
WebSphere® Application Server for z/OS, Version 6.0.1

Tuning guide

SA22-7963-03

���

Note

Before using this information, be sure to read the general information under “Notices” on page 101.

Compilation date: March 1, 2005

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments v

Chapter 1. Overview and new features

for tuning performance 1

Contents of this section: Tuning performance . . . 1

Chapter 2. How do I tune performance? 3

Chapter 3. Planning ahead for

performance 5

Application design consideration 5

Chapter 4. Taking advantage of

performance functions 9

Chapter 5. Obtaining performance

advice from the performance advisors . 11

Why use the performance advisors? 11

Choosing the right performance advisor for the

purpose 12

Runtime Performance Advisor 12

Tivoli Performance Viewer advisor 13

Using the Runtime Performance Advisor 13

Runtime Performance Advisor configuration

settings 15

Advice configuration settings 16

Viewing the Runtime Performance Advisor

recommendations 16

Using the performance advisor in Tivoli

Performance Viewer 17

Chapter 6. Tuning the application

serving environment 19

Recommended hardware configuration 20

Tuning index for WebSphere Application Server for

z/OS 20

Tuning the z/OS operating system 21

Tuning for subsystems 31

Tuning the WebSphere Application Server for

z/OS runtime 44

Tuning for J2EE applications 46

Tuning Java virtual machines 54

Tuning transport channel services 60

Checking hardware configuration and settings . . . 63

Chapter 7. Tuning WebSphere

applications 65

Web applications 66

Tuning session management 66

Web services 73

Monitoring the performance of Web services

applications 73

Data access resources 75

EJB Container Cache tuning 75

DB2 tuning parameters 78

Tuning parameters for data access resources . . 81

Database performance tuning 83

Messaging resources 83

Tuning JMS destinations 83

Security 85

SSL considerations for WebSphere Application

Server administrators 85

Setting up SSL connections for Java clients . . . 86

Tuning security configurations 86

Learn about WebSphere programming extensions . . 90

Dynamic cache 91

Work area 94

Chapter 8. Troubleshooting

performance 97

Notices 101

Trademarks and service marks 103

© Copyright IBM Corp. 2005 iii

iv IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information.

v To send comments on articles in the WebSphere Application Server Information

Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate

window containing an e-mail form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .
v To send comments on PDF books, you can e-mail your comments to:

wasdoc@us.ibm.com or fax them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application

Server version you are using, and, if applicable, the specific page, table, or figure

number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any

obligation to you.

© Copyright IBM Corp. 2005 v

vi IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Chapter 1. Overview and new features for tuning performance

New for administrators: Improved monitoring and performance tuning

A section of this topic describes what is new in the area of performance

tuning.

Presentations from IBM Education Assistant

 v Performance overview

v Caching, including dynamic cache

v Performance advisors and Tivoli Performance Viewer (TPV)

Contents of this section: Tuning performance

Chapter 3, “Planning ahead for performance,” on page 5

This topic helps you find capacity planning and other performance

planning topics online.

Chapter 4, “Taking advantage of performance functions,” on page 9

This topic describes how to take advantage of product features that help

you boost performance.

Chapter 5, “Obtaining performance advice from the performance advisors,” on

page 11

This topic describes how to obtain performance advice from the

performance advisors.

Chapter 6, “Tuning the application serving environment,” on page 19

Start here for a summary of key performance tuning parameters.

 This topic describes how to tune various aspects of the application serving

environment, such as the operating system, database connections, and

application server Java virtual machine.

Chapter 7, “Tuning WebSphere applications,” on page 65

This topic describes how to tune applications of various types. It includes

how to develop applications that perform well, and how to tune the

application server containers and other product components that support

the particular application type.

Chapter 8, “Troubleshooting performance,” on page 97

This topic describes how to troubleshoot slow performance.

© Copyright IBM Corp. 2005 1

http://www-306.ibm.com/software/info/education/assistant/noflash.shtml
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Presentations/WASv6_Performance_Overview/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Presentations/WASv6_DynamicCaching/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Presentations/WASv6_PerformanceTools/playershell.swf

2 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Chapter 2. How do I tune performance?

Legend for ″How do I?...″ links

 Documentation Show me Tell me Guide me Teach me

Refer to the

detailed steps

and reference

Watch a brief

multimedia

demonstration

View the

presentation for

an overview

Be led through

the console

pages

Perform the

tutorial with

sample code

Approximate

time: Varies

Approximate

time: 3 to 5

minutes

Approximate

time: 10

minutes+

Approximate

time: 1/2 hour+

Approximate

time: 1 hour+

--

Tune the application serving environment

 Each WebSphere Application Server process has several parameters

influencing application performance.

 Documentation

--

Obtain tuning advice

 The Performance Advisor in Tivoli Performance Viewer (TPV) provides

advice to help tune systems for optimal performance and gives

recommendations on inefficient settings by using collected Performance

Monitoring Infrastructure (PMI) data.

 Documentation Show me

v Performance

advisor

v TPV advisor

Tell me

--

Tune WebSphere applications

 Expand Tuning performance > Tuning WebSphere applications in the

information center table of contents for information about tuning specific

application components and their administrative configurations (such as

EJB container settings).

 --

Pool database connections

 As described in Connection pooling, when accessing any database,

establishing connections is an expensive operation. Connection pooling

enables administrators to establish a pool of database connections that

applications can share on an application server. When connection pooling

capabilities are used, performance improvements up to 20 times the normal

results are realized.

© Copyright IBM Corp. 2005 3

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Simulations/WASv6_PerformanceAdvisor.viewlet/WASv6_PerformanceAdvisor_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Simulations/WASv6_PerformanceAdvisor.viewlet/WASv6_PerformanceAdvisor_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Simulations/WASv6_TPVPerformanceAdvisor.viewlet/WASv6_TPVPerformanceAdvisor_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Presentations/WASv6_PerformanceTools/playershell.swf

Documentation

--

Configure caching

 The dynamic cache service improves performance by caching the output of

servlets, commands, and JSP files.

 Documentation Show me Tell me

--

4 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Simulations/WASv6_DynamicCachingConfig.viewlet/WASv6_DynamicCachingConfig_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Presentations/WASv6_DynamicCaching/playershell.swf

Chapter 3. Planning ahead for performance

How well a Web site performs while receiving heavy user traffic is an essential

factor in the overall success of an organization. This section provides online

resources that you can consult to ensure that your site performs well under

pressure.

v Consult the following Web resources for learning.

IBM Patterns for e-Business

 Patterns for e-business is a group of reusable assets that can help speed

the process of developing Web-based applications. The patterns leverage

the experience of IBM architects to create solutions quickly, whether for

a small local business or a large multinational enterprise.

Planning for availability in the enterprise

 Availability is an achievable service-level characteristic that every

enterprise struggles with. The worst case scenario is realized when load

is underestimated or bandwidth is swamped because availability

planning was not carefully conducted. Applying the information in this

article and the accompanying spreadsheet to your planning exercises can

help you avoid such a scenario.

A concise guide to WebSphere capacity management

 How much capacity is enough for your Web site? It is a difficult

question, and often customers have either too much or too little capacity

to meet the demands of their site visitors. When developing a plan for

your Web site, you must first define its service levels. Next, you must

determine the health of your existing site and apply what you know to

planning for your future site. Finally, you must validate your capacity

estimates through testing and then eventually deploy the site. Here,

developing and implementing a capacity plan for your site is explored.

Hardware configurations for WebSphere Application Server production

environments

This article describes the most common production hardware

configurations, and provides the reasons for choosing each one. It begins

with a single machine configuration, and then proceeds with additional

configurations that have higher fault tolerance, horizontal scaling, and a

separation of Web and enterprise bean servers.
v See the documentation for the product functionality to improve performance .

Application design consideration

This topic describes the architectural suggestions in design and the implementation

of tuning applications.

Consult the ″Designing applications″ topic, in the Developing and Deploying

applications book, which highlights Web sites and other ideas for finding best

practices for designing WebSphere applications, particularly in the realm of

WebSphere extensions to the Java 2 Platform, Enterprise Edition (J2EE)

specification.

© Copyright IBM Corp. 2005 5

http://www.ibm.com/developerworks/patterns/
http://www.ibm.com/developerworks/websphere/techjournal/0312_polozoff/polozoff.html
http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&ContentID=2836&publicationid=19&PageView=Search&channel=2
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0212_vansickel/0212_vansickel.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0212_vansickel/0212_vansickel.html

This topic on application design contains the architectural suggestions in design

and implementation. For existing applications, the suggestions might require

changing the existing implementations. Tuning the application server and resource

parameters can have the greatest effect on performance of the applications that are

well designed.

Use the following information as an architectural guide when implementing

applications:

v Persistence

v Model-view-controller pattern

v Statelessness

v Caching

v Asynchronous considerations

v Third-party libraries

Persistence

Java 2 Platform, Enterprise Edition (J2EE) applications load, store, create, and

remove data from relational databases, a process commonly referred to as

persistence. Most enterprise applications have significant database access. The

architecture and performance of the persistence layer is critical to the performance

of an application. Therefore, persistence is a very important area to consider when

making architectural choices that require trade-offs related to performance. This

guide recommends first focusing on a cleanly architected solution that considers

data consistency, security, maintenance, portability, and the performance of that

solution. Although this approach might not yield the absolute peak performance

obtainable from manual coding a solution that ignores the mentioned qualities of

service, this approach can achieve the appropriate balance of data consistency,

maintainability, portability, security, and performance.

Multiple options are available in J2EE for persistence: Session beans using entity

beans including container-managed persistence (CMP) or bean-managed

persistence (BMP), session beans using Java Database Connectivity (JDBC), and

Java beans using JDBC. For the reasons previously mentioned, consider CMP entity

persistence because it provides maximum security, maintenance, and portability.

CMP is also recommended for good performance. Refer to the Tune the EJB

container section in the Setting up the application serving environment book on tuning

enterprise beans and more specifically, CMP.

If an application requires using enterprise beans not using EJB entities, the

persistence mechanism usually involves the JDBC API. Because JDBC requires

manual coding, the Structured Query Language (SQL) that runs against a database

instance, it is critical to optimize the SQL statements that are used within the

application. Also, configure the database server to support the optimal

performance of these SQL statements. Finally, usage of specific JDBC APIs must be

considered including prepared statements and batching.

Regardless of which persistence mechanism is considered, use container-managed

transactions where the bean delegates management of transactions to the container.

For applications that use JDBC, this is easily achieved by using the session façade

pattern, which wraps all JDBC functions with a stateless session bean.

6 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Finally, information about tuning the connection over which the EJB entity beans

or JDBC communicates can be found in the Tune the data sources section in the

Setting up the application serving environment book.

Model-view-controller pattern

One of the standard J2EE programming architectures is the model-view-controller

(MVC) architecture, where a call to a controller servlet might include one or more

child JavaServer Pages (JSP) files to construct the view. The MVC pattern is a

recommended pattern for application architecture. This pattern requires distinct

separation of the view (JSP files or presentation logic), the controller (servlets), and

the model (business logic). Using the MVC pattern enables optimization of the

performance and scalability of each layer separately.

Statelessness

Implementations that avoid storing the client user state scale and perform the best.

Design implementations to avoid storing state. If state storage is needed, ensure

that the size of the state data and the time that the state is stored are kept to the

smallest possible values. Also, if state storage is needed, consider the possibility of

reconstructing the state if a failure occurs, instead of guaranteeing state failover

through replication.

Specific tuning of state affects HTTP session state, dynamic caching, and enterprise

beans. Refer to the follow tuning guides for tuning the size, replication, and timing

of the state storage:

v “Tuning session management” on page 66

v “EJB Container Cache tuning” on page 75

v “Tuning dynamic cache with the cache monitor” on page 93

Caching

Most J2EE application workloads have more read operations than write operations.

Read operations require passing a request through several topology levels that

consist of a front-end Web server, the Web container of an application server, the

EJB container of an application server , and a database. WebSphere Application

Server provides the ability to cache results at all levels of the network topology

and J2EE programming model that include Web services.

Application designers must consider caching when the application architecture is

designed because caching integrates at most levels of the programming model.

Caching is another reason to enforce the MVC pattern in applications. Combining

caching and MVC can provide caching independent of the presentation technology

and in cases where there is no presentation to the clients of the application.

Network designers must consider caching when network planning is performed

because caching also integrates at most levels of the network topology. For

applications that are available on the public Internet, network designers might

want to consider Edge Side Include (ESI) caching when WebSphere Application

Server caching extends into the public Internet. Network caching services are

available in the proxy server for WebSphere Application Server, WebSphere Edge

Component Caching Proxy, and the WebSphere plug-in.

Asynchronous considerations

Chapter 3. Planning ahead for performance 7

J2EE workloads typically consist of two types of operations. You must perform the

first type of operation to respond to a system request. You can perform the second

type of operation asynchronously after the user request that initiated the operation

is fulfilled.

An example of this difference is an application that enables you to submit a

purchase order, enables you to continue while the system validates the order,

queries remote systems, and in the future informs you of the purchase order status.

This example can be implemented synchronously with the client waiting for the

response. The synchronous implementation requires application server resources

and you wait until the entire operations complete. If the process enables you to

continue, while the result is computed asynchronously, the application server can

schedule the processing to occur when it is optimal in relation to other requests.

The notification to you can be triggered through e-mail or some other interface

within the application.

Because the asynchronous approach supports optimal scheduling of workloads and

minimal server resource, consider asynchronous architectures. WebSphere

Application Server supports asynchronous programming through J2EE Java

Message Service (JMS) and message-driven beans (MDB) as well as asynchronous

beans that are explained in the Tuning Java Message Service and Tuning MDB

topics.

Third-party libraries

Verify that all the libraries that applications use are also designed for server-side

performance. Some libraries are designed to work well within a client application

and fail to consider server-side performance concerns, for example, memory

utilization, synchronization, and pooling. It is suggested that all libraries that are

not developed as part of an application undergo performance testing using the

same test methodologies as used for the application.

Additional reference:

IBM WebSphere Developer Technical Journal: The top 10 (more or less) J2EE best

practices

Improve performance in your XML applications, Part 2

8 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/xml/library/x-perfap2.html

Chapter 4. Taking advantage of performance functions

This topic highlights a few main ways you can improve performance through a

combination of product features and application development considerations.

v Use this product functionality to improve performance.

Balancing workloads with clusters

 Clusters are sets of servers that are managed together and participate in

workload management. The servers that are members of a cluster can be

on different host machines, as opposed to the servers that are part of the

same node and must be located on the same host machine. A cell can

have no clusters, one cluster, or multiple clusters.

Task overview: Using the dynamic cache service to improve performance

 The dynamic cache service improves performance by caching the output

of servlets, commands, and JavaServer Pages (JSP) files. Dynamic

caching features include cache replication among clusters, cache disk

offload, Edge-side include caching, and external caching, which is the

ability to control caches outside of the application server, such as that of

your Web server.
v Ensure your applications perform well.

Details are available in the following topics:

– “Application design consideration” on page 5 (architectural suggestions)

– The ″Designing applications″ topic in the in the Developing and Deploying

applications book

© Copyright IBM Corp. 2005 9

10 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Chapter 5. Obtaining performance advice from the

performance advisors

Tuning WebSphere Application Server is a critical part of getting the best

performance from your Web site. But tuning WebSphere Application Server

involves analyzing performance data and determining the optimal server

configuration. This determination requires considerable knowledge about the

various components in the application server and their performance characteristics.

The performance advisors encapsulate this knowledge, analyze the performance

data and provide configuration recommendations to improve the application server

performance. Therefore, the performance advisors provide a starting point to the

application server tuning process and help you without requiring that you become

an expert.

Why use the performance advisors?

The performance advisors analyze the Performance Monitoring Infrastructure

(PMI) data of WebSphere Application Server using general performance principles,

best practices, and WebSphere-specific rules for tuning. The performance advisors

that are based on this information provide advice on how to set some of your

configuration parameters to better tune WebSphere Application Server.

The performance advisors provide a variety of advice on the following application

server resources:

v Object Request Broker service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine heap size

v DB2 Performance Configuration Wizard

For example, consider the data source-prepared statement cache, which helps to

decrease the cost of running a prepared statement by caching the compiled

statement. If the cache is full, an old entry in the cache is discarded to make room

for the new one. The best performance is generally obtained when the cache is

large enough to hold all of the statements that are used in the application. The PMI

counter prepared statement cache discards indicates the number of statements

that are discarded from the cache. The performance advisors check this counter

and provide recommendations to minimize the cache discards.

Using another example with pools in the application server, the idea behind

pooling is to use an existing thread or connection from the pool instead of creating

a new instance for each request. Because each thread or connection in the pool

consumes memory and increases the context-switching cost, the pool size is an

important configuration parameter. A pool that is too large can hurt performance

as much as a pool that is too small. The performance advisors use PMI information

© Copyright IBM Corp. 2005 11

about current pool usage, minimum or maximum pool size, and the application

server CPU utilization to recommend efficient values for the pool sizes.

Choosing the right performance advisor for the purpose

Two performance advisors are available: the Runtime Performance Advisor and the

performance advisor in Tivoli Performance Viewer (TPV advisor). The Runtime

Performance Advisor runs in the Java virtual machine (JVM) process of

Application Server; therefore, it does not provide expensive advice. In a Network

Deployment environment, the performance advisor in TPV runs on the node agent

and can provide advice on resources which are more expensive to monitor and

analyze. The TPV advisor requires that you enable performance modules, counters,

or both.

The following chart shows the differences between the Runtime Performance

Advisor and the TPV advisor:

 Runtime Performance Advisor TPV advisor

Start location Application server TPV client

Invocation of tool TPV Administrative console

Output The SystemOut.log file and the

administrative console

TPV in the administrative

console

Frequency of operation Configurable When you select refresh in the

TPV administrative console

Types of advice v Object Request Broker (ORB)

service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and

time

v Prepared statement cache

size

v Session cache size

v ORB service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and

time

v Prepared statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine (JVM)

heap size

v DB2 Performance

Configuration wizard

Runtime Performance Advisor

The Runtime Performance Advisor provides advice to help tune systems for

optimal performance and is configured using the WebSphere Application Server

administrative console or the wsadmin tool. Running in the Java virtual machine

(JVM) of the application server, the Runtime Performance Advisor periodically

checks for inefficient settings and issues recommendations as standard product

warning messages. These recommendations are displayed both as warnings in the

administrative console under WebSphere Runtime Messages in the WebSphere

Status panel and as text in the application server SystemOut.log file. Enabling the

Runtime Performance Advisor has minimal system performance impact.

The advice the Runtime Performance Advisor gives is all on the server level. The

only difference when running in a Network Deployment environment is that you

might receive contradictory advice on resources that are declared at the node or

cell level and used at the server level.

12 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

For example, two sets of advice are given if a data source is declared at the node

level to have a connection pool size of {10,50} and is used by two servers (server1

and server2). If server1 uses only two connections and server2 uses all fifty

connections during peak load, the optimal connection pool size is different for the

two servers. Therefore, the Runtime Performance Advisor gives two sets of advice

(one for server1 and another for server2). You must be aware that the data source

is declared at the node level and you must make your decisions appropriately by

setting one size that works for both or declaring two different data sources for

each server with the appropriate level.

Tivoli Performance Viewer advisor

The performance advisor in Tivoli Performance Viewer (TPV) provides advice to

help tune systems for optimal performance and provide recommendations on

inefficient settings by using collected Performance Monitoring Infrastructure (PMI)

data. Obtain the advice by selecting the performance advisor in TPV.

Using the Runtime Performance Advisor

The Runtime Performance Advisor provides advice to help tune systems for

optimal performance and is configured using the WebSphere Application Server

administrative console or the wsadmin tool . The Runtime Performance Advisor

uses Performance Monitoring Infrastructure (PMI) data to provide

recommendations for performance tuning. Running in the Java Virtual Machine

(JVM) of the application server, this advisor periodically checks for inefficient

settings, and issues recommendations as standard product warning messages. View

these recommendations by clicking Troubleshooting > Runtime Messages >

Warning in the administrative console. Enabling the Runtime Performance Advisor

has minimal system performance impact.

 1. Enable PMI in the application server administrative console as described in

the Administering applications and their environment book. To obtain advice, you

must first enable PMI through the administrative console and restart the

server. The Runtime Performance Advisor enables the appropriate monitoring

counter levels for all enabled advice when PMI is enabled. If specific counters

exist that are not wanted, disable the corresponding advice in the Runtime

Performance Advisor panel, and disable unwanted counters. If specific

counters exist that are not wanted, or when disabling the Runtime

Performance Advisor, you might want to disable PMI or the counters that the

Runtime Performance Advisor enabled.

 2. Click Servers > Application servers in the console navigation tree.

 3. Click server_name > Runtime Performance Advisor Configuration.

 4. Under the Configuration tab, specify the number of processors on the server.

This setting is critical to ensure accurate advice for the specific configuration

of the system.

 5. Select the Calculation Interval. PMI data is taken over an interval of time and

averaged to provide advice. The calculation interval specifies the length of the

time over which data is taken for this advice. Therefore, details within the

advice messages display as averages over this interval.

 6. Select the Maximum Warning Sequence. The maximum warning sequence

refers to the number of consecutive warnings that are issued before the

threshold is updated. For example, if the maximum warning sequence is set to

3, then the advisor only sends three warnings to indicate that the prepared

Chapter 5. Obtaining performance advice from the performance advisors 13

statement cache is overflowing. After three warnings, a new alert is only

issued if the rate of discards exceeds the new threshold setting.

 7. Click Apply.

 8. Click Save.

 9. Click the Runtime tab.

10. Click Restart. Select Restart on the Runtime tab to re-initialize the Runtime

Performance Advisor using the last configuration information that is saved to

disk.

Note: This action also resets the state of the Runtime Performance Advisor.

For example, the current warning count is reset to zero (0) for each

message.

11. Simulate a production level load. If you use the Runtime Performance Advisor

in a test environment, do any other tuning for performance, or simulate a

realistic production load for your application. The application must run this

load without errors. This simulation includes numbers of concurrent users

typical of peak periods, and drives system resources, for example, CPU and

memory, to the levels that are expected in production. The Runtime

Performance Advisor only provides advice when CPU utilization exceeds a

sufficiently high level. For a list of IBM business partners providing tools to

drive this type of load, see the ″Performance: Resources for learning″ topic in

the Administering applications and their environment book.

12. Select the check box to enable the Runtime Performance Advisor.

Note: To achieve the best results for performance tuning, enable the Runtime

Performance Advisor when a stable production level load is being

applied.

13. Click OK.

14. Select Warnings in the administrative console under the WebSphere Runtime

Messages in the WebSphere Status panel or look in the SystemOut.log file,

which is located in the

install_root/profiles/profile_name/logs/server_name directory to view

tuning advice. Some messages are not issued immediately.

15. Update the product configuration for improved performance, based on advice.

Although the performance advisors attempt to distinguish between loaded

and idle conditions, misleading advice might be issued if the advisor is

enabled while the system is ramping up or down. This result is especially

likely when running short tests. Although the advice helps in most

configurations, there might be situations where the advice hinders

performance. Because of these conditions, advice is not guaranteed. Therefore,

test the environment with the updated configuration to ensure that it

functions and performs better than the pervious configuration.

Over time, the advisor might issue differing advice. The differing advice is

due to load fluctuations and the run-time state. When differing advice is

received, you need to look at all advice and the time period over which it ia

issued. Advice is taken during the time that most closely represents the peak

production load.

Performance tuning is an iterative process. After applying advice, simulate a

production load, update the configuration that is based on the advice, and

retest for improved performance. This procedure is continued until optimal

performance is achieved.

14 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

You can enable and disable advice in the Advice Configuration panel. Some advice

applies only to certain configurations, and can only be enabled for those

configurations. For example, unbounded Object Request Broker (ORB) service

thread pool advice is only relevant when the ORB service thread pool is

unbounded, and can only be enabled when the ORB thread pool is unbounded.

For more information on Advice configuration, see the article, “Advice

configuration settings” on page 16.

Runtime Performance Advisor configuration settings

Use this page to specify settings for the Runtime Performance Advisor.

For more information on how to use the Runtime Performance Advisor, see the

article, “Using the Runtime Performance Advisor” on page 13.

To view this administrative page, click Servers > Application Servers >

server_name > Runtime Performance Advisor Configuration under the

Performance section.

Enable Runtime Performance Advisor

Specifies whether the Runtime Performance Advisor runs on the server startup.

The Runtime Performance Advisor requires that the Performance Monitoring

Infrastructure (PMI) be enabled. It does not require that individual counters be

enabled. When a counter that is needed by the Runtime Performance Advisor is

not enabled, the Runtime Performance Advisor enables it automatically. When

disabling the Runtime Performance Advisor, you might want to disable

Performance Monitoring Infrastructure (PMI) or the counters that Runtime

Performance Advisor enabled. The following counters might be enabled by the

Runtime Performance Advisor:

v ThreadPools (module)

– Web Container (module)

- Pool Size

- Active Threads
– Object Request Broker (module)

- Pool Size

- Active Threads
v JDBC Connection Pools (module)

– Pool Size

– Percent used

– Prepared Statement Discards
v Servlet Session Manager (module)

– External Read Size

– External Write Size

– External Read Time

– External Write Time

– No Room For New Session
v System Data (module)

– CPU Utilization

– Free Memory

Calculation Interval

PMI data is taken over an interval of time and averaged to provide advice. The

calculation interval specifies the length of time over which data is taken for this

advice. Details within the advice messages display as averages over this interval.

Chapter 5. Obtaining performance advice from the performance advisors 15

Maximum warning sequence

The maximum warning sequence refers to the number of consecutive warnings

that are issued before the threshold is relaxed.

For example, if the maximum warning sequence is set to 3, the advisor only sends

three warnings to indicate that the prepared statement cache is overflowing. After

three warnings, a new alert is only issued if the rate of discards exceeds the new

threshold setting.

Number of processors

Specifies the number of processors on the server.

This setting is critical to ensure accurate advice for the specific configuration of the

system.

Advice configuration settings

Use this page to select the advice you wish to enable or disable.

To view this administrative page, click Servers > Application Servers >

server_name > Runtime Performance Advisor Configuration under the

Performance section > Advice Configuration.

Advice name

Specifies the advice that you can enable or disable.

Advice applied to component

Specifies the WebSphere Application Server component to which the run-time

performance advice applies.

Advice status

Specifies whether the advice is stopped or started.

Specify one of two values: Started and Stopped. Started means that the advice

runs if the advice applies. Stopped means that the advice does not run.

Advice status

Specifies whether the advice is stopped, started or unavailable.

The advice status has one of three values: Started, Stopped or Unavailable.

Started means that the advice is applied. Stopped means that the advice is not

applied. Unavailable means that the advice does not apply to the current

configuration, for example, persisted session size advice in a configuration without

persistent sessions.

Viewing the Runtime Performance Advisor recommendations

The Runtime Performance Advisor recommendations are displayed at the

following locations:

v The WebSphere Application Server log file SystemOut.log. The following log file

is a sample output of advice on the SystemOut.log file:

[4/2/04 15:50:26:406 EST] 6a83e321 TraceResponse W TUNE0202W:

Increasing the Web Container thread pool’s Maximum Size to 48

may improve performance.

Additional explanatory data follows.

16 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Average number of threads: 48.

Configured maximum pool size: 2.

This alert has been issued 1 time(s) in a row.

The threshold will be updated to reduce the

overhead of the analysis.

v The Runtime Messages panel in the administrative console. To view this

administrative page, click Troubleshooting > Runtime Messages > Warning.
 Related tasks

 “Using the Runtime Performance Advisor” on page 13

Using the performance advisor in Tivoli Performance Viewer

The performance advisor in Tivoli Performance Viewer (TPV) provides advice to

help tune systems for optimal performance and provides recommendations on

inefficient settings by using the collected Performance Monitoring Infrastructure

(PMI) data. Obtain advice by clicking Performance advisor in TPV. The

performance advisor in TPV provides more extensive advice than the Runtime

Performance Advisor. For example, TPV provides advice on setting the dynamic

cache size, setting the Java virtual machine (JVM) heap size and using the DB2

Performance Configuration wizard.

1. Enable PMI in the application server as described in the Administering

applications and their environment book. To monitor performance data through

the PMI interfaces, you must first enable PMI through the administrative

console before restarting the server. If running in a Network Deployment

environment, you must enable PMI on both the server and on the node agent

before restarting the server and the node agent.

2. Enable data collection and set the PMI monitoring level to Extended. The

monitoring levels that determine which data counters are enabled can be set

dynamically, without restarting the server. These monitoring levels and the data

selected determine the type of advice you obtain. The performance advisor in

TPV uses the extended monitoring level; however, the performance advisor in

TPV can use a few of the more expensive counters (to provide additional

advice) and provide advice on which counters can be enabled.

For example, the advice pertaining to session size needs the PMI statistic set to

All. Or, you can use the PMI Custom Monitoring Level to enable the Servlet

Session Manager SessionObjectSize counter. The monitoring of the SessionSize

PMI counter is expensive, and is not in the Extended PMI statistic set.

Complete this action in one of the following ways:

a. Performance Monitoring Infrastructure settings.

b. Enabling Performance Monitoring Infrastructure using the wsadmin tool.
3. In the administrative console, click Monitoring and Tuning > Performance

Viewer > Current activity.

4. Simulate a production level load. Simulate a realistic production load for your

application, if you use the performance advisor in a test environment, or do

any other performance tuning. The application must run this load without

errors. This simulation includes numbers of concurrent users typical of peak

periods, and drives system resources, for example, CPU and memory to the

levels that are expected in production. The performance advisor only provides

advice when CPU utilization exceeds a sufficiently high level. For a list of IBM

business partners providing tools to drive this type of load, see the

″Performance: Resources for learning″ topic in the Administering applications and

their environment book.

Chapter 5. Obtaining performance advice from the performance advisors 17

5. Log performance data with TPV.

6. Clicking Refresh on top of the table of advice causes the advisor to recalculate

the advice based on the current data in the buffer.

7. Tuning advice displays when the Advisor icon is chosen in the TPV

Performance Advisor. Double-click an individual message for details. Because

PMI data is taken over an interval of time and averaged to provide advice,

details within the advice message display as averages.

Note: If the Refresh Rate is adjusted, the Buffer Size must also be adjusted to

enable sufficient data to be collected for performing average calculations.

Currently 5 minutes of data is required. Hence, the following guidelines

intend to help you use the Tivoli Performance Advisor:

a. You cannot have a Refresh Rate of more than 300 seconds.

b. RefreshRate * BufferSize > 300 seconds. Buffer Size * Refresh Rate is

the amount of PMI data available in memory and it must be greater

than 300 seconds.

c. For the Tivoli Performance Advisor to work properly with TPV logs,

the logs must be at least 300 seconds of duration.

For more information about configuring user and logging settings of

TPV, refer to the ″Configure TPV settings″ article in the Administering

applications and their environment book.

8. Update the product configuration for improved performance, based on advice.

Because Tivoli Performance Viewer refreshes advice at a single instant in time,

take the advice from the peak load time. Although the performance advisors

attempt to distinguish between loaded and idle conditions, misleading advice

might be issued if the advisor is enabled while the system is ramping up or

down. This result is especially likely when running short tests. Although the

advice helps in most configurations, there might be situations where the advice

hinders performance. Because of these conditions, advice is not guaranteed.

Therefore, test the environment with the updated configuration to ensure it

functions and performs well.

Over a period of time the advisor might issue differing advice. The differing

advice is due to load fluctuations and run-time state. When differing advice is

received, you need to look at all advice and the time period over which it was

issued. You must take advice during the time that most closely represents the

peak production load.

Performance tuning is an iterative process. After applying advice, simulate a

production load, update the configuration that is based on the advice, and

retest for improved performance. This procedure is continued until optimal

performance is achieved.

18 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Chapter 6. Tuning the application serving environment

This topic describes the benefits of tuning for optimal performance, highlights the

tunable parameters of the major WebSphere Application Server components, and

provides insight about how these parameters affect performance.

WebSphere Application Server provides tunable settings for its major components

to enable you to make adjustments to better match the run-time environment to

the characteristics of your application. Many applications can run successfully

without any changes to the default values for these tuning parameters. Other

applications might need changes, for example, a larger heap size, to achieve

optimal performance.

Performance tuning can yield significant gains in performance even if an

application is not optimized for performance. However, correcting shortcomings of

an application typically results in larger performance gains than are possible with

just altering tuning parameters. Many factors contribute to a high performing

application.

Tuning parameter index for z/OS

Performance tuning for WebSphere Application Server for z/OS becomes a

complex exercise because the nature of the runtime involves many different

components of the operating system and middleware. Use the “Tuning index for

WebSphere Application Server for z/OS” on page 20 to find information and

parameters for tuning the z/OS operating system, subsystems, the WebSphere

Application Server for z/OS run-time environment, and some Java 2 Platform,

Enterprise Edition (J2EE) application tuning tips.

Recommendation: Before you read a description of WebSphere Application Server

for z/OS tuning guidelines, it is important to note that, no matter how well the

middleware is tuned, it cannot make up for poorly designed and coded

applications. Focusing on the application code can help improve performance.

Often, poorly written or designed application code changes will make the most

dramatic improvements to overall performance.

The tuning guide focuses on server tuning. If you want to tune your applications,

see the ″Performance: Resources for learning″ article in the Administering

applications and their environment book.

For your convenience, procedures for tuning parameters in other products, such as

DB2, Web servers and operating systems are included. Because these products

might change, consider these descriptions as suggestions.

Each WebSphere Application Server process has several parameters that influence

application performance. You can use the WebSphere Application Server

administrative console to configure and tune applications, Web containers,

Enterprise JavaBeans (EJB) containers, application servers and nodes in the

administrative domain.

If you are a WebSphere Application Server administrator or Systems programmer

on WebSphere Application Server for z/OS, refer to “Tuning index for WebSphere

Application Server for z/OS” on page 20 for z/OS specific tuning tips.

© Copyright IBM Corp. 2005 19

Each parameter description: explains the parameter; provides reasons to adjust the

parameter; discusses how to view or set the parameter; as well as indicates default

and recommended values.

Additional references:

v WebSphere Application Server - Performance Web site

Recommended hardware configuration

The tuning guidelines presented in this chapter will have the most benefit on the

following recommended configuration:

v An IBM S/390 or zSeries Model that supports the software requirement of z/OS

V1R2.

v Storage

Storage requirements are higher than for traditional workloads

– Virtual storage default should be about 370 MB per servant, which includes a

256 MB default heap size and a default initial LE heap size of 80 MB.

– Real storage minimum is 376 MB per LPAR for a light load such as the IVP.

For most real-world applications, we recommend 2 GB or higher. We have

seen applications that require as much as 8 GB of real to operate at peak load.
v DASD

To maximize your performance, we recommend a fast DASD subsystem (for

example, IBM Shark), running with a high cache read/write hit rate.

v Networking

For high bandwidth applications, we recommend at least a 1 Gb Ethernet

connection. If your applications have extremely high bandwidth requirements,

you may need additional Ethernet connections.

v Cryptography

For applications that make heavy use of cryptography, we recommend the

zSeries or S/390 cryptographic hardware and the Integrated Cryptographic

Service Facility. For more information, refer to the zSeries and S/390

Cryptography Web site.

Tuning index for WebSphere Application Server for z/OS

One of the goals of the WebSphere Application Server for z/OS programming

model and runtime is to significantly simplify the work required for application

developers to write and deploy applications. Sometimes we say that WebSphere

Application Server for z/OS relieves the application programmer of many of the

plumbing tasks involved in developing applications. For example, application code

in WebSphere Application Server for z/OS does not concern itself directly with

remote communication--it locates objects which may be local or remote and drives

methods. Therefore, you won’t see any direct use of socket calls or TCP/IP

programming in a WebSphere Application Server for z/OS application.

This separation of what you want to do from where you do it is one aspect of

removing the application programmers from plumbing tasks. Other considerations

are not having to deal with data calls for some types of beans, potentially user

authentication, and threading. There are generally no calls from the application

code to touch sockets, RACF calls, or management of threading. Removing this

from the application programmer doesn’t mean this work won’t get done. Rather,

it means that there may be more work for the DBA, the network administrator, the

security administrator, and the performance analyst.

There are four layers of tuning that need to be addressed:

20 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

http://www-306.ibm.com/software/webservers/appserv/was/performance.html
http://www-1.ibm.com/servers/eserver/zseries/zos/security/cryptography.html
http://www-1.ibm.com/servers/eserver/zseries/zos/security/cryptography.html

v “Tuning the z/OS operating system”

v “Tuning for subsystems” on page 31

v “Tuning the WebSphere Application Server for z/OS runtime” on page 44

v “Tuning for J2EE applications” on page 46

We deal with the first three in separate sections under this article and briefly touch

on the fourth. For more information on tuning applications, refer to the Developing

and deploying applications PDF book.

Tuning the z/OS operating system

Steps involved in tuning the z/OS operating system to optimize WebSphere

performance include:

v “Tuning storage”

v “z/OS or OS/390 operating system tuning tips” on page 23

v “Resource Recovery Service (RRS) tuning tips for z/OS” on page 24

v “UNIX System Services (USS) tuning tips for z/OS” on page 28

v “Workload management (WLM) tuning tips for z/OS” on page 29

Tuning storage

WebSphere for z/OS puts much higher demands on virtual memory than a

traditional workload. Ensure that you don’t underestimate the amount of virtual

storage applied to the WebSphere for z/OS servers. Generally, they use

significantly more virtual memory than traditional application servers on z/OS.

Since real storage is needed to back the virtual storage, real storage usage may also

be high.

1. Allocate enough virtual storage. The setting of REGION on the JCL for the proc

should be large (at least 200MB to run), and much larger if high throughput is

required. You can get an idea of the virtual storage usage through RMF or

other performance monitors. It would not be unreasonable for the servant procs

to specify REGION=0M, which tells the operating system to give all the

available region (close to 2GB).

Note: For more information on REGION=0M and IEFUSI, please see

″Preparing the base operating system″ in the Getting Started section of

the information center.

If you choose to not put most of the runtime in LPA, as described in the

program locations section, be sure to specify more region (as high as 512MB).

Also, in conjunction with the increase in storage usage, you may have to define

more paging space or auxiliary storage to back up the additional virtual storage

used.

2. Optional: Allocate enough real storage. Expect a requirement of at least 384MB

of real storage for a small configuration. For controllers and servants, real

storage utilizations depends on the size of the JVM heapsize.

Recommendation: It can be the case that in a heavy use environment 2G of

central storage is not enough to handle the real storage demands of a high

volume Java application. In this case, we recommend that you configure with

64-bit real storage, which will give you the ability to dedicate more central

storage to the LPAR. z/OS on a zSeries will always run in 64-bit mode.

Running in 64-bit mode gives you the ability to define more than 2 GB of

central storage When you configure for 64-bit real all of the storage is defined

as central storage. For non-zSeries processors, or 31-bit mode, you can

minimize paging by defining more expanded storage.

Chapter 6. Tuning the application serving environment 21

3. “Java virtual machine storage tuning tips for z/OS.” Also refer to the

Troubleshooting and support PDF book.

Java virtual machine storage tuning tips for z/OS: Specifying a sufficient JVM

Heap Size is important to Java performance. The JVM has thresholds it uses to

manage the JVM’s storage. When the thresholds are reached, the garbage collector

(GC) gets invoked to free up unused storage. GC can cause significant degradation

of Java performance.

Use the administrative console to specify the Initial Heap Size and the Maximum

Heap Size for the JVM.

To view this administrative console page, click Servers > Application Servers

>server_name > Process Definition > Java Virtual Machine. Access the

configuration tab to change these settings.

v In order to get it to run less frequently, you can give the JVM more memory.

This is done by specifying a larger value for Initial Heap Size. The default of

256M is a good starting point but may need to be raised for larger applications.

When specifying either a larger or smaller JVM heap size value, IBM

recommends that you code both the initial and maximum values that you

desire.

v It is good for the Initial Heap Size to equal the Maximum Heap Size because it

allows the allocated storage to be completely filled before GC kicks in.

Otherwise, GC will run more frequently than necessary, potentially impacting

performance.

v Make sure the region is large enough to hold the specified JVM heap.

v Beware of making the Initial Heap Size too large. While it initially improves

performance by delaying garbage collection, it ultimately affects response time

when garbage collection eventually kicks in (because it runs for a longer time).

v Paging activity on your system must also be considered when you set your

JVM heap size. If your system is already paging heavily, increasing the JVM

heap size might make performance worse rather than better.

v To determine if you are being affected by garbage collection, you can enable

Verbose Garbage Collection on the JVM Configuration tab. The default is not

enabled. This will write a report to the output stream each time the garbage

collector runs. This report should give you an idea of what is going on with Java

GC.

Example: This is an example of a verboseGC report.

..

<AF[21]: Allocation Failure. need 32784 bytes, 32225 ms since last AF

>

<AF[21]: managing allocation failure, action=1 (84320/131004928)

 (3145728/3145728)>

<GC(21): GC cycle started Wed Feb 27 22:46:11 2002

<GC(21): freed 99587928 bytes, 76% free (102817976/134150656),

 in 118 ms>

<GC(21): mark: 103 ms, sweep: 15 ms, compact: 0 ms>

<GC(21): refs: soft 0 (age >= 32), weak 0, final 878, phantom 0>

<AF[21]: completed in 118 ms

>.

..

Key things to look for in a verboseGC report are:

– Time spent in garbage collection.

Ideally, you want to be spending less than 5% of the time in GC. To

determine percentage of time spent in GC, divide the time it took to complete

the collection by the time since the last AF and multiply the result by 100. For

example,

22 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

118/32225 * 100 = 0.366%

If you are spending more than 5% of your time in GC and if GC is occurring

frequently, you may need to increase your Java heap size.

– Growth in the allocated heap.

To determine this, look at the %free. You want to make sure the number is

not continuing to decline. If the %free continues to decline you are

experiencing a gradual growth in allocated heap from GC to GC which could

indicate that your application has a memory leak.

You can also use the MVS console command, modify display, jvmheap to display

JVM heap information. See ″Modify command″ for details. In addition, you can

check the server activity and interval SMF records. The JVM heap size is also

made available to PMI and can be monitored using the Tivoli Performance

Viewer.

z/OS or OS/390 operating system tuning tips

This section provides tuning tips for various components of z/OS or OS/390.

v CTRACE

The first place to review is your CTRACE configuration. Ensure that all

components are either set to MIN or OFF. To display the CTRACE options for all

components on your system, issue the following command from the operator

console:

D TRACE,COMP=ALL

To change the setting for an individual component to its minimum tracing value,

use the following command (where ’xxx’ is the component):

TRACE CT,OFF,COMP=xxxx

This will eliminate any unnecessary overhead of collecting trace information that

is not being used. Often during debug, CTRACE is turned on for a component

and not shut off when the problem is resolved.

v SMF

Ensure that you are not collecting more SMF data than you need. Review the

SMFPRMxx to ensure that only the minimum number of records are being

collected.

Use SMF 92 or 120 only for diagnostics.

– SMF Type 92

SMF Type 92 records are created each time an HFS file is opened, closed,

deleted, and so forth. Almost every web server request references HFS files,

so thousands of SMF Type 92 records are created. Unless you specifically

need this information, turn off SMF Type 92 records. In the following

example, we have disabled the collection of SMF type 92 records:

Example:

 ACTIVE,

 DSNAME(SYS1.&.SYSNAME..SMF.MAN1;SYS1.&SYSNAME..SMF.MAN2;),

 NOPROMPT,

 REC(PERM),

 MAXDORM(3000),

 STATUS(010000),

 JWT(0510),

 SID(&SYSNAME;(1:4)),

 LISTDSN,

 SYS(NOTYPE(19,40,92)),

 INTVAL(30),

 SYNCVAL(00),

 SYS(DETAIL,INTERVAL(SMF,SYNC)),

 SYS(EXITS(IEFACTRT,IEFUJI,IEFU29,IEFU83,IEFU84,IEFU85,IEFUJV,IEFUSI))

– SMF Type 120

Chapter 6. Tuning the application serving environment 23

You may find that running with SMF 120 records in production is

appropriate, since these records give information specific to WebSphere

applications such as response time for J2EE artifiacts, bytes transferred, and

so forth. If you do choose to run with SMF 120 records enabled, we

recommend that you use server interval SMF records and container interval

SMF records rather than server activity records and container activity records.

For details of the SMF 120 record, refer to the Troubleshooting and support PDF

book.

For steps involved in controlling collection of SMF 120 records refer to

theEnabling SMF recording topic in the Troubleshooting and support PDF book.

To enable specific record types, specify the following properties:

- server_SMF_server_activity_enabled=0 (or

server_SMF_server_activity_enabled = false)

- server_SMF_server_interval_enabled=1 (or

server_SMF_server_activity_enabled = true)

- server_SMF_container_activity_enabled=0 (or false)

- server_SMF_container_interval_enabled=1 (or true)

- server_SMF_interval_length=1800
v You might also want to review your DB2 records and the standard RMF written

SMF records, and ensure that the SMF datasets are allocated optimally.

Information on ensuring a high performance SMF recording environment can be

found in the chapter on Customizing SMF in z/OS MVS System Management

Facilities (SMF).

Resource Recovery Service (RRS) tuning tips for z/OS

v For best throughput, use coupling facility (CF) logger.

DASD logger can limit your throughput because it is I/O-sensitive. The CF

logger has much more throughput (in one measurement, the CF logger was six

times faster than the DASD logger). Throughput will benefit from moving the

RRS logs in logger to a coupling facility (CF) logstream. Doing so will help

transactions complete quickly and not require any DASD I/O. If it’s not possible

to use CF logs, use well performing DASD and make sure the logs are allocated

with large CI sizes.

v Ensure that your logger configuration is optimal by using SMF 88 records.

See the tuning section of z/OS MVS Setting Up a Sysplex or the chapter on

System Logger Accounting in z/OS MVS System Management Facilities (SMF) for

details. In any case, you should monitor the logger to ensure that there is a

sufficient size in the CF and that offloading is not impacting the overall

throughput. The transaction logs are shared I/O-intensive resources in the

mainline and can affect throughput dramatically if mistuned.

v Set adequate default values for the LOGR policy.

Default values of LOGR policy may have an impact on performance. We

recommend the default settings in the table below.

 Table 1. Recommended default setting for LOGR

Log Stream Initial Size Size

RM.DATA 1 MB 1MB

MAIN.UR 5 MB 50 MB

DELAYED .UR 5 MB 50 MB

RESTART 1 MB 5 MB

ARCHIVE 5 MB 50 MB

v Review XA Resource Managers log sizes.

24 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

If you are using XA Resource Managers and you have chosen to put the logs in

the logger, you may have to review the log sizes. As of this writing, we cannot

give specific recommendations.

You can configure the XA logs in the install dialog to live either in the HFS or in

logstreams. If you are not using global transactions involving XA resources,

there is no point in putting the log in a logstream. If the XA logs are placed in

logstreams, we recommend that they be in the Coupling Facility instead of

DASD. The default names are ’HLQ.server.M’ and ’HLQ.server.D’ where HLQ is

a user-defined value between 1-8 characters specified in the install dialog, and

’server’ is the server short name. It is the installer’s responsibility to ensure that

the HLQ + server name is unique across the configuration. If it is not, the server

will fail to start because the user data in the existing logstream will not match

that of the new server. The logs (and structures, if applicable) are created in job

’BBOLOGSA’ in the install dialog. If structures need to be allocated, there is also

a step indicating what structure names need to be added to the CFRM policy.

We recommend 5MB initial and 20MB max sizes for both of these logstreams.

v Eliminate archive log if not needed.

If you don’t need the archive log, we recommend that you eliminate it since it

can introduce extra DASD I/Os. The archive log contains the results of

completed transactions. Normally, the archive log is not needed. Following is an

example of disabling archive logging.

Example:

//STEP1 EXEC PGM=IXCMIAPU

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DATA TYPE(LOGR)

 DELETE LOGSTREAM NAME(ATR.WITPLEX.ARCHIVE)

 DELETE LOGSTREAM NAME(ATR.WITPLEX.MAIN.UR)

 DELETE LOGSTREAM NAME(ATR.WITPLEX.RESTART)

 DELETE LOGSTREAM NAME(ATR.WITPLEX.RM.DATA)

 DELETE LOGSTREAM NAME(ATR.WITPLEX.DELAYED.UR)

 DELETE STRUCTURE NAME(RRSSTRUCT1)

/*

//STEP2 EXEC PGM=IXCMIAPU

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DATA TYPE(LOGR)

 DEFINE STRUCTURE NAME(RRSSTRUCT1)

 LOGSNUM(9)

 DEFINE LOGSTREAM NAME(ATR.WITPLEX.MAIN.UR)

 STRUCTNAME(RRSSTRUCT1)

 STG_DUPLEX(YES)

 DUPLEXMODE(UNCOND)

 LS_DATACLAS(SYSPLEX)

 LS_STORCLAS(LOGGER)

 HLQ(IXGLOGR)

 AUTODELETE(YES)

 RETPD(3)

 DEFINE LOGSTREAM NAME(ATR.WITPLEX.RESTART)

 STRUCTNAME(RRSSTRUCT1)

 STG_DUPLEX(YES)

 DUPLEXMODE(UNCOND)

 LS_DATACLAS(SYSPLEX)

 LS_STORCLAS(LOGGER)

 HLQ(IXGLOGR)

 AUTODELETE(YES)

 RETPD(3)

Chapter 6. Tuning the application serving environment 25

DEFINE LOGSTREAM NAME(ATR.WITPLEX.RM.DATA)

 STRUCTNAME(RRSSTRUCT1)

 STG_DUPLEX(YES)

 DUPLEXMODE(UNCOND)

 LS_DATACLAS(SYSPLEX)

 LS_STORCLAS(LOGGER)

 HLQ(IXGLOGR)

 AUTODELETE(YES)

 RETPD(3)

 DEFINE LOGSTREAM NAME(ATR.WITPLEX.DELAYED.UR)

 STRUCTNAME(RRSSTRUCT1)

 STG_DUPLEX(YES)

 DUPLEXMODE(UNCOND)

 LS_DATACLAS(SYSPLEX)

 LS_STORCLAS(LOGGER)

 HLQ(IXGLOGR)

 AUTODELETE(YES)

 RETPD(3)

/*

//* DEFINE LOGSTREAM NAME(ATR.WITPLEX.ARCHIVE)

 //* STRUCTNAME(RRSSTRUCT1)

 //* STG_DUPLEX(YES)

 //* DUPLEXMODE(UNCOND)

 //* LS_DATACLAS(SYSPLEX)

 //* LS_STORCLAS(LOGGER)

 //* HLQ(IXGLOGR)

 //* AUTODELETE(YES)

 //* RETPD(3)

LE tuning tips for z/OS

v For best performance, use the LPALSTxx parmlib member to ensure that LE and

C++ runtimes are loaded into LPA, as shown in the following example:

Example: sys1.parmlib(LPALSTxx):

********************************* Top of Data ********************

USER.LPALIB,

ISF.SISFLPA, SDSF

CEE.SCEELPA,

 LANGUAGE ENVIRONMENT

CBC.SCLBDLL, C++ RUNTIME

.

.

.

******************************** Bottom of Data ******************

v Ensure that the Language Environment data sets, SCEERUN and SCEERUN2,

are authorized to enable xplink.

Processes that run the client ORB, since they start the JVM, must run with

xplink(on) For best performance in the xplink runtime, compile applications that

use JNI services with xplink enabled. Enabling xplink in the runtime

environment and compiling applications with xplink enabled improves

performance in z/OS V1R2. As you move from z/OS V1R2 to z/OS V2R6 you

should experience additional performance improvements when all the LE

services WebSphere calls are xplink enabled. Not all native code in WebSphere

Application Server for z/OS or companion products such as DB2 or MQ are

xplink enabled and this is an area of active investigation.

v Ensure that you are NOT using the following options during production:

– RPTSTG(ON)

– RPTOPTS(ON)

– HEAPCHK(ON)

26 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

v Turn LE heappools on.

If you are running a client on z/OS, setting the following: SET

LEPARM=’HEAPP(ON)’ in a shell script, turns on LE heappools, which should

improve the performance of the client.

v Refer to “Fine tuning the LE heap”

Fine tuning the LE heap:

The LE Heap is an area of storage management to be concerned with. For servers,

IBM has compiled default values for HEAP and HEAPPOOL into the server main

programs. These are good starting points for simple applications. To fine tune the

LE Heap settings, use the following procedure:

1. Generate a report on storage utilization for your application servers. Use the LE

function RPTSTG(ON) in a SET LEPARM= statement in JCL as shown in the

example:.

SET LEPARM=’RPTOPTS(ON),RPTSTG(ON)’

Results appear in servant joblog.

2. To bring the server down cleanly, use the following VARY command:

VARY WLM,APPLENV=xxxx,QUIESCE

The following example shows the servant SYSPRINT DD output from the

RPTSTG(ON) option.

Example:

. . .

0 HEAP statistics:

 Initial size: 83886080

 Increment size: 5242880

 Total heap storage used (sugg. initial size): 184809328

 Successful Get Heap requests: 426551

 Successful Free Heap requests: 424262

 Number of segments allocated: 1

 Number of segments freed: 0

 . . .

 Suggested Percentages for current Cell Sizes:

 HEAPP(ON,8,6,16,4,80,42,808,45,960,5,2048,20)

 Suggested Cell Sizes:

 HEAPP(ON,32,,80,,192,,520,,1232,,2048,)

 . . .

3. Take the heap values from the ″Suggested Cell Sizes″ line in the storage

utilization report and use them in another RPTSTG(ON) function to get another

report on storage utilization as shown below:

SET LEPARM=’RPTOPTS(ON),RPTSTG(ON,32,,80,,192,,520,,1232,,2048,)’

The following example shows the servant joblog output from the

RPTOPTS(ON),RPTSTG(ON,32,,80,,192,,520,,1232,,2048,) option.

Example:

 . .

0 HEAP statistics:

 Initial size: 83886080

 Increment size: 5242880

 Total heap storage used (sugg. initial size): 195803218

Chapter 6. Tuning the application serving environment 27

Successful Get Heap requests: 426551

 Successful Free Heap requests: 424262

 Number of segments allocated: 1

 Number of segments freed: 0

 . . .

 Suggested Percentages for current Cell Sizes:

 HEAPP(ON,32,8,80,43,192,48,520,20,1232,5,2048,20)

 Suggested Cell Sizes:

 HEAPP(ON,32,,80,,192,,520,,1232,,2048,)

 . . .

4. Take the heap values from the ″Suggested Percentages for current Cell Sizes″

line of the second storage utilization report and use them in another

RPTSTG(ON) function to get a third report on storage utilization as shown

below:

SET LEPARM=’RPTOPTS(ON),RPTSTG(ON,32,8,80,43,192,48,520,20,1232,5,2048,20)’

The following example shows the servant joblog output from the

RPTOPTS(ON),RPTSTG(ON,32,8,80,43,192,48,520,20,1232,5,2048,20) option.

Example:

 . .

0 HEAP statistics:

 Initial size: 83886080

 Increment size: 5242880

 Total heap storage used (sugg. initial size): 198372130

 Successful Get Heap requests: 426551

 Successful Free Heap requests: 424262

 Number of segments allocated: 1

 Number of segments freed: 0

 . . .

 Suggested Percentages for current Cell Sizes:

 HEAPP(ON,32,8,80,43,192,48,520,20,1232,5,2048,20)

 Suggested Cell Sizes:

 HEAPP(ON,32,,80,,192,,520,,1232,,2048,)

 . . .

5. On the third storage utilization report, look for the ″Total heap storage used

(sugg. initial size):″ line and use this value for your initial LE heap setting. For

example, in the report in third report example this value is 198372130.

6. Make sure that you remove RPTSTG since it does incur a small performance

penalty to collect the storage use information.

7. For your client programs that run on z/OS or OS/390, we recommend that you

at least specify HEAPP(ON) on the proc of your client to get the default LE

heappools. LE will be providing additional pools (more than 6) and larger than

2048MB cell size in future releases of z/OS. You may be able to take advantage

of these increased pools and cell sizes, if you have that service on your system.

8. If you use LE HEAPCHECK, make sure to turn it off once you have ensured

that your code doesn’t include any uninitialized storage. HEAPCHECK can be

very expensive.

UNIX System Services (USS) tuning tips for z/OS

WebSphere Application Server for z/OS no longer requires or recommends the

shared file system for the configuration files, since it maintains its own mechanism

for managing this data in a cluster. However, WebSphere for z/OS does require the

28 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

shared files system for XA partner logs. Your application may also use the shared

file system. This article provides some basic tuning information for the shared file

system.

For basic z/OS UNIX System Services performance information, refer to the

following web site:

http://www.ibm.com/servers/eserver/zseries/ebusiness/perform.html

v Mount the shared file system R/O.

Special consideration needs to be made to file system access when you run in a

sysplex. If you mount the file system R/W in a shared file system environment,

only one system will have local access to the files. All other systems have remote

access to the files which negatively affects performance. You may choose to put

all of the files for WebSphere in their own mountable file system and mount it

R/O to improve performance. However, to change your current application or

install new applications, the file system must be mounted R/W. You will need to

put operational procedures in place to ensure that the file system is mounted

R/W when updating or installing applications.

v HFS files caching.

HFS Files Caching Read/Write files are cached in kernel data spaces. In order to

determine what files would be good candidates for file caching you can use SMF

92 records.

Initial cache size is defined in BPXPRMxx.

v Consider using zFS.

z/OS has introduced a new file system called zFS which should provide

improved file system access. You may benefit from using the zFS for your UNIX

file system. See z/OS UNIX System Services Planning for more information.

v Use the filecache command.

High activity, read-only files can be cached in the USS kernel using the filecache

command. Access to files in the filecache can be much more efficient than access

to files in the shared file system, even if the shared file system files are cached in

dataspaces. GRS latch contention, which sometimes is an issue for frequently

accessed files shared file system, will not affect files in the filecache.

To filecache important files at startup, you can add filecache command to your

/etc/rc file. Unfortunately, files which are modified after being added to the

filecache may not be eligible for caching until the file system is unmounted and

remounted, or until the system is re-IPLed. Refer to z/OS UNIX System Services

Command Reference for more information about the filecache command.

Example of using the filecache command:

/usr/sbin/filecache -a /usr/lpp/WebSphere/V5R0M0/

MQSeries/java/samples/base/de_DE/mqsample.html

Workload management (WLM) tuning tips for z/OS

If you are running z/OS 1.2 or higher, you might choose to use the dynamic

application environment. In that case, use the administrative console to turn on the

dynamic application environment. Use the administrative console to provide the

job control language (JCL) proc name for the servant and the JCL Parm for the

servant. Use the following instructions to set the WLM goals even if you do not

use the dynamic application environment.

Setting the WLM goals properly can have a very significant effect on application

throughput. The WebSphere for z/OS system address spaces should be given a

fairly high priority. As work comes into the system, the work classification of the

enclaves should be based on your business goals.

Chapter 6. Tuning the application serving environment 29

http://www.ibm.com/servers/eserver/zseries/ebusiness/perform.html

v Classify location service daemons and controllers as SYSSTC or high velocity.

v Use STC classification rules to classify velocity goals for application servers.

Java garbage collection runs under this classification. Java GC is a CPU and

storage intensive process, so if you set the velocity goal too high GC could

consume more of the system resources than desired. On the other hand, if your

Java heap is correctly tuned, GC for each server region should run no more than

5% of the time. Also, providing proper priority to GC processing is necessary

since other work in the server region is stopped during much of the time GC is

running.

JSP compiles run under this classification. If your system is configured to do

these compiles at runtime, setting the velocity goal too low could result in

longer delays waiting for JSP compiles to complete.

Application work is actually classified under the work manager.

v Application environment for work running under servants

– Subsystem type = CB

– Classify based on server name, server instance name, User ID, and transaction

class

– Percentage response time goal is recommended

It is usually a good idea to make the goals achievable. For example, a goal

that 80% of the work will complete in .25 seconds is a typical goal. Velocity

goals for application work are not meaningful and should be avoided.

– Provide a high velocity default service class for CB transactions (Default is

SYSOTHER)

Your goals can be multi-period. This might be useful if you have distinctly

short and long running transactions in the same service class. On the other

hand, it is usually better to filter this work into a different service class if you

can. Being in a different service class will place the work in a different servant

which allows WLM much more latitude in managing the goals.
v You should define unique WLM report classes for servant regions and for

applications running in your application environment. By performing this action,

the resource measurement facility (RMF) can report performance information

with more granularity.

v Set your Application environment to ″No Limit″

– Required if you need more than one servant per application server.

– Under WLM, you can control how many servants can be started for each

server. If you need more than one servant in a server make sure that ″No

Limit″ is selected for the application environment associated with your server.

For information about setting up WLM performance goals, see z/OS MVS

Planning: Workload Management.

Example:

Application-Environment Notes Options Help

--

 Modify an Application Environment

Command ===> __

Application Environment Name . : BBOASR2

Description WAS.V40.WB02 Application server

Subsystem Type CB

Procedure Name BBOASR2S

Start Parameters IWMSSNM=&IWMSSNM

 __

 __

Limit on starting server address spaces for a subsystem instance:

1 1. No limit

30 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

2. Single address space per system

 3. Single address space per sysplex

Note: When the WLM configuration is set to no limit, you can control the

maximum and minimum number of servants by specifying the product

variables wlm_maximumSRCount=x and wlm_minimumSRCount=y. To

specify these variables, click Severs > Application servers and go the

application server page. Caution: If you specify

wlm_maximumSRCount you must ensure that you specify a

wlm_maximumSRCount value that is greater than or equal to the

number of service classes you have defined for this application

environment. Failure to do so can result in timeouts due to an

insufficient number of servants.

– Results reported in RMF Postprocessor workload activity

report:rprf_tunezwlm

- Transactions per second (not always the same as client tran rate)

- Average response times (and distribution of response times)

- CPU time used

- Percent response time associated with various delays

Tuning for subsystems

Steps involved in tuning the z/OS subsystems to optimize WebSphere performance

include:

v DB2 tuning tips for z/OS

v RACF tuning tips for z/OS

v TCP/IP tuning tips for z/OS

v Tuning WebSphere MQ as a JMS provide

v GRS tuning tips for z/OS

v Java virtual machine (JVM) tuning tips for z/OS

v CICS tuning tips for z/OS

DB2 tuning tips for z/OS

Performance tuning for DB2 is usually critical to the overall performance of a

WebSphere Application Server application. DB2 is often the preferred datastore for

a session or EJB. There are many books that cover DB2 tuning—we can’t possibly

provide as thorough a treatment of DB2 here as we would like. Listed here are

some basic guidelines for DB2 tuning as well as some guidelines for tuning DB2

for WebSphere Application Server. For more complete information on DB2 tuning

refer to the DB2 Universal Database for OS/390 and z/OS Administration Guide

Document Number SC26-9931-03. The DB2 books can be accessed at the following

Internet location:http://www.ibm.com/servers/eserver/zseries/zos/.

You have the choice of Java Database Connectivity (JDBC) or, with WebSphere

Application Server Version 5.0.1, Structured Query Language in Java (SQLJ)

support with both BMP and CMP beans when you are using the DB2 Universal

JDBC driver provider with DB2 as your backend database. JDBC makes use of

dynamic SQL whereas SQLJ generally is static and uses pre-prepared plans. You

can also use SQLJ support with BMP beans when you are using the DB2 for z/OS

Local JDBC provider (RRS) with DB2 for z/OS as your backend database. DB2 for

z/OS users who wish to use SQLJ support with CMP beans must use the DB2

Universal JDBC driver provider. SQLJ requires an extra step to create and bind the

plan whereas JDBC does not. SQLJ, as a general rule, is faster than JDBC. From a

performance point of view, SQLJ it is generally a better performer than JDBC on

z/OS DB2. Other features of SQLJ are that it’s security model and it’s repeatbility

Chapter 6. Tuning the application serving environment 31

http://www.ibm.com/servers/eserver/zseries/zos/

are similar to static SQL which is often preferred by z/OS DB2 DBAs. SQLJ does

require a couple of extra steps that are features of newer versions of WebSphere

Studio Application Developer and Rational Application Developer. Refer to

Developing data access applications.

General DB2 tuning tips:

This discussion relates only to DB2 for z/OS JDBC Driver which is referred to as

the DB2 for z/OS Legacy JDBC Driver.

v First, ensure that your DB2 logs are large enough, are allocated on the fastest

volumes you have, and make sure they have optimal CI sizes.

v Next, ensure that you have tuned your bufferpools so that the most often-read

data is in memory as much as possible. Use ESTOR and hyperpools.

v You many want to consider pre-formatting tables that are going to be heavily

used. This avoids formatting at runtime.

DB2 for WebSphere tuning tips:

v Ensuring DB2 Tracing Under the DB2 for z/OS Universal Driver is Turned Off.

– If the db2.jcc.propertiesFile jvm property has been defined to specify a DB2

jcc properties file to the WebSphere Application Server for z/OS, ensure that

the following trace statements in the file are commented out if they are

specified:

jcc.override.traceFile=<file name>

jcc.override.traceFile=<file name>

– If any of the DB2 Universal JDBC Driver datasources your applications are

using are defined with a nonzero traceLevel custom property, use the

WebSphere Application Server for z/OS Administrative console to set the

traceLevel to zero.
v We recommend that you ensure indexes are defined on all your object primary

keys. Failure to do so will result in costly tablespace scans.

v Ensure that, once your tables are sufficiently populated, you do a re-org to

compact the tables. Executing RUNSTATS will ensure that the DB2 catalog

statistics about table and column sizes and accesses are most current so that the

best access patterns are chosen by the optimizer.

v You will have to define more connections called threads in DB2. WebSphere

Application Server uses a lot of threads. Sometimes this is the source of

throughput bottlenecks since the server will wait at the create thread until one is

available.

v Make sure you are current with JDBC maintenance. Many performance

improvements have been made to JDBC. To determine the JDBC maintenance

level, enter the following from the shell:

java com.ibm.db2.jcc.DB2Jcc -version

If this returns a class not found, either you are at a level of the driver that is

older and doesn’t support this command or you have not issued the command

properly.

v We recommend that you enable dynamic statement caching in DB2. To do this,

modify your ZPARMS to say CACHEDYN(YES) MAXKEEPD(16K). Depending on the

application, this can make a very significant improvement in DB2 performance.

Specifically, it can help JDBC and LDAP query.

v Increase DB2 checkpoint interval settings to a large value. To do this, modify

your ZPARMS to include CHKFREQ=xxxxx, where xxxxx is set at a high value

32 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

when doing benchmarks. On production systems there are other valid reasons to

keep checkpoint frequencies lower, however.

Example: This example identifies zparm values discussed in this article.

//DB2INSTE JOB MSGCLASS=H,CLASS=A,NOTIFY=IBMUSER

/*JOBPARM SYSAFF=*

//**

//* JOB NAME = DSNTIJUZ

//*

//* DESCRIPTIVE NAME = INSTALLATION JOB STREAM

//*

//* LICENSED MATERIALS - PROPERTY OF IBM

//* 5675-DB2

//* (C) COPYRIGHT 1982, 2000 IBM CORP. ALL RIGHTS RESERVED.

//*

//* STATUS = VERSION 7

//*

//* FUNCTION = DSNZPARM AND DSNHDECP UPDATES

//*

//* PSEUDOCODE =

//* DSNTIZA STEP ASSEMBLE DSN6.... MACROS, CREATE DSNZPARM

//* DSNTIZL STEP LINK EDIT DSNZPARM

//* DSNTLOG STEP UPDATE PASSWORDS

//* DSNTIZP STEP ASSEMBLE DSNHDECP DATA-ONLY LOAD MODULE

//* DSNTIZQ STEP LINK EDIT DSNHDECP LOAD MODULE

//* DSNTIMQ STEP SMP/E PROCESSING FOR DSNHDECP

//*

//* NOTES = STEP DSNTIMQ MUST BE CUSTOMIZED FOR SMP. SEE THE NOTES

//* NOTES PRECEDING STEP DSNTIMQ BEFORE RUNNING THIS JOB.

//*

//* LOGLOAD=16000000,

//***/

//*

//DSNTIZA EXEC PGM=ASMA90,PARM=’OBJECT,NODECK’

//STEPLIB DD DSN=ASM.SASMMOD1,DISP=SHR

//SYSLIB DD DISP=SHR,

// DSN=DB2710.SDSNMACS

// DD DISP=SHR,

// DSN=SYS1.MACLIB

//SYSLIN DD DSN=&LOADSET(DSNTILMP),DISP=(NEW,PASS),

// UNIT=SYSALLDA,

// SPACE=(800,(50,50,2)),DCB=(BLKSIZE=800)

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND)

//SYSUT2 DD UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND)

//SYSUT3 DD UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND)

//SYSIN DD *

 DSN6ENV MVS=XA

 DSN6SPRM RESTART, X

 .

 .

 .

 AUTH=YES,

 X

 AUTHCACH=1024, X

 BINDNV=BINDADD, X

 BMPTOUT=4, X

 CACHEDYN=YES,

 X

 .

 .

 .

 MAXKEEPD=16000,

 X

Chapter 6. Tuning the application serving environment 33

.

 .

 .

 DSN6ARVP ALCUNIT=CYL, X

 .

 .

 .

 DSN6LOGP DEALLCT=(0), X

 .

 .

 .

 DSN6SYSP AUDITST=NO, X

 BACKODUR=5, X

 CHKFREQ=16000000,

 X

 CONDBAT=400, X

 CTHREAD=1200, X

 DBPROTCL=PRIVATE, X

 DLDFREQ=5, X

 DSSTIME=5, X

 EXTRAREQ=100, X

 EXTRASRV=100, X

 EXTSEC=NO, X

 IDBACK=1800,

 X

 .

 .

 .

 //*

WebSphere Application Server tuning tips for use with DB2:

Prepared statement caching effects on DB2 for OS/390 JDBC cursor objects

WebSphere Application Server uses JDBC prepared statement caching as a

performance enhancing feature. If you are using this feature together with DB2 for

OS/390, be aware of the potential impact on the number of DB2 JDBC cursor

objects available.

When you obtain a ResultSet object by executing a PreparedStatement object, a DB2

JDBC cursor object is bound to it until the corresponding DB2 prepared statement

is closed. This happens when the DB2 Connection object is released from the

WebSphere Application Server connection pool. From an application perspective,

the result set, prepared statement, and connection are each closed in turn.

However, the underlying DB2 Connection is pooled by the WebSphere Application

Server, the underlying DB2 PreparedStatement is cached by the application server,

and each underlying DB2 JDBC cursor object associated with each ResultSet created

on this PreparedStatement object is not yet freed.

Each PreparedStatement object in the cache can have one or more result sets

associated with it. If a result set is opened and not closed, even though you close

the connection, that result set is still associated with the prepared statement in the

cache. Each of the result sets has a unique JDBC cursor attached to it. This cursor

is kept by the statement and is not released until the prepared statement is cleared

from the WebSphere Application Server cache.

If there are more of the cached statements than there are cursors, eventually the

execution of a PreparedStatement object results in the following exception:

java.sql.SQLException: DB2SQLJJDBCProfile Error: No more JDBC Cursors without hold

Some WebSphere Application Server tuning suggestions to help avoid this problem

are:

34 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

1. Decrease the statement cache size setting on the DB2 for OS/390 data source

definition. Setting this value to zero (0) eliminates statement caching, but causes

a noticeable performance impact.

2. Decrease the minConnections connection pool setting on the DB2 for OS/390

data source definition.

3. Decrease the Aged Timeout connection pool setting on the DB2 for OS/390 data

source definition. However, it is NOT recommended that you set this to zero

(0), as this disables the Aged Timeout function.

RACF tuning tips for z/OS

Follow these guidelines for RACF tuning:

v Compared to no security, global security for a sample application took about

13%. Compared to no security, java2 security took about 18%. Compared to no

security, global and java2 security took x%. Enabling a single role on every

method in a sample application with global and Java2 security costs about 38%.

v As is always the case, don’t turn things on unless you need them. In general, the

cost of security has been highly optimized. However, if you don’t need

EJBROLEs, then don’t enable the class in RACF.

v Use the RACLIST to place into memory those items that can improve

performance. Specifically, ensure that you RACLIST (if used):

– CBIND

– EJBROLE

– SERVER

– STARTED

Example:

RACLIST (CBIND, EJBROLE, SERVER, STARTED)

v Use of things like SSL come at a price. If you are a heavy SSL user, ensure that

you have appropriate hardware, such as PCI crypto cards, to speed up the

handshake process.

v Here’s how you define the BPX.SAFFASTPATH facility class profile. This profile

allows you to bypass SAF calls which can be used to audit successful shared file

system accesses.

– Define the facility class profile to RACF.

RDEFINE FACILITY BPX.SAFFASTPATH UACC(NONE)

– Activate this change by doing one of the following:

- re-IPL

- invoke the SETOMVS or SET OMVS operator commands.

Note: Do not use this option if you need to audit successful HFS accesses or if

you use the IRRSXT00 exit to control HFS access.

v Use VLF caching of the UIDs and GIDs as shown in the example COFVLFxx

parmlib member below:

Example: sys1.parmlib(COFVLFxx):

********************************* Top of Data ********************.

.

CLASS NAME(IRRGMAP) EMAJ(GMAP)

CLASS NAME(IRRUMAP) EMAJ(UMAP)

CLASS NAME(IRRGTS) EMAJ(GTS)

CLASS NAME(IRRACEE) EMAJ(ACEE)

.

******************************** Bottom of Data ******************

Chapter 6. Tuning the application serving environment 35

To avoid a costly scan of the RACF databases, make sure all HFS files have valid

GIDs and UIDs.

TCP/IP tuning tips for z/OS

TCP/IP can be the source of some significant remote method delays. Follow these

tips to tune TCP/IP:

v First, ensure that you have defined enough sockets to your system and that the

default socket time-out of 180 seconds is not too high. To allow enough sockets,

update the BPXPRMxx parmlib member:

– Set MAXSOCKETS for the AF_INET filesystem high enough.

– Set MAXFILEPROC high enough.

We recommend setting MAXSOCKETS and MAXFILEPROC to at least 5000

for low-throughput, 10000 for medium-throughput, and 35000 for

high-throughput WebSphere transaction environments. Setting high values for

these parameters should not cause excessive use of resources unless the

sockets or files are actually allocated.
Example:

/* Open/MVS Parmlib Member */

/* CHANGE HISTORY: */

/* 01/31/02 AEK Increased MAXSOCKETS on AF_UNIX from 10000 to 50000*/

/* per request from My Developer */

/* 10/02/01 JAB Set up shared HFS */

/* KERNEL RESOURCES DEFAULT MIN MAX */

/* ======================== =================== === =========== */

 .

 .

 MAXFILEPROC(65535) /* 64 3 65535 */

 .

 .

 NETWORK DOMAINNAME(AF_INET) DOMAINNUMBER(2) MAXSOCKETS(30000)

 .

v Next check the specification of the port in TCPIP profile dataset to ensure that

NODELAYACKS is specified as follows:

PORT 8082 TCP NODELAYACKS

In your runs, changing this could improve throughput by as much as 50% (this

is particularly useful when dealing with trivial workloads). This setting is

important for good performance when running SSL.

v You should ensure that your DNS configuration is optimized so that lookups for

frequently-used servers and clients are being cached.

Caching is sometimes related to the name server’s Time To Live (TTL) value. On

the one hand, setting the TTL high will ensure good cache hits. However, setting

it high also means that, if the Daemon goes down, it will take a while for

everyone in the network to be aware of it.

A good way to verify that your DNS configuration is optimized is to issue the

oping and onslookup USS commands. Make sure they respond in a reasonable

amount of time. Often a misconfigured DNS or DNS server name will cause

delays of 10 seconds or more.

v Increase the size of the TCPIP send and receive buffers from the default of 16K

to at least 64K. This is the size of the buffers including control information

beyond what is present in the data that you are sending in your application.To

do this specify the following:

TCPCONFIG TCPSENDBFRSIZE 65535

 TCPRCVBUFRSIZE 65535

36 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Note: It is unreasonable, in some cases, to specify 256K buffers.

v Increase the default listen backlog. This is used to buffer spikes in new

connections which come with a protocol like HTTP. The default listen backlog is

10 requests. We recommend that you increase this value to something larger. For

example:

protocol_http_backlog=100

protocol_https_backlog=100

protocol_iiop_backlog=100

protocol_ssl_backlog=100

v Reduce the finwait2 time.

In the most demanding benchmarks you may find that even defining 65K

sockets and file descriptors does not give you enough ’free’ sockets to run 100%.

When a socket is closed abnormally (for example, no longer needed) it is not

made available immediately. Instead it is placed into a state called finwait2 (this

is what shows up in the netstat -s command). It waits there for a period of time

before it is made available in the free pool. The default for this is 600 seconds.

Note: Unless you have trouble using up sockets, we recommend that you leave

this set to the default value.

If you are using z/OS V1.2 or above, you can control the amount of time the

socket stays in finwait2 state by specifying the following in the configuration

file:

FINWAIT2TIME 60

Tuning WebSphere MQ as a JMS provider

JMS tuning tips

If you use WebSphere MQ as a JMS provider to WebSphere Application Server, you

can tune the setup by changing aspects of JMS and WebSphere MQ.

Non-persistent, non-durable and transaction-not-supported messages perform

better, but at the cost that they are non-recoverable due to the lack of persistence.

v Turn off all tracing. Use the display trace command to get the trace number.

D TRACE

Then use the stop trace global command to turn off the specific trace number

STOP TRACE (G) TNO(xxx)

v Create long-lived queue manager connections rather than creating and

destroying connections on every message.

Reuse connections and sessions.

v Use bindings mode if your queue manager and client both reside on the same

z/OS image. Bindings mode is a cross-memory interface that eliminates the need

for WebSphere MQ to call TCP/IP. It can be implemented by not setting the

TransportType on the connection.

v Client acknowledgements required that an ack be received from the client before

another message is sent. Auto acknowledgements are a better choice and reduce

delays.

v Performance is better if the client and queue manager have the same CCSID (so

the queue manager does not need to translate message headers) than if they

have different CCSIDs.

v Small messages are best. Use of system resources and throughput is proportional

to the size of WebSphere MQ messages. However, if you must send large

Chapter 6. Tuning the application serving environment 37

amounts of data, one larger message is preferable to multiple small ones. If

using very large messages (for example, over 1MB) see ″WebSphere MQ Tips″.

v Persistent, transacted messages perform better than persisted non-transacted

messages because multiple WebSphere MQ commits can be delayed until the

end of the transaction.

v Express (nonpersistent) messages perform most optimally, so use them if your

application does not require persistence.

v Application Server Framework (ASF) messaging generally adds more overhead

then non-ASF messaging.

v WebSphere MQ local queues defined as DEFSOPT(SHARED) with the SHARE

option, and shared by multiple threads or processes generally perform better

than non-shared queues and use fewer resources.

v Message-driven beans are asynchronous by nature, therefore, should never be

forced to run in a serial mode (Maxsession=1). Set a realistic number for

Maxsession for the number of concurrent sessions.

WebSphere MQ tuning tips

v Turn off WebSphere MQ tracing in the MQ ZPARMS by specifying:.

TRACSTR=NO, TRACING AUTO START X

Example:

//*

//* Assemble step for CSQ6LOGP

//*

//LOGP EXEC PGM=ASMA90,PARM=’DECK,NOOBJECT,LIST,XREF(SHORT)’,

// REGION=4M

//SYSLIB DD DSN=MQSERIES.V5R3M0.SCSQMACS,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSPUNCH DD DSN=&&LOGP;,

// UNIT=SYSDA,DISP=(,PASS),

// SPACE=(400,(100,100,1))

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 CSQ6LOGP INBUFF=60, LOG INPUT BUFFER SIZE (KB) X

 MAXRTU=2, MAX ALLOCATED ARCHIVE LOG UNITS X

 DEALLCT=0, ARCHIVE LOG DEALLOCATE INTERVAL X

 MAXARCH=500, MAX ARCHIVE LOG VOLUMES X

 OFFLOAD=YES, ARCHIVING ACTIVE X

 OUTBUFF=4000, LOG OUTPUT BUFFER SIZE (KB) X

 TWOACTV=YES, DUAL ACTIVE LOGGING X

 TWOARCH=YES, DUAL ARCHIVE LOGGING X

 TWOBSDS=YES, DUAL BSDS X

 WRTHRSH=20 ACTIVE LOG BUFFERS

 END

/*

//*

//* Assemble step for CSQ6ARVP

//*

//ARVP EXEC PGM=ASMA90,COND=(0,NE),

// PARM=’DECK,NOOBJECT,LIST,XREF(SHORT)’,

// REGION=4M

//SYSLIB DD DSN=MQSERIES.V5R3M0.SCSQMACS,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSPUNCH DD DSN=&&ARVP;,

38 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

// UNIT=SYSDA,DISP=(,PASS),

// SPACE=(400,(100,100,1))

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 CSQ6ARVP ALCUNIT=BLK, UNITS FOR PRIQTY/SECQTY X

 ARCPFX1=WIT.MQ1.WITA, DSN PREFIX FOR ARCHIVE LOG 1 X

 ARCPFX2=WIT.MQ2.WITA, DSN PREFIX FOR ARCHIVE LOG 2 X

 ARCRETN=9999, ARCHIVE LOG RETENION TIME (DAYS) X

 ARCWRTC=(1,3,4), ARCHIVE WTO ROUTE CODE X

 ARCWTOR=NO, PROMPT BEFORE ARCHIVE LOG MOUNT X

 BLKSIZE=24576, ARCHIVE LOG BLOCKSIZE X

 CATALOG=YES, CATALOG ARCHIVE LOG DATA SETS X

 COMPACT=NO, ARCHIVE LOGS COMPACTED X

 PRIQTY=4320, PRIMARY SPACE ALLOCATION X

 PROTECT=NO, DISCRETE SECURITY PROFILES X

 QUIESCE=5, MAX QUIESCE TIME (SECS) X

 SECQTY=540, SECONDARY SPACE ALLOCATION X

 TSTAMP=YES, TIMESTAMP SUFFIX IN DSN X

 UNIT=DASD, ARCHIVE LOG DEVICE TYPE 1 X

 UNIT2= ARCHIVE LOG DEVICE TYPE 2

 END

/*

//*

//* Assemble step for CSQ6SYSP

//*

//SYSP EXEC PGM=ASMA90,COND=(0,NE),

// PARM=’DECK,NOOBJECT,LIST,XREF(SHORT)’,

// REGION=4M

//SYSLIB DD DSN=MQSERIES.V5R3M0.SCSQMACS,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSPUNCH DD DSN=&&SYSP;,

// UNIT=SYSDA,DISP=(,PASS),

// SPACE=(400,(100,100,1))

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

CSQ6SYSP CTHREAD=600, TOTAL NUMBER OF CONNECTIONS

 X

 CMDUSER=CSQOPR, DEFAULT USERID FOR COMMANDS X

 EXITLIM=30, EXIT TIMEOUT (SEC) X

 EXITTCB=8, NUMBER OF EXIT SERVER TCBS X

IDBACK=500, NUMBER OF NON-TSO CONNECTIONS

X

 IDFORE=100, NUMBER OF TSO CONNECTIONS X

LOGLOAD=900000, LOG RECORD CHECKPOINT NUMBER

X

 OTMACON=(,,DFSYDRU0,2147483647,CSQ), OTMA PARAMETERS X

 QMCCSID=0, QMGR CCSID X

 QSGDATA=(,,,), QUEUE-SHARING GROUP DATA X

 RESAUDIT=YES, RESLEVEL AUDITING X

 ROUTCDE=1, DEFAULT WTO ROUTE CODE X

 SMFACCT=NO, GATHER SMF ACCOUNTING X

 SMFSTAT=NO, GATHER SMF STATS X

 STATIME=30, STATISTICS RECORD INTERVAL (MIN) X

 TRACSTR=NO, TRACING AUTO START X

 TRACTBL=99, GLOBAL TRACE TABLE SIZE X4K X

 WLMTIME=30, WLM QUEUE SCAN INTERVAL (SEC) X

 SERVICE=0 IBM SERVICE USE ONLY

 END

/*

Chapter 6. Tuning the application serving environment 39

//*

//* LINKEDIT CSQARVP, CSQLOGP and CSQSYSP into a

//* system parameter module.

//*

//LKED EXEC PGM=IEWL,COND=(0,NE),

// PARM=’SIZE=(900K,124K),RENT,NCAL,LIST,AMODE=31,RMODE=ANY’

//*

//* OUPUT AUTHORIZED APF LIBRARY FOR THE NEW SYSTEM

//* PARAMETER MODULE.

//*

//SYSLMOD DD DSN=SYS1.WITA.LINKLIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,

// SPACE=(1024,(200,20))

//SYSPRINT DD SYSOUT=*

//ARVP DD DSN=&&ARVP;,DISP=(OLD,DELETE)

//LOGP DD DSN=&&LOGP;,DISP=(OLD,DELETE)

//SYSP DD DSN=&&SYSP;,DISP=(OLD,DELETE)

//*

//* LOAD LIBRARY containing the default system

//* parameter module (CSQZPARM).

//*

//OLDLOAD DD DSN=MQSERIES.V520.SCSQAUTH,DISP=SHR

//SYSLIN DD *

 INCLUDE SYSP

 INCLUDE ARVP

 INCLUDE LOGP

 INCLUDE OLDLOAD(CSQZPARM)

 ENTRY CSQZMSTR

 NAME CSQZPARM(R) Your system parameter module name

/*

v Similarly, you are advised to turn off tracing in the channel initiator. Unlike base

WebSphere MQ tracing, this parameter cannot be enabled dynamically. To turn

tracing back on for debug purposes, you need to reassemble your MQ XPARMS.

Enabling channel initiator tracing can degrade your system by 5-10%.

The variable to set is as follows:

TRAXSTR=NO, START TRACE AUTOMATICALLY YES|NO

v For improved performance in the laboratory, the following WebSphere MQ

tuning parameters required modification from their default settings.The

difference in most cases was significant.

– Optimize the number of concurrent queue manager connections

CTHREAD parameter of CSQ6SYSP (Maximum number of concurrent

 connections to MQ)

IDBACK parameter of CSQ6SYSP (Maximum number of background concurrent

 threads connected to MQ)

CTHREAD is the maximum number of simultaneous connections to the

queue manager. It should be greater than, or equal to, the sum of IDFORE

and IDBACK. IDFORE is the number of concurrent TSO connections to

WebSphere MQ, and IDBACK is the number of concurrent background

connections, which includes jms threads. If any or all of these parameters are

too low, applications are unable to connect to the queue manager. These

parameters are found in the CSQ6SYSP section of the MQ ZPARMS. You can

update the MQ ZPARMS at any time; the updates take effect the next time

you restart the queue manager.

– Adjust the WebSphere MQ checkpoint interval and active log buffers

LOGLOAD parameter of CSQ6SYSP (number of log records written

 before a checkpoint)

WRTHRSH parameter of CSQ6LOGP (Number of active log buffers)

When using persistent messages, it is particularly important to pay attention

to logging characteristics. MQ logs should always be placed on high

40 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

performance volumes with DASD fast write enabled. MQ logs are often the

single most significant bottleneck when using persistent messages. The

LOGLOAD parameter controls the number of log records written before a

checkpoint (assuming, of course, that the log is large enough to hold this

number of records). Checkpoints generally should occur no more frequently

than every 5 or 6 minutes. If your MQ checkpoints are more frequent, you

may need to increase either the size of the logs, the value of LOGLOAD, or

both. In the laboratory, we use a LOGLOAD value of 900000 because we

execute high throughput jms workloads that are very write-intensive. When

the space on the log is exhausted, a log switch occurs which disrupts

performance. You can avoid frequent log switches by increasing the size of

the log(s).

WRTHRSH is the number of active log buffers, and determines how much

data is held in memory before a log write occurs. If you have a high I/O rate

to your log volume(s), you may wish to increase this parameter. In the

laboratory, we use a value of 200.

Generally speaking, your message rate for persistent messages cannot exceed

the bandwidth capacity of your slowest log volume. For example, if your

were sending messages of 5KB at a throughput rate of 300 per second, you

would be writing at least 1.9 MB of data per second to the log (this is roughly

1.3KB plus the user message size for each logged message).

– Specify the size of the archive logs

SECQTY parameter of CSQ6ARVP (archive log space allocation)

PRIQTY parameter of CSQ6ARVP (archive log space allocation)

ALCUNIT parameter of CSQ6ARVP (archive Log allocation unit)

TWOARCH parameter of CSQ6LOGP (dual archive logs)

The PRIQTY and SECQTY parameters control the size of the archive logs.

Generally it is best to allocate them (ALCUNIT) in cylinders in lieu of blocks.

Depending upon your data integrity requirements, you may or may not

choose to have dual archive logging.

– Specify the number of buffers

BUFFERS (number of buffers on the DEFINE BUFFERPOOL statement)

Use the DEFINE BUFFERPOOL statement to specify the number of buffers. It

is important to insure the number of buffers is large enough to hold at least

an entire message (and its headers). Otherwise, WebSphere MQ is forced to

write to the Page Data sets for every message. For example, a 100MB message

requires at least 26000 pages in the bufferpool. MQ Buffer Manager statistics

can be used to determine the number of times a buffer was unavailable. See

Support Pac MP1B, MQSeries for OS/390 V5.2 - Interpreting accounting and

statistics data.

– Specify queue definitions

INDXTYPE(NONE) (index specification for queue definitions) or

INDXTYPE(CORRELID)

DEFPSIST(NO)

Unless your applications retrieve messages by other than correlation ID

(which is the case for jms publish/subscribe) or message ID, it is normally

best not to specify message selectors on queue definitions. You should,

however, make sure you have specified INDXTYPE(CORRELID) on the

SYSTEM.JMS.ND/D queues, and/or on the SYSTEM.JMS.ND.CC / .D.CC

queues, and/or on any shared message queues for publish/subscribe. Specify

DEFPSIST(NO) unless you want messages on a particular queue to default to

persistent. Because DEFPSIST(YES) affects performance, make sure you really

want persistent messages.

Chapter 6. Tuning the application serving environment 41

If your applications use message ID to access the message, we highly

recommend indexing the queue on message ID. You can add the index either

at the time of queue definition or on the fly by using the WebSphere MQ

command INDXTYPE(MSGID).

– Specify channel definitions

BATCHSZ parameter for queue definitions (Number of messages

 sent as a batch)

We did not modify the BATCHSZ parameter in the laboratory.

GRS tuning tips for z/OS

WebSphere for z/OS uses GRS to communicate information between servers in a

sysplex. When there are multiple servers defined in a system or a sysplex, a

request may end up on the wrong server. To determine where the transaction is

running WebSphere uses GRS. Therefore, if you are using global transactions,

WebSphere will issue an enqueue for that transaction at the start of the transaction

and hold on to that enqueue until the transaction ends. WebSphere for z/OS uses

GRS enqueues for the following:

v Two-phase commit transactions involving more than one server

v HTTP sessions in memory

v Stateful EJBs

v ″Sticky″ transactions to keep track of pseudo-conversational states.
v If you are not in a sysplex, you should configure GRS=NONE.

v If you are in a sysplex, we strongly recommend GRS=STAR.

This requires configuring GRS to use the coupling facility. All of the WebSphere

enqueues are issued with RNL=NO, which prevents misconfiguring the

GRSRNLxx with inappropriate values. See the GRS documentation for details on

setting this up.

Java virtual machine (JVM) tuning tips for z/OS

Before you begin:

1. Ensure that you have the most recent version of JVM that is supported by

WebSphere for z/OS.

2. Have the most recent PTFs, since almost every PTF level has improved

performance of the JVM.

3. Have sufficient JVM Heap Size. Refer to “Java virtual machine storage tuning

tips for z/OS” on page 22 for a discussion of this setting.

How to view or set: Use the WebSphere Administrative console :

1. Click Servers > Application Servers > server_name > Process Definition >

Java Virtual Machine

2. Select the options that are listed on the Configuration tab.
v Run with the JIT (Just In Time) compiler active.

In the General Properties section of the Configuration Tab, ensure that Disable

JIT is not selected. The default is JIT support enabled.

v Do not specify the debug version of the JVM libjava_g in your libpath. Severe

performance degradation is likely when running with the debug version of the

JVM.

v Have Classpath point to only the classes you need (the classes that are

referenced most frequently should be located near the front of the path, if

possible).

In the General Properties section of the Configuration Tab, enter the Classpath in

the text box of the Classpath option.

42 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

v Verify the Classpath as part of the Java configuration.

v To speed up JVM initialization and improve server startup time, specify the

following command line arguments in the General JVM Arguments field in the

General Properties section of the Configuration Tab.

-Xquickstart

-Xverify:none

For JDK Version 1.4.1 the specification reduces servant startup time at the cost of

some runtime performance. For JDK Version 1.3.1, these options can reduce

servant startup time by as much as 40%. However, they will reduce runtime

throughput by about 8%.

v Sometimes poor performance is caused by a missing class. The class loader will

look in it’s tables of already loaded classes and if the class is not found to be

already loaded it will search for it. This search process can cause a high amount

of I/O activity to the HFS volumes. To determine if this is the problem you can

collect CTRACE records from the file system. Once you determine which class is

not being found you can repair the problem by providing the class or by

removing the need for it.

Note: Please see the ″Applications″ section in the WebSphere Application Server

for z/OS information center, access to which can be obtained through the

WebSphere for z/OS library Web site

http://www.ibm.com/software/webservers/appserv/zos_os390/library.html

for more information on ″Application client troubleshooting tips.″

CICS tuning tips for z/OS

These recommendations only apply to WebSphere applications that access CICS.

The LGDFINT system initialization parameter specifies the log defer interval used

by CICS log manager when determining how long to delay a forced journal write

request before invoking the MVS system logger. The value is specified in

milliseconds. Performance evaluations of typical CICS transaction workloads have

shown that the default setting of 5 milliseconds gives the best balance between

response time and central processor cost. Be aware that CICS performance can be

adversely affected by a change to the log defer interval value. Too high a value

will delay CICS transaction throughput due to the additional wait before invoking

the MVS system logger. An example of a scenario where a reduction in the log

defer interval might be beneficial to CICS transaction throughout would be where

many forced log writes are being issued, and little concurrent task activity is

occurring. Such tasks will spend considerable amounts of their elapsed time

waiting for the log defer period to expire. In such a situation, there is limited

advantage in delaying a call to the MVS system logger to write out a log buffer,

since few other log records will be added to the buffer during the delay period.

v Set the LGDFINT system initialization parameter to 5.

While CICS is running, you can use the CEMT SET SYSTEM[LOGDEFER(value)]

command to alter the LGDFINT setting dynamically.

v Set the CICS RECEIVECOUNT value high enough to handle all concurrent EXCI

pipes on the system.

The default value is 4. You set this value in the EXCI sessions resource

definition.

For more detailed information on CICS, refer to the CICS Performance Guide.

Chapter 6. Tuning the application serving environment 43

Tuning the WebSphere Application Server for z/OS runtime

Steps involved in tuning the WebSphere Application Server for z/OS runtime to

optimize performance include reviewing the:

v “Review the WebSphere for z/OS configuration”

v “Internal tracing tips for WebSphere for z/OS”

v “Location of executable programs tips for z/OS” on page 45

v “Security tuning tips for z/OS” on page 45

v Web server plug-in tuning tips in the Setting up the application serving environment

PDF book.

Review the WebSphere for z/OS configuration

The first thing to do is review the WebSphere for z/OS configuration. One simple

way to do this is to look in your application control and server regions in SDSF.

When each server starts, the runtime prints out the current configuration data in

the joblog.

Internal tracing tips for WebSphere for z/OS

WebSphere traces can be extremely helpful in detecting and diagnosing problems.

By properly setting trace options, you can capture the information needed to detect

problems without significant performance overhead.

v Ensure that you are not collecting more diagnostic data than you need.

You should check your WebSphere for z/OS tracing options to ensure that

ras_trace_defaultTracingLevel=0 or 1, and that ras_trace_basic and

ras_trace_detail are not set.

How to view or set: Use the WebSphere administrative console:

1. Click Environment > Manage WebSphere Variables.

2. On the Configuration Tab check for any of these variables in the name field

and observe the variable setting in the value field.

3. To change or set a variable, specify the variable in the name field and specify

the setting in the value field. You can also describe the setting in the

description field on this tab.
v If you use any level of tracing, including ras_trace_defaultTracingLevel=1, ensure

that you set ras_trace_outputLocation to BUFFER.

ras_trace_defaultTracingLevel=1 will write exceptions to the trace log as well as

to the ERROR log.

– It is best to trace to CTRACE.

If you are tracing to sysprint with ras_trace_defaultTracingLevel=3, you may

experience an almost 100% throughput degradation. If you are tracing to

CTRACE, however, you may only experience a 15% degradation in

throughput.
v Set the ras_trace_BufferCount=4 and ras_trace_BufferSize=128.

This will get 512KB of storage for the trace buffers (the minimum allowed) and

reduce memory requirements.

v Make sure you disable JRAS tracing.

To do this, look for the following lines in the trace.dat file pointed to by the JVM

properties file:

com.ibm.ejs.*=all=disable

com.ibm.ws390.orb=all=disable

Ensure that both lines are set to =disable or delete the two lines altogether.

44 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Note: If ras_trace_outputLocation is set, you may be tracing and not know it.

Location of executable programs tips for z/OS

The next thing to review in the configuration is where your program code is

located. IBM recommends that you install as much of the WebSphere for z/OS

code in LPA as is reasonable, and the remainder in the linklist. This ensures that

you have eliminated any unnecessary steplibs which can adversely affect

performance. If you must use STEPLIBs, verify that any STEPLIB DDs in the

controller and servant procs do not point to any unnecessary libraries. Refer to

“UNIX System Services (USS) tuning tips for z/OS” on page 28 for USS shared file

system tuning considerations.

If you choose to not put most of the runtime in LPA, you may find that your

processor storage gets a bigger workout as the load increases. At a minimum,

WebSphere for z/OS will start three address spaces, so that any code that is not

shared will load three copies rather than one. As the load increases, many more

servants may start and will contribute additional load on processor storage.

Review the PATH statement to ensure that only required programs are in the PATH

and that the order of the PATH places frequently-referenced programs in the front.

Security tuning tips for z/OS

As a general rule, two things happen when you increase security: the cost per

transaction increases and throughput decreases.

By default, WebSphere Application Server runs with security off. With security

turned off there is virtually no overhead. However, we recommend that you run

with security enabled, even though the runtime will always incur a small price to

collect and carry the security credential information for users and the server.

v When a SAF (RACF or equivalent) class is active, the number of profiles in a

class will affect the overall performance of the check.

Placing these profiles in a (RACLISTed) memory table will improve the

performance of the access checks. Audit controls on access checks also affect

performance. Usually, you audit failures and not successes. Audit events are

logged to DASD and will increase the overhead of the access check. Since all the

security authorization checks are done with SAF (RACF or equivalent), you can

choose to enable and disable SAF classes to control security. A disabled class will

cost a negligible amount of overhead.

v Use a minimum number of EJBROLEs on methods.

If you are using EJBROLEs, specifying more roles on a method will lead to more

access checks that need to be executed and a slower overall method dispatch. If

you are not using EJBROLEs, do not activate the class.

v If you do not need Java 2 security, you should disable it.

For instructions on how to disable Java 2 security, refer to the Securing

applications and their environment PDF book.

v Use the lowest level of authorization consistent with your security needs.

You have several options when dealing with authentication:

– Local authentication: Local authentication is the fastest type because it is

highly optimized.

– UserID and password authentication: Authentication that utilizes a userID

and password has a high first-call cost and a lower cost with each subsequent

call.

– Kerberos security authentication: We have not adequately characterized the

cost of kerberos security yet.

Chapter 6. Tuning the application serving environment 45

– SSL security authentication: SSL security is notorious in the industry for its

performance overhead. Luckily, there is a lot of assists available from

hardware to make this reasonable on z/OS.
v If using SSL, select the lowest level of encryption consistent with your security

requirements.

WebSphere allows you to select which cipher suites you use. The cipher suites

dictate the encryption strength of the connection. The higher the encryption

strength, the greater the impact on performance.

Tuning for J2EE applications

Steps involved in tuning the J2EE applications performance include:

v “Topology planning and performance”

v “J2EE container and applications” on page 47

v “J2EE application programming tips” on page 48

v “Tuning for SOAP” on page 48

v “Throttling of inbound message flow for non-JCA 1.5 message-driven beans” on

page 50

Topology planning and performance

Topology can have a significant effect on WebSphere performance. This article

describes some of the topology considerations you should be aware of when

configuring and installing WebSphere for z/OS.

v Single server or multiple servers?

WebSphere for z/OS gives you the ability to install your application either in a

single server or spread it across multiple servers. There are many reasons for

partitioning your application. However, for performance, placing your

application all in the same server will always provide better performance than

partitioning it. If you do choose to partition your application across servers, you

will get better performance if there are at least replica servers on each system in

the sysplex. The WebSphere for z/OS runtime will try to keep calls local to the

system if it can, which will, for example, use local interprocess calls rather than

sockets.

v One tran or multiple trans?

You also have a choice of running server regions with an isolation policy of one

tran per server region or multiple trans per server region. From a performance

perspective, running more threads in a server region will consume less memory

but at the cost of thread contention. This contention is application-dependent.

We generally recommend the use of multiple trans unless you run into

contention problems.

Specify the threads setting using the server_region_workload_profile. The variables

include:

– ISOLATE - sets the value to 1 thread.

– CPUBOUND

– IOBOUND - default

– LONGWAIT - 40

The thread value increases with each variable to the maximum number available

with the LONGWAIT setting (40). For more information refer to the Setting up

the application serving environment PDF book.

Note: Please see the ″Servers″ section in the WebSphere Application Server for

z/OS information center, access to which can be obtained through the

WebSphere Application Server library Web site (http://www-

46 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

306.ibm.com/software/webservers/appserv/was/library/index.html) for

more information on ORB services advanced settings.

v Local client or remote client?

On a local client, the client and the optimized communication are done on the

same system. This has some additional client CPU costs but less communication

cost. On a remote client, the client cost is replaced by the additional

communication overhead of sockets. The CPU cost on either system is almost

equivalent. Latency is better for a local client than for a remote client, meaning

you will get better response time with a local client.

v One copy of a server or many clones?

You can define more than one copy of a server on a system. These copies are

called clones. We have found slight improvements in performance when running

with a couple of clones as opposed to just one (very large configuration). While

there is some benefit, IBM does not recommend, at this time, the creation of

replicated control regions for the sole purpose of improving performance. We

do, however, recommend them for eliminating a single point of failure and for

handling rolling upgrades without introducing an outage.

J2EE container and applications

In WebSphere Application Server, there are several types of enterprise beans and

several transaction policies supported. Selection of each type has performance

implications. While we won’t be able to give an exhaustive treatise on this yet, we

will give some basic rules.

Enterprise bean development performance ramifications: There are three basic

bean types in WebSphere Application Server: session, entity, and message driven.

v Session beans

Within a session bean in WebSphere Application Server, there are stateless and

stateful session beans.

Stateless session bean

The lowest overhead type of bean. They are cheap to create, do very

little automatically and, if not cleaned up by the application, will go

away when the server terminates.

Stateful session bean

The default for a stateful session bean is not to fortify its state to a

backend server except in the case of a controlled server shut down. In

this configuration, a stateful bean is slightly more overhead than a

stateless bean. The configuration overhead of hardening the stateful bean

state at the end of each transaction has yet to be quantified.
v Entity beans

In WebSphere Application Server, entity beans come in two flavors: bean

managed persistence (BMP) and container managed persistence (CMP).

Since managing persistence is the responsibility of the bean in BMP, it really

depends on the way the load and store is implemented whether a BMP is faster

than a CMP. CMP beans manage persistence. The CMP bean implementation is

highly optimized and will often produce better performance than a typical BMP

bean. Additional improvements are expected which will add even more

flexibility to CMP beans.

v Message driven beans (MDBs). See Using message-driven beans to automatically

retrieve messages.

Chapter 6. Tuning the application serving environment 47

v Marking a bean method with the readonly extended deployment descriptor will

cause the runtime to avoid writing the state of the bean back out. Specify this

value on a method when you know that the method does not update any

attributes of the bean.

Transaction policy tuning tips: There are seven transaction policies in WebSphere

Application Server:

v TRANSACTION_REQUIRES

v TRANSACTION_REQUIRES_NEW

v TRANSACTION_SUPPORTS

v TRANSACTION_NOT_SUPPORTED

v TRANSACTION_BEAN_MANAGED

v TRANSACTION_NEVER

v TRANSACTION_MANDATORY

These transaction policies control how enterprise beans are associated with global

or local transactions. Generally, local transactions are the fastest.

J2EE application programming tips

These programming tips relate to the following topics:

v JavaServer Pages (JSPs)

– Disable session state of JSPs.

<%@ page language=″java″ contentType=″text/html″ session=″false″ %>

– By default, JSPs will save session state

<%@ page language=″java″ contentType=″text/html″ %>

– Replace setProperties() calls in your JSPs with direct calls to the appropriate

setxxx methods.
v Java Database Connectivity (JDBC)

– Make sure you are at the current JDBC level.

– Use prepared statements to allow dynamic statement cache of DB2 on z/OS.

– Don’t include literals in the prepared statements, use a parameter marker ″?″

to allow dynamic statement cache of DB2 on z/OS.

– Use the right getxxx method by each data type of DB2.

– Turn auto commit off when just read-only operations are performed.

– Use explicit connection context objects.

– When coding an iterator, you have a choice of named or positioned. For

performance, we recommend positioned iterators.

– Close prepared statements before reusing the statement handle to prepare a

different SQL statement within the same connection.

– As a bean developer, you have the choice of JDBC or SQLJ. JDBC makes use

of dynamic SQL whereas SQLJ generally is static and uses pre-prepared plans.

SQLJ requires an extra step to create and bind the plan whereas JDBC does

not. SQLJ, as a general rule, is faster than JDBC.

– With JDBC and SQLJ, you are better off writing specific calls that retrieve just

what you want rather than generic calls that retrieve the entire row. There is a

high per-field cost.

Tuning for SOAP

The Simple Object Access Protocol (SOAP) is a lightweight protocol which

provides a mechanism to use XML for exchanging structured and typed

information between peers in a decentralized, distributed environment.

v Specify noLocalCopies in servant.jvm.options

(-Dcom.ibm.CORBA.iiop.noLocalCopies=1). This will allow passing of

parameters by reference instead of by value. This only applies if you are

48 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

exposing an enterprise bean as a web service. Refer to the Object Request Broker

service settings topic in the Setting up the application serving environment PDF

book.

v Make certain that all traces are disabled unless you are actively debugging a

problem.

v When defining transaction policies for your application, specify

TX_NOT_SUPPORTED and select local transactions. Local transactions perform

better than global transactions because WebSphere is not required to coordinate

commit scope over multiple resource managers.

v Avoid passing empty attributes or empty elements in SOAP messages. Do not

include extraneous and unneeded data in SOAP messages. If you can use

document/literal style web services invocation to batch requests into a single

SOAP message, this is preferable to sending multiple individual SOAP messages.

SOAP applications will perform better with smaller SOAP messages containing

fewer XML elements and especially fewer XML attributes. The contents of SOAP

messages must be serialized and parsed. These are expensive operations and

should be minimized. In other words, it is preferable to send 1, 10KB message

than 10, 1KB messages. However, very large messages (for example, over 200KB)

may impact system resources like memory.

v You may need to increase the default Java heap size. SOAP and XML (DOM) are

storage-intensive and small heap sizes may result in excessive Java garbage

collection. We found a heapsize of 256M (the default) was optimal for most test

cases in the laboratory. You can monitor garbage collection using the verbose:gc

Java directive.

v Insure TCP/IP send/receive buffers are large enough to hold the bulk of the xml

messages that will be sent.

v Consider using a Document Model rather than the RPC model. It provides

complete control over the format of the XML but requires additional

programming effort.

v When using RPC-style messages, try to send strings if possible.

v Consider writing your own serializers and deserializers, avoiding reflection.

v Consider writing a servlet to use a SAX parser rather than the SOAP runtime if

you require improved performance. Alternately, you can download and install

Apache AXIS, or use the Web Services Technology Preview.

SOAP V2.3 in WebSphere Application Server: SOAP 2.3 has a number of

enhancements over SOAP 2.2. They are described in full in

http://ws.apache.org/soap/releases.html#v2.2. Some of the key enhancements in

WebSphere V 5.0 are as follows:

v Support for document-oriented messaging

v Web Services Definition Language (WSDL) Version 1.1

v Universal Description, Discovery, and Integration, UDDI4J Version 2.0, logging

v Web Services Invocation Framework (WSIF)

v Web Services Caching

v Some minor SOAP performance enhancements

v Elimination of the Nagle Algorithm

Web Services is a more expensive protocol than HTTP or socket communication. It

is best used where its benefits can be exploited. For example, for integration of

decentralized distributed environment, where the clients have little knowledge of

the application implementation. We do not recommend that programs running in

the same JVM use Web Services as a means of communication or invocation. For

obvious reasons, calling a method using SOAP generally has longer response time

than other forms of invocation. XML parsing serialization/deserialization and

Chapter 6. Tuning the application serving environment 49

http://ws.apache.org/soap/releases.html#v2.2

network latency are all inhibitors to Web Services performance. There is no support

for locally optimized invocation such that network protocols can be avoided when

client and server are collocated.

We have observed, one of the most expensive operations in the processing of a

SOAP message, whether by SOAP, AXIS or the Tech preview, is the deserialization

of the inbound SOAP message. This step converts the message from an inbound

string in wire format to an XML document. Therefore, if either the client or the

server receives a large SOAP message, that entity normally has the highest CPU

cost. We have found the CPU time to be similar for z/OS acting as either a SOAP

server or a SOAP client as long as the inbound and outbound message sizes are

comparable.

There are many forms of an XML message that are equivalent, for example,

messages with additional white space are equivalent to messages with fewer

blanks or spaces. Therefore, it is advisable to create SOAP messages without

formatted nesting (pretty printing), which adds additional spaces. The XML parser

must examine all characters, including blanks. Therefore, XML documents with

additional blank characters will take longer to parse.

Document-oriented messaging, unlike RPC messaging, is not required to be

synchronous. The UDDI Registry is a special purpose data base wherein,

establishments can register the WSDL Service Interface Definition and the Service

Implementation Definition for Web Services. WSDL describes the interfaces to the

web service. This essentially makes them available to other establishments or

business partners. WebSphere V 5.0 for z/OS also supports a Private UDDI

Registry for private access to Web Services.

Throttling of inbound message flow for non-JCA 1.5

message-driven beans

This topic describes how to throttle message delivery for endpoint message-driven

beans deployed on a JMS provider that does not have a JCA 1.5 resource adapter

(such as the V5 Default Messaging and WebSphere MQ).

Message driven bean (MDB) throttle support controls the flow of work requests

(WRs) into the WLM queue. The WRs result from messages being placed into a

JMS destination. The MDB throttle allows or blocks a WR from being queued

based on the maximum sessions set for the Listener Port and the current amount

of in-flight requests. For more information on MDB throttle support, refer to “MDB

throttle support” on page 52.

Configuring MDB throttle support involves listener port settings, connection

factory settings, and MQ property settings. The proper setting of these properties

will result in a configuration that handles message processing satisfactorily.

1. Set the listener port maximum sessions property. The value of this property

determines the high threshold value (high threshold = maximum sessions) and

is used by the throttle to decide when to block or allow requests.

a. To view this administrative console page, click Servers-> Application

Servers-> application_server-> Message Listener Service-> Listener Ports->

listener_port

b. Set the maximum sessions property to the value you want the MDB throttle

to use as its high threshold value. A good initial value for this setting is 100.

The throttle also uses this value to compute the low threshold value. The

50 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

actual number of server sessions is limited by the number of worker threads

in the servant region and by the connection factory session pool max

connections property.
2. Set the WebSphere MQ Queue Connection Factory properties.

a. To view this administrative console page, click Resources-> WebSphere

MQ JMS Provider-> WebSphere MQ Queue Connection Factories (under

additional properties)

b. Select the Connection Factory specified for the Listener Port.

c. Under the Additional Properties, activate the Connection Pool panel.

d. Set the Max Connections property for the Connection Pool. This property

may be set to the total amount of connections that will be created. We

recommend setting it to at least the number of worker threads available to

the servant region.

e. Under Additional Properties of the Connection Factory, activate the Session

Pool panel.

f. Set the Max Connections property for the Session Pool. This property may

be set to the total amount of sessions that will be created or used

concurrently from a single connection. This allows sessions to be readily

available and reduces the probability of having to wait for a session to

become available in order to do message processing. If the value is less than

the Listener Port Maximum sessions property and the number of worker

threads, then the throttle might request more sessions than there are

available. This would result in one or more requests having to wait for a

session to become free, which could have an undesirable effect on

concurrent processing of requests.
3. Set the MQ related properties. The properties discussed in this section pertain

to properties that have an effect on the number of messages in the destination

and the number of connections to the queue manager. These properties include

the MQ Backout Count Threshold (BOTHRESH), IDBACK, and IDFORE. For

more information on these MQ settings, refer to:

 WebSphere MQ Script Command (MQSC) Reference Book (SC34-6055-03)

 WebSphere MQ Problem Determination Guide (GC34-6054-01).
a. Set the MQ Backout Count Threshold (BOTHRESH) to a value less than the

Listener Port Maximum retries property. If the BOTHRESH value is greater

than the Listener Port Maximum retries value, then the Listener Port will be

stopped for excessive message roll backs as in the case of poison messages,

and the corrupted message will still remain in the destination.

Setting this property to a value less than the Listener Port Maximum retries

value prevents the same message from remaining in the destination after

the message has been rolled back the specified number of times. Reaching

this count threshold causes the message to be placed into the backout

queue, which helps reduce the number of messages in the destination. Only

the required number of Work Requests are created for the healthy messages,

therefore improving resources utilization and performance.

b. Set CTHREAD to the maximum number of connections from batch, CICS,

IMS, and TSO tasks to a single instance of WebSphere MQ. This can be

thought of as the total of connections available to WebSphere MQ. Make

sure that the total of the IDBACK and IDFORE properties discussed in the

next two substeps do not exceed this value.

c. Set IDBACK to the maximum number of connections to a single instance of

WebSphere MQ from batch or TSO background tasks. The number of

Chapter 6. Tuning the application serving environment 51

connections to the queue manager impact performance. Choose the minimal

number of connections that allows satisfactory message processing.

d. Set IDFORE to the maximum number of connections to a single instance of

WebSphere MQ from TSO foreground tasks. The number of connections to

the queue manager impact performance. Choose the minimal number of

connections that allows satisfactory message processing.

To set the MDB throttle to allow 100 messages to be queued before blocking

message retrieval on a server with 40 Worker Threads, two connections (one for

serving the MDBs and one per MDB instance for sending a reply message from the

MDB’s onMessage method), and a Listener Port maximum retries set to 5, set the

following properties:

1. Set the Listener Port Maximum sessions property to 100. This automatically sets

the throttle High Threshold to 100.

2. Set the Connection Factory’s Connection Pool to have enough connections by

setting the Max Connections property to the minimum of both the Maximum

sessions and the Max Connections, 40 in this case.

The number of worker threads limits the amount of server sessions available.

Therefore, assuming the advanced ORB setting of LONGWAIT (40 threads), the

server session pool will be set to allow at most 40 server sessions to be created.

3. Set the Max Connections property for both the Connection Factory’s

Connection Pool and Session Pool to have enough sessions by setting the Max

Connections property to the amount of concurrent sessions to be used during

message processing.

In this example, there can be at most 40 MDB instances, and a total of 1 session

is needed per MDB instance, then the property should be set to 40.

4. Set the MQ BOTHRESH property to less than the Listener Port Maximum

retries property.

5. Set the CTHREAD value higher than 40.

For the CTHREAD, IDBACK, and IDFORE the total number of connections and

how they are used must be taken into consideration. In this example, at most

40 connections could be made to WebSphere MQ from the Connection Factory,

so CTHREAD should be higher than this value.

For debugging tips, refer to “Best practices for debugging MDB throttle support”

on page 53.

MDB throttle support:

The reasoning behind any throttling mechanism is to control the flow of the

resource at hand from one stage to another. Satisfactory message retrieval should

be obtained by adjusting the rate at which message reference (MRs) are handled

and work requests (WRs) are created. Without any type of control over the amount

of WRs that are queued into the WLM queue, an excessive amount of WRs

accumulate and are less likely to get processed by a minimal number of resources

in the Servant Region. Control is based on available resources.

 The messaging support provided by WebSphere Application Server allows message

processing to be split across regions. The messaging component in the WAS

Controller Region is in charge of processing the Message References generated by

MQ after messages are placed in the destination. The messaging component in the

WAS Servant Region has the responsibility of retrieving the messages from the

destination and deliver them to the MDB. WLM is used to queue work requests

52 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

related to the Message References received in the Controller Region. This

architecture poses problems when a large number of messages are placed in the

destination queue.

Messaging flow. A message is sent to a destination by a JMS or MQ client. The

destination is browsed for messages. Once the message is detected, a Message

Reference (MR) is created and sent to the Message Reference Handler (MRH). The

MRH calls the required service to queue the Work Request (WR) into the WLM

queue. The work is dispatched in the Servant Region. The MR is consumed by the

Listener causing the actual message in the destination to be retrieved. The message

is presented to the MDB. The message is acknowledged and removed from the

destination after the MDB is done processing it.

A considerably large number of messages sent to the destination causes at least the

same amount of WRs to be queued into the WLM queue. If the resources allocated

in the Servant Region are not sufficient to process the large amount of work

presented, messages might get browsed two or more times after a certain amount

of time. This worsens the situation by scheduling more WRs for the same

messages, causing frequent message re-delivery.

Messaging flow with the throttle support. A message is sent to a destination. An

MR is created and sent to the MRH. The MRH notifies the throttle of the message

reference. The Throttle allows or blocks a WR from being queued based on the

Maximum sessions set for the Listener Port and the current amount of in-flight

requests.

When a high threshold is met, the throttle blocks queue browsing. Message

processing continues and current requests are dispatched to available Servant

regions. When the low threshold is met, the throttle allows more WRs to be

queued.

Best practices for debugging MDB throttle support: In order to have minimal

impact on performance while still collecting needed debugging information for the

MDB throttle support, use the following options:

v Trace option: com.ibm.ejs.jms.listener.MessageReferenceListenerPort=all=enabled

The above trace option does not need to be specified if the MDB trace option is

already set.

v System property: com.ibm.mdb.throttle.trace.enabled

Disabled, if the property is not defined or set to 0.

Enabled, if the property is set to 1.

v Dynamic trace support for statistics gathering and presentation.

To enable, disable, or reset messaging statistics, use the following modify

command:

f <server>,mdbstats,[enable | disable | reset]

The response from the console should be:

BBOO0211I MODIFY COMMAND MDBSTATS, [ENABLE | DISABLE | RESET] COMPLETED SUCCESSFULLY

The following message appears if statistics gathering is not enabled:

BBOO0284I STATISTICS GATHERING NOT ENABLED FOR <string>

To display statistics, use the following modify display command:

f <server>,display,work,mdb,stats

The displayed information per listener port includes:

Chapter 6. Tuning the application serving environment 53

NAME

The name of the Listener Port for which the statistics are being

displayed.

TIME The amount of time, in seconds, since the stats were enabled or reset.

TOTAL

Total number of message references browsed since the stats were

enabled or reset.

IN-FLIGHT

The current number of in-flight Work Requests.

EXCS The number of exceptions while queuing the requests.

BLOCKS

The total number of instances the Throttle restricts queuing of work

requests.

Tuning Java virtual machines

The application server, being a Java process, requires a Java virtual machine (JVM)

to run, and to support the Java applications running on it. As part of configuring

an application server, you can fine-tune settings that enhance system use of the

JVM. In addition to the following tuning parameters, see also Java memory tuning

tips.

A JVM provides the runtime execution environment for Java based applications.

WebSphere Application Server is a combination of a JVM runtime environment and

a Java based server runtime. It can run on JVMs from different JVM providers. To

determine the JVM provider on which your Application Server is running, issue

the java –fullversion command from within your WebSphere Application Server

install_root/java/bin directory. You can also check the SystemOut.log from one

of your servers. When an application server starts, Websphere Application Server

writes information about the JVM, including the JVM provider information, into

this log file.

From a JVM tuning perspective, there are two main types of JVMs:

v IBM JVMs

v Sun HotSpot based JVMs, including Sun HotSpot JVM on Solaris and HP‘s JVM

for HP-UX

Even though JVM tuning is dependent on the JVM provider general tuning

concepts apply to all JVMs. These general concepts include:

v Compiler tuning. All JVMs use Just In Time (JIT) compilers to compile Java byte

codes into native instructions during server run-time.

v Java memory or heap tuning. The JVM memory management function, or

garbage collection provides one of the biggest opportunities for improving JVM

performance.

v Class loading tuning.
v Optimize the startup performance and the runtime performance In some

environments, it is more important to optimize the startup performance of your

WebSphere Application Server rather than the runtime performance. In other

environments, it is more important to optimize the runtime performance. By

default, IBM JVMs are optimized for runtime performance while HotSpot based

JVMs are optimized for startup performance.

54 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

The behavior of the Java JIT compiler has the biggest influence over rather

startup or runtime performance are optimized. The initial optimization level

used by the compiler influences the length of time it takes to compile a class

method and the length of time it takes to start the server. For faster startups,

you can reduce the initial optimization level that the compiler uses. This means

that the runtime performance of your applications may be degraded because the

class methods are now compiled at a lower optimization level.

It is hard to provide a specific runtime performance impact statement because

the compilers might recompile class methods during runtime execution based

upon the compiler’s determination that recompiling might provide better

performance. Ultimately, the size of the application will have a major influence

on the amount of runtime degradation. Smaller applications have a higher

probability of having their methods recompiled. Bigger applications are less

likely to have their methods recompiled. The default settings for IBM JVMs use

a high optimization level for the initial compiles. You can use the following IBM

JVM option if you need to change this behavior:

-Xquickstart

This setting influences how the IBM JVM uses a lower optimization level for

class method compiles, which provides for faster server startups, at the expense

of runtime performance. If this parameter is not specified, the IBM JVM defaults

to starting with a high initial optimization level for compiles. This setting

provides faster runtime performance at the expense of slower server starts.

 Default: High initial compiler optimizations level

Recommended: High initial compiler optimizations level

Usage: -Xquickstart can provide faster server

startup times.

JVMs based on Sun‘s Hotspot technology initially compile class methods with a

low optimization level. Use the following JVM option to change this behavior:

-server

JVMs based on Sun’s Hotspot technology initially compile class methods with a

low optimization level. These JVMs use a simple complier and an optimizing JIT

compiler. Normally the simple JIT compiler is used. However you can use this

option to make the optimizing compiler the one that is used. This change will

significantly increases the performance of the server but the server takes longer

to warm up when the optimizing compiler is used.

 Default: Simple compiler

Recommended: Optimizing compiler

Usage: -server enables the optimizing compiler.

v Set the heap size The following command line parameters are useful for setting

the heap size.

– -Xms

This setting controls the initial size of the Java heap. Properly tuning this

parameter reduces the overhead of garbage collection, improving server

response time and throughput. The default setting for this option is typically

too low, resulting in a high number of minor garbage collections

 Default: 50MB

Recommended: Workload specific, but higher than the

default.

Chapter 6. Tuning the application serving environment 55

Usage: -Xms256m sets the initial heap size to 256

megabytes

– -Xmx

This setting controls the maximum size of the Java heap. Properly tuning this

parameter can reduce the overhead of garbage collection, improving server

response time and throughput. The default setting for this is typically too low,

resulting in a high number of minor garbage collections.

 Default: 256MB

Recommended: Workload specific, but higher than the

default.

Usage: -Xmx512m sets the maximum heap size to

512 megabytes

– -Xlp

This setting can be used with the IBM JVM to allocate the heap using large

pages. However, if you use this setting your operating system must be

configured to support large pages. Using large pages can reduce the CPU

overhead needed to keep track of heap memory and might also allow the

creation of a larger heap.
v Tune the IBM JVM’s garbage collector

Use the Java -X option to see the list of memory options.

– -Xgcpolicy

Setting gcpolicy to optthruput disables concurrent mark. If you do not have

pause time problems, denoted by erratic application response times, you

should get the best throughput using this option. Setting gcpolicy to

optavgpause enables concurrent mark with its default values. This setting

alleviates erratic application response times caused by normal garbage

collection. However, this option might decrease overall throughput.

 Default: optthruput

Recommended: optthruput

Usage: Xgcpolicy:optthruput

– -Xnoclassgc

By default the JVM unloads a class from memory when there are no live

instances of that class left, but this can degrade performance. Turning off class

garbage collection eliminates the overhead of loading and unloading the same

class multiple times.

If a class is no longer needed, the space that it occupies on the heap is

normally used for the creation of new objects. However, if you have an

application that handles requests by creating a new instance of a class and if

requests for that application come in at random times, it is possible that when

the previous requester is finished, the normal class garbage collection will

clean up this class by freeing the heap space it occupied, only to have to

re-instantiate the class when the next request comes along. In this situation

you might want to use this option to disable the garbage collection of classes.

 Default: class garbage collection enabled

Recommended: class garbage collection disabled

Usage: Xnoclassgc disables class garbage collection

56 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

For additional information, see the following DeveloperWorks article:

 http://www.ibm.com/developerworks/java/
v Tune the HP JVM’s garbage collector

The HP JVM relies on generational garbage collection to achieve optimum

performance. The following command line parameters are useful for tuning

garbage collection.

– -Xoptgc

This setting optimizes the JVM for applications with many short-lived objects.

If this parameter is not specified, the JVM usually does a major (full) garbage

collection. Full garbage collections can take several seconds and can

significantly degrade server performance.

 Default: off

Recommended: on

Usage: -Xoptgc enables optimized garbage

collection.

– -XX:SurvivorRatio

The Java heap is divided into a section for old (long lived) objects and a

section for young objects. The section for young objects is further subdivided

into the section where new objects are allocated (eden) and the section where

new objects that are still in use survive their first few garbage collections

before being promoted to old objects (survivor space). Survivor Ratio is the

ratio of eden to survivor space in the young object section of the heap.

Increasing this setting optimizes the JVM for applications with high object

creation and low object preservation. Since WebSphere Application Server

generates more medium and long lived objects than other applications, this

setting should be lowered from the default.

 Default: 32

Recommended: 16

Usage: -XX:SurvivorRatio=16

– -XX:PermSize

The section of the heap reserved for the permanent generation holds all of the

reflective data for the JVM. This size should be increased to optimize the

performance of applications which dynamically load and unload a lot of

classes. Specifying a value of 128 megabytes eliminates the overhead of

increasing this part of the heap.

 Default: 0

Recommended: 128 megabytes

Usage: -XX:PermSize=128m sets PermSize to 128

megabytes

– -XX:+ForceMmapReserved

By default the Java heap is allocated ″lazy swap.″ This saves swap space by

allocating pages of memory as needed, but this also forces the use of 4KB

pages. This allocation of memory can spread the heap across hundreds of

thousands of pages in large heap systems. This command disables ″lazy

swap″ and allows the operating system to use larger memory pages, thereby

Chapter 6. Tuning the application serving environment 57

http://www.ibm.com/developerworks/java/

optimizing access to the memory making up the Java heap.

 Default: off

Recommended: on

Usage: -XX:+ForceMmapReserved will disable ″lazy

swap″.

– -Xmn

This setting controls how much space the young generation is allowed to

consume on the heap. Properly tuning this parameter can reduce the

overhead of garbage collection, improving server response time and

throughput. The default setting for this is typically too low, resulting in a

high number of minor garbage collections.

 Default: No default

Recommended: Approximately 3/4 of the total heap size

Usage: -Xmn768m sets the size to 768 megabytes

– Virtual Page Size

Setting the Java virtual machine instruction and data page sizes to 64MB can

improve performance.

 Default: 4MB

Recommended: 64MB

Usage: Use the following command. The command

output provides the current operating

system characteristics of the process

executable:

chatr +pi64M +pd64M /opt/WebSphere/

AppServer/java/bin/PA_RISC2.0/

native_threads/java

– -Xnoclassgc

By default the JVM unloads a class from memory when there are no live

instances of that class left, but this can degrade performance. Turning off class

garbage collection eliminates the overhead of loading and unloading the same

class multiple times.

If a class is no longer needed, the space that it occupies on the heap is

normally used for the creation of new objects. However, if you have an

application that handles requests by creating a new instance of a class and if

requests for that application come in at random times, it is possible that when

the previous requester is finished, the normal class garbage collection will

clean up this class by freeing the heap space it occupied, only to have to

re-instantiate the class when the next request comes along. In this situation

you might want to use this option to disable the garbage collection of classes.

 Default: class garbage collection enabled

Recommended: class garbage collection disabled

Usage: Xnoclassgc disables class garbage collection

For additional information on tuning the HP virtual machine, see Java

technology software HP-UX 11i.

v Tune the Sun JVM’s garbage collector

58 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

http://www.hp.com/products1/unix/java/
http://www.hp.com/products1/unix/java/

On the Solaris platform, the WebSphere Application Server runs on the Sun

Hotspot JVM rather than the IBM JVM. It is important to use the correct tuning

parameters with the Sun JVM in order to utilize its performance optimizing

features.

The Sun HotSpot JVM relies on generational garbage collection to achieve

optimum performance. The following command line parameters are useful for

tuning garbage collection.

– -XX:SurvivorRatio

The Java heap is divided into a section for old (long lived) objects and a

section for young objects. The section for young objects is further subdivided

into the section where new objects are allocated (eden) and the section where

new objects that are still in use survive their first few garbage collections

before being promoted to old objects (survivor space). Survivor Ratio is the

ratio of eden to survivor space in the young object section of the heap.

Increasing this setting optimizes the JVM for applications with high object

creation and low object preservation. Since WebSphere Application Server

generates more medium and long lived objects than other applications, this

setting should be lowered from the default.

 Default: 32

Recommended: 16

Usage: -XX:SurvivorRatio=16

– -XX:PermSize

The section of the heap reserved for the permanent generation holds all of the

reflective data for the JVM. This size should be increased to optimize the

performance of applications that dynamically load and unload a lot of classes.

Setting this to a value of 128MB eliminates the overhead of increasing this

part of the heap.

 Recommended: 128 MB

Usage: XX:PermSize=128m sets perm size to 128

megabytes.

– -Xmn

This setting controls how much space the young generation is allowed to

consume on the heap. Properly tuning this parameter can reduce the

overhead of garbage collection, improving server response time and

throughput. The default setting for this is typically too low, resulting in a

high number of minor garbage collections. Setting this setting too high can

cause the JVM to only perform major (or full) garbage collections. These

usually take several seconds and are extremely detrimental to the overall

performance of your server. You must keep this setting below half of the

overall heap size to avoid this situation.

 Default: 2228224 bytes

Recommended: Approximately 1/4 of the total heap size

Usage: -Xmn256m sets the size to 256 megabytes.

– -Xnoclassgc

Chapter 6. Tuning the application serving environment 59

By default the JVM unloads a class from memory when there are no live

instances of that class left, but this can degrade performance. Turning off class

garbage collection eliminates the overhead of loading and unloading the same

class multiple times.

If a class is no longer needed, the space that it occupies on the heap is

normally used for the creation of new objects. However, if you have an

application that handles requests by creating a new instance of a class and if

requests for that application come in at random times, it is possible that when

the previous requester is finished, the normal class garbage collection will

clean up this class by freeing the heap space it occupied, only to have to

re-instantiate the class when the next request comes along. In this situation

you might want to use this option to disable the garbage collection of classes.

 Default: class garbage collection enabled

Recommended: class garbage collection disabled

Usage: Xnoclassgc disables class garbage collection

For additional information on tuning the Sun JVM, see Performance

Documentation for the Java HotSpot VM.

v Tune HP‘s JVM for HP-UX Set the following options to improve application

performance:

-XX:SchedulerPriorityRange=SCHED_NOAGE

-Djava.nio.channels.spi.SelectorProvider=sun.nio.ch.DevPollSelectorProvider

-XX:-ExtraPollBeforeRead

Tuning transport channel services

The transport channel services manage client connections and I/O processing for

HTTP and JMS requests. These new I/O services are based on new non-blocking

I/O features available in Java™. These services provide a highly scalable

foundation to WebSphere Application Server request processing.

Key features of the new transport channel services include:

v Scalability, which enables the WebSphere Application Server to handle many

concurrent requests.

v Asynchronous request processing, which provides a many-to-one mapping of

client requests to Web container threads

v Resource sharing and segregation, which enables thread pools to be shared

between the Web container and a messaging service.

v Improved usability and

v Incorporation of autonomic tuning and configuration functions.

Changing the default values for settings on one or more of the TCP, HTTP, or Web

container transport channels associated with a transport chain can improve the

performance of that chain.

60 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

http://java.sun.com/docs/hotspot
http://java.sun.com/docs/hotspot

v Adjust TCP transport channel settings. In the administration console, click

Servers > Application servers > server_name > Ports. Then click View associated

transports for the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the TCP transport channel defined for that chain.

3. Leave the Maximum open connections parameter set to the default value.

This parameter controls the maximum number of connections that are

available for a server’s use. It should be left at the default value of 20000,

which is the maximum number of connections allowed. The transport

channel service by default manages high client connection counts and

requires no tuning.

4. If client connections are being closed without data being written back to

the client, change the value specified for the Inactivity timeout parameter.

This parameter controls the maximum number of connections available for a

server’s use. Upon receiving a new connection, the TCP transport channel

waits for enough data to arrive to dispatch the connection to the protocol

specific channels above the TCP transport channel. If not enough data is

received during the time period specified for the Inactivity timeout

parameter, the TCP transport channel closes the connection.

The default value for this parameter is 60 seconds, which is adequate for

most applications. You should increase the value specified for this parameter

if your workload involves a lot of connections and all of these connections

can not be serviced in 60 seconds.

5. Tune the size of your thread pools. By default, a thread pool can have a

minimum of 10 threads and a maximum of 50 maximum threads. To adjust

these values, click on Thread pools >threadpool_name and adjust the values

specified for the Minimum Size and Maximum Size parameters for that

thread pool.

Typical applications usually do not need more than 10 threads per processor.

One exception is if there is some off server condition, such as a very slow

WebContainer

WebContainer
Channel

TCP Channel

Thread 1 Thread X

HTTP Channel

Request 1 Request 2 Request N

The WebContainer Channel provides a
dispatching layer between the channel
and the servlet/JSP container

The HTTP Channel provides a HTTP
protocol support for the WebSphere Web
serving capabilities.

The TCP Channel manages client
connections providing and
asynchronous I/O layer between
clients and WebSphere threads. The
mapping of client connections to
threads is generally many to one.

Figure 1. Transport Channel Service

Chapter 6. Tuning the application serving environment 61

backend request, that causes a server thread to wait for the backend request

to complete. In such a case, CPU usage is usually low and increasing the

workload does not increase CPU throughput. Thread dumps show nearly all

threads in a call out to the backend resource. If this condition exists, and the

backend is tuned correctly, try increasing the minimum number of threads in

the pooll until you see improvements in throughput and thread dumps show

threads in other areas of the runtime besides the backend call.

The setting for the Grow as needed parameter should not be changed unless

your backend is prone to hanging for long periods of time. This condition

might indicate that all of your runtime threads are blocked waiting for the

backend instead of processing other work that does not involve the hung

backend.
v Adjust HTTP transport channel settings. In the administration console, click

Servers > Application servers > server_name > Ports. Then click View associated

transports for the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the HTTP transport channel defined for that chain.

3. Tune HTTP keep-alive. The Use persistent (keep-alive) connections setting

controls whether or not connections are left open between requests. Leaving

the connections open can save setup and teardown costs of sockets if your

workload has clients that send multiple requests. The default value is true

and is the optimal setting in most cases.

If your clients only send single requests over substantially long periods of

time, it is probably better to disable this option and close the connections

right away rather than to have the HTTP transport channel setup the

timeouts to close the connection at some later time.

4. Change the value specified for the Maximum persistent requests parameter

to increase the number of requests that can flow over a connection before

it is closed. When the Use persistent (keep-alive) connections option is

enabled, the Maximum persistent requests parameter controls the number of

requests that can flow over a connection before it is closed. The default value

is 100. This value should be set to a value such that most, if not all, clients

always have an open connection when they make multiple requests during

the same session. A proper setting for this parameter helps to eliminate

unnecessary setting up and tearing down of sockets.

For test scenarios in which the client will never close a socket or where

sockets are always proxy or Web servers in front of your application server, a

value of -1 will disable the processing which limits the number of requests

over a single connection. The persistent timeout will still shutdown some idle

sockets and protect your server from running out of open sockets.

5. Change the value specified for the Persistent timeout parameter to increase

the length of time that a connection is held open before being closed due

to inactivity. The Persistent timeout parameter controls the length of time

that a connection is held open before being closed because there is no

activity on that connection. The default value is 30 seconds This parameter

should be set to a value that keeps enough connections open so that most

clients can obtain a connection available when they need to make a request.

6. If clients are having trouble completing a request because it takes them

more than 60 seconds to send their data, change the value specified for the

Read timeout parameter. Some clients pause more than 60 seconds while

sending data as part of a request. To ensure they are able to complete their

requests, change the value specified for this parameter to a length of time in

seconds that is sufficient for the clients to complete the transfer of data. Be

62 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

careful when changing this value that you still protect the server from clients

who send incomplete data and thereby utilize resources (sockets) for an

excessive amount of time.

7. If some of your clients require more than 60 seconds to receive data being

written to them, change the value specified for the Write timeout

parameter. Some clients are slow and require more than 60 seconds to

receive data that is sent to them. To ensure they are able to obtain all of their

data, change the value specified for this parameter to a length of time in

seconds that is sufficient for all of the data to be received. Be careful when

changing this value that you still protect the server from malicious clients.
v Adjust Web container transport channel settings. In the administration console,

click Servers > Application servers > server_name > Ports. Then click View

associated transports for the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the Web container transport channel defined for that chain.

3. If multiple writes are required to handle responses to the client, change

the value specified for the Write buffer size parameter to a value that is

more appropriate for your clients. The Write buffer size parameter controls

the maximum amount of data per thread that the Web container buffers

before sending the request on for processing. The default value is 32768

bytes, which is sufficient for most applications. If the size of a response is

greater than the size of the write buffer, the response will be chunked and

written back in multiple TCP writes.

If you need to change the value specified for this parameter, make sure the

new value enables most requests to be written out in a single write. To

determined an appropriate value for this parameter, look at the size of the

pages that are returned and add some additional bytes to account for the

HTTP headers.
v Click Apply and then Save to save these changes.

Checking hardware configuration and settings

An optimal hardware configuration enables applications to get the greatest benefit

from performance tuning. The hardware speed impacts all types of applications

and is critical to overall performance.

These parameters include considerations for selecting and configuring the

hardware on which the application servers run.

v Optimize disk speed

– Description: Disk speed and configuration have a dramatic effect on the

performance of application servers running applications that are heavily

dependent on the database support, using extensive messaging, or processing

workflow. The disk input or output subsystems that are optimized for

performance, for example Redundant Array of Independent (RAID) array,

high-speed drives, and dedicated caches, are essential components for

optimum application server performance in these environments.

Application servers with fewer disk requirements can benefit from a mirrored

disk drive configuration that improves reliability and has good performance.

– Recommendation: Spread the disk processing across as many disks as

possible to avoid contention issues that typically occur with 1- or 2-disk

systems. Placing the database tables on disks that are separate from the disks

that are used for the database log files reduces disk contention and improve

throughput.

Chapter 6. Tuning the application serving environment 63

v Increase processor speed and processor cache

– Description: In the absence of other bottlenecks, increasing the processor

speed often helps throughput and response times. A processor with a larger

L2 or L3 cache yields higher throughput, even if the processor speed is the

same as a CPU with a smaller L2 or L3 cache.
v Increase system memory

– Description: Increase memory to prevent the system from paging memory to

the disk to improve performance. Allow a minimum of 256MB of memory for

each processor and 512 MB per application server. Adjust the available

memory when the system pages and the processor utilization is low because

of the paging. The memory access speed might depend on the number and

placement of the memory modules. Check the hardware manual to make sure

that your configuration is optimal.

– Recommendation: Use 256MB of memory for each processor and 512 MB per

application server. Some applications might require more memory.
v Run network cards and network switches at full duplex

– Description: Run network cards and network switches at full duplex and use

the highest supported speed. Full duplex is much faster than half duplex.

Verify that the network speed of adapters, cables, switches, and other devices

can accommodate the required throughput. Some Web sites might require

multiple gigabit links.

– Recommendation Make sure that the highest speed is in use on 10/100/1000

Ethernet networks.

64 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Chapter 7. Tuning WebSphere applications

This topic provides quick links to information about tuning specific WebSphere

application types, and the services and containers that support them.

Note: The WebSphere Application Server documentation contains a finite set of

tuning topics to which the following table provides links. Installing the

documentation plug-ins for additional components, such as Service

integration, might add new entries to the information table of contents. The

new entries will not be shown in the table. To see the complete set of

application tuning topics available in this information center installation,

expand Tuning performance > Tuning WebSphere applications in the table

of contents.

© Copyright IBM Corp. 2005 65

Product architecture and programming model, at a glance

 Application serving

environment -- See Tuning

the application serving

environment

WebSphere applications WebSphere applications

Servers

v Application servers

v Java virtual machines

v Transport channels

v Web servers

v More server types

v Core groups

v Workload balancing

Environment

v Hardware

v Operating system

v Virtual hosts

v Variable settings

v Shared libraries

v Replication domains

System administration

v Administrative clients

v Configuration files

v Domains (cells, nodes)

Performance tools

v Monitoring

v Tuning performance

Troubleshooting tools

v Diagnostic tools

v Support and self-help

The product subsystems are

discussed in the Product

architecture. For the most

part, they do not depend on

the type of applications

being deployed

Services

v Security

v Naming

v ORB

v Transactions

J2EE applications

v Web applications >

Sessions

v EJB applications

Clients

v Client applications

v Web clients

v Web services clients

v Administrative clients

Web services

v Web services and Service

Oriented Architecture

(SOA)

v Web services security

J2EE resources

v Data access resources

v Messaging resources

v Mail, URLs, and more

WebSphere extensions

v ActivitySessions

v Application profiling

v Asynchronous beans

v Dynamic caching

v Dynamic and EJB query

v Internationalization

v Object pools

v Scheduler

v Startup beans

v Work area

Web applications

Tuning session management

WebSphere Application Server session support has features for tuning session

performance and operating characteristics, particularly when sessions are

configured in a distributed environment. These options support the administrator

flexibility in determining the performance and failover characteristics for their

environment.

66 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

The table summarizes the features, including whether they apply to sessions

tracked in memory, in a database, with memory-to-memory replication, or all.

Click a feature for details about the feature. Some features are easily manipulated

using administrative settings; others require code or database changes.

 Feature or option Goal Applies to sessions in

memory, database, or

memory-to-memory

Write frequency Minimize database write

operations.

Database and

Memory-to-Memory

Session affinity Access the session in the

same application server

instance.

All

Multirow schema Fully utilize database

capacities.

Database

Base in-memory session pool

size

Fully utilize system capacity

without overburdening

system.

All

Write contents Allow flexibility in

determining what session

data to write

Database and

Memory-to-Memory

Scheduled invalidation Minimize contention between

session requests and

invalidation of sessions by

the Session Management

facility. Minimize write

operations to database for

updates to last access time

only.

Database and

Memory-to-Memory

Tablespace and row size Increase efficiency of write

operations to database.

Database (DB2 only)

Configuring scheduled invalidation

Instead of relying on the periodic invalidation timer that runs on an interval based

on the session timeout parameter, you can set specific times for the session

management facility to scan for invalidated sessions in a distributed environment.

When used with distributed sessions, this feature has the following benefits:

v You can schedule the scan for invalidated sessions for times of low application

server activity, avoiding contention between invalidation scans of database or

another WebSphere Application Server instance and read and write operations to

service HTTP session requests.

v Significantly fewer external write operations can occur when running with the

End of Service Method Write mode because the last access time of the session

does not need to be written out on each HTTP request. (Manual Update options

and Time Based Write options already minimize the writing of the last access

time.)

Usage considerations

v With scheduled invalidation configured, HttpSession timeouts are not strictly

enforced. Instead, all invalidation processing is handled at the configured

invalidation times.

v HttpSessionBindingListener processing is handled at the configured invalidation

times unless the HttpSession.invalidate method is explicitly called.

Chapter 7. Tuning WebSphere applications 67

v The HttpSession.invalidate method immediately invalidates the session from

both the session cache and the external store.

v The periodic invalidation thread still runs with scheduled invalidation. If the

current hour of the day does not match one of the configured hours, sessions

that have exceeded the invalidation interval are removed from cache, but not

from the external store. Another request for that session results in returning that

session back into the cache.

v When the periodic invalidation thread runs during one of the configured hours,

all sessions that have exceeded the invalidation interval are invalidated by

removal from both the cache and the external store.

v The periodic invalidation thread can run more than once during an hour and

does not necessarily run exactly at the top of the hour.

v If you specify the interval for the periodic invalidation thread using the

HttpSessionReaperPollInterval custom property, do not specify a value of more

than 3600 seconds (1 hour) to ensure that invalidation processing happens at

least once during each hour.

Configuring write contents

In session management, you can configure which session data is written to the

database or to another WebSphere instance, depending on whether you are using

database persistent sessions or memory to memory replication. This flexibility

allows for fewer code changes for the JavaServer Pages (JSP) writer when the

application will be operating in a clustered environment. The following options are

available in Session Management for tuning what is to be written back:

v Write changed (the default) - Write only session data properties that have been

updated through setAttribute method and removeAttribute method calls.

v Write all - Write all session data properties.

The Write all setting might benefit servlet and JSP writers who change Java

objects’ states that reside as attributes in HttpSession and do not call

HttpSession.setAttribute method.

However, the use of Write all could result in more data being written back than is

necessary. If this situation applies to you, consider combining the use of Write all

with Time-based write to boost performance overall. As always, be sure to

evaluate the advantages and disadvantages for your installation.

With either Write Contents setting, when a session is first created, complete session

information is written, including all of the objects bound to the session. When

using database session persistence, in subsequent session requests, what is written

to the database depends on whether a single-row or multi-row schema has been

set for the session database, as follows:

 Write Contents setting Behavior with single-row

schema

Behavior with multirow

schema

Write changed If any session attribute is

updated, all objects bound to

the session are written.

Only the session data

modified through

setAttribute method or

removeAttribute method

calls is written.

Write all All bound session attributes

are written.

All session attributes that

currently reside in the cache

are written. If the session has

never left the cache, all

session attributes are written.

68 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

1. Go to the appropriate level of Session Management.

2. Click Distributed Environment Settings

3. Click Custom Tuning Parameters.

4. Select Custom Settings, and click Modify.

5. Select the appropriate write contents setting.

Configuring write frequency

In the Session Management facility, you can configure the frequency for writing

session data to the database or to a WebSphere instance, depending on whether

you use database distributed sessions or memory-to-memory replication. This

flexibility enables you to weigh session performance gains against varying degrees

of failover support. The following options are available in the Session Management

facility for tuning write frequency:

v End of service servlet- Write session data at the end of the servlet service

method call.

v Manual update- Write session data only when the servlet calls the

IBMSession.sync method.

v Time based (the default) - Write session data at periodic intervals, in seconds

(called the write interval).

When a session is first created, session information is always written at the end of

the service call.

Using the time based write or manual update options can result in loss of data in

failover scenarios since the backup copy of the session in the persistent store (for

example, a database or another JVM) may not be in sync with the session in the

session cache.

Base in-memory session pool size

The base in-memory session pool size number has different meanings, depending

on session support configuration:

v With in-memory sessions, session access is optimized for up to this number of

sessions.

v With distributed sessions (meaning, when sessions are stored in a database or in

another WebSphere Application Server instance); it also specifies the cache size

and the number of last access time updates saved in manual update mode.

For distributed sessions, when the session cache has reached its maximum size and

a new session is requested, the Session Management facility removes the least

recently used session from the cache to make room for the new one.

General memory requirements for the hardware system, and the usage

characteristics of the e-business site, determines the optimum value.

Note that increasing the base in-memory session pool size can necessitate

increasing the heap sizes of the Java processes for the corresponding WebSphere

Application Servers.

Overflow in non-distributed sessions

By default, the number of sessions maintained in memory is specified by base

in-memory session pool size. If you do not wish to place a limit on the number of

sessions maintained in memory and allow overflow, set overflow to true.

Chapter 7. Tuning WebSphere applications 69

Allowing an unlimited amount of sessions can potentially exhaust system memory

and even allow for system sabotage. Someone could write a malicious program

that continually hits your site and creates sessions, but ignores any cookies or

encoded URLs and never utilizes the same session from one HTTP request to the

next.

When overflow is disallowed, the Session Management facility still returns a

session with the HttpServletRequest getSession(true) method when the memory

limit is reached, and this is an invalid session that is not saved.

With the WebSphere Application Server extension to HttpSession,

com.ibm.websphere.servlet.session.IBMSession, an isOverflow method returns true

if the session is such an invalid session. An application can check this status and

react accordingly.

Controlling write operations

You can manually control when modified session data is written out to the

database or to another WebSphere Application Server instance by using the sync

method in the com.ibm.websphere.servlet.session.IBMSession interface. This

interface extends the javax.servlet.http.HttpSession interface. By calling the sync

method from the service method of a servlet, you send any changes in the session

to the external location. When manual update is selected as the write frequency

mode, session data changes are written to an external location only if the

application calls the sync method. If the sync method is not called, session data

changes are lost when a session object leaves the server cache. When end of service

servlet or time based is the write frequency mode, the session data changes are

written out whenever the sync method is called. If the sync method is not called,

changes are written out at the end of service method or on a time interval basis

based on the write frequency mode that is selected.

 IBMSession iSession = (IBMSession) request.getSession();

 iSession.setAttribute("name", "Bob");

 //force write to external store

 iSession.sync()

If the database is down or is having difficulty connecting during an update to

session values, the sync method always makes three attempts before it finally

creates a BackedHashtable.getConnectionError error. For each connection attempt

that fails, the BackedHashtable.StaleConnectionException is created and can be

found in the sync method. If the database opens during any of these three

attempts, the session data in the memory is then persisted and committed to the

database.

However, if the database is still not up after the three attempts, then the session

data in the memory is persisted only after the next check for session invalidation.

Session invalidation is checked by a separate thread that is triggered every five

minutes. The data in memory is consistent unless a request for session data is

issued to the server between these events. For example, if the request for session

data is issued within five minutes, then the previous persisted session data is sent.

Sessions are not transactional resources. Because the sync method is associated

with a separate thread than the client, the exception that is created does not

propagate to the client, which is running on the primary thread. Transactional

integrity of data can be maintained through resources such as enterprise beans.

70 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Tuning parameter settings

Use this page to set tuning parameters for distributed sessions.

To view this administrative console page, click Servers > Application servers

>server_name> Web container settings > Session management > Distributed

environment settings >Custom tuning parameters.

Tuning level:

Specifies that the session management facility provides certain predefined settings

that affect performance.

 Select one of these predefined settings or customize a setting. To customize a

setting, select one of the predefined settings that comes closest to the setting

desired, click Custom settings, make your changes, and then click OK.

Very high (optimize for performance)

 Write frequency Time based

Write interval 300 seconds

Write contents Only updated attributes

Schedule sessions cleanup true

First time of day default 0

Second time of day default 2

High

 Write frequency Time based

Write interval 300 seconds

Write contents All session attributes

Schedule sessions cleanup false

Medium

 Write frequency End of servlet service

Write contents Only updated attributes

Schedule sessions cleanup false

Low (optimize for failover)

 Write frequency End of servlet service

Write contents All session attributes

Schedule sessions cleanup false

Custom settings

 Write frequency default Time based

Write interval default 10 seconds

Write contents default All session attributes

Schedule sessions cleanup default false

Tuning parameter custom settings

Use this page to customize tuning parameters for distributed sessions.

Chapter 7. Tuning WebSphere applications 71

To view this administrative console page, click Servers > Application servers >

server_nameWeb container settings > Session management > Distributed

environment settings > Custom tuning parameters > Custom settings.

Write frequency:

Specifies when the session is written to the persistent store.

 End of servlet service A session writes to a database or another

WebSphere Application Server instance after

the servlet completes execution.

Manual update A programmatic sync on the IBMSession

object is required to write the session data to

the database or another WebSphere

Application Server instance.

Time based Session data writes to the database or

another WebSphere Application Server

instance based on the specified Write interval

value. Default: 10 seconds

Write contents:

Specifies whether updated attributes are only written to the external location or all

of the session attributes are written to the external location, regardless of whether

or not they changed. The external location can be either a database or another

application server instance.

 Only updated attributes Only updated attributes are written to the

persistent store.

All session attribute All attributes are written to the persistent

store.

Schedule sessions cleanup:

Specifies when to clean the invalid sessions from a database or another application

server instance.

 Specify distributed sessions cleanup

schedule

Enables the scheduled invalidation process

for cleaning up the invalidated HTTP

sessions from the external location. Enable

this option to reduce the number of updates

to a database or another application server

instance required to keep the HTTP sessions

alive. When this option is not enabled, the

invalidator process runs every few minutes

to remove invalidated HTTP sessions.

When this option is enabled, specify the two

hours of a day for the process to clean up the

invalidated sessions in the external location.

Specify the times when there is the least

activity in the application servers. An

external location can be either a database or

another application server instance.

72 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

First Time of Day (0 - 23) Indicates the first hour during which the

invalidated sessions are cleared from the

external location. Specify this value as a

positive integer between 0 and 23. This value

is valid only when schedule invalidation is

enabled.

Second Time of Day (0 - 23) Indicates the second hour during which the

invalidated sessions are cleared from the

external location. Specify this value as a

positive integer between 0 and 23. This value

is valid only when schedule invalidation is

enabled.

Web services

Monitoring the performance of Web services applications

This topic explains how to monitor the performance of a Web service that is

implemented in the WebSphere Application Server.

You can use the Performance Monitoring Infrastructure (PMI) to measure the time

required to process Web services requests. To monitor the performance of a Web

services application, follow the steps in this task:

1. Enable PMI services in an application server through the administrative console

that is described in the Administering applications and their environment PDF

book. Select the Web module named webServicesModule in step 7.

2. Monitor performance with Tivoli Performance Monitor that is described in the

Administering applications and their environment PDF book. In the left pane of the

performance view, expand the host and server. Select Web Services. Run the

Web services client application.

PMI provides detailed statistics that can help you gain clear insight into the

runtime behavior and performance of Web services. Performance counters enable

you to see key performance data for each individual Web service including:

v The number of requests dispatched to an implementation bean

v The number of requests dispatched with successful replies

v The average time in milliseconds to process full requests

v The average time in milliseconds between receiving the request and dispatching

it to the bean

v The average time in milliseconds between the dispatch and receipt of a reply

from the bean. This represents the time spent in business logic.

v The average time in milliseconds between the receipt of a reply from a bean to

the return of a result to the client

v The average size of the SOAP request

v The average size of the SOAP reply

To read about other Web services PMI counters, see the PMI data organization

information in the Administering applications and their environment PDF book.

If you are having problems with your Web services applications, read about

problems and solutions in the Administering applications and their environment PDF

book.

Chapter 7. Tuning WebSphere applications 73

Web services performance best practices

Web services are developed and deployed based on standards provided by the

Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification, as is the

mechanism used to access a Web service. This article explains performance

considerations for Web services supported by this specification.

When you develop or deploy a Web service, several artifacts are required,

including a Web Services Description Language (WSDL) file. The WSDL file

describes the format and syntax of the Web service input and output SOAP

messages. When a Web service is implemented in the WebSphere Application

Service runtime, the SOAP message is translated based on the J2EE request. The

J2EE-based response is then translated back to a SOAP message.

The most critical performance consideration is the translation between the

XML-based SOAP message and the Java object. Performance is high for a Web

service implementation in WebSphere Application Server, however, application

design, deployment and tuning can be improved. See the monitoring the

performance of Web services applications in the Administering applications and their

environment PDF book for more information about analyzing and tuning Web

services.

If you are using Web service application that was developed for a WebSphere

Application Server version prior to Version 6.0, you can achieve better performance

by running the wsdeploy command. The wsdeploy command regenerates Web

services artifact classes to increase the serialization and deserialization

performance.

Basic considerations for a high-performance Web services application

The following are basic considerations you should know when designing a Web

services application:

v Reduce the Web services requests by using a few highly functional APIs, rather

than several simple APIs.

v Design your WSDL file interface to limit the size and complexity of SOAP

messages.

v Use the document/literal style argument when you generate the WSDL file.

v Leverage the caching capabilities offered for WebSphere Application Server.

v Test the performance of your Web service.

Additional Web services performance features that you can leverage

v In-process optimizations for Web services to optimize communication path

between a Web services client application and a Web container that are located

in the same application server process. For details and enabling this feature see

the Administering applications and their environment PDF book.

v Access to Web services over multiple transport protocols extends existing

JAX-RPC capabilities to support non-SOAP bindings such as RMI/IIOP and JMS.

These alternative transports can improve performance and quality of service

aspects for Web services. For more detailed information see the Administering

applications and their environment PDF book.

v The SOAP with Attachments API for Java (SAAJ) 1.2 provides a low-level

programming model for Web services relative to JAX-RPC. The SAAJ 1.2 API

provides features to create and process SOAP requests using a low-level XML

API. SAAJ 1.2 supports just-in-time parsing and other internal algorithms. For

information about SAAJ 1.2 or Web services programming see the Administering

applications and their environment PDF book.

74 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

v The Web services tooling generates higher performance custom deserializers for

all JAX-RPC beans. Redeploying a V5.x application into the V6 runtime can

decrease the processing time for large messages.

v Serialization and deserialization runtime is enhanced to cache frequently used

serializers and deserializers. This can decrease the processing time for large

messages.

v The performance of WS-security encryption and digital signature validation is

improved because of the use of the SAAJ 1.2 implementation.

IBM provides considerable documentation and best practices for Web services

application design and development that details these items and more. For a list of

key Web sites that discuss performance best practices, see the Administering

applications and their environment PDF book.

Data access resources

EJB Container Cache tuning

Monitoring Tivoli Performance Viewer (TPV) is a great way to diagnose if the EJB

Container Cache size setting is tuned correctly for your application. If the

application has filled the cache causing evictions to occur, TPV will show a very

high rate of ejbStores() being called and probably a lower than expected CPU

utilization on the application server machine.

All applications using enterprise beans should have this setting adjusted from the

default if the following formula works out to more than 2000.

EJB_Cache_Size = (Largest number of Option B or C Entity Beans enlisted in a

transaction * maximum number of concurrent transactions) +

(Largest number of unique Option A Entity Beans expected to be accessed during

typical application workload) +

(Number of stateful Session Beans active during typical workload) +

(Number of stateless SessionBean types used during typical workload)

Where:

Option B and C Entity Beans are only held in the EJB cache during the lifetime

of the transaction they are enlisted in. Therefore, the first term in the formula

computes the average EJB cache requirements for these types of beans.

Option A Entity Beans are held in the EJB cache indefinitely, and are only removed

 from the cache if there start to become more beans in the cache than the cache

size has been set to.

Stateful Session Beans are held in the EJB cache until they are removed by the

application, or their session timeout value is reached.

Only a single stateless Session Bean instance for each EJB type is held in the

cache during the time any methods are being executed on that stateless Session

Bean. If two or more methods are being executed simultaneously on the same

stateless Session Bean type, each method executes on its own bean instance, but

only one cache location is used for all of these instances.

This calculates the upper bound on the maximum possible number of enterprise

beans active at one time inside the application server. Because the EJB Containers

cache is built to contain all these beans for performance optimizations, best

performance can be achieved by setting this cache size to be larger than the

number resulting from the calculation above.

<tuning parameter>

This setting can be found under Servers > Application Servers > serverName >

 EJB Container > EJB Cache Settings

Chapter 7. Tuning WebSphere applications 75

Also while adjusting the EJB Cache Size, the EJB Container management thread

parameter can be tuned to meet the needs of the application. The management

thread is controlled through the Clean Up Interval setting. This setting controls

how frequently a daemon thread inside of WebSphere Application Server wakes up

and attempts to remove bean instances from the cache that have not been used

recently, attempting to keep the number of bean instances at or below the cache

size. This allows the EJB container to place and look up items in the cache as

quickly as possible. It normally is best to leave this interval set to the default,

however, in some cases, it may be worthwhile to see if there is a benefit to

reducing this interval.

EJB Container Pool Size

If the application is using the majority of the instances in the pool, TPV indicates

this. When this occurs, then the size of those bean pools that are being exhausted

should be increased. This can be done by adding the following parameter in the

JVM‘s custom properties tag .

-Dcom.ibm.websphere.ejbcontainer.poolSize=<application_name>#<module_name>#

<enterprisebean_name>=<minSize>,<maxSize>

where:

 <application_name> is the J2EE application name as defined in the application

archive (.ear) file deployment descriptor, for the bean whose pool size is being

set

<module_name> is the .jar file name of the EJB module, for the bean whose pool size

 is being set,

<bean_name> is the J2EE Enterprise Bean name as defined in the EJB module

deployment descriptor, for the bean whose pool size is being set

<minSize> is the number of bean instances the container maintains in the pool,

 irrespective of how long the beans have been in the pool (beans greater than this

 number are cleared from the pool over time to optimize memory usage)

<maxSize> is the number of bean instances in the pool where no more bean instances

 are placed in the pool after they are used (that is, once the pool is at this

 size, any additional beans are discarded rather than added into the pool --

this ensures the number of beans in the pool has an upper limit so memory usage

does not grow in an unbounded fashion).

To keep the number of instances in the pool at a fixed size, minSize and maxSize

can be set to the same number. Note that there is a separate instance pool for

every EJB type running in the application server, and that every pool starts out

with no instances in it - that is, the number of instances grows as beans are

used and then placed in the pool. When a bean instance is needed by the container

and no beans are available in the pool, the container creates a new bean

instance, uses it, then places that instance in the pool (unless there are

already maxSize instances in the pool).

For example, the statement

-Dcom.ibm.websphere.ejbcontainer.poolSize=ivtApp#ivtEJB.jar#ivtEJBObject=125,1327

would set a minSize of 125 and a maxSize of 1327 on the bean named "ivtEJBObject"

within the ivtEJB.jar file, in the application "ivtApp".

Where ivtApp is replaced by the actual application name, ivtEJB.jar is replaced by

the jar containing the bean that needs to have its pool size increased, and

ivtEJBObject is the bean name of the enterprise bean whose pool size should be

increased. The 125,1327 is the minimum and maximum number of beans that will

76 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

be held in the pool. These should be set so no more evictions occur from the pool

and in most cases should be set equal if memory is plentiful because no growth

and shrinkage of the pool will occur.

EJB Container Primary Key Mutation

Application developers and administrators should have a good idea of how their

application handles the creation of primary key objects for use by

container-managed persistence (CMP) beans and bean-managed persistence (BMP)

beans inside of WebSphere Application Server. The IBM EJB Container uses the

primary key of an Entity bean as an identifier inside of many internal data

structures to optimize performance. However, the EJB Container must copy these

primary key objects upon the first access to the bean to ensure that the objects

stored in the internal caches are separate from the ones used in an application, in

case the application changes or mutates the primary key, to keep the internal

structures consistent.

If the application does not mutate any of the primary keys used to create and

access entity beans after they are created, then a special flag can be used that

allows the EJB Container to skip the copy of the primary key object, thus saving

CPU cycles and increasing performance. This mechanism can be enabled at your

own risk by adding the following –D property to the JVM custom property field.

<tuning parameter>

-Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation=true

The performance benefit of this optimization depends on the application. If the

application uses primitive types for enterprise beans’ primary keys there will be no

gain because these objects are already immutable and the copy mechanism takes

this into account. If, however, the application uses many complex primary keys

(that is, And object for a primary key or multiple fields) then this parameter can

yield significant improvements.

Persistence Manager Deferred Insert on EJB Create

The IBM Persistence manager is used by the EJB Container to persist data to the

database from CMP entity beans. When creating entity beans by calling the

ejbCreate() method, by default the Persistence manager immediately inserts the

empty row with only the primary key in the database. In most cases applications,

after creating the bean, modify fields in the bean created or in other beans inside

of the same transaction. If the user wishes to postpone the insert into the database

until the end of the transaction, so that it will eliminate one trip to the database,

they may set this –D flag inside of the JVM custom properties field. The data will

still be inserted into the database and consistency will be maintained.

<tuning parameter>

-Dcom.ibm.ws.pm.deferredcreate=true

The performance benefit of this optimization depends on the application. If the EJB

applications transactions are very insert intensive the application could benefit

largely from this optimization. If the application performs very few inserts then the

benefit of this optimization will be much less.

Persistence Manager Database Batch Update on EJB Update

When an EJB application accesses multiple CMP beans inside of a single

transaction, depending on the operations performed on the beans (updates, inserts,

reads), the number of operations issued to the database will correspond directly to

Chapter 7. Tuning WebSphere applications 77

the operations performed on the CMP beans. If the database system you are using

supports batching of update statements you can enable this flag and gain a

performance boost on all interactions with the database that involve more than two

updates in a single transaction. This flag will let the persistence manager add all

the update statements into one single batch statement which will then be issued to

the database. This saves round trips to the database, thus increasing performance.

If the user knows their application exhibits the behavior of updating multiple CMP

beans in a single transaction and the database supports batch updates they may set

this –D flag inside of the JVM custom properties field.

<tuning parameter>

-Dcom.ibm.ws.pm.batch=true

The performance benefit of this optimization depends on the application. If the

application never or infrequently updates CMP beans or only updates a single

bean per transaction there will be no performance gain. If the application updates

multiple beans per transaction then this parameter will benefit your applications

performance.

DB2 tuning parameters

DB2 has many parameters that you can configure to optimize database

performance. For complete DB2 tuning information, refer to the DB2 UDB

Administration Guide: Performance document.

DB2 logging

v Description: DB2 has corresponding log files for each database that provides

services to administrators, including viewing database access and the number of

connections. For systems with multiple hard disk drives, you can gain large

performance improvements by setting the log files for each database on a

different hard drive from the database files.

v How to view or set: At a DB2 command prompt, issue the command: db2

update db cfg for [database_name] using newlogpath

[fully_qualified_path].

v Default value: Logs reside on the same disk as the database.

v Recommended value: Use a separate high-speed drive, preferably performance

enhanced through a redundant array of independent disk (RAID) configuration.

DB2 configuration advisor

Located in the DB2 Control Center, this advisor calculates and displays

recommended values for the DB2 buffer pool size, the database, and the database

manager configuration parameters, with the option of applying these values. See

more information about the advisor in the online help facility within the Control

Center.

Number of connections to DB2 - MaxAppls and MaxAgents

When configuring the data source settings for the databases, confirm the DB2

MaxAppls setting is greater than the maximum number of connections for the data

source. If you are planning to establish clones, set the MaxAppls value as the

maximum number of connections multiplied by the number of clones. The same

relationship applies to the session manager number of connections. The MaxAppls

setting must be equal to or greater than the number of connections. If you are

using the same database for session and data sources, set the MaxAppls value as

the sum of the number of connection settings for the session manager and the data

sources.

78 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

For example, MaxAppls = (number of connections set for the data source +

number of connections in the session manager) multiplied by the number of

clones.

After calculating the MaxAppls settings for the WebSphere Application Server

database and each of the application databases, verify that the MaxAgents setting

for DB2 is equal to or greater than the sum of all of the MaxAppls values. For

example, MaxAgents = sum of MaxAppls for all databases.

DB2 buffpage

v Description: Improves database system performance. Buffpage is a database

configuration parameter. A buffer pool is a memory storage area where database

pages containing table rows or index entries are temporarily read and changed.

Data is accessed much faster from memory than from disk.

v How to view or set: To view the current value of buffpage for database x, issue

the DB2 command get db cfg for x and look for the value BUFFPAGE. To set

BUFFPAGE to a value of n, issue the DB2 command update db cfg for x using

BUFFPAGE n and set NPAGES to -1 as follows:

db2 <-- go to DB2 command mode, otherwise the following "select" does not work as is

 connect to x <-- (where x is the particular DB2 database name)

 select * from syscat.bufferpools

 (and note the name of the default, perhaps: IBMDEFAULTBP)

 (if NPAGES is already -1, there is no need to issue following command)

 alter bufferpool IBMDEFAULTBP size -1

 (re-issue the above "select" and NPAGES now equals -1)

You can collect a snapshot of the database while the application is running and

calculate the buffer pool hit ratio as follows:

1. Collect the snapshot:

a. Issue the update monitor switches using bufferpool on command.

b. Make sure that bufferpool monitoring is on by issuing the get monitor

switches command.

c. Clear the monitor counters with the reset monitor all command.
2. Run the application.

3. Issue the get snapshot for all databases command before all applications

disconnect from the database, otherwise statistics are lost.

4. Issue the update monitor switches using bufferpool off command.

5. Calculate the hit ratio by looking at the following database snapshot

statistics:

– Buffer pool data logical reads

– Buffer pool data physical reads

– Buffer pool index logical reads

– Buffer pool index physical reads
v Default value: 250

v Recommended value: Continue increasing the value until the snapshot shows a

satisfactory hit rate.

The buffer pool hit ratio indicates the percentage of time that the database

manager did not need to load a page from disk to service a page request. That is,

the page is already in the buffer pool. The greater the buffer pool hit ratio, the

lower the frequency of disk input and output. Calculate the buffer pool hit ratio as

follows:

v P = buffer pool data physical reads + buffer pool index physical reads

v L = buffer pool data logical reads + buffer pool index logical reads

v Hit ratio = (1-(P/L)) * 100%

DB2 query optimization level

Chapter 7. Tuning WebSphere applications 79

v Description: Sets the amount of work and resources that DB2 puts into

optimizing the access plan. When a database query runs in DB2, various

methods are used to calculate the most efficient access plan. The range is from 0

to 9. An optimization level of 9 causes DB2 to devote a lot of time and all of its

available statistics to optimizing the access plan.

v How to view or set: The optimization level is set on individual databases and

can be set with either the command line or with the DB2 Control Center. Static

SQL statements use the optimization level that is specified on the prep and bind

commands. If the optimization level is not specified, DB2 uses the default

optimization as specified by the dft_queryopt setting. Dynamic SQL statements

use the optimization class that is specified by the current query optimization

special register, which is set using the SQL Set statement. For example, the

following statement sets the optimization class to 1:

Set current query optimization = 1

If the current query optimization register is not set, dynamic statements are

bound using the default query optimization class.

v Default value: 5

v Recommended value: Set the optimization level for the needs of the application.

Use high levels only when there are very complicated queries.

DB2 reorgchk

v Description: Obtains the current statistics for data and rebinding. Use this

parameter because SQL statement performance can deteriorate after many

updates, deletes or inserts.

v How to view or set: Use the DB2 reorgchk update statistics on table all

command to perform the runstats operation on all user and system tables for

the database to which you are currently connected. Rebind packages using the

bind command. If statistics are available, issue the db2 -v ″select tbname, nleaf,

nlevels, stats_time from sysibm.sysindexes″ command on DB2 CLP. If no

statistic updates exist, nleaf and nlevels are -1, and stats_time has an empty

entry (for example: ″-″). If the runstats command was previously run, the

real-time stamp from completion of the runstats operation also displays under

stats_time. If you think the time shown for the previous runstats operation is too

old, run the runstats command again.

v Default value: None

v Recommended value: None

DB2 locktimeout

v Description: Specifies the number of seconds that an application waits to obtain

a lock. Setting this property helps avoid global deadlocks for applications.

v How to view or set: To view the current value of the lock timeout property for

database xxxxxx, issue the DB2 get db cfg for xxxxxx command and look for the

value, LOCKTIMEOUT. To set LOCKTIMEOUT to a value of n, issue the DB2

update db cfg for xxxxxx command using LOCKTIMEOUT n, where xxxxxx is

the name of the application database and n is a value between 0 and 30 000

inclusive.

v Default value: -1, meaning lock timeout detection is turned off. In this situation,

an application waits for a lock if one is not available at the time of the request,

until either of the following events occurs:

– The lock is granted

– A deadlock occurs
v Recommended value: If your database access pattern tends toward a majority of

writes, set this value so that it gives you early warning when a timeout occurs.

A setting of 30 seconds suits this purpose. If your pattern tends toward a

80 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

majority of reads, either accept the default lock timeout value, or set the

property to a value greater than 30 seconds.

DB2 maxlocks

v Description: Specifies the percentage of the lock list that is reached when the

database manager performs escalation, from row to table, for the locks held by

the application. Although the escalation process does not take much time,

locking entire tables versus individual rows decreases concurrency, and

potentially decreases overall database performance for subsequent attempts to

access the affected tables.

v How to view or set: To view the current value of the maxlocks property for

database xxxxxx, issue the DB2 get db cfg for xxxxxx command and look for the

MAXLOCKS value. To set MAXLOCKS to a value of n, issue the DB2 update db

cfg for xxxxxx command using MAXLOCKS n, where xxxxxx is the name of the

application database and n is a value between 1 and 100 inclusive.

v Default value: Refer to the current database information for property default

values per operating system.

v Recommended value: If lock escalations are causing performance concerns, you

might need to increase the value of this parameter or the locklist parameter,

which is described in the following paragraph. You can use the database system

monitor to determine if lock escalations are occurring.

DB2 locklist

v Description: Specifies the amount of storage that is allocated to the lock list.

v How to view or set: To view the current value of the locklist property for

database xxxxxx, issue the DB2 get db cfg for xxxxxx command and look for the

LOCKLIST value . To set LOCKLIST to a value of n, issue the DB2 update db

cfg for xxxxxx command using LOCKLIST n, where xxxxxx is the name of the

application database and n is a value between 4 and 60 000 inclusive.

v Default value: Refer to the current database information for property default

values per operating system.

v Recommended value: If lock escalations are causing performance concerns, you

might need to increase the value of this parameter or the maxlocks parameter,

which is described in the previous paragraph. You can use the database system

monitor to determine if lock escalations are occurring. Refer to the DB2

Administration Guide: Performance document for more details.

Tuning parameters for data access resources

For better application performance, you can tune some data access resources

through the WebSphere Application Server administrative console.

Tune these properties of data sources and connection pools to optimize the

performance of transactions between your application and datastore.

Data source tuning

To view the administrative console page where you configure the following

properties, click Resources > JDBC Providers > JDBC_provider > Data sources >

data_source > WebSphere Application Server connection properties.

Enable JMS one phase optimization support

If your application does not use JMS messaging, do not select this option.

Activating this support enables the Java Message Service (JMS) to get

optimized connections from the data source. Activating this support also

prevents JDBC applications from obtaining connections from the data

source. For further explanation of JMS one phase support, refer to the

Chapter 7. Tuning WebSphere applications 81

article entitled ″Sharing connections to benefit from one phase commit

optimization″ in this information center.

Statement cache size

Specifies the number of prepared statements that are cached per

connection. (A prepared statement is a precompiled SQL statement that is

stored in a prepared statement object. This object is used to efficiently run

the given SQL statement multiple times.) In general, the more statements

your application has, the larger the cache should be. Be aware, however,

that specifying a larger statement cache size than needed wastes

application memory and does not improve performance.

 Determine the value for your cache size by adding the number of uniquely

prepared statements, callable statements (as determined by the SQL string,

concurrency, and the scroll type) for each application that uses this data

source on a particular server. This value is the maximum number of

possible prepared statements that are cached on a given connection over

the life of the server. For additional information about this setting, see the

Administering applications and their environment PDF book.

 Default: For most databases the default is 10. Zero means there is no cache

statement.

Connection pool tuning

To view the administrative console page where you configure the following

properties, click Resources > JDBC Providers > JDBC_provider > Data sources >

data_source > Connection pool settings.

Maximum connections

Specifies the maximum number of physical connections that can be created

in this pool. These are the physical connections to the backend datastore.

When this number is reached, no new physical connections are created;

requestors must wait until a physical connection that is currently in use is

returned to the pool.

 For optimal performance, set the value for the connection pool lower than

the value for the Web container threadpool size. Lower settings, such as 10

to 30 connections, might perform better than higher settings, such as 100.

For additional information about this setting, see the Administering

applications and their environment PDF book.

 Default: 10

Minimum connections

Specifies the minimum number of physical connections to maintain. Until

this number is exceeded, the pool maintenance thread does not discard

physical connections.

 If you set this property for a higher number of connections than your

application ultimately uses at run time, you do not waste application

resources. WebSphere Application Server does not create additional

connections to achieve your minimum setting. Of course, if your

application requires more connections than the value you set for this

property, application performance diminishes as connection requests wait

for fulfillment. For additional information about this setting, see the

Administering applications and their environment PDF book.

 Default: 1

82 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Database performance tuning

Database performance tuning can dramatically affect the throughput of your

application. For example, if your application requires high concurrency (multiple,

simultaneous interactions with backend data), an improperly tuned database can

result in a bottleneck. Database access threads accumulate in a backlog when the

database is not configured to accept a sufficient number of incoming requests.

Tuning parameters vary according to the type of database you are using. “DB2

tuning tips for z/OS” on page 31 are provided for your convenience. Because DB2

is not a WebSphere Application Server product and can change, consider these

descriptions as suggestions.

Messaging resources

Tuning JMS destinations

Use this task to configure the properties of a JMS destination to optimize

performance of applications that use the WebSphere Application version 5 default

messaging provider or WebSphere MQ as a JMS provider.

To optimize performance, configure destination properties to best fit your

applications. You should also consider queue attributes of the JMS server that are

associated with the queue name. For more information, see the following topics:

v “Performance considerations for WebSphere Version 5 queue destinations”

v “Performance considerations for WebSphere Version 5 topic destinations” on

page 84

v “Performance considerations for WebSphere MQ queue destinations” on page 84

v “Performance considerations for WebSphere MQ topic destinations” on page 85

Performance considerations for WebSphere Version 5 queue

destinations

To optimize performance, configure the queue destination properties to best fit

your applications. For example, setting the Expiry property to SPECIFIED and the

Specified Expiry property to 30000 milliseconds for the expiry timeout, reduces the

number of messages that can be queued. To ensure that there are enough

underlying WebSphere MQ resources available for the queue, you must ensure that

you configure the queue destination properties adequately for your application

usage.

For queue destinations configured on a WebSphere Application Server version 5

node, you should also consider queue attributes of the internal JMS server that are

associated with the queue name. Inappropriate queue attributes can reduce the

performance of WebSphere operations.

BOQNAME

The excessive backout requeue name. This can be set to a local queue

name that can hold the messages which were rolled back by the

WebSphere applications. This queue name can be a system dead letter

queue.

BOTHRESH

The backout threshold and can be set to a number once the threshold is

reached, the message will be moved to the queue name specified in

BOQNAME.

For more information about using these properties, see:

Chapter 7. Tuning WebSphere applications 83

v “Handling poison messages” in the WebSphere MQ Using Java book

v The WebSphere MQ Script (MQSC) Command Reference book

Performance considerations for WebSphere Version 5 topic

destinations

To optimize performance, configure the JMS destination properties to best fit your

applications. For example, setting the Expiry property to SPECIFIED and the

Specified Expiry property to 30000 milliseconds for the expiry timeout, reduces the

number of messages that can be queued.

For JMS destinations configured on a WebSphere Application Server version 5

node, ensure that there are enough underlying WebSphere MQ resources available

for the queue, you must ensure that you configure the queue destination properties

adequately for your application usage.

v Ensure the queue attribute, INDXTYPE is set to MSGID for the following system

queues:

– SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

– SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
v Ensure the queue attribute, INDXTYPE is set to CORRELID for the following

system queues:

– SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

– SYSTEM.JMS.D.SUBSCRIBER.QUEUE

For more information about using these properties, see:

v The WebSphere MQ Using Java book

v The WebSphere MQ Script (MQSC) Command Reference book

Performance considerations for WebSphere MQ queue

destinations

To optimize performance, configure the queue destination properties to best fit

your applications. For example, setting the Expiry property to SPECIFIED and the

Specified Expiry property to 30000 milliseconds for the expiry timeout, reduces the

number of messages that can be queued. To ensure that there are enough

underlying WebSphere MQ resources available for the queue, you must ensure that

you configure the queue destination properties adequately for your application

usage.

You should also consider queue attributes of the internal JMS server that are

associated with the queue name. Inappropriate queue attributes can reduce the

performance of WebSphere operations.

You should also consider the queue attributes associated with the queue name you

created with WebSphere MQ. Inappropriate queue attributes can reduce the

performance of WebSphere operations. You can use WebSphere MQ commands to

change queue attributes for the queue name.

BOQNAME

The excessive backout requeue name. This can be set to a local queue

name that can hold the messages which were rolled back by the

WebSphere applications. This queue name can be a system dead letter

queue.

BOTHRESH

The backout threshold and can be set to a number once the threshold is

reached, the message will be moved to the queue name specified in

BOQNAME.

84 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

INDXTYPE

Set this to MSGID. This causes an index of message identifiers to be

maintained, which can improve WebSphere MQ retrieval of messages.

DEFSOPT

Set this to SHARED (for shared input from the queue).

SHARE

This must be specified (so that multiple applications can get messages from

this queue).

 For more information about using these properties, see:

v For BOQNAME and BOTHRESH, see “Handling poison messages” in the

WebSphere MQ Using Java book

v The WebSphere MQ Script (MQSC) Command Reference book

Performance considerations for WebSphere MQ topic

destinations

To optimize performance, configure the topic destination properties to best fit your

applications. For example, setting the Expiry property to SPECIFIED and the

Specified Expiry property to 30000 milliseconds for the expiry timeout, reduces the

number of messages that can be queued. To ensure that there are enough

underlying WebSphere MQ resources available for the queue, you must ensure that

you configure the queue destination properties adequately for your application

usage.

v Ensure the queue attribute, INDXTYPE is set to MSGID for the following system

queues:

– SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

– SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
v Ensure the queue attribute, INDXTYPE is set to CORRELID for the following

system queues:

– SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

– SYSTEM.JMS.D.SUBSCRIBER.QUEUE

For more information about using these properties, see:

v The WebSphere MQ Using Java book

v The WebSphere MQ Script (MQSC) Command Reference book

Security

SSL considerations for WebSphere Application Server

administrators

The Resource Access Control Facility (RACF) customization jobs create an SSL

Keyring owned by the WebSphere Application Server for z/OS administrator

containing the digital certificate needed to communicate with WebSphere

Application Server. However, additional customization is required for

administration by other MVS user IDs.

Note that the MVS user ID in the description below is the MVS user ID under

which the wsadmin.sh process is running, not the user ID specified in the wsadmin

request.

In the example below:

Chapter 7. Tuning WebSphere applications 85

v yyyyy is the user ID of the new WebSphere Application Server for z/OS

administrator

v xxxxx is the name of the keyring specified in soap.client.props

v zzzzz is the label name used in the BBOSBRAK jobs to specify which certificate

authority certificate was used to generate server keys
1. If the new administrator is not a member of the WebSphere Application Server

for z/OS administrative group, make sure that the new user ID has access to

the appropriate RACF keyrings and digital certificates. For example:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(yyyyy) ACC(READ)

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(yyyyy) ACC(READ)

2. Use the setup completed by the customization jobs as a model for the

additional steps. This information is in the BBOCBRAK member of the

<HLQ>.DATA data set generated during the customization process. The

BBOCBRAK job contains the set of RACF commands that were used:

 /* Generating SSL keyrings for WebSphere administrator */

RACDCERT ADDRING(xxxxx) ID(yyyyyy)

 /* Connect WAS CA Certificates to Servers keyring */

"RACDCERT ID(yyyyy) CONNECT (RING(xxxxxx) LABEL(’zzzzzzz’) CERTAUTH"

SETROPTS RACLIST(FACILITY) REFRESH"

Setting up SSL connections for Java clients

To configure SSL for use between Java clients running on a workstation and the

WebSphere Application Server for z/OS Java 2 Platform, Enterprise Edition (J2EE)

server:

1. Determine what SSL repertoire the server is using. For example: WASKeyring.

2. Determine the user ID the server is running. For example: CBSYMSR1.

3. Export the certificate authority from RACF. For example: RACDCERT CERTAUTH

EXPORT(LABEL(’WebSphereCA’)) DSN(’IBMUSER.WAS.CA’) FORMAT(CERTDER)

4. Move the file to the workstation. (Note that the FTP transfer must use binary.)

For example: c:\tmp directory

5. Add the digital certificate to the TrustStore used by the client. For example:

DummyClientTrustFile.jks file: keytool -import -file c:\tmp\IBMUSER.WAS.CA

-keystore DummyClientTrustFile.jks]

Tuning security configurations

Performance issues typically involve trade-offs between function and speed.

Usually, the more function and the more processing involved, the slower the

performance. Consider what type of security is necessary and what you can

disable in your environment. For example, if your application servers are running

in a Virtual Private Network (VPN), consider whether you must disable Secure

Sockets Layer (SSL). If you have a lot of users, can they be mapped to groups and

then associated to your J2EE roles? These questions are things to consider when

designing your security infrastructure.

Complete the following steps for general security tuning:

1. Consider disabling Java 2 Security Manager if you know exactly what code is

put onto your server and you do not need to protect process resources.

Remember that in doing so, you put your local resources at some risk.

2. Disable security for the specific application server that does not require

resource protection because some application servers do not have protected

resources. If the application server needs to go downstream with credentials,

86 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

however, this action might not be feasible. There are two ways to disable

security. Use either of the following two procedures and then restart the

application server:

Using the administrative console

a. Click Security > Global security .

b. Disable the Enable global security option.

Using the command line

a. Type wsadmin.sh -conntype NONE.

b. When the system command prompt redisplays, type securityoff.
3. Consider propagating new security settings to all nodes before restarting the

deployment manager and node agents to change the new security policy.

If your security configurations are not consistent across all servers, you get

access denied errors. Therefore, you must propagate new security settings when

enabling or disabling global security in a Network Deployment environment.

Configuration changes are generally propagated using configuration

synchronization. If auto-synchronization is enabled, you can wait for the

automatic synchronization interval to pass, or you can force synchronization

before the synchronization interval expires. If you are using manual

synchronization, you must synchronize all nodes.

If the cell is in a configuration state (the security policy is mixed with nodes

that have security enabled and disabled) you can use the syncNode utility to

synchronize the nodes where the new settings are not propagated.

Refer to the article, Enabling global security in the WebSphere Application

Server Network Deployment package for more detailed information about

enabling security in a distributed environment.

4. Consider increasing the cache and token time-out if you feel your environment

is secure enough. By doing so, you have to re-authenticate less often. This

action supports subsequent requests to reuse the credentials that already are

created. The downside of increasing the token time-out is the exposure of

having a token hacked and providing the hacker more time to hack into the

system before the token expires. You can use security cache properties to

determine the initial size of the primary and secondary hashtable caches, which

affect the frequency of rehashing and the distribution of the hash algorithms.

5. Consider changing your administrative connector from Simple Object Access

Protocol (SOAP) to Remote Method Invocation (RMI) because RMI uses stateful

connections while SOAP is completely stateless. Run a benchmark to determine

if the performance is improved in your environment.

6. Use the wsadmin script to complete the access IDs for all the users and groups

to speed up the application startup. Complete this action if applications contain

many users, or groups, or if applications are stopped and started frequently.

7. Consider tuning the Object Request Broker (ORB) because it is a factor in

enterprise bean performance with or without security enabled. Refer to the

article, .

8. If using SSL, then enable the SSL session tracking mechanism option as

described in the ″Session management settings″ article in the Administering

applications and their environment PDF book

Tuning CSIv2

1. Consider using Secure Sockets Layer (SSL) client certificates instead of a user

ID and password to authenticate Java clients. Since you are already making the

Chapter 7. Tuning WebSphere applications 87

SSL connection, using mutual authentication adds little overhead while

removing the service context containing the user ID and password completely.

2. If you send a large amount of data that is not very security sensitive, reduce

the strength of your ciphers. The more data you have to bulk encrypt and the

stronger the cipher, the longer this action takes. If the data is not sensitive, do

not waste your processing with 128-bit ciphers.

3. Consider putting just an asterisk (*) in the trusted server ID list (meaning trust

all servers) when you use Identity Assertion for downstream delegation. Use

SSL mutual authentication between servers to provide this trust. Adding this

extra step in the SSL handshake performs better than having to fully

authenticate the upstream server and check the trusted list. When an asterisk is

used, we simply trust the identity token. The SSL connection trusts the server

by way of client certificate authentication.

4. Ensure that stateful sessions are enabled for Common Secure Interoperability

Version 2 (CSIv2). This is the default, but only requires authentication on the

first request and any subsequent token expirations.

5. If you are only communicating with WebSphere Application Server Version 6

servers, make the Active Authentication Protocol CSI, instead of CSI and SAS.

This action removes an interceptor invocation for every request on both the

client and server sides.

Tuning LDAP authentication

1. Select the Ignore case for authorization option in the WebSphere Application

Server Lightweight Directory Access Protocol (LDAP) User Registry

configuration, when case-sensitivity is not important.

2. Select the Reuse connections option in the WebSphere Application Server

LDAP User Registry configuration.

3. Check to see which caches your LDAP server has and take advantage of them.

This action is best with LDAP servers that do not change frequently.

4. Choose the directory type of either IBM Tivoli Directory Server or SecureWay, if

you are using an IBM Tivoli Directory Server. The IBM Tivoli Directory Server

yields improved performance because it is programmed to use the new group

membership attributes to improve group membership searches. However, it is

required that authorization is case insensitive to use IBM Tivoli Directory

Server.

5. Choose either iPlanet Directory Server (also known as Sun ONE) or Netscape

as the directory if you are an iPlanet Directory user. Using the iPlanet Directory

Server directory increases performance in group membership lookup. However,

only use Role for group mechanisms.

Tuning Web authentication

1. Consider increasing the cache and token time-out if you feel your environment

is secure enough. The Web authentication information is stored in these caches

and as long as the authentication information is in the cache, the login module

is not invoked to authenticate the user. This supports subsequent requests to

reuse the credentials already created. The downside of increasing the token

time-out is the exposure of having a token stolen and providing the thief more

time to hack into the system before the token expires.

2. Consider enabling single signon (SSO). SSO is only available when you select

LTPA as the authentication mechanism in the Global security panel. When you

select SSO, a single authentication to one application server is enough to make

requests to multiple application servers in the same SSO domain. There are

some situations where SSO is not desirable and should not be used in those

situations.

88 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

3. Consider disabling or enabling the Web Inbound Security Attribute

Propagation option on the SSO panel if the function is not required. In some

cases, having the function enabled improves performance. This improvement is

most likely for higher volume cases where a considerable number of user

registry calls reduces performance. In other cases, having the feature disabled

improves performance. This improvement is most likely when the user registry

calls do not take considerable resources.

Tuning authorization

1. Consider mapping your users to groups in the user registry. Then associate the

groups with your Java 2 Platform, Enterprise Edition (J2EE) roles. This

association greatly improves performance as the number of users increases.

2. Judiciously assign method-permissions for enterprise beans. For example, you

can use an asterisk (*) to indicate all methods in the method-name element.

When all the methods in enterprise beans require the same permission, use an

asterisk (*) for the method-name to indicate all methods. This indication

reduces the size of deployment descriptors and reduces the memory required to

load the deployment descriptor. It also reduces the search time during

method-permission match for the enterprise beans method.

3. Judiciously assign security-constraints for servlets. For example, you can use

the URL pattern *.jsp to apply the same authentication data constraints to

indicate all JSP files. For a given URL, the exact match in the deployment

descriptor takes precedence over the longest path match. Use the extension

match (*.jsp, *.do, *.html) if there is no exact match and longest path match

for a given URL in the security constraints.

There is always a trade off between performance, feature and security. Security

typically adds more processing time to your requests, but for a good reason. Not

all security features are required in your environment. When you decide to tune

security, you should create a benchmark before making any change to ensure the

change is improving performance.

In a large scale deployment, performance is very important. Running benchmark

measurements with different combinations of features can help you to determine

the best performance versus the benefit configuration for your environment.

Continue to run benchmarks if anything changes in your environment, to help

determine the impact of these changes.

Security cache properties

The following security cache custom properties determine whether the

authentication cache is enabled or disabled. If the authentication cache is enabled,

as recommended, these custom properties specify the initial size of the primary

and secondary hash table caches, which affect the frequency of rehashing and the

distribution of the hash algorithms. To specify these security cache properties,

complete the following steps:

1. Click Servers > Application Servers > server_name .

2. Under Server infrastructure, click Java and Process Management > Process

definition > Control or Servant.

3. Under Additional properties, click Java Virtual Machine > Custom Properties

4. Click New to specify a new custom property.

Important: The com.ibm.websphere.security.util.tokenCacheSize and

com.ibm.websphere.security.util.LTPAValidationCacheSize properties

were replaced with the com.ibm.websphere.security.util.authCacheSize

property.

Chapter 7. Tuning WebSphere applications 89

WebSphere Application Server includes the following security cache custom

properties:

com.ibm.websphere.security.util.authCacheEnabled

Specifies whether to disable the authentication cache. It is recommended

that you leave the authentication cache enabled for performance reasons.

However, you might disable the authentication cache for debug or

measurement purposes.

 Default: True

com.ibm.websphere.security.util.authCacheSize

Specifies the initial size of the primary and secondary hash table caches. A

higher number of available hash values might decrease the occurrence of

hash collisions. A hash collision results in a linear search for the hash

bucket, which might decrease the retrieval time. If several entries compose

a hash table cache, you can might consider creating a table with a larger

capacity that supports more efficient hash entries instead of allowing

automatic rehashing determine the growth of the table. Rehashing causes

every entry to move each time.

 Default: 200

Type: Integer

Tuning security

Enabling security decreases performance. The following tuning parameters provide

ways to minimize this performance impact.

While it is not possible to run WebSphere Application Server for z/OS without

security enabled, it is possible to perform certain tuning techniques to make the

Application Server run better on z/OS. These techniques are documented in detail

in “Security tuning tips for z/OS” on page 45.

v Fine-tune the Cache timeout value on the Global security panel in the

administrative console. For more information, see the Securing applications and

their environment PDF book.

v Configure the security cache properties. For more information, see Securing

applications and their environment PDF book.

v Enable the Enable SSL ID tracking option on the Session management panel in

the administrative console. For more information, see the Administering

applications and their environment PDF book.

v Modify the RACF security settings as documented in the “RACF tuning tips for

z/OS” on page 35 article.

v Read the “Tuning security configurations” on page 86 article for more

information.

Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming

model extensions for enhancing your application development and deployment.

See Learn about WebSphere applications: Overview and new features for an

introduction to each WebSphere extension.

90 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

ActivitySessions How do I?... Overview Samples

Application profiling How do I?... Overview Samples

Asynchronous beans How do I?... Overview Samples

Dynamic caching How do I?... Overview

Dynamic query How do I?... Overview Samples

Internationalization How do I?... Overview Samples

Object pools How do I?... Overview

Scheduler How do I?... Overview Samples

Startup beans How do I?... Overview

Work areas How do I?... Overview

Dynamic cache

Managing cache entries stored on a disk

Use this page to set Java virtual machine (JVM) custom properties to maintain

cache entries that are saved to disk.

Steps for this task

You can set the custom properties globally to affect all cache instances, or you can

set the custom property on a single cache instance. In most cases, set the properties

on the individual cache instances. To set the custom properties on the default cache

instance, use the global option. If you set the same property both globally and on a

cache instance, the value that is set on the cache instance overrides the global

value.

To configure the custom properties on a single object cache instance or servlet

cache instance, perform the following steps:

1. In the administrative console, click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances >

Servlet cache instances > servlet_cache_instance_name > Custom properties >

New.

v To configure an object cache instance, click Resources > Cache instances >

Object cache instances > object_cache_instance_name > Custom properties >

New.
2. Type the name of the custom property. When configuring these custom

properties on a single cache instance, you do not use the full property path. For

example, type htodCleanupFrequency to configure the

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency custom property.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

To configure the custom property globally across all configured cache instances,

perform the following steps:

1. In the administrative console, click Servers > Application servers > server_name

> Java and process management > Process definition > Java virtual machine

> Custom properties > New.

Chapter 7. Tuning WebSphere applications 91

2. Type the name of the custom property (for example,

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency) in the Name field.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency

Use this property to change the amount of time between disk cache cleanup.

By default, the disk cache cleanup is scheduled to run at midnight to remove

expired cache entries and cache entries that have not been accessed in the past 24

hours. However, if you have thousands of cache entries that might expire within

one or two hours, the files that are in the disk cache can grow large and become

unmanageable. Use the com.ibm.ws.cache.CacheConfig.htodCleanupFrequency

custom property to change the time interval between disk cache cleanup.

 Units minutes

For example, a value of 60 means 60

minutes between each disk cache cleanup.

Default 0

The disk cache cleanup occurs at midnight

every 24 hours.

Tune the delay offload function

Use these properties to tune the delay offload function for the disk cache. The

delay offload function uses extra memory buffers for dependency IDs and

templates to delay the disk offload and minimize the input and output operations.

However, if most of your cache IDs are longer than 100 bytes, the delay offload

function might use too much memory. Use any combination of the following

properties to tune your configuration:

v To increase or decrease the in-memory limit of cache IDs for dependency ID and

template buffers, use the

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit custom property.

v To disable the disk cache delay offload function, use the

com.ibm.ws.cache.CacheConfig.htodDelayOffload custom property. Disabling

this property saves all cache entries to disk immediately after removing them

from the memory cache.

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit

Use this property to specify the number of different cache IDs that can be saved in

memory for the dependency ID and template buffers. Consider increasing this

value if you have a lot of memory in your server and you want to increase the

performance of your disk cache.

 Units number of cache IDs

For example, a value of 1000 means that

each dependency ID or template ID can

have up to 1000 different cache IDs in

memory.

Default 1000

92 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Minimum 100

com.ibm.ws.cache.CacheConfig.htodDelayOffload

Use this property to specify if extra memory buffers should be used in memory for

dependency IDs and templates to delay disk offload and to minimize input and

output operations to the disk. This property is enabled by default. However,

consider disabling this property if your cache IDs are larger than 100 bytes because

this option might use too much memory when it buffers your data. If you set this

property to false, all the cache entries are copied to disk immediately after they

are removed from the memory cache.

 Default true

Tuning dynamic cache with the cache monitor

Use this task to interpret cache monitor statistics to improve the performance of

the dynamic cache service.

Verify that dynamic cache is enabled and that the cache monitor application is

installed on your application server. See the Setting up the application serving

environment PDF book to configure the cache monitor application.

Use the cache monitor to watch cache hits versus misses. By comparing these two

values, you can determine how much dynamic cache is helping your application,

and if you can take any additional steps to further improve performance and

decrease the cost of processing for your application server.

1. Start cache monitor and click on Cache Statistics. You can view the following

cache statistics:

 Cache statistic Description

Cache Size The maximum number of entries that the

cache can hold.

Used Entries The number of cache entries used.

Cache Hits The number of request responses that are

served from the cache.

Cache Misses The number of request responses that are

cacheable but cannot be served from the

cache.

LRU Evictions The number of cache entries removed to

make room for new cache entries.

Explicit Removals The number of cache entries removed or

invalidated from the cache based on cache

policies or were deleted from the cache

through the cache monitor.

2. You can also view the following cache configuration values:

 Cache configuration value Description

Default priority Specifies the default priority for all cache

entries. Lower priority entries are moved

from the cache before higher priority entries

when the cache is full. You can specify the

priority for individual cache entries in the

cache policy.

Chapter 7. Tuning WebSphere applications 93

Cache configuration value Description

Servlet Caching Enabled If servlet caching is enabled, results from

servlets and JavaServer Pages (JSP) files are

cached. See the Setting up the application

serving environment PDF book for more

information.

Disk Offload Enabled Specifies if entries that are being removed

from the cache are saved to disk. See the

Setting up the application serving environment

PDF book for more information.

3. Wait for the application server to add data to the cache. You want the number

of used cache entries in the cache monitor to be as high as it can go. When the

number of used entries is at its highest, the cache can serve responses to as

many requests as possible.

4. When the cache has a high number of used entries, reset the statistics. Watch

the number of cache hits versus cache misses. If the number of hits is far

greater than the number of misses, your cache configuration is optimal. You do

not need to take any further actions. If you find a higher number of misses

with a lower number of hits, the application server is working hard to generate

responses instead of serving the request using a cached value. The application

server might be making database queries, or running logic to respond to the

requests.

5. If you have a large number of cache misses, increase the number of cache hits

by improving the probability that a request can be served from the cache. To

improve the number of cache hits, you can increase the cache size or configure

additional cache policies. See the Setting up the application serving environment

PDF book to increase the cache size.

By using the cache monitor application, you optimized the performance of the

dynamic cache service.

See the Setting up the application serving environment PDF book for more information

about the dynamic cache.

Work area

Work area service performance considerations

The work area service is designed to address complex data passing patterns that

can quickly grow beyond convenient maintenance. A work area is a note pad that is

accessible to any client that is capable of looking up Java Naming Directory

Interface (JNDI). After a work area is established, data can be placed there for

future use in any subsequent method calls to both remote and local resources.

You can utilize a work area when a large number of methods require common

information or if information is only needed by a method that is significantly

further down the call graph. The former avoids the need for complex parameter

passing models where the number of arguments passed becomes excessive and

hard to maintain. You can improve application function by placing the information

in a work area and subsequently accessing it independently in each method,

eliminating the need to pass these parameters from method to method. The latter

case also avoids unnecessary parameter passing and helps to improve performance

by reducing the cost of marshalling and de-marshalling these parameters over the

Object Request Broker (ORB) when they are only needed occasionally throughout

the call graph.

94 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

When attempting to maximize performance by using a work area, cache the

UserWorkArea partition that is retrieved from JNDI wherever it is accessed. You

can reduce the time spent looking up information in JNDI by retrieving it once and

keeping a reference for the future. JNDI lookup takes time and can be costly.

Additional caching mechanisms available to a user-defined partition are defined by

the configuration property, ″Deferred Attribute Serialization″. This mechanism

attempts to minimize the number of serialization and deserialization calls.

The maxSendSize and maxReceiveSize configuration parameters can affect the

performance of the work area. Setting these two values to 0 (zero) effectively turns

off the policing of the size of context that can be sent in a work area. This action

can enhance performance, depending on the number of nested work areas an

application uses. In applications that use only one work area, the performance

enhancement might be negligible. In applications that have a large number of

nested work areas, there might be a performance enhancement. However, a user

must note that by turning off this policing it is possible that an extremely large

amount of data might be sent to a server.

Performance is degraded if you use a work area as a direct replacement to passing

a single parameter over a single method call. The reason is that you incur more

overhead than just passing that parameter between method calls. Although the

degradation is usually within acceptable tolerances and scales similarly to passing

parameters with regard to object size, consider degradation a potential problem

before utilizing the service. As with most functional services, intelligent use of the

work areas yields the best results.

The work area service is a tool to simplify the job of passing information from

resource to resource, and in some cases can improve performance by reducing the

overhead that is associated with a parameter passing when the information is only

sparsely accessed within the call graph. Caching the instance retrieved from JNDI

is important to effectively maximize performance during runtime.

Chapter 7. Tuning WebSphere applications 95

96 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Chapter 8. Troubleshooting performance

This topic illustrates that solving a performance problem is an iterative process and

shows how to troubleshoot performance problems.

Solving a performance problem is frequently an iterative process of:

v Measuring system performance and collecting performance data

v Locating a bottleneck

v Eliminating a bottleneck

This process is often iterative because when one bottleneck is removed the

performance is now constrained by some other part of the system. For example,

replacing slow hard disks with faster ones might shift the bottleneck to the CPU of

a system.

Measuring system performance and collecting performance data

Begin by choosing a benchmark, a standard set of operations to run. This

benchmark exercises those application functions experiencing performance

problems. Complex systems frequently need a warm-up period to cache objects,

optimize code paths, and so on. System performance during the warm-up period is

usually much slower than after the warm-up period. The benchmark must be able

to generate work that warms up the system prior to recording the measurements

that are used for performance analysis. Depending on the system complexity, a

warm-up period can range from a few thousand transactions to longer than 30

minutes.

If the performance problem under investigation only occurs when a large number

of clients use the system, then the benchmark must also simulate multiple users.

Another key requirement is that the benchmark must be able to produce repeatable

results. If the results vary more than a few percent from one run to another,

consider the possibility that the initial state of the system might not be the same

for each run, or the measurements are made during the warm-up period, or that

the system is running additional workloads.

Several tools facilitate benchmark development. The tools range from tools that

simply invoke a URL to script-based products that can interact with dynamic data

generated by the application. IBM Rational has tools that can generate complex

interactions with the system under test and simulate thousands of users. Producing

a useful benchmark requires effort and needs to be part of the development

process. Do not wait until an application goes into production to determine how to

measure performance.

The benchmark records throughput and response time results in a form to allow

graphing and other analysis techniques. The performance data that is provided by

WebSphere Performance Monitoring Infrastructure (PMI), which is described in the

Administering applications and their environment PDF book, helps to monitor and

tune the application server performance. Request metrics is another sources of

performance data that is provided by WebSphere Application Server. Request

metrics allows a request to be timed at WebSphere Application Server component

boundaries, enabling a determination of the time that is spent in each major

component.

© Copyright IBM Corp. 2005 97

Locating a bottleneck

Consult the following scenarios and suggested solutions:

v Scenario: Poor performance occurs with only a single user.

Suggested solution: Utilize request metrics, which is described in the

Administering applications and their environment PDF book, to determine how

much each component is contributing to the overall response time. Focus on the

component accounting for the most time. Use Tivoli Performance Viewer, which

is described in the Administering applications and their environment PDF book, to

check for resource consumption, including frequency of garbage collections. You

might need code profiling tools to isolate the problem to a specific method.

v Scenario: Poor performance only occurs with multiple users.

Suggested solution: Check to determine if any systems have high CPU, network

or disk utilization and address those. For clustered configurations, check for

uneven loading across cluster members.

v Scenario: None of the systems seems to have a CPU, memory, network, or disk

constraint but performance problems occur with multiple users.

Suggested solutions:

– Check that work is reaching the system under test. Ensure that some external

device does not limit the amount of work reaching the system. Tivoli

Performance Viewer helps determine the number of requests in the system.

– A thread dump might reveal a bottleneck at a synchronized method or a large

number of threads waiting for a resource.

– Make sure that enough threads are available to process the work both in IBM

HTTP Server, database, and the application servers. Conversely, too many

threads can increase resource contention and reduce throughput.

– Monitor garbage collections with Tivoli Performance Viewer or the verbosegc

option of your Java virtual machine. Excessive garbage collection can limit

throughput.

Eliminating a bottleneck

Consider the following methods to eliminate a bottleneck:

v Reduce the demand

v Increase resources

v Improve workload distribution

v Reduce synchronization

Reducing the demand for resources can be accomplished in several ways. Caching

can greatly reduce the use of system resources by returning a previously cached

response, thereby avoiding the work needed to construct the original response.

Caching is supported at several points in the following systems:

v IBM HTTP Server

v Command

v Enterprise bean

v Operating system

Application code profiling can lead to a reduction in the CPU demand by pointing

out hot spots you can optimize. IBM Rational and other companies have tools to

perform code profiling. An analysis of the application might reveal areas where

some work might be reduced for some types of transactions.

98 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Change tuning parameters to increase some resources, for example, the number of

file handles, while other resources might need a hardware change, for example,

more or faster CPUs, or additional application servers. Key tuning parameters are

described for each major WebSphere Application Server component to facilitate

solving performance problems. Also, the performance advisors can provide advice

on tuning a production system under a real or simulated load.

Workload distribution can affect performance when some resources are

underutilized and others are overloaded. WebSphere Application Server workload

management functions provide several ways to determine how the work is

distributed. Workload distribution applies to both a single server and

configurations with multiple servers and nodes.

Some critical sections of the application and server code require synchronization to

prevent multiple threads from running this code simultaneously and leading to

incorrect results. Synchronization preserves correctness, but it can also reduce

throughput when several threads must wait for one thread to exit the critical

section. When several threads are waiting to enter a critical section, a thread dump

shows these threads waiting in the same procedure. Synchronization can often be

reduced by: changing the code to only use synchronization when necessary;

reducing the path length of the synchronized code; or reducing the frequency of

invoking the synchronized code.

Additional references

IBM WebSphere V6: Performance, Scalability, and High Availability Concepts

WebSphere Application Server Performance Web site

All SPEC jAppServer2004 Results Published by SPEC.

Chapter 8. Troubleshooting performance 99

http://www.redbooks.ibm.com/workshops/GR0551?Open
http://www-306.ibm.com/software/webservers/appserv/was/performance.html
http://www.spec.org/jAppServer2004/results/jAppServer2004.html

100 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only IBM’s product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any of IBM’s

intellectual property rights may be used instead of the IBM product, program, or

service. Evaluation and verification of operation in conjunction with other

products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

 Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation

 Mail Station P300

 2455 South Road

 Poughkeepsie, NY 12601-5400

 USA

 Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

© Copyright IBM Corp. 2005 101

102 IBM WebSphere Application Server for z/OS, Version 6.0.1: Tuning guide

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site

(http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2005 103

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Chapter 1. Overview and new features for tuning performance
	Contents of this section: Tuning performance

	Chapter 2. How do I tune performance?
	Chapter 3. Planning ahead for performance
	Application design consideration

	Chapter 4. Taking advantage of performance functions
	Chapter 5. Obtaining performance advice from the performance advisors
	Why use the performance advisors?
	Choosing the right performance advisor for the purpose
	Runtime Performance Advisor
	Tivoli Performance Viewer advisor

	Using the Runtime Performance Advisor
	Runtime Performance Advisor configuration settings
	Enable Runtime Performance Advisor
	Calculation Interval
	Maximum warning sequence
	Number of processors

	Advice configuration settings
	Advice name
	Advice applied to component
	Advice status
	Advice status

	Viewing the Runtime Performance Advisor recommendations

	Using the performance advisor in Tivoli Performance Viewer

	Chapter 6. Tuning the application serving environment
	Recommended hardware configuration
	Tuning index for WebSphere Application Server for z/OS
	Tuning the z/OS operating system
	Tuning storage
	z/OS or OS/390 operating system tuning tips
	Resource Recovery Service (RRS) tuning tips for z/OS
	LE tuning tips for z/OS
	UNIX System Services (USS) tuning tips for z/OS
	Workload management (WLM) tuning tips for z/OS

	Tuning for subsystems
	DB2 tuning tips for z/OS
	RACF tuning tips for z/OS
	TCP/IP tuning tips for z/OS
	Tuning WebSphere MQ as a JMS provider
	GRS tuning tips for z/OS
	Java virtual machine (JVM) tuning tips for z/OS
	CICS tuning tips for z/OS

	Tuning the WebSphere Application Server for z/OS runtime
	Review the WebSphere for z/OS configuration
	Internal tracing tips for WebSphere for z/OS
	Location of executable programs tips for z/OS
	Security tuning tips for z/OS

	Tuning for J2EE applications
	Topology planning and performance
	J2EE container and applications
	J2EE application programming tips
	Tuning for SOAP
	Throttling of inbound message flow for non-JCA 1.5 message-driven beans

	Tuning Java virtual machines
	Tuning transport channel services
	Checking hardware configuration and settings

	Chapter 7. Tuning WebSphere applications
	Web applications
	Tuning session management
	Configuring scheduled invalidation
	Configuring write contents
	Configuring write frequency
	Base in-memory session pool size
	Controlling write operations
	Tuning parameter settings
	Tuning parameter custom settings

	Web services
	Monitoring the performance of Web services applications
	Web services performance best practices

	Data access resources
	EJB Container Cache tuning
	DB2 tuning parameters
	Tuning parameters for data access resources
	Database performance tuning

	Messaging resources
	Tuning JMS destinations
	Performance considerations for WebSphere Version 5 queue destinations
	Performance considerations for WebSphere Version 5 topic destinations
	Performance considerations for WebSphere MQ queue destinations
	Performance considerations for WebSphere MQ topic destinations

	Security
	SSL considerations for WebSphere Application Server administrators
	Setting up SSL connections for Java clients
	Tuning security configurations
	Tuning CSIv2
	Tuning LDAP authentication
	Tuning Web authentication
	Tuning authorization
	Security cache properties
	Tuning security

	Learn about WebSphere programming extensions
	Dynamic cache
	Managing cache entries stored on a disk
	Tuning dynamic cache with the cache monitor

	Work area
	Work area service performance considerations

	Chapter 8. Troubleshooting performance
	Notices
	Trademarks and service marks

