 for more information.

2. Retrieve ObjectGrid PMI statistics. View the performance of your ObjectGrid

applications with the Tivoli Performance Viewer. See “Retrieving ObjectGrid PMI

statistics” on page 288 for more information.

ObjectGrid statistics

ObjectGrid provides two performance monitoring infrastructure (PMI) modules: the

objectGridModule module and the mapModule module.

objectGridModule module

The objectGridModule module contains one time statistic: transaction response

time. An ObjectGrid transaction is defined as the duration between the

Session.begin method call and the Session.commit method call. This duration is

tracked as the transaction response time.

The root element of the objectGridModule module, the ObjectGrids element, serves

as the entry point to the ObjectGrid statistics. This root element has ObjectGrid

instances as its children that have transaction types as their children. The response

time statistic is associated with each transaction type. The objectGridModule

module structure is shown in the following diagram:

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 283

The following diagram shows an example of the ObjectGrid PMI module structure.

In this example, two ObjectGrid instances exist in the system: the objectGrid1

ObjectGrid and the objectGrid2 ObjectGrid. The objectGrid1 instance has two types

of transactions: update and read, and the objectGrid2 instance has only type of

transaction: update.

Transaction types are defined by application developers because they know what

types of transactions their applications use. The transaction type is set using the

following Session.setTransactionType(String) method:

/**

* Sets the transaction type for future transactions.

*

* After this method is called, all of the future transactions have the

* same type until another transaction type is set. If no transaction

* type is set, the default TRANSACTION_TYPE_DEFAULT transaction type

* is used.

*

* Transaction types are used mainly for statistical data tracking purpose.

* Users can predefine types of transactions that run in an

* application. The idea is to categorize transactions with the same characteristics

* to one category (type), so one transaction response time statistic can be

* used to track each transaction type.

*

* This tracking is useful when your application has different types of

* transactions.

* Among them, some types of transactions, such as update transactions, process

* longer than other transactions, such as read−only transactions. By using the

* transaction type, different transactions are tracked by different statistics,

* so the statistics can be more useful.

ObjectGrids

ObjectGrid instance

transaction type

response time

Figure 19. ObjectGridModule module structure

ObjectGrids

ObjectGrid 1

update

avg: 750ms

ObjectGrid 2

read

avg: 300ms

update

avg: 980ms

Figure 20. ObjectGrid PMI module structure

284 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

*

* @param tranType the transaction type for future transactions.

*/

void setTransactionType(String tranType);

The following example sets transaction type to updatePrice:

// Set the transaction type to updatePrice

// The time between session.begin() and session.commit() will be

// tracked in the time statistic for “updatePrice”.

session.setTransactionType("updatePrice");

session.begin();

map.update(stockId, new Integer(100));

session.commit();

The first line indicates that the subsequent transaction type is updatePrice. An

updatePrice statistic exists under the ObjectGrid instance that corresponds to the

session in the example. Using Java Management Extensions (JMX) interfaces, you

can get the transaction response time for updatePrice transactions. You can also

get the aggregated statistic for all types of transactions on the specified ObjectGrid.

mapModule module

The mapModule PMI module contains three statistics that are related to ObjectGrid

maps:

v Map hit rate: This BoundedRangeStatistic statistic tracks the hit rate of a map.

Hit rate is a float value between 0 and 100 inclusively, which represents the

percentage of map hits in relation to map get operations.

v Number of entries: This CountStatistic statistic tracks the number of entries in

the map.

v Loader batch update response time: This TimeStatistic statistic tracks the

response time that is used for the loader batch update operation.

The root element of the mapModule module, the ObjectGrid Maps element, serves

as the entry point to the ObjectGrid Map statistics. This root element has ObjectGrid

instances as its children, which have map instances as their children. Every map

instance has the three listed statistics. The mapModule structure is shown in the

following diagram:

 The following diagram shows an example of the mapModule structure:

ObjectGrid Maps

ObjectGrid instances

Map instances

hit rate

number of entries

loader batch
update time

Figure 21. mapModule module structure

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 285

Enabling ObjectGrid PMI

You can use WebSphere Application Server Performance Monitoring Infrastructure

(PMI) to enable or disable statistics at any level. For example, you can choose to

just enable the map hit rate statistic for a particular map, but not the number of

entry statistic or the loader batch update time statistic. This topic shows how to use

the administrative console and wsadmin scripts to enable ObjectGrid PMI.

Use WebSphere Application Server PMI to provide a granular mechanism with

which you can enable or disable statistics at any level. For example, you can

choose to enable map hit rate statistic for a particular map, but not the number of

entry statistic or the loader batch update time statistic. This section shows how to

use the administrative console and wsadmin scripts to enable ObjectGrid PMI.

1. Open the administrative console, for example, http://localhost:9060/ibm/console.

2. Click Monitoring and Tuning > Performance Monitoring Infrastructure >

server_name.

3. Verify that Enable Performance Monitoring Infrastructure (PMI) is selected.

This setting is enabled by default. If the setting is not enabled, select the check

box and then restart the server.

4. Click Custom. In the configuration tree, select the ObjectGrid and ObjectGrid

Maps module. Enable the statistics for each module.

The transaction type category for ObjectGrid statistics is created at run time. You

can see only the subcategories of the ObjectGrid and Map statistics on the Runtime

panel.

For example, you can perform the following steps to enable PMI statistics for the

sample application:

1. Launch the application using the http://host:port/ObjectGridSample Web

address, where host and port are the host name and HTTP port number of the

server where the sample is installed.

ObjectGrid Maps

map1

hit rate 55%

number of
entries: 480

batch update
time: Avg 870ms

objectGrid1 objectGrid2

map2 map3

hit rate 95%

number of
entries: 4300

batch update
time: Avg 300ms

hit rate 30%

number of
entries: 700

batch update
time: Avg 1300ms

Figure 22. mapModule module structure example

286 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

2. In the sample application, click ObjectGridCreationServlet, and then click

action buttons 1, 2, 3, 4, and 5 to generate some actions to the ObjectGrid and

maps. Do not close this servlet page at this time.

3. Go back to the administrative console, click Monitoring and Tuning >

Performance Monitoring Infrastructure > server_name. Click the Runtime

tab.

4. Click the Custom radio button.

5. Expand the ObjectGrid Maps module in the runtime tree, and then click the

clusterObjectGrid link. Under ObjectGrid Maps group, one ObjectGrid

instance exists that is called clusterObjectGrid, and under this clusterObjectGrid

group, four maps exist: counters, employees, offices, and sites. In the

ObjectGrids instance, one clusterObjectGrid instance exists, and under that

instance is a transaction type called DEFAULT.

6. You can enable the statistics that you are interested in. For demonstration

purpose, you can enable number of map entries for employees map, and

transaction response time for the DEFAULT transaction type.

You can automate the task of enabling PMI with scripting. See Enabling ObjectGrid

PMI with scripting for more information.

Enabling ObjectGrid PMI with scripting

Automate the task of enabling ObjectGrid PMI with the wsadmin tool.

Your application server must be started and have an ObjectGrid enabled application

installed. You also must be able to log in and use the wsadmin tool. For more

information about the wsadmin tool, see Using scripting (wsadmin) in the

WebSphere Extended Deployment Version 6.0.x information center.

Use this task to automate enabling PMI. To enable PMI with the administrative

console, see Enabling ObjectGrid PMI.

1. Open a command line prompt. Navigate to the install_root/bin directory.

Type type wsadmin to start the wsadmin command line tool.

2. Modify the ObjectGrid PMI runtime configuration. Check to see if PMI is enabled

for the server with the following commands:

wsadmin>set s1 [$AdminConfig getid /Cell:CELL_NAME/Node:NODE_NAME/Server:

 APPLICATION_SERVER_NAME/]

wsadmin>set pmi [$AdminConfig list PMIService $s1]

wsadmin>$AdminConfig show $pmi.

If PMI is not enabled, run the following commands to enable PMI:

wsadmin>$AdminConfig modify $pmi {{enable true}}

wsadmin>$AdminConfig save

If you need to enable PMI, restart the server.

3. Set variables for changing the statistic set to a custom set. Run the following

commands:

wsadmin>set perfName [$AdminControl completeObjectName type=

 Perf,process=APPLICATION_SERVER_NAME,*]

wsadmin>set perfOName [$AdminControl makeObjectName $perfName]

wsadmin>set params [java::new {java.lang.Object[]} 1]

wsadmin>$params set 0 [java::new java.lang.String custom]

wsadmin>set sigs [java::new {java.lang.String[]} 1]

wsadmin>$sigs set 0 java.lang.String

4. Set statistic set to custom: Run the following command:

wsadmin>$AdminControl invoke_jmx $perfOName setStatisticSet $params $sigs

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 287

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/txml_script.html

5. Set variables to enable the objectGridModule PMI statistic. Run the following

commands:

wsadmin>set params [java::new {java.lang.Object[]} 2]

wsadmin>$params set 0 [java::new java.lang.String objectGridModule=1]

wsadmin>$params set 1 [java::new java.lang.Boolean false]

wsadmin>set sigs [java::new {java.lang.String[]} 2]

wsadmin>$sigs set 0 java.lang.String

wsadmin>$sigs set 1 java.lang.Boolean

6. Set the statistics string. Run the following command:

wsadmin>$AdminControl invoke_jmx $perfOName setCustomSetString $params $sigs

7. Set variables to enable the mapModule PMI statistic. Run the following

commands:

wsadmin>set params2 [java::new {java.lang.Object[]} 2]

wsadmin>$params2 set 0 [java::new java.lang.String mapModule=*]

wsadmin>$params2 set 1 [java::new java.lang.Boolean false]

wsadmin>set sigs2 [java::new {java.lang.String[]} 2]

wsadmin>$sigs2 set 0 java.lang.String

wsadmin>$sigs2 set 1 java.lang.Boolean

8. Set the statistics string. Run the following command:

wsadmin>$AdminControl invoke_jmx $perfOName setCustomSetString $params2 $sigs2

These steps enable ObjectGrid runtime PMI, but do not modify the PMI

configuration. If you restart the application server, the PMI settings are lost, other

than the main PMI enablement.

After PMI is enabled, you can view PMI statistics with the administrative console or

through scripting. See “Retrieving ObjectGrid PMI statistics” and “Retrieving

ObjectGrid PMI statistics with scripts” on page 289 for more information.

Retrieving ObjectGrid PMI statistics

See the performance statistics of your ObjectGrid applications.

After the ObjectGrid statistics are enabled, you can retrieve them. To enable

ObjectGrid PMI, see Enabling ObjectGrid PMI.

Use this task to see the performance statistics of your ObjectGrid applications.

1. Open the administrative console. For example, http://localhost:9060/ibm/console.

2. Click Monitoring and Tuning > Performance Viewer > Current Activity.

3. Click the server that you want to monitor using Tivoli Performance Viewer and

enable the monitoring.

4. Click the server to view the Performance viewer page.

5. Expand the configuration tree. Click ObjectGrid Maps > clusterObjectGrid,

and select employees. Expand ObjectGrids > clusterObjectGrid, and select

DEFAULT.

6. In the ObjectGrid sample application, go back to the ObjectGridCreationServlet

servlet , click button 1, populate maps. You can view the statistics in the

viewer.

You can view ObjectGrid Statistics in the Tivoli Performance Viewer.

You can automate the task of retrieving statistics by using Java Management

Extensions (JMX) or with the wsadmin tool. See “Retrieving ObjectGrid PMI

statistics with scripts” on page 289

288 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Retrieving ObjectGrid PMI statistics with scripts

Use this task to retrieve performance statistics for your ObjectGrid applications.

Enable Performance Monitoring Infrastructure (PMI) in your application server

environment. See Enabling ObjectGrid PMI or Enabling ObjectGrid PMI with scripts

for more information. You also must be able to log in and use the wsadmin tool. For

more information about the wsadmin tool, see Using scripting (wsadmin) in the

WebSphere Extended Deployment Version 6.0.x Information Center.

Use this task to get performance statistics for your application server environment.

For more information about the ObjectGrid statistics that can be retrieved, see

“ObjectGrid statistics” on page 283.

1. Open a command-line prompt. Navigate to the install_root/bin directory.

Type wsadmin to start the wsadmin command-line tool.

2. Set variables for the environment. Run the following commands:

wsadmin>set perfName [$AdminControl completeObjectName type=Perf,*]

wsadmin>set perfOName [$AdminControl makeObjectName $perfName]

wsadmin>set mySrvName [$AdminControl completeObjectName type=Server,

 name=APPLICATION_SERVER_NAME,*]

3. Set variables to get mapModule statistics. Run the following commands:

wsadmin>set params [java::new {java.lang.Object[]} 3]

wsadmin>$params set 0 [$AdminControl makeObjectName $mySrvName]

wsadmin>$params set 1 [java::new java.lang.String mapModule]

wsadmin>$params set 2 [java::new java.lang.Boolean true]

wsadmin>set sigs [java::new {java.lang.String[]} 3]

wsadmin>$sigs set 0 javax.management.ObjectName

wsadmin>$sigs set 1 java.lang.String

wsadmin>$sigs set 2 java.lang.Boolean

4. Get mapModule statistics. Run the following command:

wsadmin>$AdminControl invoke_jmx $perfOName getStatsString $params $sigs

5. Set variables to get objectGridModule statistics. Run the following commands:

wsadmin>set params2 [java::new {java.lang.Object[]} 3]

wsadmin>$params2 set 0 [$AdminControl makeObjectName $mySrvName]

wsadmin>$params2 set 1 [java::new java.lang.String objectGridModule]

wsadmin>$params2 set 2 [java::new java.lang.Boolean true]

wsadmin>set sigs2 [java::new {java.lang.String[]} 3]

wsadmin>$sigs2 set 0 javax.management.ObjectName

wsadmin>$sigs2 set 1 java.lang.String

wsadmin>$sigs2 set 2 java.lang.Boolean

6. Get objectGridModule statistics. Run the following command:

wsadmin>$AdminControl invoke_jmx $perfOName getStatsString $params2 $sigs2

See “ObjectGrid statistics” on page 283 for more information about the statistics

that are returned.

ObjectGrid and external transaction interaction

Usually, ObjectGrid transactions begin with the session.begin method and end with

the session.commit method. However, when ObjectGrid is embedded, the

transactions might be started and ended by an external transaction coordinator. In

this case, you do not need to call the session.begin method and end with the

session.commit method.

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 289

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/txml_script.html

External transaction coordination

The ObjectGrid TransactionCallback plug-in is extended with the

isExternalTransactionActive(Session session) method that associates the ObjectGrid

session with an external transaction. The method header follows:

public synchronized boolean isExternalTransactionActive(Session session)

For example, ObjectGrid can be set up to integrate with WebSphere Application

Server and WebSphere Extended Deployment. The key to this seamless integration

is the exploitation of the ExtendedJTATransaction API in WebSphere Application

Server Version 5.x and Version 6.x. However, if you are using WebSphere

Application Server Version 6.0.2, you must apply APAR PK07848 to support this

method. Use the following sample code to associate an ObjectGrid session with a

WebSphere Application Server transaction ID:

/**

* This methodis required to associate an objectGrid session with a WebSphere

* transaction ID.

*/

Map/**/ localIdToSession;

public synchronized boolean isExternalTransactionActive(Session session)

{

 // remember that this localid means this session is saved for later.

 localIdToSession.put(new Integer(jta.getLocalId()), session);

 return true;

}

Retrieve an external transaction

Sometimes you might need to retrieve an external transaction service object for the

ObjectGrid TransactionCallback plug-in to use. In the WebSphere Application Server

server, you look up the ExtendedJTATransaction object from its namespace as

shown in the following example:

public J2EETransactionCallback() {

 super();

 localIdToSession = new HashMap();

 String lookupName="java:comp/websphere/ExtendedJTATransaction";

 try

 {

 InitialContext ic = new InitialContext();

 jta = (ExtendedJTATransaction)ic.lookup(lookupName);

 jta.registerSynchronizationCallback(this);

 }

 catch(NotSupportedException e)

 {

 throw new RuntimeException("Cannot register jta callback", e);

 }

 catch(NamingException e){

 throw new RuntimeException("Cannot get transaction object");

 }

}

For other products, you can use a similar approach to retrieve the transaction

service object.

Control commit by external callback

The TransactionCallback plug-in needs to receive an external signal to commit or

roll back the ObjectGrid session. To receive this external signal, use the callback

from the external transaction service. You need to implement the external callback

interface and register it with the external transaction service. For example, in the

290 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

WebSphere Application Server case, you need to implement the

SynchronizationCallback interface, as shown in the following example:

public class J2EETransactionCallback implements

com.ibm.websphere.objectgrid.plugins.TransactionCallback,

SynchronizationCallback

{

 public J2EETransactionCallback() {

 super();

 String lookupName="java:comp/websphere/ExtendedJTATransaction";

 localIdToSession = new HashMap();

 try

 {

 InitialContext ic = new InitialContext();

 jta = (ExtendedJTATransaction)ic.lookup(lookupName);

 jta.registerSynchronizationCallback(this);

 }

 catch(NotSupportedException e)

 {

 throw new RuntimeException("Cannot register jta callback", e);

 }

 catch(NamingException e)

 {

 throw new RuntimeException("Cannot get transaction object");

 }

}

public synchronized void afterCompletion(int localId, byte[] arg1,

boolean didCommit)

{

 Integer lid = new Integer(localId);

 // find the Session for the localId

 Session session = (Session)localIdToSession.get(lid);

 if(session != null)

 {

 try

 {

 // if WebSphere Application Server is committed when

 // hardening the transaction to backingMap.

 // We already did a flush in beforeCompletion

 if(didCommit)

 {

 session.commit();

 }

 else

 {

 // otherwise rollback

 session.rollback();

 }

 }

 catch(NoActiveTransactionException e)

 {

 // impossible in theory

 }

 catch(TransactionException e)

 {

 // given that we already did a flush, this should not fail

 }

 finally

 {

 // always clear the session from the mapping map.

 localIdToSession.remove(lid);

 }

 }

}

public synchronized void beforeCompletion(int localId, byte[] arg1)

{

 Session session = (Session)localIdToSession.get(new Integer(localId));

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 291

if(session != null)

 {

 try

 {

 session.flush();

 }

 catch(TransactionException e)

 {

 // WebSphere Application Server does not formally define

 // a way to signal the

 // transaction has failed so do this

 throw new RuntimeException("Cache flush failed", e);

 }

 }

}

}

Use ObjectGrid APIs with the TransactionCallback plug-in

This plug-in, when used as the TransactionCallback plug-in for an ObjectGrid,

disables autocommit. The normal usage pattern for an ObjectGrid follows:

Session ogSession = ...;

ObjectMap myMap = ogSession.getMap("MyMap");

ogSession.begin();

MyObject v = myMap.get("key");

v.setAttribute("newValue");

myMap.update("key", v);

ogSession.commit();

When this TransactionCallback plug-in is in use, ObjectGrid assumes that the

application uses the ObjectGrid when a container-managed transaction is present.

The previous code snippet changes to the following code in this environment:

public void myMethod()

{

 UserTransaction tx = ...;

 tx.begin();

 Session ogSession = ...;

 ObjectMap myMap = ogSession.getMap("MyMap");

 MyObject v = myMap.get("key");

 v.setAttribute("newValue");

 myMap.update("key", v);

 tx.commit();

}

The myMethod method is similar to a web application case. The application uses

the normal UserTransaction interface to begin, commit, and roll back transactions.

The ObjectGrid automatically begins and commits around the container transaction.

If the method is an Enterprise JavaBeans (EJB) method that uses the

TX_REQUIRES attribute, then remove the UserTransaction reference and the calls

to begin and commit transactions and the method works the same way. In this

case, the container is responsible for starting and ending the transaction.

Integrating ObjectGrid and the partitioning facility

Use the ObjectGridPartitionCluster sample application to learn about the combined

functions of ObjectGrid and the partitioning facility (WPF).

See “ObjectGrid and the partitioning facility” on page 293 for a summary of how the

ObjectGrid and partitioning facility work together.

292 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

To use ObjectGrid with the partitioning facility, you must have WebSphere Extended

Deployment installed in your environment.

The ObjectGridPartitionCluster sample demonstrates the combined functions of

ObjectGrid and Partitioning Facility (WPF). The ObjectGrid feature provides the

capacity of caching key and value pairs by transaction, and the partitioning facility

feature provides the capacity of context-based routing according to object

characteristics.

v Install and run the ObjectGridPartitionCluster sample application. See “Installing

and running the ObjectGridPartitionCluster sample application” on page 295 for

more information.

v If you want to view or modify the source code of the sample application, you can

load the enterprise archive (EAR) file into your development tool. See “Building

an integrated ObjectGrid and partitioning facility application” on page 298 for

more information.

v Learn about the sample application. See “Example: ObjectGrid and partitioning

facility programming” on page 301 for explanation about the code that is in the

sample application.

See Chapter 10, “Integrating ObjectGrid with WebSphere Application Server,” on

page 279 for more information about how to integrate ObjectGrid with other

WebSphere Application Server features. For more information about the ObjectGrid

programming model, see Chapter 9, “ObjectGrid application programming interface

overview,” on page 87.

ObjectGrid and the partitioning facility

ObjectGrid and the partitioning facility (WPF) features can work together to provide

the caching of key and value pairs and context-based routing based on object

characteristics.

The ObjectGridPartitionCluster sample demonstrates the combined functions of

ObjectGrid and the partitioning facility (WPF). ObjectGrid and partitioning facility are

two features in the WebSphere Extended Deployment product. The ObjectGrid

feature provides the capacity of caching key and value pairs in the transactional

fashion, and the partitioning facility feature provides the capacity of context-based

routing according to object characteristics.

In addition to demonstrating loader and TransactionCallback plug-in features, this

sample also demonstrates how to use the ObjectGridEventListener,

ObjectTransformer, and OptimisticCallback plug-ins. In particular, the sample

demonstrates how to propagate local ObjectGrid transactions and how to invalidate

the changed objects from one server to other servers with and without the optimistic

version checker.

You must use the partitioning facility context-based routing feature to ensure that

object update, insert, and remove requests for the same key are routed to the same

Java virtual machine (JVM) and that the object retrieval requests can be distributed

across all of the ObjectGrid JVMs with workload management. Using the

partitioning facility maintains data integrity across the different cluster member

ObjectGrid instances.

To maintain ObjectGrid consistency and integrity, you can use the partitioning facility

to spread a large ObjectGrid out into many partitioned ObjectGrids, and the

partitioning facility context-based routing directs requests according to ObjectGrid

keys. For example, you need ObjectGrid to handle a large number of objects that

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 293

cannot fit into a JVM ObjectGrid. You can use the partitioning facility feature to load

data into different servers with the partitionLoadEvent method as preload and the

partitioning facility context-based routing finds the right ObjectGrid for you.

The sample creates a set of hash-based partitions and partition cluster routing

contexts:

v You can partition and map ObjectGrid keys to the WPF partitions with a

many-to-many strategy.

v The WPF partitions can be hosted in the WebSphere Application Server cluster

in a many-to-many strategy.

The following diagram shows the typical settings and configuration for the

ObjectGridPartitionCluster sample :

In the preceding diagram, the M1 machine and the M2 machine are used to deploy

the ObjectGridPartitionCluster sample. Each physical machine can host one or

more WebSphere Application Servers. For instance, the M1 machine hosts two

application servers: the S1 application server and the S2 application server. The M2

machine hosts one server, which is the S3 application server. Each server has an

ObjectGrid instance: OGI1ObjectGrid instance for the S1 application server, the

OGI2 ObjectGrid instance for the S2 application server, and the OGI3 ObjectGrid

instance for the S3 application server.

Each application server can host many partitions. For example, the S1 server hosts

the P1 partition and the P2 partition and the S3 server hosts the P1200 partition

and the P777 partition.

Each partition can host many ObjectGrid keys. For example, the P1 partition hosts

the OGK1, OGK2, and OGK3 ObjectGrid keys and the P800 partition hosts the

OGK92, OGK96, OGK98, and OGK9999 partitions.

Machine M1

Machine M2WebSphere Application Server
application server S1
ObjectGrid instance OGI1

Partition P1

OGK1

OGK2

OGK3

Partition P2

OGK90

OGK120

WebSphere Application Server
application server S2
ObjectGrid instance OGI2

Partition P800

OGK92
OGK96

OGK999

OGK98

WebSphere Application Server
application server S3
ObjectGrid instance OGI3

Partition P1

OGK6 OGK1999

Partition P777

OGK99999

200

294 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

All of the ObjectGrid update, insert, and remove requests are routed according to

ObjectGrid keys. You have two options for object retrievals: from any server in a

workload managed strategy, or from the particular server partition for this key.

Installing and running the ObjectGridPartitionCluster sample

application

Use this task to install and run the ObjectGridPartitionCluster sample application to

test the functionality between ObjectGrid and the partitioning facility.

Install WebSphere Extended Deployment. See the WebSphere Extended

Deployment Library page for instructions.

A good environment for running the ObjectGridPartitionCluster sample includes

installing the WebSphere Extended Deployment into two physical machines, or

creating two nodes and federating them together with the deployment manager.

1. To adequately demonstrate the features of this sample, configure a cluster that

has three or more cluster members.

2. Install the D_ObjectGridPartitionClusterSample.ear file. The partitioning facility

(WPF) deployed D_ObjectGridPartitionClusterSample.ear file is ready to

install and run. If you modify the sample source code, follow the build and

wpf-deploy instructions to build and deploy your enterprise archive (EAR) file.

The common way to install application EAR files is to use the administrative

console. Follow the enterprise application install procedure to install the

D_ObjectGridPartitionClusterSample.ear file. To access this part of the

administrative console, click Applications > Install a new application. Do not

deploy the EAR file during the installation. Use the default settings except in the

step where you are asked to select an installation location. On this step, select

the cluster that you defined, instead of the default server1 server.

3. Run the ObjectGridPartitionClusterSample client.

a. Start the cluster. In the administrative console, click Servers > Clusters.

Select the cluster and click Start.

b. Run the WAS_INSTALL_ROOT\bin\wpfadmin balance script command.

Verify that the partition has an active status using the

WAS_INSTALL_ROOT\bin\wpfadmin list command. For information on the

wpfadmin script and its commands, see the Partitioning Facility Guide in the

WebSphere Extended Deployment Information Center.

c. To run the ObjectGridPartitionClusterSample client, run the following

command:

WAS_INSTALL_ROOT/bin/launchClient.bat|sh \

WAS_INSTALL_ROOT/installableApps/D_ObjectGridPartitionClusterSample.ear \

−CCBootstrapPort=PORT

Where PORT is the server RMI port that you can find in the server

SystemOut.log file after you start the server. Usually this port value is one of

the following values: 9810, 9811, 9812.

For example, you might run the following command:

WAS_INSTALL_ROOT/bin/launchClient.bat|sh

WAS_INSTALL_ROOT/installableApps/D_ObjectGridPartitionClusterSample.ear

 −CCBootstrapPort=9811

For more advanced usage of this script, see

“ObjectGridPartitionClusterSample application client options” on page 296.

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 295

http://www-306.ibm.com/software/webservers/appserv/extend/library/
http://www-306.ibm.com/software/webservers/appserv/extend/library/
http://publib.boulder.ibm.com/infocenter/wxdinfo/v6r0/index.jsp

4. Change the number of partitions. Change the number of partitions that the

ObjectGridPartitionCluster session enterprise bean creates: The number of

partitions that is created by the PFClusterObjectGridEJB session bean is

decided by the NumberOfPartitions environment entry variable that is in the

META−INF\ejb−jar.xml file. The default value is 10. You can change the value of

this environment variable and reinstall the application to create different

numbers of partitions. Set the number of partitions to less than 999999.

5. Change the distributed listener options. You can change the following

ObjectGrid distributed listener options:

 Table 17. Distributed listener options

Variable name Description

enableDistribution, You can enable an ObjectGrid distributed

listener with the enableDistribution

environment entry variable that is in the EJB

deployment descriptor. The default is true ,

which is enabled. Set the value to false to

turn off the distributed listener.

propagationMode You can change the propagation mode with

the propagationMode environment entry

variable that is in the EJB deployment

descriptor. The default is update. You can

change the value to invalidate if you do not

want the default value.

propagationVersionOption, You can change the propagation version

option with the propagationVersionOption

environment entry variable that is located in

the EJB deployment descriptor. The default

is enable. You can set the value to disable.

compressionMode You can change the compression mode with

the compressionMode environment entry

variable that is located in the EJB

deployment descriptor. The default is enable.

You can set the value to disable.

The default is to propagate the updates with the version check. You might want

to set the value to the invalidate mode without the version check.

You installed and ran the ObjectGridPartitionCluster sample application.

ObjectGridPartitionClusterSample application client options

Use these options for advanced use in running the

D_ObjectGridPartitionClusterSample.ear file.

Advanced sample usage

See “Installing and running the ObjectGridPartitionCluster sample application” on

page 295 for more information about installing and running the

D_ObjectGridPartitionClusterSample.ear file.

For advanced use of the sample, refer to the following full usage guide:

WAS_INSTALL_ROOT/bin/launchClient.bat|sh

WAS_INSTALL_ROOT/installableApps/D_ObjectGridPartitionClusterSample.ear

−CCproviderURL=corbaloc::HOSTNAME:SERVER_RMI_PORT [−loop LOOP] [−threads

NUMBER_OF_THREADS] [−add NUMBER_OF_STOCKS_PER_PARTITION] [−waitForPropagation

SECONDS_TO_WAIT_FOR_PROPAGATION] [−getIteration

NUMBER_OF_ITERATION_PER_OGKEY]

296 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Fill in the following variables:

v HOSTNAME : Specifies the host name of the application server that is running.

v SERVER_RMI_PORT: Specifies the Bootstrap port of the application server.

v LOOP: Specifies how many loops the client runs. This parameter is optional. The

default value is 1.

v NUMBER_OF_THREADS: Specifies how many threads the client runs. This

parameter is optional. The default value is 1.

v NUMBER_OF_STOCKS_PER_PARTITION: Specifies the number of stocks for

each partition to add. This parameter is optional. The default is 3.

v SECONDS_TO_WAIT_FOR_PROPAGATION : Specifies the seconds to wait for

newly added or updated ObjectGrid objects to be propagated to other servers.

The default is 2seconds.

v NUMBER_OF_ITERATION_PER_OGKEY : Specifies the number of iterations of

retrieving objects in ObjectGrid in a workload managed fashion. The default is 6.

With more iterations specified, a clear pattern is seen for objects of the same key

in different WebSphere Application Server servers.

Sample output

The output of this command looks like the following example:

C:\dev\xd6\bin>launchClient

D_ObjectGridPartitionClusterSample.ear −CCBootstrapPort=9812

IBM WebSphere Application Server, Release 6.0

J2EE Application Client Tool

Copyright IBM Corp., 1997−2004

WSCL0012I: Processing command line arguments.

WSCL0013I: Initializing the J2EE Application Client Environment.

WSCL0035I: Initialization of the J2EE Application Client Environment has completed.

WSCL0014I: Invoking the Application

Client class com.ibm.websphere.samples.objectgrid.partitionclust

er.client.PartitionObjectGrid

ObjectGrid Partition Sample has 10 partitions

PARTITION: ObjectGridHashPartition000007−>clusterdevNode01/s2

PARTITION: ObjectGridHashPartition000003−>clusterdevNode02/s3

PARTITION: ObjectGridHashPartition000005−>clusterdevNode01/s2

PARTITION: ObjectGridHashPartition000010−>clusterdevNode02/s3

PARTITION: ObjectGridHashPartition000006−>clusterdevNode02/s3

PARTITION: ObjectGridHashPartition000009−>clusterdevNode01/s2

PARTITION: ObjectGridHashPartition000008−>clusterdevNode01/s1

PARTITION: ObjectGridHashPartition000002−>clusterdevNode02/s3

PARTITION: ObjectGridHashPartition000001−>clusterdevNode02/s3

PARTITION: ObjectGridHashPartition000004−>clusterdevNode01/s2

************** Partition=ObjectGridHashPartition000004****************

−−−−−−ObjectGrid Operations: Stock Ticket=Stock000104 −−−−−−−−

get on partition for ticket: Stock000104−>clusterdevNode02/s2

update: Stock000104−>clusterdevNode02/s2

sleep 2 seconds.....

Iteration 1 : Stock000104−>clusterdevNode01/s2

> ObjectGrid Stock000104 price=43.35478459674703 lastTransaction=1121137456584

Iteration 2 : Stock000104−>clusterdevNode01/s1

> ObjectGrid Stock000104 price=43.35478459674703 lastTransaction=1121137456584

Iteration 3 : Stock000104−>clusterdevNode02/s3

> ObjectGrid Stock000104 price=43.35478459674703 lastTransaction=1121137456584

Iteration 4 : Stock000104−>clusterdevNode01/s2

> ObjectGrid Stock000104 price=43.35478459674703 lastTransaction=1121137456584

Iteration 5 : Stock000104−>clusterdevNode02/s3

> ObjectGrid Stock000104 price=43.35478459674703 lastTransaction=1121137456584

Iteration 6 : Stock000104−>clusterdevNode02/s3

> ObjectGrid Stock000104 price=43.35478459674703 lastTransaction=1121137456584

−−−−−−ObjectGrid Operations: Stock Ticket=Stock000114 −−−−−−−−

get on partition for ticket: Stock000114−>clusterdevNode01/s2

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 297

update: Stock000114−>clusterdevNode02/s2

sleep 2 seconds.....

Iteration 1 : Stock000114−>clusterdevNode02/s3

> ObjectGrid Stock000114 price=39.70991373766818 lastTransaction=1121137458737

Iteration 2 : Stock000114−>clusterdevNode01/s2

> ObjectGrid Stock000114 price=39.70991373766818 lastTransaction=1121137458737

Iteration 3 : Stock000114−>clusterdevNode01/s1

> ObjectGrid Stock000114 price=39.70991373766818 lastTransaction=1121137458737

Iteration 4 : Stock000114−>clusterdevNode02/s3

> ObjectGrid Stock000114 price=39.70991373766818 lastTransaction=1121137458737

Iteration 5 : Stock000114−>clusterdevNode01/s2

> ObjectGrid Stock000114 price=39.70991373766818 lastTransaction=1121137458737

Iteration 6 : Stock000114−>clusterdevNode02/s3

> ObjectGrid Stock000114 price=39.70991373766818 lastTransaction=1121137458737

−−−−−−ObjectGrid Operations: Stock Ticket=Stock000124 −−−−−−−−

get on partition for ticket: Stock000124−>clusterdevNode02/s2

update: Stock000124−>clusterdevNode01/s2

sleep 2 seconds.....

Iteration 1 : Stock000124−>clusterdevNode02/s3

> ObjectGrid Stock000124 price=35.37356414423455 lastTransaction=1121137460940

Iteration 2 : Stock000124−>clusterdevNode02/s3

> ObjectGrid Stock000124 price=35.37356414423455 lastTransaction=1121137460940

Iteration 3 : Stock000124−>clusterdevNode01/s2

> ObjectGrid Stock000124 price=35.37356414423455 lastTransaction=1121137460940

Iteration 4 : Stock000124−>clusterdevNode01/s1

> ObjectGrid Stock000124 price=35.37356414423455 lastTransaction=1121137460940

Iteration 5 : Stock000124−>clusterdevNode02/s3

> ObjectGrid Stock000124 price=35.37356414423455 lastTransaction=1121137460940

Iteration 6 : Stock000124−>clusterdevNode01/s2

> ObjectGrid Stock000124 price=35.37356414423455 lastTransaction=1121137460940

C:\dev\xd6\bin>

Building an integrated ObjectGrid and partitioning facility application

Open, modify, and install the ObjectGrid partitioning sample application.

Use these steps to modify, export, and install the ObjectGridPartitionSample.ear

file in a WebSphere Extended Deployment environment. If you do not want to make

changes to the sample file, you can use the deployed and partitioning facility

(WPF)-enabled D_ObjectGridPartitionClusterSample.ear file. If you use the

D_ObjectGridPartitionClusterSample.ear file, you can install and run the file

without performing the following steps. Both enterprise archive (EAR) files are in the

WAS_INSTALL_ROOT/installableApps directory.

1. Set up theObjectGridPartitionSample.ear file in your build environment, such

as IBM Rational Application Developer Version 6.0.x or the Application Server

Toolkit Version 6.0.x. See “Getting started with building an ObjectGrid and

partitioning facility application” on page 299 for more information.

2. Modify any of source code in the sample.

3. Export the ObjectGridPartitionClusterSample application from your build

environment as an EAR file. “Exporting the

ObjectGridPartitionClusterSample.ear file in IBM Rational Application Developer”

on page 300 for more information.

4. Deploy the application so that it can work with the partitioning facility. See

“Deploying the ObjectGridPartitionClusterSample.ear file to work with the

partitioning facility” on page 301 for more information.

5. Install the ObjectGridPartitionClusterSample.ear file into WebSphere

Extended Deployment. The common way to install application EAR files is to

use the WebSphere Application Server administrative console. Follow the

enterprise application installation procedure of the administrative console to

install the D_ObjectGridPartitionClusterSample.ear file. Do not deploy the file

298 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

during the installation; use the default instead. Use the default settings for each

step except when you are asked to select where to install. In this step, select

the cluster that you defined instead, of the default server1 server.

You installed the ObjectGridPartitionClusterSample.ear file into a WebSphere

Extended Deployment environment.

For more information about programming with ObjectGrid, partitioning facility, and

the sample applications, see “Example: ObjectGrid and partitioning facility

programming” on page 301.

Getting started with building an ObjectGrid and partitioning

facility application

Use the Application Server Toolkit Version 6.0.x or IBM Rational Application

Developer Version 6.0.x to rebuild the sample application.

The ObjectGridPartitionClusterSample.ear file in the

WAS_INSTALL_ROOT/installableApps directory contains all the source code. You can

use the Application Server Toolkit Version 6.0.x or IBM Rational Application

Developer Version 6.0.x to rebuild this sample application. This task uses Rational

Application Developer as an example to establish the build environment for the

ObjectGridPartitionClusterSample.ear file. You can also use the Application

Server Toolkit; a free assembly tool that is shipped with WebSphere Application

Server on a separate CD.

The deployed and WPF-enabled enterprise archive (EAR) file, the

D_ObjectGridPartitionClusterSample.ear file, also in the

WAS_INSTALL_ROOT/installableApps directory, is ready to install and run.

1. Import the ObjectGridPartitionClusterSample.ear file into Rational Application

Developer.

a. Start Rational Application Developer.

b. Optional: Open the Java 2 Platform, Enterprise Edition (J2EE) perspective

to work with J2EE projects. Click Window > Open Perspective > Other >

J2EE.

c. Optional: Open the Project Explorer view. Click Window > Show View >

Project Explorer. Another helpful view is the Navigator view: Window >

Show View > Navigator.

d. Import the ObjectGridPartitionClusterSample.ear file. Click File > Import

> EAR file, then click Next.

e. Select the ObjectGridPartitionClusterSample.ear file from the

WAS_INSTALL_ROOT/installableApps directory.

f. Optional: Click New to open the New Server Runtime wizard and follow the

instructions.

g. In the Target server field, select the WebSphere Application Server V6.0

type of Server Runtime.

h. Click Finish.

The ObjectGridPartitionClusterSample, ObjectGridPartitionClusterSampleEJB,

and ObjectGridPartitionClusterSampleClient projects must be created and visible

in the Project Explorer view.

2. Set up the ObjectGridPartitionClusterSampleEJB project.

a. In the Project Explorer view of the J2EE perspective, right-click the

ObjectGridPartitionClusterSampleEJB project in the EJB projects, and

select Properties. The Properties window is displayed.

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 299

b. Click the Java Build Path in the left panel, click the Libraries tab in the

right panel, and select Add Variable. The New Variable Classpath Entry

window is displayed.

c. Click Configure Variables to open the Preference window.

d. Click New to open the New Variable Entry window.

e. Type ObjectGridPartitionCluster_JAR for the Name and click File to open

the JAR Selection window.

f. Browse to the WAS_INSTALL_ROOT/lib directory, and select wsobjectgrid.jar.

Click Open to close the JAR Selection window.

g. Click OK to close the New Variable Entry window. The

ObjectGridPartitionCluster_JAR variable is displayed in the Class path

variables list.

h. Click OK to close the Preference window.

i. Select the ObjectGridPartitionCluster_JAR variable from the variables list

and click OK to close the New Variable Classpath Entry window. The

ObjectGridPartitionCluster_JAR variable is displayed in the Libraries panel.

j. Repeat this procedure to add the wpf.jar file to your environment.

k. Verify that the wpf.jar file and the wsobjectgrid.jar file are in your build

class path.

After your build environment is set up, you can modify source code and apply other

changes. See “Building an integrated ObjectGrid and partitioning facility application”

on page 298 for more information.

Exporting the ObjectGridPartitionClusterSample.ear file in IBM

Rational Application Developer

After you make changes to the sample file, you can export the

ObjectGridPartitionClusterSample application to create an enterprise archive (EAR)

file that you can install on WebSphere Extended Deployment servers.

You must have the ObjectGridPartitionSample.ear file imported into your

development tools so that you can make changes to the source. See “Getting

started with building an ObjectGrid and partitioning facility application” on page 299

for more information. Before exporting, make your changes to the sample

application.

You can export the ObjectGridPartitionClusterSample.ear file from the

ObjectGridPartitionClusterSample project in enterprise applications in the IBM

Rational Application Developer. You can install the exported

ObjectGridPartitionClusterSample.ear file on any WebSphere Extended

Deployment Version 6.0 server after deploying the partitioning facility.

1. In the Project Explorer view of the Java 2 Platform, Enterprise Edition (J2EE)

perspective, right-click the ObjectGridPartitionClusterSample application that

is located under Enterprise Applications. Click Export > EAR file. The Export

window is displayed.

2. Click Browse to open the Save As window. Locate the target output directory,

specify the file name as ObjectGridPartitionClusterSample, and click Save.

3. Click Browse to open the Save As window. Locate the target output directory

and specify the file name as ObjectGridPartitionClusterSample. Click Save.

The ObjectGridPartitionClusterSample.ear file is created in the specified target

output directory.

300 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

After you deploy the ObjectGridPartitionClusterSample.ear file for the partitioning

facility (WPF), you can run the file in WebSphere Extended Deployment. See

“Deploying the ObjectGridPartitionClusterSample.ear file to work with the

partitioning facility” for more information.

Deploying the ObjectGridPartitionClusterSample.ear file to work

with the partitioning facility

If you plan on installing the ObjectGridPartitionClusterSample.ear file on

WebSphere Extended Deployment, you must perform a wpf-deploy operationon the

file.

You must have an existing ObjectGridPartitionClusterSample.ear file. To modify

the existing file, see “Building an integrated ObjectGrid and partitioning facility

application” on page 298.

Perform the wpf-deploy operation to prepare the enterprise archive (EAR) file in a

WebSphere Extended Deployment environment.

1. Create a DEST_DIR directory.

2. Copy the ObjectGridPartitionClusterSample.ear file nto the DEST_DIR

directory. Rename the ObjectGridPartitionClusterSample.ear file to the

old_ObjectGridPartitionClusterSample.ear file.

3. Run the following command, where WORKING_DIR is the working directory for the

ejbdeloy tool, for example, the c:\temp directory.

WAS_HOME\bin\ejbdeploy.bat|ejbdeploy.sh

 DEST_DIR\old_ObjectGridPartitionClusterSample.ear WORKING_DIR

 DEST_DIR\ObjectGridPartitionClusterSample.ear

4. Run the following command, where TEMP_DIR is a temporary directory for the

tool. If the -keep argument is specified, the temporary directories that are

created by the wpfStubUtil utility are not deleted.

WAS_HOME\bin\wpfStubUtil.cmd|wpfStubUtil.sh

 DEST_DIR\ObjectGridPartitionClusterSample.ear

 ObjectGridPartitionClusterSampleEJB.jar com/ibm/websphere/samples/

 objectgrid/partitioncluster/ejb/PFClusterObjectGridEJB.class

 TEMP_DIR [−stubDebug|−keep]

The ObjectGridPartitionClusterSample.ear file is ready to run in a WebSphere

Extended Deployment environment. The D_ObjectGridPartitionClusterSample.ear

sample file that ships with WebSphere Extended Deployment is already deployed.

You do not need to deploy this file before you install the application if you did not

change the source code.

Install the ObjectGridPartitionClusterSample.ear file into the WebSphere

Extended Deployment environment with the administrative console. See “Building

an integrated ObjectGrid and partitioning facility application” on page 298 for more

information.

Example: ObjectGrid and partitioning facility programming

This example demonstrates how to use the combined functions of ObjectGrid and

the partitioning facility in a Java 2 Platform, Enterprise Edition environment in

WebSphere Extended Deployment.

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 301

Purpose

In addition to demonstrating the combined ObjectGrid and partitioning facility (WPF)

functions, this example also demonstrates ObjectGrid distributed listener

propagation and invalidation.

Object update, insert, and remove requests are routed to specific servers where

partitions are hosted for the corresponding ObjectGrid keys. ObjectGrid get method

requests are workload managed among all the servers.

This example also illustrates how to partition a big ObjectGrid into many smaller

ObjectGrids and use the partitionLoadEvent method to preload data so that the

partitioned ObjectGrid can host an unlimited number of objects.

Overview

The ObjectGridPartitionClusterSampler.ear file creates a stock object that

illustrates how ObjectGrid and the partitioning facility work together. The stock

object contains the following properties:

v ticket

v company

v serialNumber

v description

v lastTransaction

v price

Where the lastTransaction property is the time that the stock has been changed.

Use the lastTransaction property to indicate the freshness of objects in the

ObjectGrid of different Java virtual machines (JVM).

In the sample, the ObjectGrid instance is created in the Enterprise JavaBeans

(EJB) setContext method with the ObjectGridFactory class.

Define a set of hash-based partitions. The default value is 10 partitions, but you can

change the number of partitions. Hash the stock tickets into these partitions by

using the SampleUtility.java file. Each partition can host many ObjectGrid key and

value pairs.

The sample demonstrates how the ObjectGrid insert, update, and remove requests

are routed to a specific partitioned server, and how the ObjectGrid get method

requests route to either a particular server for its key or any server in a cluster. The

sample compares object values for a key from different servers after value changes

due to an update, insert, or remove operation for this key occurs in a particular

server.

Location

Use this sample in a cluster environment where each server can host many

partitions and where each partition can host many objects with different keys.

Two ObjectGrid partition cluster sample files exist in the

<install_root>\installableApps\ directory:

v The ObjectGridPartitionClusterSampler.ear file contains the source code. To

see the source, expand the EAR file into the file system or import the source into

302 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

a development environment. See “Building an integrated ObjectGrid and

partitioning facility application” on page 298 for more information.

v The D_ObjectGridPartitionClusterSample.ear file is already deployed for the

partitioning facility. Follow the readme file and instructions to get this file running

quickly.

Explanation

The following sections include explanation about the ObjectGrid partition cluster

sample application:

v “ObjectGrid operation EJB Interface”

v “PartitionKey class” on page 305

v “SampleUtility class and partition mapping” on page 307

v “ObjectGrid creation in the enterprise bean setContext method” on page 309

v “Singleton ObjectGridFactory class” on page 310

v “ObjectGrid partition preload” on page 312

ObjectGrid operation EJB Interface

This article demonstrates the ObjectGrid operation Enterprise JavaBeans (EJB)

interface that performs get, get from partitioned server, insert, update, and remove

operations.

Purpose

The ObjectGrid operation EJB interface performs get, get from partitioned server,

insert, update, and remove operations. The get from partitioned server method is

routed to a partition that corresponds to the key it requests. The get method is

routed in a worked load managed strategy to any server.

The PFClusterObjectGridEJB interface

The PFClusterObjectGridEJB interface content follows:

/**

* Remote interface for Enterprise Bean: PFClusterObjectGridEJB

*/

public interface PFClusterObjectGridEJB extends javax.ejb.EJBObject {

 public String PARTITION_PREFIX = "ObjectGridHashPartition";

 /**

 * Get all Partitions

 *

 * @return Array of Strings

 * @throws java.rmi.RemoteException

 */

 public String [] getAllPartitions() throws java.rmi.RemoteException;

 /**

 * Get where partition is hosted

 *

 * @param partition

 * @return String

 * @throws java.rmi.RemoteException

 */

 public String getServer(String partition)

 throws java.rmi.RemoteException;

 /**

 * Get Stock object and its server information

 * (ServerIDResult) for a stock ticket

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 303

* from any server in a cluster (that has had workload management)

 *

 * @param ticket

 * @return

 * @throws java.rmi.RemoteException

 */

 public ServerIDResult getStock(String ticket)

 throws java.rmi.RemoteException;

 /**

 * Get Stock object and its partitioned server

 * information for a stock ticket

 * from the partition this ticket key is hashed to

 *

 * @param ticket

 * @return ServerIDResult

 * @throws java.rmi.RemoteException

 */

 public ServerIDResult getStockOnPartitionedServer(String ticket)

 throws java.rmi.RemoteException;

 /**

 * Update stock in a particular server where the partition is

 * active for this stock ticket key.

 *

 * @param stock

 * @return ServerIDResult

 * @throws java.rmi.RemoteException

 */

 public ServerIDResult updateStock(Stock stock)

 throws java.rmi.RemoteException;

 /**

 * Remove stock in a particular server where the partition is

 * active for this stock ticket key.

 *

 * @param ticket

 * @return ServerIDResult

 * @throws java.rmi.RemoteException

 */

 public ServerIDResult removeStock(String ticket)

 throws java.rmi.RemoteException;

 /**

 * Insert stock in a particular server where the partition is

 * active for this stock ticket key.

 *

 * @param stock

 * @return ServerIDResult

 * @throws java.rmi.RemoteException

 */

 public ServerIDResult insertStock(Stock stock)

 throws java.rmi.RemoteException;

 /**

 * Retrieve data from all servers and compare values

 *

 * @param server

 * @return ServerObjectGridVerification

 * @throws java.rmi.RemoteException

 */

 public ServerObjectGridVerification verifyObjectGrid(String server)

 throws java.rmi.RemoteException;

}

304 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

PartitionKey class

The PartitionKey class controls the behavior of the partitioning facility context-based

routing.

The following code illustrates the sample partition key class. When the method

returns not null, it is routed with the partitioning facility (WPF) router. When the

method returns null, it is forwarded to the workload management (WLM) router.

/**

* PartitionKey for Partitioned Stateless Session Bean WPFKeyBasedPartition

*

*/

public class PFClusterObjectGridEJB_PartitionKey {

 /**

 * Number of Partitions

 *

 * Default is 10.

 *

 */

 static int numOfPartitions=10;

 /**

 * Only once to getPartitionNumbers

 */

 static boolean getNumOfPartitions=true;

 /**

 * Get the number of partitions

 *

 */

 static void getPartitionNumbers(){

 //get only once

 if (getNumOfPartitions){

 try {

 InitialContext ic = new InitialContext();

 PFClusterObjectGridEJBHome home =

 (PFClusterObjectGridEJBHome) PortableRemoteObject.narrow(

 ic.lookup("java:comp/env/ejb/PFClusterObjectGridEJB"),

 PFClusterObjectGridEJBHome.class);

 final PFClusterObjectGridEJB session = home.create();

 String[] PARTITIONS = session.getAllPartitions();

 numOfPartitions=PARTITIONS.length;

 getNumOfPartitions=false;

 }

 catch (ClassCastException e) {

 e.printStackTrace();

 numOfPartitions=10;

 }

 catch (RemoteException e) {

 e.printStackTrace();

 numOfPartitions=10;

 }

 catch (NamingException e) {

 e.printStackTrace();

 numOfPartitions=10;

 }

 catch (CreateException e) {

 e.printStackTrace();

 numOfPartitions=10;

 }

 }

 }

/**

* Return partition key

*

* @param partition

* @return String

*/

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 305

public static String getStock(String key) {

 return null;

}

/**

* Return partition key

*

* @param key

* @return String

*/

public static String getServer(String key) {

 return key;

}

/**

* Retrieve ObjectGrid data from a partitioned server where

* data’s changes happen (the highest quality and integrity).

*

* @param ticket

* @return hashcode of stock ticket

*/

public static String getStockOnPartitionedServer(String ticket) {

 if (ticket==null){

 return null;

 }

 getPartitionNumbers();

 return SampleUtility.hashStockKeyToPartition(ticket, numOfPartitions);

}

/**

* Return partition key

*

* @param stock

* @return hashcode of stock ticket

*/

public static String updateStock(Stock stock) {

 getPartitionNumbers();

 String ticket=null;

 if (stock!=null){

 ticket=stock.getTicket();

 }

 return SampleUtility.hashStockKeyToPartition(ticket, numOfPartitions);

}

/**

* Return partition key

*

* @param stock

* @return hashcode of stock ticket

*/

public static String insertStock(Stock stock) {

 getPartitionNumbers();

 String ticket=null;

 if (stock!=null){

 ticket=stock.getTicket();

 }

 return SampleUtility.hashStockKeyToPartition(ticket, numOfPartitions);

}

/**

* Return partition key

*

* @param server

* @return String

*/

public static String verifyObjectGrid(String server) {

 return server;

}

/**

* Return partition key

*

* @param stock

306 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

* @return hashcode of stock ticket

*/

public static String removeStock(String ticket) {

if (ticket==null){

 return null;

}

getPartitionNumbers();

 return SampleUtility.hashStockKeyToPartition(ticket, numOfPartitions);

}

/**

* Return partition key

*

* @param partition

* @return

*/

public static String getAllPartitions() {

 return null;

}

}

Each remote method must have a corresponding method that returns a valid string

or a null value.

SampleUtility class and partition mapping

Use the SampleUtility.java file to manipulate keys, stock tickets, hash, and

partitions. You can also use this file to map ObjectGrid keys to partitions. You can

develop similar a utility class to map ObjectGrid keys to partitions that can meet

your business needs. To use the partitioning facility with ObjectGrid, you must map

different keys into different partitions.

SampleUtility class

The utility class for the ObjectGridPartitionCluster sample follows:

/**

* Utility class for ObjectGridPartitionCluster sample

*

*

*/

public class SampleUtility {

 /**

 * Container for recording partitions.

 */

 static Map serverPartitions= new HashMap();

 /**

 * Partition name prefix

 */

 public static String PARTITION_PREFIX = "ObjectGridHashPartition";

 /**

 * Stock name prefix

 */

 public static String STOCK_PREFIX="Stock";

 /**

 * Retrieve the number part of partition name

 *

 * @param partition

 * @return int

 */

 public static int getIntFromPartition(String partition){

 int result=−1;

 int pre=PARTITION_PREFIX.length();

 int p=partition.length();

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 307

String num=partition.substring(pre, p);

 result=Integer.parseInt(num);

 return result;

 }

 /**

 * Retrieve the number part of stock ticket

 *

 * @param ticket

 * @return

 */

 public static int getIntFromStockTicket(String ticket){

 int result=−1;

 int pre=STOCK_PREFIX.length();

 int p=ticket.length();

 String num=ticket.substring(pre, p);

 result=Integer.parseInt(num);

 return result;

 }

 /**

 * Hash stock ticket to a given hash base.

 *

 * @param ticket

 * @param base

 * @return int

 */

 public static int hashTicket(String ticket, int base){

 if (base<1){

 return 0;

 }

 int hash=0;

 int num=getIntFromStockTicket(ticket);

 hash= num % base;

 return hash;

 }

 /**

 * Hash stock key to a partition

 *

 * @param ticket

 * @param base

 * @return String − partition name

 */

 public static String hashStockKeyToPartition(String ticket, int base){

 String p=null;

 int hashcode=hashTicket(ticket, base)+1;

 p=PARTITION_PREFIX+ padZeroToString(hashcode+"", 6);

 return p;

 }

 /**

 * Record server/partition

 *

 * @param server

 * @param partition

 */

 public static void addServer(String server, String partition){

 serverPartitions.put(server, partition);

 }

 /**

 * Remove server/partition

 *

 * @param server

 */

 public static void removeServer(String server){

 serverPartitions.remove(server);

 }

 /**

 * Get all servers where partitions are active.

308 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

*

 * @return Iterator − String

 */

 public static Iterator getAllServer(){

 return serverPartitions.values().iterator();

 }

}

You must use the same global hash base and parse variable to hash into the hash

base. Consider the following example:

myKey.hashCode % hashBase

You need to parse out myKey as hash variable and you need to keep the same

hash base among different servers. In the preceding example, the same variable

from the Java environment is looked up. You cannot use key1 % 100, but you can

use key2 % 90.

ObjectGrid creation in the enterprise bean setContext method

Create the ObjectGrid instance in the enterprise bean setContext method as in the

PFClusterObjectGridEJBBean.java file and retrieve the preload data.

/**

* setSessionContext

*

* with ObjectGrid instance

*/

public void setSessionContext(javax.ejb.SessionContext ctx) {

 mySessionCtx = ctx;

 try {

 InitialContext ic = new InitialContext();

 //get PartitionManager

 ivManager = (PartitionManager)

 ic.lookup("java:comp/websphere/wpf/PartitionManager");

 // get enableDistribution configuration

 boolean enableDistribution = ((Boolean)

 ic.lookup("java:comp/env/enableDistribution")).booleanValue();

 System.out.println("***** enableDistribution="+ enableDistribution);

 // get propagationMode configuration

 String propagationMode = (String) ic.lookup("java:comp/env/propagationMode");

 System.out.println("***** pMode="+ propagationMode);

 String pMode=null;

 if (propagationMode.equals(com.ibm.ws.objectgrid.Constants.

 OBJECTGRID_TRAN_PROPAGATION_MODE_DEFAULT_KEY)||

 propagationMode.equals(com.ibm.ws.objectgrid.Constants.

 OBJECTGRID_TRAN_PROPAGATION_MODE_INVALID_KEY)){

 pMode=propagationMode;

 }

 // get propagationVersionOption configuration

 String propagationVersionOption = (String)

 ic.lookup("java:comp/env/propagationVersionOption");

 System.out.println("***** pVersionOption="+ propagationVersionOption);

 String pVersion=null;

 if (propagationVersionOption.equals(com.ibm.ws.objectgrid.Constants.

 OBJECTGRID_TRAN_PROPAGATION_MODE_VERS_KEY)||

 propagationMode.equals(com.ibm.ws.objectgrid.Constants.

 OBJECTGRID_TRAN_PROPAGATION_MODE_NOVERS_KEY)){

 pVersion=propagationVersionOption;

 }

 // get compressionMode configuration

 String compressionMode = (String) ic.lookup("java:comp/env/compressionMode");

 System.out.println("***** compressMode="+ compressionMode);

 String compressMode=null;

 if (compressionMode.equals(com.ibm.ws.objectgrid.Constants.

 OBJECTGRID_TRAN_PROPAGATION_COMPRESS_DISABLED)||

 propagationMode.equals(com.ibm.ws.objectgrid.Constants.

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 309

OBJECTGRID_TRAN_PROPAGATION_COMPRESS_ENABLED)){

 compressMode=compressionMode;

 }

 // whethere preload is enabled

 bPreload = ((Boolean)

 ic.lookup("java:comp/env/preload")).booleanValue();

 System.out.println("***** enablePreload="+ bPreload);

 //whethere remove is enabled

 bRemove = ((Boolean)

 ic.lookup("java:comp/env/remove")).booleanValue();

 System.out.println("***** enableRemove="+ bRemove);

 // whethere Loader is enabled

 boolean bLoader = ((Boolean)

 ic.lookup("java:comp/env/loader")).booleanValue();

 System.out.println("***** enableLoader="+ bLoader);

 // get file path and name

 String filePathandName = (String)

 ic.lookup("java:comp/env/filePathandName");

 System.out.println("***** fileName="+ filePathandName);

 //get ObjectGrid instance

 og=ObjectGridFactory.getObjectGrid(ogName,

 enableDistribution,

 pMode, pVersion,

 compressMode, bLoader,

 filePathandName);

 if (og==null){

 throw new RuntimeException

 ("ObjectGrid insance is null in ObjectGridPartitionClusterSample");

 }

 System.out.println("Bean Context, getObjectGrid="

 + og + " for name="+ ogName);

 if (bPreload && !lock){

 System.out.println("Preload data");

 PersistentStore store=PersistentStore.getStore(filePathandName);

 store.preload(10);

 store.verify(10);

 lock=true;

 preloadData=store.getAllRecords();

 }

 }

 catch (Exception e) {

 logger.logp(Level.SEVERE, CLASS_NAME,

 "setSessionContext", "Exception: " + e);

 throw new EJBException(e);

 }

}

Singleton ObjectGridFactory class

An ObjectGrid instance is created with a custom factory that caches the ObjectGrid

instance with custom settings.

An example of how to create an ObjectGrid instance programatically, set the

ObjectGridTransformer object, configure the propagation event listener, and set this

listener to the ObjectGrid instance follows. You also can use an XML file to perform

this configuration.

/**

*

* Create ObjectGrid instance and configure it.

*

*

*/

public class ObjectGridFactory {

 /**

 * ObjectGrid name

 */

310 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

static String ogName="WPFObjectGridSample";

 /**

 * ObjectGrid instance

 */

 static ObjectGrid og=null;

 /**

 * ObjectGrid session

 */

 static Session ogSession=null;

 /**

 * Map name

 */

 static String mapName="SampleStocks";

 /**

 * ObjectGrid cache

 */

 static Map ogCache= new HashMap();

 /**

 * Get ObjectGrid instance

 *

 * @param ogn

 * @param enableDist

 * @param pMode

 * @param pVersion

 * @param compressMode

 * @return

 */

public static synchronized ObjectGrid getObjectGrid(String ogn,

 boolean enableDist,

 String pMode,

 String pVersion,

 String compressMode,

 boolean loader,

 String fileName){

 if (ogn!=null){

 ogName=ogn;

 }

 else {

 throw new IllegalArgumentException ("ObjectGrid name given is null");

 }

 if (ogCache.containsKey(ogName)){

 return (ObjectGrid) ogCache.get(ogName);

 }

 try {

 ObjectGridManager manager= ObjectGridManagerFactory.

 getObjectGridManager();

 og=manager.createObjectGrid(ogName);

 if (enableDist){

 TranPropListener tpl=new TranPropListener();

 if (pMode!=null){

 tpl.setPropagateMode(pMode);

 }

 if (pVersion!=null){

 tpl.setPropagateVersionOption(pVersion);

 }

 if (compressMode!=null) {

 tpl.setCompressionMode(compressMode);

 }

 og.addEventListener(tpl);

 }

 // Define BackingMap and set the Loader

 BackingMap bm = og.defineMap(mapName);

 ObjectTransformer myTransformer=

 new MyStockObjectTransformer();

 bm.setObjectTransformer(myTransformer);

 OptimisticCallback myOptimisticCallback=

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 311

new MyStockOptimisticCallback();

 if (loader){

 TransactionCallback tcb=new MyTransactionCallback();

 Loader myLoader= new MyCacheLoader(fileName, mapName);

 og.setTransactionCallback(tcb);

 bm.setLoader(myLoader);

 }

 og.initialize();

 ogCache.put(ogName, og);

 }

 catch (Exception e) {

 }

 return og;

 }

}

ObjectGrid partition preload

This topic discusses how to preload an ObjectGrid instance.

Use the partitionLoadEvent method to load objects that are related to this partition

only when the partition is activated. By loading objects when the partitioning is

activated, you partition ObjectGrid so that ObjectGrid can handle large numbers of

objects.

/**

* This is called when a specific partition is assigned to this server process.

* @param partitionName

* @return

*/

public boolean partitionLoadEvent(String partitionName) {

 //preload data

 preloadDataForPartition(partitionName);

 logger.logp(

 Level.FINER,

 CLASS_NAME,

 "partitionLoadEvent",

 "Loading "+ partitionName);

 return true;

}

/**

*

* preload data

*

* @param partition

*/

private synchronized void preloadDataForPartition(String partition){

 if (bPreload && (preloadData!=null)){

 Iterator itr=preloadData.keySet().iterator();

 while (itr.hasNext()){

 String ticket= (String) itr.next();

 String p=SampleUtility.

 hashStockKeyToPartition(ticket, numOfPartitions);

 if (partition.equals(p)){

 Stock stock= (Stock) preloadData.get(ticket);

 System.out.println("preload in partition=" +

 partition + " with data ticket="+ ticket);

 insertStock(stock);

 }

 }

 }

}

You might need to disable the distributed updates if you use the partitioned preload

of your big ObjectGrid to partition your big ObjectGrid. The current version of

312 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

distributed updates cannot be partitioned. The partitioning facility (WPF)

context-based routing finds the correct data at the correct partition.

Configuring ObjectGrid to work with container-managed beans

With WebSphere Application Server Version 6.0.2 and later, you can use

container-managed persistence (CMP) beans with an external cache product.

Use this task to use CMP beans, taking advantage of ObjectGrid as an external

cache instead of a built-in cache. This functionality is provided by the persistence

engine in WebSphere Application Server.

1. Define the JVM arguments to define the CacheFactoryManager adapter and the

location of the ObjectGrid XML configuration file. The CacheFactoryManager is

an adapter between the persistence engine and ObjectGrid.

a. Click Servers > Application servers > server_name > Java and process

management > Process definition > Java Virtual Machine > Generic

JVM arguments.

b. Add the following properties:

v -Dcom.ibm.ws.pmcache.manager=com.ibm.ws.objectgrid.adapter.pm.

CacheFactoryManager

v -Dcom.ibm.ws.pmcache.config=file:/d:/temp/objectGrid.xml

The -Dcom.ibm.ws.pmcache.config property specifies configuration file for

the ObjectGrid. The value is a URL to the ObjectGrid configuration file.

2. Configure the ObjectGrid XML configuration file. The configuration is in the

objectGrid.xml file. Consider the following example. Application and module

information are needed for for the Java 2 Platform, Enterprise Edition (J2EE)

application. The information is reflected in the objectGrid.xml file. An Accounts

application has three CMP Enterprise JavaBeans: Savings, Checkin and

MoneyMarket. These Enterprise JavaBeans are contained in the

PersonalBankingEJB module. The display name is Accounts and

PersonalBankingEJB is the EJB module of the application deployment

descriptor. The Savings, Checkin and MoneyMarket are the names as specified

in ejb-name element of the Enterprise Java Bean deployment descriptor for the

container-managed Entity Beans (CMP). A sample snippet for this configuration

follows:

<ObjectGrids>

 <ObjectGrid name="Accounts">

 <BackingMap name="PersonalBankingEJB.jar#Savings" readOnly="true"

 pluginCollectionRef="default" />

 <BackingMap name="PersonalBankingEJB.jar#Checkin" readOnly="true"

 pluginCollectionRef="default" />

 <BackingMap name="PersonalBankingEJB.jar#MoneyMarket" readOnly="true"

 pluginCollectionRef="default" />

 </ObjectGrid>

</ObjectGrids>

The PersonalBankingEJB.jar file is specified within the EJB tags of the

application deployment descriptor, as in the following example:

<module id="module_1">

 <ejb>PersonalBankingEJB.jar</ejb>

</module>

3. Enable the persistence manager LifeTimeInCache setting for each bean, within

the application to use external cache. ObjectGrid requires that you enable this

setting in the deployment descriptor, but it ignores the LifeTimeInCache setting.

The ObjectGrid configuration takes precedence.

Chapter 10. Integrating ObjectGrid with WebSphere Application Server 313

4. Explicitly configure a backingMap to evict objects from the cache. An XML code

snippet for the objectGrid.xml file follows:

<backingMapPluginCollection id="TotalTimeToLive">

 <bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.TTLEvictor">

 <property name="pruneSize" type="int" value="2"

 description="set max size for TTL Evictor" />

 <property name="numberOfHeaps" type="int" value="1"

 description="set number of TTL heaps" />

 <property name="sleepTime" type="int" value="1"

 description="evictor thread sleep time" />

 </bean>

</backingMapPluginCollection>

<backingMapPluginCollection id="LifeTimeInCache">

 <bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.TTLEvictor">

 <property name="lifeTime" type="int" value="3"

 description="lifetime of map entry is 3 seconds" />

 <property name="pruneSize" type="int" value="2"

 description="set max size for TTL Evictor" />

 <property name="numberOfHeaps" type="int" value="1"

 description="set number of TTL heaps" />

 <property name="sleepTime" type="int" value="1"

 description="evictor thread sleep time" />

 </bean>

</backingMapPluginCollection>

The lifeTime property controls the evictor.

See Chapter 10, “Integrating ObjectGrid with WebSphere Application Server,” on

page 279 for more information about how you can use ObjectGrid with WebSphere

Application Server.

314 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 11. ObjectGrid performance best practices

You can improve the performance of a ObjectGrid Map with the following best

practices. These best practices are implemented only in the context of the

application and its architecture.

Every application and environment uses a different solution for performance.

ObjectGrid provides built-in customizations to improve performance, but you can

also improve performance within the application architecture. The following areas

offer performance improvements:

v “Locking performance best practices”

Choose between the different locking strategies that can affect the performance

of your applications.

v “copyMode method best practices” on page 316

Choose between the different copy modes that can be used to change how

ObjectGrid maintains and copies entries.

v “ObjectTransformer interface best practices” on page 320

Use the ObjectTransformer interface to allow callbacks to the application to

provide custom implementations of common and expensive operations such as

object serialization and a deep copy on an object.

v “Plug-in evictor performance best practices” on page 321

Choose between least frequently used (LFU) and least recently used (LRU)

eviction strategies.

v “Default evictor best practices” on page 323

Properties for the default time to live (TTL) evictor, the default evictor that is

created with every backingMap.

Locking performance best practices

Locking strategies can affect the performance of your applications.

For more details about the following locking strategies, see the “Locking” on page

123 topic.

Pessimistic locking strategy

You can use the pessimistic locking strategy for read and write map operations

where keys often collide. The pessimistic locking strategy has the greatest impact

on performance.

Optimistic locking strategy

Optimistic locking is the default configuration. This strategy improves both on

performance and scalability over the pessimistic strategy. Use this strategy when

your applications can tolerate some optimistic update failures, while still performing

better than pessimistic strategy. This strategy works great for read mostly,

infrequent update applications.

© Copyright IBM Corp. 2004, 2005 315

None locking strategy

Use the none locking strategy is good for applications that are read only. The none

locking strategy does not obtain any locks. Therefore, it offers the most

concurrency, performance and scalability.

copyMode method best practices

ObjectGrid makes a copy of the value based on the CopyMode setting. You can

use the BackingMap API setCopyMode(CopyMode, valueInterfaceClass) method to

set the copy mode to one of the following final static fields that are defined in the

com.ibm.websphere.objectgrid.CopyMode class.

When an application uses the ObjectMap interface to obtain a reference to a map

value, it is recommended to use that reference only within the ObjectGrid

transaction that obtained the reference. Using the reference in a different

ObjectGrid transaction can lead to errors. For example, if you use the pessimistic

locking strategy for the BackingMap, a get or getForUpdate method call acquires an

S (shared) or U (update) lock respectively. The get method returns the reference to

the value and the lock that is obtained is released when the transaction completes.

The transaction must call the get or getForUpdate method to lock the map entry in

a different transaction. Each transaction must obtain its own reference to the value

by calling the get or getForUpdate method instead of reusing the same value

reference in multiple transactions.

Use the following information to choose between the copy modes with the following

information:

COPY_ON_READ_AND_COMMIT mode

The COPY_ON_READ_AND_COMMIT mode is the default mode. The

valueInterfaceClass argument is ignored when this mode is used. This mode

ensures that an application does not contain a reference to the value object that is

in the BackingMap, and instead the application is always working with a copy of the

value that is in the BackingMap. The COPY_ON_READ_AND_COMMIT mode

ensures the application can never inadvertently corrupt the data that is cached in

the BackingMap. When an application transaction calls an ObjectMap.get method

for a given key, and it is the first access of the ObjectMap entry for that key, a copy

of the value is returned. When the transaction is committed, any changes

committed by the application are copied to the BackingMap to ensure that the

application does not have a reference to the committed value in the BackingMap.

COPY_ON_READ mode

The COPY_ON_READ mode improves performance over the

COPY_ON_READ_AND_COMMIT mode by eliminating the copy that occurs when

a transaction is committed. The valueInterfaceClass argument is ignored when this

mode is used. To preserve the integrity of the BackingMap data, the application

ensures that every reference that it has for an entry is destroyed after the

transaction is committed. With this mode, the ObjectMap.get method returns a copy

of the value instead of a reference to the value to ensure that changes made by the

application to the value does not affect the BackingMap value until the transaction

is committed. However, when the transaction does commit, a copy of changes is

not made. Instead, the reference to the copy that was returned by the

ObjectMap.get method is stored in the BackingMap. The application destroys all

map entry references after the transaction is committed. If application fails to do

316 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

this, the application might cause the data cached in BackingMap to become

corrupted. If an application is using this mode and is having problems, switch to

COPY_ON_READ_AND_COMMIT mode to see if the problem still exists. If the

problem goes away, then the application is failing to destroy all of its references

after the transaction has committed.

COPY_ON_WRITE mode

The COPY_ON_WRITE mode improves performance over the

COPY_ON_READ_AND_COMMIT mode by eliminating the copy that occurs when

the ObjectMap.get method is called for the first time by a transaction for a given

key. The ObjectMap.get method returns a proxy to the value instead of a direct

reference to the value object. The proxy ensures that a copy of the value is not

made unless the application calls a set method on the value interface that is

specified by the valueInterfaceClass argument. The proxy provides a copy on write

implementation. When a transaction commits, the BackingMap examines the proxy

to determine if any copy was made as a result of a set method being called. If a

copy was made, then the reference to that copy is stored in the BackingMap. The

big advantage of this mode is that a value is never copied on a read or at a commit

when the transaction never calls a set method to change the value.

The COPY_ON_READ_AND_COMMIT and COPY_ON_READ modes both make a

deep copy when a value is retrieved from the ObjectMap. If an application only

updates some of the values that are retrieved in a transaction then this mode is not

optimal. The COPY_ON_WRITE mode supports this behavior in an efficient manner

but requires that the application uses a simple pattern. The value objects are

required to support an interface. The application must use the methods on this

interface when interacting with the value within a ObjectGrid Session. If this is the

case, then the ObjectGrid creates proxies for the values that are returned to the

application. The proxy has a reference to be real value. If the application just does

reads, they always run against the real copy. If the application modifies an attribute

on the object, the proxy makes a copy of the real object and then makes the

modification on the copy. The proxy then uses the copy from that point on. This

allows the copy operation to be avoided completely for objects that are only read by

the application. All modify operations must start with the set prefix. Enterprise

JavaBeans normally are coded to use this style of method naming for methods that

modify the objects attributes. This convention must be followed. Any objects that are

modified are copied at the time they are modified by the application. This is the

most efficient read and write scenario supported by the ObjectGrid. You can

configure a map to use COPY_ON_WRITE as follows. In this example, the

application wants to store Person objects keyed using the name in the Map. The

person object looks like the following code snippet:

class Person

{

 String name;

 int age;

 public Person()

 {

 }

 public void setName(String n)

 {

 name = n;

 }

 public String getName()

 {

 return name;

 }

 public void setAge(int a)

Chapter 11. ObjectGrid performance best practices 317

{

 age = a;

 }

 public int getAge()

 {

 return age;

 }

}

The application uses IPerson interface only when interacts with values that are

retrieved from a ObjectMap. Modify the object to use an interface as in the following

example.

interface IPerson

{

 void setName(String n);

 String getName();

 void setAge(int a);

 int getAge();

}

// Modify Person to implement IPerson interface

class Person implements IPerson

{

 ...

}

The application then needs to configure the BackingMap to use COPY_ON_WRITE

mode, like in the following example:

ObjectGrid dg = ...;

BackingMap bm = dg.defineMap("PERSON");

// use COPY_ON_WRITE for this Map with

// IPerson as the valueProxyInfo Class

bm.setCopyMode(CopyMode.COPY_ON_WRITE,IPerson.class);

// The application should then use the following

// pattern when using the PERSON Map.

Session sess = ...;

ObjectMap person = sess.getMap("PERSON");

...

sess.begin();

// the application casts the returned value to IPerson and not Person

IPerson p = (IPerson)person.get("Billy");

p.setAge(p.getAge()+1);

...

// make a new Person and add to Map

Person p1 = new Person();

p1.setName("Bobby");

p1.setAge(12);

person.insert(p1.getName(), p1);

sess.commit();

// the following snippet WON’T WORK. Will result in ClassCastException

sess.begin();

// the mistake here is that Person is used rather than

// IPerson

Person a = (Person)person.get("Bobby");

sess.commit();

The first section shows the application retrieving a value that was named Billy in the

map. The application casts the returned value to IPerson object, and not the Person

object because the proxy that is returned implements two interfaces:

v The interface specified in the BackingMap.setCopyMode method call.

v The com.ibm.websphere.objectgrid.ValueProxyInfo interface

You can cast the proxy to two types. The last part of the preceding code snippet

demonstrates what is not allowed in COPY_ON_WRITE mode. The application

318 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

retrieves the Bobby record and tries to cast it to a Person object. This action fails

with a class cast exception because the proxy that is returned is not a Person

object. The returned proxy implements the IPerson object and ValueProxyInfo.

ValueProxyInfo interface and partial update support

This interface allows an application to retrieve either the committed read-only value

referenced by the proxy or the set of attributes that have been modified during this

transaction.

public interface ValueProxyInfo

{

List /**/ ibmGetDirtyAttributes();

Object ibmGetRealValue();

}

The ibmGetRealValue method returns a read only copy of the object. The

application must not modify this value. The ibmGetDirtyAttributes method returns a

list of strings representing the attributes that have been modified by the application

during this transaction. The main use case for ibmGetDirtyAttributes is in a Java

database connectivity (JDBC) or CMP based loader. Only the attributes that are

named in the list need be updated on either the SQL statement or object mapped to

the table, which leads to more efficient SQL generated by the Loader. When a copy

on write transaction is committed and if a loader is plugged in, the the loader can

cast the values of the modified objects to the ValueProxyInfo interface to obtain this

information.

Handling the equals method when using COPY_ON_WRITE or proxies.

For example, the following code constructs a Person object and then inserts it to a

an ObjectMap. Next, it retrieves the same object using ObjectMap.get method. The

value is cast to the interface. If the value is cast to the Person interface, a

ClassCastException exception results because the returned value is a proxy that

implements the IPerson interface and is not a Person object. The equality check

fails when using the == operation because they are not the same object.

session.begin();

// new the Person object

Person p = new Person(...);

personMap.insert(p.getName, p);

// retrieve it again, remember to use the interface for the cast

IPerson p2 = personMap.get(p.getName());

if(p2 == p)

{

// they are the same

}

else

{

// they are not

}

Another consideration is when you must override the equals method. As illustrated

in the following snippet of code, the equals method must verify that the argument is

an object that implements IPerson interface and cast the argument to be a IPerson.

Because the argument might be a proxy that implements the IPerson interface, you

must use the getAge and getName methods when comparing instance variables for

equality.

public boolean equals(Object obj)

{

 if (obj == null) return false;

 if (obj instanceof IPerson)

Chapter 11. ObjectGrid performance best practices 319

{

 IPerson x = (IPerson) obj;

 return (age.equals(x.getAge()) && name.equals(x.getName()))

 }

 return false;

}

NO_COPY mode

The NO_COPY mode allows an application to ensure that it never modifies a value

object that is obtained using an ObjectMap.get method in exchange for performance

improvements. The valueInterfaceClass argument is ignored when this mode is

used. If this mode is used, no copy of the value is ever made. If the application

does modify values, then data in the BackingMap is corrupted. The NO_COPY

mode is primarily useful for read-only maps where data is never modified by the

application. If the application is using this mode and it is having problems, then

switch to the COPY_ON_READ_AND_COMMIT mode to see if the problem still

exists. If the problem goes away, then the application is modifying the value

returned by ObjectMap.get method, either during transaction or after transaction has

committed.

ObjectTransformer interface best practices

ObjectTransformer uses callbacks to the application to provide custom

implementations of common and expensive operations such as object serialization

and a deep copy on an object.

For specific details about the ObjectTransformer interface, see the

“ObjectTransformer plug-in” on page 202 topic. From a performance point of view

and information from the CopyMode method in the “copyMode method best

practices” on page 316 topic, it is clear that ObjectGrid copies the values for all

cases except when in NO_COPY mode. The default copying mechanism that is

employed within ObjectGrid is serialization, which is known as an expensive

operation. The ObjectTransformer interface can be used in this situation. The

ObjectTransformer interface uses callbacks to the application to provide a custom

implementation of common and expensive operations such as object serialization

and deep copies on objects.

An application can provide an implementation of the ObjectTransformer interface to

a map. The ObjectGrid then delegates to the methods on this object and relies on

the application to provide an optimized version of each method in the interface. The

ObjectTransformer interface follows:

public interface ObjectTransformer

{

 void serializeKey(Object key, ObjectOutputStream stream)

 throws IOException;

 void serializeValue(Object value, ObjectOutputStream stream)

 throws IOException;

 Object inflateKey(ObjectInputStream stream)

 throws IOException, ClassNotFoundException;

 Object inflateValue(ObjectInputStream stream)

 throws IOException, ClassNotFoundException;

 Object copyValue(Object value);

 Object copyKey(Object key);

}

You can associate an ObjectTransformer interface with a BackingMap by using the

following example code:

320 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

ObjectGrid g = ...;

BackingMap bm = g.defineMap("PERSON");

MyObjectTransformer ot = new MyObjectTransformer();

bm.setObjectTransformer(ot);

Tune object serialization and inflation

Object serialization is usually the biggest performance issue with ObjectGrid.

ObjectGrid uses the default serializable mechanism if an ObjectTransformer plug-in

is not supplied by the application. An application can provide implementations of

either the Serializable readObject and writeObject or it can have the objects

implement the Externalizable interface, which is around 10 times faster. If the

objects in the Map cannot be modified, then an application can associate an

ObjectTransformer with the ObjectMap. The serialize and inflate methods are

provided to allow the application to provide custom code to optimize these

operations given their large performance impact on the system. The serialize

methods serialize the object and provide a stream. The method serializes the

method to the provided stream. The inflate methods provide the input stream and

expect the application to create the object, inflate it using data in the stream and

then return the object. The implementations of the serialize and inflate methods

must mirror each other.

Tune deep copy operations

After an application receives an object from an ObjectMap then the ObjectGrid

performs a deep copy on the object value to ensure that the copy in the BaseMap

map stays safe. The application can then modify the object value safely. When the

transaction commits, the copy of the object value in the BaseMap map is updated

to the new modified value and the application stops using the value from that point

on. You could have copied the object again at the commit phase to make a private

copy, but in this case the performance cost of this action was traded off against

telling the application programmer to not use the value after the transaction

commits. The default object copy mechanism attempts to use either a clone or a

serialize and inflate pair to generate a copy. The serialize and inflate pair is the

worst case performance scenario. If profiling reveals that serialize and inflate is a

problem for your application, provide an ObjectTransformer plug-in and implement

the copyValue and copyKey methods using a more efficient object copy.

Plug-in evictor performance best practices

If you use plug-in evictors, they are not active until you create them and tell the

backing map to use them. Use these best practices and performance tips for least

frequently used (LFU) and least recently used (LRU) evictors.

Least frequently used (LFU) evictor

The concept of a LFU evictor is to remove entries from the map that are used

infrequently. The entries of the map are spread over a set amount of binary heaps.

As the usage of a particular cache entry grows, it becomes ordered higher in the

heap. When the evictor attempts a set of evictions it removes only the cache entries

that are located lower than a specific point on the binary heap. As a result, the least

frequently used entries are evicted.

Chapter 11. ObjectGrid performance best practices 321

Least recently used (LRU) evictor

The LRU Evictor follows the same concepts of the LFU Evictor with a few

differences. The main difference is that the LRU uses a first in, first out queue

(FIFO) instead of a set of binary heaps. Every time a cache entry is accessed, it

moves to the head of the queue. Consequently, the front of queue contains the

most recently used map entries and the end becomes the least recently used map

entries. For example, the A cache entry is used 50 times, and the B cache entry is

used only once right after the A cache entry. In this situation, the B cache entry is at

the front of the queue because it was used most recently, and the A cache entry is

at the end of the queue. The LRU evictor evicts the cache entries that are at the tail

of the queue, which are the least recently used map entries.

LFU and LRU properties and best practices to improve

performance

Number of heaps

When using the LFU evictor, all of the cache entries for a particular map

are ordered over the number of heaps that you specify, improving

performance drastically and preventing all of the evictions from

synchronizing on one binary heap that contains all of the ordering for the

map. More heaps also speeds up the time that is required for reordering the

heaps because each heap has fewer entries. Set the number of heaps to

10% of the number of entries in your BaseMap.

Number of queues

When using the LRU evictor, all of the cache entries for a particular map

are ordered over the number of LRU queues that you specify, improving

performance drastically and preventing all of the evictions from

synchronizing on one queue that contains all of the ordering for the map.

Set the number of queues to 10% of the number of entries in your

BaseMap.

MaxSize property

When an LFU or LRU evictor begins evicting entries, it uses the MaxSize

evictor property to determine how many binary heaps or LRU queue

elements to evict. For example, assume that you set the number of heaps

or queues to have about 10 map entries in each map queue. If your

MaxSize property is set to 7, the evictor evicts 3 entries from each heap or

queue object to bring the size of each heap or queue back down to 7. The

evictor only evicts map entries from a heap or queue when that heap or

queue has more than the MaxSize property value of elements in it. Set the

MaxSize to 70% of your heap or queue size. For this example, the value is

set to 7. You can get an approximate size of each heap or queue by

dividing the number of BaseMap entries by the number of heaps or queues

that are used.

SleepTime property

An evictor does not constantly remove entries from your map. Instead it

sleeps for a set amount of time, only waking every n number of seconds ,

where n refers to the SleepTime property. This property also positively

affects performance: running an eviction sweep too often lowers

performance because of the resources that are needed for processing

them. However, not using the evictor enough can leave you with a map of

unneeded entries. A map full of unneeded entries can negatively affect both

the memory requirements and processing resources that required for your

map. Setting the eviction sweeps to fifteen seconds is a good practice for

most maps. If the map is written to frequently and is used at a high

322 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

transaction rate, it might be more useful to set the value to a lower time.

However, if the map is accessed very infrequently, you can set the time to a

higher value.

Example

The following example defines a map, creates a new LFU evictor, sets the evictor

properties, and sets the map to use the evictor:

//Use ObjectGridManager to create/get the ObjectGrid. Refer to

// the ObjectGridManger section

ObjectGrid objGrid = ObjectGridManager.create............

BackingMap bMap = objGrid.defineMap("SomeMap");

//Set properties assuming 50,000 map entries

LFUEvictor someEvictor = new LFUEvictor();

someEvictor.setNumberOfHeaps(5000);

someEvictor.setMaxSize(7);

someEvictor.setSleepTime(15);

bMap.setEvictor(someEvictor);

Using the LRU evictor is very similar to using an LFU evictor. Following is an

example:

ObjectGrid objGrid = new ObjectGrid;

BackingMap bMap = objGrid.defineMap("SomeMap");

//Set properties assuming 50,000 map entries

LRUEvictor someEvictor = new LRUEvictor();

someEvictor.setNumberOfLRUQueues(5000);

someEvictor.setMaxSize(7);

someEvictor.setSleepTime(15);

bMap.setEvictor(someEvictor);

Notice that only 2 lines are different from the LFUEvictor example.

Default evictor best practices

Best practices for the default time to live evictor.

In addition to the plug-in evictors that are described in the “Plug-in evictor

performance best practices” on page 321 topic, a default TTL evictor is created with

every backing map. The default evictor removes entries based on a time to live

concept. This behavior is defined by the ttlType attribute. Three ttlTypes attributes

exist:

v None : Specifies that entries never expire and therefore are never removed from

the map.

v Creation time : Specifies that entries are evicted depending on when they were

created.

v Last accessed time : Specifies that entries are evicted depending upon when

they were last accessed.

Default evictor properties and best practices for performance

TimeToLive property

 This property, along with ttlType property, is the most crucial from a

performance perspective. If you are using the CREATION_TIME ttlType, the

evictor evicts an entry when its time from creation equals its TimeToLive

attribute value. If you set the TimeToLive attribute value to 10 seconds,

everything in the entire map is evicted after ten seconds. It is important to

Chapter 11. ObjectGrid performance best practices 323

take caution when setting this value for the CREATION_TIME ttlType. This

evictor is best used when reasonably high amounts of additions to the

cache exist that are only used for a set amount of time. With this strategy,

anything that is created is removed after the set amount of time.

 Following is an example of where a TTL type of CREATION_TIME is useful.

You are using a Web application that obtains stock quotes, and getting the

most recent quotes is not critical. In this case, the stock quotes are cached

in an ObjectGrid for 20 minutes. After 20 minutes, the ObjectGrid map

entries expire and are evicted. Every twenty minutes or so the ObjectGrid

map uses the Loader plug-in to refresh the map data with fresh data from

the database. The database is updated every 20 minutes with the most

recent stock quotes. So for this application, using a TimeToLive value of 20

minutes is ideal.

 If you are using the LAST_ACCESSED_TIME ttlType attribute, set the

TimeToLive to a lower number than if you are using the CREATION_TIME

ttlType, because the entries TimeToLive attribute is reset every time it is

accessed. In other words, if the TimeToLive attribute is equal to 15 and an

entry has existed for 14 seconds but then gets accessed, it does not expire

again for another 15 seconds. If you set the TimeToLive to a relatively high

number, many entries might never be evicted. However, if you set the value

to something like 15 seconds, entries might be removed when they are not

often accessed.

 Following is an example of where a TTL type of LAST_ACCESSED_TIME

is useful. An ObjectGrid map is used to hold session data from a client.

Session data must be destroyed if the client does not use the session data

for some period of time. For example, the session data times out after 30

minutes of no activity by the client. In this case, using a TTL type of

LAST_ACCESSED_TIME with the TimeToLive attribute set to 30 minutes is

exactly what is needed for this application.

Example

 The following example creates a backing map, set its default evictor ttlType

attribute, and sets its TimeToLive property.

ObjectGrid objGrid = new ObjectGrid;

BackingMap bMap = objGrid.defineMap("SomeMap");

bMap.setTtlEvictorType(TTLType.LAST_ACCESSED_TIME);

bMap.setTimeToLive(15);

Most evictor settings should be set prior to ObjectGrid initialization. For a

more in-depth understanding of the evictors, see “Evictors” on page 182.

324 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 12. Distributing changes between peer Java virtual

machines

The LogSequence and LogElement objects communicate the changes that have

occurred in an ObjectGrid transaction with a plug-in.

For more information about how Java Message Service (JMS) can be used to

distribute transactional changes, see “Java Message Service for distributing

transaction changes” on page 328.

A prerequisite is that the ObjectGrid instance must be cached by the

ObjectGridManager. See“createObjectGrid methods” on page 87 for more

information. The cacheInstance boolean value must be set to true.

The objects provide a means for an application to easily publish changes that have

occurred in an object grid using a message transport to peer ObjectGrids in remote

Java virtual machines (JVM) and then apply those changes on that JVM. The

LogSequenceTransformer class is critical to enabling this support. This article

examines how to write a listener using a Java Message Service (JMS) messaging

system for propagating the messages.

ObjectGrid supports transmitting LogSequences that result from an ObjectGrid

transaction commit across WebSphere Application Server cluster members with an

IBM-provided plug-in. This function is not enabled by default, but can be configured

to be operational. However, when either the consumer or producer is not a

WebSphere Application Server, using an external JMS messaging system might be

required.

1. Initialize the plug-in. The ObjectGrid calls the initialize method of the plug-in,

part of the ObjectGridEventListener interface contract, when the ObjectGrid

starts. The initialize method must obtain its JMS resources, including

connections, sessions, and publishers, and start the thread that is the JMS

listener. The initialize method looks like the following example:

public void initialize(Session session)

{

 mySession = session;

 myGrid = session.getObjectGrid();

 try

 {

 if(mode == null)

 {

 throw new ObjectGridRuntimeException("No mode specified");

 }

 if(userid != null)

 {

 connection = topicConnectionFactory.createTopicConnection(

 userid, password);

 }

 else

 connection = topicConnectionFactory.createTopicConnection();

 // need to start the connection to receive messages.

 connection.start();

 // the jms session is not transactional (false).

 jmsSession = connection.createTopicSession(false,

 javax.jms.Session.AUTO_ACKNOWLEDGE);

 if(topic == null)

 if(topicName == null)

© Copyright IBM Corp. 2004, 2005 325

{

 throw new ObjectGridRuntimeException("Topic not specified");

 }

 else

 {

 topic = jmsSession.createTopic(topicName);

 }

 publisher = jmsSession.createPublisher(topic);

 // start the listener thread.

 listenerRunning = true;

 listenerThread = new Thread(this);

 listenerThread.start();

 }

 catch(Throwable e)

 {

 throw new ObjectGridRuntimeException("Cannot initialize", e);

 }

}

The code to start the thread uses a Java 2 Platform, Standard Edition (J2SE)

thread. If you are running a WebSphere Application Server Version 6.x or a

WebSphere Application Server Version 5.x Enterprise server, use the

asynchronous bean application programming interface (API) to start this

daemon thread. You can also use the common APIs. Following is an example

replacement snippet showing the same action using a work manager:

// start the listener thread.

listenerRunning = true;

workManager.startWork(this, true);

The plug-in must also implement the Work interface instead of the Runnable

interface. You also need to add a release method to set the listenerRunning

variable to false. The plug-in must be provided with a WorkManager instance in

its constructor or by injection if using an Inversion of Control (IoC) container.

2. Transmit the changes. Following is a sample transactionEnd method for

publishing the local changes that are made to an ObjectGrid. This uses JMS

although clearly, you can use any message transport that is capable of reliable

publish and subscribe messaging.

// This method is synchronized to make sure the

// messages are published in the order the transaction

// were committed. If we started publishing the messages

// in parallel then the receivers could corrupt the Map

// as deletes may arrive before inserts etc.

public synchronized void transactionEnd(String txid,

boolean isWriteThroughEnabled,

boolean committed, Collection changes)

{

 try

 {

 // must be write through and commited.

 if(isWriteThroughEnabled && committed)

 {

 // write the sequences to a byte []

 ByteArrayOutputStream bos = new ByteArrayOutputStream();

 ObjectOutputStream oos = new ObjectOutputStream(bos);

 if (publishMaps.isEmpty()) {

 // serialize the whole collection

 LogSequenceTransformer.serialize(changes, oos, this, mode);

 }

 else {

 // filter LogSequences based on publishMaps contents

 Collection publishChanges = new ArrayList();

 Iterator iter = changes.iterator();

 while (iter.hasNext()) {

326 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

LogSequence ls = (LogSequence) iter.next();

 if (publishMaps.contains(ls.getMapName())) {

 publishChanges.add(ls);

 }

 }

 LogSequenceTransformer.serialize(publishChanges, oos, this,

mode);

 }

 // make an object message for the changes

 oos.flush();

 ObjectMessage om = jmsSession.createObjectMessage(

 bos.toByteArray());

 // set properties

 om.setStringProperty(PROP_TX, txid);

 om.setStringProperty(PROP_GRIDNAME, myGrid.getName());

 // transmit it.

 publisher.publish(om);

 }

 }

 catch(Throwable e)

 {

 throw new ObjectGridRuntimeException("Cannot push changes", e);

 }

}

This method uses several instance variables:

v jmsSession variable: A JMS session that is used to publish messages. It is

created when the plug-in initializes

v mode variable: The distribution mode.

v publishMaps variable: A set that contains the name of each Map with

changes to publish. If the variable is empty, then all the Maps are published.

v publisher variable: A TopicPublisher object that is created during the plug-in

initialize method.

3. Receive and apply update messages. Following is the run method. This method

runs in a loop until the application stops the loop. Each loop iteration attempts

to receive a JMS message and apply it to the ObjectGrid.

private synchronized boolean isListenerRunning()

{

 return listenerRunning;

}

public void run()

{

 try

 {

 System.out.println("Listener starting");

 // get a jms session for receiving the messages.

 // Non transactional.

 TopicSession myTopicSession;

 myTopicSession = connection.createTopicSession(false,

 javax.jms.Session.AUTO_ACKNOWLEDGE);

 // get a subscriber for the topic, true indicates don’t receive

 // messages transmitted using publishers

 // on this connection. Otherwise, we’d receive our own updates.

 TopicSubscriber subscriber = myTopicSession.createSubscriber(topic,

 null, true);

 System.out.println("Listener started");

 while(isListenerRunning())

 {

 ObjectMessage om = (ObjectMessage)subscriber.receive(2000);

 if(om != null)

 {

 // Use Session that was passed in on the initialize...

Chapter 12. Distributing changes between peer Java virtual machines 327

// very important to use no write through here

 mySession.beginNoWriteThrough();

 byte[] raw = (byte[])om.getObject();

 ByteArrayInputStream bis = new ByteArrayInputStream(raw);

 ObjectInputStream ois = new ObjectInputStream(bis);

 // inflate the LogSequences

 Collection collection = LogSequenceTransformer.inflate(ois,

 myGrid);

 Iterator iter = collection.iterator();

 while (iter.hasNext()) {

 // process each Maps changes according to the mode when

 // the LogSequence was serialized

 LogSequence seq = (LogSequence)iter.next();

 mySession.processLogSequence(seq);

 }

 mySession.commit();

 } // if there was a message

 } // while loop

 // stop the connection

 connection.close();

 }

 catch(IOException e)

 {

 System.out.println("IO Exception: " + e);

 }

 catch(JMSException e)

 {

 System.out.println("JMS Exception: " + e);

 }

 catch(ObjectGridException e)

 {

 System.out.println("ObjectGrid exception: " + e);

 System.out.println("Caused by: " + e.getCause());

 }

 catch(Throwable e)

 {

 System.out.println("Exception : " + e);

 }

 System.out.println("Listener stopped");

}

The LogSequenceTransformer class, and the ObjectGridEventListener,

LogSequence and LogElement APIs allow any reliable publish and subscribe to be

used to distribute the changes and filter the Maps that you want to distribute. The

snippets in this task show how to use these APIs with JMS to build a peer-to-peer

ObjectGrid that is shared by applications that are hosted on a diverse set of

platforms that share a common message transport.

Java Message Service for distributing transaction changes

Use Java Message Service (JMS) for distributed changes between different tiers or

in environments on mixed platforms.

JMS is an ideal protocol for distributed changes between different tiers or in

environments on mixed platforms. For example, some applications that use the

ObjectGrid might be deployed on Gluecode or Tomcat, where as other applications

might run on WebSphere Application Server Version 6.0. JMS is ideal for distributed

changes between ObjectGrid peers in these different environments. The high

availability manager message transport is very fast, but can only distribute changes

to JVMs that are in a single core group. JMS is slower, but allows larger and a

more diverse set of application clients to share an ObjectGrid. JMS is ideal for

328 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

example when sharing data in an ObjectGrid between a fat Swing client and an

application deployed on WebSphere Extended Deployment.

Overview

JMS is implemented for distributing transaction changes by using a Java object that

behaves as an ObjectGridEventListener listener. This object can propagate the

state in the following four ways:

Invalidate

Any entry that is evicted, updated or deleted is removed on all peer Java

Virtual Machines (JVMs) when they receive the message.

Invalidate conditional

The entry is evicted only if the local version is the same or older than the

version on the publisher.

Push Any entry that was evicted, updated, deleted or inserted is added or

overwritten on all peer JVMs when they receive the JMS message.

Push conditional

The entry is only updated or added on the receive side if the local entry is

less recent than the version that is being published.

Listen for changes for publishing

The plug-in implements the ObjectGridEventListener interface to intercept the

transactionEnd event. When the ObjectGrid invokes this method, the plug-in

attempts to convert the LogSequence list for each Map that is touched by the

transaction to a JMS message and then publish it. The plug-in can be configured to

publish changes for all Maps or a subset of Maps. LogSequence objects are

processed for the Maps that have publishing enabled. The

LogSequenceTransformer ObjectGrid class serializes a filtered LogSequence for

each Map to a stream. After all LogSequences are serialized to the stream then a

JMS ObjectMessage is created and published to a well known topic.

Listen for JMS messages and apply them to the local ObjectGrid

The same plug-in also starts a thread that spins in a loop, receiving all messages

that are published to the well known topic. When a message arrives, it passes the

message contents to the LogSequenceTransformer class to convert it to a set of

LogSequence objects. Then, a no write through transaction is started. Each

LogSequence object is provided to the Session.processLogSequence method,

which updates the local Maps with the changes. The processLogSequence method

understands the distribution mode. The transaction is committed and the local

cache now reflects the changes.

For more information about using JMS to distribute transaction changes, see

Chapter 12, “Distributing changes between peer Java virtual machines,” on page

325.

Chapter 12. Distributing changes between peer Java virtual machines 329

330 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 13. Injection-based container integration

You can use the Inversion of Control (IoC) framework to completely configure the

ObjectGrid. As a result, you do not need to use the ObjectGrid XML configuration

framework.

Injection-based containers

Injection based containers, also known as Inversion of Control (IoC), is a common

pattern that is used by applications on the client side and on the server side.

Several open source implementations of such containers exist. The new Enterprise

JavaBeans (EJB) Version 3.0 specification also borrows some of these concepts.

Most of these frameworks are Enterprise JavaBean containers, and take the

responsibility of creating an instance of a particular bean. These frameworks can

also initialize a bean with a set of properties and wire other Enterprise JavaBeans

that it requires by using getter and setter pairs on Enterprise JavaBean attributes.

The ObjectGrid application programming interfaces (API) are designed to work well

with such containers. Starting with the ObjectGridManager.createObjectGrid

methods, you can configure these containers to bootstrap an ObjectGrid so that the

application has a reference to either a working ObjectGrid or can ask for the

container to provide an ObjectGrid session when required.

Supported patterns

The following sections discuss what has been done to verify that the ObjectGrid

APIs can be used cleanly by an application that employs an IoC framework.

Use ObjectGridManager to create ObjectGrids

The ObjectGrid APIs are designed to work well with IoC frameworks. The root

singleton used by such a framework is the ObjectGridManager interface, which has

several createObjectGrid factory methods that return a reference to a named

ObjectGrid. You can set this ObjectGrid reference as a singleton in the IoC

framework, so that subsequent requests for the bean return the same ObjectGrid

instance.

ObjectGrid Plug-ins

The plug-ins on the ObjectGrid include:

v TransactionCallback

v ObjectGridEventListener

v SubjectSource

v MapAuthorization

v SubjectValidation

Each of the plug-ins are simple JavaBeans that implement an interface. You can

use the IoC framework to create these plug-ins and wire them to the appropriate

attributes on the ObjectGrid instance. Each of these plug-ins has a corresponding

set method on the ObjectGrid interface for clean integration with the IoC framework.

Create maps

The createMap factory method on the ObjectGrid interface can be used to create a

newly named Map. Any plug-ins that are required by the BackingMap (the object

© Copyright IBM Corp. 2004, 2005 331

returned by createMap) are constructed using the IoC framework and then wired to

the BackingMap by using the appropriate attribute name. Because the BackingMap

is not referenced by any other object, the IoC frameworks do not automatically

construct it. You can wire each BackingMap to a dummy attribute on the main

application bean as a work around. Use the setMaps() method to clear any

BackingMaps that have been previously defined on this ObjectGrid and replace

them with the list of BackingMaps that are provided.

Backing map plug-ins

The plug-ins on the BackingMap behave in the same manner as those on the

ObjectGrid. Each plug-in has a corresponding set method on the BackingMap

interface. The BackingMap plug-ins are:

v Loader

v ObjectTransformer

v OptimisticCallback

v Evictor

v MapEventListener

Usage patterns

After the IoC framework has its configuration file set up to produce an ObjectGrid,

create an enterprise bean that is called gridName_Session or something similar.

Define it as an Enterprise JavaBean that is obtained by calling the getSession

method on the ObjectGrid singleton Enterprise JavaBean. The application then uses

the IoC framework to obtain a reference to a gridName_Session object whenever

an object requires a new session.

Summary

Using the ObjectGrid in environments that already use an IoC framework for bean

instantiation and configuration is straightforward. You can use the IoC framework to

completely configure the ObjectGrid, and as a result, you do not need to use the

XML configuration framework. The ObjectGrid works seamlessly with your existing

IoC framework.

332 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Chapter 14. Troubleshooting

This section describes scenarios for troubleshooting problems that are caused by

an application error or an application design issue. If you suspect ObjectGrid has a

defect, you might need to enable tracing of ObjectGrid as described in the tracing

section of ObjectGridManager.

Intermittent and unexplained errors

An application attempts to improve performance by using the COPY_ON_READ,

COPY_ON_WRITE, or NO_COPY copy mode as described in the CopyMode

section. The application encounters intermittent problems when the symptom of the

problem is changing and the problem is unexplained or unexpected. Intermittent

problems do not occur when the copy mode is changed to the

COPY_ON_READ_AND_COMMIT mode.

Problem

The problem might be due to corrupted data in the ObjectGrid map, which is a

result of the application violating the programming contract of the copy mode that is

being used. Data corruption can cause unpredictable errors to occur intermittently

or in an unexplained or unexpected fashion.

Solution

The solution is for the application to comply with the programming contract stated

for the copy mode being used. For the COPY_ON_READ and COPY_ON_WRITE

copy modes, this means the application uses a reference to a value object outside

of the transaction scope where the value reference was obtained. To use these

modes, the application must agree to destroy the reference to the value object after

the transaction is completed and to obtain a new reference to the value object in

each transaction that needs to access the value object. For the NO_COPY copy

mode, the application must agree to never change the value object. In this case,

the application must either be changed so that it does not change the value object

or the application must use a different copy mode. See the CopyMode section for

additional details regarding the copy mode setting.

General exception handling technique

Knowing the root cause of a Throwable object is helpful in isolating the source of a

problem. The following is an example of a utility method that can be used by an

exception handler to find the root cause of the Throwable that occurred.

Example

static public Throwable findRootCause(Throwable t)

{

 // Start with Throwable that occurred as the root.

 Throwable root = t;

 // Follow cause chain until last Throwable in chain is found.

 Throwable cause = root.getCause();

 while (cause != null)

 {

 root = cause;

 cause = root.getCause();

 }

© Copyright IBM Corp. 2004, 2005 333

// Return last Throwable in the chain as the root cause.

 return root;

}

Specific exception handling techniques

Duplicate insert

This problem should typically only occurs in a distributed transaction propagation

environment. It does not happen often.

Message

[7/11/05 22:02:11:303 CDT] 00000032 SessionImpl < processLogSequence Exit

[7/11/05 22:02:11:303 CDT] 00000032 SessionImpl > commit for:

TX:08FE0C67−0105−4000−E000−1540090A5759 Entry

[7/11/05 22:02:11:303 CDT] 00000032 SessionImpl > rollbackPMapChanges for:

TX:08FE0C67−0105−4000−E000−1540090A5759

as result of Throwable: com.ibm.websphere.objectgrid.plugins.

CacheEntryException:

Duplicate key on an insert!

Entry com.ibm.websphere.objectgrid.plugins.CacheEntryException:

Duplicate key on an insert!

at com.ibm.ws.objectgrid.map.BaseMap.applyPMap(BaseMap.java:528)

at com.ibm.ws.objectgrid.SessionImpl.commit(SessionImpl.java:405)

at com.ibm.ws.objectgrid.plugins.TranPropWorkerThread.commitPropagatedLogSequence

(TranPropWorkerThread.java:553)

at com.ibm.ws.objectgrid.plugins.TranPropWorkerThread.processCommitRequest

(TranPropWorkerThread.java:449)

at com.ibm.ws.objectgrid.plugins.TranPropWorkerThread.run

(TranPropWorkerThread.java:200)

at java.lang.Thread.run(Thread.java:568)

Problem

When the filtered log sequence is propagated from one JVM to another, the foreign

log sequence is processed in the second JVM. The entry for this key may exist or

the two log sequence operation codes should be different This problem happens

occasionally.

Impact and solution

When this problem occurs, the entry is not updated in another JVM which can

cause an inconsistency in ObjectGrid. However, a workaround exists to avoid this

problem. You can use the partitioning facility (WPF) on object retrieval in addition to

the object insert/update/remove. Reference the Integrating WPF and ObjectGrid

section for more information on this technique.

Optimistic collision exception

You can receive an OptimisticCollisionException exception directly, or receive it

while receiving an ObjectGridException exception. The following code is an

example of how to catch the exception and then display its message:

try {

...

} catch (ObjectGridException oe) {

System.out.println(oe);

}

334 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Exception cause

An OptimisticCollisionException exception is created in a situation where two

different clients try to update the same map entry at relatively the same time. One

client’s session is committed and updates the map entry. However, the other client

has already read the data before the commit and contains old or incorrect data. The

other client will then attempt to commit the incorrect data, which is when the

exception is created.

Retrieving the key that triggered the exception

It might be useful, when troubleshooting such an exception, to retrieve the key

corresponding to the entry which triggered the exception. The benefit of the

OptimisticCollisionException is that it has a built in method getKey that returns the

object representing that key. Following is an example on how to retrieve and print

the key when catching the OptimisticCollisionException :

try {

...

} catch (OptimisticCollisionException oce) {

 System.out.println(oce.getKey());

}

An OptimisticCollisionException might be the cause of an ObjectGridException. If

this is the case, you can use the following code to determine the exception type

and print out the key. The code below uses the findRootCause utility method as

described in the General Exception Handling Technique section.

try {

...

}

catch (ObjectGridException oe) {

 Throwable Root = findRootCause(oe);

 if (Root instanceof OptimisticCollisionException) {

 OptimisticCollisionException oce = (OptimisticCollisionException)Root;

 System.out.println(oce.getKey());

 }

}

LockTimeoutException exception

Message

You can catch a LockTimeoutException exception directly, or while catching an

ObjectGridException. The following code snippet shows how to catch the exception

and display the message.

try {

 ...

}

catch (ObjectGridException oe) {

 System.out.println(oe);

}

The result is:

com.ibm.websphere.objectgrid.plugins.LockTimeoutException: %Message

%Message represents the string that is passed as a parameter when the exception

is created and the exception properties and methods are used to display an

accurate error message. It most likely describes the type of lock that was

Chapter 14. Troubleshooting 335

requested, and which map entry the transaction acted upon.

Exception cause

When a transaction or client is asking for a lock to be granted for a specific map

entry it will often have to wait for the current client to release the lock. If the lock

request remains idle for an extended period of time, and a lock never gets granted,

a LockTimeoutException is created. This is to prevent a deadlock, which is

described in more detail in the following section. You are more likely to see this

exception when using a pessimistic locking strategy because the lock is never

released until the transaction is committed.

Getting more details about the lock request and exception

The LockTimeoutException has a built in method called

getLockRequestQueueDetails which returns a string that contains a more in-depth

description of the situation that triggered the exception. The following is an example

of some code that catches the exception, and displays an error message.

try {

 ...

}

catch (LockTimeoutException lte) {

 System.out.println(lte.getLockRequestQueueDetails());

}

The output result is:

lock request queue

−>[TX:163C269E−0105−4000−E0D7−5B3B090A571D, state =

 Granted 5348 milli−seconds ago, mode = U]

−>[TX:163C2734−0105−4000−E024−5B3B090A571D, state =

 Waiting for 5348 milli−seconds, mode = U]

−>[TX:163C328C−0105−4000−E114−5B3B090A571D, state =

 Waiting for 1402 milli−seconds, mode = U]

If you get the exception in an ObjectGridException catch block, the following code

determines the exception and print out the queue details. It uses the findRootCause

utility method described in General Exception Handling Technique section.

try {

...

}

catch (ObjectGridException oe) {

 Throwable Root = findRootCause(oe);

 if (Root instanceof LockTimeoutException) {

 LockTimeoutException lte = (LockTimeoutException)Root;

 System.out.println(lte.getLockRequestQueueDetails());

 }

}

Possible solution

The LockTimeoutException is to prevent possible deadlocks in your application. An

exception of this type will be thrown when it has waited a set amount of time. The

amount of time it waits, however, can be set using the setLockTimeout(int) method

which is available for the BackingMap. Using the setLockTimeout method eliminates

the LockTimeoutException. If a deadlock does not actually exist in your application,

adjusting the lock timeout can help you avoid the LockTimeoutException.

The following code shows how to create an ObjectGrid, define a map, and set its

LockTimeout value to 30 seconds

336 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

ObjectGrid objGrid = new ObjectGrid();

BackingMap bMap = objGrid.defineMap("MapName");

//This will set the amount of time that a

// lock request will wait before an exception is thrown

bMap.setLockTimeout(30);

The previous code can be used for hard-coding ObjectGrid and map properties. If

you create ObjectGrid from an XML file, the LockTimeout property can be set within

the backingMap tag. Following is an example of a backingMap tag that sets a map

LockTimeout value to 30 seconds.

<backingMap name="MapName" lockStrategy="PESSIMISTIC" lockTimeout="30">

LockDeadlockException

Message

You can catch a LockDeadLockException directly, or get it while catching an

ObjectGridException. Following is a code example that shows catching the

exception, then the displayed message.

try {

...

} catch (ObjectGridException oe) {

System.out.println(oe);

}

The result is:

com.ibm.websphere.objectgrid.plugins.LockDeadlockException: %Message

%Message represents the string that is passed as a parameter when the exception

is created and thrown.

Exception cause

The most common type of deadlock happens when using the pessimistic lock

strategy, and two separate clients each own a shared lock on a particular object.

Then, both attempt to promote to an exclusive lock on that object. Following is a

diagram that shows such a situation with transaction blocks that would cause the

exception to be thrown.

Client 1 Client 2

ObjectMap
Session.begin()
Map.get(x)
Map.update(x)
Session.commit()

Session 2

Session.begin()
Map.get(x)

Map.update(x)
Session.commit()

Session 2

Figure 23. Example of a potential deadlock situation

Chapter 14. Troubleshooting 337

This is an abstract view of what is occurring in your program when the exception

occurs. In an application with many threads updating the same ObjectMap, it is

possible to encounter this situation. The following is a step-by-step example of

when two clients execute the transaction code blocks, described in the previous

figure.

As shown, when both clients are trying to promote to exclusive locks and still own

the shared locks, it is impossible for either of them to actually get one. They always

wait for the other client to release its shared lock, and thus a

LockDeadlockException occurs.

Possible solutions

Receiving this exception is positive on occasion. When there are many threads, all

of which execute transactions on a particular map, it is possible that you will

encounter the situation described previously (Figure1). This exception is thrown to

keep your program from hanging. Catching this exception allows you to notify

yourself and, if you want to, add code to the catch block so that you can get more

details of the cause. Since you will only see this exception in a pessimistic locking

strategy, one simple solution is to simply use an optimistic locking strategy. If

Client 1 Client 2Cache Entry(x)

Shared Lock Shared Lock

When each client attempts a
Map.get(x) method call

Client 1 Client 2Cache entry (x)

Still shared Still shared

Session.commit()
method call

Lock manager displays
LockDeadlockException
to forceclient 1 transaction
to roll back

Client 1 asks lock
manager to release
the shared lock it owns.

Client 2 does not get a
LockDeadlockException.
Instead, it remains blocked waiting
for lock promotion.

When Client 1 releases the shared lock,
Client 2 is granted an exclusive lock and
is unblocked. Client 2 commit proceeds
and is successfully committed.

Lock

manager

When Client 1 attempts a

Session.commit() method call

Client 1 Client 2Cache entry (x)

When Client 2 attempts a

Session.commit() method call

Still shared Still shared

Lock

manager

Client 2 asks the Lock
manager to promote
an “exclusive” lock.
Client 2 blocks because
Client 1 still owns a shared
lock.

Figure 24. A deadlock situation

338 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

pessimistic is required, however, you can use the getForUpdate method instead of

the get method. This eliminates getting the exceptions for the situation described

previously.

XML configuration problem diagnosis

Referencing a nonexistent plug-in collection

When using XML to define BackingMap plug-ins, the pluginCollectionRef attribute of

the backingMap element must reference a backingMapPluginCollection. The

pluginCollectionRef attribute must match the id of one of the

backingMapPluginCollection elements.

Message

If the pluginCollectionRef attribute does not match any id attributes of any of the

backingMapPluginConfiguration elements, a message similar to the following

message is displayed in the log.

[7/14/05 14:02:01:971 CDT] 686c060e XmlErrorHandl E CWOBJ9002E:

This is an English only Error message:

Invalid XML file. Line: 14; URI: null;

Message: Key ’pluginCollectionRef’ with

value ’bookPlugins’ not found for identity

constraint of element ’objectGridConfig’..

The following message is an excerpt from the log with trace enabled:

[7/14/05 14:02:01:971 CDT] 686c060e XmlErrorHandl E CWOBJ9002E: This is an

English only Error message:

Invalid XML file. Line: 14; URI: null; Message: Key

’pluginCollectionRef’ with

value ’bookPlugins’ not found for identity constraint

of element ’objectGridConfig’..

[7/14/05 14:02:01:991 CDT] 686c060e SystemErr R com.ibm.websphere.objectgrid.

ObjectGridException:

Invalid XML file: etc/test/document/bookstore.xml

[7/14/05 14:02:01:991 CDT] 686c060e SystemErr R at

com.ibm.ws.objectgrid.config.XmlConfigBuilder.<init>(XmlConfigBuilder.java:160)

[7/14/05 14:02:01:991 CDT] 686c060e SystemErr R at

com.ibm.websphere.objectgrid.ProcessConfigXML$2.run(ProcessConfigXML.java:99)

...

[7/14/05 14:02:02:001 CDT] 686c060e SystemErr R Caused by: org.xml.sax.

SAXParseException: Key ’pluginCollectionRef’ with value ’bookPlugins’

not found for identity

constraint of element ’objectGridConfig’.

[7/14/05 14:02:02:001 CDT] 686c060e SystemErr R at org.apache.xerces.util.

ErrorHandlerWrapper.createSAXParseException(Unknown Source)

[7/14/05 14:02:02:001 CDT] 686c060e SystemErr R at org.apache.xerces.util.

ErrorHandlerWrapper.error(Unknown Source)

[7/14/05 14:02:02:001 CDT] 686c060e SystemErr R at org.apache.xerces.impl.

XMLErrorReporter.reportError(Unknown Source)

[7/14/05 14:02:02:001 CDT] 686c060e SystemErr R at org.apache.xerces.impl.

XMLErrorReporter.reportError(Unknown Source)

[7/14/05 14:02:02:011 CDT] 686c060e SystemErr R at org.apache.xerces.impl.xs.

XMLSchemaValidator$XSIErrorReporter.reportError(Unknown Source)

[7/14/05 14:02:02:011 CDT] 686c060e SystemErr R at org.apache.xerces.impl.xs.

XMLSchemaValidator.reportSchemaError(Unknown Source)

...

Chapter 14. Troubleshooting 339

Problem

The XML file that was used to produce this error is shown below. Notice that the

book BackingMap has its pluginCollectionRef attribute set to bookPlugins, and the

single backingMapPluginCollection has an id of collection1.

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config

 ../objectGrid.xsd" xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore">

 <backingMap name="book" pluginCollectionRef="bookPlugin" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="collection1">

 <bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" />

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

Solution

To fix the problem, ensure that the value of each pluginCollectionRef matches the id

of one of the backingMapPluginCollection elements. In this example, simply

changing the name of the pluginCollectionRef to collection1 avoids this error. Other

ways to fix the problem include changing the id of the existing

backingMapPluginCollection to match the pluginCollectionRef, or adding an

additional backingMapPluginCollection with an id that matches the

pluginCollectionRef.

Missing a required attribute

Many of the elements in the XML file have several optional attributes. You can

include or exclude optional attributes in the file. The XML will pass validation either

way. However, there are some required attributes. If these required attributes are

not present when their associated element is used, XML validation fails.

Message

When a required attribute is missing, a message similar to the one that follows is

found in the log. In this example, the type attribute is missing from the property

element.

[7/15/05 13:41:41:267 CDT] 6873dcac XmlErrorHandl E CWOBJ9002E:

This is an English only

Error message: Invalid XML file.

Line: 12; URI: null; Message: cvc−complex−type.4:

Attribute ’type’ must appear on element ’property’..

The following message is an excerpt from the log with trace enabled.

[7/15/05 14:08:48:506 CDT] 6873dff9 XmlErrorHandl E CWOBJ9002E: This is an English

only Error message: Invalid XML file.

Line: 12; URI: null; Message: cvc−complex−type.4: Attribute ’type’

must appear on element ’property’..

[7/15/05 14:08:48:526 CDT] 6873dff9 SystemErr R com.ibm.websphere.objectgrid.

ObjectGridException: Invalid XML file: etc/test/document/bookstore.xml

[7/15/05 14:08:48:536 CDT] 6873dff9 SystemErr R at com.ibm.ws.objectgrid.config.

XmlConfigBuilder.<init>(XmlConfigBuilder.java:160)

[7/15/05 14:08:48:536 CDT] 6873dff9 SystemErr R at com.ibm.websphere.objectgrid.

340 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

ProcessConfigXML$2.run(ProcessConfigXML.java:99)

...

[7/15/05 14:08:48:536 CDT] 6873dff9 SystemErr R Caused by: org.xml.sax.

SAXParseException: cvc−complex−type.4:

Attribute ’type’ must appear on element ’property’.

[7/15/05 14:08:48:546 CDT] 6873dff9 SystemErr R at org.apache.xerces.util.

ErrorHandlerWrapper.createSAXParseException(Unknown Source)

[7/15/05 14:08:48:546 CDT] 6873dff9 SystemErr R at org.apache.xerces.util.

ErrorHandlerWrapper.error(Unknown Source)

[7/15/05 14:08:48:546 CDT] 6873dff9 SystemErr R at org.apache.xerces.impl.

XMLErrorReporter.reportError(Unknown Source)

[7/15/05 14:08:48:546 CDT] 6873dff9 SystemErr R at org.apache.xerces.impl.

XMLErrorReporter.reportError(Unknown Source)

[7/15/05 14:08:48:546 CDT] 6873dff9 SystemErr R at org.apache.xerces.impl.xs.

XMLSchemaValidator$XSIErrorReporter.reportError(Unknown Source)

[7/15/05 14:08:48:546 CDT] 6873dff9 SystemErr R at org.apache.xerces.impl.xs.

XMLSchemaValidator.reportSchemaError(Unknown Source)

...

Problem

The following example is the XML file that was used to produce the previous error.

Notice that the property on the Evictor has only two of the three required attributes.

The name and value attributes are both present, but the type attribute is missing.

This missing attribute causes XML validation to fail.

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore">

 <backingMap name="book" pluginCollectionRef="collection1" />

 </objectGrid>

 </objectGrids>

 <backingMapPluginCollections>

 <backingMapPluginCollection id="collection1">

 <bean id="Evictor"

 className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" />

 <property name="maxSize" value="89" />

 </backingMapPluginCollection>

 </backingMapPluginCollections>

</objectGridConfig>

Solution

To solve this problem, add the required attribute to the XML file. In the example

XML file shown previously, you need to add the attribute type and assign the integer

value.

Missing a required element

A few of the XML elements are required by the schema. If they are not present, the

XML fails validation.

Message

When a required element is missing, a message similar to the one that follows is

found in the log. In this case, the objectGrid element is missing.

Chapter 14. Troubleshooting 341

[7/15/05 14:54:23:729 CDT] 6874d511 XmlErrorHandl E CWOBJ9002E:

This is an English only Error message: Invalid XML file.

Line: 5; URI: null; Message: cvc−complex−type.2.4.b: The content of

element ’objectGrids’ is not complete.

One of ’{"http://ibm.com/ws/objectgrid/config":objectGrid}’ is expected..

Enable trace to see more information regarding this error. Section

ObjectGridManager covers information on how to turn on the trace.

Problem

The following example is the XML file that was used to produce this problem. Notice

that the objectGrids element does not have objectGrid child elements. According to

the XML schema, the objectGrid element must occur within the objectGrids tags at

least once. This missing element causes XML validation to fail.

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 </objectGrids>

</objectGridConfig>

Solution

To fix this problem, make sure that the required elements are in the XML file. In the

previous example, at least one objectGrid element must be placed within the

objectGrids tag. Once the required elements are present, you can successfully

validate the XML file.

The following valid XML file contains the required elements present.

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore" />

 </objectGrids>

</objectGridConfig>

XML value of attribute is not valid

Message

Some of the attributes in the XML file can only be assigned certain values. These

attributes have their acceptable values enumerated by the schema. These attributes

include:

v authorizationMechanism v attribute on the objectGrid element

v copyMode attribute on the backingMap element

v lockStrategy attribute on the backingMap element

v ttlEvictorType attribute on the backingMap element

v type attribute on the property element

If one of these attributes is assigned an invalid value, XML validation fails.

When an attribute is set to a value that isn’t one of its enumerated values, the

following message shows in the log:

342 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

[7/19/05 16:45:40:992 CDT] 6870e51b XmlErrorHandl E CWOBJ9002E: This is an English

only Error message: Invalid XML file. Line: 6; URI: null; Message:

cvc−enumeration−valid: Value ’INVALID_COPY_MODE’ is not facet−valid with

respect to enumeration ’[COPY_ON_READ_AND_COMMIT, COPY_ON_READ,

COPY_ON_WRITE, NO_COPY]’. It must be a value from the enumeration..

The following excerpt is from the log with trace enabled.

[7/19/05 16:45:40:992 CDT] 6870e51b XmlErrorHandl E CWOBJ9002E: This is an

 English only Error message: Invalid XML file. Line: 6; URI: null; Message:

 cvc−enumeration−valid: Value ’INVALID_COPY_MODE’ is not facet−valid with

 respect to enumeration ’[COPY_ON_READ_AND_COMMIT, COPY_ON_READ,

 COPY_ON_WRITE, NO_COPY]’. It must be a value from the enumeration..

[7/19/05 16:45:41:022 CDT] 6870e51b SystemErr R com.ibm.websphere.objectgrid

 .ObjectGridException: Invalid XML file: etc/test/document/backingMapAttrBad.xml

[7/19/05 16:45:41:022 CDT] 6870e51b SystemErr R at com.ibm.ws.objectgrid.config

 .XmlConfigBuilder.<init>(XmlConfigBuilder.java:160)

[7/19/05 16:45:41:022 CDT] 6870e51b SystemErr R at com.ibm.websphere.objectgrid

 .ProcessConfigXML$2.run(ProcessConfigXML.java:99)...

[7/19/05 16:45:41:032 CDT] 6870e51b SystemErr R Caused by:

 org.xml.sax.SAXParseException:

 cvc−enumeration−valid: Value ’INVALID_COPY_MODE’ is not facet−valid

 with respect

 to enumeration ’[COPY_ON_READ_AND_COMMIT, COPY_ON_READ, COPY_ON_WRITE,

 NO_COPY]’.

 It must be a value from the enumeration.

[7/19/05 16:45:41:032 CDT] 6870e51b SystemErr R at org.apache.xerces.util

 .ErrorHandlerWrapper.createSAXParseException(Unknown Source)

[7/19/05 16:45:41:032 CDT] 6870e51b SystemErr R at org.apache.xerces.util

 .ErrorHandlerWrapper.error(Unknown Source)

[7/19/05 16:45:41:032 CDT] 6870e51b SystemErr R at org.apache.xerces.impl

 .XMLErrorReporter.reportError(Unknown Source)

[7/19/05 16:45:41:032 CDT] 6870e51b SystemErr R at org.apache.xerces.impl

 .XMLErrorReporter.reportError(Unknown Source)

[7/19/05 16:45:41:032 CDT] 6870e51b SystemErr R at org.apache.xerces.impl

 .xs.XMLSchemaValidator$XSIErrorReporter.reportError(Unknown Source)

[7/19/05 16:45:41:032 CDT] 6870e51b SystemErr R at org.apache.xerces.impl

 .xs.XMLSchemaValidator.reportSchemaError(Unknown Source)

...

Problem

An attribute that is assigned a value out of a specific set of values has been set

improperly. In this case, the copyMode attribute is not set to one of its enumerated

values. It was set to INVALID_COPY_MODE. The following is the XML file that was

used to produce this error.

<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

 xmlns="http://ibm.com/ws/objectgrid/config">

 <objectGrids>

 <objectGrid name="bookstore" />

 <backingMap name="book" copyMode="INVALID_COPY_MODE"/>

 </objectGrid>

 </objectGrids>

</objectGridConfig>

Solution

In this example, copyMode has an invalid value. Set the attribute to one of these

valid values: COPY_ON_READ_AND_COMMIT, COPY_ON_READ,

COPY_ON_WRITE, or NO_COPY.

Chapter 14. Troubleshooting 343

Validating XML without support of an implementation

The IBM Software Development Kit (SDK) version 1.4.2 contains an implementation

of some JAXP function to use for XML validation against a schema.

Message

When using a SDK that does not contain this implementation, attempts to validate

may fail. If you would like to validate XML using a SDK that does not contain this

implementation, download Xerces, and include its Java archive (JAR) files in the

classpath.

When you attempt to validate XML with a SDK that does not have the necessary

implementation, the following error is found in the log.

[7/19/05 10:50:45:066 CDT] 15c7850 XmlConfigBuil d XML validation is enabled

[7/19/05 10:50:45:086 CDT] 15c7850 SystemErr R com.ibm.websphere

 .objectgrid[7/19/05 10:50:45:086 CDT] 15c7850 SystemErr R at

 com.ibm.ws.objectgrid

 .ObjectGridManagerImpl.getObjectGridConfigurations

 (ObjectGridManagerImpl.java:182)

[7/19/05 10:50:45:086 CDT] 15c7850 SystemErr R at com.ibm.ws.objectgrid

 .ObjectGridManagerImpl.createObjectGrid(ObjectGridManagerImpl.java:309)

[7/19/05 10:50:45:086 CDT] 15c7850 SystemErr R at com.ibm.ws.objectgrid.test.

 config.DocTest.main(DocTest.java:128)

[7/19/05 10:50:45:086 CDT] 15c7850 SystemErr R Caused by: java.lang

 .IllegalArgumentException: No attributes are implemented

[7/19/05 10:50:45:086 CDT] 15c7850 SystemErr R at org.apache.crimson.jaxp.

 DocumentBuilderFactoryImpl.setAttribute(DocumentBuilderFactoryImpl.java:93)

[7/19/05 10:50:45:086 CDT] 15c7850 SystemErr R at com.ibm.ws.objectgrid.config

 .XmlConfigBuilder.<init>(XmlConfigBuilder.java:133)

[7/19/05 10:50:45:086 CDT] 15c7850 SystemErr R at com.ibm.websphere.objectgrid

 .ProcessConfigXML$2.run(ProcessConfigXML.java:99)

...

Problem

The SDK that is used does not contain an implementation of JAXP function that is

necessary to validate XML files against a schema.

Solution

After you download Apache Xerces and include the JARs in the classpath, you can

validate the XML file successfully.

ObjectGrid messages

This reference information provides additional information about messages you

might encounter while using the ObjectGrid. Messages are identified by the

message key and have explanation and user response. They could be information,

warning, or errors and are indicated by the last letter (I, W, or E) of the message

key. The explanation part of the message explains why the message occurs. The

user response part of the message describes what action should be taken in the

case of warning or error message.

CWOBJ0001E: Method, {0}, was called after initialization completed.

Explanation: After initialization completes, certain method

 invocations are no longer accepted.

User response: Restructure your code so that the configuration

completes before use of the runtime is initiated.

344 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

ICWOBJ0002W: ObjectGrid component is ignoring an unexpected

exception: {0}.

Explanation: CMSG0001

User response: CMSG0002

CWOBJ0005W: The thread created an InterruptedException: {0}

Explanation: An InterruptedException occurred.

User response: Check the exception message to see whether this

interruption is expected.

CWOBJ0006W: An exception occurred: {0}

Explanation: An exception occurred during the runtime.

User response: Check the exception message to see whether this is an

expected exception.

CWOBJ0007W: The value null was specified for {0}, a default

value of {1} is used.

Explanation: A null value was specified for the variable. A

default value is used.

User response: Set the appropriate value. Refer to ObjectGrid

documentation to know the valid values for the variables or properties.

CWOBJ0008E: The value {0} provided for the

property {1} is invalid.

Explanation: An invalid value was specified

for the variable.

User response: Set the appropriate value. Refer to ObjectGrid

document to know the valid values for the variables or properties.

CWOBJ0010E: Message key {0} is missing.

Explanation: A message key is missing in the message resource bundle

User response: CMSG0002

CWOBJ0011W: Cannot deserialize field {0} in class {1};

using the default value.

Explanation: During the deserialization of an object,

an expected field was not found. This field was probably not found

because the object was deserialized by a different version of the class

than the one that serialized it.

User response: This warning indicates a potential problem.

No user action is required unless further errors arise.

CWOBJ0012E: The LogElement type code, {0} ({1}), is not

recognized for this operation.

Explanation: An internal error occurred in the ObjectGrid runtime.

User response: CMSG0002

CWOBJ0013E: An exception occurred while attempting to evict

entries from the cache: {0}

Explanation: A problem occurred while attempting to apply

the eviction entries to the cache.

User response: Check the exception message to see whether this is

an expected exception.

CWOBJ0014E: The ObjectGrid runtime detected an attempt to

nest transactions.

Explanation: The nesting of transactions is not permitted.

User response: Modify the code to avoid the nesting of transactions.

CWOBJ0015E: An exception occurred while attempting

to process a transaction: {0}

Explanation: A problem occurred during transaction processing.

User response: Check the exception message to see

whether this exception is expected.

CWOBJ0016E: No active transaction is detected for the

current operation.

Explanation: An active transaction is necessary to

perform this operation.

User response: Modify the code to start a transaction

before performing this operation.

Chapter 14. Troubleshooting 345

CWOBJ0017E: A duplicate key exception was detected

during the processing of the ObjectMap operation: {0}

Explanation: The key for the entry already exists in the cache.

User response: Modify the code to avoid inserting the same

key more than once.

CWOBJ0018E: The key was not found during the processing of the

ObjectMap operation: {0}

Explanation: The key for the entry does not exist in the cache.

User response: Modify the code to ensure that the entry exists before

attempting the operation.

CWOBJ0019W: Did not find data in the cache entry slot reserved

for {0} to use for ObjectMap name {1}.

Explanation: An internal error occurred in the

ObjectGrid runtime.

User response: CMSG0002

CWOBJ0020E: Cache entry is not in BackingMap {0}.

Explanation: Internal error in ObjectGrid runtime.

User response: CMSG0002

CWOBJ0021E: A usable ObjectTransformer instance was not found

during the deserialization of the LogSequence object for {0} ObjectGrid and

{1} ObjectMap.

Explanation: The receiving side of a LogSequence object

does not have the proper configuration to support the required

ObjectTransformer instance.

User response: Verify the configuration of the ObjectGrid

instances for both the sending and receiving sides of the LogSequence object.

CWOBJ0022E: The caller does not own mutex: {0}.

Explanation: An internal error occurred in the ObjectGrid runtime.

User response: CMSG0002

CWOBJ0023E: The CopyMode ({0}) is not recognized for this operation.

Explanation: An internal error occurred in the ObjectGrid runtime.

User response: CMSG0002

CWOBJ0024E: Cannot deserialize field {0} in class {1}.

Deserialization failed.

Explanation: During deserialization of an object, a required

field was not found. This problem is likely an ObjectGrid runtime error.

User response: CMSG0002

CWOBJ0025E: The serialization of the LogSequence object failed.

The number of serialized LogElement objects ({0}) does not match the number of

read LogElement objects ({1}).

Explanation: An internal error occurred in the ObjectGrid runtime.

User response: CMSG0002

CWOBJ0026E: The JMX credential type is not right. It should be of type {0}.

Explanation: The JMX credential type is not right. If basic

authentication is used, the expected type is String[] with the first element

 being user name and the second being password. If the client certificate is

used, the expected type is Certificate[].

User response: Use the right credentials.

CWOBJ0027E: Internal runtime error. Clone method not supported: {0}

Explanation: An internal error occurred in the ObjectGrid runtime.

CLONE_METHOD_NOT_SUPPORTED_CWOBJ0027.useraction=CMSG0002

CWOBJ0028E: An error occurred in {0} for the map {1}. The key,

{2}, was not found in the map. LogElement type is {3}.

Explanation: An internal error occurred

when trying to evict an entry.

User response: CMSG0002

CWOBJ0029E: An error occurred in {0} for the map {1}. CacheEntry is

 missing a {2} object for key {3}. LogElement type is {4}.

Explanation: An internal error occurred when trying to evict an entry.

User response: CMSG0002

346 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

CWOBJ0900I: The ObjectGrid runtime component is started for server {0}.

Explanation: The ObjectGrid component is started.

User response: None. Informational entry.

CWOBJ0901E: "{0}" system property is required to start ObjectGrid

component for server {1}.

Explanation: ObjectGrid runtime component requires "{0}" to be

specified as a Java Virtual Machine system property.

User response: See Information Center for using WebSphere Administrator

Console for providing ObjectGrid required custom properties.

CWOBJ0902W: Error prevented the ObjectGrid runtime component from starting

for server {0}.

Explanation: A prior error prevented the ObjectGrid component from starting.

User response: See prior error messages to determine what prevented

ObjectGrid component from starting.

CWOBJ0910I: The ObjectGrid runtime component is stopped for server {0}.

Explanation: The ObjectGrid component is stopped.

User response: None. Informational entry.

CWOBJ0911I: Starting the ObjectGrid runtime component for server {0}.

Explanation: The ObjectGrid component is starting.

User response: None. Informational entry.

CWOBJ1001I: ObjectGrid Server {0} is ready to process requests.

Explanation: ObjectGrid Server is ready to process requests.

User response: The services for this ObjectGrid Server are available.

CWOBJ1002E: Server port {0} is already in use.

Explanation: ObjectGrid server cannot be started due to port conflict.

User response: Users need to choose another port.

CWOBJ1003I: DCS Adapter service is disabled by configuration,

to enable it, please change your configuration with an endpoint defined.

Explanation: DCS adapter is turned off.

User response: Users can turn on DCS adapter by changing the configuration.

CWOBJ1004E: Server topic is null

Explanation: Server topic is null

User response: CMSG0002

CWOBJ1005E: The incoming request queue is null.

Explanation: Client request handler cannot retrieve requests.

User response: CMSG0002

CWOBJ1006E: The outgoing result queue is null.

Explanation: Client request handler cannot give result to client.

User response: CMSG0002

CWOBJ1007E: ObjectGrid client request is null.

Explanation: Client request handler cannot handle request that does

not contain any information about the request.

User response: Check your request

CWOBJ1008E: ObjectGrid client request TxID is null.

Explanation: We use TXID to match connections and do pooling, TXID cannot be null.

User response: CMSG0002

CWOBJ1009E: ObjectGrid client received a null response from the server.

Explanation: Encountered a null response from server.

User response: CMSG0002

CWOBJ1010I: Shutdown request is processing.

Explanation: Cluster servers are processing the shutdown request.

User response: none

CWOBJ1011I: Shutdown request is sending.

Explanation: Cluster servers are processing the shutdown request

User response: none

CWOBJ1012I: Shutdown request is performed.

Explanation: Cluster servers are processing the shutdown request.

User response: none

Chapter 14. Troubleshooting 347

CWOBJ1110I: Starting the transport for ObjectGrid cluster {0} using

IP Address {1}, port {2}, transport type {3}.

Explanation: The ObjectGrid cluster member transport is starting.

User response: None. Informational entry.

CWOBJ1111W: Resolution of IP Addresses for host name {0} found only the

loopback address. The loopback address will be used.

Explanation: There may be a problem with the host name or DNS resolution.

For production related implementation, a non-loopback address is normally

expected.

User response: Modify the host name or determine if a DNS problem exits.

CWOBJ1112E: An error was encountered while looking up the IP address

for the host name of an ObjectGrid cluster member. The host name is {0}

and the server name is {1}. The member will be excluded from the cluster.

Explanation: Unable to resolve the IP address for the indicated host. The

ObjectGrid cluster member for the specified host will be excluded.

User response: Correct the host name lookup problem and retry.

CWOBJ1113E: ObjectGrid cluster transport service on this process

is not started. This cluster member is not defined in the configuration.

Explanation: This ObjectGrid cluster member is not a configured member

of the cluster. If this cluster member should be a member of a

ObjectGrid cluster, repair the configuration.

User response: Review the current configuration.

CWOBJ1114E: ObjectGrid cluster transport service on this process

could not process the incoming message. The message is {0} and the

exception is {1}.

Explanation: An unexpected internal error has been detected.

User response: Review the IBM ObjectGrid internet support web site for

a similar problem or contact IBM service.

CWOBJ1115E: An unrecognized view change event was received from the

ObjectGrid cluster transport. The view identifier is {0} and the event is {1}.

Explanation: The type of the event is not recognized. The HA Manager does

not know how to respond to the event.

User response: Review the IBM ObjectGrid internet support web site for a

similar problem or contact IBM service.

CWOBJ1116E: An attempt by another process to connect to this process

via the ObjectGrid cluster transport has been rejected. The connecting

process provided a name of {0}, a target of {1},

a member name of {2} and an IP address of {3}. The error message is {4}.

Explanation: The ObjectGrid cluster transport has rejected the

connection attempt.

User response: This may be a connection attempt from an unauthorized party.

CWOBJ1117E: An attempt to authenticate a connection has failed. The

exception is {0}.

Explanation: The ObjectGrid cluster transport has rejected the connection

attempt.

User response: This may be a connection attempt from an unauthorized party.

CWOBJ1118I: ObjectGrid Server Initializing [Cluster: {0} Server: {1}].

Explanation: The ObjectGrid cluster member is initializing.

User response: None. Informational entry.

CWOBJ1119I: ObjectGrid client failed to connect to host: {0} port: {1}.

Explanation: ObjectGrid client failed to connect.

User response: None. Informational entry.

CWOBJ1120I: ObjectGrid Client connected successfully to host: {0} port: {1}.

Explanation: ObjectGrid Client connected successfully.

User response: None. Informational entry.

CWOBJ1201E: No valid client access end points are defined.

Explanation: =No valid client access end points are defined.

User response: Define a valid client access end point.

348 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

CWOBJ1202E: SSL Server Socket failed to initialize. The exception

message is {0}

Explanation: SSL Server Socket fails to initialize. The SSL settings

might be wrong or the port number is already in use.

User response: Examine the exception to see what went wrong.

CWOBJ1203W: Received a timeout event from the server for

transaction: {0}

Explanation: Client did not receive expected response message

from the server within a configured timeout limit.

User response: Look for prior messages that may explain the timeout.

If none found, try increasing the timeout limit.

CWOBJ1204W: Received a message of unknown message type.

The message is: {0}

Explanation: An unexpected internal error has been detected.

User response: Review the IBM ObjectGrid internet

support web site for a similar problem or contact IBM service.

CWOBJ1205E: SSL Initialization failed. The exception

message is {0}

Explanation: SSL Initialization failed. The SSL settings

might be wrong.

User response: Examine the exception to see what

went wrong.

CWOBJ1206W: SSL Initialization failed. The exception message is {0}

Explanation: SSL Initialization failed. The SSL settings might be wrong.

User response: Examine the exception to see what went wrong.

CWOBJ1207W: The property {0} on plug-in {1} is using an

unsupported property type.

Explanation: Java primitives and their java.lang counterparts

are the only supported property types. java.lang.String is also supported.

User response: Check the property type and change it to

one of the supported types.

CWOBJ1208W: The specified plug-in type, {0}, is not one of

the supported plug-in types.

Explanation: This type of plug-in is unsupported.

User response: Add one of the supported plug-in

types.

CWOBJ1211E: The Performance Monitoring Infrastructure

(PMI) creation of {0} failed. The exception is {1}.

Explanation: An attempt to create ObjectGrid PMI failed.

User response: Examine the exception message

and the first failure data capture (FFDC) log.

The following messages are used to gather the user id and password on the panel

or standard input.

LOGIN_PANEL_TITLE=Login at the target server

GENERIC_LOGIN_PROMPT=Enter login information

USER_ID=User identity

PASSWORD=Password

OK=OK

CANCEL=Cancel

CWOBJ1215I: ObjectGrid Transaction Propagation Event Listener is

initializing [ObjectGrid {0}].

Explanation: This informational message indicates that the ObjectGrid Transaction

Propagation Event Listener is initializing.

User response: None. Informational entry.

CWOBJ1216I: ObjectGrid Transaction Propagation Event Listener

is initialized [ObjectGrid {0}].

Explanation: ObjectGrid Transaction Propagation Event Listener Initialized.

User response: =None. Informational entry.

CWOBJ1217I: ObjectGrid Transaction Propagation Service Point Initialized

[ObjectGrid {0}].

Explanation: This informational message indicates that the ObjectGrid

Transaction Propagation Event Listener is initialized.

User response: None. Informational entry.

Chapter 14. Troubleshooting 349

CWOBJ1218E: ObjectGrid Transaction Propagation Event Listener failure

occurred [ObjectGrid {0} Exception message {1}].

Explanation: ObjectGrid runtime encountered an ObjectGrid Transaction

Propagation failure.

User response: Examine the exception to determine the failure.

CWOBJ1219E: ObjectGrid Transaction Propagation Service End Point

failure occurred [ObjectGrid {0} Exception message {1}].

Explanation: ObjectGrid runtime encountered an ObjectGrid Transaction Propagation

Service End Point failure.

User response: Examine the exception to determine the failure.

CWOBJ1220E: ObjectGrid Transaction Propagation Service is

not supported in this environment.

Explanation: =ObjectGrid Transaction Propagation Service is

not supported on z/OS or the standalone ObjectGrid server environment.

User response: Do not use ObjectGrid Transaction Propagation

Service on z/OS or in the standalone ObjectGrid server environment

CWOBJ1300I: Adapter successfully initialized ObjectGrid.

Explanation: Adapter successfully initialized ObjectGrid.

User response: None. Informational entry.

CWOBJ1301E: Adapter failed to initialize ObjectGrid. Exception occurred

[Exception message {0}].

Explanation: Adapters attempt to initialize ObjectGrid failed.

User response: Examine the exception to determine the failure.

CWOBJ1302I: Adapter stopped.

Explanation: Adapter stopped.

User response: None. Informational Only.

CWOBJ1303I: Adapter started.

Explanation: PMA_CWOBJ1303.explanation=Adapter started.

User response: None. Informational Only.

CWOBJ1304I: ObjectGrid security is enabled.

Explanation: ObjectGrid security is enabled.

User response: none

CWOBJ1305I: ObjectGrid security is disabled.

Explanation: ObjectGrid security is disabled.

User response: none

CWOBJ1306W: Cannot retrieve the client certificates from the SSL socket.

Explanation: For some reason, the runtime cannot retrieve the client

certificates from the SSL socket.

User response: Check your SSL configurations.

CWOBJ1307I: Security of the ObjectGrid instance {0} is enabled.

Explanation: Security of the ObjectGrid instance {0} is enabled.

User response: none

CWOBJ1308I: Security of the ObjectGrid instance {0} is disabled.

Explanation: Security of the ObjectGrid instance {0} is disabled.

User response: none

CWOBJ1309E: Unexpected error occured in the

connect token creation: {0}.

Explanation: An unexpected error occurs in the

connection token creation.

User response: Check the security configuration

CWOBJ1310E: An attempt by another process to

connect to this process via the core group transport has been rejected. The

connecting process provided a source core group name of {0}, a target of {1},

a member name of {2} and an IP address of {3}. The error message is {4}.

Explanation: The High Availability Manager has

rejected a connection attempt.

User response: This may be a connection attempt

from an unauthorized party.

350 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

CWOBJ1400W: Detected multiple ObjectGrid runtime JARS files in the JVM.

Using multiple ObjectGrid runtime JAR files may cause problems.

Explanation: Usually only one ObjectGrid runtime JAR should be

found in a JVM.

User response: Use the appropriate ObjectGrid runtime JAR for

your configuration.

CWOBJ1401E: Detected a wrong ObjectGrid runtime JAR file for this

configuration. Detected configuration is {0}. Expected Jar file is {1}.

Explanation: Each ObjectGrid runtime JAR file corresponds to a particular

 supported configuration.

User response: Use the appropriate ObjectGrid runtime JAR for your configuration.

CWOBJ1402E: ObjectGrid connection link callback not found for id: {0}.

Explanation: Internal error in ObjectGrid runtime.

User response: CMSG0002

CWOBJ1500E: An exception occurred when attempting to create a

GroupName for HA Group ({0}): {1}.

Explanation: CMSG0001

User response: CMSG0002

CWOBJ1501E: An exception occurred when member ({0}) attempted

to join HA Group ({1}): {2}.

Explanation: CMSG0001

User response: CMSG0002

CWOBJ1503E: Cannot access ObjectGrid ({0}) for applying updates

to replica member ({1}).

Explanation: CMSG0001

User response: CMSG0002

CWOBJ1504E: An exception occurred when attempting to

process the LogSequences for replica ({0}): {1}.

Explanation: CMSG0001

User response: CMSG0002

CWOBJ1505E: More than one replication group member

reported back as the primary. Only one primary can be active. ({0}).

Explanation: CMSG0001

User response: CMSG0002

CWOBJ1506E: More than one primary replication group member

 exists in this group ({1}). Only one primary can be active. ({0}).

Explanation: CMSG0001

User response: CMSG0002

CWOBJ1507W: An exception occurred when attempting to end the

 replication process for BackingMap ({0}): {1}.

Explanation: While attempting to shut down a primary replication

group member, an exception occurred during the clean up processing.

User response: CMSG0002

CWOBJ1508E: An exception occurred when attempting to send message ({0})

from sender ({1}) to receiver ({2}): {3}.

Explanation: A problem occurred while attempting to send a message between

replication group members.

User response: CMSG0002

CWOBJ1509E: An exception occurred when attempting to serialize

message ({0}): {1}.

Explanation: CMSG0001

User response: CMSG0002

CWOBJ1510E: An exception occurred when attempting to inflate

message ({0}): {1}.

Explanation: CMSG0001

User response: CMSG0002

CWOBJ1511I: {0} ({1}) is open for business.

Explanation: Specified replication group member is now ready

to accept requests.

User response: None.

Chapter 14. Troubleshooting 351

CWOBJ1512W: {0} already exists in replication group {1}.

Explanation: The specified replication group member is

already active in this replication group.

User response: None.

CWOBJ1513E: Synchronous replication failed on {0} ({1}).

 This member is no longer active.

Explanation: A problem was encountered that prevented

synchronous replication from successfully completing.

User response: Review previous messages in the log to help

diagnose the problem. Stopping and restarting the specified server may be required.

CWOBJ1514I: Primary ({0}) is being downgraded to either a

replica or standby.

Explanation: This is not a normal operation, but ObjectGrid

processing can continue.

User response: CMSG0002

CWOBJ1515I: Minimum configuration requirements not satisfied

for replication group ({0}).

Explanation: The necessary primary and replica configuration

requirements were not met with the recent replication group member change.

User response: Wait for additional resources to be started and

recognized for this configuration.

CWOBJ1516E: An exception occurred when attempting

to activate the replication process for ObjectGrid ({0}): {1}.

Explanation: While attempting to start a primary

replication group member, an exception occurred during the activation processing.

User response: CMSG0002

CWOBJ1517E: Synchronous replication failed for

transaction {2} on {0} ({1}). This member is no longer active.

Explanation: A problem was encountered that prevented

synchronous replication from successfully completing.

User response: Review previous messages in the log to help

 diagnose the problem. Stopping and restarting the specified server may

be required.

CWOBJ1518E: An exception occurred when attempting to

 commit replica transaction ({0}) for primary transaction ({1}) on

Replica ({2}): {3}.

Explanation: CMSG0001

User response: CMSG0002

CWOBJ1519E: An exception occurred when attempting

 to rollback the LogSequences for replica ({0}): {1}.

Explanation: CMSG0001

User response: CMSG0002

CWOBJ1610W: Try to reset a null cluster for {0}.

Explanation: Replication group cluster data are not available.

User response: none

CWOBJ1611I: Replication group cluster {0} is open for business.

Explanation: Now replication group cluster can accept requests.

User response: none

CWOBJ1612I: Replication group cluster {0} is closed for business.

Explanation: Now replication group cluster cannot accept requests.

User response: =none

CWOBJ1620I: Replacing target for wrongly routed request due to

changes in the server. The new target is {0}.

Explanation: Old routing target replaced with new target.

User response: If the intended replication group is out of

service, you need to bring it back.

CWOBJ1630I: Replication group cannot serve this request {0}.

Explanation: Routing is refused due to the unavailable service

such as the Domino effect

User response: Information only.

352 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

CWOBJ1632E: Original request does not have a valid ID; no way to forward

 this request.

Explanation: No way to forward this request because the original request

does not have a valid ID.

User response: Report to IBM support

CWOBJ1634I: Router cannot find the forwarding target; using blind forwarding.

Explanation: Router cannot find the forwarding target.

User response: None

CWOBJ1660I: Replication group member has changed. This server

does not host what is requested anymore. The original request is {0}.

Explanation: Replication group member has changed.

User response: If the intended replication group is out of service,

you need to bring it back.

CWOBJ1661I: Cluster data are updated for replication group:

{0}

Explanation: Cluster data are updated

User response: none

CWOBJ1663E: Server router cannot verify server routing for {0},

because cluster data for this replication group are null in the server.

Explanation: No replication group cluster data are

available to verify.

User response: Report to IBM support

CWOBJ1668W: Request is coming to the server that has not completely started.

NExplanation: Server startup takes 60-120 seconds. Request will

be automatically retried if you have configured so (by default the request will be

automatically retried).

User response: Adjust your configuration or start your clients 60-120

seconds after you start your servers.

CWOBJ1680W: The configured TCP connection timeout is smaller than

retryInterval * max(startupRetries, maxRetries), so there is possibility that

connection will time out.

Explanation: The configured TCP connection timeout should be larger

than retryInterval * max(startupRetries, maxRetries).

User response: Adjust your configuration.

CWOBJ1682W: The configured transaction timeout is smaller than maxForwards *

retryInterval * max(startupRetries, maxRetries), so there is possibility that

transaction will time out.

Explanation: The configured transaction timeout should be larger than

maxForwards * retryInterval * max(startupRetries, maxRetries).

User response: Adjust your configuration.

CWOBJ1700I: Standalone HAManager

is initialized with coregroup {0}.

Explanation: standalone HAManager

is initialized successfully.

User response: none

CWOBJ1701I: Standalone HAManager is already initialized.

Explanation: Standalone HAManager is

already initialized successfully.

User response: none

CWOBJ1702E: Standalone HAManager is

not initialized, so it cannot be started.

Explanation: Standalone HAManager is not initialized.

User response: Initialize it

before starting it.

CWOBJ1710I: Standalone HAManager is

started successfully.

Explanation: Standalone HAManager is

started successfully.

User response: none

Chapter 14. Troubleshooting 353

CWOBJ1711I: Standalone HAManager is already started successfully.

Explanation: Standalone HAManager is

already started successfully.

User response: none

CWOBJ1712E: Standalone HAManager is not started.

Explanation: Standalone HAManager is not started.

User response: Initialize and start it before using it.

CWOBJ1713E: Standalone HAManager failed to start.

Explanation: Standalone

HAManager failed to start.

User response: Check if ports

are used already.

CWOBJ1720I: HAManager Controller detected that

 ObjectGrid server is in the WebSphere environment, using WebSphere HAManager

instead of initializing and starting standalone HAManager.

Explanation: ObjectGrid server is running in the WebSphere environment.

User response: None

CWOBJ1730I: HAManager Controller detected

 that the WebSphere external HAManager is null.

Explanation: Cannot get the external HAManager from WebSphere.

User response: None

CWOBJ1790I: Need to initialize and

 start the standalone HAManager.

Explanation: Cannot get the external HAManager from WebSphere.

Need to initialize and start the standalone HAManager.

User response: None

CWOBJ1792I: The maximum number of threads is {0} and the minimum number

 of threads is {1}.

Explanation: Configure thread pool.

User response: Information only.

CWOBJ1800I: Forwarding is required for request {0} with response of {1}.

Explanation: Forward

routing is required.

User response: None. Handled

automatically

CWOBJ1810I: Forwarding is required for response {0}.

Explanation: Forwarding is required for response.

User response: None

CWOBJ1811E: Forwarding is required, but the

original request cannot be found.

Explanation: Forwarding is required, but the

original request cannot be found.

User response: None

CWOBJ1820E: Forwarding request does not have a

replication group identifier.

Explanation: There is not any replication group

identifier in this forwarding request.

User response: Contact IBM Support

CWOBJ1870I: Server service is not available for response {0}.

Explanation: Server service is not available due to the Domino

effect or other events.

User response: Bring at least the minimum number of servers up.

CWOBJ1871E: Detected unavailable service, received null

response, no way to retry.

Explanation: Null response from the unavailable service

User response: Contact IBM support

CWOBJ1872I: Service is unavailable with response of {0}.

Explanation: Service is not available

User response: Bring at least the minimum number of

servers up or check if server startup is successful.

354 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

CWOBJ1890I: Re-routing request {0} due to

an un-responsive server.

Explanation: The request for intended server failed

to complete. Request was re-routed to another server.

User response: None. Handled automatically. If the intended

replication group is out of service, you need to bring it back.

CWOBJ1891E: All servers are not available in replication group {0}.

Explanation: All servers were either not started or have

failed. They are not available

User response: If the intended replication group is out of service,

you need to bring it back.

CWOBJ1898W: Forwarding is required, but router cannot find new

available target for response {0}

Explanation: Service is not available.

User response: Make service available.

CWOBJ1899W: Forwarding is required, but router cannot find right

replication group for response {0}

Explanation: Replication group ID is lost.

User response: Contact IBM Support

CWOBJ1900I: Client server remote procedure call service is initialized.

Explanation: Client server remote procedure call service is initialized.

User response: None

CWOBJ1901I: Client server remote procedure call service is started.

Explanation: Client server remote procedure call service is started.

User response: None

CWOBJ1902I: Client server remote procedure call handler

threads are started.

Explanation: Client server remote procedure call handler

threads are started.

User response: None

CWOBJ1903I: Configuration network service is initialized.

Explanation: Configuration network service is initialized.

User response: None

CWOBJ1904I: Configuration network service is started.

Explanation: Configuration network service is started.

User response: None

CWOBJ1905I: Configuration handler is started.

Explanation: Configuration handler is started.

User response: None

CWOBJ1913I: System administration network service is initialized.

Explanation: System administration network service is initialized.

User response: None

CWOBJ1914I: System administration network service is started.

Explanation: System administration network service is started.

User response: None

CWOBJ1915I: System administration handler is started.

Explanation: System administration handler is started.

User response: None

CWOBJ2000E: No member in this replication group {0}.

Explanation: No member can be found in this replication group.

User response: Check if servers are started or data are available

CWOBJ2001W: No available member in this replication group {0}.

Explanation: No available member can be found in this replication group.

User response: Check if server service is available

CWOBJ2002W: No available routing table for this replication group {0}.

Explanation: No available routing table for this replication group.

User response: Check if clients have brought in routing table

CWOBJ2003I: Cannot find routing cache for cache key {0}, creating

new routing cache.

Explanation: First time routing or cluster changes.

RUser response: none

Chapter 14. Troubleshooting 355

CWOBJ2010E: Target for this request is null.

Explanation: Request did not come with target information.

User response: contact IBM support.

WOBJ2060I: Client received new version of replication group cluster {0}.

Explanation: Client received new version of replication group cluster

User response: none

CWOBJ2068I: Reachability control detected problem in replication group

member {0}.

Explanation: Some server cannot be reached, reachability mechanism will handle it.

User response: None.

CWOBJ2069I: Reachability control timer releases replication group member {0}.

Explanation: This member is available for routing.

User response: none

CWOBJ2086I: Routing thread control is activated due to overload for

replication group {0}.

Explanation: Thread control is in action.

User response: none

CWOBJ2088I: Reachability control is activated to regulate the server

availability for replication group {0}.

Explanation: Reachability is in action.

User response: none

CWOBJ2090W: Cannot find routing table for replication group {0}.

Explanation: Replication group cluster is null.

User response: none

CWOBJ2091W: Routing table is not null, but it does not contain any servers

for replication group {0}.

Explanation: Replication group cluster is empty.

User response: none

CWOBJ2092I: Routing table is null in runtime for replication group {0}.

Explanation: Getting routing table from runtime.

User response: none

CWOBJ2093I: Routing table is not null in replication group cluster

store for replication group {0}

Explanation: Getting routing table from cluster store.

User response: none

CWOBJ2096I: Routing table was obtained from replication group cluster

store for replication group {0}.

Explanation: Obtained replication group cluster from replication

group cluster store.

User response: none

CWOBJ2097I: Routing is based on round robin algorithm for replication group {0}.

Explanation: Routing is based on round robin algorithm.

User response: none

CWOBJ2098I: Routing is based on random selection for replication group {0}.

Explanation: Routing is based on random selection.

User response: none

CWOBJ2100I: Connection ({0}) is stale, it cannot be reused.

Explanation: Connection is stale.

User response: none

CWOBJ2101W: Connection cannot be acquired after the maximum wait time.

Explanation: There are not any connections left in the pool.

User response: Increase the maximum number of connections in the configuration.

CWOBJ1600I: ManagementGateway service started on port ({0}).

Explanation: ManagementGateway service is ready to process requests.

User response: ManagementGateway service is available.

CWOBJ1601E: ManagementGateway service failed to start on port ({0}).

Explanation: ManagementGateway service failed to start.

User response: Ensure specified port is not already in use.

356 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

CWOBJ1602E: ManagementGateway service failed to connect to server at

({0}):({1}).

Explanation: ManagementGateway service failed to connect to server.

User response: Ensure server is running.

CWOBJ1603E: Management service failed to respond to ({0}) remote request.

Explanation: CMSG0001

User response: CMSG0002

CWOBJ2400E: Invalid Configuration: backing map {0} is a

member of more than one map-set.

Explanation: A backingMap can belong to only one map-set.

User response: Edit the cluster XML file so that each backing

map belongs to only one map-set.

CWOBJ2401E: Invalid Configuration: backing map {0} in distributed

ObjectGrid {1} is not in a map-set.

Explanation: Each backing map of a distributed ObjectGrid must

be placed in a map-set.

User response: Edit the cluster XML file so that each backing map

in a distributed ObjectGrid belongs to a map-set.

CWOBJ2402E: Invalid Configuration: map-set has a reference

to a {0} map. This backing map does not exist in the ObjectGrid XML file.

Explanation: Each map within a map-set must reference

a backing map from the ObjectGrid XML file.

User response: Edit the XML file(s) so that each map within the

 map-set references a backing map from the ObjectGrid XML file.

CWOBJ2403E: The XML file is invalid. A problem has been detected with

{0} at line {1}. The error message is {2}.

Explanation: The XML file does not conform to the schema.

User response: Edit the XML file so that it is conforms to the schema.

CWOBJ2404W: The value specified for {0} is {1}. This is an invalid value.

{0} will not be set.

Explanation: The value for this configuration attribute is not valid.

User response: Set the configuration attribute to a proper value in the

XML file.

CWOBJ2405E: The objectgrid-binding ref {0} in the Cluster

 XML file does not reference a valid ObjectGrid from the ObjectGrid XML file.

Explanation: Each of the objectgrid-bindings must reference

 an ObjectGrid from the ObjectGrid XML file.

User response: Edit the XML files so that the objectgrid-binding

 in the Cluster XML references a valid ObjectGrid in the ObjectGrid XML.

CWOBJ2500E: Failed to start ObjectGrid server {0}.

Explanation: The ObjectGrid server failed to start properly.

User response: Check the log for exceptions.

CWOBJ2501I: Launching ObjectGrid server {0}.

Explanation: An ObjectGrid server is starting up.

User response: none

CWOBJ2502I: Starting ObjectGrid server using ObjectGrid XML file

 URL "{0}" and Cluster XML file URL "{1}".

Explanation: An ObjectGrid server is starting using a cluster XML

 file and an ObjectGrid xml file.

User response: none

CWOBJ2503I: Bootstrapping to a peer Objectgrid server on host {0}

 and port {1}.

Explanation: This ObjectGrid server will bootstrap to a peer server

to retrieve information required to start.

User response: none

COBJ2504I: Attempting to bootstrap to a peer ObjectGrid server using

the following host(s) and port(s) "{0}".

Explanation: This ObjectGrid server will use the list of hosts and ports

provided in an attempt to connect to a peer ObjectGrid server.

User response: none

Chapter 14. Troubleshooting 357

CWOBJ2505I: Attempting to bootstrap to a peer ObjectGrid server using

 the Cluster XML file URL "{0}".

Explanation: This ObjectGrid server will use the list of servers in the

Cluster XML file in an attempt to connect to a peer ObjectGrid server.

User response: none

CWOBJ2506I: Trace is being logged to {0}.

Explanation: The trace file has been set on the command line.

User response: See the specified trace file for ObjectGrid server

start-up trace.

CWOBJ2507I: Trace specification is set to {0}.

CExplanation: The trace specification has been set on the command line.

User response: none

CWOBJ2508I: A security properties file "{0}" has been specified and

will be used to start the server.

Explanation: A security properties file has been provided to start a

secure server.

User response: none

CWOBJ2509E: Timed out after waiting {0} seconds for the server to start.

Explanation: The ObjectGrid server did not start within the timeout interval.

User response: Check the log for exceptions.

CWOBJ2510I: Stopping ObjectGrid server {0}.

Explanation: Stopping ObjectGrid server.

User response:

CWOBJ2511I: Waiting for the server to stop.

Explanation: Waiting for the ObjectGrid server to stop.

User response: none

CWOBJ2512I: ObjectGrid server {0} stopped.

Explanation: ObjectGrid server stopped.

User response: none

CWOBJ2513E: Timed out after waiting {0} seconds for the server to stop.

Explanation: The ObjectGrid server did not stop within the timeout interval.

User response: Check the log for exceptions.

CWOBJ2514I: Waiting for ObjectGrid server activation to complete.

Explanation: The ObjectGrid server has launched. Waiting for the server to

 complete activation.

User response: none.

CWOBJ2515E: The arguments provided are invalid. Here are the valid

arguments.{0}{1}

Explanation: The arguments provided to this script are invalid.

User response: Enter valid arguments.

CWOBJ2516I: ObjectGrid server has completed activation.

Explanation: The ObjectGrid server is active and ready to process requests.

User response: none.

CWOBJ2517I: Successfully bootstrapped to peer Objectgrid server

on host {0} and port {1}.

Explanation: This ObjectGrid server has successfully bootstrapped

 to a peer server to retrieve information required to start this server.

User response: none

CWOBJ2407W: The {0} property on the {1} plug-in class could not be set.

 The exception is {2}.

Explanation: The property for this plug-in could not be set.

User response: See the exception for more information.

358 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates. Any

reference to an IBM product, program, or service is not intended to state or imply

that only IBM’s product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any of IBM’s

intellectual property rights may be used instead of the IBM product, program, or

service. Evaluation and verification of operation in conjunction with other products,

except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this

document. The furnishing of this document does not give you any license to these

patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 500 Columbus Avenue

 Thornwood, New York 10594 USA

 Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

 IBM Corporation

 Mail Station P300

 522 South Road

 Poughkeepsie, NY 12601-5400

 USA

 Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

© Copyright IBM Corp. 2004, 2005 359

360 IBM WebSphere WebSphere Extended Deployment Version 6.0.x: ObjectGrid programming model guide

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other

countries, or both:

v AIX

v CICS

v Cloudscape

v DB2

v Domino

v IBM

v Lotus

v RACF

v Redbooks

v Tivoli

v WebSphere

v z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

LINUX is a trademark of Linus Torvalds in the U.S., other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

© Copyright IBM Corp. 2004, 2005 361

	Contents
	How to send your comments
	Chapter 1. Getting started with ObjectGrid by running the sample application
	Running the ObjectGrid sample application on the command line
	Starting the standalone sample ObjectGrid cluster

	Importing and using the ObjectGrid sample application in Eclipse
	Loading and running the ObjectGrid sample application with WebSphere Extended Deployment
	Starting a sample ObjectGrid cluster in the WebSphere environment
	Starting an ObjectGrid server in an application server

	Chapter 2. ObjectGrid
	Chapter 3. ObjectGrid overview
	ObjectGrid in a single Java virtual machine (JVM)
	Distributed ObjectGrid
	ObjectGrid cluster initialization
	ObjectGrid configuration with XML
	Bootstrapping
	ObjectGrid clients in a distributed ObjectGrid environment
	ObjectGrid clustering concepts
	High availability overview
	ObjectGrid clustering configuration sets
	ObjectGrid clients contacting multiple ObjectGrid clusters
	ObjectGrid client near caching support
	ObjectGrid transaction demarcation
	ObjectGrid relationship to databases

	Chapter 4. ObjectGrid tutorial : application programming model
	Getting started with remote ObjectGrid
	System programming model overview
	System programming model overview: ObjectGrid interface plug points and features
	System programming model overview: BackingMap interface plug points and features
	System programming model overview: Session interface features
	System programming model overview: ObjectMap interface features

	Chapter 5. ObjectGrid samples
	Chapter 6. ObjectGrid packaging
	Chapter 7. System management overview
	Start the ManagementGateway process
	ObjectGrid managed beans (MBeans)

	Chapter 8. Command line support
	Start ObjectGrid servers
	Stop ObjectGrid servers
	Start the management gateway server
	Password encoding

	Chapter 9. ObjectGrid application programming interface overview
	ObjectGridManager interface
	createObjectGrid methods
	getObjectGrid methods
	removeObjectGrid methods
	getObjectGridAdministrator method
	Use the ObjectGridManager interface to control the life cycle of an ObjectGrid instance
	Trace ObjectGrid

	ObjectGrid client connect APIs
	ObjectGrid interface
	BackingMap interface
	Session interface
	ObjectMap and JavaMap interfaces
	Keywords
	LogElement and LogSequence objects
	Locking
	Pessimistic locking
	Optimistic locking
	None BackingMap locking strategy

	ObjectGrid security
	ObjectGrid security overview
	Client server security
	Local ObjectGrid security
	Authorization
	ObjectGrid cluster security
	Gateway security
	Security integration with WebSphere Application Server

	Listeners
	Evictors
	Loaders
	Loader considerations

	ObjectTransformer plug-in
	TransactionCallback plug-in
	OptimisticCallback interface
	Replication programming
	Partitioning
	Indexing
	ObjectGrid configuration
	Local ObjectGrid configuration
	Basic ObjectGrid configuration
	Complete ObjectGrid configuration
	Mixed mode ObjectGrid configuration

	Distributed ObjectGrid configuration

	Chapter 10. Integrating ObjectGrid with WebSphere Application Server
	Integrating ObjectGrid in a Java 2 Platform, Enterprise Edition environment
	Local ObjectGrid scenario
	Distributed ObjectGrid scenario
	Building ObjectGrid-enabled Java 2 Platform, Enterprise Edition applications
	Considerations for the integration of Java 2 Platform, Enterprise Edition applications and ObjectGrid

	Monitoring ObjectGrid performance with WebSphere Application Server performance monitoring infrastructure (PMI)
	ObjectGrid statistics
	Enabling ObjectGrid PMI
	Enabling ObjectGrid PMI with scripting

	Retrieving ObjectGrid PMI statistics
	Retrieving ObjectGrid PMI statistics with scripts

	ObjectGrid and external transaction interaction
	Integrating ObjectGrid and the partitioning facility
	ObjectGrid and the partitioning facility
	Installing and running the ObjectGridPartitionCluster sample application
	ObjectGridPartitionClusterSample application client options

	Building an integrated ObjectGrid and partitioning facility application
	Getting started with building an ObjectGrid and partitioning facility application
	Exporting the ObjectGridPartitionClusterSample.ear file in IBM Rational Application Developer
	Deploying the ObjectGridPartitionClusterSample.ear file to work with the partitioning facility

	Example: ObjectGrid and partitioning facility programming
	ObjectGrid operation EJB Interface
	PartitionKey class
	SampleUtility class and partition mapping
	ObjectGrid creation in the enterprise bean setContext method
	Singleton ObjectGridFactory class
	ObjectGrid partition preload

	Configuring ObjectGrid to work with container-managed beans

	Chapter 11. ObjectGrid performance best practices
	Locking performance best practices
	copyMode method best practices
	ObjectTransformer interface best practices
	Plug-in evictor performance best practices
	Default evictor best practices

	Chapter 12. Distributing changes between peer Java virtual machines
	Java Message Service for distributing transaction changes

	Chapter 13. Injection-based container integration
	Chapter 14. Troubleshooting
	Intermittent and unexplained errors
	General exception handling technique
	Specific exception handling techniques
	Optimistic collision exception
	LockTimeoutException exception
	LockDeadlockException
	XML configuration problem diagnosis
	Missing a required attribute
	Missing a required element
	XML value of attribute is not valid
	Validating XML without support of an implementation
	ObjectGrid messages

	Notices
	Trademarks and service marks

