
Java clients -- table of contents

Development

       4.7: Java Clients

           4.7.1: Applet client programming model
               4.7.1.1: Developing an Applet client

           4.7.2: J2EE application client programming model
               4.7.2.1: Resources referenced by a J2EE application client
               4.7.2.2: Developing a J2EE application client
               4.7.2.3: Troubleshooting guide for the J2EE application client
               4.7.2.4: J2EE application client classloading overview

           4.7.3: Java thin application client programming model
               4.7.3.1: Developing a Java application thin client
               4.7.3.2: Java thin application client code example

           4.7.4: Quick reference to Java client functions

           4.7.5: Quick reference to Java client topics

           4.7.6: Packaging and distributing Java client applications

           4.7.7: Tracing and logging for the Java clients

Administration

       6.6.24: Administering application client modules (overview)

           6.6.24.0: Application client module properties
           6.6.24.0aa: Assembly properties for application client modules

           6.6.24.5: Administering application clients with Application Assembly Tool
               6.6.24.5.1: Creating an application client

           6.6.0.9: Application Client Resource Configuration Tool for configuring client resources
               6.6.0.9.3: Removing objects from EAR files with the ACRCT
           6.6.0.9a: Starting the ACRCT and opening an EAR file

           6.6.14.9: Administering data source providers and data sources with the ACRCT
               6.6.14.9.1: Configuring new data source providers with the ACRCT
                  Configuring new data sources with the ACRCT
               6.6.14.9.3: Removing data source providers (JDBC providers) and data sources with the ACRCT



               6.6.14.9.4: Updating data source and data source provider configurations with the ACRCT

           6.6.37.9: Administering JavaMail providers and sessions with the ACRCT
               6.6.37.9.1: Configuring new JavaMail sessions with the ACRCT
               6.6.37.9.3: Removing JavaMail sessions with the ACRCT
               6.6.37.9.4: Updating JavaMail session configurations with the ACRCT

           6.6.38.9: Administering URL providers and URLs with the ACRCT
               6.6.38.9.1: Configuring new URL providers and URLs with the ACRCT
                   Configuring new URLs with the ACRCT
               6.6.38.9.3: Removing URL providers and URLs with the ACRCT
               6.6.38.9.4: Updating URL and URL provider configurations with the ACRCT

           6.6.39.9: Administering JMS providers, connection factories, and destinations with the ACRCT
               6.6.39.9.1: Configuring new JMS providers with the ACRCT
                   Configuring new JMS connection factories with the ACRCT
               Configuring new JMS destinations with the ACRCT
               6.6.39.9.3: Removing JMS providers, connection factories, and destinations with the ACRCT
               6.6.39.9.4: Updating JMS provider, connection factory, and destination configurations with the
ACRCT



4.7: Java Clients
In a traditional client server environment, the client requests a service and theserver fulfills the request. A single
server is used by multiple clients.Clients can also access several different servers. This model persists for Java
clients except now these requests make use of a client's runtime environment.

Prior to J2EE (Java TM 2 Platform Enterprise Edition), a typical Web-based client application consisted of the
following model:

browser (HTML file) -> servlet -> EJB

In this model, the client application requires a servlet to communicate with the Enterprise Java Bean (EJB), and
the servlet must reside on the same machineas WebSphere Application Server.

With version 4.0, Java application clients cannow consist of the following models:

Applet client●   

J2EE application client●   

Java thin application client●   

In the Applet client model, a Java applet is embedded in a HyperText Markup Language(HTML) document
residing on a client machine that is remote from WebSphere Application Server.With this type of client, the
user accesses an EJB in WebSphere Application Serverthrough the java applet in the HTML document.

The J2EE application client is a Java applicationprogram that accesses EJBs, JDBC databases, and Java
Message Service message queues. The J2EE application client program runs on client machines. This program
follows the same Java programming model as other Java programs; however, theJ2EE application client
depends on the application client runtime to configure its execution environment, and it uses the JNDI name
space to access resources.

The Java thin application client provides a light-weight Java client programming model. This client is best
suited for use in situations where a Java client application exists but the application must be enhanced to make
use of EJBs, or where the client application requires a thinner, more light-weight environment than the one
offered by the J2EE application client.



4.7.1: Applet client programming model
The Java Applet client provides a browser-based Java runtime that is capable of interacting with EJBs directly instead of indirectly through a
servlet.

This client is designed to support those users who want a browser-based Java client application programming environment that provides a richer
and more robust environment than the one offered by theApplet->Servlet->EJB model.

The programming model for this client is a cross between the Java application thin client and a servlet client. When accessing EJBs from this client,
the EJB object references can be considered CORBA object references by the applet.

There is no tooling support for this client for developing, assembling or deploying the applet. You are responsible for developing the applet,
generating the necessary client bindings for the EJBs and CORBA objects, and bundling these pieces together to be installed on or downloaded to
the client machine. The Java applet client provides the necessary runtime to support communication between the client and the server.

Client side bindings are generated during the deployment phase of J2EE developmentusing the Application Assembly Tool. An applet can utilize
these bindings, or you can generate client side bindings using the rmic command that is partof the IBM JDK installed with the WebSphere
Application Server.

See article Packaging and distributing Java clients formore information.

The Applet client makes use of the RMI-IIOP protocol. The use of this protocol enables the applet to access EJB references and CORBA object
references, but it is restricted in the usage of some supported CORBA services. If you combine the EJB and CORBA environments in one applet,
you must understand the differences between the two programming models, and you must use and manage each appropriately.

The Applet client provides the runtime to support the J2EE Applet client. The J2EE Applet client does not have any tooling support for developing,
assembling or deploying the Applet. The applet client runtime is provided through the use of the Java applet browser plug-in that is installed on the
client machine using the WebSphere ApplicationServer Client CD.

Because the Applet client does not provide for a deployment descriptor, the Applet code cannot make use of the JNDI java:/comp lookup. The
Applet must know the fully qualified location of the EJB in the JNDI namespace. For example, the JNDI:java:/comp allows lookup of
enterprise java beans using a short name or a nickname such as:

java.lang.Object ejbHome = initialContext.lookup("java:/comp/env/ejb/MyEJBHome");MyEJBHome =
(MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

But the code in an applet client must be more explicit:

java.lang.Object ejbHome =
initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");MyEJBHome =
(MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

The Applet environment restricts accessing external resources from the browser runtime environment. Some of these resources can be made
available to the Applet by setting the correct security policy settings in the JRE java.policy file. If given the correct set of permissions, the
Applet client must explicitly create the connection to the resource using the appropriate API (JDBC, JMS, and others). This client does not perform
any initialization of any of the services that the client applet may need. For instance, the client application is responsible for the initialization of the
naming service, either through CosNaming or JNDI.

The following table describes the advantages and disadvantages of the Applet client:

Advantages Disadvantages

Light-weight client suitable for download.●   

Provides access to JNDI interfaces for EJB object resolution.●   

No distribution of the applet to the client machine required
(performed through the browser)

●   

Designed for use in an intranet environment.●   

Lack of client runtime initialization of environment and services.●   

Lack of built-in support for local resource resolution and
configuration.

●   

Does not promote portability of client application code.●   

Requires a browser to be installed on the client machine.●   



4.7.1.1: Developing an Applet client
Unlike typical applets that reside on either Web servers or WebSphere ApplicationServers and can only communicate
using the HTTP protocol, the WebSphere Applet clients are capable of communciating over the HTTP protocol and the
RMI-IIOPprotocol. This additional capability gives the Applet direct access to enterprise java beans. As such, Applet
clients have the following setup requirements:

These clients are currently available on the Windows NT or Windows 2000 platforms.

 Support for additional platforms will be added in the near future.
Check the prerequisites page for information on new platform support.

●   

They require one of these browsers:

Internet Explorer version 5.0+❍   

Netscape Navigator 4.7+❍   

●   

The browser must be installed before the client code is installed.●   

The Applet client is installed from the WebSphere Clients for Windows CD by selecting option, "Java
Application/Applet Thin Client."

●   

You must install the WebSphere Application Server Plug-in for the browser.Select option, "Java
Application/Applet Thin Client," from the WebSphere Clients for Windows CD.

●   

From the WebSphere Application Server Java Plug-in Control, enter:

   -Djava.ext.dirs=\WebSphere\AppClient\lib

  

The Java Run Time Parameters field issimilar to the command prompt when using
command line options.Therefore, most options available from the command prompt (for
example, -cp, classpath, and others),can be entered in this field as well.

1.  

The control panel can be accessed from the Start menu.
Click start > control panel > WebSphere Java Plug-in Control.

2.  

The applet container is the Web browser and the Java Plug-in combination.You must first
install the WebSphere Application Server Applet client so that the browser recognizes the
IBM Java Plug-in.

3.  

●   

Tag requirements

Standard applets require the HTML <APPLET> tag to identify the applet to the browser. The <APPLET> tag invokes the
browser's Java Virtual Machine (JVM). Soan applet running on Internet Explorer will use Microsoft's JVM.

For applets to communicate with EJBs in the WebSphere Application Server environment, the<APPLET> tag must be
replaced with these two new tags:

<OBJECT>
<EMBED>

Additionally, the classid and type attributes cannot be modified,and must be entered as described in the applet client
example. Finally, the codebaseattribute on the <OBJECT> tag must be excluded.

  Do not confuse the codebase attribute on the<OBJECT> tag with the codebase attribute on the
<PARAM> tag. Althoughboth are called codebase, they are separate entities.

The following code snippet illustrates the applet code. In this example, MyApplet.classis the applet code, applet.jar is the
file that contains the applet code, and EJB.jar is the file that contains the EJB code:

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0103.html


<OBJECT classid="clsid:8AE2D840-EC04-11D4-AC77-006094334AA9"
           width="600" height="500">
<PARAM NAME=CODE VALUE=MyAppletClass.class>
<PARAM NAME="archive" VALUE='Applet.jar, EJB.jar'>
<PARAM TYPE="application/x-java-applet;version=1.3">
<PARAM NAME="scriptable" VALUE="false">
<PARAM NAME="cache-option" VALUE="Plugin">
<PARAM NAME="cache-archive" VALUE="Applet.jar, EJB.jar">
<COMMENT>
<EMBED type="application/x-websphere-client" CODE=MyAppletClass.class
          ARCHIVE="Applet.jar, EJB.jar" WIDTH="600" HEIGHT="500"
          scriptable="false">
<NOEMBED>
 </COMMENT>
</NOEMBED>WebSphere Java Application/Applet Thin Client for
            Windows is required.
</EMBED>
 </OBJECT>

  The value of the type attribute on the <EMBED> tag can also be:
<EMBED type="application/x-websphere-client, version=4.0" ...

Code requirements

The code used by an applet to talk to an EJB is the same as that used by a standaloneJava program or a servlet, except for
one additional property called java.naming.applet.This property informs the InitialContext and the ORB that this
client is anapplet rather than a standalone Java application or servlet.

When initializing an instance of the InitialContext class, the first two lines in this code snippet illustrate what both
a standalone Java program and a servlet issue to specify the computer name, domain, and port. In this example,
<yourserver.yourdomain.com> isthe computer name and domain where WebSphere Application Server resides,
and 900 isthe configured port. After the bootstrap values (<yourserver.yourdomain.com>:900) are defined,the client to
server communications occur within the underlying infrastructure. In addition to the first two lines, for applets, you must
add the highlighted third line to your code. That line identifies this program as an applet:

prop.put(Context.INITIAL_CONTEXT_FACTORY,     
"com.ibm.websphere.naming.WsnInitialContextFactory");
prop.put(Context.PROVIDER_URL, "iiop://<yourserver.yourdomain.com>:900");
prop.put("java.naming.applet", this);

Security requirements

When code is loaded, it is assigned "permissions" based on the security policy in effect.This policy, specifying which
permissions are available for code from various locations,can be initialized from an external policy file.For each client,
the java.policy file should be updated with the classes that the applet client needs to access, and with the ports on the host
machines where it needs different permissions.

The following lines of code must be added to existing java.policy files.This code allows access to the required ports so
that the applet client can communicate with an EJB.

In the example below, the java.net.SocketPermission "localhost:1024--", "listen"entry grants
permision for Applets to open sockets for listening on the localhost for any portfrom 1024 to 65535. Port can be specified
as a range of port numbers or a specific port. A port range specification of the form "N-", where N is a port number,
signifies all ports numbered N and above. A specification of the form "-N" indicatesall ports numbered N and below.

The first SocketPermission statement grants permission to theclient to have ports opened for listening. The second grants
permission toopen a port and make a connection to a host machine, which is your WebSphere Application Server.In this
example, yourserver.yourcompany.com is the complete hostname of yourWebSphere Application Server:



permission java.util.PropertyPermission "server.root", "read";
permission java.util.PropertyPermission "*", "read,write";
permission java.io.FilePermission "traceSettingsFile", "read,write";
permission java.util.PropertyPermission "traceSettingsFile", "read,write";
permission java.lang.RuntimePermission "modifyThread";
permission java.net.SocketPermission "localhost:1024-", "listen";
permission java.net.SocketPermission "yourserver.yourcompany.com", connect";

  For more information on security relatingto user authentication and signed jars, read the official
documentation forJava security architecture

Learn more about the WebSphere Applet client by running the Applet sample.You can install the Applet client sample
from the WebSphere Application Client CD.This sample is called HelloEJB and is installed in
theproduct_installation/WSsamples/Clientsubdirectory on the client machine.

http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-spec.doc.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html


4.7.2: J2EE application client programming model
The J2EE application client programming model provides the benefits of the J2EE platform for the Java client
application. The J2EE platform offers the ability to seamlessly develop, assemble,deploy and launch a client
application. The tooling provided with the WebSphere platform supports the seamless integration of these
stages to help the developer create a client application from start to finish.

When a client application is developed using and adhering to the J2EE platform, the client application code is
portable from one J2EE platform implementation to another. The client application package might require
redeployment using each J2EE platform's deployment tool, but the code that comprises the client application
will not change.

The J2EE application client runtime supplies a container that provides access to system services for the client
application code. The client application code must contain a main method. The application client runtime
invokes this main method after the environment is initialized and runs until the Java virtual machine is
terminated.

The J2EE platform allows the J2EE application client to make use of "nicknames" or "short names," defined
within the client application deployment descriptor. These deployment descriptors identify EJBs or local
resources (JDBC, JMS, JavaMail and URL) for simplified resolution through the use of JNDI. This simplified
resolution to the EJB reference and local resource reference also eliminates changes to the client application
code when the underlying object or resource either changes or moves to a different server. Should these changes
occur, the J2EE application client might require redeployment.

The J2EE application client also provides for initialization of the runtime environment for the client application.
This initialization is unique for each client application and is defined by the deployment descriptor. In addition,
the J2EE application client runtime provides support for security authentication to the EJBs and local resources.

The J2EE application client makes use of the RMI-IIOP protocol. The use of this protocol enables the client
application to access EJB references and to make use of CORBA services that are provided by the J2EE
platform implementation. Use of the RMI-IIOP protocol and the accessibility of CORBA services assist users in
developing a client application that requires access to both EJB references and CORBA object references. When
users combine the J2EE and CORBA environments or programming models in one client application, they need
to understand the differences between the two programming models, and they must use and manage each
appropriately.

The following table describes the advantages and disadvantages of the J2EE application client.

Advantages Disadvantages
Provides the user with the benefits of the J2EE
platform.

●   

Allows the use of nicknames in the
Deployment Descriptor for reference identity

●   

Client application code is portable across J2EE
compliant platforms (may need to be
redeployed for each distinct J2EE platform).

●   

Supports CORBA services (usage of CORBA
services may render the client application code
non-portable).

●   

A heavier client than the Java application thin
client, and is not suited for downloading.

●   

Designed for use in an intranet environment.●   

Requires distribution of the application to the
client machine.

●   



4.7.2.1: Resources referenced by a J2EE application client
J2EE application clients access resources by performing lookup operations in the JNDI name space. The application client runtime then
provides a mapping of the resource names, used and configured by client application programs, to the actual resource objects.This allows client
application programs to access different resources, such as test or productiondatabases, without the need for updates or recompiles.

To provide this service, the application client runtime requires information about the names and types ofresources used by the client application
program.
The three types of resources a J2EE application client can reference are:

EJB references - are references to Enterprise Java Beans (EJBs) running on WebSphere Application Server.1.  

Resource references - are references to other types of resources, such as:

JDBC databases❍   

URLs❍   

Java Message Service message queues❍   

Java Mail❍   

2.  

Environment entries - are references to simple data types that you would not want to code in your application program, such as timeout
values or SQL query strings. The following Java basic data types are supported:

     java.lang.Boolean     java.lang.String      java.lang.Integer     java.lang.Double    
java.lang.Byte     java.lang.Short     java.lang.Long     java.lang.Float

3.  

The resource information is defined and configured using these two WebSphere Application Server tools:

Application Assembly Tool (AAT) (used for the definition)●   

Application Client Resource Configuration Tool (used for the configuration)

The Application Assembly Tool manages:

EJB references❍   

non-client specific Resource references❍   

all Environment entries❍   

The Application Client Resource Configuration Tool manages:

client specific Resource references such as a JDBC Datasource name
This information is stored with theclient application program in an Enterprise Archive File (.ear file).

❍   

●   



4.7.2.2: Developing a J2EE application client
From an application developer's point of view, creating a J2EE application client program involves these steps:

Writing the client application program1.  

Assembling the application client (using the Application Assembly Tool)2.  

Assembling the Enterprise Archive (EAR) file3.  

Distributing the EAR file4.  

Configuring the application client resources5.  

Launching the application client6.  

Writing the client application program

Write the J2EE application client program on any development machine. At this stage, you do not require access to WebSphere Application Server.

A J2EE application client program is similar to a standard Java program in that it runs in its own Java virtual machine and is invoked at its main
method. The J2EE application client program differs from a standardJava program because it uses the JNDI name space to access resources. In a
standardJava program, the resource information is coded in the program.

Storing the resource information separately from the client application program makes the client application program portable and more flexible.

Using the javax.naming.InitialContext class, the client application program uses the lookup operation to access the JNDI name space.The
InitialContext class provides the lookup method to locate resources. For more information on JNDI, see file, JNDI overview.

The following example illustrates how a client application program uses the InitialContext class:

import javax.naming.*public class myAppClient{    public static void main(String argv[])    {       
InitialContext ctx = new InitialContext();        Object myObj =
ctx.lookup("java:comp/env/ejb/HelloBean");        HelloHome home
=(HelloHome)javax.rmi.PortableRemoteObject.narrow(myObj, HelloHome.class);                             
...    }}

In this example, the program is looking up an Enterprise Java Bean called HelloBean. The HelloBean EJB reference is located in the client JNDI
name spaceat java:comp/env/ejb/HelloBean. Since the actual Enterprise Java Bean is running on the server, the application client
runtimereturns a reference to HelloBean's home interface.

If the client application program's lookup was for aResource reference or an Environment entry, then lookup would return an instance of the
configured typeas defined by the client application's Deployment Descriptor.For example, if the program's lookup was a JDBC datasource, the
lookup would return an instance ofjavax.sql.DataSource.

1.  

Assembling the application client (using the Application Assembly Tool)

The JNDI name space knows what to return on a lookup because of the information that is assembled by the Application Assembly Tool (AAT).

Assemble the J2EE application client on any development machine that has the AATinstalled.

When you use the Application Assembly Tool to assemble your application client, you provide the application client runtime with the required
information to initialize the execution environment for your client application program.Refer to the Application Assembly Tool description for
implementation details.

Here is a list of things to keep in mind when you configure resources used by yourclient application program:

When configuring Resource references and EJB references in the Application Assembly Tool, the General tab contains a required Name
field. This field specifies where the application client runtime will bind the reference to the real object in thejava:comp/env portion of the
JNDI namespace. The application client runtimealways binds these references relative to java:comp/env. So, for the
programmingexample above, you would specify ejb/HelloBean in the Name field on theGeneral tab of the Application Assembly Tool,
which would require the program to perform a lookup of java:comp/env/ejb/HelloBean. If the Name fieldwere set to myString,
the resulting lookup would be java:comp/env/myString.

●   

When configuring Resource references in the Application Assembly Tool, the Name field on the General tab is used for:

binding a reference of that object type into the JNDI name space.■   

retrieving client specific resource configuration information that was configured using the Application Client Resource Configuration
Tool.

■   

●   

When configuring a Resource reference in the Application Assembly Tool, the value in the Name field on the General tab must match the
value in the JNDIName field on the General tab for the resource in theApplication Client Resource Configuration Tool.

●   

When configuring URL resources using the Client Resource Configuration Tool, the URL provider panel allows you to specify a protocol and
a class that handles that protocol. If you want to use the default protocols, such as HTTP, you can leave those fields blank.

●   

When configuring Resource references using the Application Assembly Tool, the General tab contains a field called Authorization. This
field can be set to either Container or Application. If the field is set to Container, then the application client runtime will use authorization
information configured in the Application Client ResourceConfiguration tool for the resource. If the field is set to Application, thenthe
Application Client runtime expects the user application to provide authorizationinformation for the resource. The application client runtime
will ignore any authorization information configured with the Application Client Resource Configuration tool for that resource.

●   

2.  

Assembling the Enterprise Archive (EAR) file3.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/040602.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060005.html


The application is contained in an Enterprise Archive or .ear file.The .ear file is composed of:

EJB, Application Client, and user-defined modules or .jar files■   

Web applications or .war files■   

Metadata describing the applications or application .xml files■   

You must assemble the .ear file on the server machine.

Distributing the EAR file

The .ear file must be made accessible to those client machines that are configured to run this client.

If all the machines in your environment share the same image and platform, run the Application Client Resource Configuration Tool (ACRCT) on
one machine to configure the external resources, and then distribute the configured .ear file to the other machines.

If your environment is set up with a variety of client installations and platforms, you must run the ACRCTfor each unique configuration.

The .ear files can either be distributed to the correct client machines, or made availableon a network drive.

See article Packaging and distributing Java clientsfor more information.

Distributing the .ear files is the responsibility of the system and network administrator.

4.  

Configuring the application client resources

If local resources are defined for use by the client application, run the ACRCT on the local machine to reconfigure the .ear file. Use the ACRCTto
change the configuration. The ACRCT is the Application Client Resource Configuration Tool described in the previous steps. For example, the .ear
file may contain a a DB2 resource, which is configured as C:\DB2. If, however, the user has DB2installed in directory, D:\Program
Files\DB2, that user must use the ACRCT to create a local version of the .ear file.

5.  

Launching the application client

Using the fully assembled and configured .ear file,issue the launchClient command tolaunch the J2EE application client on the client
machine.

Note:  Learn more about the WebSphere J2EE client by running the client sample.You can install the client sample from the
WebSphere Application Client CD.On a server machine, the J2EE client sample is part of the samples gallery. See the "Application
Client" section of Samples.ear.This sample is called HelloEJB and is installed in
theproduct_installation/WSsamples/Clientsubdirectory on the client machine.

6.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html


4.7.2.3: Troubleshooting guide for the J2EE application
client
This section provides some debugging tips for resolving common J2EE application client problems. To use this
troubleshooting guide, review the trace entries for one of the J2EE application client exceptions, and then locate the
exception in the guide. See the Problem determination section formore information on starting traces and reading trace
entries. Also see the WSCL Messages for a description ofapplication client messages. These messages help identify
problems and can provide recovery information.

java.lang.NoClassDefFoundError●   

com.ibm.websphere.naming.CannotInstantiateObjectException●   

javax.naming.ServiceUnavailableException●   

javax.naming.CommunicationException●   

javax.naming.NameNotFoundException●   

java.lang.ClassCastException●   

com.ibm.etools.archive.exception.OpenFailureException (message numbers WSCL0206E and WSCL0100E)●   

Error:   java.lang.NoClassDefFoundError

Explanation:    This exception is thrown when Java cannot load the specified class.

Possible causes:  

Invalid or non-existent class●   

Classpath problem●   

Manifest problem●   

User response:   First check to determine if the specified class exists in a jar filewithin your ear file. If it does, make
sure the path for the class is correct. For example, if you get the exception:

java.lang.NoClassDefFoundError: WebSphereSamples.HelloEJB.HelloHome

ensure the class HelloHome exists in one of the jar files in your ear file.If it exists, ensure the path for the class is
WebSphereSamples.HelloEJB.

If both the class and path are correct, then it is a classpath issue. Most likely, you do not have the failing class's jar file
specified in the client jar file's manifest. To check this, open your ear file with the Application Assembly Tool and click
on the Application Client. Add the names of the other jar files in the ear file to the Classpath field. This exception is
generally caused by a missing EJB module name from the Classpath field.

If you have multiple jars to enter in the Classpath field, be sure to separate the jar names with spaces.

If you still have the problem, you have a situation where a class is being loaded from the harddrive instead of the ear
file. This is a very difficult situation to debug because the offending class is not the one specified in the exception.
Instead, another class is loaded from the hard drivebefore the one specified in the exception. To correct this, review the
classpathsspecified with the -CCclasspath option and the classpaths configured with theApplication Client
Resource Configuration Tool. Look for classes that also exist in the ear file. You must resolve the situation whereone
of the classes is found on the hard drive instead of in the .ear file. You do this by removingentries from the classpaths
or by including the .jar files and classes in the .ear file instead of referencing them from the hard drive.

If you are using the -CCclasspath parameter or resourceclasspaths in the Application Client Resource
Configuration Tool, and you have configuredmultiple jars or classes, verify they are separated with the correct
character for your operating system. Unlike the classpath field in the Application Assembly Tool,these classpath fields
use platform-specific separator characters, usually acolon (on UNIX platforms) or a semi-colon (on Windows).

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/08.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0802_messages.html#WSCL
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060005.html


Note:   The system classpath is not used by the Application Client runtime if you use the
launchClient batch or shell files. In this case, the system classpath wouldnot cause this problem.
However, if you load the launchClient class directly, you dohave to search through the system
classpath as well.

Return

Error:   com.ibm.websphere.naming.CannotInstantiateObjectException: Exception
occurred while attempting to get an instance of the object for the specified
reference object. [Root exception is javax.naming.NameNotFoundException:
xxxxxxxxxx]

Explanation:   This exception occurs when you perform a lookup on an object that is not installed on the host server.
Your program can look up the name in the local client JNDI name space, but received a NameNotFoundException
exception because it is not located on the host server. One typical example is looking up an EJB that is not installed on
the host server that you access.This exception might also occur if the JNDI name you configured in your
ApplicationClient module does not match the actual JNDI name of the resource on the host server.

Possible causes:  

Incorrect host server invoked●   

Resource is not defined●   

Resource is not installed●   

Application server is not started●   

Invalid JNDI configuration●   

User response:   If you are accessing the wrong host server, run the launchClient command again with the
-CCBootstrapHost parameter specifying the correct host server name. If you are accessing the correct host server,
use the WebSphere dumpnamespace command line tool tosee a listing of the host server's JNDI name space. If you
do not see the failing object's name, the resourceis either not installed on the host server or the appropriate application
server is not started.If you determine the resource is already installed and started, your JNDI name in your
clientapplication does not match the global JNDI name on the host server. Use the Application Assembly Tool to
compare the JNDI bindings value of the failing object's name in the client applicationto the JNDI bindings value of the
object in the host server application. They must match.

Return

Error:   javax.naming.ServiceUnavailableException: Caught exception when resolving
initial reference=NameService. Root exception is org.omg.CORBA.INTERNAL:
JORB00105: In Profile.getIPAddress(), InetAddress.getByName( invalidhostname )
threw an UnknownHostException minor code: 0 completed: No

Explanation:   This exception occurs when you specify an invalid host server name.

Possible causes:  

Incorrect host server invoked●   

Invalid host server name●   

User response:   Run the launchClient command again and specify the correct name of your host server with the
-CCBootstrapHost parameter.

Return

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060005.html


Error:   javax.naming.CommunicationException: Caught CORBA.COMM_FAILURE when
resolving initial reference=WsnNameService. Root exception is
org.omg.CORBA.COMM_FAILURE: minor code: 3 completed: No

Explanation:   This exception occurs when you run launchClient to a host server that does not have the
Application Server started. You also receive this exceptionwhen you specify an invalid host server name. This might
happen if you do not specify a host server name when you run launchClient. The default behavior is for
launchClientto run to localhost, because WebSphere Application Server does not know the name of yourhost
server. This default behavior only works when you are running the client on the samecomputer as where WebSphere
Application Server is installed.

Possible causes:  

Incorrect host server invoked●   

Invalid host server name●   

Invalid reference to localhost●   

Application server is not started●   

Invalid bootstrap port●   

User Response:    If you are not running to the correct host server, run the launchClient command again and
specify the name of your host server with the -CCBootstrapHost parameter. Otherwise, start the Application
Server on thehost server and run the launchClient command again.

Return

Error:   javax.naming.NameNotFoundException: Name comp/env/ejb not found in context
"java:"
Explanation:   This exception is thrown when Java cannot locate the specified name in the localJNDI name space.

Possible causes:  

No binding information for the specified name●   

Binding information for the specified name is incorrect●   

Wrong class loader was used to load one of the program's classes●   

User Response:   Open the ear file with the Application Assembly Tool and check the bindings for the failing name.
Ensure this information is correct. If it is correct, you could have a class loader issue.

Return

Error:   java.lang.ClassCastException: Unable to loadclass:
org.omg.stub.WebSphereSamples.HelloEJB._HelloHome_Stubat
com.ibm.rmi.javax.rmi.PortableRemoteObject.narrow(portableRemoteObject.java:269)
Explanation:   This exception occurs when the application programattempts to narrow to the EJB's home class and the
classloaders cannot find theEJB's client side bindings.

Note:  The HelloHome_Stub reference in the Errordescription, is a sample

Possible causes:  

The files, *_Stub.class and _Tie.class, are notin the EJB .jar file●   

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060005.html


Classloader could not find the classes●   

User Response:   Look at the EJB .jar file located in the .earand verify the class contains the EJB client side
bindings. These are class files whosenames end in _Stub and _Tie. If these files are not present, then use the
Application Assembly Toolto generate the binding classes. For more information, see article Generating deployment
code for modules.If the binding classes are in the EJB .jar file, then you might have a classloader issue.

Return

Error:   WSCL0206E: File [EAR file name] is not avalid Enterprise Archive file.
WSCL0100E: Exception received:
com.ibm.etools.archive.exception.OpenFailureException
Explanation:   This error occurs when the Application Client runtime cannot read the Enterprise Archive file.

Possible cause:  The most likely cause of this error is the EAR filecannot be found in the path specified on the
launchClient command.

User Response:   Verify that the path and filename specified on the launchclient command are correct. If you are
running on Windows NTand the path and file name are correct, use a short version of the path and file name (8
character file name and3 character extension). For additional information, read the cause and recovery documentation
for message WSCL0206E in the 8.2 Messages section.

Return

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060005.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/060303.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/060303.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0802_messages.html#WSCL


4.7.2.4: J2EE application client classloading overview
When you run your J2EE client application using the WebSphere Application ServerlaunchClient command, a
hierarchy of classloadersis created to load classes used by your application. The parent classloader isused to
load the WebSphere Application Client runtime and any classes placed in the WebSphere Application Client
user directories. The directories used by this classloaderare defined by the WS_EXT_DIRS System property in
the product_installation/bin/setupcmdline command shell.

As the J2EE Application Client runtime initializes, additional classloaders are createdas children of this parent
classloader. If your client application uses resources such as JDBC, JMS, or URLs, adifferent classloader is
created to load eachof those resources. Finally, a classloader is created to load classes within the .ear file.
Before invoking your clientapplication's main method, this classloader is set as the thread's context classloader.

  The system classpath is never used and is not part of thehierarchy of classloaders.

In order to package your client application correctly, you must understand which classloader loads your classes.
When Java loads a class, the classloader used to loadthat class is assigned to it.Any classes subsequently loaded
by that class will use that classloader or any ofits parents, but it will not use children classloaders.

Unfortunately, Java does not providea good way for determining which classloader loaded your classes. This
makes itdifficult to debug classloading problems. See the Configuring the classpath fields section formore
information on configuring the classpath fields in your application.

In some cases the WebSphere Application Client runtime can detect when your client application class is loaded
by a different classloader from the one created for it by the WebSphere Application Client runtime. When that
occurs, you will see message:
WSCL0205W: The incorrect class loader was used to load {0}.

This message occurs when your client application class is loaded by one of the parentclassloaders in the
hierarchy. This is typically caused by having the sameclasses in the .ear file and on the hard drive. If one of
the parentclassloaders locates a class, that classloader will load it before the Application Client
runtimeclassloader. In some cases, your client application will still functioncorrectly. In most cases, however,
you will receive "class not found"exceptions.

Configuring the classpath fields

When packaging your J2EE client application, you must configurevarious classpath fields. Ideally, you should
package everything required by yourapplication into your .ear file. This is theeasiest way to distribute your
J2EE client application to your clients. However, you should not package such resources as JDBC, JMS, or
URLs. In the case of these resources, you want to use classpath referencesto access those classes on the hard
drive. You might also have other classes installed on your client machines thatyou do not need to redistribute. In
that case, you also want to useclasspath references to access the classes on the hard drive, as described below.

Referencing classes within the EAR file

WebSphere J2EE applications do not use the system path.Instead, use the MANIFEST Class-Path entries to
refer to other classeswithin the .ear file. Configure these values using the module Classpath fieldsin the
Application Assembly Tool. For example, if your client application needs to accessan Enterprise Java Bean, you
would add the deployed EJB module's name to your applicationclient's Classpath field in the
ApplicationAssembly Tool. The format of the Classpath field for each of thedifferent modules (Application
Client, EJB, Web) is the same:

The values must refer to .jar and .class files that are contained within the .ear file.●   

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060005.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060005.html


The values must be relative to the root of the .ear file.●   

The values cannot refer to absolute paths in the file systems.●   

Multiple values must be separated by spaces, not colons or semi-colons.

Note:   This is Java's method for allowing applications to be platform-independent.

●   

Typically, you add modules (.jar files) to the root of the .ear file. In this case, you only need to specify the
name of the module (.jar file) in the Classpath field. If you choose to add a module with a path, you need
tospecify the path relative to the root of the .ear file. 

For referencing .class files, you must specify the directory relative tothe root of the .ear file. While the
Application Assembly Tool allows you to add individual class files to the .earfile, it is recommended that
these additional class files are packaged in a .jarfile. That .jar file should then be added to the module
Classpath fields. If you add .class files to the root of the .ear file, add "./" to the module Classpath fields.

Consider the following example directory structure in which the file myapp.ear contains an application client
JAR file named client.jar and an EJB module called mybeans.jar. Additional classes reside in class1.jar and
utility/class2.zip. A class named xyz.class is not packaged in a JAR file but is in the root of the EAR file.

Specify "./ mybeans.jar utility/class2.zip class1.jar" as the value of the Classpath
property. 

The search order is:

  myapp.ear/client.jar
  myapp.ear/mybeans.jar
  myapp.ear/class1.jar
  myapp.ear/utility/class2.zip
  myapp.ear/xyz.class

View article the 6.4.1: Setting classpaths for more information.

Referencing classes that are not in the EAR file

You have two options to reference classes that are not contained in the .ear file. Which option you choose
depends on the relationship of theexternal classes and the classes internal to the .ear file. You might use
acombination of both options. Your options are:

Use the product_installation/app directory.

Use this option when your external classes do not reference classes within the .ear file. One example
would be stand-alone utility classes. To use this option, addyour .jar files to the
product_installation/app directory.For .class files, add them to this directory in
subdirectories that correspond to thepackage names.

1.  

If the external classes reference classes within the .ear file, thefirst option will not work because of the
hierarchy ofWebSphere classloaders. In this case, you can do one of the following:

Package the external classes in the .ear file.❍   

Use the launchClient -CCclasspath parameter.

This parameter is specified at run-time and takes platform-specific classpath values, which
means multiple values are separated by semi-colons or colons.

❍   

2.  

Refer to article 6.4.1 about installing application files into the environment, and setting classpaths, for a
description of the WebSphere Application Server classloaders.There are many similarities between the client
andthe server in this respect.

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html


Resource classpaths

When you configure resources used by your client application using the Application Client Resource
Configuration Tool, you can specify classpaths that are required by the resource. For example, if your
application is using JDBC to a DB2 database, you want to add db2java.zip to the classpath field of the
database provider. These classpath values are platform-specific and require semi-colons or colons to separate
multiple values.

Using the launchClient API

If you use the launchClient shell/bat command, the WebSphere classloaderhierarchy is created for you.
However, if you use the launchClient API, you mustperform this setup yourself. You should mimic
thelaunchClient shell command in defining the Java system properties.

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060007.html


4.7.3: Java thin application client programming model
The Java application thin client provides the user a light weight, downloadable Java application runtime that is
capable of interacting with Enterprise Java Beans. This client is designed to support those users who want a
light weight Java client application programming environment without the overhead of the J2EE platform on
the client machine. The programming model for this client is heavily influenced by the CORBA programming
model but supports access to Enterprise Java Beans. When accessing Enterprise Java Beans from this client, the
EJB object references can be considered CORBA object references by the client application.

There is no tooling support for this client for developing, assembling or deploying the client application. The
user is responsible for developing the client application, generating the necessary client bindings for the EJB
and CORBA objects, and bundling these pieces together to be installed on the client machine.

Client side bindings for Enterprise Java Beans are generated during the deployment phase of J2EE
developmentusing the Application Assembly Tool. A Java application can utilize these bindings or you can
generate client side bindingsusing the rmic command that is part of the IBM JDK installed withWebSphere
Application Server. See article Packaging anddistributing Java clients for more information.

The Java application thin client provides the necessary runtime to support the communication needs between
the client and the server.

The Java application thin client makes use of the RMI-IIOP protocol. The use of this protocol enables the client
application to access not only EJB references and CORBA object references, but it also allows the client
application to make use of any supported CORBA services. Use of the RMI-IIOP protocol and the accessibility
of CORBA services can assist a user in developing a client application that needs to access both EJB references
and CORBA object references. When users combine the J2EE and CORBA environments in one client
application, they need to understand the differences between the two programming models, and they must use
and manage each appropriately.

The Java application thin client runtime provides the necessary support for the client application for object
resolution, security, RAS and other services. However, it does not support a container that provides ease of use
to these services. For instance, there is no support for the use of "nicknames" for EJB or local resource
resolution. When resolving to an EJB (using either JNDI or CosNaming) the client application must know the
location of the name server and the fully qualified name that was used when the reference was bound into the
namespace. When resolving to a local resource, the client application cannot resolve to the resource through a
JNDI lookup. Instead the client application must explicitly create the connection to the resource using the
appropriate API (JDBC, JMS, etc.). This client does not perform any initialization of any of the services that the
client applicationmight require. For instance, the client application is responsible for the initialization of the
naming service, either through CosNaming or JNDI.

The following table describes the advantages and disadvantages of the Java thin application client:

Advantages Disadvantages

A light-weight client suitable for download●   

Requires access to CosNaming or JNDI
interfaces for EJB or CORBA object
resolution

●   

Designed for use in an intranet environment●   

Lack of client runtime initialization of
environment and services

●   

Lack of built-in support for local resource
resolution and configuration

●   

Does not promote portability of client
application code

●   

Requires distribution of the application to the
client machine.

●   

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060005.html


4.7.3.1: Developing a Java application thin client
Install the Java application thin client from the WebSphere Application Client CDby selecting option "Java Application Thin Client" or "Java
Application/Applet Thin Client."

The Java application thin client offers access to most of the client services that are available in the J2EE application client; however, these
services are not as easily accessed in the thin client as they are in the J2EE application client. The J2EE client has the advantage of
performing a simple JNDI namespace lookup to access the desired service or resource. The thin client must code explicitly for each resource
in the client application. For example, looking up an EJB Home requires the following code in a J2EE application client:

        java.lang.Object ejbHome =  initialContext.lookup("java:/comp/env/ejb/MyEJBHome");     
MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,  MyEJBHome.class);

However, the code in a Java thin application client must be more explicit:

                        java.lang.Object ejbHome = 
initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");   
MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,  MyEJBHome.class);

In this example, the J2EE application client accesses a logical name from the java:/comp namespace. The J2EE client runtime resolves
that name to the physical location, and returns the reference to the client application. The thin client, on the other hand, must know the fully
qualified physical location of the EJB Home in the namespace. If this location changes, the thin client application also must change the value
placed on the lookup() statement. In the J2EE client, the client application is protected from these changes because it makes use of the logical
name.A change might require a re-deploy of the EAR file, but the actual client application code remains the same.

The Java thin application client is a traditional Java application that contains a "main" function. WebSphere's Java thin application client
provides runtime support for accessing remote EJBs, and provides the implementation for various services (security, WLM, and others). This
client can also access CORBA objects and CORBA based services. When using both environments in one client application, the user is
responsible for understanding the differences between the EJB and CORBA programming models and for managing both environments.

For instance, the CORBA programming model requires using the CORBA CosNaming name service for object resolution in a namespace
while the EJB programming model requires using the JNDI name service. The client application must initialize and properly manage the use
of these two naming services.

Another difference applies to the EJB model.The ORB is initialized using JNDI implementation in the EJB model, and the client application
is unaware that an ORB is present. The CORBA model, however, requires the client application to explicitly initialize the ORB through the
ORB.init() static method.

The Java application thin client provides a batch command that you can use to setthe CLASSPATH and JAVA_HOME environment variables
to enable the Java application thinclient runtime.

Set the Java application thin client environment by using the setupClientshell, located in:

   product_installation\AppletClient\bin\setupClient.bat (on Windows)
   product_installation/AppletClient/bin/setupClient.sh (on UNIX platforms)

After setting the environment variables, add your specific Java client applicationJAR files to the CLASSPATH and start your Java client
application from this environment.

See article Packaging and distributing Java clientsfor more information.

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html


4.7.3.2: Java thin application client code example
The code required by a Java application thin client to communicate with an enterprise java bean is similar to
servlet code that communicates with enterprise java beans.

The following code example illustrates how a Java application thin client uses the InitialContext to do the
following:

Perform a lookup●   

Narrow the returned object into the EJBHome object●   

Invoke the create method.●   

Click a link to view the referenced line of code in the example. Each line in the code snippet is described in this
next section.

The first three lines in the try section of the code example show how to:

Create a properties class❍   

Set the initial context factory❍   

Define the provider URL used during the lookup operation❍   

1.  

The fields in the provider URL represent:

iiop://myComputer.myDomain.com:900

iiop:// myComputer myDomain.com 900

protocol  
name of the server where
WebSphere Application
Server is installed

name of the domain for the
server where WebSphere
Application Server is installed

configured port

  Since port 900
is the default port
value, thismay be
omitted.

2.  

This line in the example shows how to:

create an InitialContext class passing the Properties file

3.  

Now do a lookup the EJB Home on the server

For more information on JNDI, see article 4.6.1: JNDI overview.

4.  

The narrow operation in this line:

safely casts the object into an instance of HelloHome

5.  

Finally, call the create method on the HelloHome object to create a Hello object.

You can also use findByPrimary key instead of create.Use the findByPrimaryKey method to
find an existing Hello object.

6.  

Code example

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/040601.html


     import javax.naming.*;
     import javax.rmi.*;
     import java.rmi.*;
      import java.util.*;
      import javax.ejb.*;
     import WebSphereSample.HelloEJB.*; //package for HelloEJB beans
          public class HelloClient
     {
         public static void main(String argv[])
         {
          try
            {
                   Properties props = new Properties();
                   props.put(Context.INITIAL_CONTEXT_FACTORY,
              "com.ibm.websphere.naming.WsnInitialContextFactory");
                   props.put(Context.PROVIDER_URL,
              "iiop://myComputer.myDomain.com:900");
                   InitialContext ctx = new InitialContext(props);
                   Object myObj = ctx.lookup("WSsamples/HelloEJBHome");
                   HelloHome myHome = (HelloHome)
               javax.rmi.PortableRemoteObject.narrow(obj, HelloHome.class);
                   Hello hello = myHome.create();
            }
           catch(NamingException e)
                 ....
           catch(RemoteException e)
                 ....
           catch(CreateException e)
                 ....
          }
     }

Learn more about the WebSphere Java application thin client by running the client sample.You can install the
client sample from the WebSphere Application Client CD.This sample is called HelloEJB and is installed in
theproduct_installation/WSsamples/Clientsubdirectory on the client machine.

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html


4.7.4: Quick reference to Java client functions
Use the following table to identify the available functions in the different types of Java client.

Available functions Applet client J2EE Application client Java thin application client

Provides all the benefits of a J2EE
platform

No Yes No

Portable across all J2EE platforms No Yes No

Provides the necessary runtime to
support communication between client
and server

Yes Yes Yes

Allows the use of nicknames in the
deployment descriptors

No Yes No

Supports use of the RMI-IIOP protocol Yes Yes Yes

Supports use of the HTTP protocol Yes No No

Enables development of client
applications that can access EJB
references and CORBA object
references

Yes Yes Yes

Enables the initialization of the client
application's runtime environment

No Yes No

Supports security authentication to
Enterprise Java Beans

No Yes Yes

Supports security authentication to
local resources

No Yes No

Requires distribution of application to
client machines

No Yes Yes



4.7.5: Quick reference to Java client topics
Use the following table to locate additional Java client topics.

Click a Topics entry to view a description.Click a References entry for additional information on that topic.

Topics References

Java clients overview
J2EE application model●   

J2EE architecture●   

Quick reference to Java client functions●   

Applet clients
Developing an Applet client●   

Packaging, distributing, and installing●   

Tracing and logging●   

J2EE application clients

Resources referenced by a J2EE application client●   

Developing a J2EE application client●   

Troubleshooting guide for a J2EE application client●   

J2EE application client client class loading overview●   

Packaging, distributing, and installing●   

Tracing and logging●   

Configuring application client resources●   

Launching Java application clients in the J2EE application client
container

●   

Assembling modules and setting properties for applications●   

Assembling J2EE application modules (.ear files) with theapplication
assembly tool

●   

Java thin application clients

Developing a Java thin application client●   

Java thin application client code example●   

Packaging, distributing, and installing●   

Tracing and logging●   

http://java.sun.com/j2ee/overview2.html
http://java.sun.com/j2ee/tutorial/doc/Overview3.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/060301.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606010501.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606010501.html


4.7.6: Packaging and distributing Java client applications
After a client application has been developed the next step in the process is packaging and distributing the client application for use on client
machines. Packaging consists of pulling together the various artifacts that the client application requires. Distributing applies to making the
client application available on the target client machines. Each of the WebSphere Java clients differ slightly from each other in the packaging
and distributing phases of the development process.These differences are described below.

Application
client type Packaging Distribution

J2EE
Application
Client

Packaging of the WebSphere J2EE Application Client is accomplished through the
Application Assembly Tool (AAT). This tool generates an Enterprise Archive (.ear)
file as the output from the the assembly and deployment process. The .ear file contains
all of the class files that are required by the client application to run.

The .ear file must be deployed. The deployment can be done throughthe Application
Assembly Tool or when the EJB modules within the .earfile are installed in WebSphere
Application Server. The deployment phasegenerates the client bindings needed by the
client application.

Distributing the J2EE Application
Client .ear file to the target client
machine that has WebSphere J2EE
Application Client installed, is a
manual process.

WebSphere Application Server
does not provide any tooling to
assist in the distribution of the
J2EE Application Client .ear
files.

The J2EE Application Client might
require further configuration if the
application makes use of external
resources (such as: JDBC,
JavaMail, JMS or URL). Perform
this configuration with the
Application Client Resource
Configuration Tool.

When the resource configuration is
complete, the application can be
started using the launchClient
command.

Java
Application
Thin Client

The Java application thin client is packaged by manually collecting appropriate JAR files
and Java classes to support the client application.

The Enterprise Java Beans that the client application uses, require that client side
bindings are available on the client target machine. The client side bindings are available
from the deployed EJB JAR files.

The .jar files, containing the Enterprise Java Beans, are invoked by the application.
These JAR files are located in directory:
product_installation\InstalledApps\<YourEJBapplication.ear>\

Distributing the Java application
thin client JAR files to the target
client machine where WebSphere
Java Thin Application Client is
installed, is a manual process.

WebSphere Application Server
does not provide any tooling to
assist in the distribution of the JAR
files.

When the client application files
are present on the target client
machine, you must set up the
environment. WebSphere
Application Server provides a
command that assists users in
setting up the environment by
defining several environment
variables. Use the setupClient
command located in the
product_installation\bin
directory. After running this
command, add your client
application JAR files to the
CLASSPATH or use the
-classpath parameter on the
java command.

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060005.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html


Applet
Client

The Applet client is packaged manually by collecting the appropriate JAR files, Java
classes, and HTML files to support the Applet.

The Enterprise Java Beans that the Applet uses, require client side bindings. The client
side bindings are available from the deployed EJB JAR files. What .jar files are used
depends on the Enterprise Java Beans invoked. These JAR files are located inthe
product_installation\InstalledApps\<YourEJBapplication.ear>\
directory.

Distributing the Applet client to the
target client machine that has the
Applet client installed or to the
target WebServer machine (if you
want to make the Applet available
for download), is a manual process.

WebSphere Application Server
does not provide any tooling to
assist in the distribution of the JAR
files.

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html


4.7.7: Tracing and logging for the Java clients
Tracing and logging functions are available for the WebSphere client runtime. How this support is enabled and the level of support provided,
differs for each client model.

Applet client

You enable the tracing and logging functions for ORB level tracing only, by specifying the following system properties in the Java
Runtime parameters field of the WebSphere Application Server Java Plug-in Control Panel:

                -Dcom.ibm.CORBA.CommTrace=true
          -Dcom.ibm.CORBA.Debug=true

All verbose, trace, and debug messages are sent to the Java console window on thebrowser. Applets restrict using files for trace
output.

●   

J2EE Application Client

You enable the tracing and logging functions by specifying one of the following flags on the launchClient command when starting
the J2EE client application:

CCtrace■   

CCtracefile■   

CCtrace flag

The -CCtrace flag enables trace. You can trace all or specific components:

-CCtrace=true
(This flag enables trace for all components and all events.)

■   

-CCtrace=com.ibm.<component>=<entryexit | debug | event | all>=enabled
(This flag enables trace for specific components. For example,
-CCtrace=com.ibm.ws.client.*=all=enabled enables trace for all loggers with names starting with com.ibm.ws.client.)

■   

  If the -CCtrace flag is not specified, trace is disabled.

CCtracefile flag

Use the -CCtracefile flag to send the trace output to a specific file:

-CCtracefile=<fully_qualified_output_filename>

(For example,
-CCtracefile=c:\MyTraceFile.log directs the trace output to file, c:\MyTraceFile.log.)

  If the -CCtracefile flag is not set, all output is directed to stdout.

●   

Java thin application client

You enable the tracing and logging functions by specifying the following system property on the java command when starting the
client application:

                -DtraceSettingsFile=<filename>

(Filename is the name of a properties file that must be placed in the classpath accessible by the application.)

The properties file is used for specifying the output file and the components to enable for trace. When you install WebSphere
Application Server, a sample trace settings properties file is provided in:
<product_installation>/properties/TraceSettings.properties

The TraceSettings.properties file looks like the following example:

●   

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0804.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/root.html


# property to specify the fully qualified file name for the tracefile
traceFileName=c:\\MyTraceFile.log
# Specify trace strings here. Trace strings take the form of:
# logger={level}={type} where:
#     level = entryexit || debug || event || all
#     type =  enabled || disabled
# examples:
# com.ibm.ejs.ras.SharedLogBase=all=enabled enables all tracing for the single logger
#         created in class com.ibm.ejs.ras.SharedLogBase.
# com.ibm.ejs.*=debug=enabled enables debug tracing for all loggers with names starting
#         with com.ibm.ejs.
## Multiple trace strings can be specified, one per line.
com.ibm.ejs.ras.*=all=enabled

   If you specify a filename but no trace string,only message events are written to the specified file. If you specify
a filenameand a trace string, both message events and diagnostic trace entries are written to the specified file. If you
do not specify a filename for the trace file, all output is directed to stdout.



6.6.24: Administering application client modules
(overview)
Administration application client modules consists of the following.

Use the Application Assembly Tool to:

Creating the module1.  

Setting deployment descriptor properties2.  

Generating code for deployment3.  

Use the Application Client Resource Configuration Tool to set additional configuration properties.

Classpath considerations

An important classpath-related setting to note is the Module Visibility. This application server setting impacts
the portability of applications and standalone modules from other WebSphere Application Server versions and
editions. If your existing module does not run as-is when you transfer it to Version 4.0, you might need to
reassemble an existing module or change the module visibility setting.

See the information on setting classpaths for a full discussion of classpath considerations.

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06060300.html


6.6.24.0: Application client module properties
These are set using the Application Assembly Tool. Refer to the "Assembly properties for client modules"
property reference to set values for these properties.



6.6.24.0.a: Assembly properties for application client
modules
File name (Required, String)

Specifies the file name of the application client module, relative to thetop level of the EAR file. If this is a stand-alone
module, the filename is the full pathname of the archive.

Alternative DD

Specifies the file name for an alternative deployment descriptor file touse instead of the original deployment
descriptor file in the module'sJAR file. This file is the postassembly version of the deploymentdescriptor file. (The
original deployment descriptor file can be editedto resolve dependencies and security information. Directing the use
ofthe alternative deployment descriptor allows you to keep the originaldeployment descriptor file intact). The value of
the Alternative DDproperty must be the full path name of the deployment descriptor file relativeto the module's root
directory. By convention, the file is in theALT-INF directory. If this property is not specified, the
deploymentdescriptor file is read directly from the module's JAR file.

Classpath

Specifies the full class path containing the dependent code that is notcontained in the application client JAR file.
Specify the valuesrelative to the root of the EAR file and separate the values withspaces. Absolute values that
reference files or directories on the harddrive are ignored. To specify classes that are not in JAR files but arein the
root of the EAR file, use a period and forward slash(./). Consider the following example directory structure inwhich
the file myapp.ear contains an application client JAR file namedclient.jar. Additional classes reside in class1.jar
andclass2.zip. A class named xyz.class is not packaged in aJAR file but is in the root of the EAR file.

myapp.ear/client.jarmyapp.ear/class1.jarmyapp.ear/class2.zipmyapp.ear/xyz.class

Specify class1.jar class2.zip ./ as thevalue of the Classpath property. (Name only the directory for.class
files.)

Display name (Required, String)

Specifies a short name that is intended to be displayed by GUIs.

Small icon

Specifies a JPEG or GIF file containing a small image (16x16pixels). The image is used as an icon to represent the
applicationclient in a GUI.

Large icon

Specifies a JPEG or GIF file containing a large image (32x32pixels). The image is used as an icon to represent the
applicationclient in a GUI.

Description

Contains text describing the application client.

Main class (Required, String)

Specifies the full path name of the main class for this applicationclient.



6.6.24.5: Administering application clients with
Application Assembly Tool
An application client is a standalone Java program (in contrast to a Webbrowser-based program). An
application client module is used toassemble the files that make up the application client into a singleunit. The
Application Assembly Tool is used to create and edit modules,verify the archives, and generate deployment
code. See the relatedtopics for links to concepts, instructions for creating an application clientmodule, and field
help.

If the application client requires local resources, you must also use theApplication Client Resource
Configuration Tool. This tool allows you todefine references to local resources other than enterprise beans (such
as JDBCand JMS resources) on the machine where the application client resides.



6.6.24.5.1: Creating an application client
Application client modules can be created by using property dialog boxes orby using a wizard.

Using the property dialog boxes●   

Using the Create Application Client wizard●   

Using the property dialog boxes

Creating a new application client consists of specifying the files thatmake up the client and then adding
assembly properties. To create a newapplication client:

Click File ->New -> ApplicationClient. The navigation pane displays a hierarchical structureused to
build the contents of the module. The icons represent thecomponents, assembly properties, and files for
the module. A propertydialog box containing general information about the application client
isdisplayed in the property pane.

1.  

By default, the application client JAR file and the display name are thesame. It is recommended that you
change the display name in theproperty pane.

2.  

By default, the temporary location of the application client JAR file isinstallation_directory/bin. You
must specify a newfile name and location by clicking File->Save.

3.  

Enter the main class file name (required). Click Browseto locate the class file. By default, the root
directory or archive isthe current archive. If needed, browse the file system for thedirectory or archive
where class files reside. ClickSelect. The archive's file structure is displayed inthe window. Expand the
structure and locate the files that youneed. Select the file and click OK.

4.  

Enter values for other properties as needed. View the help for 6.6.24.0.a: Assembly properties for
application client modules. Click OK.

5.  

Define assembly properties for the application client.

Right-click the EJB References icon and click New. Aproperty dialog box for EJB References is
displayed. View the help for 6.6.43.0.1: Assembly properties for EJB references. Enter values for
each property and then clickOK. Repeat to specify multiple EJB references. Thetop portion of
the property pane lists each reference. Select thereference to view its corresponding property
dialog box.

❍   

Right-click the Resource References and click New. Aproperty dialog box for Resource
References is displayed. View the helpfor 6.6.43.0.2 Assembly properties for resource
references. Enter values for each property and then clickOK. Repeat to specify multiple resource
references.

❍   

Right-click the Environment Entries and click New. Aproperty dialog box for Environment
Entries is displayed. View the helpfor 6.6.34.0.a: Assembly properties for environment entries.
Enter values for each property and then clickOK. Repeat to define multiple environment
variables.

❍   

6.  

Add files for the application client. In the navigation pane,right-click the Files icon and then choose Add
Files. Usethe file browser to locate files to add. First, browse for the rootdirectory or archive where the
files are located and clickSelect. If you are adding an entire archive, select thedirectory that contains the
archive. The directory structure isdisplayed in the left pane. Browse the directory structure. Fromthe
right pane, select one or more files to be added and clickAdd. If you select a directory and click Add,
allfiles in the directory, including the directory, are added. Relativepath names are maintained. The
selected files are displayed in theSelected Files window. Click OK. The file names,extensions,
modification dates, sizes, and path names are displayed in theproperty pane.

7.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606430001aa.html#HDRPROPSEJBREFS
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606430002aa.html#HDRPROPSRESOURCEREFS
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606430002aa.html#HDRPROPSRESOURCEREFS
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06063400aa.html#HDRPROPSENVREFS


Review the contents of the module and make any desired changes.8.  

Click File->Save to save the module.9.  

Using the Create Application Client wizard

Use this wizard to create an application client JAR file. Duringcreation, you specify the files that make up the
application client.You also specify information such as references to other (external) enterprisebeans needed by
the client.

Before you start the wizard, you must have the class files and other filesbelonging to the application client.
When the wizard is completed, yourapplication client JAR file resides in the location that you specified.

To create an application client, click the Wizards icon on thetoolbar, and then click Application Client. Follow
theinstructions on each panel.

Specifying application client module properties●   

Adding files●   

Specifying additional application client module properties●   

Choosing application client module icons●   

Adding EJB references●   

Adding resource references●   

Adding environment entries●   

Setting additional properties and saving the archive●   

Specifying application client module properties

On the Specifying Application Client Module Propertiespanel:

Indicate the application to which this module is to be added. If aparent application is not indicated, the
module is created as a stand-aloneapplication.

1.  

Specify a display name for the application client (required). Thedisplay name is used to identify your
application in the Application AssemblyTool and can be used by other tools.

2.  

Specify a file name for the application client (required). The filename specifies a location on your
system for the JAR file to becreated.

3.  

Provide a short description of the application client (optional).4.  

Click Next.5.  

Adding files

On the Adding Files panel, specify the files that are to beassembled for the application client. To add or remove
files:

Click Add. Use the file browser to locate files toadd. First, browse for the root directory or archive
where the filesare located and click Select. If you are adding an entirearchive, select the directory that
contains the archive. The directorystructure is displayed in the left pane. Browse the directorystructure.
From the right pane, select one or more files to be addedand click Add. If you select a directory and
clickAdd, all files in the directory, including the directory, areadded. Relative path names are
maintained. The selected filesare displayed in the Selected Files window. Click OK.The files are
displayed in a table on the wizard panel.

1.  



If you want to remove a file, select the file in the table and then clickRemove.2.  

Continue to add or remove files until you have the correct set offiles.3.  

Click Next.4.  

Specifying additional application client module properties

On the Specifying Additional Application Client ModuleProperties panel:

Specify the classpath and main class for the application client.View the help for 6.6.24.0.a: Assembly
properties for application client modules.

1.  

Click Next.2.  

Choosing application client module icons

On the Choosing Application Client Module Icons panel, specifyicons for your module.

Specify the full path name of a file containing a small icon, or clickBrowse to locate and select the file.
The icon must be a GIFor JPEG image 16x16 pixels in size.

1.  

Specify a full path name of a file containing a large icon, or clickBrowse to locate and select the file.
The icon must be a GIFor JPEG image 32x32 pixels in size.

2.  

Click Next.3.  

Adding EJB references

On the Adding EJB References panel, specify the enterprise beansrequired by the application client.

Click Add. Enter the name of the enterprise bean to beused by the application client, the names of the
bean's home and remoteinterfaces, and the bean type (required). View the help for 6.6.43.0.1: Assembly
properties for EJB references. The EJB reference is displayed in a table on thewizard panel.

1.  

If the referenced bean is located in the module being created (or in theencompassing application), enter a
name in the Link field (optional).If the bean is external to the module, leave the Link field blank.
Youcan specify JNDI binding information later (by using the property dialog boxesor by using the
administrative console).

2.  

To remove a reference, select the entry in the table and then clickRemove.3.  

Continue to add and remove references as needed.4.  

Click Next.5.  

Adding resource references

On the Adding Resource References panel, enter references toconnection factory objects for resource
managers.

Click Add. Enter values for the name, type, andauthorization mode of the resource reference, then click
OK.View the help for 6.6.43.0.2 Assembly properties for resource references. The resource reference
information is displayed in atable.

●   

To remove a reference, select the reference in the table and clickRemove.●   

Continue adding or removing references as needed.●   

Click Next.●   

Adding environment entries

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606430001aa.html#HDRPROPSEJBREFS
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606430001aa.html#HDRPROPSEJBREFS
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606430002aa.html#HDRPROPSRESOURCEREFS


On the Adding Environment Entries panel, add environment entriesfor the application client.

Click Add. Enter the name and type of the entry, thenclick OK. View the help for 6.6.34.0.a: Assembly
properties for environment entries.

●   

To remove an environment entry, select the entry in the table and thenclick Remove.●   

Continue adding or removing environment entries as needed.●   

Click Next.●   

Setting additional properties and saving the archive

Click Finish to complete the wizard. To change settingsfor properties, click Back to return to the
appropriatepanel. Make any needed changes, and then clickFinish.

After you click Finish, the contents of the archive aredisplayed in the main window. You can continue adding
or modifyingproperties as needed. For example, you can add bindinginformation. When you are finished editing
the archive, clickFile->Save. Specify a name for the archive andclick Save.

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06063400aa.html#HDRPROPSENVREFS
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06063400aa.html#HDRPROPSENVREFS


6.6.0.9: Application Client Resource Configuration
Tool for configuring client resources
The Application Client Resource Configuration Tool defines the resources for the client application. These
configurations are stored in the client application .ear file, and are used by the WebSphere application client
runtime for resolving and creating an instance of the resources for the client application.

Launching the tool



6.6.0.9.3: Removing objects from EAR files with the
Application Client Resource Configuration Tool
During this task, you will remove (delete) an object from an EARfile for your application client. You can
remove any particular J2EE resource or resource provider, including data sources and data source providers;
URLs and URL providers;JMS providers, connection factories, and destinations; and JavaMail sessions. You
cannot removethe default JavaMail provider, however.

Start the tool and open the EAR file from which you want to remove an object. The EAR file contents
will be displayed in a tree view.

Recommended. If you already had the EAR file open, and have made some changes, click File -> Save
to save your work before preceding to delete an object. See below for a discussion.

1.  

In the tree, locate the object that you want to remove.2.  

Do one of the following:

Click the object, then click Edit -> Delete from the tool menu bar.❍   

Right-click the object to display its menu, then click Delete.❍   

3.  

If you are sure that you want the deletion to take effect, click File -> Save.4.  

  The option to delete an item does not offera confirmation dialog. As soon as you delete the item, it is gone.
As a safeguard,consider saving your work right before you begin this task. That way, if you change yourmind
after removing an item, you can close the EAR file without saving your changes, which willcancel your
deletion. Be sure to do so immediately after the deletion, or you willalso lose any unsaved work that you
performed since the deletion.



6.6.0.9a: Starting the Application Client Resource
Configuration Tool and opening an EAR file
Start the graphical interface with the command:

clientConfig

To open an EAR file into the tool:

On the menu bar of the tool, click File -> Open.1.  

Browse for the file that you want to open.2.  

When you have found the file and selected it, click Open.3.  

To save your changes to the file and close the tool:

On the menu bar of the tool, click File -> Save.1.  

Click File -> Exit.2.  

Now begin administering a resource type:

JDBC providers and data sources●   

JavaMail providers and sessions●   

URL providers and URLs●   

JMS providers, connection factories, and destinations●   



6.6.14.9: Administering data source providers and
data sources with the Application Client Resource
Configuration Tool
Use the Application Client Resource Configuration Tool to edit the configurations of data source providers
(such as JDBC providers)and data sources, which are used by your application clients to access data
fromdatabases.

Work with objects of this type by locating them in the tree that is displayed by the tool when you use it to
openan EAR file. If file with which you are working contains data source providers and data sources, its tree
will contain one or more of the following:

Resources -> application.jar -> Data Source Providers -> data_source_provider_instance

where data_source_provider_instance isa particular data source provider.

If you expand the tree further, you will also see the Data Sources folders containing the data source instances
for each data source provider instance.



6.6.14.9.1: Configuring new data source providers
(JDBC drivers) with the Application Client Resource
Configuration Tool
During this task, you will create new data source providers (also known as JDBC providers)for your client
application. Note, in a separate administrative task, the Java code for the required data source provider must be
installed on the client machine on which the client application resides.

To configure a new data source provider:

Start the tool and open the EAR file for which you want to configure the new data source provider. The
EAR file contents will be displayed in a tree view.

1.  

From the tree, select the JAR file in which you wantto configure the new data source provider.2.  

Expand the JAR file to view its contents.3.  

Click the folder called Data Source Providers. Do one of the following:

Right-click the folder and select New Provider.❍   

On the menu bar, click Edit -> New.❍   

4.  

In the resulting property dialog, configure the data source provider properties.5.  

When finished, click OK.6.  

On the menu bar, click File -> Save to save your changes.7.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06061400.html


6.6.14.9.1.1: Configuring new data sources with the
Application Client Resource Configuration Tool
During this task, you will create new data sources for your client application.

In the tree, click the data source provider for which you want to create a data source.

Configure a new data source provider.❍   

Or, click an existing data source provider.❍   

1.  

Expand the data source provider to view its Data Sources folder.2.  

Click the folder. Do one of the following:

Right-click the folder and select New Factory.❍   

On the menu bar, click Edit -> New.❍   

3.  

In the resulting property dialog, configure the data source properties.4.  

When finished, click OK.5.  

On the menu bar, click File -> Save to save your changes.6.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606140001.html


6.6.14.9.3: Removing data source providers (JDBC
drivers) and data sources with the Application Client
Resource Configuration Tool
Please see "Removing objects from EAR files with theApplication Client Resource Configuration Tool", as this
task is similar for all object types supported by the tool.



6.6.14.9.4: Updating data source and data source
provider configurations with the Application Client
Resource Configuration Tool
During this task, you will modify (update) the configuration of an existing data source ordata source provider.

Start the tool and open the EAR file containing the data source or data source provider. The EAR file
contents will be displayed in a tree view.

1.  

From the tree, select the JAR file containing the data source or data source providerthat you want to
update.

2.  

Expand the JAR file to view its contents.3.  

Keep expanding the JAR file contents until you locate the particular data source or datasource provider
that you want to update. When you find it, do one of the following:

Right-click the object and select Properties❍   

On the menu bar, click Edit -> Properties❍   

4.  

In the resulting property dialog, update the properties. For detailed field help, see:

Data source provider properties❍   

Data source properties❍   

5.  

When finished, click OK.6.  

On the menu bar, click File -> Save to save your changes.7.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06061400.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606140001.html


6.6.37.9: Administering JavaMail providers and
sessions with the Application Client Resource
Configuration Tool
Use the Application Client Resource Configuration Tool to edit the configurations of JavaMail sessions to be
used by your application clients.

Work with objects of this type by locating them in the tree that is displayed by the tool when you use it to
openan EAR file. If file with which you are working contains JavaMail sessions, its tree will contain one or
more of the following:

Resources -> application.jar -> JavaMail Providers -> Mail Provider (a default mail provider) ->JavaMail
Sessions

Inside the JavaMail Sessions folder will be JavaMail sessioninstances.



6.6.37.9.1: Configuring new JavaMail sessions with
the Application Client Resource Configuration Tool
During this task, you will configure new mail sessions for your application client. The mail sessions will be
associated with the preconfigured default mail provider supplied by the product.

To configure a new JavaMail Session:

Start the tool and open the EAR file for which you want to configure the new JavaMail session. The
EAR file contents will be displayed in a tree view.

1.  

From the tree, select the JAR file in which you wantto configure the new JavaMail session.2.  

Expand the JAR file to view its contents.3.  

Click JavaMail Providers -> MailProvider -> JavaMail Sessions. Do one of the following:

Right-click the JavaMail Sessions folder and select New Factory.❍   

On the menu bar, click Edit -> New.❍   

4.  

In the resulting property dialog, configure the JavaMail session properties.5.  

When finished, click OK.6.  

On the menu bar, click File -> Save to save your changes.7.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606370001.html


6.6.37.9.3: Removing JavaMail sessions with the
Application Client Resource Configuration Tool
Please see "Removing objects from EAR files with theApplication Client Resource Configuration Tool", as this
task is similar for all object types supported by the tool.



6.6.37.9.4: Updating JavaMail session configurations
with the Application Client Resource Configuration
Tool
During this task, you will modify (update) the configuration of an existing JavaMail session. Note, you cannot
update the default JavaMail provider, but you can viewits properties by performing similar steps.

Start the tool and open the EAR file containing the JavaMail session. The EAR file contents will be
displayed in a tree view.

1.  

From the tree, select the JAR file containing the JavaMail session that you want to update.2.  

Expand the JAR file to view its contents.3.  

Keep expanding the JAR file contents until you locate the particular JavaMail session that you want to
update. When you find it, do one of the following:

Right-click the object and select Properties❍   

On the menu bar, click Edit -> Properties❍   

4.  

In the resulting property dialog, update the properties. For detailed field help, see:

JavaMail session properties❍   

5.  

When finished, click OK.6.  

On the menu bar, click File -> Save to save your changes.7.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606370001.html


6.6.38.9: Administering URL providers and URLs with
the Application Client Resource Configuration Tool
Use the Application Client Resource Configuration Tool to edit the configurations of URL providers and URLs
to be used by your application clients.

Work with objects of this type by locating them in the tree that is displayed by the tool when you use it to
openan EAR file. If file with which you are working contains URL providers and URLs, its tree will contain
one or more of the following:

Resources -> application.jar -> URL Providers -> url_provider_instance

where url_provider_instance isa particular URL provider.

If you expand the tree further, you will also see the URLs folders containing the URL instances for each URL
provider instance.



6.6.38.9.1: Configuring new URL providers and URLs
with the Application Client Resource Configuration
Tool
During this task, you will create URL providers and URLs for your client application. Note, in a separate
administrative task, the Java code for the required URL provider must be installed on the client machine on
which the client application resides.

To configure a new URL provider:

Start the tool and open the EAR file for which you want to configure the new URL provider. The EAR
file contents will be displayed in a tree view.

1.  

From the tree, select the JAR file in which you wantto configure the new URL provider.2.  

Expand the JAR file to view its contents.3.  

Click the folder called URL Providers. Do one of the following:

Right-click the folder and select New Provider.❍   

On the menu bar, click Edit -> New.❍   

4.  

In the resulting property dialog, configure the URL provider properties.5.  

When finished, click OK.6.  

On the menu bar, click File -> Save to save your changes.7.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06063800.html


6.6.38.9.1.1: Configuring new URLs with the
Application Client Resource Configuration Tool
During this task, you will create URLs for your client application.

In the tree, click the URL provider for which you want to create a URL.

Configure a new URL provider.❍   

Or, click an existing URL provider.❍   

1.  

Expand the URL provider to view its URLs folder.2.  

Click the folder. Do one of the following:

Right-click the folder and select New Factory.❍   

On the menu bar, click Edit -> New.❍   

3.  

In the resulting property dialog, configure the URL properties.4.  

When finished, click OK.5.  

On the menu bar, click File -> Save to save your changes.6.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606380001.html


6.6.38.9.3: Removing URL providers and URLs with
the Application Client Resource Configuration Tool
Please see "Removing objects from EAR files with theApplication Client Resource Configuration Tool", as this
task is similar for all object types supported by the tool.



6.6.38.9.4: Updating URL and URL provider
configurations with the Application Client Resource
Configuration Tool
During this task, you will modify (update) the configuration of an existing URL or URL provider.

Start the tool and open the EAR file containing the URL or URL provider. The EAR file contents will be
displayed in a tree view.

1.  

From the tree, select the JAR file containing the URL or URL providerthat you want to update.2.  

Expand the JAR file to view its contents.3.  

Keep expanding the JAR file contents until you locate the particular URL or URL provider that you
want to update. When you find it, do one of the following:

Right-click the object and select Properties❍   

On the menu bar, click Edit -> Properties❍   

4.  

In the resulting property dialog, update the properties. For detailed field help, see:

URL provider properties❍   

URL properties❍   

5.  

When finished, click OK.6.  

On the menu bar, click File -> Save to save your changes.7.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06063800.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606380001.html


6.6.39.9: Administering JMS providers, connection
factories, and destinations with the Application Client
Resource Configuration Tool
Use the Application Client Resource Configuration Tool to edit the configurations of JMS providers, JMS
connectionfactories, and JMS destinations to be used by your application clients.

Work with objects of this type by locating them in the tree that is displayed by the tool when you use it to
openan EAR file. If file with which you are working contains JMS providers, JMS connectionfactories, and
JMS destinations, its tree will contain one or more of the following:

Resources -> application.jar -> JMS Providers -> jms_provider_instance

where jms_provider_instance isa particular JMS provider.

If you expand the tree further, you will also see the JMS Connection Factories and JMS Destinations folders
containing the connection factory and destination instances for each JMS provider instance.



6.6.39.9.1: Configuring new JMS providers with the
Application Client Resource Configuration Tool
During this task, you will create new JMS provider configurations for your applicationclient. The client
application can make use of a messaging service through the Java Message Service APIs. A JMS provider
provides two kinds of J2EE factories. One is a JMS Connection factory, and the other is aJMS destination
factory.

Note, in a separate administrative task, the JMS client must be installed on the client machine where the client
application resides. The messaging product vendor must provide an implementation of the JMS client. For more
information, see your messaging product documentation.

To configure a new JMS provider:

Start the tool and open the EAR file for which you want to configure the new JMS provider. The EAR
file contents will be displayed in a tree view.

1.  

From the tree, select the JAR file in which you wantto configure the new JMS provider.2.  

Expand the JAR file to view its contents.3.  

Click the folder called JMS Providers. Do one of the following:

Right-click the folder and select New Provider.❍   

On the menu bar, click Edit -> New.❍   

4.  

In the resulting property dialog, configure the JMS provider properties.5.  

When finished, click OK.6.  

On the menu bar, click File -> Save to save your changes.7.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06063900.html


6.6.39.9.1.1: Configuring new connection factories
with the Application Client Resource Configuration
Tool
During this task, you will create a new JMS connection factory configuration for your applicationclient.

To configure a new connection factory:

In the tree, click the JMS provider for which you want to create a connection factory.

Configure a new JMS provider.❍   

Or, click an existing JMS provider.❍   

1.  

Expand the JMS provider to view its JMS Connection Factories folder.2.  

Click the folder. Do one of the following:

Right-click the folder and select New Factory.❍   

On the menu bar, click Edit -> New.❍   

3.  

In the resulting property dialog, configure the JMS connection factory properties.4.  

When finished, click OK.5.  

On the menu bar, click File -> Save to save your changes.6.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606390001.html


6.6.39.9.1.2: Configuring new JMS destinations with
the Application Client Resource Configuration Tool
During this task, you will create new JMS destination configuration for your applicationclient.

To configure a new destination:

In the tree, click the JMS provider for which you want to create a destination.

Configure a new JMS provider.❍   

Or, click an existing JMS provider.❍   

1.  

Expand the JMS provider to view its JMS Destinations folder.2.  

Click the folder. Do one of the following:

Right-click the folder and select New Factory.❍   

On the menu bar, click Edit -> New.❍   

3.  

In the resulting property dialog, configure the JMS destination properties.4.  

When finished, click OK.5.  

On the menu bar, click File -> Save to save your changes.6.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606390002.html


6.6.39.9.3: Removing JMS providers, connection
factories, and destinations with the Application Client
Resource Configuration Tool
Please see "Removing objects from EAR files with theApplication Client Resource Configuration Tool", as this
task is similar for all object types supported by the tool.



6.6.39.9.4: Updating JMS provider, connection
factory, and destination configurations with the
Application Client Resource Configuration Tool
During this task, you will modify (update) the configuration of an existing JMS provider, connection factory, or
destination.

Start the tool and open the EAR file containing the JMS provider, connection factory, or destination.
The EAR file contents will be displayed in a tree view.

1.  

From the tree, select the JAR file containing the JMS provider, connection factory, or destinationthat
you want to update.

2.  

Expand the JAR file to view its contents.3.  

Keep expanding the JAR file contents until you locate the particular JMS provider, connection factory,
or destination that you want to update. When you find it, do one of the following:

Right-click the object and select Properties❍   

On the menu bar, click Edit -> Properties❍   

4.  

In the resulting property dialog, update the properties. For detailed field help, see:

JMS provider properties❍   

JMS connection factory properties❍   

JMS destination properties❍   

5.  

When finished, click OK.6.  

On the menu bar, click File -> Save to save your changes.7.  

http://localhost/0802_makepdf/ae_orig/nav_clientsnav/06063900.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606390001.html
http://localhost/0802_makepdf/ae_orig/nav_clientsnav/0606390002.html

	Numbx: 
	L: 
	C: 
	R: 

	P1: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 1



	P2: 
	Numbers: 
	Numbx: 
	L: 2
	C: 
	R: 



	P3: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 3



	P4: 
	Numbers: 
	Numbx: 
	L: 4
	C: 
	R: 



	P5: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 5



	P6: 
	Numbers: 
	Numbx: 
	L: 6
	C: 
	R: 



	P7: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 7



	P8: 
	Numbers: 
	Numbx: 
	L: 8
	C: 
	R: 



	P9: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 9



	P10: 
	Numbers: 
	Numbx: 
	L: 10
	C: 
	R: 



	P11: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 11



	P12: 
	Numbers: 
	Numbx: 
	L: 12
	C: 
	R: 



	P13: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 13



	P14: 
	Numbers: 
	Numbx: 
	L: 14
	C: 
	R: 



	P15: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 15



	P16: 
	Numbers: 
	Numbx: 
	L: 16
	C: 
	R: 



	P17: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 17



	P18: 
	Numbers: 
	Numbx: 
	L: 18
	C: 
	R: 



	P19: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 19



	P20: 
	Numbers: 
	Numbx: 
	L: 20
	C: 
	R: 



	P21: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 21



	P22: 
	Numbers: 
	Numbx: 
	L: 22
	C: 
	R: 



	P23: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 23



	P24: 
	Numbers: 
	Numbx: 
	L: 24
	C: 
	R: 



	P25: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 25



	P26: 
	Numbers: 
	Numbx: 
	L: 26
	C: 
	R: 



	P27: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 27



	P28: 
	Numbers: 
	Numbx: 
	L: 28
	C: 
	R: 



	P29: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 29



	P30: 
	Numbers: 
	Numbx: 
	L: 30
	C: 
	R: 



	P31: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 31



	P32: 
	Numbers: 
	Numbx: 
	L: 32
	C: 
	R: 



	P33: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 33



	P34: 
	Numbers: 
	Numbx: 
	L: 34
	C: 
	R: 



	P35: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 35



	P36: 
	Numbers: 
	Numbx: 
	L: 36
	C: 
	R: 



	P37: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 37



	P38: 
	Numbers: 
	Numbx: 
	L: 38
	C: 
	R: 



	P39: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 39



	P40: 
	Numbers: 
	Numbx: 
	L: 40
	C: 
	R: 



	P41: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 41



	P42: 
	Numbers: 
	Numbx: 
	L: 42
	C: 
	R: 



	P43: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 43



	P44: 
	Numbers: 
	Numbx: 
	L: 44
	C: 
	R: 



	P45: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 45



	P46: 
	Numbers: 
	Numbx: 
	L: 46
	C: 
	R: 



	P47: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 47



	P48: 
	Numbers: 
	Numbx: 
	L: 48
	C: 
	R: 



	P49: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 49



	P50: 
	Numbers: 
	Numbx: 
	L: 50
	C: 
	R: 



	P51: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 51



	P52: 
	Numbers: 
	Numbx: 
	L: 52
	C: 
	R: 



	P53: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 53



	P54: 
	Numbers: 
	Numbx: 
	L: 54
	C: 
	R: 



	P55: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 55



	P56: 
	Numbers: 
	Numbx: 
	L: 56
	C: 
	R: 



	P57: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 57



	P58: 
	Numbers: 
	Numbx: 
	L: 58
	C: 
	R: 



	P59: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 59





