
WebSphere® Application Server for z/OS, Version 6.0.1

Migrating, coexisting, and interoperating

SA23-2207-00

���

Note

Before using this information, be sure to read the general information under “Notices” on page 127.

Compilation date: March 16, 2005

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . v

Chapter 1. Overview and new features for migrating, coexisting, and interoperating 1

Contents of this section: Migrating, coexisting, and interoperating 1

Deprecated and removed features . 1

Deprecation list . 2

Removal list . 14

Migrating and coexisting . 17

Migration and coexistence overview . 17

Configuration mapping during migration . 19

Specification level summary of WebSphere Application Server 22

Prerequisites needed for WebSphere Application Server for z/OS 23

Migrating WebSphere programming model extensions (PMEs) 25

Mapping of V4.0.1 environment variables to V6.0.1 console settings 26

Chapter 2. How do I migrate, coexist, and interoperate? 29

Chapter 3. Learn about WebSphere applications . 33

Web applications . 33

Migrating V6.0 servers from multi-broker replication domains to data replication domains 33

Migrating Web application components from WebSphere Application Server Version 4.x 36

Migrating Web application components from WebSphere Application Server Version 5.x 39

Migrating HTTP sessions . 40

Memory-to-memory topology: Client/server function 41

Memory-to-memory session partitioning . 42

EJB applications . 42

Migrating V6.0 servers from multi-broker replication domains to data replication domains 42

Migrating enterprise bean code to the supported specification 46

Container interoperability . 50

Web services . 52

Web Services-Interoperability Basic Profile . 52

Migrating Apache SOAP Web services to Web Services for J2EE standards 54

Migrating to Version 3 of the UDDI Registry . 57

Initializing the UDDI Registry node . 59

Using a remote database for the UDDI Registry . 61

Data access resources . 61

Migrating a Version 4.0 data access application to Version 6.0 61

Mail, URLs, and other J2EE resources . 65

Mail migration tip . 65

Security . 65

Interoperability issues for security . 65

Interoperating with a C++ common object request broker architecture client 65

Interoperating with previous product versions . 66

Migrating security configurations from previous releases 67

Propagating security policy of installed applications to a JACC provider using wsadmin scripting 76

Enabling embedded Tivoli Access Manager . 77

Migrating Java 2 security policy . 77

Naming and directory . 80

JNDI interoperability considerations . 80

Learn about WebSphere programming extensions . 81

Application profiling . 81

Asynchronous beans . 83

Dynamic cache . 83

© Copyright IBM Corp. 2005 iii

Internationalization . 86

Scheduler . 87

Chapter 4. Migrating product configurations . 89

Planning to migrate WebSphere Application Server for z/OS 89

Overview of the V6.0.1 migration process . 89

Base Application Server node migrations . 92

Preparing to migrate a base Application Server node to V6.0.1 92

Customization Dialog walkthrough for migrating a stand-alone Application Server node 95

Migrating a base Application Server node . 99

Checklist of migration activities for base Application Server node 101

Network Deployment migrations . 102

Preparing to migrate a Network Deployment configuration to V6.0.1 102

Customization Dialog walkthrough for deployment manager 104

Migrating a deployment manager . 109

Checklist of migration activities for a Network Deployment configuration 111

Managed (federated) node migrations . 111

Migration tools . 119

The clientUpgrade command . 119

The convertScriptCompatibility command . 120

Rolling back your environment to V5.x . 120

Chapter 5. Coexisting . 121

Coexistence support . 121

Chapter 6. Interoperating . 123

Chapter 7. Configuring ports . 125

Notices . 127

Trademarks and service marks . 129

iv IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005 v

vi IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Chapter 1. Overview and new features for migrating,

coexisting, and interoperating

What is new for installers

 This topic provides an overview of new and changed features in installation, migration,

coexistence, and interoperability support. See the Installing your application serving environment

PDF book for more information.

Presentations from Education on Demand

(http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/)

 v Migration overview (ftp://ftp.software.ibm.com/software/eod/WAS_6-
0/Install_Migration/Presentations/WASv6_Migration/playershell.swf)

Contents of this section: Migrating, coexisting, and interoperating

“Deprecated and removed features”

This topic summarizes deprecated programming interfaces as of Version 6.0.

Chapter 2, ″How do I migrate, coexist, and interoperate?″

This section provides brief descriptions of the documentation for migration, coexistence, and

interoperability, as well as some additional resources.

Chapter 3, ″Learn about WebSphere applications″

This section of the table of contents provides migration, coexistence, and interoperability

instructions that are specific to various types of applications. For example, you can focus on

moving Web applications with the latest supported specifications; migrating Web services from

Apache SOAP; or integrating two types of messaging support.

Chapter 4, “Migrating product configurations,” on page 89

This topic is a starting point for finding information about how to migrate your configuration to

V6.0.1.

Chapter 5, “Coexisting,” on page 121

This topic is a starting point for finding information about which coexistence scenarios are

supported, and how to set them up.

Chapter 6, “Interoperating,” on page 123

This topic describes how to interoperate across product versions.

Chapter 7, “Configuring ports,” on page 125

This topic is a starting point for finding information about configuring ports, particularly in

coexistence scenarios.

Deprecated and removed features

This section summarizes deprecated features in WebSphere Application Server product offerings

beginning with Version 6.0 and ending with Version 5.0. As they become available, links to additional

information will be provided to help you migrate away from deprecated features.

IBM deprecated and removed features

See the following topics to find more information on deprecated and removed features:

v Deprecation list

v

Removal list

© Copyright IBM Corp. 2005 1

http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/
http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Install_Migration/Presentations/WASv6_Migration/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Install_Migration/Presentations/WASv6_Migration/playershell.swf

Deprecation list

The following tables summarize what is deprecated, by version and release. Each table represents on

what version and release the deprecation took effect and what is being deprecated, such as features,

APIs, scripting interfaces, tools, wizards, publicly exposed configuration data, naming identifiers, or

constants. Where possible, the recommended migration action is provided.

This article consists of the following versions and releases:

v

Deprecated features in V6.0.1

v Deprecated features in V6.0

v Deprecated features in V5.1.1

v Deprecated features in V5.1.0.2

v Deprecated features in V5.1

v Deprecated features in V5.0.2

v Deprecated features in V5.0.1

v Deprecated features in V5.0

Deprecated features in V6.0.1

 Security features

In future releases, IBM will no longer ship or support the z/OS Secure Authentication Service (z/SAS) IIOP security

protocol. It is suggested that you use the Common Secure Interoperability version 2 (CSIv2) protocols.

Recommended migration action:

Use the Common Secure Interoperability version 2 (CSIv2) protocols.

Deprecated features in V6.0

 Application programming model and container support features

2 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Support for the following tsx tags in the JSP engine is deprecated:

v repeat

v dbconnect

v dbquery

v getProperty

v userid

v passwd

v dbmodify

Recommended migration action:

Instead of using the tsx tags, you should use equivalent tags from the JavaServer Pages Standard Tag Library

(JSTL). JSTL is supported in WebSphere Application Server V6.0, and the tag library is shipped with the product.

Use the following table as a guideline for converting tsx tags to JSTL tags:

tsx tag --> JSTL tag

v tsx:repeat --> c:forEach

v tsx:dbconnect --> sql:setDataSource

v tsx:dbquery --> sql:query

v tsx:getProperty --> use standard EL syntax, for example, c:out value="${book.title}", where book is the current

index in the result set

v tsx:userid --> use the user attribute of the setDataSource tag

v tsx:passwd --> use the password attribute of the setDataSource tag

v tsx:dbmodify --> sql:update

Application services features

The WebSphere JRAS Extensions API is deprecated in this release. No further enhancements are planned for JRAS

support.

Recommended migration action:

Begin moving over to the java.util.logging package (JSR47) topic (in the Developing and deploying applications PDF

book), particularly for any new code you are writing.

The UDDI version 2 EJB interface to the UDDI Registry is deprecated.

Recommended migration action:

There is no replacement for the EJB interface. This interface is included in WebSphere Application Server V6.0 for

compatibility with V5.x. Users do not need to take any specific actions, and can continue to use the version 2 EJB

API, but should be aware that it does not include any UDDI functionality that is new to UDDI version 3, and that the

interface may be removed in a future release of WebSphere Application Server.

The UDDI4J version 2 class library, uddi4jv2.jar, is deprecated.

Recommended migration action:

Start using the version 3 UDDI APIs. A client library is provided to simplify constructing and sending UDDI v3

requests from Java. This is the IBM UDDI v3 Client for Java, provided in uddiv3client.jar. The UDDI4J APIs may still

be used, but you should be aware that they do not provide access to any of the new UDDI version 3 functionality,

and that they may be removed in a future release of WebSphere Application Server.

All of the low-level UDDI Utility Tools (UUT) APIs, such as BusinessStub, ServiceStub, etc., are deprecated. These

are all replaced by the high-level PromoterAPI interface.

Recommended migration action:

Start using the PromoterAPI in place of these low-level APIs, which will be removed in a future release of

WebSphere Application Server. The PromoterAPI provides the same functionality at a higher level of abstraction.

Chapter 1. Overview and new features 3

The following methods in the J2EE Connector Architecture runtime are deprecated:

v com.ibm.ws.management.descriptor.xml.ConnectionFactory.xml (getPoolContents and getAllPoolContents

methods)

v com.ibm.websphere.j2c.ConnectionManager interface

v com.ibm.websphere.j2c.ConnectionEventListener interface

Also, container-managed authentication aliases on a J2C Connection Factory or Datasource are deprecated.

Recommended migration action:

v getPoolContents and getAllPoolContents replaced by showPoolContents and whoAllPoolContents

v ConnectionManager interface replaced by J2EE Connector Architecture 1.5 LazyAssociatableConnectionManager

interface

v ConnectionEventListener interface replaced by J2EE Connector Architecture 1.5

LazyEnlistableConnectionManager interface.

For container-managed authentication aliases, specify the container-managed credentials via the application’s

resource binding information.

The ApplicationProfile property on the WorkManager panel in the administrative console is deprecated.

Recommended migration action:

None.

Two items from the DataSource panel in the administrative console are deprecated:

v Container-Managed Authentication Alias

v DefaultPrincipleMapping

Recommended migration action:

None.

All classes in the com.ibm.websphere.servlet.filter package are deprecated:

v ChainedRequest

v ChainedResponse

v ChainerServlet

v ServletChain

Recommended migration action:

Re-architect your legacy applications to use javax.servlet.filter classes rather than com.ibm.websphere.servlet.filter

classes. Starting from the Servlet 2.3 specification, javax.servlet.filter classes give you the capability to intercept

requests and examine responses. They also allow you to achieve chaining functionality, as well as embellishing

and/or truncating responses.

MIME filtering is deprecated. MIME filters were first introduced in WebSphere Application Server V3.5 as a way for

servlets to embellish, truncate, and/or modify the responses generated by other servlets, based on the MIME types of

the output content.

Recommended migration action:

javax.servlet.filters, which were introduced in the Servlet 2.3 specification, allow users to plug in filters which can

intercept requests to and responses from servlets. They also have the capability to modify content flowing in either

direction.

javax.servlet.filters maintain all the functionality of MIME filters. javax.servlet.filters are standard APIs, and are

supported by all compliant application servers. Refer to the Servlet 2.3 specification or Servlet filtering in the

Administering applications and their environment PDF book for more information.

4 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Container-managed persistence (CMP) entity beans configured with method level access intent may run into data

access problems, like deadlock. Therefore, the method level access intent is deprecated.

Recommended migration action:

Re-configure CMP entity beans to use bean level access intent, or re-configure Application profiles with WebSphere

Application Server Tool (AST).

All the methods and fields in com.ibm.websphere.product.product and com.ibm.websphere.product.buildInfo classes

are deprecated. Hence, the following methods from com.ibm.websphere.product.WASProduct class (which involves

com.ibm.websphere.product.product and com.ibm.websphere.product.buildInfo objects) are deprecated:

v public product getProductByFilename(String basename)

v public product getProductById(String id)

v public boolean productPresent(String id)

v public boolean addProduct(product aProduct)

v public boolean removeProduct(product aProduct)

v public Iterator getProducts()

v public Iterator getProductNames()

v public String loadVersionInfoAsXMLString(String filename)

v public String getProductDirName()

v public static String computeProductDirName()

Recommended migration action:

Use the following supported methods from com.ibm.websphere.product.WASDirectory:

v public WASProductInfo getWASProductInfo(String id)

v public boolean isThisProductInstalled(String id)

v public WASProductInfo[] getWASProductInfoInstances()

v public String getWasLocation()

Also, instead of getting product information (name, version, build level, build date) from the old WASProduct API

(com.ibm.websphere.product.WASProduct), you should now use the following methods in the WASDirectory class to

get that information:

v com.ibm.webpshere.product.WASDirectory.getName(String)

v com.ibm.webpshere.product.WASDirectory.getVersion(String)

v com.ibm.webpshere.product.WASDirectory.getBuildLevel(String)

v com.ibm.webpshere.product.WASDirectory.getBuildDate(String)

Data Access Beans, which are shipped with WebSphere Application Server in databeans.jar, are deprecated.

Recommended migration action:

Instead of using Data Access Beans, you should use Service Data Objects (SDO).

The reloadInterval and reloadingEnabled attributes of the IBM deployment descriptor extensions are deprecated,

including both the WAR file extension (WEB-INF/ibm-web-ext.xmi) and the application extension

(META-INF/ibm-application-ext.xmi).

Recommended migration action:

Instead of using deployment descriptor extensions, you should use the reload enable and interval options provided

during application deployment. See Enterprise application settings in the Administering applications and their

environment PDF book for additional details.

The com.ibm.websphere.servlet.session.UserTransactionWrapper API is deprecated.

Recommended migration action:

There is no replacement for this API. The UserTransaction object can be placed directly into the HTTP session

without using a wrapper.

Chapter 1. Overview and new features 5

Security features

SOAP-Security (XML digital signature) based on Apache SOAP implementation is deprecated.

Recommended migration action:

Instead of using SOAP-Security, you should migrate your application to JSR-109 implementation of Web service.

Also, migrate (reconfigure your application) to use WSS (Web Service Security) 1.0 implementation.

WSS (Web Service Security) draft 13 specification-level support is deprecated in favor of the WSS 1.0

implementation.

Recommended migration action:

Applications should be migrated to the supported WSS 1.0 standard. The draft-level support does not provide

interoperability with some third party vendors, as the message level has been changed between the draft and the

WSS 1.0 implementation.

WSS 1.0 is only supported in J2EE 1.4 applications. Hence, you need to migrate applications to J2EE 1.4 first. The

next step is to use AST/RAD tooling to reconfigure WSS for the migrated application. There is no automatic migration

of WSS in this release of AST/RAD tooling for V6.0; the migration has to be done manually.

The following SPI has also been deprecated:

com.ibm.wsspi.wssecurity.config.KeyLocator

You need to migrate your implementation to the new SPI for WSS 1.0 support in V6.0:

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator

Finally, the JAAS LoginModule implementation needs to be migrated to the new programming model for JAAS

LoginModule in V6.0.

In future releases, IBM will no longer ship or support the Secure Authentication Service (SAS) IIOP security protocol.

It is suggested that you use the Common Secure Interoperability version 2 (CSIv2) protocols.

Recommended migration action:

Use the Common Secure Interoperability version 2 (CSIv2) protocols.

System administration features

Configuring resources under cell scope is deprecated.

Recommended migration action:

You should configure resources under cluster scope instead. In previous releases, you configured cell scope

resources to allow the cluster members to share the resource configuration definition. In Version 6, cell scope

resource configuration is discouraged because cell scope resources are visible to every node in the cell, even though

not every node in the cell is able to support the resource.

The depl.extension.reg and installdir options for the install command in the AdminApp scripting object are deprecated.

Recommended migration action:

There is no replacement for the depl.extension.reg option. In V5.x, this option was a no-op. For the installdir option,

use the installed.ear.destination option instead.

Performance features

6 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

The PMI Client API, which was introduced in V4.0 to programmatically gather performance data from WebSphere

Application Server, is deprecated.

Recommended migration action:

The Java Management Extension (JMX) interface, which is part of the J2EE specification, is the recommended way

to gather WebSphere Application Server performance data. PMI data can be gathered from the J2EE-managed

object MBeans, or from the WebSphere PMI Perf MBean. While the J2EE MBeans provide performance data about a

specific component, the Perf MBean acts as a gateway to the WebSphere Application Server PMI service, and

provides access to the performance data for all the components.

Deprecated features in V5.1.1

 Application programming model and container support features

The Web services gateway customization API is deprecated.

Recommended migration action:

No action is required at this time. However, use of Java API for XML-based Remote Procedure Call (JAX-RPC)

handlers is recommended over Web services gateway-specific interfaces, such as filters, where possible. The Web

services gateway API will be replaced in a future release.

Application services features

The following JDBC drivers are deprecated:

v MS SQL Server 2000 Driver for JDBC

v SequeLink JDBC driver for MS SQL Server

Recommended migration action:

If you are using either of these JDBC drivers and still want to use MS SQL Server as their database, you can switch

to the Connect JDBC driver. You can purchase the Connect JDBC driver from DataDirect Technologies, or you can

use the Connect JDBC driver shipped with WebSphere Application Server, which is free for use with WebSphere

Application Server.

Deprecated features in V5.1.0.2

 Table 1.

Application programming model and container support features

The Web services gateway customization API is deprecated.

Recommended migration action:

No action is required at this time. However, use of Java API for XML-based Remote Procedure Call (JAX-RPC)

handlers is recommended over Web services gateway-specific interfaces, such as filters, where possible. The Web

services gateway API will be replaced in a future release.

No deprecated features.

Application services features

The following JDBC drivers are deprecated:

v MS SQL Server 2000 Driver for JDBC

v SequeLink JDBC driver for MS SQL Server

Recommended migration action:

If you are using either of these JDBC drivers and still want to use MS SQL Server as their database, you can switch

to the Connect JDBC driver. You can purchase the Connect JDBC driver from DataDirect Technologies, or you can

use the Connect JDBC driver shipped with WebSphere Application Server, which is free for use with WebSphere

Application Server.

Chapter 1. Overview and new features 7

Deprecated features in V5.1

 Table 2.

Installation and migration tools

The Application Assembly Tool (AAT) used for developing J2EE applications is being replaced by the Assembly Tool

(ATk) component of the Application Server Toolkit (ASTk).

Recommended migration action:

Instead of running the Application Assembly Tool, users will install and run the Assembly Toolkit component of the

Application Server Toolkit. ASTk is based on the eclipse framework. Upon starting the ASTk, the J2EE function is

found by opening the J2EE Perspective.

JDOM (a Java representation of an XML document which provides an API for efficient reading, manipulating and

writing documentation). The currently packaged version of JDOM in WebSphere Application Server will not be

packaged in future releases of WebSphere.

Recommended migration action:

Go to JDOM (www.jdom.org) and get the latest copy of JDOM and bundle it inside your application.

Note: Customers running WebSphere Studio Application Developer Integration Edition Version 4.1 applications will

need to migrate them to WebSphere Studio Application Developer Integration Edition Version 5.0.

In future releases, IBM intends to remove the C++ Object Request Broker (ORB), the C++ library for IDL valuetypes

and the WebSphere Application Server C++ security client. IBM will no longer ship or support the Common Object

Request Broker Architecture (CORBA) C++ Developer Kit. The CORBA technology is a bridge for migration to a Java

2 Platform Enterprise Edition (J2EE) and WebSphere Application Server environment.

In addition to the preceding information, the CORBA C++ client feature will be removed from the Application Clients

installation image in future releases.

Recommended migration action:

It is recommended that customers migrate to the Object Request Broker (ORB) service for Java technology that

ships with WebSphere Application Server. However, there is no equivalent J2EE functionality for the C++ security

client or the C++ Valuetype library. Customers that require such functionality must provide or develop their own. For

information on the ORB service for Java technology, see Managing Object Request Brokers in the Developing and

deploying applications PDF book.

The deprecation of the CORBA C++ Developer Kit does not affect support for CORBA interoperability with vendor

software for CORBA services. View the following links for additional information about interoperability:

v CORBA Interoperability Samples documentation

(http://www.ibm.com/developerworks/websphere/library/samples/WASV501/corba.html)

v IBM WebSphere Application Servers CORBA Interoperability white paper

(http://www.ibm.com/support/docview.wss?uid=swg27004340)

IBM Cloudscape 5.1.x.

Recommended migration action:

No action is required at this time.

Servers and clustering features

8 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

http://www.jdom.org
http://www.ibm.com/developerworks/websphere/library/samples/WASV501/corba.html
http://www.ibm.com/developerworks/websphere/library/samples/WASV501/corba.html
http://www.ibm.com/support/docview.wss?uid=swg27004340
http://www.ibm.com/support/docview.wss?uid=swg27004340

Table 2. (continued)

IBM HTTP Server (IHS) 1.3.x.

Recommended migration action:

If you are using IHS 1.3.x with modules:

v that are shipped as part of IHS 1.3.x packages, you do not need to take any action to migrate those modules.

v supplied by a third party (including other IBM products), you need to obtain IHS/Apache 2 versions of these

modules from the third party.

v that have been customized or are in-house, you need to port these modules to the new IHS/Apache 2 API.

Application programming model and container support features

Bean Scripting Framework (BSF). JSP execution and debugging functionality is being deprecated in WebSphere

Application Server version 5.1.

Recommended migration action:

If using the Javascript, Tcl, and Python languages, the functionality will need to be re-architected. If using BSF

scripting in your own custom applications, they will be unaffected. Custom scripts written for the WebSphere

Application Server admin console will also be unaffected.

This functionality will continue to exist in WebSphere Application Server app server release 5.1, and succeeding

releases, until version 6.0. If debugging JSPs you may have to restart the app server during Javascript debugging

sessions.

Data access programming interfaces in com.ibm.websphere.rsadapter.

Relational resource adapter interface:

(com.ibm.websphere.rsadapter)

Methods have been deprecated in these types:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

 public void doSpecialBLobWork(ResultSet rset,

 InputStream[] data, String[] blobColumnNames)

 public String assembleSqlString(String[] blobColumnNames,

 StringBuffer whereClause, String[] varValues, String tableName)

Recommended migration action:

These relational resource adapter deprecated methods do not impact the application.

Note: You will not need to implement these deprecated methods in their subclasses if you have the subclass of

OracleDataStoreHelper class. Those deprecated methods will not be called by the WebSphere Application Server

runtime.

Chapter 1. Overview and new features 9

Table 2. (continued)

Webcontainer API modifications:

Note: There are no declared deprecations. The only changes are caused because of a Java API that changed

between 1.3 and 1.4.

The changed class is com.ibm.websphere.servlet.error.ServletErrorReport. The return signature for getStackTrace()

is changed because java.lang.Throwable now defines the same method with a different return signature.

v Old method signature

public String getStackTrace();

// returns a String representation of the

exception stack

v New method signature (JDK 1.4, WebSphere Application Server 5.1)

public StackTraceElement[] getStackTrace();

// returns an array of stack trace

elements

v Replacement method (WebSphere Application Server 5.1) (a replacement method that carries on the old

functionality has been provided):

public String getStackTraceAsString();

// returns a String representation

of the Exception Stack

Recommended migration action:

If you are using com.ibm.websphere.servlet.error.ServletErrorReport.getStackTrace() and expecting a return type of

String, you need to change your application to use the replacement method.

Application services features

Data access binaries -- Common Connector Framework:

The following jar files will be deprecated in V5.1:

v ccf.jar

v ccf2.jar

v recjava.jar

v eablib.jar

Recommended migration action:

The J2EE Connector Architecture solution should be used instead of the Common Connector Framework.

For more information on the usage (tools and runtime) of the J2EE Connector Architecture see Data access from

J2EE Connector Architecture applications in the Information Center.

Setting the XA partner log directory via the ’TRANLOG_ROOT’ variable is deprecated in V5.1.

Recommended migration action:

The setting currently stored in the TRANLOG_ROOT variable (if any) will need to be added to the Transaction

Service panel for any servers who wish to use the XA partner log. If the default location is to be used, then no action

is required. The Transaction Service panel can be found on the Administrative Console by selecting Application

Servers on the left, choosing the application server to be modified, and selecting Transaction Service on the panel

that is displayed. The directory currently in TRANLOG_ROOT should be entered in the Logging Directory box on the

panel.

Security features

10 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Table 2. (continued)

Security programming interfaces:

v The API is being deprecated for

com.ibm.websphere.security.auth.WSPrincipal.getCredential()

Recommended migration action:

Instead of getting the WSCredential from the principal, you should now use one of the following methods to get the

Subject which contains the WSCredential:

– The RunAs Subject is the Subject used for outbound requests.

– The Caller subject is the Subject that represents the authenticated caller for the current request.

– The methods to use to get the runAs and caller subjects are

com.ibm.websphere.security.auth.WSSubject.getRunAsSubject()

and

com.ibm.websphere.security.auth.WSSubject.getCallerSubject()

respectively.

v The interface is being deprecated in

com.ibm.websphere.security.auth.WSSecurityContext

Recommended migration action:

Use JAAS for any authentication related functionality.

v The exception is being deprecated in

com.ibm.websphere.security.auth.WSSecurityContextException

Recommended migration action:

Use JAAS for any authentication related functionality.

v The class is being deprecated in

com.ibm.websphere.security.auth.WSSecurityContextResult

Recommended migration action:

Use JAAS for any authentication related functionality.

The Integrated Cryptographic Services Facility (ICSF) authentication mechanism is deprecated in V5.1 and will be

removed in V6.1.

Recommended migration action:

Use the Lightweight Third Party Authentication (LTPA) instead.

System administration features

The following class is deprecated:

com.ibm.websphere.rsadapter.DB2390DataStoreHelper

Recommended migration action:

If you currently use the DB2390DataStoreHelper class for the DB2 Legacy CLI-based provider when you are

accessing data, you should now use the DB2DataStoreHelper class.

If you currently use the DB2390DataStoreHelper class for the DB2 Universal JDBC provider driver when you are

accessing data, you should now use the DB2UniversalDataStoreHelper class.

Deprecated features in V5.0.2

 Table 3.

Application programming model and container support features

Chapter 1. Overview and new features 11

Table 3. (continued)

Apache SOAP channel in Web services gateway.

Recommended migration action:

Gateway services should be deployed to the SOAP HTTP channel instead of the Apache SOAP channel. The

Endpoint (URL) of the service will be different for this channel and therefore client programs that are talking to the

gateway will need to use the new service Endpoint.

Apache SOAP, WEBSJAVA.SOAP:

v soap.jar,

v wssoap.jar

Recommended migration action:

See “Migrating Apache SOAP Web services to Web Services for J2EE standards” on page 54 for more information.

Application services features

Data access programming interfaces in com.ibm.websphere.rsadapter.

Relational resource adapter interface:

(com.ibm.websphere.rsadapter)

Methods have been deprecated in these types:

v com.ibm.websphere.rsadapter.DataStoreHelper

 public int processSQL(java.lang.String.sqlString, int isolevel,

 boolean addForUpdate, boolean addextendedForUpdateSyntax);

 public DataStoreAdatperException mapException(DataStoreAdapterException e);

v com.ibm.websphere.rsadapter.GenericDataStoreHelper

 public int processSQL(java.lang.String.sqlString, int isolevel,

 boolean addForUpdate, boolean addextendedForUpdateSyntax);

 public DataStoreAdatperException mapException(DataStoreAdapterException e);

v com.ibm.websphere.rsadapter.WSCallHelper

 public static DataStoreHelper createDataStoreHelper(String dsClassName)

Recommended migration action:

These relational resource adapter deprecated methods do not impact the application.

Note: You will not need to implement these deprecated methods in their subclasses if you have the subclass of

GenericDataStoreHelper. Those deprecated methods will not be called by the WebSphere Application Server runtime.

For com.ibm.websphere.rsadapter.WSCallHelper, please use the getDataStoreHelper(datasource) method to get a

DataStoreHelper object.

System administration features

The DB2390DataStoreHelper and the DB2390LocalDataStoreHelper classes.

Recommended migration action:

The DB2DataStoreHelper class now gives all the required helper information needed for the providers that currently

use the DB2390DataStoreHelper and the DB2390LocalDataStoreHelper classes.

The DB2 390 Local JDBC Provider (RRS).

Recommended migration action:

This provider is replaced by the DB2 zOS Local JDBC Provider (RRS).

12 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Table 3. (continued)

The testConnection command in the AdminControl scripting object ($AdminControl TestConnection configId props)

is deprecated. Running this command in WebSphere Application Server, Version 5.0.2 or later returns the following

message: WASX7390E: Operation not supported - testConnection command with config id and properties

arguments is not supported. Use testConnection command with config id argument only.

Recommended migration action:

As of WebSphere Application Server, Version 5.0.2 or later, the preferred way to test a data source connection is the

testConnection command passing in the data source configuration ID as the only parameter.

The getPropertiesForDataSource command in the AdminControl scripting object ($AdminControl

getPropertiesForDataSource configId) is deprecated. This command incorrectly assumes the availability of the

configuration service when you run it in the connected mode. Running this command in WebSphere Application

Server, Version 5.0.2 or later returns the following message: WASX7389E: Operation not supported -

getPropertiesForDataSource command is not supported.

Recommended migration action:

There is no replacement for this command.

Deprecated features in V5.0.1

 Table 4.

Application services features

Data access programming interfaces in com.ibm.websphere.rsadapter.

Relational resource adapter interface:

(com.ibm.websphere.rsadapter)

Methods have been deprecated in these types:

v com.ibm.websphere.rsadapter.DataStoreHelper

public int processSQL(java.lang.String sqlString, int isolevel);

v com.ibm.websphere.rsadapter.GenericDataStoreHelper

public int processSQL(java.lang.String sqlString, int isolevel);

v com.ibm.websphere.rsadapter.DB2390DataStoreHelper

public int processSQL(java.lang.String sqlString, int isolevel);

Recommended migration action:

These relational resource adapter deprecated methods do not impact the application.

Note: You will not need to implement these deprecated methods in their subclasses if you have the subclass of

com.ibm.websphere.rsadapter.GenericDataStoreHelper. Those deprecated methods will not be called by the

WebSphere Application Server runtime.

Deprecated features in V5.0

 Table 5.

Application services features

Chapter 1. Overview and new features 13

Table 5. (continued)

The following three methods from com.ibm.websphere.appprofile.accessintent.AccessIntent are deprecated:

public boolean getPessimisticUpdateHintWeakestLockAtLoad();

public boolean getPessimisticUpdateHintNoCollision();

public boolean getPessimisticUpdateHintExclusive();

This is a base api.

Recommended migration action:

Rather than using the three deprecated methods on the AccessIntent interface, developers should use the following

method from the same interface:

public int getPessimisticUpdateLockHint();

The possible return values are defined on the AccessIntent interface:

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NOCOLLISION = 1;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_WEAKEST_LOCK_AT_LOAD = 2;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NONE = 3;

public final static intPESSIMISTIC_UPDATE_LOCK_HINT_EXCLUSIVE = 4;

Web application programming interfaces -- Various Version 5 methods in com.ibm.websphere.ServletErrorReport

Performance features

Performance Monitoring Infrastructure -- Various Version 5 public methods in:

v com.ibm.websphere.pmi.stat.StatsUtil

Recommended migration action:

There is no replacement for StatsUtil.

v com.ibm.websphere.pmi.PmiJmxTest

Recommended migration action:

Use PmiClient.findConfig().

v com.ibm.websphere.pmi.client.PmiClient

Recommended migration action:

The getNLSValue (String key) is replaced by getNLSValue (String key, String moduleID).

Removal list

The following tables summarize what is removed by version and release. Use these tables to identify

which deprecated items are removed.

The following tables describe what is removed, such as features, APIs, scripting interfaces, tools, wizards,

publicly exposed configuration data, naming identifiers, or constants. Where possible, the recommended

replacement is identified.

v

Removed features in V6.0.1

v Removed features in V6.0

14 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Removed features in V6.0

 Table 6.

Component Classes and interfaces

activity v com.ibm.ws.activity.ActivityConstants

v com.ibm.ws.activity.ActivityService

v com.ibm.ws.activity.ActivityServiceInitializer

v com.ibm.ws.activity.ActivityTrace

v com.ibm.ws.activity.GlobalIdImpl

v com.ibm.ws.activity.HighlyAvailableServiceManager

v com.ibm.ws.activity.HLSLiteDataInterface

v com.ibm.ws.activity.HLSLiteExtended

v com.ibm.ws.activity.HLSLiteInfo

v com.ibm.ws.activity.j2ee_activity_specific_data

v com.ibm.ws.activity.j2ee_activity_specific_dataHelper

v com.ibm.ws.activity.ServiceMigration

v com.ibm.ws.activity.VUTrace

v com.ibm.ws.activity.WebSphereServiceManager

v com.ibm.ws.activity.WebSphereUserActivity

v com.ibm.ws.javax.activity.ActionErrorException

v com.ibm.ws.javax.activity.ActionNotFoundException

v com.ibm.ws.javax.activity.ActivityCoordinator

v com.ibm.ws.javax.activity.ActivityInformation

v com.ibm.ws.javax.activity.ActivityManager

v com.ibm.ws.javax.activity.ActivityNotProcessedException

v com.ibm.ws.javax.activity.ActivityPendingException

v com.ibm.ws.javax.activity.ActivityToken

v com.ibm.ws.javax.activity.CompletionStatus

v com.ibm.ws.javax.activity.ContextPendingException

v com.ibm.ws.javax.activity.CoordinationInformation

v com.ibm.ws.javax.activity.GlobalId

v com.ibm.ws.javax.activity.InvalidParentContextException

v com.ibm.ws.javax.activity.InvalidStateException

v com.ibm.ws.javax.activity.NoActivityException

v com.ibm.ws.javax.activity.NoImplementException

v com.ibm.ws.javax.activity.NotOriginatorException

v com.ibm.ws.javax.activity.Outcome

v com.ibm.ws.javax.activity.PersistentActivityCoordinator

v com.ibm.ws.javax.activity.PropertyGroupContext

v com.ibm.ws.javax.activity.PropertyGroupRegisteredException

v com.ibm.ws.javax.activity.PropertyGroupUnknownException

v com.ibm.ws.javax.activity.ServiceAlreadyRegisteredException

v com.ibm.ws.javax.activity.ServiceInformation

v com.ibm.ws.javax.activity.ServiceNotRegisteredException

v com.ibm.ws.javax.activity.Signal

v com.ibm.ws.javax.activity.SignalSetActiveException

v com.ibm.ws.javax.activity.SignalSetInactiveException

v com.ibm.ws.javax.activity.SignalSetUnknownException

Chapter 1. Overview and new features 15

Table 6. (continued)

Component Classes and interfaces

activity v com.ibm.ws.javax.activity.Status

v com.ibm.ws.javax.activity.SystemException

v com.ibm.ws.javax.activity.TimeoutRangeException

v com.ibm.ws.javax.activity.UserActivity

com.ibm.ws.javax.activity.coordination.Action

v com.ibm.ws.javax.activity.coordination.RecoverableAction

v com.ibm.ws.javax.activity.coordination.ServiceManager

v com.ibm.ws.javax.activity.coordination.SignalSet

v com.ibm.ws.javax.activity.coordination.SubordinateSignalSet

v com.ibm.ws.javax.activity.propertygroup.PropertyGroup

v com.ibm.ws.javax.activity.propertygroup.PropertyGroupManager

v com.ibm.ws.javax.ejb.ActivityCompletedLocalException

v com.ibm.ws.javax.ejb.ActivityRequiredLocalException

v com.ibm.ws.javax.ejb.InvalidActivityLocalException

admin com.ibm.websphere.management.application.EarUtils

als com.ibm.websphere.als.BufferManager

anttasks v com.ibm.websphere.ant.tasks.endptEnabler.Property

v com.ibm.websphere.ant.tasks.Java2WSDL.Mapping

v com.ibm.websphere.ant.tasks.Messages

v com.ibm.websphere.ant.tasks.WSDL2Java.Mapping

dynacache com.ibm.websphere.servlet.cache.CacheConfig

ras v com.ibm.ras.RASConsoleHandler

v com.ibm.ras.RASEnhancedMessageFormatter

v com.ibm.ras.RASEnhancedTraceFormatter

v com.ibm.ras.RASErrorHandler com.ibm.ras.RASFileHandler

v com.ibm.ras.RASFormatter com.ibm.ras.RASHandler

v com.ibm.ras.RASMessageFormatter

v com.ibm.ras.RASMultiFileHandler

v com.ibm.ras.RASSerialFileHandler com.ibm.ras.RASSocketHandler

v com.ibm.ras.RASTextAreaHandler

v com.ibm.ras.RASTraceFormatter

v com.ibm.websphere.ras.WsOrbRasManager

security v com.ibm.websphere.security.AuthorizationTable

v com.ibm.websphere.security.FileRegistrySample

v com.ibm.websphere.security.SecurityProviderException

v com.ibm.websphere.security.WASPrincipal

v com.ibm.websphere.security.auth.AuthDataFileEnc

16 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Table 6. (continued)

Component Classes and interfaces

userprofile v com.ibm.websphere.userprofile.UserProfile

v com.ibm.websphere.userprofile.UserProfileCreateException

v com.ibm.websphere.userprofile.UserProfileExtender

v com.ibm.websphere.userprofile.UserProfileFinderException

v com.ibm.websphere.userprofile.UserProfileManager

v com.ibm.websphere.userprofile.UserProfileProperties

v com.ibm.websphere.userprofile.UserProfileRemoveException

Scheduler API v com.ibm.websphere.scheduler.pmi.SchedulerPmiModule

v com.ibm.websphere.scheduler.pmi.SchedulerPerf

Scheduler API Method:

v com.ibm.websphere.scheduler.MessageTaskInfo.setJMSPriority()

ObjectPool APIs v com/ibm/websphere/objectpool/pmi/ObjectPoolPerf.java

v com/ibm/websphere/objectpool/pmi/ObjectPoolPmiModule.java

Asynchronous Beans APIs v com/ibm/websphere/asynchbeans/pmi/AlarmManagerPerf.java

v com/ibm/websphere/asynchbeans/pmi/AsynchBeanPerf.java

v

 com/ibm/websphere/asynchbeans/pmi/SubsystemMonitorManagerPerf.java

v com/ibm/websphere/asynchbeans/pmi/SubsystemMonitorPerf.java

v com/ibm/websphere/asynchbeans/pmi/AlarmManagerPmiModule.java

v com/ibm/websphere/asynchbeans/pmi/AsynchBeanPmiModule.java

v

 com/ibm/websphere/asynchbeans/pmi/SubsystemMonitorManagerPmiModule.java

v

 com/ibm/websphere/asynchbeans/pmi/SubsystemMonitorPmiModule.java

Migrating and coexisting

This topic describes migrating, which is copying the configuration from a previous release of a WebSphere

Application Server product into a new release. This topic also describes coexisting, which is running a new

release of a WebSphere Application Server product on the same machine at the same time as you run an

earlier release, or running two installations of the same release of a WebSphere Application Server

product on the same machine at the same time.

If you have a previous version, you must plan whether to migrate the configuration and applications of the

previous version to the new version. Migration does not uninstall the previous version. The earlier release

is still functional. If you run the earlier release at the same time as the WebSphere Application Server for

z/OS V6.0.1 installation, the two versions are coexisting. The migration articles describe migration from

WebSphere Application Server for z/OS V5.x to WebSphere Application Server for z/OS V6.0.1.

You can coexist with or migrate from a previous version of WebSphere Application Server for z/OS.

For information on migrating to V6.0.1, see Chapter 4, “Migrating product configurations,” on page 89. For

more information on coexistence among releases, see “Coexistence support” on page 121.

Migration and coexistence overview

WebSphere Application Server provides support for migrating from V5.x to V6.0.1.

Chapter 1. Overview and new features 17

New in V6.0.1 is the ″Migrate V5.x Nodes to V6 Nodes″ option off of the main Customization Dialog panel.

See Chapter 4, “Migrating product configurations,” on page 89 as a starting point for your case-specific

V6.0.1 migration.

While the migration process has been simplified in V6.0.1, there are still restrictions of which you need to

be aware:

1. V6.0.1 does not provide support for migrating a V5.x configuration that contains an internal JMS

provider in V5.x. The JMS applications must be manually installed and reconfigured post-migration to

use the V6.0.1 JMS provider.

2. Certain programming model extensions (PMEs) previously contained in WebSphere Business

Integration Server Foundation have been included in the V6.0.1 runtime. Some unsupported PMEs will

not be migrated. See “Migrating WebSphere programming model extensions (PMEs)” on page 25 for

more information.

3. V5.0.x cannot coexist with V6.0.1 in the same cell on the same system image (LPAR). If you have

multiple V5.0.x nodes, including the deployment manager node, on the same LPAR, all nodes MUST

be migrated to V6.0.1 at the same time. All nodes must be migrated sequentially before starting any

V6.0.1 node in the LPAR.

4. If you are currently running your V5.0.x node using STEPLIB, you must verify that the

setupCmdLine.sh contains the STEPLIB of the load libraries. Some 5.0.x nodes do not contain the

installation-generated STEPLIB statement. In these instances, you must add the STEPLIB manually to

the setupCmdLine.sh prior to running the migration utilities. Here is an example of a setupCMDLine.sh

in a properly configured system:

 STEPLIB=BOSS.VICOM.W000020.SBBOLPA:$STEPLIB

 STEPLIB=BOSS.VICOM.W000020.SBBOLD2A:$STEPLIB

 STEPLIB=BOSS.VICOM.W000020.SBBOLOAD:$STEPLIB

 export STEPLIB

5. Migration support requires that both the source and target WebSphere Application Server for z/OS

systems are on the same LPAR. Therefore, you cannot migrate an existing configuration to a different

z/OS LPAR. You also cannot migrate to or from a non-z/OS operating system using the V6.0.1

migration utilities.

6. WebSphere Application Server for z/OS does not support the WASPreUpgrade, WASPostUpgrade, and

WASProfile command-line tools. You must use the Customization Dialog to generate the migration

jobs.

The remaining migration articles assume that V6.0.1 is being installed in an environment where it must

coexist with prior levels of WebSphere Application Server. Consider the following items while planning to

enable coexistence:

v Update prerequisites to the levels required by V6.0.1. Prior levels of WebSphere Application Server for

z/OS will continue to run at the higher prerequisite levels. For more information, see “Prerequisites

needed for WebSphere Application Server for z/OS” on page 23.

v Set up V6.0.1 to eliminate potential LPA conflicts with a prior V5.x install. V6.0.1 and V5.x both require

the placement of some code into LPA (SBBOLPA). In addition, it is recommended that additional

product code (SBBOLOAD) be placed into LPA for performance reasons. Because of naming conflicts,

V6.0.1 and V5.x product code can not be in LPA at the same time. To support coexistence, be sure you

properly set up LPA and STEPLIB.

v Utilize WLM DAE when configuring V6.0.1 to allow both the use of a specific server name by V6.0.1

and by a server on V5.x.

v Review the ports that have been defined to ensure that the V6.0.1 installation does not conflict. In

particular, when installing to coexist with V5.x, note that the default daemon port definition for both

V6.0.1 and V5.x is the same. See z/OS port assignments in the Installing your application serving

environment PDF book for default port information.

18 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

WebSphere Application Server for z/OS V6.0.1 continues to support HTTP transports, while adding

support for transport chains. For more information on WebSphere Application Server for z/OS V6.0.1

transport support, see the following topics in the Administering applications and their environment PDF

book:

v Transports

v Configuring HTTP transports

v HTTP transport collection

v HTTP transport settings

v HTTP transport custom properties

When you are ready to begin the migration process, see Chapter 4, “Migrating product configurations,” on

page 89, which is a starting point for the planning information, Customization Dialog walkthroughs, and

V5.x to V6.0.1 migration explanations for base Application Server nodes, deployment managers, and

federated nodes.

Configuration mapping during migration

This topic describes what changes during migration, which is the copying of your configuration from a

previous release of a WebSphere Application Server product into a new release.

Many migration scenarios are possible. The Version 6 migration tools maps objects and attributes to the

Version 6 environment when you restore a configuration from a previous version.

Bootstrap port

 Migration maps a default bootstrap NameServer port setting, 900, from V5.x to the V6

NameServer default, 2809. The migration tools map a non-default value directly into the V6

environment.

Command line parameters

 The migration tools convert appropriate command line parameters to Java virtual machine (JVM)

settings in the server process definition. Most settings are mapped directly. Some settings, such as

memory heap sizes, are not migrated because their roles in the V6 configuration either do not

exist, have different meanings, or have different scopes.

GenericServer

Introduced in V5.1.x, a GenericServer was an APPLICATION_SERVER fitted to manage external

resources. In V6, it has its own type, called GENERIC_SERVER. Migration will perform this

conversion, but migration cannot accurately migrate the external resources that the GenericServer

references. After migration has completed migrating the GenericServer settings, you need to

perform the following actions:

v If the old resource that the GenericServer was managing is located under the old WebSphere

Application Server installation, you have to copy any related files to the new installation of

WebSphere Application Server. You must also run any required setup to put the external

application back into a valid and working state. IBM recommends instead that you re-install the

resource into the new WebSphere Application Server directory. Whichever you choose to do,

the final step is that you need to reset the reference to the new location of the application.

v If the old resource that the GenericServer was managing is not installed under the old

WebSphere Application Server installation, nothing further is required.
Migration of a V5.x node to a V6 node

 You can migrate a V5.x node that belongs to a cell without removing the node from the cell.

 Migrate the deployment manager first, before migrating any base nodes in the cell.

 Use the same cell name when migrating Network Deployment from V5.x to V6. If you use a

different cell name, federated nodes cannot successfully migrate to the Network Deployment V6

cell.

Chapter 1. Overview and new features 19

Migrating a base WebSphere Application Server node that is within a cell to V6 also migrates the

node agent to V6. A cell can have some V6 nodes and other nodes that are at V5.x levels.

Name bindings

 Version 6 has a new naming structure. All references, such as Enterprise JavaBeans (EJB)

references that were valid in previous versions no longer work in Version 6. However, you can use

the administrative console to add a name binding that maps an old name into the new Version 6

naming structure. For example, the name of the Version 5.0.x enterprise bean reference can be

both the name of the binding and the Java Naming and Directory Interface (JNDI) name in the

Version 6 name space.

Note: The contents of name spaces from previous versions are not automatically migrated to

Version 6.
Policy file migration from Version 5.x to Version 6

WebSphere Application Server V6 migrates all the policy files that are installed with V5.x by

merging settings into the V6 policy files with the following characteristics:

v Any comments located in the V6 policy file will be lost. They are replaced with the comments

contained in the V5 policy file.

v Migration will NOT attempt to merge permissions or grants; it is strictly an add-type migration. If

the permission or grant is not located in the V6 file, the migration will bring it over.

v Security is a critical component; thus, the migration makes any additions at the end of the

original .policy file right after the comment MIGR0372I: Migrated grant permissions follow.

This is done to help administrators verify any policy file changes that the migration has made.
Properties directory and the lib/app directory

 Migration copies files from prior version directories into the Version 6 configuration. See the

following section for more information.

Property file migration from Version 5.x to Version 6

WebSphere Application Server V6 migrates all the property files that are installed with V5.x by

merging settings into the V6 property files with these exceptions:

v j2c.properties (migrated into resources.xml files)

v samples.properties

Migration does not overlay property files.

Resource Adapter Archive (RAR) referenced by J2C resources

RARs that are referenced by J2C resources are migrated if those RARs are in the old WebSphere

Application Server installation. In this case, the RARs are copied over to the corresponding

location in the new WebSphere Application Server installation. Relational Resource Adapter RARs

will not be migrated.

Samples

During the migration of the deployment manager, V5.x Samples for federated nodes are migrated.

Equivalent Version 6 Samples are available to use for all other V5.x Samples.

Servlet package name changes

The package that contains the DefaultErrorReporter, SimpleFileServlet, and InvokerServlet servlets

changed as of Version 5. In Version 6, the servlets are in the com.ibm.ws.webcontainer.servlet

class.

Stdin, stdout, stderr, passivation, and working directories

 The location for these directories is typically within the installation directory of a previous version.

The default location for stdin, stdout, and stderr is the logs directory of the Version 6 installation

root. The migration tools attempt to migrate existing passivation and working directories.

Otherwise, appropriate Version 6 defaults are used.

 Using common directories between versions in a coexistence scenario can cause problems.

Transport ports

 The migration tools migrate all ports. The tools warn about port conflicts in a log when a port

already exists. You must resolve port conflicts before running the servers that are in conflict, at the

same time.

20 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Choosing -scriptCompatibility=″true″ or -scriptCompatibility=″false″ results in two different

outcomes for transport ports:

v -scriptCompatibility=″true″: This results in your transport ports being brought over as they are

(this is the default).

v -scriptCompatibility=″false″: This results in the transports ports being converted to the new

implementation of channels and chains. From an external application usage standpoint, they will

still act the same, but they have been moved to the TransportChannelService. For further

information on transport chains and channels, see Transport chains in the Administering

applications and their environment PDF book.
Web modules

The specification level of the Java 2 Platform, Enterprise Edition (J2EE) that Version 6 implements

requires behavior changes in the Web container for setting the content type. If a default servlet

writer does not set the content type, not only does the Version 6 Web container no longer default

to it, the Web container returns the call as ″null″. This situation might cause some browsers to

display resulting Web container tags incorrectly. Migration sets the autoResponseEncoding IBM

extension to true for Web modules as it migrates enterprise applications. This action prevents the

problem.

Version 5.x to Version 6 migration

 Migrating from V5.x to V6 is much less complicated than previous migrations. Both versions use

the same underlying definitions. The task involves mapping configuration files from the V5.x to the

V6 configuration and copying installed applications into the new product. The migration tools

support the migration of federated nodes and support the full migration of a Network Deployment

node.

Java heap size for migrating EAR files

When migrating all V5.x EAR files to V6 using the wsadmin tool, the WASPostUpgrade

tool uses the default maximum Java heap size value of 64MB to install the EAR files.

 If a V5.x EAR file fails to install during migration because the Java heap size is not large

enough, you see a message similar to the following error:

java.lang.OutOfMemoryError JVMXE006:OutOfMemoryError

Increase the maximum Java heap size and follow the instructions below to install the

application:

 Installing the application on WebSphere Application Server, Version 6

 Assume that:

Installation root

C:\WebSphere\AppServer

Number signs (###)

Maximum heap size value

EAR_file_name

The name of the EAR file

app_name

The name of the application.

server_name

The name of the server on which the EAR file installs

node_name

The name of the node on which the server is configured

 The command appears on more than one line for clarity.

wsadmin -conntype NONE

 -javaoption

 -Xmx###m

 -c "$AdminApp install

 C:\\WebSphere\\AppServer\\installableApps\\

Chapter 1. Overview and new features 21

EAR_file_name

 {-nodeployejb

 -appname app_name

 -server server_name

 -node node_name}"

Installing the application on WebSphere Application Server Network Deployment,

Version 6

 Assume that:

Installation root

C:\WebSphere\DeploymentManager

Number signs (###)

Maximum heap size value

EAR_file_name

The name of the EAR file

app_name

The name of the application.

cluster_name

The name of the cluster on which the EAR file should be installed

 The command appears on more than one line for clarity.

wsadmin -conntype NONE

 -javaoption

 -Xmx###m

 -c "$AdminApp install

 C:\\WebSphere\\DeploymentManager\\installableApps\\

 EAR_file_name>

 {-nodeployejb

 -appname app_name

 -cluster cluster_name}"

Specification level summary of WebSphere Application Server

This article shows the various releases of the WebSphere Application Server for z/OS family and the

specification and functional differences between them.

 Table 7. Specification and functional differences between WebSphere Application Server for z/OS releases

Specifications V5 V5.1 V6.0.1

22 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Table 7. Specification and functional differences between WebSphere Application Server for z/OS

releases (continued)

Java related v Requires SDK 1.3

v Supports J2EE 1.3

levels:

– Servlet 2.3

– JSP 1.2

– JDBC 2.0

– EJB 2.0

– part of J2SE 1.3

– JTA 1.0

– part of J2SE 1.3

– JMS 1.0.2

– JavaMail 1.2

– JAP 1.0

– Client container

– Java Authentication

and Authorization

Service (JAAS) 1.0

– Java API for XML

Parsing (JAXP) 1.1

– J2EE Connector

Architecture 1.0

v Requires SDK 1.4.1

v Supports J2EE 1.4.1

levels:

– Servlet 2.3

– JSP 1.2

– JDBC 2.0

– EJB 2.0

– part of J2SE 1.3

– JTA 1.0

– part of J2SE 1.3

– JMS 1.0.2

– JavaMail 1.2

– JAP 1.0

– Client container

– Java Authentication

and Authorization

Service (JAAS) 1.0

– Java API for XML

Parsing (JAXP) 1.1

– J2EE Connector

Architecture 1.0

v Requires SDK 1.4.2

v Supports J2EE 1.4.1

levels:

– Servlet 2.3

– JSP 1.2

– JDBC 2.0

– EJB 2.0

– part of J2SE 1.3

– JTA 1.0

– part of J2SE 1.3

– JMS 1.0.2

– JavaMail 1.2

– JAP 1.0

– Client container

– Java Authentication

and Authorization

Service (JAAS) 1.0

– Java API for XML

Parsing (JAXP) 1.1

– J2EE Connector

Architecture 1.0

Web Services v UDDI V2

v SOAP 2.3

v UDDI V2

v SOAP 2.3

v UDDI V2

v SOAP 2.3

v WebSphere Application Server for z/OS V5.0.x provides support for next generation technologies-

J2EE 1.3 compatible with support for key Web services. V5.0.x is Network Deployment compliant and

continues to build towards WebSphere Application Server for z/OS family consistency in architecture,

administrave console, and programming APIs.

v WebSphere Application Server for z/OS V5.1 and V6.0.1 continue to support WebSphere Application

Server for z/OS brand consistency. Additionally, these products provide complete client and server

support for J2EE 1.4.1.

Prerequisites needed for WebSphere Application Server for z/OS

The following table describes the prerequisites needed for WebSphere Application Server for z/OS V5,

V5.1, and V6.0.1.

 Table 8. Prerequisites needed for WebSphere Application Server for z/OS V5.0.x, V5.1, and V6.0.1.

Pre-Reqs V5.0.x V5.1 V6.0.1

SDK (included with

WebSphere

Application Server

for z/OS)

SDK 1.3 SDK 1.4.1 SDK 1.4.2

OS/390 or z/OS R10 and above

z/OS 1.2 is required for the

Dynamic application

environment

z/OS 1.2 or higher

z/OS.e 1.3 or higher

z/OS 1.4 or higher

z/OS.e 1.4 or higher

Chapter 1. Overview and new features 23

Table 8. Prerequisites needed for WebSphere Application Server for z/OS V5.0.x, V5.1, and V6.0.1. (continued)

HTTP Server Must use HTTP transport

Options for connecting to

HTTP transport:

v Direct Browser

v IBM HTTP Server for

OS/390 (R10)

v Any HTTP Server

supported by V5.0 family

plugins

Must use HTTP transport

Options for connecting to

HTTP transport:

v Direct Browser

v IBM HTTP Server for z/OS

1.2

v Any HTTP Server

supported by V5.1 family

plugins

Must use HTTP transport

Options for connecting to

HTTP transport:

v Direct Browser

v IBM HTTP Server for z/OS

1.4

v Any HTTP Server

supported by V6.0.1 family

plugins

Sysplex Required Required Required

OS/390

Communications

server (TCP/IP)

Required Required Required

OS/390 Unix System

Services and

Hierarchical file

system (HFS)

Required

Shared HFS is supported, but

is no longer required for a

multiple image sysplex

Required

Shared HFS is supported, but

is no longer required for a

multiple image sysplex

Required

Shared HFS is supported, but

is no longer required for a

multiple image sysplex

SecureWay Security

Server (RACF) or

Equivalent

Required Required Required

System Logger Required Required Required

LightWeight

Directory Access

Protocol (LDAP)

Server

Not required Not required Not required

Workload Manager

in Goal mode

Required

Dynamic AE (programmatic

setup of WLM application

environment) requires PTF

against z/OS 1.2

Required

Dynamic AE (programmatic

setup of WLM application

environment) requires PTF

against z/OS 1.2

Required

Resource Recovery

Services (RRS)

Required Required Required

FTP server Not required Not required Not required

System SSL

Security

Required for SSL Required for SSL Required for SSL

DB2 Not required or supported for

SM function

V7 required for user data

(JDBC compliant driver)

Not required or supported for

SM function

V7 or higher required for user

data (JDBC compliant driver)

Not required or supported for

SM function

24 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Table 8. Prerequisites needed for WebSphere Application Server for z/OS V5.0.x, V5.1, and V6.0.1. (continued)

WSMQ Not required - Integrated JMS

provided as part of WAS 5.0

If integrated provider is not

required:

v Can continue to use the

same product stack as in

WAS 4.0.1

Note: Functions such as

XA support are only

available with MQ5.3.1.

v Can purchase and install

full MQ5.3.1 product.

Not required - Integrated JMS

provided as part of WAS 5.1

If integrated provider is not

required:

v Can continue to use the

same product stack as in

WAS 4.0.1

Note: Functions such as

XA support are only

available with MQ5.3.1.

v Can purchase and install

full MQ5.3.1 product.

Not required - Integrated JMS

provided as part of WAS 6.0.1

If integrated provider is not

required:

v Can purchase and install

full MQ5.3.1 product.

IMS JCA IMS Connect 2.1(requires

IMS V8.1)

IMS Connect 2.1(requires

IMS V8.1)

IMS Connect 2.2 (requires

IMS V8.1) or IMS V9

Integrated Connect function

CICS JCA CICS Transaction Gateway

5.0.1 (requires CICS TS 1.3)

CICS Transaction Gateway

5.1 (requires CICS TS 1.3)

CICS Transaction Gateway

6.0

Migrating WebSphere programming model extensions (PMEs)

This topic describes the movement of a subset of PMEs to WebSphere Application Server for z/OS

Version 6.0.1 from WebSphere Business Integration Server Foundation V5.1.x.

Overview of PME migration

The migration of PME services from WebSphere Business Integration Server Foundation V5.1.x to

WebSphere Application Server for z/OS Version 6.0.1 is handled on an individual basis. For PME services

that are not supported in WebSphere Application Server for z/OS V6.0.1, all configuration information is

removed. For PME services that are supported in WebSphere Application Server for z/OS V6.0.1, the

configuration from the previous release environment overwrites the values in the new release.

Validating PMEs

As part of application installation, both during migration and outside of migration, applications are validated

to ensure that they only use resources for services that are supported by WebSphere Application Server

for z/OS V6.0.1. Any application that uses a resource for a service that is not supported by WebSphere

Application Server for z/OS V6.0.1 will not work correctly, and an error will be issued indicating that the

application cannot be installed.

Running a mixed-node environment

When running in a mixed node environment (such as a WebSphere Application Server V6 deployment

manager managing WebSphere Business Integration Server Foundation V5.1.x nodes), the first syncNode

performed by the system downloads a configuration from the WebSphere Application Server V6

deployment manager to the WebSphere Business Integration Server Foundation V5.1.x nodes. Therefore,

any PME service that is not supported by WebSphere Application Server V6.0.1 will be rendered

inoperable on the WebSphere Business Integration Server Foundation V5.1.x node.

PME-specific information

For more information on the specific PMEs that have been migrated to WebSphere Application Server for

z/OS V6.0.1, see “Learn about WebSphere programming extensions” on page 81.

Chapter 1. Overview and new features 25

Mapping of V4.0.1 environment variables to V6.0.1 console settings

The following table lists only V6.0.1 WebSphere Application Server for z/OS variables related to diagnosis,

along with their equivalent V4.0.1 environment variables. This information is provided only as an aid to

IBM service personnel. The migration utilities do not support migrating from V4.0.1 to V6.0.1.

Warning: Do not use this information to manually modify the contents of a was.env file. The was.env file is

managed by WebSphere Application Server for z/OS, and its content is rewritten with each change made

to the WebSphere Application Server for z/OS configuration. Therefore, any hand-editing will be

overwritten. To determine which WebSphere Application Server for z/OS variable, custom property or

administrative console field must be updated in order to change the value of a specific internal variable,

see Changing the values of variables referenced in BBOM0001I messages in the Administering

applications and their environment PDF book.

 Table 9. V4.0.1 environment variables and their equivalent V6.0.1 WebSphere Application Server for z/OS variables

V4.0.1 environment variables Equivalent V6.0.1 WebSphere Application Server for

z/OS variables

BBOC_HTTPALL_TCLASS_FILE http_transport_class_mapping_file

BBOC_HTTP_INPUT_IDENTITY protocol_http_defaultIdentity

BBOC_HTTP_INPUT_TIMEOUT protocol_http_timeout_input

BBOC_HTTP_LISTEN_IP_ADDRESS protocol_http_listenIPAddress

BBOC_HTTP_MAX_PERSIST_REQUESTS protocol_http_max_persist_requests

BBOC_HTTP_OUTPUT_TIMEOUT protocol_http_timeout_output

BBOC_HTTP_OUTPUT_TIMEOUT_RECOVERY protocol_http_timeout_output_recovery

BBOC_HTTP_PERSISTENT_SESSION_TIMEOUT protocol_http_timeout_persistentSession

BBOC_HTTP_PORT protocol_http_port

BBOC_HTTP_SSL_IDENTITY protocol_https_default_identity

BBOC_HTTP_SSL_INPUT_TIMEOUT protocol_https_timeout_input

BBOC_HTTP_SSL_LISTEN_IP_ADDRESS protocol_https_listenIPAddress

BBOC_HTTP_SSL_MAX_PERSIST_REQUESTS protocol_https_max_persist_requests

BBOC_HTTP_SSL_OUTPUT_TIMEOUT protocol_https_timeout_output

BBOC_HTTP_SSL_OUTPUT_TIMEOUT_RECOVERY protocol_https_timeout_output_recovery

BBOC_HTTP_SSL_PERSISTENT_SESSION_TIMEOUT protocol_https_timeout_persistentSession

BBOC_HTTP_SSL_PORT protocol_https_port

BBOC_HTTP_SSL_TRANSACTION_CLASS protocol_https_transactionClass

BBOC_HTTP_TRANSACTION_CLASS protocol_http_transactionClass

BBOC_LOG_RESPONSE_FAILURE protocol_bboc_log_response_failure

BBOC_LOG_RETURN_EXCEPTION protocol_bboc_log_return_exception

BBODUMP ras_dumpoptions_dumptype

BBODUMP_CEE3DMP_OPTIONS ras_dumpoptions_ledumpoptons

BBOLANG nls_language

BBOO_WORKLOAD_PROFILE server_region_workload_profile

CBCONFIG config_root

CLASSPATH server_region_classpath

CLIENT_RESOLVE_IPNAME Replaced by the corbaloc function in J2EE 1.3

CosNaming INS

26 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Table 9. V4.0.1 environment variables and their equivalent V6.0.1 WebSphere Application Server for z/OS

variables (continued)

V4.0.1 environment variables Equivalent V6.0.1 WebSphere Application Server for

z/OS variables

CLIENT_RESOLVE_PORT Replaced by the corbaloc function in J2EE 1.3

CosNaming INS

CLIENT_TIMEOUT protocol_iiop_local_timeout

CLIENTLOGSTREAM client_ras_logstreamname

CONFIGURED_SYSTEM server_configured_system_name

CTL_LIBPATH control_region_libpath

DAEMON_IPNAME protocol_iiop_daemon_listenIPAddress

DAEMON_PORT protocol_iiop_daemon_port

DAEMON_SSL_PORT protocol_iiop_daemon_port_ssl

DM_GENERIC_SERVER_NAME daemonName

DM_SPECIFIC_SERVER_NAME daemonInstanceName

ENABLE_TRUSTED_APPLICATIONS control_region_security_enable_trusted_applications

GENERIC_SERVER_NAME server_generic_short_name

GENERIC_UUID server_generic_uuid

IIOP_SERVER_SESSION_KEEPALIVE protocol_iiop_server_session_keepalive

IVB_DEBUG_ENABLED ras_debugEnabled

JVM_ENABLE_VERBOSE_GC No longer a variable. Specify as Java option: -verbose:gc

JVM_HEAPSIZE No longer a variable. Specify as Java option: -Xmx<size>

JVM_MINHEAPSIZE No longer a variable. Specify as Java option: -Xms<size>

JVM_LOCALREFS control_region_jvm_localrefs

JVM_LOCALREFS server_region_jvm_localrefs

JVM_LOGFILE control_region_jvm_logfileserver_region_jvm_logfile

LIBPATH server_region_libpath

LOGSTREAMNAME ras_log_logstreamName

MAX_SRS wlm_maximumSRCount

MIN_SRS wlm_minimumSRCount

OTS_DEFAULT_TIMEOUT transaction_defaultTimeout

OTS_MAXIMUM_TIMEOUT transaction_maximumTimeout

RAS_MINORCODEDEFAULT ras_minorcode_action

RECOVERY_TIMEOUT transaction_recoveryTimeout

REM_PASSWORD client_protocol_password

REM_USERID client_protocol_user

SPECIFIC_SERVER_NAME server_specific_short_name

SPECIFIC_UUID server_specific_uuid

SRVIPADDR protocol_iiop_listenIPAddress

SSLIIOP_SERVER_SESSION_KEEPALIVE protocol_iiop_server_session_keepalive_ssl

SSL_KEYRING security_sslKeyring

TRACE_EXCLUDE_SPECIFIC ras_trace_exclude_specific

TRACEALL ras_trace_defaultTracingLevel

Chapter 1. Overview and new features 27

Table 9. V4.0.1 environment variables and their equivalent V6.0.1 WebSphere Application Server for z/OS

variables (continued)

V4.0.1 environment variables Equivalent V6.0.1 WebSphere Application Server for

z/OS variables

TRACEBASIC ras_trace_basic

TRACEBUFFCOUNT ras_trace_BufferCount

TRACEBUFFLOC ras_trace_outputLocation

TRACEBUFFSIZE ras_trace_BufferSize

TRACEDETAIL ras_trace_detail

TRACEMINORCODE ras_trace_minorCodeTraceBacks

TRACEPARM ras_trace_ctraceParms

TRACESPECIFIC ras_trace_specific

WAS_JAVA_OPTIONS No longer a variable. Java options are specified in the

JVM configuration of the servant process.

28 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Chapter 2. How do I migrate, coexist, and interoperate?

Migrate product and Web server configurations

Expand Migration > Migrating product configurations in the information center navigation to obtain

instructions for various navigational paths to Version 6.0.x from previous versions and other editions.

--

Determine what configuration information needs to change

 Learn what changes during migration, which involves migrating a single instance to another single

instance on the same machine or a separate machine.

 Documentation

--

Review the software and hardware prerequisites

 Learn which product configurations are supported.

 Documentation

(www.ibm.com/software/webservers/appserv/doc/latest/prereq.html)

--

Migrate your applications

Expand Migration > Migrating WebSphere applications in the information center table of contents for

information about migrating specific application components, their deployment descriptors, and their

administrative configurations (such as EJB container settings).

--

Identify deprecated features that you might be using

 Review a summary of deprecated features in Version 6.0.x. As they become available, links to

additional information are provided to help you migrate away from deprecated features.

 Documentation

--

Review the software and hardware prerequisites

 Learn which product configurations are supported. Specification levels are included.

 Documentation:

Supported hardware

and software

(www.ibm.com/software/webservers/appserv/doc/latest/prereq.html)

--

Learn about WebSphere applications

© Copyright IBM Corp. 2005 29

http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Use this section as a starting point to investigate the technologies used in and by applications that

you deploy on the application server.

 Documentation:

Chapter 3, “Learn

about WebSphere

applications,” on page

33

--

Coexist

Expand Migration > Coexisting in the information center navigation to obtain instructions for various

coexistence scenarios. Coexistence, as it applies to WebSphere Application Server products, is the ability

of multiple installations of WebSphere Application Server to run on the same machine at the same time.

Multiple installations include multiple versions and multiple instances of one version. Coexistence also

implies various combinations of Web server interaction.

--

Review supported coexistence scenarios

 All combinations of V4.x products, V5.x products, and V6.0 products can coexist so long as there

are no port conflicts. There are some coexistence limitations for V5 products that have the

embedded messaging feature installed, as described in the documentation.

 Documentation:

Chapter 5,

“Coexisting,” on page

121

--

Obtain valid port settings for coexistence

 Set port numbers while you are customizing the product after installation.

 Documentation:

v Planning a TCP/IP

port convention in

the Installing your

application serving

environment PDF

book

--

Interoperate

Interoperability is exchanging data between two coexisting product installations.

--

Interoperate across product versions

 WebSphere Application Server, Version 6.0.x is generally interoperable with some previous

versions. However, there are specific requirements to address for each version. Certain changes

are required to support interoperability between versions.

30 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Documentation:

Chapter 6,

“Interoperating,” on

page 123

--

Chapter 2. How do I migrate, coexist, and interoperate? 31

32 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Chapter 3. Learn about WebSphere applications

Use this section as a starting point to investigate the technologies used in and by applications that you

deploy on the application server.

Web applications

Migrating V6.0 servers from multi-broker replication domains to data

replication domains

Use this task to migrate multi-broker replication domains to data replication domains. Multi-broker domains

were created with a previous version of WebSphere Application Server.

For HTTP session affinity to continue working correctly when migrating V5.x application servers to V6.0

application servers, you must upgrade all of the Web server plug-ins for WebSphere Application Server to

the latest version before upgrading the application servers that perform replication.

After you upgrade your deployment manager to the latest version of WebSphere Application Server, you

can create data replication domains only. Any multi-broker domains that you created with a previous

release of WebSphere Application Server are still functional, however, you cannot create new multi-broker

domains or replicators with the administrative console.

The different versions of application servers cannot communicate with each other. When migrating your

servers to the current version of WebSphere Application Server, keep at least two application servers

running on the previous version so that replication remains functional.

Perform this task on any multi-broker domains in your configuration after all of your servers that are using

this multi-broker domain have been migrated to the current version of WebSphere Application Server.

The following examples illustrate the migration process for common configurations:

Migrating an application server configuration that uses an instance of data replication service in

peer-to-peer mode

Use this migration path to migrate a replication domain that uses the default peer-to-peer configuration.

Dynamic cache replication domains use the peer-to-peer topology.

Before you begin, migrate all the Web server plug-ins for your application server cluster to the current

version.

1. Migrate one or more of your existing servers to the current version of WebSphere Application Server.

2. In the administrative console, create an empty data replication domain. Click Environment >

Replication domains > New in the administrative console.

3. Add your migrated application servers to the new data replication domain. For example, if you are

migrating 4 servers, migrate 2 servers first and add them to the new replication domain. Configure the

servers to use the new domain by configuring the consumers of the replication domain.

4. When the new data replication domains are successfully sharing data, migrate the rest of the servers

that are using the multi-broker replication domain to data replication domains.

5. Delete the empty multi-broker replication domain.

Migrating an application server configuration that uses an instance of the data replication service

in client/server mode

Use this set of steps to migrate a replication domain that uses client/server mode.

© Copyright IBM Corp. 2005 33

Before you begin migrating a client/server mode replication domain, consider if migrating your replication

domains might cause a single point of failure. Because you migrate the servers to the new type of

replication domain one at a time, you risk a single point of failure if there are 3 or fewer application

servers. Before migrating, configure at least 4 servers that use multi-broker replication domains. Perform

the following steps to migrate the multi-broker domains to data replication domains:

1. Migrate one or more of your existing servers to the current version of WebSphere Application Server.

2. In the administrative console, create an empty data replication domain. Click Environment >

Replication domains > New in the administrative console.

3. Add your migrated servers to the new data replication domain. For example, if you are migrating 4

servers, migrate two of these servers and then add them to the new replication domain. Configure the

servers to use the new domain by configuring the consumers of the replication domain.

4. Add a part of the clients to the new data replication domain.

5. When the new data replication domains are successfully sharing data, migrate the rest of the clients

and servers that are using the multi-broker replication domain to data replication domains.

6. Delete the empty multi-broker replication domain.

Migrating a replication domain that uses HTTP session memory-to-memory replication that is

overloaded at the application or web module level

1. Upgrade your deployment manager to the current version of WebSphere Application Server. All the

application servers remain configured with the old multi-broker domains on the previous version of

WebSphere Application Server.

2. In the administrative console, create an empty data replication domain. Click Environment >

Replication domains > New in the administrative console.

3. Migrate each application server to the current version of WebSphere Application Server, one at a time.

The remaining servers on the previous version of WebSphere Application Server can still communicate

with each other, but not with the migrated servers. The migrated servers can also communicate with

each other.

4. Continue migrating all of the servers to the current version of WebSphere Application Server. All of the

application servers are still using multi-broker replication domains, so the features of data replication

domains cannot be used.

5. Configure all of the application servers to use the new data replication domain, adding the application

servers to the empty replication domain that you created.

6. Restart all of the application servers in the cluster.

7. Delete the empty multi-broker replication domain.

During this process, you might lose existing sessions. However, the application remains active through the

entire process, so users do not experience down time during the migration. Create a new replication

domain for each type of consumer. For example, create one replication domain for session manager and

another replication domain for dynamic cache.

Comparison of multi-broker versus data replication domains

Data replication domains replace multi-broker domains for data replication between application servers in a

cluster.

Any replication domains that are created with a previous version of WebSphere Application Server might

be multi-broker domains. Migrate any multi-broker domains to the new data replication domains. Although

you can configure existing multi-broker domains with the current version of WebSphere Application Server,

after you upgrade your deployment manager, you can create only data replication domains in the

administrative console.

Multi-broker and data replication domains both perform the same function, which is to replicate data across

the consumers in a replication domain. Configure all the instances of replication that need to communicate

in the same replication domain. You can also configure the session manager with both types of replication

34 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

domains to use topologies such as peer-to-peer and client/server to isolate the function of creating and

storing replicas on separate application servers. You can control the redundancy of replication for each

type of replication domain. With a data replication domain, you can specify a specific number of replicas.

If you used multi-broker domains with earlier releases of WebSphere Application Server, use the following

comparison chart to learn the differences between how V5.x and V6.0 application servers use the two

types of replication domains:

 V5.x application servers using

replication domains

V6.0 application servers using

replication domains

Replication domain types Uses only multi-broker replication

domains for replication.

Servers that are using the current

version of WebSphere Application

Server can be configured to use both

multi-broker replication domains and

data replication domains for

replication. The two types of domains

provide backward compatibility with

multi-broker domains that were

created with a V5.x server. You

should migrate any multi-broker

domains to data replication domains.

Data transport method Uses multi-broker domain objects that

contain configuration information for

the internal Java Message Service

(JMS) provider, which uses JMS

brokers as replicators.

Uses data replication domain objects

that contain configuration information

to configure the high availability

framework on WebSphere Application

Server. The transport is no longer

based on the JMS API. Therefore, no

replicators and no JMS brokers exist.

You do not have to perform the

complex task of configuring local,

remote, and alternate replicators. The

earlier version of WebSphere

Application Server did not support

data replication domains. The current

version of WebSphere Application

Server can be configured to perform

replication using old multi-broker

domains by ignoring any JMS-specific

configuration and by using the other

parameters to configure replication

through the high availability

framework.

Replication domain configuration The earlier version of WebSphere

Application Server encourages the

sharing of replication domains

between different consumers, such as

session manager and dynamic cache.

The current version of WebSphere

Application Server encourages

creating a separate replication

domain for each consumer. For

example, create one replication

domain for session manager and

another replication domain for

dynamic cache. The only situation

where you should configure one

replication domain is when

configuring session manager

replication and stateful session bean

failover. Using one replication domain

in this case ensures that the backup

state information of HTTP sessions

and stateful session beans are on the

same application servers.

Chapter 3. Learn about WebSphere applications 35

V5.x application servers using

replication domains

V6.0 application servers using

replication domains

Partial partitioning You can configure partial partitioning.

Partition the replication domain to

filter the number of processes to send

data.

Partial partitioning is deprecated.

When using data replication domains,

you can specify a specific number of

replicas for each entry. However, if

you specify a number of replicas

larger than the number of backup

application servers that are running,

the number of replicas is the number

of application servers that are

running. After the number of

application servers increases above

your configured number of replicas,

the number of replicas that are

created is equal to the number that

you specified.

Domain sharing Multiple data replication service

(DRS) instances share multi-broker

domains. A limitation exists on the

number of multi-broker domains that

you can create because every

multi-broker domain contains at least

one replicator. A maximum of one

replicator can be on each application

server.

All DRS instances in a replication

domain use the same mode. Each

replication domain must contain either

client only and server only instances,

or client and server instances only.

For example, if one instance is

configured to client and server, all

other instances must be client and

server. If one instance in a replication

domain is configured to be a client

only, you can add client only and

server only instances, but not a client

and server instance.

Migrating Web application components from WebSphere Application

Server Version 4.x

Migration of Web applications deployed in WebSphere Application Server Version 5.x is not necessary;

version 2.2 and 2.3 of the Java Servlet specification and version 1.2 and 1.4 of the JavaServer Pages

(JSP) specification are still supported. However, where there are behavioral differences between the Java

2 Enterprise Edition (J2EE) 1.2 and J2EE 1.3 specifications, bear in mind that J2EE 1.3 specifications are

implemented in WebSphere Application Server Version 5 and will override any J2EE 1.2 behaviors.

Servlet migration might be a concern if your application:

v Implements a WebSphere internal servlet to bypass a WebSphere Application Server Version 4.x single

application path restriction.

v Extends a PageListServlet that relies on configuration information in the servlet configuration XML file.

v Uses a servlet to generate Hyper Text Markup Language (HTML) output.

v Calls the response.sendRedirect method for a servlet using the encodeRedirectURL function or

executing within a non-context root.

JSP migration might be a concern if your application references JSP page implementation classes in

unnamed packages, or if you install WebSphere Application Server Version 4.x EAR files (deployed in

Version 4.x with the JSP Precompile option), in Version 5.

JSP migration might be a concern if your application references JSP page implementation classes in

unnamed packages, or if you install WebSphere Application Server Version 4.0.1 EAR files (deployed in

Version 4.0.1 with the JSP Precompile option), in Version 5.

36 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Follow these steps if migration issues apply to your Web application:

1. Use WebSphere Application Server Version 5 package names for any WebSphere Application Server

Version 4.x internal servlets, which are implemented in your application.

In WebSphere Application Server Version 4.x, Web modules with a context root setting of / are not

supported. Accessing Web modules with this root context results in HTTP 404 - File not Found errors.

To bypass the errors, and to enable the serving of static files from the root context, WebSphere

Application Server Version 4.x users are advised to add the servlet class,

com.ibm.servlet.engine.webapp.SimpleFileServlet, to their Web module.

The Version 4.x single path limitation does not exist in Version 5. However, users who choose to use

the com.ibm.servlet.engine.webapp.SimpleFileServlet in Version 5 must do one of the following:

v Rename com.ibm.servlet.engine.webapp.SimpleFileServlet to

com.ibm.ws.webcontainer.servlet.SimpleFileServlet.

v Opena Web deployment descriptor editor using an assembly tool and select File serving enabled

on the Extensions tab.

The following list identifies the other internal servlets affected by the Version 6 package name change:

v DefaultErrorReporter

v AutoInvoker

Use the Version 5 package name, com.ibm.ws.webcontainer.servlet.servlet class name for these

servlets.

2. Use WebSphere Application Server Version 5 package names for any WebSphere Application Server

Version 4.0.1 internal servlets, which are implemented in your application.

In WebSphere Application Server Version 4.0.1, Web modules with a context root setting of / are not

supported. Accessing Web modules with this root context results in HTTP 404 - File not Found

errrors.

To bypass the errors, and to enable the serving of static files from the root context, WebSphere

Application Server Version 4.0.1 users are advised to add the servlet class,

com.ibm.servlet.engine.webapp.SimpleFileServlet, to their Web module.

The Version 4.0.1 single path limitation does not exist in Version 5. However, users who choose to use

the com.ibm.servlet.engine.webapp.SimpleFileServlet in Version 5 must do one of the following:

v Rename com.ibm.servlet.engine.webapp.SimpleFileServlet to

com.ibm.ws.webcontainer.servlet.SimpleFileServlet.

v Opena Web deployment descriptor editor in the Assembly Toolkit and select File serving enabled

on the Extensions tab.

The following list identifies the other internal servlets affected by the Version 5 package name change:

v DefaultErrorReporter

v AutoInvoker

Use the Version 5 package name, com.ibm.ws.webcontainer.servlet.<servlet class name> for these

servlets.

3. Use the WASPostUpgrade tool to migrate servlets that extend PageListServlet and rely on

configuration information in the associated XML servlet configuration file. In Version 4.x, the XML

servlet configuration file provides configuration data for page lists and augments servlet configuration

information. This file is named as either servlet_class_name.servlet or servlet_name.servlet, and is

stored in the same directory as the servlet class file.

The XML servlet configuration file is not supported in WebSphere Application Server Version 5.

4. Migrate servlets that extend PageListServlet and rely on configuration information in the associated

XML servlet configuration file. In Version 4.0.1, the XML servlet configuration file provides configuration

data for page lists and augments servlet configuration information. This file is named as either

servlet_class_name.servlet or servlet_name.servlet, and is stored in the same directory as the

servlet class file.

The XML servlet configuration file is not supported in WebSphere Application Server Version 5. The

direct use of the servlet has been deprecated. The PageList servlet function is still available but is

configured as part of the servlet extension configuration in the WAR file.

Chapter 3. Learn about WebSphere applications 37

5. Set a content type if your servlet generates Hyper Text Markup Language (HTML) output.

The default behavior of the Web container changed in WebSphere Application Server Version 5. If the

servlet developer does not specify a content type in the servlet then the container is forbidden to set

one automatically. Without an explicit content type setting, the content type is set to null. The Netscape

browser displays HTML source as plain text with a null content type setting.

To resolve this problem, do one of the following:

v Explicitly set a content type in your servlet.

v Opena Web deployment descriptor editor in an assembly tool and select Automatic Response

Encoding enabled on the Extensions tab.

6. Set the Java environment variable, com.ibm.websphere.sendredirect.compatibility, to true if you

want your URLs interpreted relative to the application root.

The default value of the Java environment variable com.ibm.websphere.sendredirect.compatibility

changed in WebSphere Application Server Version 5. In Version 4, the default setting of this variable is

true. In Version 5, the setting is false.

When this variable is set to false, if a URL has a leading slash, the URL is interpreted relative to the

Web module/application root. However, if the URL does not have a leading slash, it is interpreted

relative to the Web container root (also known as the Web server document root). Therefore, if an

application has a WAR file that has a context root of myPledge_app and a servlet that has a servlet

mapping of /Intranet/, a JSP file in the WAR file cannot access the servlet when its

encodeRedirectURL is set to /Intranet/myPledge. The JSP file can access the servlet if the

encodeRedirectURL is set to myPledge_app/Intranet/myPlege, or if the

com.ibm.websphere.sendredirect.compatibility variable is set to true.

7. Use the WASPostUpgrade tool to migrate WebSphere Version 4.x enterprise applications to Version 5.

Note: The WebSphere Application Server Version 4.x JSP page implementation class files are not

compatible with the WebSphere Application Server Version 5 JSP container.

The WASPostUpgrade tool automatically precompiles JSP files, which ensures the JSP page

implementation class files are compatible with Version 5.

If you install Version 4.x EAR files, deployed with the JSP Precompile option, in Version 5, and you

choose not to follow the migration path, do one of the following:

v Select the Pre-compile JSP option in the administrative console Install New Application window.

v Specify the -preCompileJSPs option when using the Wsadmin tool.

8. Migrate WebSphere Version 4.0.1 enterprise applications to Version 5.

Note: The WebSphere Application Server Version 4.0.1 JSP page implementation class files are not

compatible with the WebSphere Application Server Version 5 JSP container.

You must do one of the following:

v Select the Pre-compile JSP option in the administrative console Install New Application window.

v Specify the -preCompileJSPs option when using the Wsadmin tool.

9. Import your classes if your application uses unnamed packages.

Section 8.2 of the JSP 1.2 specification states:

The JSP container creates a JSP page implementation class for each JSP page.

The name of the JSP page implementation class is implementation dependent.

The JSP page implementation object belongs to an implementation-dependent

named package. The package used may vary between one JSP and another, so

minimal assumptions should be made. The unnamed package should not be used

without an explicit import of the class.

For example, if myBeanClass is in the unnamed package, and you reference it in a jsp:useBean tag,

then you must explicitly import myBeanClass with the page directive import attribute, as shown in the

following example:

 <%@page import="myBeanClass" %>

 . . .

 <jsp:useBean id="myBean" class="myBeanClass" scope="session"/>

In WebSphere Application Server Version 5, the JSP engine creates JSP page implementation classes

in the org.apache.jsp package. If a class in the unnamed package is not explicitly imported, then the

38 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

javac compiler assumes the class is in package org.apache.jsp, and the compilation fails.Note: Avoid

using the unnamed package altogether because of a change made in JDK 1.4 that will affect the JSP

2.0 specification. WebSphere Application Server Version 5 ships with JDK 1.3.1, so this is not an issue

with the Version 5 JSP engine, but it will become an issue in future releases.

The Incompatibilities section of the version 1.4.Java 2 Platform, Standard Edition (J2SE)

documentation states:

 The compiler now rejects import statements that import a type from the

unnamed namespace. Previous versions of the compiler would accept such

import declarations, even though they were arguably not allowed by the

language (because the type name appearing in the import clause is not in

scope). The specification is being clarified to state clearly that you

cannot have a simple name in an import statement, nor can you import from

the unnamed namespace.

 To summarize, the syntax:

 import SimpleName;

is no longer legal. Nor is the syntax

 import ClassInUnnamedNamespace.Nested;

which would import a nested class from the unnamed namespace.

 To fix such problems in your code, move all of the classes from the

unnamed namespace into a named namespace.

See ″Resources for learning″ for links to the J2SE, JSP, and Servlet specification documentation.

Migrating Web application components from WebSphere Application

Server Version 5.x

Supported open specification levels in WebSphere Application Server Version 6 are documented in article,

Migrating.

Migration of Web applications deployed in WebSphere Application Server Version 5.x is not necessary;

version 2.2 and 2.3 of the Java Servlet specification and version 1.2 and 1.4 of the JavaServer Pages

(JSP) specification are still supported. However, where there are behavioral differences between the Java

2 Enterprise Edition (J2EE) 1.2 and J2EE 1.3 specifications, bear in mind that J2EE 1.3 specifications are

implemented in WebSphere Application Server Version 5 and will override any J2EE 1.2 behaviors.

Servlet migration might be a concern if your application:

v implements a WebSphere internal servlet to bypass a WebSphere Application Server Version 4.x single

application path restriction.

v extends a PageListServlet that relies on configuration information in the servlet configuration XML file.

v uses a servlet to generate Hyper Text Markup Language (HTML) output.

v calls the response.sendRedirect method for a servlet using the encodeRedirectURL function or executing

within a non-context root.

JSP migration might be a concern if your application references JSP page implementation classes in

unnamed packages, or if you install WebSphere Application Server Version 4.x EAR files (deployed in

Version 4.x with the JSP Precompile option), in Version 5. You need to recompile all JSP pages when

migrating from WebSphere Application Server Version 5.x to version 6.

JSP migration might be a concern if your application references JSP page implementation classes in

unnamed packages, or if you install WebSphere Application Server Version 4.0.1 EAR files (deployed in

Version 4.0.1 with the JSP Precompile option), in Version 5. You need to recompile all JSP pages when

migrating from WebSphere Application Server Version 5.x to version 6.

Follow these steps if migration issues apply to your Web application:

Chapter 3. Learn about WebSphere applications 39

1. Use WebSphere Application Server Version 5 package names for any WebSphere Application Server

Version 4.x internal servlets, which are implemented in your application.

In WebSphere Application Server Version 4.x, Web modules with a context root setting of / are not

supported. Accessing Web modules with this root context results in HTTP 404 - File not Found

errrors.

To bypass the errors, and to enable the serving of static files from the root context, WebSphere

Application Server Version 4.x users are advised to add the servlet class,

com.ibm.servlet.engine.webapp.SimpleFileServlet, to their Web module.

The Version 4.x single path limitation does not exist in Version 5. However, users who choose to use

the com.ibm.servlet.engine.webapp.SimpleFileServlet in Version 5 must do one of the following:

v Rename com.ibm.servlet.engine.webapp.SimpleFileServlet to

com.ibm.ws.webcontainer.servlet.SimpleFileServlet.

v Opena Web deployment descriptor editor using an assembly tool and select File serving enabled

on the Extensions tab.

2. Use WebSphere Application Server Version 5 package names for any WebSphere Application Server

Version 4.0.1 internal servlets, which are implemented in your application.

In WebSphere Application Server Version 4.0.1, Web modules with a context root setting of / are not

supported. Accessing Web modules with this root context results in HTTP 404 - File not Found errors.

To bypass the errors, and to enable the serving of static files from the root context, WebSphere

Application Server Version 4.0.1 users are advised to add the servlet class,

com.ibm.servlet.engine.webapp.SimpleFileServlet, to their Web module.

The Version 4.0.1 single path limitation does not exist in Version 5. However, users who choose to use

the com.ibm.servlet.engine.webapp.SimpleFileServlet in Version 5 must do one of the following:

v Rename com.ibm.servlet.engine.webapp.SimpleFileServlet to

com.ibm.ws.webcontainer.servlet.SimpleFileServlet.

v Opena Web deployment descriptor editor in an assembly tool and select File serving enabled on

the Extensions tab.

3. Migrate servlets that extend PageListServlet and rely on configuration information in the associated

XML servlet configuration file. In Version 4.0.1, the XML servlet configuration file provides configuration

data for page lists and augments servlet configuration information. This file is named as either

servlet_class_name.servlet or servlet_name.servlet, and is stored in the same directory as the

servlet class file.

The XML servlet configuration file is not supported in WebSphere Application Server Version 5. The

direct use of the servlet has been deprecated. The PageList servlet function is still available but is

configured as part of the servlet extension configuration in the WAR file.

4. Migrate WebSphere Version 4.0.1 enterprise applications to Version 5.

Note: The WebSphere Application Server Version 4.0.1 JSP page implementation class files are not

compatible with the WebSphere Application Server Version 5 JSP container.

You must do one of the following:

v Select the Pre-compile JSP option in the administrative console Install New Application window.

v Specify the -preCompileJSPs option when using the Wsadmin tool.

Migrating HTTP sessions

Note: In Version 5 and higher, default write frequency mode is TIME_BASED_WRITES, which is different

from Version 4.0.x default mode of END_OF_SERVICE.

Migrating from Version 5.x

No programmatic changes are required to migrate from version 5.x to version 6.

Migrating from Version 4.0

40 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

No programmatic changes are required to migrate from version 4.0.x to version 6.

Memory-to-memory topology: Client/server function

The following figure depicts the client/server mode. There is a tier of applications servers that host Web

applications using HTTP sessions, and these sessions are replicated out as they are created and updated.

There is a second tier of servers without a Web application installed, where the session manager receives

updates from the replication clients.

 Benefits of the client/server configuration include:

Isolation (for failure recovery)

In this case we are isolating the handling of backup data from local data; aside from isolating the

moving parts in case of a catastrophic failure in one of them, you again free up memory and

processing in the servers processing the Web application

Isolation for stopping and starting

You can recycle a backup server without affecting the servers running the application (when there

are two or more backups, failure recovery is possible), and conversely recycle an application JVM

without potentially losing that backup data for someone.

Consolidation

There is most likely no need to have a one-to-one correspondence between servers handling

backups and those processing the applications; hence, you are again reducing the number of

places to which you transfer the data.

Disparate hardware:

While you run your Web applications on cheaper hardware, you may have one or two more

powerful computers in the back end of your enterprise that have the capacity to run a couple of

session managers in replication server mode; allowing you to free up your cheaper Web

application hardware to process the Web application.

HTTP servers
with affinity

HTTP servers
with affinity

Local

Local

Local

Replication Domain

Backup

Backup

WebSphere Application Server

servers including HTTP sessions
with local tables.

WebSphere Application Server

servers including HTTP sessions
with backup tables.

Chapter 3. Learn about WebSphere applications 41

Timing consideration: Start the backup application servers first to avoid unexpected timing windows. The

clients attempt to replicate information and HTTP sessions to the backup servers as soon as they come

up. As a result, HTTP sessions that are created prior to the time at which the servers come up might not

replicate successfully.

Memory-to-memory session partitioning

Session partitioning gives the administrator the ability to filter or reduce the number of destinations that the

session object gets sent to by the replication service. You can also configure session partitioning by

specifying the number of replicas on the replication domain. The Single replica option is chosen by default.

Since the number of replicas is global for the entire replication domain, all the session managers

connected to the replication domain use the same setting.

Single replica

You can replicate a session to only one other server, creating a single replica. When this option is

chosen, a session manager picks another session manager that is connected to the same

replication domain to replicate the HTTP session to during session creation. All updates to the

session are only replicated to that single server. This option is set at the replication domain level.

When this option is set, every session manager connected to this replication domain creates a

single backup copy of HTTP session state information on a backup server.

Full group replica

Each object is replicated to every application server that is configured as a consumer of the

replication domain. However, this topology is the most redundant because everyone replicates to

everyone and as you add servers, more overhead (both CPU and memory) is needed to deal with

replication. This mode is most useful for dynamic caching replication.

Specific number of replicas

You can specify a specific number of replicas for any entry that is created in the replication

domain. The number of replicas is the number of application servers that the user wants to use to

replicate in the domain. This option eliminates redundancy that occurs in a full group replica and

also provides additional backup than a single replica. The number of replicas cannot exceed the

total number of application servers in the cluster.

EJB applications

Migrating V6.0 servers from multi-broker replication domains to data

replication domains

Use this task to migrate multi-broker replication domains to data replication domains. Multi-broker domains

were created with a previous version of WebSphere Application Server.

For HTTP session affinity to continue working correctly when migrating V5.x application servers to V6.0

application servers, you must upgrade all of the Web server plug-ins for WebSphere Application Server to

the latest version before upgrading the application servers that perform replication.

After you upgrade your deployment manager to the latest version of WebSphere Application Server, you

can create data replication domains only. Any multi-broker domains that you created with a previous

release of WebSphere Application Server are still functional, however, you cannot create new multi-broker

domains or replicators with the administrative console.

The different versions of application servers cannot communicate with each other. When migrating your

servers to the current version of WebSphere Application Server, keep at least two application servers

running on the previous version so that replication remains functional.

Perform this task on any multi-broker domains in your configuration after all of your servers that are using

this multi-broker domain have been migrated to the current version of WebSphere Application Server.

42 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

The following examples illustrate the migration process for common configurations:

Migrating an application server configuration that uses an instance of data replication service in

peer-to-peer mode

Use this migration path to migrate a replication domain that uses the default peer-to-peer configuration.

Dynamic cache replication domains use the peer-to-peer topology.

Before you begin, migrate all the Web server plug-ins for your application server cluster to the current

version.

1. Migrate one or more of your existing servers to the current version of WebSphere Application Server.

2. In the administrative console, create an empty data replication domain. Click Environment >

Replication domains > New in the administrative console.

3. Add your migrated application servers to the new data replication domain. For example, if you are

migrating 4 servers, migrate 2 servers first and add them to the new replication domain. Configure the

servers to use the new domain by configuring the consumers of the replication domain.

4. When the new data replication domains are successfully sharing data, migrate the rest of the servers

that are using the multi-broker replication domain to data replication domains.

5. Delete the empty multi-broker replication domain.

Migrating an application server configuration that uses an instance of the data replication service

in client/server mode

Use this set of steps to migrate a replication domain that uses client/server mode.

Before you begin migrating a client/server mode replication domain, consider if migrating your replication

domains might cause a single point of failure. Because you migrate the servers to the new type of

replication domain one at a time, you risk a single point of failure if there are 3 or fewer application

servers. Before migrating, configure at least 4 servers that use multi-broker replication domains. Perform

the following steps to migrate the multi-broker domains to data replication domains:

1. Migrate one or more of your existing servers to the current version of WebSphere Application Server.

2. In the administrative console, create an empty data replication domain. Click Environment >

Replication domains > New in the administrative console.

3. Add your migrated servers to the new data replication domain. For example, if you are migrating 4

servers, migrate two of these servers and then add them to the new replication domain. Configure the

servers to use the new domain by configuring the consumers of the replication domain.

4. Add a part of the clients to the new data replication domain.

5. When the new data replication domains are successfully sharing data, migrate the rest of the clients

and servers that are using the multi-broker replication domain to data replication domains.

6. Delete the empty multi-broker replication domain.

Migrating a replication domain that uses HTTP session memory-to-memory replication that is

overloaded at the application or web module level

1. Upgrade your deployment manager to the current version of WebSphere Application Server. All the

application servers remain configured with the old multi-broker domains on the previous version of

WebSphere Application Server.

2. In the administrative console, create an empty data replication domain. Click Environment >

Replication domains > New in the administrative console.

3. Migrate each application server to the current version of WebSphere Application Server, one at a time.

The remaining servers on the previous version of WebSphere Application Server can still communicate

with each other, but not with the migrated servers. The migrated servers can also communicate with

each other.

Chapter 3. Learn about WebSphere applications 43

4. Continue migrating all of the servers to the current version of WebSphere Application Server. All of the

application servers are still using multi-broker replication domains, so the features of data replication

domains cannot be used.

5. Configure all of the application servers to use the new data replication domain, adding the application

servers to the empty replication domain that you created.

6. Restart all of the application servers in the cluster.

7. Delete the empty multi-broker replication domain.

During this process, you might lose existing sessions. However, the application remains active through the

entire process, so users do not experience down time during the migration. Create a new replication

domain for each type of consumer. For example, create one replication domain for session manager and

another replication domain for dynamic cache.

Comparison of multi-broker versus data replication domains

Data replication domains replace multi-broker domains for data replication between application servers in a

cluster.

Any replication domains that are created with a previous version of WebSphere Application Server might

be multi-broker domains. Migrate any multi-broker domains to the new data replication domains. Although

you can configure existing multi-broker domains with the current version of WebSphere Application Server,

after you upgrade your deployment manager, you can create only data replication domains in the

administrative console.

Multi-broker and data replication domains both perform the same function, which is to replicate data across

the consumers in a replication domain. Configure all the instances of replication that need to communicate

in the same replication domain. You can also configure the session manager with both types of replication

domains to use topologies such as peer-to-peer and client/server to isolate the function of creating and

storing replicas on separate application servers. You can control the redundancy of replication for each

type of replication domain. With a data replication domain, you can specify a specific number of replicas.

If you used multi-broker domains with earlier releases of WebSphere Application Server, use the following

comparison chart to learn the differences between how V5.x and V6.0 application servers use the two

types of replication domains:

 V5.x application servers using

replication domains

V6.0 application servers using

replication domains

Replication domain types Uses only multi-broker replication

domains for replication.

Servers that are using the current

version of WebSphere Application

Server can be configured to use both

multi-broker replication domains and

data replication domains for

replication. The two types of domains

provide backward compatibility with

multi-broker domains that were

created with a V5.x server. You

should migrate any multi-broker

domains to data replication domains.

44 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

V5.x application servers using

replication domains

V6.0 application servers using

replication domains

Data transport method Uses multi-broker domain objects that

contain configuration information for

the internal Java Message Service

(JMS) provider, which uses JMS

brokers as replicators.

Uses data replication domain objects

that contain configuration information

to configure the high availability

framework on WebSphere Application

Server. The transport is no longer

based on the JMS API. Therefore, no

replicators and no JMS brokers exist.

You do not have to perform the

complex task of configuring local,

remote, and alternate replicators. The

earlier version of WebSphere

Application Server did not support

data replication domains. The current

version of WebSphere Application

Server can be configured to perform

replication using old multi-broker

domains by ignoring any JMS-specific

configuration and by using the other

parameters to configure replication

through the high availability

framework.

Replication domain configuration The earlier version of WebSphere

Application Server encourages the

sharing of replication domains

between different consumers, such as

session manager and dynamic cache.

The current version of WebSphere

Application Server encourages

creating a separate replication

domain for each consumer. For

example, create one replication

domain for session manager and

another replication domain for

dynamic cache. The only situation

where you should configure one

replication domain is when

configuring session manager

replication and stateful session bean

failover. Using one replication domain

in this case ensures that the backup

state information of HTTP sessions

and stateful session beans are on the

same application servers.

Partial partitioning You can configure partial partitioning.

Partition the replication domain to

filter the number of processes to send

data.

Partial partitioning is deprecated.

When using data replication domains,

you can specify a specific number of

replicas for each entry. However, if

you specify a number of replicas

larger than the number of backup

application servers that are running,

the number of replicas is the number

of application servers that are

running. After the number of

application servers increases above

your configured number of replicas,

the number of replicas that are

created is equal to the number that

you specified.

Chapter 3. Learn about WebSphere applications 45

V5.x application servers using

replication domains

V6.0 application servers using

replication domains

Domain sharing Multiple data replication service

(DRS) instances share multi-broker

domains. A limitation exists on the

number of multi-broker domains that

you can create because every

multi-broker domain contains at least

one replicator. A maximum of one

replicator can be on each application

server.

All DRS instances in a replication

domain use the same mode. Each

replication domain must contain either

client only and server only instances,

or client and server instances only.

For example, if one instance is

configured to client and server, all

other instances must be client and

server. If one instance in a replication

domain is configured to be a client

only, you can add client only and

server only instances, but not a client

and server instance.

Migrating enterprise bean code to the supported specification

Support for Version 2.1 of the Enterprise JavaBeans (EJB) specification is added for Version 6 of this

product. Migration of enterprise beans deployed in Versions 4 or 5 of this product is not generally

necessary; Versions 1.1 and 2.0 of the EJB specification are still supported. Follow these steps as

appropriate for your application deployment.

1. Modify enterprise bean code for changes in the specification.

v For Version 1.0 beans, migrate at least to Version 1.1.

v As stated previously, migration from Version 1.1 to Version 2.x of the EJB specification is not

required for redeployment on this version of the product. However, if your application requires the

capabilities of Version 2.x, migrate your Version 1.1-compliant code.

Note: The EJB Version 2.0 specification mandates that prior to the EJB container’s running a

findByMethod query, the state of all enterprise beans enlisted in the current transaction be

synchronized with the persistent store. (This is so the query is performed against current

data.) If Version 1.1 beans are reassembled into an EJB 2.x-compliant module, the EJB

container synchronizes the state of Version 1.1 beans as well as that of Version 2.x beans.

As a result, you might notice some change in application behavior even though the

application code for the Version 1.1 beans has not been changed.

2. You might have to modify code for some EJB 1.1-compliant modules that were not migrated to Version

2.x. Use the following information to help you decide.

v Some stub classes for deployed enterprise beans have changed in the Java 2 Software

Development Kit, Version 1.4.1.

v The task of generating deployment code for enterprise beans changed significantly for EJB

1.1-compliant modules relative to EJB 1.0-compliant modules.

3. Reassemble and redeploy all modules to incorporate migrated code.

Migrating enterprise bean code from Version 1.0 to Version 1.1

The following information generally applies to any enterprise bean that currently complies with Version 1.0

of the Enterprise JavaBeans (EJB) specification. For more information about migrating code for beans

produced with Rational Application Developer, see the documentation for that product. For more

information about migrating code in general, see ″Resources for learning.″

1. In session beans, replace all uses of javax.jts.UserTransaction with javax.transaction.UserTransaction.

Entity beans may no longer use the UserTransaction interface at all.

2. In finder methods for entity beans, include FinderException in the throws clause.

46 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

3. Remove throws of java.rmi.RemoteException; throw javax.ejb.EJBException instead. However,

continue to include RemoteException in the throws clause of home and remote interfaces as required

by the use of Remote Method Invocation (RMI).

4. Remove uses of the finalize() method.

5. Replace calls to getCallerIdentity() with calls to getCallerPrincipal(). The use of getCallerIdentity() is

deprecated.

6. Replace calls to isCallerInRole(Identity) with calls to isCallerinRole (String). The use of

isCallerInRole(Identity) and java.security.Identity is deprecated.

7. Replace calls to getEnvironment() in favor of JNDI lookup. As an example, change the following code:

String homeName =

 aLink.getEntityContext().getEnvironment().getProperty("TARGET_HOME_NAME");

if (homeName == null) homeName = "TARGET_HOME_NAME";

The updated code would look something like the following:

Context env = (Context)(new InitialContext()).lookup("java:comp/env");

String homeName = (String)env.lookup("ejb10-properties/TARGET_HOME_NAME");

8. In ejbCreate methods for an entity bean with container-managed persistence (CMP), return the bean’s

primary key class instead of void.

9. Add the getHomeHandle() method to home interfaces.

public javax.ejb.HomeHandle getHomeHandle() {return null;}

Consider enhancements to match the following changes in the specification:

v Primary keys for entity beans can be of type java.lang.String.

v Finder methods for entity beans return java.util.Collection.

v Check the format of any JNDI names being used. Local name spaces are also supported.

v Security is defined by role, and isolation levels are defined at the method level rather than at the bean

level.

Migrating enterprise bean code from Version 1.1 to Version 2.1

Enterprise JavaBeans (EJB) Version 2.1-compliant beans can be assembled only in an EJB 2.1-compliant

module, although an EJB 2.1-compliant module can contain a mixture of Version 1.x and Version 2.1

beans.

The EJB Version 2.1 specification mandates that prior to the EJB container starting a findByMethod query,

the state of all enterprise beans that are enlisted in the current transaction be synchronized with the

persistent store. (This action is so the query is performed against current data.) If Version 1.1 beans are

reassembled into an EJB 2.1-compliant module, the EJB container synchronizes the state of Version 1.1

beans as well as that of Version 2.1 beans. As a result, you might notice some change in application

behavior even though the application code for the Version 1.1 beans has not been changed.

The following information generally applies to any enterprise bean that currently complies with Version 1.1

of the EJB specification. For more information about migrating code for beans produced with the Rational

Application Developer tool, see the documentation for that product. For more information about migrating

code in general, see ″Resources for learning.″

1. In beans with container-managed persistence (CMP) version 1.x, replace each CMP field with abstract

get and set methods. In doing so, you must make each bean class abstract.

2. In beans with CMP version 1.x, change all occurrences of this.field = value to setField(value).

3. In each CMP bean, create abstract get and set methods for the primary key.

4. In beans with CMP version 1.x, create an EJB Query Language statement for each finder method.

Note: EJB Query Language has the following limitations in Application Developer Version 5:

v EJB Query Language queries involving beans with keys made up of relationships to other

beans appear as invalid and cause errors at deployment time.

Chapter 3. Learn about WebSphere applications 47

v The IBM EJB Query Language support extends the EJB 2.1 spec in various ways, including

relaxing some restrictions, adding support for more DB2 functions, and so on. If portability

across various vendor databases or EJB deployment tools is a concern, then care should be

taken to write all EJB Query Language queries strictly according to instructions described in

Chapter 11 of the EJB 2.1 specification.

5. In finder methods for beans with CMP version 1.x, return java.util.Collection instead of

java.util.Enumeration.

6. Update handling of non-application exceptions.

v To report non-application exceptions, throw javax.ejb.EJBException instead of

java.rmi.RemoteException.

v Modify rollback behavior as needed: In EJB versions 1.1 and 2.1, all non-application exceptions

thrown by the bean instance result in the rollback of the transaction in which the instance is running;

the instance is discarded. In EJB 1.0, the container does not roll back the transaction or discard the

instance if it throws java.rmi.RemoteException.

7. Update rollback behavior as the result of application exceptions.

v In EJB versions 1.1 and 2.1, an application exception does not cause the EJB container to

automatically roll back a transaction.

v In EJB Version 1.1, the container performs the rollback only if the instance has called

setRollbackOnly() on its EJBContext object.

v In EJB Version 1.0, the container is required to roll back a transaction when an application exception

is passed through a transaction boundary started by the container.

8. Update any CMP setting of application-specific default values to be inside ejbCreate (not using global

variables, since EJB 1.1 containers set all fields to generic default values before calling ejbCreate,

which overwrites any previous application-specific defaults). This approach also works for EJB 1.0

CMPs.

Note: In Application Developer Version 5, there is a J2EE Migration wizard to migrate the EJB beans

within an EJB 2.1 project from 1.x into 2.1 (you cannot just migrate individually selected beans).

The wizard performs migration steps #1 to #2 above. It also migrates EJB 1.1 (proprietary)

relationships into EJB 2.1 (standard) relationships, and maintains EJB inheritance.

Adjusting exception handling for EJB wrappered applications migrating from

version 5 to version 6

Because of a change in the Java APIs for XML based Remote Procedure Call (JAX-RPC) specification,

EJB applications that could be wrappered in WebSphere Application Server version 5.1 cannot be

wrappered in version 6 unless you modify the code to the exception handling of the base EJB application.

Essentially, the JAX-RPC version 1.1 specification states:

a service specific exception declared in a remote method signature must be a

checked exception. It must extend java.lang.Exception either directly or indirectly

but it must not be a RuntimeException.

So it is no longer possible to directly use java.lang.Exception or java.lang.Throwable types. You must

modify your applications using service specific exceptions to comply with the specification.

1. Modify your applications that use service specific exceptions. For example, say that your existing EJB

uses a service specific exception called UserException. Inside of UserException is a field called ex that

is type java.lang.Exception. To successfully wrapper your application with Web services in WebSphere

Application Server version 6, you must change the UserException class . In this example, you could

modify UserException to make the type of ex to be java.lang.String instead of java.lang.Exception.

new UserException class:

package irwwbase;

/**

 * Insert the type’s description here.

48 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

* Creation date: (9/25/00 2:25:18 PM)

 * @author: Administrator

 */

public class UserException extends java.lang.Exception {

 private java.lang.String _infostring = null;

 private java.lang.String ex;

/**

 * UserException constructor comment.

 */

public UserException() {

 super();

}

/**

 * UserException constructor comment.

 */

public UserException (String infostring)

{

 _infostring = infostring;

} // ctor

/**

 * Insert the method’s description here.

 * Creation date: (11/29/2001 9:25:50 AM)

 * @param msg java.lang.String

 * @param ex java.lang.Exception

 */

public UserException(String msg,String t) {

 super(msg);

 this.setEx(t);

 }

 /**

 * @return

 */

 public java.lang.String get_infostring() {

 return _infostring;

 }

 /**

 * @return

 */

 public java.lang.String getEx() {

 return ex;

 }

 /**

 * @param string

 */

 public void set_infostring(java.lang.String string) {

 _infostring = string;

 }

 /**

 * @param Exception

 */

 public void setEx(java.lang.String exception) {

 ex = exception;

 }

 public void printStackTrace(java.io.PrintWriter s) {

 System.out.println("the exception is :"+ex);

 }

}

Chapter 3. Learn about WebSphere applications 49

2. Modify all of the exception handling in the enterprise beans that use it. You must ensure that your

enterprise beans are coded to accept the new exceptions. In this example, the code might look like

this:

new EJB exception handling:

try {

 if (isDistributed()) itemCMPEntity = itemCMPEntityHome.findByPrimaryKey(ckey);

 else itemCMPEntityLocal = itemCMPEntityLocalHome.findByPrimaryKey(ckey);

 } catch (Exception ex) {

 System.out.println("%%%%% ERROR: getItemInstance - CMPjdbc " + _className);

 ex.printStackTrace();

 throw new UserException("error on itemCMPEntityHome.findByPrimaryKey(ckey)",ex.getMessage());

 }

Container interoperability

Container interoperability describes the ability of WebSphere Application Server clients and servers at

different versions to successfully negotiate differences in native Enterprise JavaBeans (EJB) finder

methods support and Java 2 Platform, Enterprise Edition (J2EE) compliance.

The product uses interoperable versions of some class types to enable interoperability. However, older

4.0.x client and application server versions do not support the interoperability classes, which makes them

uninteroperable with versions that use the classes. The system property

com.ibm.websphere.container.portable remedies this situation by enabling newer versions of the

application server to turn off the interoperability classes. This lets a more recent application server return

class types that are interoperable with an older client.

Depending on the value of com.ibm.websphere.container.portable, application servers at versions 5 and

later, and 4.0.3 and later, return different classes for the following:

v Enumerations and collections returned by EJB 1.1 finder methods

v EJBMetaData

v Handles to:

– Entity beans

– Session beans

– Home interfaces

If the property is set to false, application servers return the old class types, to enable interoperability with

4.0.2 and earlier. If the property is set to true, application servers return the new classes.

The following tables show interoperability characteristics for various version combinations of application

servers and clients as well as default property values for each combination.

Interoperability of Version 4.0.x client with Version 5 (and later) application server

Ideally, all 4.0.x clients that use Version 5 or later application servers should be at Version 4.0.3 or later.

Version 5 and later application servers return the interoperability class types by default (true). This can

cause interoperability problems for distributed clients at versions 4.0.1 or 4.0.2. In particular, problems can

occur with collections and enumerations returned by Enterprise JavaBeans Version 1.1 finder methods.

Although it is strongly discouraged, you can set com.ibm.websphere.container.portable to false on a

Version 5 and later application server. This causes the application server to return the old class types,

providing interoperability with clients at Version 4.0.2 and earlier. This is discouraged because:

v The Version 5 application server instance would become non-J2EE 1.3 (and later) compliant with regard

to handles, home interface handles, and EJBMetaData.

v EJB 1.x finder methods return collection and enumeration objects that do not originate from

ejbportable.jar.

v Interoperability restrictions still exist with the property set to false.

50 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

v Version 5 and later client handles to entity beans and home interfaces do not work across domains for

the server you set to false.

If you would like to use updated Handle classes in EJB 2.x-compliant beans but have one of the older

clients (versions 4.0.2 and earlier) installed, set the system property

com.ibm.websphere.container.portable.finder to false. With this setting in place, the Version 5 and later

application server uses the updated handles but returns the enumerations and collections that were

used in the earlier clients.

Interoperability of client at Version 4.0.2 and earlier with Version 5 (and later) application server

 Client at Version 4.0.2 and earlier,

using this function

Application server at Version 5 and

later, property true (default)

Application server at Version 5 and

later, property false

EJBMetaData Does not work Works for 4.0.2 client

Handle to session bean Does not work Works

Handle to entity bean Does not work Does not work across cells

Enumeration returned by EJB 1.x

finder method

Does not work Works

Collection returned by EJB 1.x finder

method

Does not work Works

Handle to home interface Does not work Does not work across cells

If you would like to use updated Handle classes in EJB 2.x-compliant beans but have one of the older

clients (versions 4.0.2 and earlier) installed, set the system property

com.ibm.websphere.container.portable.finder to false. With this setting in place, the Version 5 and later

server uses the new Handle classes but returns the older enumeration and collection classes.

Interoperability of client at Version 4.0.3 and later with Version 5 and later application server

Clients at Version 4.0.3 and later work well with Version 5 and later application servers. However, if you

set the com.ibm.websphere.container.portable to false, client handles to entity beans and home interfaces

do not work across domains for the server you set to false.

 Client at Version 4.0.3 and later,

using this function

Application server at Version 5 and

later, property true (default)

Application server at Version 5 and

later, property false

EJBMetaData Works Works

Handle to session bean Works Works

Handle to entity bean Works Does not work across cells

Enumeration returned by EJB 1.x

finder method

Works Works

Collection returned by EJB 1.x finder

method

Works Works

Handle to home interface Works Does not work across cells

Interoperability of Version 5 and later client with Version 4.0.x application server

Clients at Version 5 and later work well with Version 4.0.3 application servers if you set

com.ibm.websphere.container.portable to true. Client handles to entity beans and home interfaces do not

work across domains for any Version 4.0.3 server with com.ibm.websphere.container.portable at the

default value, false. Version 5 client handles to application servers at Version 4.0.2 and earlier also have

restrictions.

Chapter 3. Learn about WebSphere applications 51

Client at Version 5 and

later, using this function

Application server at

Version 4.0.3, property

true

Application server at

Version 4.0.3, property

false (default)

Application server at

Version 4.0.2 or earlier

EJBMetaData Works Works Works for 4.0.2 server only

Handle to session bean Works Works Works

Handle to entity bean Works Does not work across

domains

Does not work across

domains

Enumeration returned by

EJB 1.x finder method

Works Works Works

Collection returned by EJB

1.x finder method

Works Works Works

Handle to home interface Works Does not work across

domains

Does not work across

domains

Interoperability of zSeries Version 4.0.x client with Version 5 and later application server

The only valid configuration for container interoperability with zSeries Version 4.0.x clients is the default

configuration for the Version 5 application server.

Interoperability of Version 5 and later client with zSeries Version 4.0.x application server

Version 5 clients should work with a zSeries Version 4.0.x application server with the correct

interoperability fixes described in the zSeries documentation. The interoperability characteristics should be

the same as for a Version 4.0.3 distributed application server with the property set to true.

 Client at Version 5 and later, using this function zSeries application server at Version 4.0.x

EJBMetaData Works

Handle to session bean Works

Handle to entity bean Works

Enumeration returned by EJB 1.x finder method Works

Collection returned by EJB 1.x finder method Works

Handle to home interface Works

Web services

Web Services-Interoperability Basic Profile

The Web Services-Interoperability (WS-I) Basic Profile is a set of non-proprietary Web services

specifications that promote interoperability.

WebSphere Application Server conforms to the WS-I Basic Profile 1.1.

The WS-I Basic Profile is governed by a consortium of industry-leading corporations, including IBM, under

direction of the WS-I Organization. The profile consists of a set of principles that relate to bringing about

open standards for Web services technology. All organizations that are interested in promoting

interoperability among Web services are encouraged to become members of the Web Services

Interoperability Organization.

Several technology components are used in the composition and implementation of Web services,

including messaging, description, discovery, and security. Each of these components are supported by

52 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

specifications and standards, including SOAP 1.1, Extensible Markup Language (XML) 1.0, HTTP 1.1,

Web Services Description Language (WSDL) 1.1, and Universal Description, Discovery and Integration

(UDDI). The WS-I Basic Profile specifies how these technology components are used together to achieve

interoperability, and mandates specific use of each of the technologies when appropriate.

Each of the technology components have requirements that you can read about in more detail at the WS-I

Organization Web site. For example, support for Universal Transformation Format (UTF)-16 encoding is

required by WS-I Basic Profile. UTF-16 is a kind of Unicode encoding scheme using 16-bit values to store

Universal Character Set (UCS) characters. UTF-8 is the most common encoding that is used on the

Internet; UTF-16 encoding is typically used for Java and Windows product applications; and UTF-32 is

used by various Linux and Unix systems. Unlike UTF-8, UTF-16 has issues with big-endian and

little-endian, and often involves Byte Order Mark (BOM) to indicate the endian. BOM is mandatory for

UTF-16 encoding and it can be used in UTF-8.

The following table summarizes some of the properties of each UTF:

 Bytes Encoding form

EF BB BF UTF-8

FF FE UTF-16, little-endian

FE FF UTF-16, big-endian

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

BOM is written prior to the XML text, and it indicates to the parser how the XML is encoded. The XML

declaration contains the encoding, for example: <?xml version=xxx encoding=″utf-xxx″?>. BOM is used

with the encoding to determine how to interpret the XML. Here is an example of a SOAP message and

how BOM and UTF encoding are used:

POST http://www.whitemesa.net/soap12/add-test-rpc HTTP/1.1

Content-Type: application/soap+xml; charset=utf-16; action=""

SOAPAction:

Host: localhost: 8080

Content-Length: 562

OxFF0xFE<?xml version="1.0" encoding="utf-16"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2002/12/soap-envelope"

 xmlns:soapenc="http://www.w3.org/2002/12/soap-encoding

 xmlns:tns="http://whitemesa.net/wsdl/soap12-test"

 xmlns:types="http://whitemesa.net/wsdl/soap12-test/encodedTypes"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soap:Body>

 <q1:echoString xmlns:q1="http://soapinterop.org/">

 <inputString soap:encodingStyle="http://example.org/unknownEncoding"

 xsi:type="xsd:string">

 Hello SOAP 1.2

 </inputString>

 </q1:echoString>

 </soap:Body>

</soap:Envelope>

In the example code, 0xFF0xFE represents the byte codes, while the <?xml> declaration is the textual

representation.

How to change encoding from UTF-8 to UTF-16

Support for Universal Transformation Format (UTF)-16 encoding is required by the WS-I Basic Profile 1.0.

WebSphere Application Server conforms to the WS-I Basic Profile 1.1. UTF-16 is a kind of unicode

Chapter 3. Learn about WebSphere applications 53

encoding scheme using 16-bit values to store Universal Character Set (UCS) characters. UTF-8 is the

most common encoding that is used on the Internet and UTF-16 encoding is typically used for Java and

Windows product applications.

Support for UTF-16 encoding is required by WS-I Basic Profile; therefore, you need to know how to modify

your character encoding from UTF-8 to UTF-16 in your SOAP message.

You can change the character encoding in one of two ways:

v Use a property on the Stub for users to set.

This choice applies to the client only.

For a client, the encoding is specified in the SOAP request. The SOAP engine serializes the request

and sends it to the Web service engine. The Web service engine receives the request and deserializes

the message to Java objects, which are returned to you in a response.

When the Web service engine on the server receives the serialized request, a raw message in the form

of an input stream, is passed to the parser, which understands Byte Order Mark (BOM). BOM is

mandatory for UTF-16 encoding and it can be used in UTF-8. The message is deserialized to a Java

objects and a service invocation is made. For two-way invocation, the engine needs to serialize the

message using a specific encoding and send it back to the caller. The following example shows you

how to use a property on the Stub to change the character set:

javax.xml.rpc.Stub stub=service.getPort("MyPortType");

stub.setProperty(com.ibm.wsspi.webservices.Constants.XML_CHARSET,"UTF-16");

stub.invokeMethod();

In this code example, com.ibm.wsspi.webservices.Constants.XML_CHARSET =

″com.ibm.wsspi.webservices.xmlcharset″;

v Use a handler to change the character set through SOAP with Attachments API for Java (SAAJ).

If you are using a handler, the SOAP message is transformed to a SAAJ format from other possible

forms, such as an input stream. In such cases as a handleRequest method on the client side and a

handleResponse method on the server side, the Web services engine transforms from a SAAJ format

back to the stream with appropriate character encoding. This transformation or change is called a

roundtrip transformation. The following is an example of how you would use a handler to specify the

character encoding through SAAJ:

handleResponse(MessageContext mc) {

 SOAPMessageContext smc = (SOAPMessageContext) context;

 javax.xml.soap.SOAPMessage msg = smc.getMessage();

 msg.setProperty (javax.xml.soap.SOAPMessage.CHARACTER_SET_ENCODING, "UTF-16");

 }

}

You have modified the character encoding from UTF-8 to UTF-16 in the Web service SOAP message.

Migrating Apache SOAP Web services to Web Services for J2EE

standards

This topic explains how to migrate Web services that were developed using Apache SOAP to Web

services that are developed based on the Web Services for Java 2 Platform, Enterprise Edition (J2EE)

specification.

If you have used Web services based on Apache SOAP and now want to develop and implement Web

services based on the Web Services for J2EE specification, you need to migrate client applications

developed with all versions of 4.0, and versions of 5.0 prior to 5.0.2.

To migrate these client applications according to the Web Services for J2EE standards:

1. Plan your migration strategy. You can port an Apache SOAP client to a Java API for XML-based RPC

(JAX-RPC) Web services client in one of two ways:

54 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

v If you have, or can create, a Web Services Description Language (WSDL) document for the service,

consider using the WSDL2Java command tool to generate bindings for the Web service. It is more

work to adapt an Apache SOAP client to use the generated JAX-RPC bindings, but the resulting

client code is more robust and easier to maintain.

v If you do not have a WSDL document for the service, do not expect the service to change, and you

want to port the Apache SOAP client with minimal work, you can convert the code to use the

JAX-RPC dynamic invocation interface (DII), which is similar to the Apache SOAP APIs. The DII

APIs do not use WSDL or generated bindings.

Because JAX-RPC does not specify a framework for user-written serializers, the JAX-RPC does not

support the use of custom serializers. If your application cannot conform to the default mapping

between Java, WSDL, and XML technology supported by WebSphere Application Server, do not

attempt to migrate the application. The remainder of this topic assumes that you decided to use the

JAX-RPC dynamic invocation interface (DII) APIs.

2. Review the GetQuote Sample. A Web services migration Sample is available in the Samples Gallery.

This Sample is located in the GetQuote.java file, originally written for Apache SOAP users, and

includes an explanation about the changes needed to migrate to the JAX-RPC DII interfaces.

3. Convert the client application from Apache SOAP to JAX-RPC DII The Apache SOAP API and

JAX-RPC DII API structures are similar. You can instantiate and configure a call object, set up the

parameters, invoke the operation, and process the result in both. You can create a generic instance of

a Service object with the following command:

javax.xml.rpc.Service service = ServiceFactory.newInstance().createService(new QName(""));

in JAX-RPC.

a. Create the Call object. An instance of the Call object is created with the following code:

org.apache.soap.rpc.Call call = new org.apache.soap.rpc.Call ()

in Apache SOAP.

An instance of the Call object is created by

java.xml.rpc.Call call = service.createCall();

in JAX-RPC.

b. Set the endpoint Uniform Resource Identifiers (URI). The target URI for the operation is passed as

a parameter to

call.invoke: call.invoke("http://...", "");

in Apache SOAP.

The setTargetEndpointAddress method is used as a parameter to

call.setTargetEndpointAddress("http://...");

in JAX-RPC.

Apache SOAP has a setTargetObjectURI method on the Call object that contains routing

information for the request. JAX-RPC has no equivalent method. The information in the

targetObjectURI is included in the targetEndpoint URI for JAX-RPC.

c. Set the operation name. The operation name is configured on the Call object by

call.setMethodName("opName");

in Apache SOAP.

The setOperationName method, which accepts a QName instead of a String parameter, is used in

JAX-RPC as illustrated in the following example:

call.setOperationName(new javax.xml.namespace.Qname("namespace", "opName"));

d. Set the encoding style. The encoding style is configured on the Call object by

call.setEncodingStyleURI(org.apache.soap.Constants.NS_URI_SOAP_ENC);

Chapter 3. Learn about WebSphere applications 55

in Apache SOAP.

The encoding style is set by a property of the Call object

call.setProperty(javax.xml.rpc.Call.ENCODINGSTYLE_URI_PROPERTY, "http://schemas.

xmlsoap.org/soap/encoding/");

in JAX-RPC.

e. Declare the parameters and set the parameter values. Apache SOAP parameter types and values

are described by parameter instances, which are collected into a vector and set on the Call object

before the call, for example:

Vector params = new Vector ();

params.addElement (new org.apache.soap.rpc.Parameter(name, type, value, encodingURI));

// repeat for additional parameters...

call.setParams (params);

For JAX-RPC, the Call object is configured with parameter names and types without providing their

values, for example:

call.addParameter(name, xmlType, mode);

// repeat for additional parameters

call.setReturnType(type);

Where

v name (type java.lang.String) is the name of the parameter

v xmlType (type javax.xml.namespace.QName) is the XML type of the parameter

v mode (type javax.xml.rpc.ParameterMode) the mode of the parameter, for example, IN, OUT, or

INOUT

f. Make the call. The operation is invoked on the Call object by

org.apache.soap.Response resp = call.invoke(endpointURI, "");

in Apache SOAP.

The parameter values are collected into an array and passed to call.invoke as illustrated in the

following example:

Object resp = call.invoke(new Object[] {parm1, parm2,...});

in JAX-RPC.

g. Check for faults. You can check for a SOAP fault on the invocation by checking the response:

if resp.generatedFault then {

org.apache.soap.Fault f = resp.getFault;

f.getFaultCode();

f.getFaultString();

}

in Apache SOAP.

A java.rmi.RemoteException error is displayed in JAX-RPC if a SOAP fault occurs on the

invocation.

try {

... call.invoke(...)

} catch (java.rmi.RemoteException) ...

h. Retrieve the result. In Apache SOAP, if the invocation is successful and returns a result, it can be

retrieved from the Response object:

Parameter result = resp.getReturnValue(); return result.getValue();

In JAX-RPC, the result of invoke is the returned object when no exception is displayed:

Object result = call.invoke(...);

 ...

return result;

You have migrated Apache SOAP Web services to J2EE Web services.

56 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Develop a Web services client. This topic explains how to develop a Web services client based on the

Web Services for J2EE specification.

Test the Web services-enabled clients to make sure the migration process is successful and you can

implement the Web services in a J2EE environment.

Migrating to Version 3 of the UDDI Registry

Use this topic to migrate to a Version 3 UDDI Registry that uses a DB2 database, from a previous version

of the UDDI Registry.

Use this topic to migrate to a Version 3 UDDI Registry that uses a DB2 database, from a Version 2 UDDI

Registry (as defined in UDDI Registry Terminology).

You can use the process described in this topic to migrate a UDDI Registry to UDDI Version 3, running in

WebSphere Application Server Version 6, subject to the following constraints:

v Your existing registry uses a DB2 database.

v Your existing registry runs in WebSphere Application Server Version 5 or later.

If you are migrating from IBM WebSphere UDDI Registry Version 1.1 or 1.1.1, which ran on WebSphere

Application Server Version 4, you should first migrate to UDDI Version 2 running on WebSphere

Application Server Version 5 (as described in the WebSphere Application Server Version 5 Information

Center), then complete the steps described in this topic.

You can only run the Version 2 UDDI Registry (supplied in WebSphere Application Server Version 5) in a

WebSphere Version 6 server if you are running in a mixed cell migration mode. In this configuration, the

WebSphere Application Server Version 6 Deployment Manager manages the version 5.x nodes, and the

Version 2 UDDI Registry is supported only for migration purposes; it is not supported for normal execution.

This task describes in detail the process of migrating from a Version 2 UDDI Registry running on

WebSphere Application Server Version 5, to a Version 3 UDDI Registry running on WebSphere Application

Server Version 6.

If you have the UDDI Registry deployed in a clustered application server and you migrate to WebSphere

Application Server Version 6, you will not be able to run UDDI across the mixed-version cluster. You can

continue to run the UDDI Registry on the server or servers that remain at Version 5 of WebSphere

Application Server, but you will not be able to run the UDDI Registry in the Version 6 servers of

WebSphere Application Server until all nodes in the cluster have been migrated to WebSphere Application

Server Version 6. This is because the UDDI data needs to be migrated from the UDDI Version 2 format to

the UDDI Version 3 format.

If you are migrating the UDDI Registry from a WebSphere Application Server version 5.x Network

Deployment configuration, or from a WebSphere Application Server version 5.x standalone application

server, the steps are very similar. For a Network Deployment migration to a WebSphere Application Server

version 6 Network Deployment configuration, a number of choices are available, including having a mixed

version cell where the WebSphere Application Server version 6 Deployment Manager can manage

application servers at different levels. In this way, individual application servers can be migrated when

convenient in a step by step manner. See Migration and coexistence overview elsewhere in this

Information Center for more details.

To migrate a Version 2 UDDI Registry to UDDI Version 3, running in WebSphere Application Server

Version 6, complete the following steps (this is assuming that you have migrated the WebSphere

Application Manager Version 5 Deployment Manager to Version 6 first):

1. Stop the UDDI Registry application that is running in your Version 5.x application server. This prevents

further UDDI requests being directed to the UDDI Registry and ensures that no new data is published

during the migration process.

Chapter 3. Learn about WebSphere applications 57

2. Record information about the uddi.properties values being used. This file is located in the

DeploymentManager_install_dir/config/cells/cell_name/nodes/node_name/servers/server_name

directory on your WebSphere Application Server Version 5.x system (or in the properties subdirectory if

you are migrating a standalone application server).

3. Migrate from WebSphere Application Server Version 5.x to Version 6 (see Migration and coexistence

overview). This results in a new directory tree for the migrated Version 6 application server.

4. Start the new migrated (Version 6) application server.

5. Create a new datasource for the Version 2 UDDI database. This is known as the UDDI migration

datasource. Note that the JNDI name must be datasources/uddimigration. To complete this step see

Setting up a UDDI migration datasource.

6. Follow all the instructions in Setting up a customized UDDI node in the Administering applications and

their environment PDF book, including its subtopic relating to node initialization, to set up the UDDI

Version 3 Registry and migrate the Version 2 data. The topic describes how to perform the following

actions:

v Create the Version 3 DB2 database

v Create the J2C authentication data entry

v Create the JDBC provider and datasource

v Deploy the UDDI registry application

v Start the server

v Configure and initialize the node. The UDDI Registry node initialization detects that there is a UDDI

migration datasource, and migrates the Version 2 data as part of the UDDI node initialization

processing.

Note: This can take some time depending on the amount of data in your UDDI Registry.

7. Verify the migration process has completed successfully. The following message should appear in the

server log:

CWUDQ0003I: UDDI registry migration has completed

Should the following error appear:

CWUDQ004W: UDDI registry not started due to migration errors

it means that an unexpected error has occurred during migration. The UDDI Registry node will not be

activated. Check the error logs for the problem and, if it cannot be fixed contact your IBM

representative for advice.

8. Once migration is complete the UDDI migration datasource may be removed, and the registry is

available for use.

Setting up a UDDI migration datasource

Use this topic to set up a UDDI migration datasource, to be used to reference a Version 2 UDDI Registry

database.

Migration is only supported from DB2, so these instructions describe how to set up a DB2 datasource.

1. If a suitable DB2 JDBC Provider does not already exist, then create one, selecting the options DB2

Legacy CLI-based Type 2 JDBC Driver and Connection Pool datasource.

2. Create a datasource for the Version 2 UDDI Registry by following these steps:

a. Expand Resources and JDBC Providers.

b. Select the desired ’scope’ of the JDBC provider you selected or created earlier. For example,

select:

Server: yourservername

to show the JDBC providers at the server level.

c. Select the JDBC provider created earlier.

58 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

d. Under Additional Properties, select Data Sources (not the Data Sources Version 4 option).

e. Click New to create a new datasource.

f. Fill in the details for the datasource as follows:

Name a suitable name, such as UDDI Datasource

JNDI name

set to datasources/uddimigration - this value is compulsory, and must be as shown.

Use this Data Source in container-managed persistence (CMP)

ensure the check box is cleared.

Description

a suitable description

Category

set to uddi

Data store helper class name

filled in for you as: com.ibm.websphere.rsadapter.DB2DataStoreHelper

Component-managed authentication alias

select the alias for the DB2 userid used to access UDDI Version 2 data, for example

MyNode/UDDIAlias (refer to step 2 of Setting up a customized UDDI node in the

Administering applications and their environment PDF book if you do not have such an

alias)

Container-managed authentication alias

set to (none)

Mapping-configuration alias

set to DefaultPrincipalMapping

DB2 legacy CLI-based type 2 data source properties

set Database name to UDDI20, or the name given to your Version 2 UDDI DB2 database

Leave all other fields unchanged.

3. Click Apply and save the changes to the master configuration.

4. Test the connection to your UDDI database by selecting the check box next to the datasource and

clicking Test connection. You will see a message similar to ″Test Connection for datasource UDDI

Datasource on server server1 at node MyNode was successful″. If you do not see this message

investigate the problem with the help of the error message.

Continue with the migration as detailed in Migrating to Version 3 of the UDDI Registry.

Initializing the UDDI Registry node

Use this topic to initialize a UDDI Registry node after set up or migration.

You must have already set up a UDDI Registry node, either as a new node or to use for migrating a UDDI

Registry Version 2 node.

The UDDI Registry node has various properties, some of which must be set before initializing the node.

There are two categories of UDDI Registry node properties:

v Mandatory node properties. These properties must be set before the UDDI node can be initialized. You

may set these properties as many times as you wish before initialization. However, once the UDDI node

has been initialized, these properties will become read only for the lifetime of that UDDI node. It is very

important to set these properties correctly.

v All other properties. These properties may be set before, and after, initialization.

Chapter 3. Learn about WebSphere applications 59

Configure these properties and initialize the node using the UDDI administrative console or JMX

management interface.

1. Click UDDI → UDDI Nodes > UDDI_node_id to display the properties page for the UDDI Registry node.

2. Set the mandatory node properties to suitable, and valid, values. These properties are indicated by the

presence of a ’*’ next to the input field. The properties are listed below; more information on each

property is given in the context help of the administrative console.

UDDI node ID

This must be a text string beginning with ’uddi:’ that is unique to this UDDI node. The default

value may be sufficient, but if you accept it you should ensure that it is unique.

UDDI node description

This is a text string describing the node.

Root key generator

This must be a text string beginning with ’uddi:’ that is unique to this UDDI node. The default

value may be sufficient but may contain text, such as ’keyspace_id’, that you should modify to

match your system. If you accept the default value, ensure that it is unique for this UDDI node.

Prefix for generated discoveryURLs

This should be a valid URL.

3. If you are migrating from Version 2 of the UDDI Registry, use the table below to perform the following

steps:

v Set any properties from uddi.properties that must remain the same as Version 2.

v Set any properties from uddi.properties that you would like to keep the same (such as

dbMaxResultCount).

 Version 2 UDDI property (set in

uddi.property file)

Version 3 UDDI Property (set via

Administrative Console or UDDI

Administrative Interface)

Recommended Version 3 UDDI

property setting

dbMaxResultCount maximum inquiry response set size You might want to retain the value

from Version 2, but can safely change

this (or use the default)

persister no equivalent Not applicable

defaultLanguage default language code You are recommended to retain the

value from Version 2

operatorName UDDI node ID You must use a valid value for the

UDDI node ID. This will be applied to

your Version 2 data as it is migrated.

maxSearchKeys maximum search keys You might want to retain the value

from Version 2, but can safely change

this (or use the default)

getServletURLprefix Prefix for generated discoveryURLs You should enter a valid value for

your configuration, which should

therefore be the same as the value

used for Version 2.

getServletName no equivalent Not applicable

4. Set any other properties, such as policy values, that you wish to change from the default settings (or

these can be changed at a later time).

5. Once the properties have been set to appropriate values, click Apply to save your changes. It is

important to save the changes before proceeding to the initialize step.

6. Initialize the UDDI node by clicking Initialize, at the top of the pane. If you are migrating from Version

2 of the UDDI Registry, the Version 2 data is migrated now. The initialization may take some time to

complete.

60 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

If the node has been migrated from a previous version, return to “Migrating to Version 3 of the UDDI

Registry” on page 57 to verify that the migration was successful. If you have created a new node, you are

now ready to use the UDDI Registry.

Using a remote database for the UDDI Registry

It is possible for the UDDI Registry database to be hosted on a separate system (remote system) from the

system on which the UDDI Registry application is deployed.

This is achieved using standard database capabilities of the database product used for the UDDI Registry

database. You should refer to documentation for the database product if you are not familiar with these

capabilities. Some considerations specific to each database product are:

Remote DB2

Create a DB2 UDDI database on the remote system, and use the DB2 Client to create an alias to

reference it. Use the alias name as the Database name in the UDDI datasource.

Networked Cloudscape

Create a Cloudscape UDDI database on the remote system, and use the Cloudscape Network Server

using Universal data source properties (Database name, Server name and Port number) of the UDDI

datasource to reference the remote Cloudscape database.

For details of how to set up Cloudscape for multiple connections see Configuring Cloudscape Version

5.1.60x in the Administering applications and their environment PDF book.

Note: Embedded Cloudscape is not supported for this configuration.

Data access resources

Migrating a Version 4.0 data access application to Version 6.0

To use the connection management infrastructure in WebSphere Application Server Version 6.0, you must

package your application as a J2EE 1.3 (or later) application. This process involves repackaging your Web

modules to the 2.3 specification and your EJB modules to the 2.1 specification before installing them onto

WebSphere Application Server.

Applications left at the J2EE 1.2 level will continue to run fine using the connection management support

that was available at V4.0; simply create the JDBC provider and data source, and install the 4.0

application as-is. If you choose to repackage your application for version 6, however, you cannot use a

Version 4.0 data source. You must use the other data source option, which supports applications coded to

the J2EE 1.3 specifications, at minimum.

Converting a 2.2 Web module to a 2.3 Web module

Use the following steps to migrate each of your Web modules.

 1. Open an assembly tool such as the Application Server Toolkit (AST) or Rational Web Developer.

 2. Create a new Web module by selecting File > New > Web Module.

 3. Add any required class files to the new module.

a. Expand the Files portion of the tree.

b. Right-click Class Files and select Add Files.

c. In the Add Files window, click Browse.

Chapter 3. Learn about WebSphere applications 61

d. Navigate to your WebSphere Application Server 4.0 EAR file and click Select.

e. In the upper left pane of the Add Files window, navigate to your WAR file and expand the WEB-INF

and classes directories.

f. Select each of the directories and files in the classes directory and click Add.

g. After you add all of the required class files, click OK.

 4. Add any required JAR files to the new module.

a. Expand the Files portion of the tree.

b. Right-click Jar Files and select Add Files.

c. Navigate to your WebSphere 4.0 EAR file and click Select.

d. In the upper left pane of the Add Files window, navigate to your WAR file and expand the WEB-INF

and lib directories.

e. Select each JAR file and click Add.

f. After you add all of the required JAR files, clickOK.

 5. Add any required resource files, such as HTML files, JSP files, GIFs, and so on, to the new module.

a. Expand the Files portion of the tree.

b. Right-click Resource Files and select Add Files.

c. Navigate to your WebSphere Application Server 4.0 EAR file and click Select.

d. In the upper left pane of the Add Files window, navigate to your WAR file.

e. Select each of the directories and files in the WAR file, excluding META-INF and WEB-INF, and click

Add.

f. After you add all of the required resource files, clickOK.

 6. Import your Web components.

a. Right-click Web Components and select Import.

b. In the Import Components window click Browse.

c. Navigate to your WebSphere Application Server 4.0 EAR file and click Open.

d. In the left top pane of the Import Components window, highlight the WAR file that you are

migrating.

e. Highlight each of the components that display in the right top pane and click Add.

f. When all of your Web components display in the Selected Components pane of the window, click

OK.

g. Verify that your Web components are correctly imported under the Web Components section of

your new Web module.

 7. Add servlet mappings for each of your Web components.

a. Right-click Servlet Mappings and select New.

b. Identify a URL pattern for the Web component.

c. Select the web component from the Servlet drop-down box.

d. Click OK.

 8. Add any necessary resource references.

 9. Add any other Web module properties that are required. Click Help for a description of the settings.

10. Save the Web module.

Converting a 1.1 EJB module to a 2.1 EJB module (or later)

Use the following steps to migrate each of your EJB modules.

1. Open an assembly tool.

2. Create a new EJB Module by selecting File > New > EJB Module.

3. Add any required class files to the new module.

62 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

a. Right-click Files object and select Add Files.

b. In the Add Files window click Browse.

c. Navigate to your WebSphere Application Server 4.0 EAR file and click Select.

d. In the upper left pane of the Add Files window, navigate to your enterprise bean JAR file.

e. Select each of the directories and class files and click Add.

f. After you add all of the required class files, click OK.

4. Create your session beans and entity beans. To find help on this subject, see the documentation for

Rational Application Developer, or the documentation for WebSphere Studio Application Developer

Integration Edition.

5. Add any necessary resource references.

6. Add any other EJB module properties that are required. Click Help for a description of the settings.

7. Save the EJB module.

8. Generate the deployed code for the EJB module by clicking File > Generate Code for Deployment.

9. Fill in the appropriate fields and click Generate Now.

Add the EJB modules and Web modules to an EAR file

1. Open anassembly tool.

2. Create a new Application by selecting File > New > Application.

3. Add each of your EJB modules.

a. Right-click EJB Modules and select Import.

b. Navigate to your converted EJB module and click Open.

c. Click OK.

4. Add each of your Web modules.

a. Right-click Web Modules and select Import.

b. Navigate to your converted Web module and click Open.

c. Fill in a Context root and click OK.

5. Identify any other application properties. Click Help for a description of the settings.

6. Save the EAR file.

Installing the Application on WebSphere Application Server

1. Create a JDBC provider and a data source object..

2. Install the application and bind the resource references to the data source that you created.

Connection considerations when migrating servlets, JavaServer Pages, or

enterprise session beans

Because WebSphere Application Server provides backward compatibility with application modules coded

to the J2EE 1.2 specification, you can continue to use Version 4 style data sources when you migrate to

Application Server Version 6.x. As long as you configure Version 4 data sources only for J2EE 1.2

modules, the behavior of your data access application components does not change.

If you are adopting a later version of the J2EE specification along with your migration to Application Server

Version 6.x, however, the behavior of your data access components can change. Specifically, this risk

applies to applications that include servlets, JavaServer Page (JSP) files, or enterprise session beans that

run inside local transactions over shareable connections. A behavior change in the data access

components can adversely affect the use of connections in such applications.

This change affects all applications that contain the following methods:

v RequestDispatcher.include()

v RequestDispatcher.forward()

v JSP includes (<jsp:include>)

Chapter 3. Learn about WebSphere applications 63

Symptoms of the problem include:

v Session hang

v Session timeout

v Running out of connections

Note: You can also experience these symptoms with applications that contain the components and

methods described previously if you are upgrading from J2EE 1.2 modules within Application Server

Version 6.x.

Explanation of the underlying problem

For J2EE 1.2 modules using Version 4 data sources, WebSphere Application Server issues non-sharable

connections to JSP files, servlets, and enterprise session beans. All of the other application components

are issued shareable connections. However, for J2EE 1.3 and 1.4 modules, Application Server issues

shareable connections to all logically named resources (resources bound to individual references) unless

you specify the connections as unshareable in the individual resource-references. Using shareable

connections in this context has the following effects:

v All connections that are received and used outside the scope of a user transaction are not returned to

the free connection pool until the encapsulating method returns, even when the connection handle

issues a close() call.

v All connections that are received and used outside the scope of a user transaction are not shared with

other component instances (that is, other servlets, JSP files, or enterprise beans).

For example, session bean 1 gets a connection and then calls session bean 2 that also gets a

connection. Even if all properties are identical, each session bean receives its own connection.

If you do not anticipate this change in the connection behavior, the way you structure your application

code can lead to excessive connection use, particularly in the cases of JSP includes, session beans that

run inside local transactions over shareable connections, RequestDispatcher.include()routines,

RequestDispatcher.forward() routines, or calls from these methods to other components.

Examples of the connection behavior change

Servlet A gets a connection, completes the work, commits the connection, and calls close() on the

connection. Next, servlet A calls the RequestDispatcher.include() to include servlet B, which performs the

same steps as servlet A. Because the servlet A connection does not return to the free pool until it returns

from the current method, two connections are now busy. In this way, more connections might be in use

than you intended in your application. If these connections are not accounted for in the Max Connections

setting on the connection pool, this behavior might cause a lack of connections in the pool, which results

in ConnectionWaitTimeOut exceptions. If the connection wait timeout is not enabled, or if the connection

wait timeout is set to a large number, these threads might appear to hang because they are waiting for

connections that are never returned to the pool. Threads waiting for new connections do not return the

ones they are currently using if new connections are not available.

Alternatives to the connection behavior change

To resolve these problems:

1. Use unshared connections.

If you use an unshared connection and are not in a user transaction, the connection is returned to the

free pool when you issue a close() call (assuming you commit or roll back the connection).

2. Increase the maximum number of connections.

To calculate the number of required connections, multiply the number of configured threads by the

deepest level of component call nesting (for those calls that use connections). See the Examples

section for a description of call nesting.

64 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Mail, URLs, and other J2EE resources

Mail migration tip

Parts of the JavaServer Page (JSP) 1.2 specification change the way the EmailBean class works with

Email.jsp.

The specifications state that the JSP container creates a JSP page implementation class for each JSP

page. The name of the JSP page implementation class is implementation-dependent. The JSP page

implementation object belongs to an implementation-dependent named package which can vary between

one JSP and another; therefore minimal assumptions should be made. The unnamed package should not

be used without explicit import of the class.

Following these specifications, you should place EmailBean.class in a package referred to it by the fully

qualified packageName in Email.jsp. Otherwise, Email.jsp is unable to find EmailBean.class.

Security

Interoperability issues for security

To have interoperability of Security Authentication Service (SAS) between C++ and WebSphere Application

Server, use the Common Secure Interoperability Version 2 (CSIv2) authentication protocol over Remote

Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP).

To have interoperability of SAS between WebSphere Application Server and WebSphere Application

Server for z/OS use the zSAS authentication protocol over RMI-IIOP.

Interoperating with a C++ common object request broker architecture

client

You can achieve interoperability between C++ CORBA clients and WebSphere Application Server using

the z/OS Secure Authentication Services (z/SAS) protocols. z/SAS supports many of the same functions

as Common Secure Interoperability Version 2 (CSIv2), only z/SAS uses a proprietary architecture. z/SAS

supports three types of authentication:

v User ID and password authentication

v User ID and password authentication over SSL

v SSL client certificate authentication

Security authentication from non-Java based C++ client to enterprise beans. WebSphere Application

Server supports security in the CORBA C++ client to access protected enterprise beans. If configured,

C++ CORBA clients can access protected enterprise bean methods using client certificate to achieve

mutual authentication on WebSphere Application Server applications.

To support the C++ CORBA client in accessing protected enterprise beans:

v Create an environment file for the client, such as current.env. Set the variables listed below

(security_sslKeyring, client_protocol_user, client_protocol_password) in the file.

v Point to the environment file using the fully qualified path name through the environment variable

WAS_CONFIG_FILE. For example, in the test shell script test.sh, export:

/WebSphere/V6R0M0/DeploymentManager/profiles/default/config/cells/PLEX1Network/nodes/PLEX1Manager/servers/dmgr

Some of the environment file terms are explained below:

Chapter 3. Learn about WebSphere applications 65

default

profile name

PLEX1Network

cell name

PLEX1Manager

node name

dmgr server name

 C++ security setting Description

client_protocol_password Specifies the password for the user ID.

client_protocol_user Specifies the user ID to be authenticated at the target

server.

security_sslKeyring Specifies the name of the RACF keyring the client will

use. The keyring must be defined under the user ID that

is issuing the command to run the client.

Interoperating with previous product versions

IBM WebSphere Application Server, Version 6.0.x interoperates with the previous product versions such as

Version 5.x. Interoperability is achieved using the zSAS security mechanism for localOS and SAF-based

authorization.

1. If SSL is configured on a previous product version, your servers must have a basis to establish trust.

Using Resource Access Control Facility (RACF), your system can check to ensure that the

intermediate server can be trusted (to confer this level of trust, CBIND authorization is granted by

administrators to RACF user IDs that run secure system code). System SSL repertoires use a System

Authorization Facility (SAF) keyring to retrieve the personal certificate and trust stores. You must

connect the trust basis for the server certificates (on the default setup the certificate authority

certificate) of the previous version server into the keyring of the WebSphere Application Server for

z/OS Version 6.0.x server.

2. Extract and add server certificates into the server key ring file of the previous version.

a. Open the server key ring file using the key management utility (iKeyman) and extract the server

certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and

add the certificate extracted from WebSphere Application Server Version 6.0.x.

3. Extract and add server certificates into the server key ring file of the previous version.

a. Open the server key ring file using the key management utility (iKeyman) and extract the server

certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and

add the certificate extracted from the product.

4. Extract and add trust certificates into the trust key ring file of the previous product version.

a. Open the trust key ring file using the key management utility and extract the trust certificate to a

file.

b. Open the trust key ring file of the previous product version using the key management utility and

add the certificate extracted from the product.

5. If single signon (SSO) is enabled, export keys from the product and import them into the previous

product version.

6. Verify that the application uses the correct JNDI name. In WebSphere Application Server Version 6.0.x,

the enterprise beans are registered with long JNDI names like,

(top)/nodes/node_name/servers/server_name/HelloHome. Whereas in previous releases, enterprise

66 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

beans are registered under a root like, (top)/HelloHome. Therefore, EJB applications from previous

versions perform a lookup on the Version 6.0.x enterprise beans.

You can also create EJB name bindings that are compatible with the previous version. To create an

EJB name binding at the root Version 6.0.x, start the administrative console and click Environment >

Naming > Naming Space Bindings > New > EJB > Next. Complete all the fields and enter a short

name (for example, -HelloHome) as the JNDI Name. Click Next and Finish.

7. Stop and restart all the servers.

8. Make sure that the correct naming bootstrap port is used to perform naming lookup. In previous

product versions, the naming bootstrap port is 900. In Version 6.0.x, the bootstrap port is 2809.

Migrating security configurations from previous releases

This article addresses the need to migrate your security configurations from a previous release of IBM

WebSphere Application Server to WebSphere Application Server Version 6. Complete the following steps

to migrate your security configurations:

v Before migrating your configurations, verify that the administrative server of the previous release is

running.

v If security is enabled in the previous release, obtain the server ID and password of the previous

release. This information is needed to log onto the administrative server of the previous release during

migration.

v You can optionally disable security in the previous release before migrating the installation. There is no

logon required during the installation.

1. Start the First steps wizard by launching the firststeps.bat or firststeps.sh file. The first steps file

is located in the following directory:

v ./install_root/profiles/profile_name/firststeps/firststeps.sh

2. On the First steps wizard panel, click Migration wizard.

3. Follow the instructions provided in the First steps wizard to complete the migration.

The security configuration of previous WebSphere Application Server releases and its applications are

migrated to the new installation of WebSphere Application Server Version 6.

This task is for migrating an installation.

If a custom user registry is used in the previous version, the migration process does not migrate the class

files used by the custom user registry in the previous_install_root/classes directory. Therefore, after

migration, copy your custom user registry implementation classes to the install_root/classes directory.

If you upgrade from WebSphere Application Server, Version 5.x or 4.0.x to WebSphere Application Server,

Version 6.0.x, the data that is associated with Version 5.x or 4.0.x trust associations is not automatically

migrated to Version 6.0.x. To migrate trust associations, see “Migrating trust association interceptors” on

page 70.

Migrating custom user registries

Before you perform this task, it is assumed that you already have a custom user registry implemented and

working with WebSphere Application Server Version 6. The custom registry interface is the UserRegistry

interface.

In WebSphere Application Server Version 6.0.x, in addition to the UserRegistry interface, the custom user

registry requires the Result object to handle user and group information. This file is already provided in the

package and you are expected to use it for the getUsers, getGroups and the getUsersForGroup methods.

You cannot use other WebSphere Application Server components (for example, datasources) to initialize

the custom registry because other components like the containers are initialized after security and are not

Chapter 3. Learn about WebSphere applications 67

available during the registry initialization. A custom registry implementation is a pure custom

implementation, independent of other WebSphere Application Server components.

The EJB method getCallerPrincipal() and the servlet methods getUserPrincipal() and getRemoteUser()

return the security name instead of the display name. However, if you need the display names to return,

set the WAS_UseDisplayName property to true. See the getUserDisplayName method description or the

Javadoc, for more information.

If the migration tool was used to migrate the WebSphere Application Server Version 5 configuration to

WebSphere Application Server Version 6.0.x, be aware that this migration does not involve any changes to

your existing code. Because the WebSphere Application Server Version 5 custom registry works in

WebSphere Application Server Version 6.0.x without any changes to the implementation (except when

using data sources) you can use the Version 5-based custom registry after the migration without modifying

the code. Consider that the migration tool might not copy your implementation files from Version 4 to

Version 6.0.x. You might have to copy them to the class path in the Version 6 setup (preferably to the

classes subdirectoy). If you are using the WebSphere Application Server Network Deployment version,

copy the files to the cell and to each of the nodes class paths.

In WebSphere Application Server Version 6.0.x, a case insensitive authorization can occur when using the

custom registry. This authorization is in effect only on the authorization check. This function is useful in

cases where your custom registry returns inconsistent (in terms of case) results for user and group unique

IDs.

Note: Setting this flag does not have any effect on the user names or passwords. Only the unique IDs

returned from the registry are changed to lower-case before comparing them with the information in

the authorization table, which is also converted to lowercase during run time.

Before proceeding, look at the UserRegistry interface. See Developing custom user registries in the

Securing applications and their environment PDF book for a description of each of these methods in detail.

The following steps go through in detail all the changes required to move your WebSphere Application

Server Version 5 custom user registry to the WebSphere Application Server Version 6.0.x custom user

registry. The steps are very simple and involve minimal code changes. The sample implementation file is

used as an example when describing some of the steps.

 1. Change your implementation to UserRegistry instead of CustomRegistry. Change:

public class FileRegistrySample implements CustomRegistry

to

public class FileRegistrySample implements UserRegistry

 2. Throw the java.rmi.RemoteException in the constructors public FileRegistrySample() throws

java.rmi.RemoteException

 3. Change the mapCertificate method to take a certificate chain instead of a single certificate. Change

public String mapCertificate(X509Certificate cert)

to

public String mapCertificate(X509Certificate[]cert)

Having a certificate chain gives you the flexibility to act on the chain instead of one certificate. If you

are only interested in the first certificate just take the first certificate in the chain before processing. In

WebSphere Application Server Version 6, the mapCertificate method is called to map the user in a

certificate to a valid user in the registry, when certificates are used for authentication by the Web or

the Java clients (transport layer certificates, Identity Assertion certificates).

 4. Remove the getUsers() method.

 5. Change the signature of the getUsers(String) method to return a Result object and accept an

additional parameter (int). Change:

68 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

public List getUsers(String pattern)

to

public Result getUsers(String pattern, int limit)

In your implementation, construct the Result object from the list of the users obtained from the

registry (whose number is limited to the value of the limit parameter) and call the setHasMore()

method on the Result object if the total number of users in the registry exceeds the limit value.

 6. Change the signature of the getUsersForGroup(String) method to return a Result object and accept

an additional parameter (int) and throw a new exception called NotImplementedException. Change

the following:

public List getUsersForGroup(String groupName)

 throws CustomRegistryException,

 EntryNotFoundException {

to

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

In WebSphere Application Server Version 6, this method is not called directly by the WebSphere

Application Server Security component. However, other components of the WebSphere Application

Server like the WebSphere Business Integration Server Foundation Process Choreographer use this

method when staff assignments are modeled using groups. Because this already is implemented in

WebSphere Application Server Version 6.0.x, it is recommended that you change the implementation

similar to the getUsers method as explained in step 5.

 7. Remove the getUniqueUserIds(String) method.

 8. Remove the getGroups() method.

 9. Change the signature of the getGroups(String) method to return a Result object and accept an

additional parameter (int). change the following:

public List getGroups(String pattern)

to

public Result getGroups(String pattern, int limit)

In your implementation, construct the Result object from the list of the groups obtained from the

registry (whose number is limited to the value of the limit parameter) and call the setHasMore()

method on the Result object if the total number of groups in the registry exceeds the limit value.

10. Add the createCredential method. This method is not called at this time, so return as null.

public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

 return null;

 }

The first and second lines of the previous code example normally appear on one line. However, it

extended beyond the width of the page.

11. To build the WebSphere Application Server Version 6.0.x implementation, make sure you have the

sas.jar and wssec.jar in your class path.

Chapter 3. Learn about WebSphere applications 69

%install_root%\java\bin\javac -classpath %WAS_HOME%\lib\wssec.jar;

%WAS_HOME%\lib\sas.jar FileRegistrySample.java

Type the previous lines as one continuous line.

12. Copy the implementation classes to the product class path. The %install_root%/lib/ext directory is

the preferred location. If you are using the Network Deployment product, make sure that you copy

these files to the cell and all the nodes. Without the files in each of the node class paths the nodes

and the application servers in those nodes cannot start when security is on.

13. Use the administrative console to set up the custom registry. Follow the instructions in the Configuring

custom user registries article in the Securing applications and their environment PDF book to set up

the custom registry including the IgnoreCase flag. Make sure that you add the WAS_UseDisplayName

properties, if required.

Migrates to a WebSphere Application Server Version 6.0.x custom registry.

This step is required to migrate a custom registry from WebSphere Application Server Version 5 to

WebSphere Application Server Version 6.0.x.

If you are enabling security, make sure you complete the remaining steps. Once completed, save the

configuration and restart all the servers. Try accessing some J2EE resources to verify that the custom

registry migration was successful.

Migrating trust association interceptors

Changes to the product-provided trust association interceptors

For the product provided implementation for the WebSeal server a new optional property

com.ibm.websphere.security.webseal.ignoreProxy has been added. If this property is set to true or yes,

the implementation does not check for the proxy host names and the proxy ports to match any of the host

names and ports listed in the com.ibm.websphere.security.webseal.hostnames and the

com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains

the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),

HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

Note: The previous VIA header information was split onto two lines due to the width of the printed page.

and the com.ibm.websphere.security.webseal.ignoreProxy is set to true or yes, the host name Fred is

not be used when matching the host names. By default, this property is not set, which implies that any

proxy host names and ports expected in the VIA header should be listed in the host names and the ports

properties to satisfy the isTargetInterceptor method.

Migrating product-provided trust association interceptors

The properties located in the webseal.properties and trustedserver.properties files are not migrated

from previous versions of the WebSphere Application Server. You must migrate the appropriate properties

to WebSphere Application Server Version 6 using the trust association panels in the administrative

console..

Changes to the custom trust association interceptors

If the custom interceptor extends,

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor, then implement the following

new method to initialize the interceptor:

70 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the Trust Association implementation.

Zero (0) is the default value for indicating the interceptor was successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status

you can either change your implementation to match the expectations or make one of the following

changes:

Method 1:

Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust

association interceptor custom properties. Set the property to the value that indicates that the

interceptor is successfully initialized. All of the other possible values imply failure. In case of

failure, the corresponding trust association interceptor is not used.

Method 2:

Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust

association interceptor custom properties. Set the value of this property to true, which tells

WebSphere Application Server to ignore the status of this method. If you add this property to the

custom properties, WebSphere Application Server does not check the return status, which is

similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props); method replaces the public int init (String

propsFile) method.

The init(Properties) method accepts a java.util.Properties object which contains the set of properties

required to initialize the interceptor. All the properties set for an interceptor (by using the Custom

Properties link for that interceptor or using scripting) will be sent to this method. The interceptor can then

use these properties to initialize itself. For example, in the product provided implementation for the

WebSEAL server, this method reads the hosts and ports so that a request coming in can be verified to

come from trusted hosts and ports. A return value of 0 implies that the interceptor initialization is

successful. Any other value implies that the initialization was not successful and the interceptor will not be

used.

All the properties set for an interceptor (by using the Custom Properties link in the administrative console

for that interceptor or using scripting) is sent to this method. The interceptor can then use these properties

to initialize itself. For example, in the product-provided implementation for the WebSEAL server, this

method reads the hosts and ports so that an incoming request can be verified to come from trusted hosts

and ports. A return value of 0 implies that the interceptor initialization is successful. Any other value implies

that the initialization was not successful and the interceptor is ignored.

Note: The init(String) method still works if you want to use it instead of implementing the

init(Properties) method. The only requirement is that the file name containing the custom trust

association properties should now be entered using the Custom Properties link of the interceptor

in the administrative console or by using scripts. You can enter the property using either of the

following methods. The first method is used for backward compatibility with previous versions of

WebSphere Application Server.

Method 1:

The same property names used in the previous release are used to obtain the file name.

The file name is obtained by concatenating the .config to the

com.ibm.websphere.security.trustassociation.types property value. If the file name is

called myTAI.properties and is located in the C:/WebSphere/AppServer/properties

directory, set the following properties:

v com.ibm.websphere.security.trustassociation.types = myTAItype

v com.ibm.websphere.security.trustassociation.myTAItype.config =

C:/WebSphere/AppServer/properties/myTAI.properties

Chapter 3. Learn about WebSphere applications 71

Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in

the trust association custom properties to the location of the file. For example, set the

following property:

com.ibm.websphere.security.trustassociation.initPropsFile=

C:/WebSphere/AppServer/properties/myTAI.properties

 The previous line of code was split into two lines due to the width of the screen. Type as

one continuous line.

However, it is highly recommended that your implementation be changed to implement the init(Properties)

method instead of relying on init (String propsfile) method.

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are not automatically

migrated to WebSphere Application Server Version 6.0.x. Users can manually migrate these trust

associations using the following steps:

1. Recompile the implementation file, if necessary.

For more information, refer to the ″Changes to the custom trust association interceptors″ section

previously discussed in this document.

To recompile the implementation file, type the following:

%WAS_HOME%/java/bin/javac -classpath %WAS_HOME%/lib/wssec.jar;

%WAS_HOME%/lib/j2ee.jar <your implementation file>.java

Note: The previous line of code was broken into two lines due to the width of the page. Type the code

as one continuous line.

2. Copy the custom trust association interceptor class files to a location in your product class path. It is

suggested that you copy these class files into the %WAS_HOME%/lib/ext directory.

3. Start the WebSphere Application Server.

4. Enable security to use the trust association interceptor. The properties located in your custom trust

association properties file and in the trustedserver.properties file are not migrated from previous

versions of WebSphere Application Server. You must migrate the appropriate properties to WebSphere

Application Server Version 6 using the trust association panels in the administrative console.

Migrating Common Object Request Broker Architecture programmatic login to

Java Authentication and Authorization Service

Note: Common Object Request Broker Architecture (CORBA) application programming interfaces (API)

are not supported in the WebSphere Application Server for z/OS environment. If you have an

application that you are porting from another WebSphere Application Server product to WebSphere

Application Server for z/OS you must be aware that the security APIs that are deprecated in

Version 6.0.x. If you wish to use these applications on WebSphere Application Server for z/OS

Version 6.0.x, you must migrate to Java Authentication and Authorization Service (JAAS).

WebSphere Application Server fully supports the Java Authentication and Authorization Service (JAAS) as

programmatic login application programming interfaces (API).

This document outlines the deprecated CORBA programmatic login APIs and the alternatives provided by

JAAS. The following are the deprecated CORBA programmatic login APIs and are not supported on

WebSphere Application Server for z/OS:

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/LoginHelper.java.

72 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

The sampleApp is not included in Version 6.

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/ServerSideAuthenticator.java.

The sampleApp is not included in Version 6.

v com.ibm.IExtendedSecurity._LoginHelper.

This API is not included in Version 6.

v org.omg.SecurityLevel2.Credentials.

This API is included with the product, but is not to be used with z/OS.

The APIs provided in WebSphere Application Server Version 6.0.x are a combination of standard JAAS

APIs and a product implementation of standard JAAS interfaces.

The supported APIs provided in WebSphere Application Server for z/OS Version 6 are a combination of

standard JAAS APIs and product implementation of standard JAAS interfaces (also some minor

extension).

The following information is only a summary; refer to the JAAS documentation for your platform located at:

http://www.ibm.com/developerworks/java/jdk/security/ .

v Programmatic login APIs:

– javax.security.auth.login.LoginContext

– javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product

provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

Provides a non-prompt CallbackHandler when the application pushes basic authentication

data (user ID, password, and security realm) or token data to product LoginModules. This

API is recommended for server-side login.

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl

Provides a stdin login prompt CallbackHandler to gather basic authentication data (user ID,

password, and security realm). This API is recommended for client-side login.

Note: If this API is used on the server side, the server is blocked for input.
– javax.security.auth.callback.Callback interface:

javax.security.auth.callback.NameCallback

Provided by JAAS to pass the user name to the LoginModules interface.

javax.security.auth.callback.PasswordCallback

Provided by JAAS to pass the password to the LoginModules interface.

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

Provided by the product to perform a token-based login. With this API, an application can

pass a token-byte array to the LoginModules interface.
– javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides LoginModules implementation for client and server-side

login.
v javax.security.Subject:

com.ibm.websphere.security.auth.WSSubject

An extension provided by the product to invoke remote J2EE resources using the credentials in

the javax.security.Subject

Note: An application must invoke the WSSubject.doAs() method for J2EE resources to be

accessed using the subject generated by an explicit invocation of a WebSphere login

module.
com.ibm.websphere.security.cred.WSCredential

After a successful JAAS login with the WebSphere Application Server LoginModules intefaces, a

com.ibm.websphere.security.cred.WSCredential credential is created and stored in the

Subject.

Chapter 3. Learn about WebSphere applications 73

http://www.ibm.com/developerworks/java/jdk/security/

com.ibm.websphere.security.auth.WSPrincipal

An authenticated principal, that is created and stored in a Subject that is authenticated by the

WebSphere LoginModules interface.

Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS

programmatic login APIs. The following example assumes that the application code is granted for the

required Java 2 security permissions. For more information, see the JAAS documentation located at:

http://www.ibm.com/developerworks/java/jdk/security/.

public class TestClient {

...

private void performLogin() {

// Create a new JAAS LoginContext.

javax.security.auth.login.LoginContext lc = null;

try {

// Use GUI prompt to gather the BasicAuth data.

lc = new javax.security.auth.login.LoginContext(″WSLogin″,

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println(″ERROR: failed to instantiate a LoginContext and the exception: ″

+ e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission ″createLoginContext″ is not granted

// to the application, or the JAAS Login Configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB

} catch (Exception e) {

System.out.println(″ERROR: error while accessing EJB resource, exception: ″

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

// Retrieve the name of the principal from the Subject

74 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

http://www.ibm.com/developerworks/java/jdk/security/

// so we can tell the user that login succeeded,

// should only be one WSPrincipal.

java.util.Set ps =

s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);

java.util.Iterator it = ps.iterator();

while (it.hasNext()) {

com.ibm.websphere.security.auth.WSPrincipal p =

(com.ibm.websphere.security.auth.WSPrincipal) it.next();

System.out.println(″Principal: ″ + p.getName());

}

} catch (javax.security.auth.login.LoginException e) {

System.err.println(″ERROR: login failed with exception: ″ + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

}

...

}

Migrating from the CustomLoginServlet class to servlet filters

The CustomLoginServlet class was deprecated in WebSphere Application Server Version 5. Those

applications using the CustomLoginServlet class to perform authentication now need to use form-based

login. Using the form-based login mechanism, you can control the look and feel of the login screen. In

form-based login, a login page is specified that displays when retrieving the user ID and password

information. You also can specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.

Servlet filters can dynamically intercept requests and responses to transform or use the information

contained in the requests or responses. One or more servlet filters attach to a servlet or a group of

servlets. Servlet filters also can attach to JSP files and HTML pages. All the attached servlet filters are

called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant Web

container. A form login servlet performs the authentication and servlet filters can perform additional

authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either

form login page or for /j_security_check URL. The j_security_check is posted by the form login page

with the j_username parameter, containing the user name and the j_password parameter containing the

password. A servlet filter can use user name and password information to perform more authentication or

meet other special needs.

1. Develop a form login page and error page for the application.

2. Configure the form login page and the error page for the application.

3. Develop servlet filters if additional processing is required before and after form login authentication.

4. Configure the servlet filters developed in the previous step for either the form login page URL or for the

/j_security_check URL. Use an assembly tool or development tools like Rational Application

Developer to configure filters. After configuring the servlet filters, the web-xml file contains two stanzas.

The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.

The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL.

This migration results in an application that uses form-based login and servlet filters without the use of the

CustomLoginServlet class.

Chapter 3. Learn about WebSphere applications 75

The use of form-based login and servlet filters by the new application are used to replace the

CustomLoginServlet class. Servlet filters also are used to perform additional authentication, auditing and

logging.

Propagating security policy of installed applications to a JACC

provider using wsadmin scripting

It is possible that you have applications installed prior to enabling the Java Authorization Contract for

Containers (JACC)-based authorization. You can start with default authorization and then move to an

external provider based authorization using JACC later on. In this case, the security policy of the

previously installed applications would not exist in the JACC provider to make the access decisions. You

can reinstall all of the applications once JACC is enabled. The wsadmin scripting tool can be used to

propagate information to the JACC provider independent of the application install process. The tool

eliminates the need for reinstalling the applications.

The tool uses the SecurityAdmin MBean to propagate the policy information in the deployment descriptor

of any installed application to the JACC provider. The wsadmin tool can be used to invoke this method at

the deployment manager level.

Use propagatePolicyToJACCProvider(String appNames) to propagate the policy information in the

deployment descriptor of the enterprise archive (EAR) files to the JACC provider. If the

RoleConfigurationFactory and the RoleConfiguration interfaces are implemented by the JACC provider, the

authorization table information in the binding file of the EAR files is also propagated to the provider.

The appNames contains the list of application names, delimited by a colon (:), whose policy information

must be stored in the provider. If a null value is passed, the policy information of the deployed applications

is propagated to the provider.

Also, be aware of the following items:

v Before migrating application(s) to the Tivoli Access Manager JACC provider, please create or import the

users and groups that are in the application(s) to Tivoli Access Manager.

v Depending on the application or the number of applications propagated you might have to increase the

request time-out period either in the soap.client.props (if using SOAP) or the sas.client.props (if using

RMI) for the command to complete. You can set the request time-out value to 0 to avoid the timeout

problem, and change it back to the original value after the command is run.

1. Configure your JACC provider in WebSphere Application Server.

2. Restart the server.

3. Enter the following commands:

// use the SecurityAdmin Mbean at the Deployment Manager or the unmanaged base application server

wsadmin -user serverID -password serverPWD

set secadm [lindex [$AdminControl queryNames type=SecurityAdmin,*] 0]

// to propagate specific applications security policy information

wsadmin>set appNames [list app1:app2]

// or to propagate all applications installed

wsadmin>set appNames [list null]

// Run the command to propagate

wsadmin>$AdminControl invoke $secadm propagatePolicyToJACCProvider $appNames

76 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Enabling embedded Tivoli Access Manager

Embedded Tivoli Access Manager is not enabled by default but needs to be configured for use.

Enabling Tivoli Access Manager security within WebSphere Application Server requires:

v A supported Lightweight Directory Access Protocol (LDAP) installed somewhere on your network. This is

the user registry containing the user and group information for both Tivoli Access Manager and

WebSphere Application Server.

v A Tivoli Access Manager Version 5.1 domain exists and is configured to use the user registry. For

details on the installation and configuration of Tivoli Access Manager refer to the: Tivoli Access Manager

Base installation Guide and the Tivoli Access Manager Base Administrator‘s Guide available from

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

v WebSphere Application Server Version 6.0.x is installed either in a single server model or as a network

deployment.

Complete the following steps to enable the embedded Tivoli Access Manager security:

1. Create the security administrative user.

2. Configure the Tivoli Access Manager Java Authorization Contract for Containers (JACC) provider.

3. Enable WebSphere Application Server security. When you are using Tivoli Access Manager you must

configure LDAP as the user registry.

4. Enable the Tivoli Access Manager JACC provider.

Migrating Java 2 security policy

Previous WebSphere Application Server releases

WebSphere Application Server uses the Java 2 security manager in the server run time to prevent

enterprise applications from calling the System.exit() and the System.setSecurityManager() methods.

These two Java application programming interfaces (API) have undesirable consequences if called by

enterprise applications. The System.exit() API, for example, causes the Java virtual machine (application

server process) to exit prematurely, which is an undesirable operation for an application server.

To support Java 2 security properly, all the server run time must be marked as privileged (with

doPrivileged() API calls inserted in the correct places), and identify the default permission sets or policy.

Application code is not privileged and subject to the permissions defined in the policy files. The

doPrivileged instrumentation is important and necessary to support Java 2 security. Without it, the

application code must be granted the permissions required by the server run time. This is due to the

design and algorithm used by Java 2 security to enforce permission checks. Please refer to the Java 2

security check permission algorithm.

The following two permissions are enforced by the WebSphere Java 2 security manager (hard coded):

v java.lang.RuntimePermission(exitVM)

v java.lang.RuntimePermission(setSecurityManager)

Application code is denied access to these permissions regardless of what is in the Java 2 security policy.

However, the server run time is granted these permissions. All the other permission checks are not

enforced.

Only two permissions are supported:

v java.net.SocketPermission

v java.net.NetPermission

Chapter 3. Learn about WebSphere applications 77

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

However, not all the product server run time is properly marked as privileged. You must grant the

application code all the other permissions besides the two listed previously or the enterprise application

can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

What changed

Java 2 Security is fully supported in WebSphere Application Server Version 6.0.x, which means all

permissions are enforced. The default Java 2 security policy for enterprise application is the recommended

permission set defined by the Java 2 Platform, Enterprise Edition (J2EE) Version 1.4 specification. Refer to

the install_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy file for

the default Java 2 security policy granted to enterprise applications. This is a much more stringent policy

compared to previous releases.

All policy is declarative. The product security manager honors all policy declared in the policy files. There

is an exception to this rule: enterprise applications are denied access to permissions declared in the

install_root/profiles/profile_name/config/cells/cell_name/filter.policy file.

Note: The default Java 2 security policy for enterprise applications is much more stringent and all

permissions are enforced in WebSphere Application Server Version 6.0.x. It might fail because the

application code does not have the necessary permissions granted where system resources (such

as file I/O for example) can be programmatically accessed and are now subject to the permission

checking.

In application code, do not use the setSecurityManager permission to set a security manager. When an

application uses the setSecurityManager permission, there is a conflict with the internal security manager

within WebSphere Application Server. If you must set a security manager in an application for RMI

purposes, you also must enable the Enforce Java 2 Security option on the Global security settings page

within the WebSphere Application Server administrative console. WebSphere Application Server then

registers a security manager. The application code can verify that this security manager is registered by

using System.getSecurityManager() application programming interface (API).

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:

v java.security.policy. The absolute path of the policy file (action required). It contains both system

permissions (permissions granted to the Java Virtual Machine (JVM) and the product server run time)

and enterprise application permissions. Migrate the Java 2 security policy of the enterprise application to

WebSphere Application Server Version 6.0.x. For Java 2 security policy migration, see the steps for

migrating Java 2 security policy.

v enableJava2Security. Used to enable Java 2 security enforcement (no action required). This is

deprecated; a flag in the WebSphere configuration application programming interface (API) is used to

control whether to enabled Java 2 security. Enable this option through the administrative console.

v was.home. Expanded to the installation directory of the WebSphere Application Server (action might be

required). This is deprecated; superseded by ${user.install.root} and ${was.install.root}

properties. If the directory contains instance specific data then ${user.install.root} is used; otherwise

${was.install.root} is used. Use these properties interchangeably for the WebSphere Application

Server or the Network Deployment environments. See the steps for migrating Java 2 security policy.

Migrating the Java 2 Security Policy

There is no easy way of migrating the Java policy file to WebSphere Application Server Version 6.0.x

automatically because there is a mixture of system permissions and application permissions in the same

policy file. Manually copy the Java 2 security policy for enterprise applications to a was.policy or

app.policy file. However, migrating the Java 2 security policy to a was.policy file is preferable because

symbols or relative codebase is used instead of absolute codebase. There are many advantages to this

78 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

process. The permissions defined in the was.policy file should only be granted to the specific enterprise

application, while permissions in the app.policy file apply to all the enterprise applications running on the

node where the app.policy file belongs.

The following example illustrates the migration of a Java 2 security policy from a previous release. The

contents include the Java 2 security policy file (the default is install_rootprofiles

profile_name/properties/java.policy) for the app1.ear enterprise application and the system

permissions (permissions granted to the JVM and product server run time). Default permissions are

omitted for clarity:

// For product Samples

 grant codeBase ″file:${install_root}/installedApps/app1.ear/-″ {

 permission java.security.SecurityPermission ″printIdentity″;

 permission java.io.FilePermission ″${install_root}${/}temp${/}somefile.txt″,

 ″read″;

 };

For clarity of illustration, all the permissions are migrated as the application level permissions in this

example. However, you can grant permissions at a more granular level at the component level (Web,

enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to

a particular component.

1. Ensure that Java 2 security is disabled on the application server.

2. Create a new was.policy file (if one is not present) or update the was.policy for migrated applications

in the configuration repository in

(profiles/profile_nameconfig/cells/cell_name/applications/app.ear/deployments/app/META-
INF/was.policy) with the following contents:

grant codeBase ″file:${application}″ {

 permission java.security.SecurityPermission ″printIdentity″;

 permission java.io.FilePermission ″

 ${user.install.root}${/}temp${/}somefile.txt″, ″read″;

 };

The third and fourth lines in the previous code sample are one continuous line, but extended beyond

the width of the page.

3. Use an assembly tool to attach the was.policy file to the enterprise archive (EAR) file. You also can

use an assembly tool to validate the contents of the was.policy file.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2

Security permissions and the default permissions set declared in the

${was.install.root}profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy

file. This requires code review, code inspection, application documentation review, and sandbox testing

of migrated enterprise applications with Java 2 security enabled in a pre-production environment. Refer

to developer kit APIs protected by Java 2 security for information about which APIs are protected by

Java 2 security. If you use third party libraries, consult the vendor documentation for APIs that are

protected by Java 2 security. Verify that the application is granted all the required permissions, or it

might fail to run when Java 2 security is enabled.

5. Perform pre-production testing of the migrated enterprise application with Java 2 security enabled.

Hint: Enable trace for the WebSphere Application Server Java 2 security manager in the

pre-production testing environment (with trace string:

com.ibm.ws.security.core.SecurityManager=all=enabled). This can be helpful in debugging the

AccessControlException exception thrown when an application is not granted the required permission

or some system code is not properly marked as privileged. The trace dumps the stack trace and

permissions granted to the classes on the call stack when the exception is thrown.

Chapter 3. Learn about WebSphere applications 79

Note: Because the Java 2 security policy is much more stringent compared with previous releases, it

is strongly advised that the administrator or deployer review their enterprise applications to see

if extra permissions are required before enabling Java 2 security. If the enterprise applications

are not granted the required permissions, they fail to run.

Naming and directory

JNDI interoperability considerations

This section explains considerations to take into account when interoperating with WebSphere Application

Server V4.0 and with non-WebSphere Application Server JNDI clients. Also, the way resources from

MQSeries must be bound to the name space changed after V4.0 and is described below.

Interoperability with WebSphere Application Server V4.0

v EJB clients running on WebSphere Application Server V4.0 accessing EJB applications running

on WebSphere Application Server V5 or V6

Applications migrated from previous versions of WebSphere Application Server may still have clients still

running in a previous release. The default initial JNDI context for EJB clients running on previous

versions of WebSphere Application Server is the cell persistent root (legacy root). The home for an

enterprise bean deployed in version 5 or 6 is bound to its server’s server root context. In order for the

EJB lookup name for down-level clients to remain unchanged, configure a binding for the EJB home

under the cell persistent root.

v EJB clients running on WebSphere Application Server V5 or V6 accessing EJB applications

running on WebSphere Application Server V4.0 servers

The default initial context for a WebSphere Application Server V4.0 server is the correct initial context.

Simply look up the JNDI name under which the EJB home is bound.

Note: To enable WebSphere Application Server V5 or V6 clients to access version 4.x servers, the

down-level installations must have e-fix PQ60074 installed.

EJB clients running in an environment other than WebSphere Application Server accessing EJB

applications running on WebSphere Application Server V5 or V6 servers

When an EJB application running in WebSphere Application Server V5 or V6 is accessed by a

non-WebSphere Application Server EJB client, the JNDI initial context factory is presumed to be a

non-WebSphere Application Server implementation. In this case, the default initial context will be the cell

root. If the JNDI service provider being used supports CORBA object URLs, the corbaname format can be

used to look up the EJB home. The construction of the stringified name depends on whether the object is

installed on a single server or cluster, as shown below.

v Single server

initialContext.lookup(

 "corbaname:iiop:myHost:2809#cell/nodes/node1/servers/server1/myEJB");

According to the URL above, the bootstrap host and port are myHost and 2809, and the enterprise

bean is installed in a server server1 in node node1 and bound in that server under the name myEJB.

v Server cluster

initialContext.lookup(

 "corbaname:iiop:myHost:2809#cell/clusters/myCluster/myEJB");

According to the URL above, the bootstrap host and port are myHost and 2809, and the enterprise

bean is installed in a server cluster named myCluster and bound in that cluster under the name

myEJB.

The above lookup will work with any name server bootstrap host and port configured in the same cell.

80 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

The above lookup will also work if the bootstrap host and port belongs to a member of the cluster itself.

To avoid a single point of failure, the bootstrap server host and port for each cluster member could be

listed in the URL as follows:

initialContext.lookup(

 "corbaname:iiop:host1:9810,:host2:9810#cell/clusters/myCluster/myEJB");

The name prefix cell/clusters/myCluster/ is not necessary if boostrapping to the cluster itself, but it will

work. The prefix is needed, however, when looking up enterprise beans in other clusters. Name

bindings under the clusters context are implemented on the name server to resolve to the server root

of a running cluster member during a lookup; thus avoiding a single point of failure.

v Without CORBA object URL support

If the JNDI initial context factory being used does not support CORBA object URLs, the initial context

can be obtained from the server, and the lookup can be performed on the initial context as follows:

Hashtable env = new Hashtable();

env.put(CONTEXT.PROVIDER_URL, "iiop://myHost:2809");

Context ic = new InitialContext(env);

Object o = ic.lookup("cell/clusters/myCluster/myEJB");

Binding resources from MQSeries 5.2

In releases previous to WebSphere Application Server V5, the MQSeries jmsadmin tool could be used to

bind resources to the name space. When used with a WebSphere Application Server V5 or V6 name

space, the resource is bound within a transient partition in the name space and does not persist past the

life of the server process. Instead of binding the MQSeries resources with the jmsadmin tool, bind them

from the WebSphere Application Server administrative console, under Resources in the console

navigation tree.

Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming model extensions for

enhancing your application development and deployment.

Application profiling

Migrating Version 5 Application Profiles to Version 6

The WebSphere Application Server Version 6 application profiling function works under the unit of work

concept. This gives it a more predictable data access pattern based on the active unit of work, which could

be either a transaction or an ActivitySession.

In order to support Java 2 platform, Enterprise Edition (J2EE) 1.3 applications with an application profile

configuration from WebSphere Application Server Version 5.x , the Application Profile service on a Version

6 server must enable the Application Profiling 5.x Compatibility Mode as the default. The 5.x compatibility

mode has a fair amount of performance overhead on a Version 6 server. Because of this, if there is no

J2EE 1.3 application with an application profile V5.x configuration installed, the server does not load the

support for the 5.x compatibility mode during startup, even when the 5.x compatibility mode is turned on.

After the server starts without loading the 5.x compatibility mode support, if a J2EE 1.3 application with an

application profile V5.x configuration installs on the server and attempts to start, the following message is

displayed, and the server must be restarted:

ACIN0031E: The J2EE 1.3 application <ApplicationName> is configured for application

profiling and is installed and starting on a running server that enables Application Profiling

 5.x Compatibility Mode. You must re-start the server.

This situation only happens when:

1. the server started with the Application Profile service enabled and 5.x compatibility mode turned on

2. you try to install and start a J2EE 1.3 application with an application profile configured in Version 5.x.

Chapter 3. Learn about WebSphere applications 81

To avoid this situation, you must install at least one J2EE 1.3 application with an application profile Version

5.x configuration before starting the server.

Ideally, you would upgrade your J2EE 1.3 applications to use the Version 6 application profiling

configuration and turn off the Application Profiling 5.x Compatibility Mode through the administrative

console.

Therefore it is recommended that you migrate any application you might have configured with application

profiling in Version 5. Application profiles migration only requires you to re-configure your applications in

the Version 6 Application Server Toolkit (AST).

Application profiling interoperability

The effect of 5.x Compatibility Mode

Application profiling supports forward compatibility. Application profiles created in previous versions of

WebSphere Application Server (Enterprise Edition 5.0 or WebSphere Business Integration Server

Foundation 5.1) can only run in WebSphere Application Server Version 6 if the Application Profiling 5.x

Compatibility Mode attribute is turned on. If the 5.x Compatibility Mode attribute is off, Version 5 application

profiles might display unexpected behavior.

Similarly, application profiles that you create using WebSphere Application Server Version 6 are not

compatible with Version 5 or earlier versions. Even applications configured with application profiles run on

Version 6 servers with the Application Profiling 5.x Compatibility Mode attribute turned on cannot interact

with applications configured with profiles run on Version 5 servers.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service‘s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x Compatibility

Mode, you must set the appprofileCompatibility system property to true in the client process. You can do

this by specifying the -CCDappprofileCompatibility=true option when invoking the launchClient command.

Considerations for a clustered environment

In a clustered environment with mixed WebSphere Application Server product versions and mixed

platforms, applications configured with application profiles might exhibit unexpected behavior because

previous versions of server members cannot support the application profiling of Version 6.

If a clustered environment contains both Version 5.x and 6.0 server members, and if any applications are

configured with application profiles, the Application Profiling 5.x Compatibility Mode attribute must be

turned on in Version 6 server members. Still, this cluster can only support Version 5 application profiling

behavior. To support applications configured with Version 6 application profiles in a cluster environment, all

server members in the cluster must be at the Version 6 level.

WebSphere Application Server Enterprise Edition Version 5.0.2

If you use WebSphere Application Server Enterprise Edition 5.0.2, you must apply WebSphere Application

Server Version 5 service pack 7 or later service pack to enable Application Profiling interoperability.

82 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Asynchronous beans

Interoperating with asynchronous beans

Asynchronous beans support Serialized WorkWithExecutionContext interoperability with objects serialized

in 5.0.2 or later.

For more information on migrating to WebSphere Application Server Version 6 from previous product

releases, see the topic, .

1. Install the Version 6 product.

2. Use the Version 6 Profile creation wizard to create one or more profiles for a deployment manager, a

managed node, or a stand-alone Application Server.

3. Start the First steps console.

4. Select the Migration wizard on the First steps console.

5. Use the to migrate the previous release to the Version 6 product.

Dynamic cache

Migrating V6.0 servers from multi-broker replication domains to data replication

domains

Use this task to migrate multi-broker replication domains to data replication domains. Multi-broker domains

were created with a previous version of WebSphere Application Server.

For HTTP session affinity to continue working correctly when migrating V5.x application servers to V6.0

application servers, you must upgrade all of the Web server plug-ins for WebSphere Application Server to

the latest version before upgrading the application servers that perform replication.

After you upgrade your deployment manager to the latest version of WebSphere Application Server, you

can create data replication domains only. Any multi-broker domains that you created with a previous

release of WebSphere Application Server are still functional, however, you cannot create new multi-broker

domains or replicators with the administrative console.

The different versions of application servers cannot communicate with each other. When migrating your

servers to the current version of WebSphere Application Server, keep at least two application servers

running on the previous version so that replication remains functional.

Perform this task on any multi-broker domains in your configuration after all of your servers that are using

this multi-broker domain have been migrated to the current version of WebSphere Application Server.

The following examples illustrate the migration process for common configurations:

Migrating an application server configuration that uses an instance of data replication service in

peer-to-peer mode

Use this migration path to migrate a replication domain that uses the default peer-to-peer configuration.

Dynamic cache replication domains use the peer-to-peer topology.

Before you begin, migrate all the Web server plug-ins for your application server cluster to the current

version.

1. Migrate one or more of your existing servers to the current version of WebSphere Application Server.

2. In the administrative console, create an empty data replication domain. Click Environment >

Replication domains > New in the administrative console.

Chapter 3. Learn about WebSphere applications 83

3. Add your migrated application servers to the new data replication domain. For example, if you are

migrating 4 servers, migrate 2 servers first and add them to the new replication domain. Configure the

servers to use the new domain by configuring the consumers of the replication domain.

4. When the new data replication domains are successfully sharing data, migrate the rest of the servers

that are using the multi-broker replication domain to data replication domains.

5. Delete the empty multi-broker replication domain.

Migrating an application server configuration that uses an instance of the data replication service

in client/server mode

Use this set of steps to migrate a replication domain that uses client/server mode.

Before you begin migrating a client/server mode replication domain, consider if migrating your replication

domains might cause a single point of failure. Because you migrate the servers to the new type of

replication domain one at a time, you risk a single point of failure if there are 3 or fewer application

servers. Before migrating, configure at least 4 servers that use multi-broker replication domains. Perform

the following steps to migrate the multi-broker domains to data replication domains:

1. Migrate one or more of your existing servers to the current version of WebSphere Application Server.

2. In the administrative console, create an empty data replication domain. Click Environment >

Replication domains > New in the administrative console.

3. Add your migrated servers to the new data replication domain. For example, if you are migrating 4

servers, migrate two of these servers and then add them to the new replication domain. Configure the

servers to use the new domain by configuring the consumers of the replication domain.

4. Add a part of the clients to the new data replication domain.

5. When the new data replication domains are successfully sharing data, migrate the rest of the clients

and servers that are using the multi-broker replication domain to data replication domains.

6. Delete the empty multi-broker replication domain.

Migrating a replication domain that uses HTTP session memory-to-memory replication that is

overloaded at the application or web module level

1. Upgrade your deployment manager to the current version of WebSphere Application Server. All the

application servers remain configured with the old multi-broker domains on the previous version of

WebSphere Application Server.

2. In the administrative console, create an empty data replication domain. Click Environment >

Replication domains > New in the administrative console.

3. Migrate each application server to the current version of WebSphere Application Server, one at a time.

The remaining servers on the previous version of WebSphere Application Server can still communicate

with each other, but not with the migrated servers. The migrated servers can also communicate with

each other.

4. Continue migrating all of the servers to the current version of WebSphere Application Server. All of the

application servers are still using multi-broker replication domains, so the features of data replication

domains cannot be used.

5. Configure all of the application servers to use the new data replication domain, adding the application

servers to the empty replication domain that you created.

6. Restart all of the application servers in the cluster.

7. Delete the empty multi-broker replication domain.

During this process, you might lose existing sessions. However, the application remains active through the

entire process, so users do not experience down time during the migration. Create a new replication

domain for each type of consumer. For example, create one replication domain for session manager and

another replication domain for dynamic cache.

84 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Comparison of multi-broker versus data replication domains:

Data replication domains replace multi-broker domains for data replication between application servers in a

cluster.

 Any replication domains that are created with a previous version of WebSphere Application Server might

be multi-broker domains. Migrate any multi-broker domains to the new data replication domains. Although

you can configure existing multi-broker domains with the current version of WebSphere Application Server,

after you upgrade your deployment manager, you can create only data replication domains in the

administrative console.

Multi-broker and data replication domains both perform the same function, which is to replicate data across

the consumers in a replication domain. Configure all the instances of replication that need to communicate

in the same replication domain. You can also configure the session manager with both types of replication

domains to use topologies such as peer-to-peer and client/server to isolate the function of creating and

storing replicas on separate application servers. You can control the redundancy of replication for each

type of replication domain. With a data replication domain, you can specify a specific number of replicas.

If you used multi-broker domains with earlier releases of WebSphere Application Server, use the following

comparison chart to learn the differences between how V5.x and V6.0 application servers use the two

types of replication domains:

 V5.x application servers using

replication domains

V6.0 application servers using

replication domains

Replication domain types Uses only multi-broker replication

domains for replication.

Servers that are using the current

version of WebSphere Application

Server can be configured to use both

multi-broker replication domains and

data replication domains for

replication. The two types of domains

provide backward compatibility with

multi-broker domains that were

created with a V5.x server. You

should migrate any multi-broker

domains to data replication domains.

Data transport method Uses multi-broker domain objects that

contain configuration information for

the internal Java Message Service

(JMS) provider, which uses JMS

brokers as replicators.

Uses data replication domain objects

that contain configuration information

to configure the high availability

framework on WebSphere Application

Server. The transport is no longer

based on the JMS API. Therefore, no

replicators and no JMS brokers exist.

You do not have to perform the

complex task of configuring local,

remote, and alternate replicators. The

earlier version of WebSphere

Application Server did not support

data replication domains. The current

version of WebSphere Application

Server can be configured to perform

replication using old multi-broker

domains by ignoring any JMS-specific

configuration and by using the other

parameters to configure replication

through the high availability

framework.

Chapter 3. Learn about WebSphere applications 85

V5.x application servers using

replication domains

V6.0 application servers using

replication domains

Replication domain configuration The earlier version of WebSphere

Application Server encourages the

sharing of replication domains

between different consumers, such as

session manager and dynamic cache.

The current version of WebSphere

Application Server encourages

creating a separate replication

domain for each consumer. For

example, create one replication

domain for session manager and

another replication domain for

dynamic cache. The only situation

where you should configure one

replication domain is when

configuring session manager

replication and stateful session bean

failover. Using one replication domain

in this case ensures that the backup

state information of HTTP sessions

and stateful session beans are on the

same application servers.

Partial partitioning You can configure partial partitioning.

Partition the replication domain to

filter the number of processes to send

data.

Partial partitioning is deprecated.

When using data replication domains,

you can specify a specific number of

replicas for each entry. However, if

you specify a number of replicas

larger than the number of backup

application servers that are running,

the number of replicas is the number

of application servers that are

running. After the number of

application servers increases above

your configured number of replicas,

the number of replicas that are

created is equal to the number that

you specified.

Domain sharing Multiple data replication service

(DRS) instances share multi-broker

domains. A limitation exists on the

number of multi-broker domains that

you can create because every

multi-broker domain contains at least

one replicator. A maximum of one

replicator can be on each application

server.

All DRS instances in a replication

domain use the same mode. Each

replication domain must contain either

client only and server only instances,

or client and server instances only.

For example, if one instance is

configured to client and server, all

other instances must be client and

server. If one instance in a replication

domain is configured to be a client

only, you can add client only and

server only instances, but not a client

and server instance.

Internationalization

Migrating internationalized applications

Applications that used the internationalization service in WebSphere Application Server versions 4 and 5

can use the service in later versions with no modification. The packaging and structure of the

internationalization context API remain identical across releases. Most importantly, the semantics of the

API remain as well.

86 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

In Version 4, the internationalization service did not provide internationalization deployment descriptor

policy information to direct how the service manages internationalization context across the various

application components. Rather, the service employed the implicit client-side internationalization (CSI) and

server-side internationalization (SSI) policies, which dictated how the service managed context according

to the type of Java 2 Platform, Enterprise Edition (J2EE) container hosting a component. For details, refer

to the combined information center for WebSphere Application Server Version 4

(www7b.software.ibm.com/wsdd/WASInfoCenter/infocenter). Briefly, all server components in Version 4 are

SSI, and all EJB client applications are CSI.

In versions 5 and later, the internationalization type setting of all server components is configured to

Container by default. The internationalization service assigns the RunAsCallercontainer internationalization

attribute by default to any container-managed (CMI) servlet or enterprise bean invocation lacking a

container internationalization attribute. As a result, the invocations of server components that lack

internationalization policy information in the deployment descriptor run under the policy, [CMI,

RunAsCaller], which is semantically equivalent to the SSI internationalization policy of Version 4; EJB

client applications run under the logical policy [AMI, RunAsServer], which is equivalent to the CSI policy of

Version 4.

When migrating a Version 4 application to versions 5 or later, it is unnecessary to configure the

internationalization deployment descriptor information during application assembly because all component

invocations run under semantically equivalent internationalization context management policies.

Scheduler

Interoperating with schedulers

Schedulers support forward compatibility. Tasks created in previous versions of WebSphere Application

Server Enterprise Edition 5.0 or WebSphere Business Integration Server Foundation 5.1 continue to run in

WebSphere Application Server, Version 6 schedulers. Tasks that you create using Version 6 are not

compatible with product schedulers from Version 5 or earlier. Version 5 schedulers do not run any Version

6 tasks.

All schedulers that are configured to use the same database and tables are considered a clustered

scheduler. To guarantee that your tasks will run correctly, all servers in a scheduler cluster must be at the

same version. If the servers are at different versions, tasks created with a Version 6 scheduler may not

run. If a mixed-Version environment is required for a short period of time, then all scheduler poll daemons

should be stopped on all Version 5 servers to allow a Version 6 server to run all tasks. This action allows

the Version 6 schedulers to obtain leases and run tasks that have been created with a Version 6

scheduler.

Running tasks created with schedulers prior to Version 5.0.2 is not supported. See the topic,

″Interoperating with the Scheduler service,″ in the WebSphere Application Server Enterprise Edition

Version 5.0.2 information center for details on how to migrate these tasks to a more recent version. See

the Information Center Library (ww.ibm.com/software/webservers/appserv/infocenter.html) to access the

Version 5.0.2 information center.

Chapter 3. Learn about WebSphere applications 87

http://www7b.software.ibm.com/wsdd/WASInfoCenter/infocenter/
http://www7b.software.ibm.com/wsdd/WASInfoCenter/infocenter/
http://www-306.ibm.com/software/webservers/appserv/infocenter.html

88 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Chapter 4. Migrating product configurations

The migration utilities in V6.0.1 support migration from WebSphere Application Server for z/OS V5.x. Use

this topic as a starting point for the planning information, Customization Dialog walkthroughs, and V5.x to

V6.0.1 migration explanations for base Application Server nodes, deployment managers, and federated

nodes.

1. Migrate a base Application Server node to V6.0.1. See “Base Application Server node migrations” on

page 92 for more information.

2. Migrate a deployment manager to V6.0.1. See “Network Deployment migrations” on page 102 for more

information.

3. Migrate a federated node to V6.0.1. See “Managed (federated) node migrations” on page 111 for more

information.

You can use the migration tools to migrate from one version of WebSphere Application Server to another.

Planning to migrate WebSphere Application Server for z/OS

Use this task to prepare to migrate WebSphere Application Server for z/OS to Version 6.0.1.

A new set of migration utilities is available in V6.0.1. To learn more about them, see “Overview of the

V6.0.1 migration process.” When you are getting ready to migrate to V6.0.1, see “Base Application Server

node migrations” on page 92, “Network Deployment migrations” on page 102, or “Managed (federated)

node migrations” on page 111 for detailed planning and migration information.

1. See the Installing your application serving environment PDF book. This document will give you a basic

understanding of what is involved with installing the product.

2. Install the V6.0.1 product.

3. To prepare your environment for migration, see Preparing the base operating system. You should also

plan for any new features that you may want to include.

4. Review Ensuring problem avoidance in the Installing your application serving environment PDF book,

making sure that each task has been completed before you begin.

5. Review “Migrating and coexisting” on page 17 to determine if you want the two versions of the product

to coexist in the same environment, or if you want to perform a complete migration.

6. Capture the variables used in the current installation. This information will be useful in planning for the

new installation, ensuring that you define unique ports, and in planning for the HFS structure.

When you have finished planning and are ready to begin migrating, continue to Chapter 4, “Migrating

product configurations.”

Overview of the V6.0.1 migration process

Overview of the migration process

WebSphere Application Server for z/OS Version 6.0.1 requires that you migrate your V5.x configuration up

to the V6.0.1 level. You cannot simply point to the new V6.0.1 data sets and restart your servers.

High-level description of the migration process

Install the SMP/E code for WebSphere Application Server for z/OS V6.0.1. Use the Customization Dialog

walkthroughs to create the migration utilities you need to perform the migration.

When you run these jobs a new configuration is created — separate from your existing V5.x configuration

— that is an exact copy in every way except that it will be at the V6.0.1 level.

© Copyright IBM Corp. 2005 89

Migration is a node-by-node activity

The process of migrating the configuration involves running the supplied utilities against each node in your

configuration:

AZDEMN

CR

AZSR01A

CR

AZAGNTA

CR SR

SYSA SYSB

AZDEMN

CR

AZSR03B

CR

AZAGNTB

CR

SR

AZSR02B

CR SR

AZDEMN

CR SR

A node requiring
migration...in this
case, the Deployment
Manager node.

The second node
requiring migration...
one of two application
server nodes.

Yet another node needing migration...
the second of two application server nodes.

The number of servers in the node is
unimportant. Key is that it’s a node and
therefore needs migrating.

With a base Application Server you have only one node, but that node needs to be migrated. The steps

are essentially the same as you would perform for any other node, except you do not have to have a

Deployment Manager up and running. See “Checklist of migration activities for base Application Server

node” on page 101 for a checklist of activities for migrating a base Application Server node.

What do the migration utilities do?

The migration utilities serve the following purposes:

BBOWMG1B (base Application Server migrations), BBOWMG1F (federated node migrations)

Enables all servers on the node being migrated to be configured to start in PRR processing mode.

After this job completes, you must start all servers on the node being migrated and wait for them

to terminate. PRR processing mode resolves any outstanding transactions, clears the transaction

logs, and terminates the server. This job is not needed for a deployment manager migration, and

is optional for configurations that do not use XA connectors.

BBOWMG2B (base Application Server migrations), BBOWMG2F (federated node migrations)

Disables PRR mode and returns all servers to normal operating state. There is no need to start all

servers after this job completes. This job is not needed for a deployment manager migration, and

is optional for configurations that do not use XA connectors.

BBOWMBMT (base Application Server migrations), BBOWMDMT (deployment manager migrations),

BBOWMMMT (federated node migrations)

Optional: Creates an HFS and mount point for the V6.0.1 configuration root. If you want to use an

existing HFS to contain the V6.0.1 configuration, you must manually create the mount point

specified during the migration dialogs rather than run this job. In either case, the HFS and mount

point must be created prior to proceeding with the migration.

BBOWMG3B (base Application Server migrations), BBOWMG3D (deployment manager migrations),

BBOWMG3F (federated node migrations)

Performs the migration of the node from V5.x to V6.0.1.

BBOMBCP (base Application Server migrations), BBOMDCP (deployment manager migrations),

BBOMMCP (federated node migrations)

Copies the generated JCL procedures to start the servers to the specified procedure library. If you

90 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

choose to have your V6.0.1 configuration make use of different JCL start procedure names, this

utility will update the new V6.0.1 configuration, substituting your new JCL names in place of the

names that existed in your original V5.x configuration.

 Where should the migration jobs be run?

Run the jobs on the same system on which the node being migrated resides.

What happens when a node is migrated?

The migration utilities will copy the contents of your present V5.x configuration HFS into a new, separate

configuration HFS, changing them along the way as needed to support V6.0.1:

Will my existing configuration be lost during migration?

During the migration the original V5.x configuration tree is unaffected. If for some reason the migration fails

before completing, your previous configuration still exists.

If my node has multiple application servers, will all of them be migrated?

Yes. The utility will detect all servers and migrate all, including the Node Agent. One invocation of the

migration utilities against the node will take care of all the servers in the node.

Do the servers in a node have to be stopped to perform the migration?

Yes. In a multi-node configuration it is possible to have the other nodes still running. But any node that you

wish to migrate must have its servers stopped.

Note: When an application server node that is part of a Network Deployment configuration is being

migrated, the previously migrated V6.0.1 copy of the Deployment Manager for that cell must be up

and running. This is because part of the migration involves the use of the WSADMIN scripting

function to synchronize the newly migrated application server node with the deployment manager.

The deployment manager must be up to perform that synchronization.

Is it possible to have a cell operating with only some of the nodes migrated, and others not?

Yes, that is possible. V5.1 can coexist with V6.0.1 in the same cell and on the same LPAR. When

migrating from V5.0.x, however, you need to migrate the deployment manager node and other application

server nodes on that same MVS image one right after the other — or essentially at the same time. V5.0.x

and V6.0.1 nodes cannot exist in the same cell on the same LPAR.

Can my newly-migrated V6.0.1 deployment manager still ″talk″ to V5.x nodes?

Yes. A deployment manager migrated to the Version 6.0.1 level of code can manage a V5.x node.

Changes made through the administrative console will be applied to the node. There are a few things to

keep in mind:

v When a deployment manager is migrated to V6.0.1, a new copy of the ″master configuration″ is

created. The old copy of the ″master configuration″ (the V5.x copy) still exists. But when the V6.0.1

deployment manager makes changes to the configuration, it makes it to the new V6.0.1 copy of the

master configuration. So while it is possible to use to the V5.x copy of the code, any changes made in

V6.0.1 will not be seen when the older code is restored.

v A V5.x deployment manager has no ability to manage a Version 6.0.1 node.

Is there a sequence to performing a multi-node migration?

Chapter 4. Migrating product configurations 91

Yes, there is:

1. Always migrate the deployment manager first.

2. V5.0.x Application Servers that reside on the same node as the deployment manager must be

migrated next. V5.1 and V6.0.1 nodes can coexist in the same cell and on the same LPAR, so any

V5.1 nodes do not need to be migrated immediately. See “Coexistence support” on page 121 for more

information on coexistence.

3. Application Server nodes on the same system as the deployment manager or on other MVS images

can then be migrated.

Is it possible to have cells at V6.0.1 coexist with other cells at V5.x?

Yes, it is. This is true for a sysplex or any given MVS image. There are some restrictions, most of which

have been present in past versions as well:

v No two cells may have the same cell short name.

v V5.0.x cannot coexist with V6.0.1 in the same cell on the same LPAR. If you have multiple V5.0.x nodes

on the same LPAR, all nodes must be migrated to V6.0.1 at the same time.

v Only one version of the code can exist in LPA/LNKLST, the rest must be included in STEPLIB.

v There are other things you must consider for separate cells, regardless of whether they are at different

versions of the code; for example, you must have a separate HFS mount point and separate JCL

procedures.

Base Application Server node migrations

The migration documentation for a base Application Server node includes planning information, a

Customization Dialog walkthrough, a detailed V6.0.1 migration explanation, and a very high-level migration

checklist. Select the appropriate link for information about how to migrate to a V6.0.1 base Application

Server node:

v “Preparing to migrate a base Application Server node to V6.0.1”

v “Customization Dialog walkthrough for migrating a stand-alone Application Server node” on page 95

v “Migrating a base Application Server node” on page 99

v “Checklist of migration activities for base Application Server node” on page 101

You can use the migration utilities to migrate a Version 5.x base Application Server node to WebSphere

Application Server for z/OS Version 6.0.1.

Return to Chapter 4, “Migrating product configurations,” on page 89 to continue.

Preparing to migrate a base Application Server node to V6.0.1

Read the following information carefully to be sure that you are ready to migrate to V6.0.1.

92 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Migrating a base Application Server node is relatively simple because it consists of a single server and a

daemon:

SYSA

AZNODEA

CR SR

AZDEMNA

CR

AZCELLA

HFS

AZSR01A

A BaseApp
node is a cell

By definition it
must reside on
a single MVS
Image

There is a
Daemon server

Consists of one and
only one node

Configuration kept
in HFS at config root
mount point

Typically has
only one
server

You may have configured multiple Application Servers inside a base Application Server node. Generally,

this configuration is not recommended. But, if you have this configuration, the migration utilities will migrate

all servers in the node, just as it would all the servers in a Network Deployment Application Server node.

WebSphere Application Server for z/OS Version 6.0.1 supplies five migration utilities in the data set that

you specify during the ″Allocate target data sets″ step in the Customization Dialog (see “Overview of the

V6.0.1 migration process” on page 89 for a description of each utility):

v BBOWMG1B

v BBOWMG2B

v BBOWMBMT

v BBOWMG3B

v BBOMBCP

These are the jobs you will use to perform the migration.

Inventory your existing configuration

WebSphere Application Server for z/OS V5.x configuration general information:

 Cell short name:

Cell long name:

Sysplex name:

Location of original V5.x configuration datasets:

WebSphere Application Server V5.x home directory

(configuration HFS):

WebSphere Application Server for z/OS V5.x base Application Server node:

 Configuration mount point:

Configuration HFS data set:

Home directory:

default: /AppServer

your value: ___________________

WebSphere Application Server SMP/E home:

default: /usr/lpp/zWebSphere/V5R0M2

your value: ___________________

Chapter 4. Migrating product configurations 93

Controller JCL start proc:

Servant JCL start proc:

Daemon JCL start:

WebSphere Application Server for z/OS V6.0.1 installation information:

 SMP/E data set HLQ:

SMP/E HFS Mount Point:

WebSphere Application Server V6.0.1 product

directory (SMP/E target for V6.0.1):

WebSphere Application Server V6.0.1 in

LPA/LNKLST?:

__ No

__ Yes

Produce skeleton migration CNTL/DATA for node

You must provide a set of CNTL and DATA data sets for the migration utilities to read in order to perform

the migration. To do this, use the ISPF Customization Dialogs for V6.0.1 to generate a set of customized

jobs for the node in your configuration.

Sysname: SYSA

Node: AZNODEA

CR

AZDEMNA

CR

AZSR01A

SR

AZCELL.NODEAMIG.CNTL
AZCELL.NODEAMIG.DATA

Some important points about these steps:

v You will be submitting these customized jobs

v When you go through the panels to generate these customized data sets, on most of the panels it will

be necessary to supply information related to your configuration. This information is used to generate

your customized jobs.

The purpose of creating these customized CNTL and DATA data sets is to give the migration utilities

access to some key information about your new V6.0.1 configuration (for example, mount points and

paths), as well as access to shell scripts customized with this new information. As illustrated here, the

migration utilities get the bulk of the configuration information (for example: settings and applications) from

your existing V5.x configuration HFS.

For a detailed description of what you must do in the Customization Dialog to create your customized

CNTL and DATA data sets, see “Customization Dialog walkthrough for migrating a stand-alone Application

Server node” on page 95.

94 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Customization Dialog walkthrough for migrating a stand-alone

Application Server node

This article contains a walkthrough that describes using the new migration option within the Customization

Dialog to generate the JCL jobs (CNTL/DATA data sets) for migrating your stand-alone Application Server

node. Default values may be accepted for all fields and settings except those which are explicitly named

below.

The steps outlined below will walk you through the process of creating the migration jobs for your

stand-alone Application Server node. You must complete this walkthrough and create these jobs before

you can begin the physical migration.

Customization Dialog walkthrough for stand-alone Application Server node

 1. Invoke the WebSphere Application Server for Version 6.0.1 Customization Dialog:

ex ’product_hlq.SBBOCLIB(BBOWSTRT)’ ’options’

v Example product_hlq: WAS601.WAS

v Example options: appl(az)

For more information on starting the Customization Dialog, including information on available options,

see Starting the Customization Dialog in the Installing your application serving environment PDF

book.

 2. From the first menu page, select option 4: Migrate V5.x Nodes to V6 Nodes.

 3. On the next panel, select option 1: Migrate a V5.x stand-alone application server node to V6.

 4. Allocate partitioned datasets that you will use to store the generated migration jobs and supporting

data. On the ″V5.x stand-alone Application Server Migration″ menu, select option 1: Allocate target

data sets.

 5. On the ″Allocate Target Data Sets″ panel, specify your high level qualifier, and then press Enter to

proceed to the next panel. Accept the defaults on the next two panels that specify the parameters for

the .CNTL and .DATA data sets.

 6. Back on the ″V5.x stand-alone Application Server Migration″ menu, select option 2: Define variables.

In the following panels, the migration data collection process begins.

 7. On the ″Define Variables to migrate a V5.x stand-alone Application Server Node″ menu, select option

1: System Locations (directories, HLQs, etc.).

 8. The System Locations (1 of 2) panel collects information about your V6 installation libraries, and

whether you intend to place the load modules in STEPLIB. Correctly specifying STEPLIB is essential

to a successful migration. It is likely that your V5.x modules are currently in LPA/LNKLST, and that

you will begin with your V6 libraries being defined in STEPLIB. Specify whether to put your V6

modules in STEPLIB and continue to the next panel.

Example:

System Locations (1 of 2)

 Specify the following V6.0.1 information, then press ENTER to continue.

 For some data sets, specify "Y" if they are in STEPLIB.

Chapter 4. Migrating product configurations 95

Full Names of Data Sets

 PROCLIB.: SYS1.PROCLIB

Run WebSphere Application Server from STEPLIB (Y/N)? Y

SBBOLPA.: WAS601.WAS.SBBOLPA

SBBOLOAD: WAS601.WAS.SBBOLOAD

SBBOLD2.: WAS601.WAS.SBBOLD2

 Use STEPLIB?

SCEERUN.: CEE.SCEERUN Y

SCEERUN2: CEE.SCEERUN2 Y

SGSKLOAD: SYS1.GSK.SGSKLOAD Y

 (leave SGSKLOAD blank if all systems are at z/OS 1.6 or above)

 9. On the ″System Locations (2 of 2)″ panel, specify your V6 WebSphere Application Server SMP/E

home directory (example: /usr/lpp/zWebSphere/V6R0). After specifying your V6.0.1 home directory,

press Enter to proceed. You will be taken back to the ″Define Variables to migrate a V5.x stand-alone

Application Server Node″ menu.

10. Back on the ″Define Variables to migrate a V5.x Stand-alone Application Server node″ menu, option 1

is marked as completed. Now select option 2: System Environment Customization.

11. The System Environment Customization panel is where you specify the configuration root HFS, which

is where the configuration for the node being migrated is physically stored. You may choose to use an

existing HFS if you already have an appropriate HFS on the node being migrated. If you choose to

use an existing HFS, you need to ensure that the mount point you specify here is present prior to

running the migration utilities (BBOWMG1B, BBOWMG2B, etc.) that are created through these

dialogs. If you choose to create a new HFS on the node being migrated, the actual creation of the

new HFS will not occur until you run the BBOWMBMT job during the migration process, after you

complete this walkthrough (see “Migrating a base Application Server node” on page 99 for more

information). Specify either an existing mount point or a new mount point and press Enter to proceed.

Example:

System Environment Customization

 Specify the following to customize your system environment, then

 press Enter to continue.

 WebSphere Application Server for z/OS HFS Information

 Mount point....: /WebSphere/V6R0

 Name...........: OMVS.WAS.CONFIG.HFS

 Volume, or ’*’ for SMS.: *

 Primary allocation in cylinders...: 250

 Secondary allocation in cylinders.: 100

12. Back on the ″Define Variables to migrate a V5.x Stand-alone Application Server node″ menu, options

1 and 2 are marked as completed. Now select option 3: Server Customization.

13. On the Server Customization (1 of 2) panel, specify the source node that you are migrating under

″V5.x WebSphere Application Server home directory.″ Also, specify the home location of the profile

that will contain your V6.0.1 migrated node under ″V6 WebSphere Application Server home directory.″

On this panel, you can also choose to enable tracing on your migration utilities, which will then

remain enabled throughout the entire migration process. Enabling tracing generates a lot of output,

and is generally intended for use only when directed by service support.

96 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

During migration, a backup copy of the V5.x configuration is required. The default location of this

backup is already specified, though you may override if needed. You may need to specify a location

other than the default if the /tmp HFS does not have adequate space to store the backup

configuration. If you choose to override the default location of the backup copy, IBM recommends

keeping the same naming convention and just replacing the /tmp portion with another path, e.g.,

/myTemp/migrate/47002/base_backup. The five-digit number (47002 in this example) is generated

uniquely each time you create the migration jobs.

The migration output messages, which you will need to monitor throughout the migration process, are

stored in tmp/migrate/47002 (after migration, the job output in this directory is NOT automatically

deleted.) The migration output messages are also appended to the JCL sysout messages, which can

be viewed in SDSF.

Once you have specified all values or left the defaults, press Enter to proceed to the next panel.

Example:

Server Customization (1 of 2)

 Specify the following to customize your migration, then press Enter

 to continue.

 V5.x WebSphere Application Server home directory:

 /WebSphere/V5R1M0

 / AppServer

 V6 WebSphere Application Server home directory:

 /WebSphere/V6R0

 / AppServer

 Migration Options

 Enable z/OS Migration Tracing: N

 Enable WASProfile Tracing....: N

 Enable WASPreUpgrade Tracing.: N

 Enable WASPostUpgrade Tracing: N

 Default Backup Directory: /tmp/migrate/47002/base_backup

 User Specified Backup Directory:

 ==>

14. On the Server Customization (2 of 2) panel, specify the High Availability Manager Host, a new feature

in V6.0.1 that has no previous value from V5.x. The value you enter here is the IP address of the

LPAR you are migrating. This value must resolve to a single IP address, and you can use a dotted

decimal address.

The procedure names used to start the V6.0.1 servers are also specified on this panel; new

procedure names are required for V6.0.1. You may keep the defaults, or change them if needed. The

Customization Dialog creates new V6.0.1 JCL using the procedure names specified here.

Specify values or accept defaults and press Enter to proceed.

Example:

Server Customization (2 of 2)

 Specify the following to customize your migration, then press Enter

 to continue.

 High Availability Manager Host:

 The High Availability Manager Host MUST resolve to a single

 IP address. It can not be a multihomed host.

 Daemon Procedure name.........: BBO6DMN

 Controller Procedure name.....: BBO6ACR

 Servant Procedure name........: BBO6ASR

Chapter 4. Migrating product configurations 97

15. After completing the Stand-alone Server Customization (2 of 2) panel, you will be returned to the

″Define Variables to migrate a V5.x stand-alone Application Server node″ menu. Press PF3 to return

to the ″V5.x stand-alone Application Server Migration″ menu.

16. On the ″V5.x Stand-alone Application Server Migration″ menu, select option 3: Generate

customization jobs.

17. On the Generate Customization Jobs panel, you can see the names of the .CNTL and .DATA data

sets that have been customized based on your previous input.

Now you need to provide a job card customized to your environment-specific requirements.

When you have entered your job card, press Enter. The generation process runs, and presents you

with a list of job streams and files that have been created to perform the migration to V6.0.1. These

jobs do not require any editing; they are to be submitted ″as-is″ during the migration process.

Enter an appropriate job card, and press Enter to proceed.

Example:

Generate Customization Jobs

 This portion of the Customization Dialog generates the jobs you must

 run after you complete this dialog process. You must complete the

 customization process before you generate the jobs with this step.

 If you have not done this, please return to that step.

 Jobs and data files will get generated into data sets:

 ’hlq.CNTL’

 ’hlq.DATA’

 If you wish to generate customization jobs using other data sets, then

 exit from this panel and select the "Allocate target data sets" option.

All the jobs that will be tailored for you will need a job card.

Please enter a valid job card for your installation below. The

file tailoring process will update the job name for you in all the

generated jobs, so you need not be concerned with that portion of

the job cards below. If continuations are needed, replace the

comment cards with continuations.

Specify the job cards, then press Enter to continue.

//jobname JOB (ACCTNO,ROOM),’IBMUSER’,CLASS=A,REGION=0M

//*

//*

//*

18. A list of JCL jobs that have been generated for your migration is displayed. When processing has

completed, press Enter to proceed.

Example:

Processing for data set ’hlq.CNTL’ ...

Member BBOWMG1B successfully created.

Member BBOWMG2B successfully created.

Member BBOWMG3B successfully created.

Member BBOWMBMT successfully created.

Member BBOMBCR successfully created.

Member BBOMBCRZ successfully created.

Member BBOMBDN successfully created.

Member BBOMBDNZ successfully created.

Member BBOMBSR successfully created.

Member BBOMBSRZ successfully created.

Member BBOMBCP successfully created.

Member BBOMBINS successfully created.

98 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Processing for data set ’hlq.DATA’ ...

Member BBOWBMPT successfully created.

Member BBOWMBRF successfully created.

19. You are now back on the ″V5.x stand-alone Application Server Migration″ menu. IBM recommends

that you save your configuration variables for future reference by selecting option S: Save

Customization Variables.

20. You have now completed the job generation process and are ready to begin the process of migration.

See instructions for performing the migration by selecting option 4: View instructions. Also, proceed to

the article “Migrating a base Application Server node” for instructions on performing the migration.

Migrating a base Application Server node

This article walks you through the process of migrating a base Application Server node from V5.x to

V6.0.1. Make sure that you go through the steps outlined in “Customization Dialog walkthrough for

migrating a stand-alone Application Server node” on page 95 before you begin this migration. You will not

be able to proceed if you have not created the JCL migration utilities through the Customization Dialog.

The BBOWMG1B, BBOWMG2B, and BBOWMG3B jobs referenced below must be submitted by a

WebSphere Administrator User ID. All other jobs must be submitted by a user ID that has control over the

filesystem.

Create and mount a new V6.0.1 HFS

Before you perform the migration, V6.0.1 requires an HFS to be present for your new configuration. You

can run BBOWMBMT to create and mount a new HFS, or you can mount one manually. Either way, you

must have an HFS for your V6.0.1 configuration created and mounted before you proceed. This HFS is

the target of the migration; your V5.x configuration HFS is the source.

BBOWMBMT creates a mount point directory, allocates the configuration’s HFS, and mounts the HFS at

whatever value you specified on the field called ″Mount Point″ in the ″System Environment Customization″

panel in the Customization Dialog.

Before you proceed, ensure that you have, either manually or using BBOWMBMT, allocated, created, and

mounted your HFS data sets. The mount point should be owned by the WebSphere Admin ID, and have

permissions of at least 755. The new HFS structures in should be included in BPXPARM so that they will

be mounted at the next IPL.

Copy your generated JCL procedures

The migration utility BBOMBCP copies the generated JCL procedures to start the servers to the specified

procedure library. Your V6.0.1 configuration must make use of different JCL start procedure names; this

utility will update the new V6.0.1 configuration, substituting your new JCL names in place of the names

that existed in your original V5.x configuration. Submit BBOMBCP, and verify a return code of 0.

Update your RACF STARTED profiles

The STARTED profile used by controller regions is based on the procedure name and JOBNAME.

Because V6.0.1 requires new start procedures, you must ensure that a STARTED profile will apply so that

Chapter 4. Migrating product configurations 99

the proper identity will be assigned to the started task. For example, if your V5.x controller JCL procedure

name is AZACR, and you specified AZA6CR for V6.0.1, then you would need to create a STARTED profile

for that new procedure name:

 new controller same identity used in

 JCL name V5.x configuration

 | |

 RDEFINE STARTED AZ6ACR.* STDATA(USER(AZACRU) GROUP(AZCFG) TRACE(YES))

Note:

v Do not use a different user ID to start. There are other things tied to the user ID, and if you

change the user ID other changes would also be required.

v If your original STARTED profile was generic, for example, STARTED AZ*.* ... , you would not

need to create a new STARTED profile.

v Servant region STARTED profiles are based on JOBNAME, not procedure name. So there is no

issue with the servant when you use a different procedure name.

v Daemons and Node Agents are controllers, so using different procedure names for those implies

a new STARTED profile.

Submit BBOWMG1B

Note: If you are not using XA connectors, submitting BBOWMG1B and BBOWMG2B is optional. However,

IBM recommends that you submit both jobs to ensure that your transaction logs are clear.

Unlike in previous WebSphere Application Server for z/OS migrations, you no longer have to customize

the migration utilities. This makes the migration process much more simple. BBOWMG1B, for example, is

to be submitted as is.

BBOWMG1B enables all servers on the base Application Server node being migrated to start in PRR

processing mode. PRR processing mode resolves any outstanding transactions, clears the transaction

logs, and terminates the server. To enable PRR processing mode, follow these steps:

1. Stop the base Application Server

2. Submit the job BBOWMG1B as is, verify return code of 0

3. Restart the base Application Server, wait for it to perform PRR processing and terminate automatically

Submit BBOWMG2B

BBOWMG2B disables PRR mode and returns all servers to normal operating state. Submit this job and

verify a return code of 0. You do not need to start the servers again after this job completes.

Submit BBOWMG3B

BBOWMG3B is the job that performs the physical migration of the V5.x node to V6.0.1, based on the

information you supplied in the Customization Dialog. Submit BBOWMG3B. Verify that you are getting

return codes of 0, and review the log files in the migration temp directory on the HFS (this directory is

/tmp/migrate/directory, where directory is the numeric value specified in the Base Server Customization

panel in the Customization Dialog.

Start the base Application Server node

Use the existing commands that you would use to start a V5.x Application Server, but replace the RACF

STARTED procedure name with the value you entered in the Base Server Customization Dialog (2 of 2)

for Controller Procedure name. This command starts the V6.0.1 base Application Server. Wait until the

server is finished initializing before proceeding.

The following message appears on the console and in the job log of BBOS001:

100 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

BBOO0019I INITIALIZATION COMPLETE FOR WEBSPHERE FOR z/OS CONTROL PROCESS BBOS001

At this point, your migration to V6.0.1 is complete.

Perform post-migration tasks

After you have verified a successful migration to V6.0.1, and are successfully running a migrated

configuration, you should delete:

v everything in the source configuration’s HFS

v everything in the target configuration’s /tmp/migrate/nnnnn/ directory

v bbomigrt2.sh

Checklist of migration activities for base Application Server node

This checklist is intended to provide a quick reference.

More details can be found under “Preparing to migrate a base Application Server node to V6.0.1” on page

92.

Key similarities with an ND configuration:

v You must still create ″skeleton″ CNTL/DATA data sets through the Customization Dialog.

v You must still allocate and mount a new HFS to act as the target for the new V6.0.1 configuration,

either manually or using BBOWMBMT.

v You must still run BBOWMG3B to perform the migration.

Key differences from an ND configuration:

v You must clear transaction logs using BBOWMG1B; you do not have to do this for a deployment

manager migration.

v You must disable PRR mode using BBOWMG2B; you do not have to do this for a deployment manager

migration.

v There is no deployment manager node to migrate.

General preparation work

 Table 10.

Check off Item

Insure minimum level of Version 6.0.1 maintenance. See “Overview of the V6.0.1 migration

process” on page 89.

Inventory your existing V5.x configuration and capture key information (see “Preparing to migrate

a base Application Server node to V6.0.1” on page 92).

Create ″skeleton″ CNTL/DATA data sets for each node to be migrated (see “Customization

Dialog walkthrough for migrating a stand-alone Application Server node” on page 95).

Create V6.0.1 configuration mount point, allocate HFS and mount either manually or using

BBOWMBMT.

Run BBOMBCP to modify JCL start procedure names.

Chapter 4. Migrating product configurations 101

Clear transaction logs for Application Server node

 Check off Item

Stop server in the Base Application server node.

Run BBOWMG1B. Check for success.

Restart Application Server to clear transaction logs. It will start and then automatically stop.

Run BBOWMG2B to disable PRR mode.

Migrate Application Server node

 Check off Item

Ensure all servers are stopped, including the daemon server.

Run BBOWMG3B and check for success.

Start Application Servers.

Network Deployment migrations

The migration documentation for a deployment manager includes planning information, a Customization

Dialog walkthrough, a detailed V6.0.1 migration explanation, and a very high-level migration checklist.

Select the appropriate link for information about how to migrate to a V6.0.1 deployment manager:

v “Preparing to migrate a Network Deployment configuration to V6.0.1”

v “Customization Dialog walkthrough for deployment manager” on page 104

v “Migrating a deployment manager” on page 109

v “Checklist of migration activities for a Network Deployment configuration” on page 111

You can use the migration utilities to migrate a Version 5.x deployment manager to WebSphere Application

Server for z/OS Version 6.0.1.

Return to Chapter 4, “Migrating product configurations,” on page 89 to continue.

Preparing to migrate a Network Deployment configuration to V6.0.1

Read the following information carefully to be sure that you are ready to migrate to V6.0.1.

WebSphere Application Server for z/OS Version 6.0.1 supplies migration utilities in the data set that you

specify during the ″Allocate target data sets″ step in the Customization Dialog (see “Overview of the

V6.0.1 migration process” on page 89 for a description of each utility):

v BBOWMDMT

v BBOWMG3D

v BBOMDCP

These are the jobs you will use to perform the migration.

Inventory your existing configuration

WebSphere Application Server for z/OS V5.x configuration general information:

 Cell short name:

102 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Cell long name:

Sysplex name:

HFS strategy: __ All nodes share one HFS

__ Unique HFS per node

JCL start procedure strategy: __ Use common JCL

__ Unique JCL per server

Location of original V5.x configuration datasets:

WebSphere Application Server V5.x home directory

(configuration HFS):

Note: You also need a WebSphere Application Server for z/OS administrator user ID and password.

WebSphere Application Server for z/OS V5.x Deployment Manager node:

 Configuration mount point:

Configuration HFS data set:

Home directory:

default:/DeploymentManager

your value: ___________________

WebSphere Application Server SMP/E home:

default: /usr/lpp/zWebSphere/V601M2

your value: ____________________

Controller JCL start proc:

Servant JCL start proc:

Daemon JCL start proc:

WebSphere Application Server for z/OS V6.0.1 installation information:

 SMP/E data set HLQ:

SMP/E HFS Mount Point:

WebSphere Application Server V6.0.1 product

directory (SMP/E target for V6.0.1):

WebSphere Application Server V6.0.1 in

LPA/LNKLST?:

__ No

__ Yes

Plan the node-by-node migration strategy

“Overview of the V6.0.1 migration process” on page 89 explains the order of migration for a Network

Deployment configuration.

Take a moment to map out your migration sequence:

 Node Short Name System Name

First node

Second node

Third node

Chapter 4. Migrating product configurations 103

Fourth node

Fifth node

Sixth node

Produce skeleton migration CNTL/DATA for each node

You must provide a set of CNTL and DATA data sets for the migration utilities to read in order to perform

the migration. To do this, use the ISPF Customization Dialogs for V6.0.1 to generate a set of customized

jobs for each node in your configuration.

AZDEMN

CR

AZSR01A

CR

AZAGNTA

CR

Node: AZNODE

Node: AZNODEA

SR

Sysname: SYSA Sysname: SYSB

AZDEMN

CR

AZSR03B

CR

AZAGNTB

CR

Node: AZNODEB

SR

AZSR02B

CR SR

AZCELL.NODEAMIG.CNTL
AZCELL.NODEAMIG.DATA

AZCELL.NODE MIG.CNTLB
AZCELL.NODEBMIG.DATA

AZDEMN

CR SR

AZCELL. .CNTLDMGRMIG
AZCELL. .DATADMGRMIG

Some important points about these steps:

v You will be submitting these customized jobs

v When you go through the panels to generate these customized data sets, on most of the panels it will

be necessary to supply information related to your configuration. This information is used to generate

your customized jobs.

The purpose of creating these customized CNTL and DATA data sets is to give the migration utilities

access to some key information about your new V6.0.1 configuration (for example, mount points and

paths), as well as access to shell scripts customized with this new information. As illustrated here, the

migration utilities get the bulk of the configuration information (for example: settings and applications) from

your existing V5.x configuration HFS.

For a detailed description of what you must do in the Customization Dialog to create your customized

CNTL and DATA data sets, see “Customization Dialog walkthrough for deployment manager.”

Customization Dialog walkthrough for deployment manager

This article contains a walkthrough that describes using the Customization Dialog to generate the JCL jobs

(CNTL/DATA data sets) for migrating your deployment manager. Default values may be accepted for all

fields and settings except those which are explicitly named below.

104 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

The steps outlined below will walk you through the process of creating the migration jobs for your

deployment manager. You must complete this walkthrough and create these jobs before you can begin the

physical migration.

Customization Dialog walkthrough for a deployment manager

 1. Invoke the WebSphere Application Server for Version 6.0.1 Customization Dialog:

ex ’product_hlq.SBBOCLIB(BBOWSTRT)’ ’options’

v Example product_hlq: WAS601.WAS

v Example options: appl(az)

For more information on starting the Customization Dialog, including information on available options,

see Starting the Customization Dialog in the Installing your application serving environment PDF

book.

 2. From the first menu page, select option 4: Migrate V5.x Nodes to V6 Nodes.

 3. On the next panel, select option 2: Migrate a V5.x deployment manager to V6.

 4. The next step is to allocate partitioned datasets that you will use to store the generated migration jobs

and supporting data. On the ″V5.x Deployment Manager Migration″ menu, select option 1: Allocate

target data sets.

 5. On the ″Allocate Target Data Sets″ panel, specify your high level qualifier, and then press Enter to

proceed to the next panel. Accept the defaults on the next two panels that specify the parameters for

the .CNTL and .DATA data sets.

 6. Back on the ″V5.x Deployment Manager Migration″ menu, select option 2: Define variables. In the

following panels, the migration data collection process begins.

 7. On the ″Define Variables to migrate a V5.x Deployment Manager Node″ menu, select option 1:

System Locations (directories, HLQs, etc.).

 8. The System Locations (1 of 2) panel collects information about your V6 installation libraries, and

whether you intend to place the load modules in STEPLIB. Correctly specifying STEPLIB is essential

to a successful migration. It is likely that your V5.x modules are currently in LPA/LNKLST, and that

you will begin with your V6 libraries being defined in STEPLIB. Specify whether to put your V6

modules in STEPLIB and press Enter to continue to the next panel.

Example:

System Locations (1 of 2)

 Specify the following V6.0.1 information, then press ENTER to continue.

 For some data sets, specify "Y" if they are in STEPLIB.

Full Names of Data Sets

 PROCLIB.: SYS1.PROCLIB

Run WebSphere Application Server from STEPLIB (Y/N)? Y

SBBOLPA.: WAS601.WAS.SBBOLPA

SBBOLOAD: WAS601.WAS.SBBOLOAD

SBBOLD2.: WAS601.WAS.SBBOLD2

 Use STEPLIB?

SCEERUN.: CEE.SCEERUN Y

Chapter 4. Migrating product configurations 105

SCEERUN2: CEE.SCEERUN2 Y

SGSKLOAD: SYS1.GSK.SGSKLOAD Y

 (leave SGSKLOAD blank if all systems are at z/OS 1.6 or above)

 9. On the ″System Locations (2 of 2)″ panel, specify your V6 WebSphere Application Server SMP/E

home directory (example: /usr/lpp/zWebSphere/V6R0). After specifying your V6.0.1 home directory,

press Enter to proceed. You will be taken back to the ″Define Variables to migrate a V5.x stand-alone

Application Server Node″ menu.

10. Back on the ″Define Variables to migrate a V5.x Stand-alone Application Server node″ menu, option 1

is marked as completed. Now select option 2: System Environment Customization.

11. The System Environment Customization panel is where you specify the configuration root HFS, which

is where the configuration for the node being migrated is physically stored. You may choose to use an

existing HFS if you already have an appropriate HFS on the node being migrated. If you choose to

use an existing HFS, you need to ensure that the mount point you specify here is present prior to

running the migration utilities (BBOWMDMT, BBOMDCP, etc.) that are created through these dialogs.

If you choose to create a new HFS on the node being migrated, the actual creation of the new HFS

will not occur until you run the BBOWMBMT job during the migration process, after you complete this

walkthrough (see “Migrating a base Application Server node” on page 99 for more information).

Specify either an existing mount point or a new mount point and press Enter to proceed.

Example:

System Environment Customization

 Specify the following to customize your system environment, then

 press Enter to continue.

 WebSphere Application Server for z/OS HFS Information

 Mount point....: /WebSphere/V6R0

 Name...........: OMVS.WAS.CONFIG.HFS

 Volume, or ’*’ for SMS.: *

 Primary allocation in cylinders...: 250

 Secondary allocation in cylinders.: 100

12. Back on the ″Define Variables to migrate a V5.x Deployment Manager Node″ menu, options 1 and 2

are marked as completed. Now select option 3: Server Customization.

13. On the Server Customization (1 of 2) panel, specify the source node that you are migrating under

″V5.x WebSphere Application Server home directory.″ Also, specify the home location of the profile

that will contain your V6.0.1 migrated node under ″V6 WebSphere Application Server home directory.″

On this panel, you can also choose to enable tracing on your migration utilities, which will then

remain enabled throughout the entire migration process.

During migration, a backup copy of the V5.x configuration is required. The default location of this

backup is already specified, though you may override if needed. You may need to specify a location

other than the default if the /tmp HFS does not have adequate space to store the backup

configuration. If you choose to override the default location of the backup copy, IBM recommends

keeping the same naming convention and just replacing the /tmp portion with another path, e.g.,

/myTemp/migrate/61036/dmgr_backup. The five-digit number (61036 in this example) is generated

uniquely each time you create the migration jobs.

The migration output messages, which you will need to monitor throughout the migration process, are

stored in tmp/migrate/61036 (after migration, the job output in this directory is NOT automatically

deleted.) The migration output messages are also appended to the JCL sysout messages, which can

be viewed in SDSF.

106 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Once you have specified all values or left the defaults, press Enter to proceed to the next panel.

Example:

Server Customization (1 of 2)

 Specify the following to customize your migration, then press Enter

 to continue.

 V5.x WebSphere Application Server home directory:

 /WebSphere/V5R1M0

 / DeploymentManager

 V6 WebSphere Application Server home directory:

 /WebSphere/V6R0

 / DeploymentManager

 Migration Options

 Enable z/OS Migration Tracing: N

 Enable WASProfile Tracing....: N

 Enable WASPreUpgrade Tracing.: N

 Enable WASPostUpgrade Tracing: N

 Default Backup Directory: /tmp/migrate/61036/dmgr_backup

 User Specified Backup Directory:

 ==>

14. On the Server Customization (2 of 2) panel, specify the High Availability Manager Host, a new feature

in V6.0.1 that has no previous value from V5.x.

The procedure names used to start the V6.0.1 servers are also specified on this panel; new

procedure names are required for V6.0.1. You may keep the defaults, or change them if needed. The

Customization Dialog creates new V6.0.1 JCL using the procedure names specified here.

Specify values or accept defaults and press Enter to proceed.

Example:

Server Customization (2 of 2)

 Specify the following to customize your migration, then press Enter

 to continue.

 High Availability Manager Host:

 The High Availability Manager Host MUST resolve to a single

 IP address. It can not be a multihomed host.

 Daemon Procedure name........: BBO6DMN

 Controller Procedure name....: BBO6DCR

 Servant Procedure name.......: BBO6DSR

15. After completing the Stand-alone Server Customization (2 of 2) panel, you will be returned to the

″Define Variables to migrate a V5.x stand-alone Application Server node″ menu. Press PF3 to return

to the ″V5.x stand-alone Application Server Migration″ menu.

16. On the ″V5.x Deployment Manager Migration″ menu, select option 3: Generate customization jobs.

17. On the Generate Customization Jobs panel, you can see the names of the .CNTL and .DATA data

sets that have been customized based on your previous input.

Now you need to provide a job card customized to your environment-specific requirements.

Chapter 4. Migrating product configurations 107

When you have entered your job card, press Enter. The generation process runs, and presents you

with a list of job streams and files that have been created to perform the migration to V6.0.1. These

jobs do not require any editing; they are to be submitted ″as-is″ during the migration process.

Enter an appropriate job card, and press Enter to proceed.

Example:

Generate Customization Jobs

 This portion of the Customization Dialog generates the jobs you must

 run after you complete this dialog process. You must complete the

 customization process before you generate the jobs with this step.

 If you have not done this, please return to that step.

 Jobs and data files will get generated into data sets:

 ’hlq.CNTL’

 ’hlq.DATA’

 If you wish to generate customization jobs using other data sets, then

 exit from this panel and select the "Allocate target data sets" option.

All the jobs that will be tailored for you will need a job card.

Please enter a valid job card for your installation below. The

file tailoring process will update the job name for you in all the

generated jobs, so you need not be concerned with that portion of

the job cards below. If continuations are needed, replace the

comment cards with continuations.

Specify the job cards, then press Enter to continue.

//jobname JOB (ACCTNO,ROOM),’IBMUSER’,CLASS=A,REGION=0M

//*

//*

//*

18. A list of JCL jobs that have been generated for your migration is displayed. When processing has

completed, press Enter to proceed.

Example:

Processing for data set ’hlq.CNTL’ ...

Member BBOWMG3D successfully created.

Member BBOWMDMT successfully created.

Member BBOMDCR successfully created.

Member BBOMDCRZ successfully created.

Member BBOMDDN successfully created.

Member BBOMDDNZ successfully created.

Member BBOMDSR successfully created.

Member BBOMDSRZ successfully created.

Member BBOMDCP successfully created.

Member BBOMDINS successfully created.

Processing for data set ’hlq.DATA’ ...

Member BBOWBMPT successfully created.

Member BBOWMDRF successfully created.

19. You are now back on the ″V5.x Deployment Manager Migration″ menu. IBM recommends that you

save your configuration variables for future reference by selecting option S: Save Customization

Variables.

20. You have now completed the job generation process and are ready to begin the process of migration.

See instructions for performing the migration by selecting option 4: View instructions. Also, proceed to

the article “Migrating a base Application Server node” on page 99 for instructions on performing the

migration.

108 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Migrating a deployment manager

The Deployment Manager node should always be migrated first. Even though each node is migrated

separately, whenever you have two more nodes from the same cell on the same MVS image, you should

migrate them sequentially, one immediately after the other.

The BBOWMG3D job referenced below must be submitted by a WebSphere Administrator User ID. All

other jobs must be submitted by a user ID that has control over the filesystem.

AZDEMN

CR

AZSR01A

CR

AZAGNTA

CR

Node: AZNODE

Node: AZNODEA

SR

Sysname: SYSA Sysname: SYSB

AZDEMN

CR

AZSR03B

CR

AZAGNTB

CR

Node: AZNODEB

SR

AZSR02B

CR SR

AZDMGR

CR SR

1

2

Two different nodes migrated in sequence,
one immediately after the other. (Since they’re
on the same MVS image - and share the
Daemon - they must be considered “together”
and thus migrated “at the same time”)

Create and mount a new V6.0.1 HFS

Before you perform the migration, V6.0.1 requires an HFS to be present for your new configuration. You

can run BBOWMDMT to create and mount a new HFS, or you can mount one manually. Either way, you

must have an HFS for your V6.0.1 configuration created and mounted before you proceed. This HFS is

the target of the migration; your V5.x configuration HFS is the source.

BBOWMDMT creates a mount point directory, allocates the configuration’s HFS, and mounts the HFS at

whatever value you specified on the field called ″Mount Point″ in the ″System Environment Customization″

panel in the Customization Dialog.

Before you proceed, ensure that you have, either manually or using BBOWMDMT, allocated, created, and

mounted your HFS data sets. The mount point should be owned by the WebSphere Admin ID, and have

permissions of at least 755. The new HFS structures in should be included in BPXPARM so that they will

be mounted at the next IPL.

Copy your generated JCL procedures

The migration utility BBOMDCP copies the generated JCL procedures to start the servers to the specified

procedure library. Your V6.0.1 configuration must make use of different JCL start procedure names; this

utility will update the new V6.0.1 configuration, substituting your new JCL names in place of the names

that existed in your original V5.x configuration. Submit BBOMDCP, and verify a return code of 0.

Update your RACF STARTED profiles

The STARTED profile used by controller regions is based on the procedure name and JOBNAME.

Because V6.0.1 requires new start procedures, you must ensure that a STARTED profile will apply so that

the proper identity will be assigned to the started task. For example, if your V5.x deployment manager

Chapter 4. Migrating product configurations 109

controller JCL procedure name is AZDCR, and you specified AZ1DCR for V6.0.1, then you would need to

create a STARTED profile for that new procedure name:

 new controller same identity used in

 JCL name V5.x configuration

 | |

 RDEFINE STARTED AZ1DCR.* STDATA(USER(AZDCRU) GROUP(AZCFG) TRACE(YES))

Note:

v Do not use a different user ID to start. There are other things tied to the user ID, and if you

change the user ID other changes would also be required.

v If your original STARTED profile was generic, for example, STARTED AZ*.* ... , you would not

need to create a new STARTED profile.

v Servant region STARTED profiles are based on JOBNAME, not procedure name. So there is no

issue with the servant when you use a different procedure name.

v Daemons and Node Agents are controllers, so using different procedure names for those implies

a new STARTED profile.

Submit BBOWMG3D

A deployment manager migration does not require bringing the node into and out of PRR mode as base

Application Server and federated node migrations do. Hence, there are two less jobs to submit for a

deployment manager migration, and, at this point, you are ready to perform the physical migration.

BBOWMG3D is the job that performs the physical migration of the V5.x deployment manager to V6.0.1,

based on the information you supplied in the Customization Dialog. Submit BBOWMG3D. Verify that you

are getting return codes of 0, and review the log files in the migration temp directory on the HFS (this

directory is /tmp/migrate/directory, where directory is the numeric value specified in the Deployment

Manager Customization panel in the Customization Dialog.

Update deployment manager’s servant keyring

If you use separate user IDs to run your deployment manager’s controller and servant regions, you must

add a WASKeyring to the deployment manager’s servant user ID, then connect the WebSphere CA

certificate to the WASKeyring:

RACDCERT ADDRING(WASKeyring) ID(dmgr_servant_user_ID)

RACDCERT ID(dmgr_servant_user_ID) CONNECT(RING(WASKeyring) LABEL(’WebSphereCA’) CERTAUTH)

Start the deployment manager

Use the existing commands that you would use to start a V5.x Application Server, but replace the RACF

STARTED procedure name with the value you entered in the Deployment Managre Customization Dialog

(2 of 2) for Controller Procedure name. This command starts the V6.0.1 deployment manager. Wait until

the server is finished initializing before proceeding.

The following message appears on the console and in the job log of BBOS001:

BBOO0019I INITIALIZATION COMPLETE FOR WEBSPHERE FOR z/OS CONTROL PROCESS BBOS001

At this point, your migration to V6.0.1 is complete.

Perform post-migration tasks

After you have verified a successful migration to V6.0.1, and are successfully running a migrated

configuration, you should delete:

v everything in the source configuration’s HFS

v everything in the target configuration’s /tmp/migrate/nnnnn/ directory

110 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

v bbomigrt2.sh

Checklist of migration activities for a Network Deployment

configuration

This checklist is intended to provide a quick reference.

More details can be found here: “Preparing to migrate a Network Deployment configuration to V6.0.1” on

page 102.

General preparation work

 Table 11.

Check off Item

Inventory your existing V5.x configuration and capture key information.

Map strategy for the sequence of nodes to be migrated.

Create ″skeleton″ CNTL/DATA data sets for each node to be migrated through Customization

Dialog (see “Customization Dialog walkthrough for deployment manager” on page 104).

Create V6.0.1 configuration mount point, allocate HFS and mount either manually or using

BBOWMDMT.

Customize and run BBOMDCP to modify JCL start procedure names used.

Migrate deployment manager node

 Check off Item

Stop deployment manager plus associated Daemon server.

Run BBOWMG3D and check output for success.

Customize and run BBOWBPR to modify JCL start procedure names used.

Start V6.0.1 copy of Deployment Manager.

Managed (federated) node migrations

The migration documentation for a federated node includes a Customization Dialog walkthrough, a detailed

V6.0.1 migration explanation, and an explanation on migrating a federated node another MVS image.

Select the appropriate link for information about how to migrate to a V6.0.1 federated Application Server

node:

v “Customization Dialog walkthrough for migrating a managed Application Server node” on page 112

v “Migrating a federated Application Server node” on page 116

v “Migrating an Application Server node on another MVS image” on page 118

You can use the migration tools to migrate from one version of WebSphere Application Server to another.

Return to Chapter 4, “Migrating product configurations,” on page 89 to continue.

Chapter 4. Migrating product configurations 111

Customization Dialog walkthrough for migrating a managed Application Server

node

This article contains a walkthrough that describes using the new migration option within the Customization

Dialog to generate the JCL jobs (CNTL/DATA data sets) for migrating your managed (federated)

Application Server node. Default values may be accepted for all fields and settings except those which are

explicitly named below. Before migrating a managed node, you MUST migrate its deployment manager

first. If you have not migrated the deployment manager, see “Network Deployment migrations” on page

102, then return to this article after the deployment manager is migrated.

The steps outlined below will walk you through the process of creating the migration jobs for your

managed Application Server node. You must complete this walkthrough and create these jobs before you

can begin the physical migration.

Customization Dialog walkthrough for managed Application Server node

 1. Invoke the WebSphere Application Server for Version 6.0.1 Customization Dialog:

ex ’product_hlq.SBBOCLIB(BBOWSTRT)’ ’options’

v Example product_hlq: WAS601.WAS

v Example options: appl(az)

For more information on starting the Customization Dialog, including information on available options,

see Starting the Customization Dialog in the Installing your application serving environment PDF

book.

 2. From the first menu page, select option 4: Migrate V5.x Nodes to V6 Nodes.

 3. On the next panel, choose option 3: Migrate a V5.x managed application server node to V6.

 4. The next step is to allocate partitioned datasets that you will use to store the generated migration jobs

and supporting data. On the ″V5.x Federated Node Migration″ menu, choose option 1: Allocate target

data sets.

 5. On the ″Allocate Target Data Sets″ panel, specify your high level qualifier, and then press Enter to

proceed to the next panel. Accept the defaults on the next two panels that specify the parameters for

the .CNTL and .DATA data sets.

 6. Back on the ″V5.x Federated Node Migration″ menu, choose option 2: Define variables. In the

following panels, the migration data collection process begins.

 7. On the ″Define Variables to migrate a V5.x Federated Node″ menu, choose option 1: System

Locations (directories, HLQs, etc.).

 8. The System Locations (1 of 2) panel collects information about your V6 installation libraries, and

whether you intend to place the load modules in STEPLIB. Correctly specifying STEPLIB is essential

to a successful migration. It is likely that your V5.x modules are currently in LPA/LNKLST, and that

you will begin with your V6 libraries being defined in STEPLIB. Specify whether to put your V6

modules in STEPLIB and continue to the next panel.

Example:

System Locations (1 of 2)

 Specify the following V6.0.1 information, then press ENTER to continue.

 For some data sets, specify "Y" if they are in STEPLIB.

112 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Full Names of Data Sets

 PROCLIB.: SYS1.PROCLIB

Run WebSphere Application Server from STEPLIB (Y/N)? Y

SBBOLPA.: WAS601.WAS.SBBOLPA

SBBOLOAD: WAS601.WAS.SBBOLOAD

SBBOLD2.: WAS601.WAS.SBBOLD2

 Use STEPLIB?

SCEERUN.: CEE.SCEERUN Y

SCEERUN2: CEE.SCEERUN2 Y

SGSKLOAD: SYS1.GSK.SGSKLOAD Y

 (leave SGSKLOAD blank if all systems are at z/OS 1.6 or above)

 9. On the ″System Locations (2 of 2)″ panel, specify your V6 WebSphere Application Server SMP/E

home directory (example: /usr/lpp/zWebSphere/V6R0). After specifying your V6.0.1 home directory,

press Enter to proceed. You will be taken back to the ″Define Variables to migrate a V5.x managed

Application Server Node″ menu.

10. Back on the ″Define Variables to migrate a V5.x Federated Node″ menu, option 1 is marked as

completed. Now choose option 2: System Environment Customization.

11. The System Environment Customization panel is where you specify the configuration root HFS, which

is where the configuration for the node being migrated is physically stored. You may choose to use an

existing HFS if you already have an appropriate HFS on the node being migrated. If you choose to

use an existing HFS, you need to ensure that the mount point you specify here is present prior to

running the migration utilities (BBOWMG1F, BBOWMG2F, etc.) that are created through these

dialogs. If you choose to create a new HFS on the node being migrated, the actual creation of the

new HFS will not occur until you run the BBOWMMMT job during the migration process, after you

complete this walkthrough (see “Migrating a base Application Server node” on page 99 for more

information). Specify either an existing mount point or a new mount point and press Enter to proceed.

Example:

System Environment Customization

 Specify the following to customize your system environment, then

 press Enter to continue.

 WebSphere Application Server for z/OS HFS Information

 Mount point....: /WebSphere/V6R0

 Name...........: OMVS.WAS.CONFIG.HFS

 Volume, or ’*’ for SMS.: *

 Primary allocation in cylinders...: 250

 Secondary allocation in cylinders.: 100

12. Back on the ″Define Variables to migrate a V5.x managed Application Server node″ menu, options 1

and 2 are marked as completed. Now select option 3: Server Customization.

13. On the Server Customization (1 of 2) panel, specify the source node that you are migrating under

″V5.x WebSphere Application Server home directory.″

Also, specify the home location of the profile that will contain your V6.0.1 migrated node under ″V6

WebSphere Application Server home directory.″

Chapter 4. Migrating product configurations 113

On this panel, you can also choose to enable tracing on your migration utilities, which will then

remain enabled throughout the entire migration process. Enabling tracing generates a lot of output,

and is generally intended for use only when directed by service support.

During migration, a backup copy of the V5.x configuration is required. The default location of this

backup is already specified, though you may override if needed. You may need to specify a location

other than the default if the /tmp HFS does not have adequate space to store the backup

configuration. If you choose to override the default location of the backup copy, IBM recommends

keeping the same naming convention and just replacing the /tmp portion with another path, e.g.,

/myTempmigrate/57638/fed_backup. The five-digit number (57638 in this example) is generated

uniquely each time you create the migration jobs.

The migration output messages, which you will need to monitor throughout the migration process, are

stored in tmp/migrate/57638 (after migration, the job output in this directory is NOT automatically

deleted). The migration output messages are also appended to the JCL sysout messages, which can

be viewed in SDSF.

Once you have specified all values or left the defaults, press Enter to proceed to the next panel.

Example:

Server Customization (1 of 2)

 Specify the following to customize your migration, then press Enter

 to continue.

 V5.x WebSphere Application Server home directory:

 /WebSphere/V5R1M0

 / AppServer

 V6 WebSphere Application Server home directory:

 /WebSphere/V6R0

 / AppServer

 Migration Options

 Enable z/OS Migration Tracing: N

 Enable WASProfile Tracing....: N

 Enable WASPreUpgrade Tracing.: N

 Enable WASPostUpgrade Tracing: N

 Default Backup Directory: /tmp/migrate/57638/fed_backup

 User Specified Backup Directory:

 ==>

14. On the Server Customization (2 of 2) panel, specify the High Availability Manager Host, a new feature

in V6.0.1 that has no previous value from V5.x. The value you enter here is the IP address of the

LPAR you are migrating. This value must resolve to a single IP address, and you can use a dotted

decimal address.

The procedure names used to start the V6.0.1 servers are also specified on this panel; new

procedure names are required for V6.0.1. You may keep the defaults, or change them if needed. The

Customization Dialog creates new V6.0.1 JCL using the procedure names specified here.

Because some of the migration jobs require running under a WebSphere Administrator ID, you need

to supply a valid administrator ID and password here as well.

Specify values or accept defaults and press Enter to proceed.

Example:

Server Customization (2 of 2)

 Specify the following to customize your migration, then press Enter

 to continue.

 High Availability manager Host:

114 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

The High Availability Manager Host MUST resolve to a single

 IP address. It can not be a multihomed host.

 Daemon Procedure name.........: BBO6DMN

 Controller Procedure name.....: BBO6ACR

 Servant Procedure name........: BBO6ASR

 Some migration tasks require running under the

 WebSphere Administrators account:

 WebSphere Administrator User ID.: XXXXXXX

 WebSphere Administrator Password: XXXXXXXX

15. After completing the managed Server Customization (2 of 2) panel, you will be returned to the

″Define Variables to migrate a V5.x Federated Node″ menu. Press PF3 to return to the ″V5.x

Federated Node Migration″ menu.

16. On the ″V5.x Federated Node Migration″ menu, choose option 3: Generate customization jobs.

17. On the Generate Customization Jobs panel, you can see the names of the .CNTL and .DATA data

sets that have been customized based on your previous input.

Now you need to provide a job card customized to your environment-specific requirements.

When you have entered your job card, press Enter. The generation process runs, and presents you

with a list of job streams and files that have been created to perform the migration to V6.0.1. These

jobs do not require any editing; they are to be submitted ″as-is″ during the migration process.

Enter an appropriate job card, and press Enter to proceed.

Example:

Generate Customization Jobs

 This portion of the Customization Dialog generates the jobs you must

 run after you complete this dialog process. You must complete the

 customization process before you generate the jobs with this step.

 If you have not done this, please return to that step.

 Jobs and data files will get generated into data sets:

 ’hlq.CNTL’

 ’hlq.DATA’

 If you wish to generate customization jobs using other data sets, then

 exit from this panel and select the "Allocate target data sets" option.

All the jobs that will be tailored for you will need a job card.

Please enter a valid job card for your installation below. The

file tailoring process will update the job name for you in all the

generated jobs, so you need not be concerned with that portion of

the job cards below. If continuations are needed, replace the

comment cards with continuations.

Specify the job cards, then press Enter to continue.

//jobname JOB (ACCTNO,ROOM),’IBMUSER’,CLASS=A,REGION=0M

//*

//*

//*

18. A list of JCL jobs that have been generated for your migration is displayed. When processing has

completed, press Enter to proceed.

Example:

Chapter 4. Migrating product configurations 115

Processing for data set ’hlq.CNTL’ ...

Member BBOWMG1F successfully created.

Member BBOWMG2F successfully created.

Member BBOWMG3F successfully created.

Member BBOWMMMT successfully created.

Member BBOMMCR successfully created.

Member BBOMMCRZ successfully created.

Member BBOMMDN successfully created.

Member BBOMMDNZ successfully created.

Member BBOMMSR successfully created.

Member BBOMMSRZ successfully created.

Member BBOMMCP successfully created.

Member BBOMMINS successfully created.

Processing for data set ’hlq.DATA’ ...

Member BBOWBMPT successfully created.

Member BBOWMMRF successfully created.

19. You will be returned back to the ″V5.x Federated Node Migration″ menu. IBM recommends that you

now save your configuration variables for future reference by selecting option S: Save Customization

Variables.

20. You have now completed the job generation process and are ready to begin the process of migration.

See instructions for performing the migration by selecting option 4: View instructions. Also, proceed to

the article “Migrating a federated Application Server node” for instructions on performing the

migration.

Migrating a federated Application Server node

With the Deployment Manager migrated and restarted, you are ready to migrate a federated Application

Server node as well.

Note: At this point, ensure that the Application Servers and the node agent are stopped.

The BBOWMG1F, BBOWMG2F, and BBOWMG3F jobs referenced below must be submitted by a

WebSphere Administrator User ID. All other jobs must be submitted by a user ID that has control over the

filesystem.

Ensure that the newly-migrated deployment manager is up and running

In order for the Application Server node to be properly migrated, the deployment manager must be

running. In order for this migration to work, the deployment manager must be up and listening on its SOAP

port.

 Check Off Item

Access the Administrative Console of the Version 6.0.1 deployment manager. This validates

that the deployment manager is running.

 Check Off Item

Ensure that the Version 6.0.1 copy of the code is running. Under ″About your WebSphere

Application Server″, the build number should begin with W601.

116 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Create and mount a new V6.0.1 HFS

Before you perform the migration, V6.0.1 requires an HFS to be present for your new configuration. You

can run BBOWMMMT to create and mount a new HFS, or you can mount one manually. Either way, you

must have an HFS for your V6.0.1 configuration created and mounted before you proceed. This HFS is

the target of the migration; your V5.x configuration HFS is the source.

BBOWMMMT creates a mount point directory, allocates the configuration’s HFS, and mounts the HFS at

whatever value you specified on the field called ″Mount Point″ in the ″System Environment Customization″

panel in the Customization Dialog.

Before you proceed, ensure that you have, either manually or using BBOWMMMT, allocated, created, and

mounted your HFS data sets. The mount point should be owned by the WebSphere Admin ID, and have

permissions of at least 755. The new HFS structures in should be included in BPXPARM so that they will

be mounted at the next IPL.

Copy your generated JCL procedures

The migration utility BBOMMCP copies the generated JCL procedures to start the servers to the specified

procedure library. Your V6.0.1 configuration must make use of different JCL start procedure names; this

utility will update the new V6.0.1 configuration, substituting your new JCL names in place of the names

that existed in your original V5.x configuration. Submit BBOMMCP, and verify a return code of 0.

Update your RACF STARTED profiles

The STARTED profile used by controller regions is based on the procedure name and JOBNAME.

Because V6.0.1 requires new start procedures, you must ensure that a STARTED profile will apply so that

the proper identity will be assigned to the started task. For example, if your V5.x controller JCL procedure

name is AZACR, and you specified AZ6ACR for V6.0.1, then you would need to create a STARTED profile

for that new procedure name:

 new controller same identity used in

 JCL name V5.x configuration

 | |

 RDEFINE STARTED AZ6ACR.* STDATA(USER(AZACRU) GROUP(AZCFG) TRACE(YES))

Note:

v Do not use a different user ID to start. There are other things tied to the user ID, and if you

change the user ID other changes would also be required.

v If your original STARTED profile was generic, for example, STARTED AZ*.* ... , you would not

need to create a new STARTED profile.

v Servant region STARTED profiles are based on JOBNAME, not procedure name. So there is no

issue with the servant when you use a different procedure name.

v Daemons and Node Agents are controllers, so using different procedure names for those implies

a new STARTED profile.

Submit BBOWMG1F

Note: If you are not using XA connectors, submitting BBOWMG1F and BBOWMG2F is optional. However,

IBM recommends that you submit both jobs to ensure that your transaction logs are clear.

Unlike in previous WebSphere Application Server for z/OS migrations, you no longer have to customize

the migration utilities. This makes the migration process much more simple. BBOWMG1F, for example, is

to be submitted as is.

Chapter 4. Migrating product configurations 117

BBOWMG1F enables all servers on the federated Application Server node being migrated to start in PRR

processing mode. PRR processing mode resolves any outstanding transactions, clears the transaction

logs, and terminates the server. To enable PRR processing mode, follow these steps:

1. Stop the federated Application Server.

2. Submit the job BBOWMG1F as is, verify return code of 0.

3. Restart the federated Application Server, wait for it to perform PRR processing and terminate

automatically.

Submit BBOWMG2F

BBOWMG2F disables PRR mode and returns all servers to normal operating state. Submit this job and

verify a return code of 0. You do not need to start the servers again after this job completes.

Submit BBOWMG3F

BBOWMG3F is the job that performs the physical migration of the V5.x node to V6.0.1, based on the

information you supplied in the Customization Dialog. Submit BBOWMG3F. Verify that you are getting

return codes of 0, and review the log files in the migration temp directory on the HFS (this directory is

/tmp/migrate/directory, where directory is the numeric value specified in the Federated Node

Customization panel in the Customization Dialog.

Start the managed Application Server node

Use the existing commands that you would use to start a V5.x Application Server, but replace the RACF

STARTED procedure name with the value you entered in the Federated Node Customization Dialog (2 of

2) for Controller Procedure name. This command starts the V6.0.1 federated Application Server. Wait until

the server is finished initializing before proceeding.

The following message appears on the console and in the job log of BBOS001:

BBOO0019I INITIALIZATION COMPLETE FOR WEBSPHERE FOR z/OS CONTROL PROCESS BBOS001

At this point, your migration to V6.0.1 is complete.

Perform post-migration tasks

After you have verified a successful migration to V6.0.1, and are successfully running a migrated

configuration, you should delete:

v everything in the target configuration’s HFS

v everything in the target configuration’s /tmp/migrate/nnnnn/ directory

v bbomigrt2.sh

Migrating an Application Server node on another MVS image

The process is nearly identical to the process outlined in “Migrating a federated Application Server node”

on page 116. Follow the procedure outlined in that article, keeping aware of the following points:

v Ensure that the V6.0.1 deployment manager is up and running.

v Run the jobs on the same system on which the node itself resides.

v You must go through the migration section of the Customization Dialogs to create customized migration

jobs, just as you would on the same MVS image.

118 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Migration tools

This topic introduces the migration tools that WebSphere Application Server provides. All of the migration

tools are in the install_root/bin directory after installation. It is important to use the migration tools for

the version of Application Server that you are installing. The tools change over time. If you use migration

tools from an earlier release of WebSphere Application Server for z/OS, you are likely to encounter a

problem with the migration.

clientUpgrade.sh (and clientUpgrade.bat)

Upgrades the client application to a new release level.

convertScriptCompatibility.sh (and convertScriptCompatibility.bat)

Used by administrators to convert their configuration from a mode that supports backward

compatibility of V5.x administration scripts to a mode that is fully V6.0.

The clientUpgrade command

Use the clientUpgrade command to migrate V5.x client resources to V6.0.1 level resources. In the

process of migrating these resources, the client-resources.xmi file located in the client jars will be

migrated to the latest level. A backup of the client-resources.xmi file will also be located in the client jar. If

this command is not executed against the client EAR files before they are installed on V6.0.1, the client

EARs will not operate or install correctly.

The command file is located in the bin subdirectory of the WAS_install_root, or the ND_install_root

directory. By default, the WAS_install_root for WebSphere Application Server for z/OS is

/usr/WebSphere/AppServer.

By default, the ND_install_root for WebSphere Application Server for z/OS is

/usr/WebSphere/DeploymentManager.

Command syntax:

clientUpgrade EAR_file [-clientJar client_jar]

 [-logFileLocation logFileLocation]

 [-traceString trace_spec [-traceFile file_name]]

Parameters

Supported arguments include the following:

EAR_file

Use this parameter to specify the fully qualified path to the EAR file that contains client JAR files to

process.

-clientJar

Use this optional parameter to specify a JAR file for processing. If not specified, the program

transforms all client JAR files in the EAR file.

-logFileLocation log_file_location

Use this optional parameter to specify an alternate location to store the log output.

-traceString trace_spec -traceFile file_name

Use these optional parameters to gather trace information for IBM Service personnel. Specify a

trace_spec of ″*=all=enabled″ (with quotation marks) to gather all trace information.

The following example demonstrates correct syntax:

clientUpgrade EAR_file -clientJar ejbJarFile

Chapter 4. Migrating product configurations 119

The convertScriptCompatibility command

The convertScriptCompatibility command is a migration tool used by administrators for converting a

configuration from a mode that supports backward compatibility of V5.x administration scripts to a mode

that is fully V6.0. This command converts WebSphere Common Configuration Model (WCCM) objects of

type processDef to use processDefs as defined in the 6.0 server.xml model. There can be only one

occurrence of a processDefs object in a server configuration. If an existing processDefs object is found

when performing this conversion, it is used and updated; otherwise a new object is created. The

convertScriptCompatibility command also maps existing transport entries to channel support. This

affects server.xml and serverindex.xml files. The values of the transport settings are used to create new

channel entries.

convertScriptCompatibility.bat command syntax for Windows platforms

The command syntax is as follows:

convertScriptCompatibility [-help]

 [-backupConfig true | false]

 [-profileName profile_name]

 [-nodeName node_name [-serverName server_name]]

 [-traceString trace_spec [-traceFile file_name]]

Parameters

Supported arguments include the following:

-help

Displays help for this command

-backupConfig true | false

An optional parameter used to back up the existing configuration of the current instance. The default is

true, to use the backupConfig command to save a copy of the current configuration into the

profile_name/temp directory. Use the restoreConfig command to restore that configuration as

required.

-profileName profile_name

An optional parameter used to specify a profile configuration in the V6 environment. If not specified,

the default profile will be used. If the default has not been set or cannot be found, the system will

return an error.

-nodeName node_name -serverName server_name

Optional parameters used to specify a node name and a server name for the program to update. If

neither is specified, all nodes and servers in the configuration are converted. When you use

-serverName in conjunction with -nodeName, all processing will be limited to the specified node_name.

-traceString trace_spec -traceFile file_name

Optional parameters to gather trace information for IBM Service personnel. Specify a trace

specification of ″*=all=enabled″ (with quotation marks) to gather all trace information.

Rolling back your environment to V5.x

This task describes rolling back a WebSphere Application Server Version 6.0.1 environment to Version 5.x.

1. To roll back a cell, from the Version 5.x directory of each node, run the following command:

./wsadmin.sh -f dmDisablementReversal.jacl -conntype NONE

2. Run this command from each deployment manager or node that you need to roll back from Version

6.0.1.

120 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Chapter 5. Coexisting

This topic is a starting point for finding information about which coexistence scenarios are supported, and

how to set up the scenarios.

Coexisting, as it applies to WebSphere Application Server products, is the ability of multiple installations of

WebSphere Application Server to run on the same system at the same time. Multiple installations include

multiple versions and multiple instances of one version. Coexistence also implies various combinations of

Web server interaction.

Read about “Coexistence support.”

This topic discusses which coexistence scenarios are supported.

Coexistence support

Coexistence, as it applies to WebSphere Application Server for z/OS products, is the ability of multiple

customizations (nodes) of WebSphere Application Server to run on the same z/OS image or sysplex at the

same time. You can install WebSphere Application Server for z/OS once and customize it many times; i.e.,

you can create many nodes from one installation. This installation can be shared by all LPARs (logical

partitions) in the same sysplex.

When setting up your system for coexistence, you need to be aware of the following points:

General coexistence:

v Multiple WebSphere Application Server for z/OS cells can coexist in the same sysplex.

v Multiple WebSphere Application Server for z/OS nodes can coexist on the same LPAR.

v WebSphere Application Server for z/OS V5.0.x, V5.1, and V6.0.1 nodes can all coexist in the

same cell.

v No two cells can have the same cell short name.

v Separate cells need separate HFS mount points and JCL procedures.

v If your V5.x load modules reside in LPA/LNKLST, you will need to place the V6.0.1 modules in

STEPLIB in order to coexist.

v You need to determine port conflicts that might occur when earlier versions coexist with Version

6.0.1. See Planning a TCP/IP port convention in the Installing your application serving

environment PDF book for default port information.

V5.0.x and V5.1 coexistence:

v WebSphere Application Server for z/OS V5.0.x and V5.1 nodes can coexist in the same cell if

and only if they are on different LPARs.

v WebSphere Application Server for z/OS V5.0.x and V5.1 nodes can coexist on the same LPAR

if and only if they are in different cells.

V5.0.x and V6.0.1 coexistence:

v WebSphere Application Server for z/OS V5.0.x and V6.0.1 nodes can coexist in the same cell if

and only if they are on different LPARs.

Note: A service level of at least W502025 is required for V5.0.x nodes to coexist with V6.0.1 in

the same cell

v WebSphere Application Server for z/OS V5.0.x and V6.0.1 nodes can coexist on the same

LPAR if and only if they are in different cells.

V5.1 and V6.0.1 coexistence:

© Copyright IBM Corp. 2005 121

v WebSphere Application Server for z/OS V5.1 and V6.0.1 nodes can coexist on the same LPAR

in the same cell or in different cells.

122 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Chapter 6. Interoperating

WebSphere Application Server Version 6.0.1 is generally interoperable with WebSphere Application Server

Versions 5.0.x and 5.1.x. IBM recommends that you apply the latest fix level to support interoperability.

Currently, there are no interim fixes necessary to support interoperability. However, in order to interoperate

between WebSphere Application Server for z/OS and a WebSphere Application Server product on a

non-z/OS machine, you take the following steps:

1. On the non-z/OS machine, the property -Dcom.ibm.CORBA.ORBCharEncoding=ASCII should be set under

Server1 ->process definitions-> jvm prop->generic JVM arguments.

2. On the non-z/OS machine, the property com.ibm.CORBA.ORBWCharDefault = UCS2 should be defined

under Server1->orb services->custom property.

3. If you are running WebSphere Application Server for z/OS with security enabled, you must set the

property com.ibm.CORBA.validateBasicAuth=false in sas.client.props on the non-z/OS machine. It is

set to true by default.

© Copyright IBM Corp. 2005 123

124 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Chapter 7. Configuring ports

This topic discusses configuring ports, particularly in coexistence scenarios.

1. Review the port number settings, especially when you are planning to coexist.

See Planning a TCP/IP port convention in the Installing your application serving environment PDF

book for reference information for identifying port numbers used by present and past product versions.

2. Optional: Change the port number settings.

You can set port numbers when configuring (customizing) the product after installation. Start thinking

about port numbers during the planning phase.

After installation, edit the

profiles_install_root/profile_name/config/cells/cell_name/nodes/node_name/serverindex.xml file to

change the port settings, or use scripting to change the values.

© Copyright IBM Corp. 2005 125

126 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

 Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

 IBM Corporation

 Mail Station P300

 2455 South Road

 Poughkeepsie, NY 12601-5400

 USA

 Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

© Copyright IBM Corp. 2005 127

128 IBM WebSphere Application Server for z/OS, Version 6.0.1: Migrating, coexisting, and interoperating

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site (http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2005 129

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Chapter 1. Overview and new features for migrating, coexisting, and interoperating
	Contents of this section: Migrating, coexisting, and interoperating
	Deprecated and removed features
	Deprecation list
	Deprecated features in V6.0.1
	Deprecated features in V6.0
	Deprecated features in V5.1.1
	Deprecated features in V5.1.0.2
	Deprecated features in V5.1
	Deprecated features in V5.0.2
	Deprecated features in V5.0.1
	Deprecated features in V5.0

	Removal list
	Removed features in V6.0

	Migrating and coexisting
	Migration and coexistence overview
	Configuration mapping during migration
	Specification level summary of WebSphere Application Server
	Prerequisites needed for WebSphere Application Server for z/OS
	Migrating WebSphere programming model extensions (PMEs)
	Mapping of V4.0.1 environment variables to V6.0.1 console settings

	Chapter 2. How do I migrate, coexist, and interoperate?
	Chapter 3. Learn about WebSphere applications
	Web applications
	Migrating V6.0 servers from multi-broker replication domains to data replication domains
	Comparison of multi-broker versus data replication domains

	Migrating Web application components from WebSphere Application Server Version 4.x
	Migrating Web application components from WebSphere Application Server Version 5.x
	Migrating HTTP sessions
	Memory-to-memory topology: Client/server function
	Memory-to-memory session partitioning

	EJB applications
	Migrating V6.0 servers from multi-broker replication domains to data replication domains
	Comparison of multi-broker versus data replication domains

	Migrating enterprise bean code to the supported specification
	Migrating enterprise bean code from Version 1.0 to Version 1.1
	Migrating enterprise bean code from Version 1.1 to Version 2.1
	Adjusting exception handling for EJB wrappered applications migrating from version 5 to version 6

	Container interoperability

	Web services
	Web Services-Interoperability Basic Profile
	How to change encoding from UTF-8 to UTF-16

	Migrating Apache SOAP Web services to Web Services for J2EE standards
	Migrating to Version 3 of the UDDI Registry
	Setting up a UDDI migration datasource

	Initializing the UDDI Registry node
	Using a remote database for the UDDI Registry

	Data access resources
	Migrating a Version 4.0 data access application to Version 6.0
	Converting a 2.2 Web module to a 2.3 Web module
	Converting a 1.1 EJB module to a 2.1 EJB module (or later)
	Add the EJB modules and Web modules to an EAR file
	Installing the Application on WebSphere Application Server
	Connection considerations when migrating servlets, JavaServer Pages, or enterprise session beans

	Mail, URLs, and other J2EE resources
	Mail migration tip

	Security
	Interoperability issues for security
	Interoperating with a C++ common object request broker architecture client
	Interoperating with previous product versions
	Migrating security configurations from previous releases
	Migrating custom user registries
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service
	Migrating from the CustomLoginServlet class to servlet filters

	Propagating security policy of installed applications to a JACC provider using wsadmin scripting
	Enabling embedded Tivoli Access Manager
	Migrating Java 2 security policy

	Naming and directory
	JNDI interoperability considerations

	Learn about WebSphere programming extensions
	Application profiling
	Migrating Version 5 Application Profiles to Version 6
	Application profiling interoperability

	Asynchronous beans
	Interoperating with asynchronous beans

	Dynamic cache
	Migrating V6.0 servers from multi-broker replication domains to data replication domains

	Internationalization
	Migrating internationalized applications

	Scheduler
	Interoperating with schedulers

	Chapter 4. Migrating product configurations
	Planning to migrate WebSphere Application Server for z/OS
	Overview of the V6.0.1 migration process
	Base Application Server node migrations
	Preparing to migrate a base Application Server node to V6.0.1
	Customization Dialog walkthrough for migrating a stand-alone Application Server node
	Migrating a base Application Server node
	Checklist of migration activities for base Application Server node

	Network Deployment migrations
	Preparing to migrate a Network Deployment configuration to V6.0.1
	Customization Dialog walkthrough for deployment manager
	Migrating a deployment manager
	Checklist of migration activities for a Network Deployment configuration
	Managed (federated) node migrations
	Customization Dialog walkthrough for migrating a managed Application Server node
	Migrating a federated Application Server node
	Migrating an Application Server node on another MVS image

	Migration tools
	The clientUpgrade command
	The convertScriptCompatibility command

	Rolling back your environment to V5.x

	Chapter 5. Coexisting
	Coexistence support

	Chapter 6. Interoperating
	Chapter 7. Configuring ports
	Notices
	Trademarks and service marks

