
WebSphere® Application Server

Using the WorkArea Facility

Version 4.0

GC09-4550-00

���

Note
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 23.

First Edition (March 2001)

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures. v

Using the WorkArea Facility 1
Introduction 1

Structure of work areas 2
Nested work areas 4
Distributed work areas 7
Administration 7
Running work-area applications. 8
The example application 8

Special considerations 9
Writing the example application 10

Creating a work area 11
Using a work area 16
Other methods in the UserWorkArea
interface 21

Notices 23
Trademarks and service marks 25

© Copyright IBM Corp. 2001 iii

iv WebSphere: Using the WorkArea Facility

Figures

1. Code example: The PropertyModeType
definition 2

2. Defining new properties in nested work
areas 5

3. Redefining existing properties in nested
work areas 6

4. Code example: The
SimpleSampleCompany and
SimpleSamplePriority classes 9

5. Code example: The UserWorkArea
interface 10

6. Code example: Binding to the work-area
facility 12

7. Code example: Creating a new work
area 12

8. Code example: Setting properties in a
work area 14

9. Code example: Terminating the work
area 15

10. Code example: Retrieving the name
from a work area 17

11. Code example: Attempting to modify an
imported work area 17

12. Creating a nested work area 18
13. Code example: Attempting to modify a

non-overridable property 19
14. Code example: Retrieving properties

from a work area 20
15. Code example: Retrieving properties

from a work area 21

© Copyright IBM Corp. 2001 v

vi WebSphere: Using the WorkArea Facility

Using the WorkArea Facility

Introduction

One of the foundations of distributed computing is the ability to pass
information, typically in the form of arguments to remote methods, from one
process to another. When application-level software is written over
middleware services, many of the services rely on information beyond that
passed in the application’s remote calls. Such services often make use of the
implicit propagation of private information in addition to the arguments
passed in remote requests; the two most typical users of such a feature are
security and transaction services. Security certificates or transaction contexts
are passed without the knowledge or intervention of the user or application
developer. The implicit propagation of such information means that
application developers do not have to manually pass the information in
method invocations, which makes programming less error-prone, and the
services requiring the information do not have to expose it to application
programmers. Information like security credentials can remain secret.

The WebSphere work-area facility gives application programmers a similar
facility. Applications can create a work area, insert information into it, and
make remote invocations. The work area is propagated with each remote
method invocation, eliminating the need to explicitly include an appropriate
argument in the definition of every method. The methods on the server side
can use or ignore the information in the work area as appropriate. If methods
in a server receive a work area from a client and subsequently invoke other
remote methods, the work area is transparently propagated with the remote
requests. When the creating application is done with the work area, it
terminates it.

There are two prime considerations in deciding whether to pass information
explicitly as an argument or implicitly by using a work area. These
considerations are:
v Pervasiveness: Is the information used in a majority of the methods in an

application?
v Size: Is it reasonable to send the information even when it will not be used?

When information is sufficiently pervasive that it is easiest and most efficient
to make it available everywhere, application programmers can use the
work-area facility to simplify programming and maintenance of code. The
argument does not need to go onto every argument list. It is much easier to
put the value into a work area and propagate it automatically. This is

© Copyright IBM Corp. 2001 1

especially true for methods that simply pass the value on but do nothing with
it. Methods that make no use of the propagated information simply ignore it.

Work areas can hold any kind of information, and they can hold an arbitrary
number of individual pieces of data, each stored as a property.

Structure of work areas
The information in a work area consists of a set of properties; a property
consists of a key-value-mode triple. The key-value pair represents the
information contained in the property; the key is a name by which the
associated value is retrieved. The mode determines whether the property can
be removed or modified.

Property modes
There are four possible mode values for properties, as shown in Figure 1:

A property’s mode determines three things:
v Whether the value associated with the key can be modified
v Whether the property can be deleted
v Whether the mode associated with the key-value pair can be modified

The two read-only modes forbid changes to the information in the property;
the two fixed modes forbid deletion of the property.

The work-area facility does not provide methods specifically for the purpose
of modifying the value of a key or the mode associated with a property. To
change information in a property, applications simply rewrite the information
in the property; this has the same effect as updating the information in the
property. The mode of a property governs the changes that can be made.
“Modifying key-value pairs” describes the restrictions each mode places on
modifying the value and deleting the property. “Changing modes” on page 3
describes the restrictions on changing the mode.

Modifying key-value pairs
Each property can have one of four modes, which determine how the
property can be manipulated. There are two kinds of changes governed by the
modes:

public final class PropertyModeType {
public static final PropertyModeType normal;
public static final PropertyModeType read_only;
public static final PropertyModeType fixed_normal;
public static final PropertyModeType fixed_readonly;

};

Figure 1. Code example: The PropertyModeType definition

2 WebSphere: Using the WorkArea Facility

v Modifications to the property, either by changing property in the
originating work area or masking it in a nested work area (see “Nested
work areas” on page 4 for more information on nesting work areas)

v Deletion of the property

The four modes and their characteristics follow:
v Normal: The value of the key can be modified; if the key is present, it can

take any value. The property can be deleted. This is the default mode.
v Read-only: The value of the key cannot be modified; if the key is present,

the associated value must be the originally set value. The property can be
deleted.

v Fixed normal: The key must be present, but the value of the key can be
modified. The property cannot be deleted.

v Fixed read-only: The key must be present, and the value of the key cannot
be modified. The property cannot be deleted.

The two read-only modes forbid changes to the information in the property;
the two fixed modes forbid deletion of the property.

The mode is determined when the property is inserted into a work area. The
default mode is normal, allowing modification and deletion of the property.

Changing modes
The mode associated with a property can be changed only according to the
restrictions of the original mode. The read-only and fixed read-only properties
do not permit modification of the value or the mode. The fixed normal and
fixed read-only modes do not allow the property to be deleted. This set of
restrictions leads to the following permissible ways to change the mode of a
property within the lifetime of a work area:
v If the current mode is normal, it can be changed to any of the other three

modes: fixed normal, read-only, fixed read-only.
v If the current mode is fixed normal, it can be changed only to fixed

read-only.
v If the current mode is read-only, it can be changed only by deleting the

property and re-creating it with the desired mode.
v If the current mode is fixed read-only, it cannot be changed.
v If the current mode is not normal, it cannot be changed to normal. If a

property is set as fixed normal and then reset as normal, the value is
updated but the mode remains fixed normal. If a property is set as fixed
normal and then reset as either read-only or fixed read-only, the value is
updated and the mode is changed to fixed read-only.

Note: The key, value, and mode of any property can be effectively changed by
terminating the work area in which the property was created and

Using the WorkArea Facility 3

creating a new work area. Applications can then insert new properties
into the work area. This is not precisely the same as changing the value
in the original work area, but some applications can use it as an
equivalent mechanism.

Nested work areas
Applications can nest work areas. When an application creates a work area, a
work-area context is associated with the creating thread. If the application
thread creates another work area, the new work area is nested within the
existing work area and becomes the current work area. Nested work areas
allow applications to define and scope properties for specific tasks without
having to make them available to all parts of the application. All properties
defined in the original, enclosing work area are visible to the nested work
area. The application can set additional properties within the nested work
area that are not part of the enclosing work area.

An application working with a nested work area does not actually see the
nesting of enclosing work areas. The current work area appears as a flat set of
properties that includes those from enclosing work areas. In Figure 2 on
page 5, the enclosing work area holds several properties and the nested work
area holds additional properties. From the outermost work area, the properties
set in the nested work are not visible. From the nested work area, the
properties in both work areas are visible.

4 WebSphere: Using the WorkArea Facility

Nesting can also affect the apparent settings of the properties. Properties can
be deleted from or directly modified only within the work areas in which they
were set, but nested work areas can also be used to temporarily override
information in the property without having to modify the property.
Depending on the modes associated with the properties in the enclosing work
area, the modes and the values of keys in the enclosing work area can be
overridden within the nested work area.

The mode associated with a property when it is created determines whether
nested work areas can override the property. From the perspective of a nested
work area, the property modes used in enclosing work areas can be grouped
as follows:
v Modes that permit a nested work area to override the mode or the value of

a key locally. The modes that permit overriding are:
– Normal
– Fixed normal

v Modes that do not permit a nested work area to override the mode or the
value of a key locally. The modes that do not permit overriding are:
– Read-only
– Fixed read-only

Figure 2. Defining new properties in nested work areas

Using the WorkArea Facility 5

If an enclosing work area defines a property with one of the overridable
modes, a nested work area can specify a new value for the key or a new
mode for the property. The new value or mode becomes the value or mode
seen by subsequently nested work areas. Changes to the mode are governed
by the restrictions described in “Changing modes” on page 3. If an enclosing
work area defines a property with one of the modes that cannot be
overridden, no nested work area can specify a new value for the key.

A nested work area can delete properties from enclosing work areas, but the
changes persist only for the duration of the nested work area. When the
nested work area is completed, any properties that were added in the nested
area vanish and any properties that were deleted from the nested area are
restored.

Figure 3 illustrates the overriding of properties from an enclosing work area.
The nested work area redefines two of the properties set in the enclosing
work area. The other two cannot be overridden. The nested work area also
defines two new properties. From the outermost work area, the properties set
or redefined in the nested work are not visible. From the nested work area,
the properties in both work areas are visible, but the values seen for the
redefined properties are those set in the nested work area.

Figure 3. Redefining existing properties in nested work areas

6 WebSphere: Using the WorkArea Facility

Distributed work areas
If a remote invocation is issued from a thread associated with a work area, a
copy of the work area is automatically propagated to the target object, which
can use or ignore the information in the work area as necessary. If the calling
application has a nested work area associated with it, a copy of the nested
work area and all its ancestors is propagated to the target. The target
application can locally modify the information, as allowed by the property
modes, by creating additional nested work areas; this information will be
propagated to any remote objects it invokes. However, no changes made to a
nested work area on a target object are propagated back to the calling object.
The caller’s work area is unaffected by changes made in the remote method.

Administration
The work-area facility is administered by using the WebSphere Application
Server administrative console and the thin client administrative tool. There are
two administrative tasks associated with work areas:
v Enabling or disabling use of the work-area facility
v Managing the size of the work-area information

The work-area facility can be used by clients and servers, and it must be
enabled separately for each. On the server side, the use of work areas is
enabled by default. To enable or disable the use of work areas for a server by
using the administrative console, locate the server’s configuration information
and perform these steps:
1. Select the Custom tab on the server configuration window.
2. Select the WorkArea service and click the Edit button.
3. Click the Enabled box to either enable or disable the work-area service.

The service is enabled if the box is checked and disabled if the box is not
checked.

On the client side, the use of work areas is also enabled by default. To enable
or disable the use of work areas for a client, set the
com.ibm.websphere.workarea.enabled property to TRUE or FALSE before
starting the client. This can be done in several ways. For example, edit the
launchClient script in the ${WAS_HOME}/bin directory and add the following
to the Java invocation: -Dcom.ibm.websphere.workarea.enabled=false.

Applications can set maximum sizes on each work area that can be sent and
that can be accepted. By default, the maximum that is sent by a client and
accepted, and possibly re-sent, by a server is 32,768 bytes.

Using the WorkArea Facility 7

To change the size of a work area that can be handled by a server, or accepted
to or in a server, locate the server’s configuration information by using the
administrative console and perform these steps:
1. Select the Custom tab on the server configuration window.
2. Select the WorkArea service and click the Edit button.
3. Enter a new value for maxSendSize field to modify the size of the work

area the server can send, or enter a new value for maxReceiveSize field to
modify the size of the work area the server can accept.

To change the size of a work area than can be sent from a client, set the
com.ibm.websphere.workarea.maxSendSize property to the desired number of
bytes before starting the client. This can be done in several ways. For
example, to set the maximum size to 10,000 bytes, edit the launchClient script
in the ${WAS_HOME}/bin directory and add the following to the Java
invocation: -Dcom.ibm.websphere.workarea.maxSendSize=10000.

The maximum size that can be specified is determined by the maximum value
expressible in the Java Integer data type, 2,147,483,647. The smallest maximum
size that can be specified is 1. Using a maximum size of 1 byte effectively
means that no requests associated with the work area can leave the system or
enter another system. A value of 0 means that no limit is imposed. A value of
-1 means that the default value is to be honored. The default value is also
used if a invalid value or a malformed property is specified.

Running work-area applications
The work-area service is available to any Java™ 2 Platform Enterprise Edition
(J2EE) web module, enterprise-bean module, or client. To compile applications
that use the work-area facility, ensure that the acwa.jar file is on the classpath.

The example application
This document uses a simple application to illustrate the use of the work-area
facility. In this example, the client creates a work area and inserts two
properties into the work area: a site identifier and a priority. The site-identifier
is set as a read-only property; the client does not allow recipients of the work
area to override the site identifier. This property consists of the key company
and a static instance of a SimpleSampleCompany object.The priority property
consists of the key priority and a static instance of a SimpleSamplePriority
object. The object types are defined as shown in Figure 4 on page 9.

8 WebSphere: Using the WorkArea Facility

The client then makes an invocation on a remote object. The work area is
automatically propagated; none of the methods on the remote object take a
work-area argument. On the remote side, the request is first handled by the
SimpleSampleBean; the bean first reads the site-identifier and priority
properties from the work area. The bean then intentionally attempts, and fails,
both to write directly into the imported work area and to override the
read-only site-identifier property.

The SimpleSampleBean successfully begins a nested work area, in which it
overrides the client’s priority, then calls another bean, the
SimpleSampleBackendBean. The SimpleSampleBackendBean reads the
properties from the work area, which contains the site identifier set in the
client and priority set in the SimpleSampleBean. Finally, the
SimpleSampleBean completes its nested work area, writes out a message
based on the site-identifier property, and returns.

The implementation of this application is discussed in “Writing the example
application” on page 10.

Special considerations
Programmers who use work areas must take into consideration two concerns
that can arise. The first is related to interoperability between the Enterprise
JavaBeans and CORBA programming models, and the second is related to
threading.

Although the work-area facility can be used across the Enterprise JavaBeans
and the CORBA programming models, many composed data types cannot be
successfully utilitized across those boundaries. For example, if a
SimpleSampleCompany instance is passed from the WebSphere environment
into a CORBA environment, the CORBA application can retrieve the

public static final class SimpleSampleCompany {
public static final SimpleSampleCompany Main;
public static final SimpleSampleCompany NewYork_Sales;
public static final SimpleSampleCompany NewYork_Development;
public static final SimpleSampleCompany London_Sales;
public static final SimpleSampleCompany London_Development;

}

public static final class SimpleSamplePriority {
public static final SimpleSamplePriority Platinum;
public static final SimpleSamplePriority Gold;
public static final SimpleSamplePriority Silver;
public static final SimpleSamplePriority Bronze;
public static final SimpleSamplePriority Tin;

}

Figure 4. Code example: The SimpleSampleCompany and SimpleSamplePriority classes

Using the WorkArea Facility 9

SimpleSampleCompany object encapsulated within a CORBA Any object from
the work area, but it cannot extract the value from it. Likewise, an
IDL-defined struct defined within a CORBA application and set into a work
area will not be readable by an application using the UserWorkArea class.
Applications can avoid this incompatibility by directly setting only primitive
types, like integers and strings, as values in work areas, or by implementing
complex values with structures designed to be compatible, like CORBA
valuetypes. Also, CORBA Anys that contains either the tk_null or tk_void
typecode can be set into the work area by using the CORBA interface, but the
work-area specification cannot allow the J2EE implementation to return null
on a lookup that retrieves these CORBA-set properties without incorrectly
implying that there is no value set for the corresponding key. If a J2EE
application tries to retrieve CORBA-set properties that are non-serializable, or
contain CORBA nulls or void references, the
com.ibm.websphere.workarea.IncompatibleValue exception is raised.

Work areas must be used cautiously in applications that use the Java’s
Abstract Windowing Toolkit. The ATW implementation is multithreaded, and
work areas begun on one thread are not available on another. For example, if
a program begins a work area in response to an AWT event, like pressing a
button, the work area may not be available to any other part of the
application after the execution of the event completes.

Writing the example application

Applications interact with the work-area facility by using the UserWorkArea
interface. This interface, shown in Figure 5, defines all the methods used to
create, manipulate, and terminate work areas.

package com.ibm.websphere.workarea;

public interface UserWorkArea {
void begin(String name);
void complete() throws NoWorkArea, NotOriginator;

String getName();
String[] retrieveAllKeys();
void set(String key, java.io.Serializable value)

throws NoWorkArea, NotOriginator, PropertyReadOnly;
void set(String key, java.io.Serializable value, PropertyModeType mode)

throws NoWorkArea, NotOriginator, PropertyReadOnly;
java.io.Serializable get(String key);
PropertyModeType getMode(String key);
void remove(String key)

throws NoWorkArea, NotOriginator, PropertyFixed;
}

Figure 5. Code example: The UserWorkArea interface

10 WebSphere: Using the WorkArea Facility

Note: Enterprise JavaBeans applications can use the UserWorkArea interface
only within the implementation of methods in the remote interface;
likewise, servlets can use the interface only within the service method
of the HTTPServlet class. Use of work areas within any lifecycle
method of a servlet or enterprise bean is not supported by the
work-area specification and is considered a deviation from the
work-area programming model.

The work-area facility defines the following exceptions for use with the
UserWorkArea interface:
v NoWorkArea: thrown when a request requires an associated work area but

none is present.
v NotOriginator: raised when a request attempts to manipulate the contents

of an imported work area.
v PropertyReadOnly: raised when a request attempts to modify a read-only

or fixed read-only property.
v PropertyFixed: raised by the remove method when the designated property

has one of the fixed modes.

Creating a work area
The client side of the application described in “The example application” on
page 8 creates a work area and inserts the site-identifier and priority
properties into the work area. This requires four steps on the part of the
client:
1. Binding to the work-area facility
2. Creating a new work area
3. Inserting information into the work area
4. Terminating the work area when it is no longer needed

Binding to the work-area facility
The work-area facility provides a JNDI binding to an implementation of the
UserWorkArea interface under the name
java:comp/websphere/UserWorkArea. Applications that need to access the
service can perform a lookup on that JNDI name, as shown in Figure 6 on
page 12.

Using the WorkArea Facility 11

Beginning a work area
After a client has a reference to the UserWorkArea interface, it can use the
begin method to create a new work area and associate it with the calling
thread. The begin method takes a string as an argument; the string is used to
name the work area. The argument must not be null, which causes the
java.lang.NullPointer exception to be raised. In Figure 7, the application begins
a new work area with the name SimpleSampleServlet.

Each work area must also be terminated within the process that created it;
each call to the begin method must have a corresponding call to the complete
method. See “Completing a work area” on page 15 for more information.

The begin method is also used to create nested work areas; if a work area is
associated with a thread when the begin method is called, the method creates
a new work area nested within the existing work area.

import com.ibm.websphere.workarea.*;
import javax.naming.*;

public class SimpleSampleServlet {
...

InitialContext jndi = null;
UserWorkArea userWorkArea = null;
try {

jndi = new InitialContext();
userWorkArea = (UserWorkArea)jndi.lookup(

"java:comp/websphere/UserWorkArea");
}
catch (NamingException e) { ... }

}

Figure 6. Code example: Binding to the work-area facility

public class SimpleSampleServlet {
...

try {
...
userWorkArea = (UserWorkArea)jndi.lookup(

"java:comp/websphere/UserWorkArea");
}
...

userWorkArea.begin("SimpleSampleServlet");
...

}

Figure 7. Code example: Creating a new work area

12 WebSphere: Using the WorkArea Facility

The work-area facility makes no use of the names associated with work areas;
programmers can name work areas in any way they choose. Names are not
required to be unique, but the usefulness of the names for debugging is
enhanced if the names are distinct and meaningful within the application.

Applications can use the getName method to return the name associated with
a work area by the begin method.

Setting properties in a work area
An application with a current work area can insert properties into the work
area and retrieve the properties from the work area. The UserWorkArea
interface provides two set methods for setting properties and a get method for
retrieving properties. The two-argument set method inserts the property with
the property mode of normal. The three-argument set method takes a
property mode as the third argument. See “Setting property modes” on
page 14 for more information on specifying property modes.

Both set methods take the key and the value as arguments. The key is a
String; the value is an object of the type java.io.Serializable. None of the
arguments can be null, which causes the java.lang.NullPointer exception to be
raised.

The property classes used in the example application: The example
application uses objects of two classes, the SimpleSampleCompany class and
the SimpleSampleProperty class, as values for properties. The
SimpleSampleCompany class is used for the site identifier, and the
SimpleSamplePriority class is used for the priority. These classes are shown in
Figure 4 on page 9.

Using the WorkArea Facility 13

The get method takes the key as an argument and returns a Java Serializable
object as the value associated with the key. For example, to retrieve the value
of the company key from the work area, Figure 8 uses the get method on the
work area to retrieve the value.

Setting property modes: The two-argument set method on the
UserWorkArea interface takes a key and a value as arguments and inserts the
property with the default property mode of normal. To set a property with a
different mode, applications must use the three-argument set method, which
takes a property mode as the third argument. The values used to request the
property modes follow:
v Normal: PropertyModeType.normal
v Fixed normal: PropertyModeType.fixed_normal
v Read-only: PropertyModeType.read_only

public class SimpleSampleServlet {
...
userWorkArea.begin("SimpleSampleServlet");

try {
// Set the site-identifier (default is Main).
userWorkArea.set("company",

SimpleSampleCompany.Main, PropertyModeType.read_only);

// Set the priority.
userWorkArea.set("priority", SimpleSamplePriority.Silver);

}

catch (PropertyReadOnly e) {
// The company was previously set with the read-only or
// fixed read-only mode.
...

}

catch (NotOriginator e) {
// The work area originated in another process,
// so it can't be modified here.
...

}

catch (NoWorkArea e) {
// There is no work area begun on this thread.
...

}

// Do application work.
...

}

Figure 8. Code example: Setting properties in a work area

14 WebSphere: Using the WorkArea Facility

v Fixed read-only: PropertyModeType.fixed_readonly

(See Figure 1 on page 2 for more information.)

Completing a work area
After an application has finished using the work area, it can terminate the
work area by calling the complete method on the UserWorkArea interface.
This terminates the association with the calling thread and destroys the work
area. If the complete method is called on a nested work area, the nested work
area is terminated and the parent work area becomes the current work area. If
there is no work area associated with the calling thread, the NoWorkArea
exception is thrown.

Every work area must be terminated, and work areas can be terminated only
by the originating process. For example, if a server attempts to call the
complete method on a work area that originated in a client, the work-area
NotOriginator exception is thrown. Figure 9 shows the termination of the
work area created in the client application.

public class SimpleSampleServlet {
...
userWorkArea.begin("SimpleSampleServlet");
userWorkArea.set("company",

SimpleSampleCompany.Main, PropertyModeType.read_only);
userWorkArea.set("priority", SimpleSamplePriority.Silver);
...

// Do application work.
...

// Terminate the work area.
try {

userWorkArea.complete();
}

catch (NoWorkArea e) {
// There is no work area associated with this thread.
...

}

catch (NotOriginator e) {
// The work area was imported into this process.
...

}
...

}

Figure 9. Code example: Terminating the work area

Using the WorkArea Facility 15

Using a work area
The server side of the application described in “The example application” on
page 8 accepts remote invocations from clients. With each remote call, the
server also gets a work area from client if the client has created one. The work
area is propagated transparently. None of the remote methods includes the
work area on its argument list.

In the example application, the server objects utilize the work-area interface
for demonstration purposes only. For example, the SimpleSampleBean
intentionally attempts to write directly to an imported work area, which
triggers the NotOriginator exception. Likewise, the bean intentionally attempts
to mask the read-only SimpleSampleCompany, which triggers the
PropertyReadOnly exception. The SimpleSampleBean also nests a WorkArea
and successfully overrides the priority property before invoking the
SimpleSampleBackendBean. A real business application would extract the
work area properties and use them to guide the local work. The
SimpleSampleBean mimics this by writing a message that function is denied
when a request emanates from a sales environment.

The server must bind to the work-area facility before it can manipulate
information in work areas.

Binding to the work-area facility
The work-area facility provides a JNDI binding to an implementation of the
UserWorkArea interface under the name
java:comp/websphere/UserWorkArea. Applications that need to access the
service can perform a lookup on that JNDI name, as shown in “Binding to the
work-area facility” on page 11.

Extracting the name of the active work area
Applications use the getName method on the UserWorkArea interface to
retrieve the name of the current work area. This is the recommended method
for determining whether the thread is associated with a work area; if the
thread is not associated with a work area, the getName method will return
null. Figure 10 on page 17 uses the getName method on the work area to
retrieve the name of the active work area; in this example, the name of the
work area corresponds to the name of the class in which the work area was
begun.

16 WebSphere: Using the WorkArea Facility

Modifying information in a work area
Work areas are inherently associated with the process that creates them. In the
sample application, the client begins a work area and sets into it the
site-identifier and a priority properties into it. This work area is propagated to
the server when the client makes a remote invocation.

In Figure 11, the server-side sample bean attempts to write directly to the
imported work area; this action is not permitted, and the NotOriginator
exception is thrown. The sample bean must begin its own work area in order
to override any imported properties.

Nesting work areas: Applications nest work areas in order to temporarily
override properties imported from a client process. The nesting mechanism is

public class SimpleSampleBeanImpl implements SessionBean {

...

public String [] test() {
// Get the work-area reference from JNDI.
...

// Retrieve the name of the work area. In this example,
// the name is used to identify the class in which the
// work area was begun.
String invoker = userWorkArea.getName();
...

}
}

Figure 10. Code example: Retrieving the name from a work area

public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...
String invoker = userWorkArea.getName();

try {
userWorkArea.set("key", "value");

}
catch (NotOriginator e) {
}
...

}
}

Figure 11. Code example: Attempting to modify an imported work area

Using the WorkArea Facility 17

automatic; invoking begin on the UserWorkArea interface from within the
scope of an existing work area creates a nested work area that inherits the
properties from the enclosing work area. Properties set into the nested work
area are strictly associated with the process in which the work area was
begun; the nested work area must be completed within the process that
created them. If a work area is not completed by the creating process, the
work-area facility terminates the work area when the process exits. After a
nested work area is completed, the original view of the enclosing work area is
restored. However, the view of the complete set of work areas associated with
a thread cannot be decomposed by downstream processes. Figure 12
demonstrates beginning a nested work area, using the name of the creating
class to identify the nested work area.

Applications set properties into a work area using property modes in ensure
that a particular property is fixed (not removable) or read-only (not
overrideable) within the scope of the given work area. In the sample
application, the client sets the site-identifier property as read-only; that
guarantees that the request will always be associated with the client’s
company identity. A server cannot override that value in a nested work area.
In Figure 13 on page 19, the SimpleSampleBean attempts to change the value
of the site-identifier property in the nested work area it created.

public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...
String invoker = userWorkArea.getName();
try {

userWorkArea.set("key", "value");
}
catch (NotOriginator e) {
}

// Begin a nested work area. By using the name of the creating
// class as the name of the work area, we can avoid having
// to explicitly set the name of the creating class in
// the work area.
userWorkArea.begin("SimpleSampleBean");

...
}

}

Figure 12. Creating a nested work area

18 WebSphere: Using the WorkArea Facility

Extracting properties from a work area
Properties can be retrieved from a work area by using the get method. The
method is intentionally light-weight; there are no declared exceptions to
handle. If there is no active work area or if there is no such property set in the
current work area, the get method returns null. Figure 14 on page 20 shows
the retrieval of the site-identifier and priority properties by the
SimpleSampleBean. Recall that one property was set into an outer work area
by the client, and the other property was set into the nested work area by the
server-side bean; the nesting is transparent to the retrieval of the properties.

Note: The get method can raise a NotSerializableError in the relatively rare
scenario in which CORBA clients set composed data types and invote
enterprise-bean interfaces.

public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

String invoker = userWorkArea.getName();
try {

userWorkArea.set("key", "value");
}
catch (NotOriginator e) {
}

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");

try {
userWorkArea.set("company",

SimpleSampleCompany.London_Development);
}
catch (NotOriginator e) {
}
...

}
}

Figure 13. Code example: Attempting to modify a non-overridable property

Using the WorkArea Facility 19

Completing a work area
All work areas must be completed within the process in which they were
created; every ivocation of the begin method must be matched by an
invocation of the complete method. Work areas created in a server process are
never propagated back to an invoking client process. Figure 15 on page 21
shows the sample application completing the nested work area it created
earlier in the remote invocation. The UserWorkArea reference points to the
outer work area after the complete method concludes.

Note that the work area service claims full local-remote transparency. Even if
two beans happen to be deployed into the same server and therefore the same
JVM and process, a work area begun on an invocation from another will be
completed and the bean in which the request origininated will always be in
the same state after any remote call as it was before.

public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");
try {

userWorkArea.set("company",
SimpleSampleCompany.London_Development);

}
catch (NotOriginator e) {
}

SimpleSampleCompany company =
(SimpleSampleCompany) userWorkArea.get("company");

SimpleSamplePriority priority =
(SimpleSamplePriority) userWorkArea.get("priority");

...
}

}

Figure 14. Code example: Retrieving properties from a work area

20 WebSphere: Using the WorkArea Facility

Other methods in the UserWorkArea interface
The simple example illustrated in “Creating a work area” on page 11 and
“Using a work area” on page 16 does not make use of all the methods in the
UserWorkArea interface. This section describes the additional methods:

Obtaining a list of all keys
The UserWorkArea interface provides the retrieveAllKeys method for
retrieving a list of all the keys visible from a work area. This method takes no
arguments and returns an array of strings. This method returns null if there is
no work area associated with the thread. If there is an associated work area
containing no properties, the method returns an array of size 0.

Querying the mode of a property
The UserWorkArea interface provides the getMode method for determining
the mode of a specific property. This method takes the property’s key as an
argument and returns the mode as a PropertyModeType object. (See “Setting
property modes” on page 14 for more information on names of mode types.)

public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");
try {

userWorkArea.set("company",
SimpleSampleCompany.London_Development);

}
catch (NotOriginator e) {
}

SimpleSampleCompany company =
(SimpleSampleCompany) userWorkArea.get("company");

SimpleSamplePriority priority =
(SimpleSamplePriority) userWorkArea.get("priority");

// Complete all nested work areas before returning.
try {

userWorkArea.complete();
}
catch (NoWorkArea e) {
}
catch (NotOriginator e) {
}

}
}

Figure 15. Code example: Retrieving properties from a work area

Using the WorkArea Facility 21

If the specified key does not exist in the work area, the method returns
PropertyModeType.normal, indicating that the property can be set and
removed without error.

Deleting a property
The UserWorkArea interface provides the remove method for deleting a
property from the current scope of a work area. If the property was initially
set in the current scope, then removing it deletes the property. If the property
was initially set in an enclosing work area, then removing it deletes the
property until the current scope is completed. When the current work area is
completed, the deleted property is restored.

The remove method takes the property’s key as an argument. Only properties
with the modes normal and read-only can be removed. Attempting to remove
a fixed property causes the PropertyFixed exception to be thrown. Attempting
to remove properties in work areas that originated in other processes causes
the NotOriginator exception to be thrown.

22 WebSphere: Using the WorkArea Facility

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 2001 23

be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

24 WebSphere: Using the WorkArea Facility

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

Advanced Peer-to-Peer Networking
AFS
AIX
APPN
AS/400
CICS
CICS OS/2
CICS/400
CICS/6000
CICS/ESA
CICS/MVS
CICS/VSE
CICSPlex
DB2
DCE Encina Lightweight Client
DFS
Encina
IBM
IBM System Application Architecture
IMS
IMS/ESA
Language Environment
MQSeries

MVS/ESA
NetView
Open Class
OS/2
OS/390
OS/400
Parallel Sysplex
PowerPC
RACF
RAMAO
RMF
RISC System/6000
RS/6000
S/390
SAA
SecureWay
TeamConnection
Transarc
TXSeries
VSE/ESA
VTAM
VisualAge
WebSphere

Domino, Lotus, and LotusScript are trademarks or registered trademarks of
Lotus Development Corporation in the United States, other countries, or both.

Tivoli is a registered trademark of Tivoli Systems, Inc. in the United States,
other countries, or both.

Notices 25

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Windows, Windows
NT, and the Windows 95 logo are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Some of this documentation is based on material from Object Management
Group bearing the following copyright notices:

Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 Ing. C. Olivetti &C.Sp
Copyright 1997 International Computers Limited
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited
Copyright 1995, 1996 Novell USG
Copyright 1995, 1996 02 Technolgies
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software
Copyright 1995, 1996 Servio, Corp.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1996 Taligent, Inc.

26 WebSphere: Using the WorkArea Facility

Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.
Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Object Management Group and the companies
listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use
of this material.

This software contains RSA encryption code.

TM

®

�

Java Compatible
Enterprise Edition

®

™

Other company, product, and service names may be trademarks or service
marks of others.

Notices 27

	Contents
	Figures
	Using the WorkArea Facility
	Introduction
	Structure of work areas
	Property modes
	Modifying key-value pairs
	Changing modes

	Nested work areas
	Distributed work areas
	Administration
	Running work-area applications
	The example application
	Special considerations

	Writing the example application
	Creating a work area
	Binding to the work-area facility
	Beginning a work area
	Setting properties in a work area
	Completing a work area

	Using a work area
	Binding to the work-area facility
	Extracting the name of the active work area
	Modifying information in a work area
	Extracting properties from a work area
	Completing a work area

	Other methods in the UserWorkArea interface
	Obtaining a list of all keys
	Querying the mode of a property
	Deleting a property

	Notices
	Trademarks and service marks

