Servlets -- table of contents

Development

4.2.1: Developing servlets
4.2.1.1: Servlet lifecycle

4.2.1.2: Servlet support and environment in WebSphere
4.2.1.2.1a Features of Java Servlet APl 2.2
4.2.1.2.2: IBM extensions to the Servlet API
4.2.1.2.3a Invoking sevlets by classname and serving files
4.2.1.2.3b: Security risk example of invoking servlets by class name

4.2.1.3: Servlet content, examples, and samples
4.2.1.3.1: Creating HTTP servlets
Overriding HttpServlet methods
4.2.1.3.2: Inter-servlet communication
Example: Servlet communication by forwarding
4.2.1.3.4: Filtering and chaining servlets
Servlet filtering with MIME types
Servlet filtering with servlet chains
4.2.1.3.5: Enhancing servlet error reporting
Public methods of the ServletErrorReport class
4.2.1.3.6: Serving servlets by classname
4.2.1.3.7: Serving al files from application servers
4.2.1.3.8: Obtaining the Web application classpath from within a servlet
4.2.1.3.9: Pagel istServlet support
Extending PageListServlet
Configuring page lists using the Application Assemby Tool
Configuring page lists using an XML servlet configuration file
Example of the XML servlet configuration file
PagelL istServlet client type configuration file
Example of aclient type configuration file

Administration

6.6.7: Administering Web containers
6.6.7.0: Web container properties

6.6.7.1: Administering Web containers with the Java administrative console
6.6.7.1.1: Configuring the Web container services of application servers with the Java
administrative console

6.6.7.1.2: Administering transports of Web container services of application servers with the Java
administrative console

6.6.8: Administering Web modules (overview)

6.6.8.0: Web module properties

6.6.8.0.1: Assembly properties for Web components
6.6.8.0.2: Assembly properties for initialization parameters
6.6.8.0.3: Assembly properties for page lists
6.6.8.0.4: Assembly properties for security constraints
6.6.8.0.5: Assembly properties for Web resource collections
6.6.8.0.8: Assembly properties for context parameters
6.6.8.0.9: Assembly properties for error pages
6.6.8.0.10: Assembly properties for MIME mapping
6.6.8.0.11: Assembly properties for servlet mapping
6.6.8.0.12: Assembly propertiesfor tag libraries
6.6.8.0.13: Assembly properties for welcome files
6.6.8.0.14: Assembly properties for MIME filters
6.6.8.0.15: Assembly properties for JSP attributes
6.6.8.0.16: Assembly properties for file-serving attributes
6.6.8.0.17: Assembly properties for invoker attributes
6.6.8.0.18: Assembly properties for servlet caching configurations

6.6.8.0aa: Assembly properties for Web modules

6.6.8.1: Administering Web modules with the Java administrative console
6.6.8.1.1: Installing Web modules with the Java administrative console
6.6.8.1.2: Viewing deployment descriptors of Web modules with the Java administrative console
6.6.8.1.3: Showing the status of Web modules with the Java administrative console
6.6.8.1.5: Moving Web modules to other application servers with the Java administrative console

6.6.8.5: Administering Web modules with Application Assembly Tool
6.6.8.5.1: Creating a Web module

4.2.1: Developing servlets

Servlets are Java programs that build dynamic client responses, such as Web pages.Servlets receive and respond to requests from Web clients,
usually acrossHTTP, the HyperText Transfer Protocol.

Because servlets are written in Java, they can be ported without modification to different operating systems.Servlets are more efficient than CGlI
programs because, unlike CGI programs, servlets are loaded into memory once, and each request is handled by a Java virtual machine thread, not an
operating system process.Moreover, servlets are scalable, providing support for a multi-application server configuration.Servlets also alow you to
cache data, access database information, and share data with other servlets, JSP files and (in some environments) enterprise beans.

Servlet coding fundamentals

In order to create an HTTP servlet, you should extend thej avax. servl et . Ht t pSer vl et class and override any methods that you wish to
implement in the servlet. For example, a servlet would override the doGet method to handle GET requests from clients.

For moreinformation onthe Ht t pSer vl et class and methods, review articles:
e 42.1.3.1: Creating HTTP Servlets

e 42.1.3.1.1: Overriding Ht t pSer vl et methods
o 4.2.1.3.2: Inter-servlet communication

ThedoGet and doPost methods take two arguments:

« HttpServletRequest

« HttpServletResponse
The Ht t pSer vl et Request represents aclient's requests. This object gives a servlet access to incoming information such as HTML form data,
HTTP request headers, and the like.

The Ht t pSer vl et Response represents the servlet's response. The servlet uses this object to return data to the client such as HTTP errors (200,
404, and others), response headers (Content-Type, Set-Cookie, and others), and output data by writing to the response's output stream or output
writer.

SincedoGet and doPost throw two exceptions (j avax. ser vl et. Servl et Excepti onandj ava. i 0. | OExcepti on), you must
include them in the declaration. Y ou must also import classes in the following packages:

Package names Functiong/Obj ects
java.io PrintWriter
|j avax. servl et Ht t pServl et
|j avax.servlet. http Ht t pSer vl et Request and Ht t pSer vl et Response

The beginning of your serviet might look like the following example:

import java.io.*;inport javax.servlet.*;inport javax.servlet.http.*;inport java.util.*;public class
MyServl et extends HttpServliet { public void doGet(HttpServletRequest request,
Ht t pSer vl et Response response) throws Servl et Exception, |OException {

After you create your servlet, you must:

1. Compileyour serviet using thej avac command, as for example:
javac MyServlet.java

2. Invoke your servlet using one of the methods described in article:
6.6.1.5.1: Creating an application

Y ou can also compile your servlet using the - cl asspat h option on thej avac compiler. To access the classes that were extended, reference
thg 2ee. j ar fileinthepr oduct _i nstal | ati on_root\ | i bdirectory. Using this method, you issue the following command to compile

your servlet:
javac -classpath product_installation_root\lib\j2ee.jar MServlet.java

Now that you successfully created, compiled, and tested your servlet on your local machine, you must install it in the WebSphere Application
Server runtime. View article 6: Administer applicationsfor this information.

Servlet lifecycle

The javax.servlet.http.HttpServlet class defines methods to:
o Initidize aserviet
« Servicerequests
« Remove aservlet from the server
These are known as life-cycle methods and are called in the following sequence:

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606010501.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/06.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServlet.html

The servlet is constructed

Itisinitialized with the init method

Calls from clients to the service method are handled
The servlet istaken out of service

It is destroyed with the destroy method

. The servlet isfinalized and the garbage is collected.
Review article 4.2.1.1 for more life cycle information.

© 0k~ wDdPE

4.2.1.1: Servlet lifecycle

(Initialization failed)

Available
for
Seryice

Linanailable
for
Service

(Unavailable
exception
throawn)

Servicing
requests

Instantiation and initialization

The Web container (the Application Server entity that processes servlets, JSP files, and other types of
server-side include coding) creates an instance of the serviet. The Web container creates the servlet
configuration object and uses it to pass the servlet initialization parameters to the init method. The servlet
configuration object persists until the servlet is destroyed and are applied to all invocations of that servlet until
the servlet is destroyed.

If the initialization is successful, the servlet is available for service. If the initialization fails, the Web container
unloads the servlet. The administrator can set an application and its servlets to be unavailable for service. In
such cases, the application and servlets remain unavailable until the administrator changes them to available.

Servicing requests

A client request arrives at the Application Server. The Web container creates a request object and a response
object. The Web container invokes the servlet service method, passing the request and response objects.

The service method gets information about the request from the request object, processes the request, and uses
methods of the response object to create the client response. The service method can invoke other methods to
process the request, such as doGet(), doPost(), or methods you write.

Termination

The Web container invokes theservlet's destroy() method when appropriate and unloads the servlet. The Java
Virtual Machine performs garbage collection after the destroy.

More on the initialization and termination phases

A Web container creates an instance of a servlet at the following times:
« Automatically at the application startup, if that option is configured for the servlet
« Atthefirst client request for the servlet after the application startup
o When the servlet isreloaded

The init method executes only one time during the lifetime of the servlet.It executes when the Web container
loads the servlet. The init method is not repeated regardless of how many clients access the servlet.

The destroy() method executes only one time during the lifetime of the servlet. That happens when the Web
container stopsthe servlet. Typicaly, serviets are stopped as part of the process of stopping the application.

4.2.1.2: Servlet support and environment in
WebSphere

IBM WebSphere Application Server supports the Java ServlietAPI from Sun Microsystems. The product builds
upon the specificationin two ways.

Article 4.2.1.2.2 describes several IBMextensions to the specification to make it easier to manage sessionstate,
create personalized Web pages, generate better servlet errorreports, and access databases.

See article 4.2.1.2.1afor a description of the Servlet API 2.2 specification.

4.2.1.2.1a: Features of Java Servlet APl 2.2

WebSphere Application Server supports Java Servlet APl 2.2 and JSP 1.1.

Java Servlet API 2.2 contains many enhancements intended to make servlets part of a complete application

framework

The Servlet 2.2 specification is available atjava.sun.com/products/servlet/index.html

No new classes were added to the Java Servlet API 2.2. specification.The following table provides more
information on 27 new methods, 2 new constants and 6 deprecated methods supported by WebSphere

Application Server:

|New methods

|Description

|getServIetN ame()

|Returns the servlet's registered name

|getNamedDispatcher(j ava.lang.String name)

|Returns adispatcher located by resource name

|get| nitParameter(java.lang.String name)

|Returns the value for the named context parameter

’getl nitParameterNames()

Returns an enumeration of all the context parameter
names

|removeAttri bute(java.lang.String name)

|Added for completeness

|getLocaI &)

|Gets the client's most preferred locale

getLocales()

Getsalist of the client's preferred locales as an
enumeration of locale objects

isSecure()

Returnst r ue if the request was made using a secure
channel

getRequestDispatcher(java.lang.String name)

GetsaRequest Di spat cher using what can be a
relative path

|setBufferSi ze(int size)

|Sets the minimum response buffer size

|getBufferSi ze() |Gets the current response buffer size

Empties the response buffer, clears the response
reset() headers
isCommitted() Returnstrueif part of the response has already been

sent

|f| ushBuffer()

|FI ushes and commits the response

setLocale(Localelocale)

Sets the response locale, including headers and
charset

|getLocaI &)

|Gets the current response locale

UnavailableException(String message)

Replaces Unavai | abl eExcepti on(Ser vl et
servlet, String nessage)

UnavailableException(String message, int sec)

Replaces Unavai | abl eException(i nt sec,
Servl et servlet, String nmessage)

getHeader(String message)

Returns all the values for a given header, asan
enumeration of strings

getContextPath()

|Returnsthe context path of this request

addHeader(String name, String value)

Adds to the response another value for this header
name

http://java.sun.com/products/servlet/index.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletConfig.html#getServletName()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html#getNamedDispatcher(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html#getInitParameter(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html#getInitParameterNames()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#removeAttribute(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#getLocale()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#getLocales()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#isSecure()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#getRequestDispatcher(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#setBufferSize(int)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#getBufferSize()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#reset()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#isCommitted()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#flushBuffer()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#setLocale(java.util.Locale)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#getLocale()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(java.lang.String, int)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html#getHeader(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html#getContextPath()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#addHeader(java.lang.String, java.lang.String)

addDateHeader(String name, long date)

Adds to the response another value for this header
name

addIntHeader(String name, int value)

Adds to the response another value for this header
name

getAttribute(String name)

bj ect Ht t pSessi on. get Val ue(String
name)

getAttributeNames()

Replaces St ri ng[]
Ht t pSessi on. get Val ueNanes()

setAttribute(String name, Object value)

Replacesvoi d
Ht t pSessi on. set Val ue(Stri ng nane,
bj ect val ue)

removeALttribute(String name)

Replacesvoi d
Ht t pSessi on. renoveVal ue(String
name)

|New constants

|Description

[SC_REQUESTED_RANGE_NOT_SATISFIABLE

|New mnemonic for status code 416

|SC_EX PECTATION_FAILED

|New mnemonic for status code 417

|Newly deprecated methods

|Description

UnavailableException(Servlet servlet, String message)

Replaced by
Unavai | abl eException(String
nessage)

UnavailableException(int sec, Servlet servlet, String
message)

Replaced by
Unavai | abl eException(string
nmessage, int sec)

getVaue(String name)

Replaced by Qbj ect
Ht t pSessi on. get Attri bute(String
nane)

getVaueNames()

Replaced by nuner at i on
Ht t pSessi on. get Attri but eNanmes()

putV alue(String message, Object value)

Replaced byvoi d
Ht t pSessi on. set Attri bute(String
nane, bject val ue)

removeV a ue(String message)

Replaced by voi d Ht t pSessi on
renoveAttri bute(String nane)

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#addDateHeader(java.lang.String, long)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#addIntHeader(java.lang.String, int)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getAttribute(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getAttributeNames()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#setAttribute(java.lang.String, java.lang.Object)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#removeAttribute(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#SC_REQUESTED_RANGE_NOT_SATISFIABLE
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#SC_EXPECTATION_FAILED
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(javax.servlet.Servlet, java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(int, javax.servlet.Servlet, java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(int, javax.servlet.Servlet, java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getValue(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getValueNames()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#putValue(java.lang.String, java.lang.Object)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#removeValue(java.lang.String)

4.2.1.2.2: IBM extensions to the Servlet API

The Application Server includes its own packages that extend and add to the Java Servlet API. Those extensions
and additions make it easier to manage session state, create personalized Web pages, generate better servlet
error reports, and access databases. The Javadoc for the Application Server APIsisinstalled in the product
product_installation_root\web\apidocs directory.

The Application Server APl packages and classes are:

10

« comibmservl et. personalization. sessiontracki ng package

This Application Server extension to the Java Servlet API records the referral page that led avisitor to
your Web site, tracks the visitor's position within the site, and associates user identification with the
session. IBM has also added session clustering support to the API.

com i bm websphere. servl et. sessi on. | BMSessi on interface

Extends HttpSession for session support and increased Web administrators control in a session cluster
environment.

comibm servl et. personalization. userprofil e package

Provides an interface for maintaining detailed information about your Web visitors and incorporate it in

your Web applications, so that you can provide a personalized user experience. Thisinformation is made
persistent by storing it in a database.

com i bm webspher e. user profi | e package

User profile enhancements
com i bm websphere. servl et.error. Servl et Error Report class

A class that enables the application to provide more detailed and tailored messages to the client when
errors occur. See the enhanced servlet error reporting article, 4.2.1.3.5, for details.

com i bm websphere. servl et. event package

Provides listener interfaces for notifications of application lifecycle events, servlet lifecycle events, and
servlet errors. The package also includes an interface for registering listeners. See the package Javadoc
for details.

com i bm websphere. servlet.filter package

Provides classes that support servlet chaining. The package includes the ChainerServlet, the
ServletChain object, and the ChainResponse object. See the servlet filtering article, 4.2.1.3.4, for more
details.

com i bm websphere. servl et. request package

Provides an abstract class, HttpServletRequestProxy, for overloading the servlet engine's
HttpServletRequest object. The overloaded request object is forwarded to another servlet for processing.
The package also includes the ServletlnputStreamAdapter class for converting an InputStream into a
ServletlnputStream and proxying all method calls to the underlying InputStream. See the Javadoc for
details and examples.

com i bm websphere. servl et. response package

Provides an abstract class, HttpServletResponseProxy, for overloading the servlet engine's
HttpServletResponse object. The overloaded response object is forwarded to another servlet for
processing. The package includes the ServletOutputStreamAdapter class for converting an
OutputStream into a ServletOutputStream and proxying al method calls to the underlying

OutputStream. The package also includes the StoredResponse object that is useful for caching a servlet
response that contains data that is not expected to change for a period of time, for example, a weather
forecast. See the Javadoc for details and examples.

11

4.2.1.2.3a: Invoking servlets by classname and
serving files

IBM Application Server provides some optional functions for your Web applications.

The tables below describe the function and how to use the WebSphere ApplicationServer tools to enable the
function in your Web application.

Invoke servlets by class name

|Obj ective |I nvoke servlets by class or code names (such as MyServletClass)
Use one of the following facilities:

« If using the Application Assembly Tool (AAT),click serve servlets by classname
How to enable the inthe IBM Extensions panel.

function o Inthei bm web- ext . xm file, change the
serveServletsByClassnameEnabled flag from false to true.

Thei bm web- ext . xm fileisinthe WEB-INF directory of theWeb module.

Serve files without specifically configuring them

Serve HTML, servlets, or other filesin the Web application document root
without extra configuration steps.

Objective For HTML files, you will not need to add a pass rule to the Web server. For
servlets, you will not need to explicitlyconfigure the servlets in the WebSphere
administrative domain.

Use one of the following facilities:

« |If using the Application Assembly Tool (AAT),click File Serving
Enabled in the IBM Extensions panel.

o Inthei bm web-ext . xm file, change the fileServingEnabled flag
from falseto true.

How to enable the
function

12

http://localhost/0802_makepdf/ae_orig/nav_servletnav/0605.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/0605.html

4.2.1.2.3b: Security risk example of invoking servlets
by class name

Anyone enabling the "serve files by class name" function in WebSphere Application Server, should take steps
to avoid potential security risks. The administrator should remain aware of each and every servlet classplaced in
the classpath of an application, even if the servlets are to be invoked by their classnames.

{™ A Web site may inadvertently include malicious HTML tags or scriptsin adynamically generated page
based on unvalidated input from untrustworthy sources.By accessing a malicious URL and then accessing an
application server, a usermay unknowingly execute script code on his machine that has full access to the data
and resources on that machine. The browser executes the script on the user machine without the knowledge of
the user.

The malicious tagsthat can be embedded in this way are <SCRIPT> and </SCRIPT>.

This problem can be prevented if the server generated pages are encoded to prevent thescripts from
executing.Devel opers generating responses containing client data, based on servlet or JSP requests, canencode
the response data using the following method:

com i bm websphere. servl et. response. ResponseUti| s. encodeDataStri ng(String)
Visit the Cert advisories Web sitefor more information.

Protecting servlets

See the article, Securing Applications, for information on securing servlets and Web resources.

13

http://www.cert.org/advisories/CA-2000-02.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/05.html

4.2.1.3: Servlet content, examples, and samples

Click the related topics to focus on particular aspects of servletdevelopment, including example and sample
code.

14

4.2.1.3.1: Creating HTTP servlets

To create an HTTP servlet, asillustrated in ServletSample.java:

1. Extend the HttpServlet abstract class.
2. Override the appropriate methods. The ServletSample overrides the doGet() method.
3. Get HTTP request information, if any.
Use the HttpServletRequest object to retrieve data submitted through HTML forms or as query strings

on aURL. The ServletSample example receives an optional parameter (myname) that can be passed to
the servlet as query parameters on the invoking URL. An exampleis:

http://your.server. nane/ applicati on_URI/ Servl et Sanpl e?mynane=Ann

The HttpServletRequest object has specific methods to retrieve information provided by the client:
o getParameterNames()
o getParameter(java.lang.String name)
o getParameterVaues(java.lang.String name)
4. Generate the HTTP response.
Use the HttpServletResponse object to generate the client response. Its methods allow you to set the
response headers and the response body. The HttpServletResponse object also has the getWriter()

method to obtain a PrintWriter object for sending data to the client. Use the print() and printIn() methods
of the PrintWriter object to write the servlet response back to the client.

15

http://localhost/0802_makepdf/ae_orig/nav_servletnav/ServletSample.java.html

4.2.1.3.1.1: Overriding HttpServlet methods

HTTP servlets are specialized servlets that can receive HTTP client requests and return aresponse. To create an
HTTP servlet, subclass the HttpServlet class. A servlet can be invoked by its URL, from a JavaServer Page
(JSP), or from another servlet.

Methods to override

Thej avax. servl et. http. Ht t pSer vl et classcontainsthe init, destroy, and service methods. The init
and destroy methods are inherited, while the service methodimplementation is specific to HttpServlet. The
method behaviors are described below; however, you might want to override methods in order to provide
specialized behavior in your servlet.

16

e init

The default init method is usually adequate but can be overridden with a custom init method, typically to
register application-wide resources. For example, you might write a custom init method to load GIF
images only one time, improving the performance of servlets that return GIF images and have multiple
client requests. Other examples are initializing a database connection and registering servlet context
attributes.

destroy

The default destroy method is usually adequate, but can be overridden.Override the destroy method if
you need to perform actions during shutdown. For example, if a servlet accumulates statisticswhileit is
running, you might write a destroy() method that saves the statistics to afile when the servlet is
unloaded. Other examples are closing a database connection and freeing resources created during the
initialization.

When the server unloads a servlet, the destroy method is called after all service method calls complete or
after a specified timeinterval. Where threads have been spawned from within service method and the
threads have long-running operations, those threads may be outstanding when the destroy method is
called. Because thisis undesirable, make sure those threads are ended or compl eted when the destroy
method is called.

service

The service method is the heart of the servlet. Unlike the init and destroy methods, it isinvoked for each
client request. In the HttpServlet class, the service method already exists. The default service function
invokes the doX XX method corresponding to the method of the HTTP request. For example, if the
HTTP request method is GET, doGet method is called by default. Because the HttpServlet.service
method checks the HTTP request method and calls the appropriate handler method, it is usually not
desirable to override the service method. Rather, override the appropriate doX XX methods that the
servlet supports.

4.2.1.3.2: Inter-servlet communication

There are three types of servlet communication:
» Accessing data within a servlet's scope
» Forwarding arequest and including a response from another servlet using the RequestDispatcher
« Application-to-application communication viathe ServletContext

Sharing data within scope

JavaServerPages (JSPs) use this method to share data through beans. The ability of servietsto share data
depends on the scope of the bean. The possible scopes are request, session, and application.

Forwarding and including data

For session-scoped data and attributes, use the HttpSession.setAttribute and getAttribute methods to set and get
attributes in the HttpSession object. Session-scoped beans and objects bound to a session are examples of
session-scoped objects.

For application-scoped data, use the RequestDispatcher's forward and include methods to share data among
applications. The forward method sends the HT TP request from one servlet to a second servlet for additional
processing. The calling servlet adds the URL and request parametersin its HT TP request to the request object
passed to the target servlet. The forwarding servlet must not have committed any output to the client. The target
servlet generates the response and returnsit to the client.

The include method enables a receiving servlet to include another servlet's response data in its response. The
included servlet cannot set response headers. The receiving servlet can fully access the request object but can
only write data to the ServletOutputStream or PrintWriter of the response object. If the servlets use session
tracking, you must create the session outside of the included servlet. The RequestDispatcher.forward method is
similar in function to the HttpServiceResponse.call Page method previously supported for JSP devel opment.

Application-to-application communication

Web applications share data through the ServletContext. A Web application has a single servlet context. A
ServletContext object is accessible to any Web application associated with avirtual host. Servlet A in
application A can obtain the ServletContext for application B in the same virtual host. After Servlet A obtains
the servlet context for B, it can access the request dispatcher for servietsin application B and call the
getAttribute and setAttribute methods of the servlet context. An example of the coding in Servlet A is:

appBcont ext = appAcont ext. get Context ("/appB");
appBcont ext . get Request Di spat cher ("/servlet5");

17

4.2.1.3.2.2: Example: Servlet communication by forwarding

In this example, the forward method is used to send a message to a JSP file (a servlet) that prints the message. The forwarding servlet code
is.

import java.io.*;inport javax.servlet.*;inport javax.servlet.http.*;public class UpdateJSPTest
extends HttpServl et public void doGet (HttpServletRequest req, HtpServl et Response res)

throws Servl et Exception, | OException { String nessage = "This is a test";
req.setAttribute("message", message); Request Di spatcher rd =

get Ser vl et Cont ext (). get Request Di spat cher ("/ Update. j sp"); rd.forward(req, res); 1}
The JSPfileis:

<ht m ><head></ head><body><hl><servl et code=Updat eJSPTest ></ ser vl et ></ h1><% String nessage =
(String) request.getAttribute("nmessage"); out. print("nmessage: " + nessage +

"</ b>"); We<p><% for (int i =0; i <5; i++) { out.println ("" +1i);

} %</ ul ></ body></ ht i >

18

4.2.1.3.4: Filtering and chaining servlets

The Application Server supports two kinds of filtering:

o MIME-based filtering involves configuring the servlet engine to forward HT TP responses with the
specified MIME type to the designated servlet for further processing.

« Servlet chaining involves defining alist (a sequence) of two or more servlets such that the request object
and the ServletOutputStream of the first servlet is passed to the next servlet in the sequence. This
process is repeated at each servlet in the list until the last servlet returns the response to the client.

19

4.2.1.3.4.1: Servlet filtering with MIME types

To configure MIME filters, use an administrative client to configure recognized MIME types for virtualhosts
containing servlets.

20

4.2.1.3.4.2: Servlet filtering with servlet chains

To configure a servlet chain, you must use an IBM supplied servlet
namedcom i bm websphere. servlet.filter.ChainerServl et

1. Addthecom i bm websphere. servl et.filter. Chai nerServl et toyour Web application
during the application assembly stage and assign a servlet URL to the servlet instance.

2. Definethe following initialization parameter and value for the ChainerServlet:

|Parameter |Value
|chainer.pathlist |/first_serviet URL /next_serviet URL

The chainer.pathlist is a space-delimited list of servlet URLS. For example, if you want the sequence of
servlets to be three servlets that you added to the examples application (servietA, servletB, servletC),
specify:

|Parameter |Value

|chainer.pathlist |/servietA /servietB /servietC

3. Toinvoke aservlet chain, invoke the servlet URL of the ChainerServlet in your application.

21

4.2.1.3.5: Enhancing servlet error reporting

A servlet can report errors by:

« Calling the ServletResponse.sendError method

« Throwing an uncaught exception within its service method
The enhanced servlet error reporting function in IBM WebSphere Application Server provides an easier way to implement error reporting. The
error page (a JSP file or servlet) is configured for the application and used by al of the servletsin that application. The new mechanism handles
caught and uncaught errors.
To return the error page to the client, the servlet engine:

1. Getsthe ServletContext.RequestDispatcher for the URI configured for the application error path.

2. Creates an instance of the error bean (typecom i bm webspher e. servl et. error Servl et Er r or Repor t). The bean scopeis

request, so that the target servlet (the servlet that encountered the error) can access the detailed error information.

For the Application Server, the ServletResponse.sendError() method has been overriden to provide the functionality previously described. The
overriden method is shown below:

public void sendError(int statusCode, String nmessage){ Servl et Exception e = new
Servl et Error Report (st atusCode, nessage); request.set Attribute(Servl et ErrorReport. ATTRI BUTE_NAME,
e); servl et Cont ext . get Request Di spat cher (get ErrorPat h()). forward(request, response);}

22

4.2.1.3.5.1: Public methods of the ServletErrorReport class

To create an error JSP or servlet, you need to know the public methods of thecom i bm websphere. servl et. error. Servl et Err or Report

class (the error bean), which are:
public class ServletErrorReport extends Servl et Exception{ /1 CGet the stacktrace of the error as
a string public String getStackTrace() /1 Get the nessage associated with the error. /1 The
sanme nmessage is sent to the sendError() nethod. public String get Message() /1 CGet the error
code associated with the error. //he sane error code is sent to the sendError() method. //This wll
al so be the same as the status code of the response. public int getErrorCode() /1 Get
the nane of the servlet that reported the error public String getTarget Servl et Nane()}

23

4.2.1.3.6: Serving servlets by classname

To enable serving servlets by classname, you can either:

« Click serve servlets by classnamein the IBM Extensions panel of the Application Assembly Tool
(AAT), or

« Change the serveServletsByClassnameEnabled flag in thei bm web- ext . xm file fromfalse to
true.

il Thei bm web-ext.xmi fileislocated in the WEB-INF directory of the installed
Web module

See section 4.2.1.2.3afor details and instructions.

24

4.2.1.3.7: Serving all files from application servers

Files are served on a per-web module, not a per-appserver basis.To enable file serving, you can either:

« Click the File Serving Enabled checkbox in the IBM extensions panel of the Application Assembly
Tool (AAT), or

« ChangethefileServingEnabled flag fromfalseto trueinthei bm web- ext . xm file.

il Thei bm web-ext. xni fileislocated in the WEB-INF directory of theinstalled
Web module

See section 4.2.1.2.3a for details and instructions.

25

4.2.1.3.8: Obtaining the Web application classpath
from within a servlet

To have a servlet or JSP-generated servlet detect the classpathof the Web application to which it belongs, get
the

com i bm websphere. servl et. application. cl asspath
attribute from the ServletContext.

26

4.2.1.3.9: PageListServlet support

IBM WebSphere Application Server supplies the PagelListServlet to call a Java Server Page (JSP) by name. The
Pagel istServlet uses configuration information to map a JSP name to the URI, where the URI specifies a JSP
filein the WAR module. This support alows application developers to stop hard-coding URLs in their servlets.

These mappings, or page lists, are logically grouped according to the markup-language type (HTML, WML,
and others) the JSP file is going to return to the requesting client. This allows applications, through the use of
servlets that extend the PageListServlet class, to call a JSP file that returns the proper markup-language data
type of the calling client. For example, if arequest comes from a PDA, which requires WML data, and makes a
request to a servlet that extends the PageListServlet, then a Java Server Page that returns WML datais called.

PageL istServlet configuration information can be defined either in the IBM Web Extensionsfile or in an XML
servlet configuration file. The IBM Web Extensionsfile is created and stored in the WAR file by the IBM
WebSphere Application Assembly Tool. An XML servlet configuration file can be created using IBM
WebSphere Studio or manually.

The PageListServlet hasacal | Page() method that invokes a Java Server Pagein responseto an HTTP
request for apagein apagelist.
Thecal | Page() method can beinvoked asfollows:

1. cal | Page(String pageNane, HttpServl et Request request,
Ht t pSer vl et Response response)

o pageName - A page name defined in the PageListServlet configuration
0 request - The HttpServletRequest object
0 response - The HttpServletResponse object

[il For this method of invocation, the default markup-languageis HTML.

2. cal | Page(String m Nane, String pageNane, HttpServletRequest req,
Ht t pSer vl et Response resp)

o mIName - A markup-language type.

pageName - A page name defined in the PageL istServlet configuration
request - The HttpServletRequest object

response - The HttpServletResponse object

o o 0O

See the Javadoc for the PageListServlet for acomplete list of available APIs.

In addition to providing the page list mapping capability, the PageListServlet also has Client Type Detection
support. Using the configuration informationinthecl i ent _t ypes. xnl file, aservlet can determine the
markup-language type the calling client requires for the response. This support allows the user's servlet to call
an appropriate JSP, based on markup-language type. Use the second version of the cal | Page() method
(described above) for Client Type Detection support.

In structuring the serviet code, keep in mind that the PageLi st Ser vl et . cal | Page() method isnot an
exit. Any servlet code that follows this method call will be executed.

27

http://localhost/0802_makepdf/apidocs/index.html

4.2.1.3.9.1: Extending PageListServlet

TheHel | oPer vasi veSer vl et isan example of aserviet that extendsthe PageLi st Ser vl et class and attempts to determine the markup-language
typerequired by the client. The servlet then usesthecal | Page() method to callthe JSP with the page name of "Hello.page".

public class Hell oPervasi veServl et extends PageListServlet inplenments Serializable{ /* * doGet --

Process inconmi ng HITP GET requests */ public void doGet (HttpServl et Request request,

Htt pSer vl et Response response) throws | OException, ServletException { /1 This is the nane of the
page to be call ed. String pageNane = "Hel |l o. page"; /1l First check if the servlet was

i nvoked with a queryString /1 that contained a narkup-language val ue. For exanple, if this
I servlet was invoked like this: I http://1 ocal host/servl ets/Hell oPervasi ve?m name=VXM
String m Name = get MLNanmeFr onRequest (request); /1 1f no M. type was provided in the queryString,
then attenpt to /] determine the client type fromthe Request and use the M. nanme as I
configured in the client_types.xm file. if (m Name == null) { m Name =

get ML TypeFr onRequest (r equest) ; } try { /'l Serve the Request page.

cal | Page(m Nane, pageNane, request, response); } catch (Exception e) {

handl eError (m Name, request, response, e€); 1}

28

4.2.1.3.9.2: Configuring page lists using the
Application Assembly Tool

PagelistServlet configuration information can be defined in the IBM Web Extensionsfile or in an XML servlet
configuration file. The IBM Web Extensionsfileis created and stored in the WAR file by the IBM WebSphere

Application Assembly Tool (AAT). Inthe AAT, the page list information is configured under PageL ist
Extensions.

29

4.2.1.3.9.3: Configuring page lists using an XML
servlet configuration file

An alternative or legacy way of providing PageListServlet configuration information, isusing an XML file
known asthe XML Servlet Configuration file. Thisfile provides configuration information for page lists, and
additional servlet configuration information. Thefilehasa. ser vl et extension and resides in the same

directory asthe servlet classfile. The XML servlet configuration file must be created with one of the following
names.

1. servl et _cl ass_nane. servl et
2. servl et _nane. servl et

IBM WebSphere Studio provides wizards that generate servlets with accompanying XML servlet configuration
files.If you are not using IBM WebSphere Studio, you can manually create XML servlet configuration
files.Each XML configuration file must be awell-formed XML document. The files are not validated against a
Document Type Definition (DTD). Althoughthereisno DTD, it isrecommended that all elementsin thefile
appear in the same order as the elements described below:

XML Servlet configuration file elements

| Elements | Description

|servlet |The root element of an XML servlet configuration file.

code The class name of the servlet, that extends the PageListServlet, without the. cl ass
extension.

|description | The description of the servlet.

The attributes of this element specify the name-value pair to be used as an initialization
init-parameter [parameter on the servlet. A servlet can have multiple initialization parameters, each within
its own init-parameter element.

Contains <ml-name>, <ml-mime>, and <page-list> elements. (The root element <servlet>
can contain multiple <markup-language> elements.)

|m|-name |A markup-language type, as for example: HTML, or WML, or VXML, and so forth
A MIME type, asfor example: t ext . ht ml ,ort ext/ x-vxmi , or

markup-language

mi-mime t ext / vnd. wap. wl , and so forth
eligt Contains <default-page>, <error-page>, and <page>+ elements. (A <page-list> element
bag can contain multiple <page> elements.)
defaLlt-nage Contains a<uri> element. The URI specifies the JSP to be called if the requested page
bag does not exist or is not specified on the HTTP request.
rror-page Contains a <uri> element. The URI specifies the JSP to be called when the
bag handl eEr r or () PagelListServlet method is called.
Contains a <uri> and <page-name> element. The URI specifies the JSP file to be called
page when a PageListServlet method cal | Page() iscalled with the same value as
<page-name>.
|uri |A JSP file within the WAR Module.
page-name The name in which a servlet, extending the PageListServlet, will useinthecal | Page()

method to call a JSP.

30

4.2.1.3.9.4: Example of the XML servlet configuration file

<?xm version="1.0"?><servl et> <code>Hel | oPervasi veServl et</code> <description>Shows how to use
PagelLi st Servl et cl ass. <:/description> <init-paranmeter nane="nanmel" val ue="val ue2"/>

<mar kup- | anguage> <m - name>HTM.</ ml - nanme> <m -mne>text/htm </l -m me> <page-list>
<error-page> <uri >/ mywebapp/ Hel | oHTMLError. j sp</uri > </ error-page> <page>
<page- nane>Hel | 0. page</ page- nane> <uri >/ mywebapp/ Hel | oHTM.. j sp</ uri > </ page>
</ page-list> </ markup-|anguage> <nmarkup-|anguage> <m - name>VXM.</ m - nane>

<m -m me>t ext/ x-vxm </ m -ni ne> <page-list> <error-page>

<uri >/ mywebapp/ Hel | oVXMLError. j sp</uri > </ error-page> <page>

<page- name>Hel | 0. page</ page- nanme> <uri >/ mywebapp/ Hel | oVXM.. j sp</ uri > </ page>
</ page-list> </ markup-|anguage> <markup-I|anguage> <m - name>WWL</ m - nanme>

<m - m me>t ext/vnd. wap. wr </ m - mi me> <page-|ist> <error-page>

<uri >/ mywebapp/ Hel | oWMLError . j sp</uri > </ error-page> <page>

<page- nane>Hel | 0. page</ page- nane> <uri >/ mywebapp/ Hel | oWWL. j sp</ uri > </ page>

</ page-list> </ markup-I|anguage></servlet>

31

4.2.1.3.9.5: PagelListServlet client type configuration
file

In addition to providing the page list mapping capability, the PageListServlet also has Client Type Detection
support. Using the configuration informationinthecl i ent _t ypes. xnl file, aservlet can determine the
markup-language type the calling client requires for the response.

This support allows the servlet, extending PageL istServet, to call an appropriate JSP file,with the

cal | Page() method, based on the markup-language type of the request. The client type detection method,
get MLTypeFr onRequest (Ht t pSer vl et Request request), provided by the PageListServlet,
inspects the HttpServletRequest object's request headers, and searches for a match in the

client _types.xm file

The client type detection method does the following:

1. Using the input HttpServletRequest and thecl i ent _t ypes. xmi file, it checks for amatching HTTP
reguest name and value. If found, it returns the markup-language value configured for the
<client-type> element.

2. If multiple matches are found, it returns the markup-language for thefirst <cl i ent - t ype> (for which
amatch was found).

3. If no match was found, it returns the value of the markup-language for the default page defined in the
Pagel istServlet configuration.

Theclient types.xm fileislocated inthe pr oduct i nstall ati on_root/ properties
directory.

32

http://localhost/0802_makepdf/ae_orig/nav_servletnav/root.html

4.2.1.3.9.6: Example of a client type configuration file

<?xm version="1.0"?><! DOCTYPE clients [<! ELEMENT client-type

(descri ption, mar kup- | anguage, r equest - header +) ><! ELEMENT descri pti on (#PCDATA) ><! ELEMENT

mar kup- | anguage (#PCDATA) ><! ELEMENT r equest - header (namne, val ue)><! ELEMENT clients
(client-type+)><! ELEMENT nane (#PCDATA)><! ELEMENT val ue (#PCDATA)>] ><clients> <client-type>

<descri pti on>l BM Speech Client</description> <mar kup- | anguage>VXM.</ mar kup- | anguage>

<r equest - header > <nane>user - agent </ nane> <val ue>lI BM Voi ceXM. pre-rel ease version

000303</ val ue> </ request - header > <r equest - header > <nane>accept </ nane>

<val ue>t ext/ vxm </ val ue> </request-header> </client-type> <client-type> <descri pti on>W/L

Br owser </ descri pti on> <mar kup- | anguage>WWL</ mar kup- | anguage> <r equest - header >

<name>accept </ nane> <val ue>t ext/ x- wap. wn </ val ue> </ request - header > <r equest - header >
<name>accept </ nane> <val ue>t ext/vnd. wap. wrl </ val ue> </ request - header >

</client-type></clients>

33

6.6.7: Administering Web containers (overview)

A Web container configuration provides information about the applicationserver component that handles servlet
requests forwarded bythe Web server. The administratorspecifies Web container properties including:

« Application server on which the Web container runs
« Number and type of connections between the Web server and Web container
« Port on which the Web container listens

34

6.6.7.0: Web container properties

Web containers contain other resource types, whose properties are listedin separate property
reference files. If you do not find a property in the followinglist, see below for links to the

property references of other resource types comprising Web containers.
Key:

e

Applies to Java administrative console of Advanced Edition Version 4.0

% Applies to Web administrative console of Advanced Single Server Edition Version 4.0
B

Appliesto Application Client Resource Configuration Tool

Allow thread allocation beyond maximum &
Allows the number of threads to increase beyond the maximum size configured for the thread pool

Application Server ‘2
The application server associated with this Web container

Cache Size E %

A positive integer defining the maximum number of entries the cache will hold. Vaues are usualy in
the thousands, with no maximum or minimum.

Can Be Grown %
Allows the number of threads to increase beyond the maximum size configured for the pool

Default Priority e B

The default priority for servlets that can be cached. It determines how long an entry will stay in afull
cache. The recommended valueis 1.

Dynamic Properties %
A set of name-value pairs for configuring properties beyond those displayed in the interface

Enable Dynamic Cache B or Enable Servlet Caching &
Enable the servlet and JSP dynamic JNDI caching feature

External Cache Groups s
For servlets that can be cached, specifies the external groups to which their entries should be sent

Enable Servlet Caching -
See Enable Dynamic Cache

HTTP Transports % or Transport ‘2
The HTTP transports associated with this Web container. See also transport properties

I nactivity Timeout % or Thread I nactivity Timeout ‘2
35

http://localhost/0802_makepdf/ae_orig/nav_servletnav/06061300.html

The period of time after which athread should be reclaimed due to inactivity

Installed Web Modules 0
The Web modules that are installed into the Web container of this server

Maximum Size % or Maximum Thread Size ‘i
The maximum number of threads to allow in the pool

Minimum Size % or Minimum Thread Size E
The minimum number of threadsto allow in the pool

Name (External Cache Group) %
See External Cache Groups

Node W

The node with which this Web container is associ ated

Session M anager B
The Session Manager associated with this Web container. See also Session Manager properties

Thread I nactivity Timeout =
See Inactivity Timeout

Thread Pool %
The thread pool settings for the Web container

Transport "i
See HTTP Transports

Type %

Only shared external cache groups are supported at thistime

Additional properties related to Web containers

Web containers contain other resource types, whose properties are listedin separate property referencefiles. If
you do not find the property in theabove list ...

See also the:
« application server properties
o HTTP Transport properties
For Advanced Single Server Edition, see also the:
« Session Manager properties
« Web module properties

36

http://localhost/0802_makepdf/ae_orig/nav_servletnav/06061100.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/06060300.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/06061300.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/06061100.html

6.6.7.1: Administering Web containers with the Java
administrative console

Use the Java administrative console to administer Web containers.

Work with resources of this type by locating them in the application server properties:
1. Locate the application server instance containing the service.

2. When the application server properties are displayed in the properties view, click the Services tabbed

page.
3. Locate the Web container servicein thelist of services.

37

http://localhost/0802_makepdf/ae_orig/nav_servletnav/06060301.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/06060001.html

6.6.7.1.1: Configuring the Web container services of
application servers with the Java administrative
console

During thistask, you will specify settings for the Web container service ofan existing application server.
1. Locate the Web container service in the application server properties.

2. Click Edit Propertiesto display the container service properties dialog.
3. Specify values for the Web container service properties.

4. When finished, click OK.

38

6.6.7.1.2: Administering transports of Web container
services of application servers with the Java
administrative console

HTTP transports that the Web server uses to relay requests to the applicationserver are accessed through the
Web container configuration. See administering transports with the Java administrative consolefor afull

description of settings and tasks.

39

http://localhost/0802_makepdf/ae_orig/nav_servletnav/06061301.html

6.6.8: Administering Web modules (overview)

Classpath considerations

An important classpath-related setting to note is the Module Visibility. This application server setting impacts the portability of applications and
standal one modules from other WebSphere Application Server versions and editions. If your existing module does not run as-is when you transfer it
to Version 4.0, you might need to reassemble an existing module or change the module visibilitysetting.

See the information on setting classpaths for a full discussion of classpath considerations. See the applicationserver property reference for
information about the module visibility setting.

Identifying a welcome page for the Web application

The default welcome page for your Web application is assumed to be named index.html. For example, if you have an application with a Web path of:
/ webapp/ myapp

then the default page named index.html can be implicitly accessed using the following URL :

htt p: // host name/ webapp/ myapp

To identify a different welcome page, modify the properties of theWeb module when you are assembling it. See the article aboutassembling Web
modules with the ApplicationAssembly Tool (article 6.6.8.5).

Web application URLs are now case-sensitive on all operating systems

[} Please notethat in Version 4.0.x, Webapplication URLS are now case-sensitive on all operating systems,for security and consistency.
For example, suppose you have a Web client application that runs successfully on Version 3.5.x. When running the same application on Version 4.0,
you encounter an error that the welcome page (typically index.html), or HTML filesto which it refers, cannot be found:

Error 404: File not found: Banner.htm Error 404: File not found: HonmeContent. htmn

Suppose the content of the index pageisasfollows:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Franeset//EN'><HTM.><TI TLE>| nsurance Hone Page</ Tl TLE>
<f ranmeset rows="18, 80" > <frane src="Banner. htm " nanme="Banner Fr ane"

SCROLLI NG=NO> <frane src="HoneContent. htm" nanme="HoneCont ent Fr ane" >

</ franmeset ></ HTM.>

but the actual file names in \WebSphere\A ppServer\installedApps\... directory in whichthe application is deployed are:
banner. ht nl homecont ent . ht ni

To correct the problem, modify the index.html file to change the names "Banner.html"and "HomeContent.html" to "banner.html" and
"homecontent.html" to match the names of thefiles in the deployed application.

40

http://localhost/0802_makepdf/ae_orig/nav_servletnav/060401.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/06060300.html

6.6.8.0: Web module properties

Key:

a

Applies to Java administrative console of Advanced Edition Version 4.0

% Applies to Web administrative console of Advanced Single Server Edition Version 4.0

£ Appliesto Application Client Resource Configuration Tool

Application or "ﬁ Application Ref %

The application installation binding within which the module-to-server installation binding is contained.
Thisistypically the logical name of the enterprise application you configured to contain this Web
module.

Context Root s
The context root of the Web application contained in an enterprise application.

The context root is combined with the defined servlet mapping (from the WAR file) to compose the full
URL that users type to access the servlet. For example, if the context root is /gettingstarted and the
servlet mapping is MySession, then the URL is http://host: port/gettingstarted/MySession.

Execution State B
The state that you would like the Web module to be in, the next time the product is stopped and started
again

Name "ﬁ or Module Name "ﬁ
An administrative name for the Web module

Server E
The application server on which the Web moduleisinstalled
url B

A URI that, when resolved relative to the application URL, specifies the location of the module archive
on afile system. The URI must match the URI of a ModuleRef URI in the deployment descriptor of an
application if the module was packaged as part of a deployed application (EAR).

41

6.6.8.0.1: Assembly properties for Web components

Component name (Required, String)

Specifies the name of the servlet or JavaServer Pages(T™) (JSP)file. This name must be unique within
the Web module.

Display name

Specifies a short name that is intended to be displayed by GUIs.
Description

Contains a description of the servlet or JSP file.
Component type

Specifies the type of Web component. Valid values are servlet orJSP file.
Class name (Required, String)

Specifies the full path name for the servlet's class.
JSP file (Required, String)

Specifies the full path name for the JSP file.
Load on startup

Indicates whether this servlet is to be loaded at the startup of the Webapplication. The default isfalse
(the checkbox is notselected). Also specifies a positive integer indicating the order inwhich the servlet is
to be loaded. Lower integers are |loaded beforehigher integers. If no value is specified, or if the value
specified isnot a positive integer, the container isfreeto load the servlet at any timein the startup
sequence.

Small icon

Specifies a JPEG or GIF file containing a small image (16x16pixels). Theimageis used asanicon to
represent the Web component ina GUI.

Largeicon

Specifies a JPEG or GIF file containing alarge image (32x32pixels). Theimage is used asanicon to
represent the Web component ina GUI.

42

6.6.8.0.2: Assembly properties for initialization
parameters

Initialization parameters are sent to a servlet in its HttpConfig objectwhen the servlet isfirst started.
Parameter name (Required, String)
Specifies the name of an initialization parameter.
Parameter value (Required, String)
Specifies the value of the initialization parameter.
Description
Contains text describing the use of the parameter.

43

6.6.8.0.3: Assembly properties for page lists

Page lists allow you to avoid hardcoding URLs in servlets and JSPfiles. A page list specifies the location where
arequest isto beforwarded, but automatically tailors that location depending on the MIME typeof the servlet.
These properties allow you to specify a markup languageand an associated MIME type. For the given MIME
type, you also specifya set of pages to invoke. For example, if you define a markup languagenamed VXML and
associate it with avxml MIME type, you can then define Pagenames and URIs to be invoked for that particul ar
MIME type. The Pagenames end in .page and are the same name for al markuplanguages. However, the URIs
are set to point to files that areparticular to the given MIME type. For example, if apageis

calledShowA ccount.page and isin a markup language named VXML, the URI isShowA ccountV XML.jsp. Ina
markup language named HTML, the URI isShowAccountHTML .jsp. When the servlet refers

toShowA ccount.page, the actual file to which the request maps depends onthe serviet's MIME type.

Name

Specifies the name of the markup language--for example, HTML, WML ,and VXML.
MIME Type

Specifies the MIME type of the markup language--for example,text/html and text/x-vxml.
Error Page

Specifies the name of an error page.
Default Page

Specifies the name of a default page.
Pages - Name

Specifies the name of the page to be served, for example,StockQuoteRequest.page.
Pages - URI

Specifies the URI of the page to be served, for example,examples/StockQuoteHTM L Request.jsp.

44

6.6.8.0.4: Assembly properties for security
constraints

Security constraints declare how Web content is to be protected. These properties associate security constraints
with one or more Web resourcecollections. A constraint consists of a Web resource collection, anauthorization
constraint, and a user data constraint.

« A Web resource collection is a set of resources (URL patterns) and HT TPmethods on those resources.
All requests that contain arequest paththat matches the URL pattern described in the Web resource
collection issubject to the constraint. If no HT TP methods are specified, then thesecurity constraint
appliesto all HTTP methods.

« Anauthorization constraint is a set of roles that users must be grantedin order to access the resources
described by the Web resourcecollection. If a user who requests access to a specified URI is notgranted
at least one of the roles specified in the authorization constraint,the user is denied access to that
resource.

« A user data constraint indicates that the transport layer of theclient/server communications process must
satisfy the requirement of eitherguaranteeing content integrity (preventing tampering in transit)
orguaranteeing confidentiality (preventing reading while in transit).

If multiple security constraints are specified, the container uses the'first match wins' rule when processing a
request to determine whatauthentication method to use, or what authorization to allow.
Security constraint name
Specifies the name of the security constraint.
Authorization Constraints - Roles
Specifies the user roles that are permitted access to this resourcecollection.
Authorization Constraints - Description
Contains a description of the authorization constraints.
User Data Constraints- Transport guar antee

Indicates how data communicated between the client and the server isto beprotected. Specifies that the
protection for communications between theclient and server is None, Integral, or Confidential. None
means thatthe application does not require any transport guarantees. Integralmeans that the application
requires that the data sent between the client andthe server must be sent in such away that it cannot be
changed intransit. Confidential means that the application requires that the datamust be transmitted in a
way that prevents other entities from observing thecontents of the transmission. In most cases, Integral
or Confidentialindicates that the use of SSL isrequired.

User Data Constraints - Description
Contains a description of the user data constraints.

45

6.6.8.0.5: Assembly properties for Web resource
collections

A Web resource collection defines a set of URL patterns (resources) andHT TP methods belonging to the
resource. HTTP methods handle HT TP-basedrequests, such as GET, POST, PUT, and DELETE. A URL pattern
isapartial Uniform Resource Locator that acts as a template for matching thepattern with existing full URLsin
an attempt to find avalid file.

Web resour ce name (Required, String)

Specifies the name of a Web resource collection.
Web resour ce description

Contains a description of the Web resource collection.
HTTP methods

Specifies the HTTP methods to which the security constraintsapplies. If no HTTP methods are specified,
then the security constraintappliesto all HTTP methods. The valid values are GET, POST,
PUT,DELETE, HEAD, OPTIONS, and TRACE.

URL pattern

Specifies URL patterns for resources in a Web application. Allrequests that contain a request path that
matches the URL pattern are subjectto the security constraint.

46

6.6.8.0.8: Assembly properties for context parameters

A servlet context defines a server's view of the Web applicationwithin which the servlet is running. The context
also allows a servletto access resources available to it. Using the context, a servlet canlog events, obtain URL
references to resources, and set and store attributesthat other servlets in the context can use. These properties
declare aWeb application's parameters for its context. They convey setupinformation, such as a webmaster's
e-mail address or the name of a systemthat holds critical data.

Parameter name (Required, String)

Specifies the name of a parameter--for example,dataSourceName.
Parameter value (Required, String)

Specifies the value of a parameter--for example, jdbc/sample.
Description

Contains a description of the context parameter.

47

6.6.8.0.9: Assembly properties for error pages

Error page locations allow a servlet to find and serve a URI to a clientbased on a specified error status code or
exception type. Theseproperties are used if the error handler is another servlet or JSPfile. The properties specify
amapping between an error code orexception type and the path of aresource in the Web application.
Thecontainer examines the list in the order that it is defined, and attempts tomatch the error condition by status
code or by exception class. On thefirst successful match of the error condition, the container serves back
theresource defined in the Location property.

Error Code
Indicates that the error condition is a status code.
Error Code (Required, String)
Specifiesan HTTP error code, for example, 404.
Exception
Indicates that the error condition is an exception type.
Exception type name (Required, String)
Specifies an exception type.
L ocation (Required, String)
Contains the location of the error-handling resource in the Webapplication.

48

6.6.8.0.10: Assembly properties for MIME mapping

A Multi-Purpose Internet Mail Extensions (MIME) mapping associates a filename extension with atype of data
file (text, audio, image). Theseproperties allow you to map a MIME type to afile name extension.

Extension (Required, String)
Specifies afile name extension, for example, .txt.
MIME type (Required, String)
Specifies adefined MIME type, for example, text/plain.

49

6.6.8.0.11: Assembly properties for servliet mapping

A servlet mapping is a correspondence between a client request and aservlet. Servlet containers use URL paths
to map client requests toservlets, and follow the URL path-mapping rules as specified in the JavaServlet
specification. The container uses the URI from the request,minus the context path, as the path to map to a
servlet. The containerchooses the longest matching available context path from the list of Webapplications that
it hosts.

URL pattern (Required, String)

Specifies the URL pattern of the mapping. The URL pattern mustconform to the Servlet specification.
The following syntax must beused:

o A string beginning with a slash character (/) and ending with the slashand asterisk characters (/*)
is used as a path mapping.

o A string beginning with the characters *. is used as an extensionmapping.
o All other strings are used as exact matches only.

o A string containing only the slash character (/) indicates that theservlet specified by the mapping
becomes the default servlet of theapplication. In this case, the servlet path is the request URI
minusthe context path, and the path info is null.

Servlet (Required, String)
Specifies the name of the servlet associated with the URL pattern.

50

6.6.8.0.12: Assembly properties for tag libraries

Java ServerPages (JSP) tag libraries contain classes for common tasks suchas processing forms and accessing
databases from JSP files.

Tag library file name (Required, String)

Specifies afile name relative to the location of the web.xmldocument, identifying atag library used in
the Web application.

Tag library location (Required, String)

Contains the location, as aresource relative to the root of the Webapplication, where the Tag Library
Definition file for the tag library can befound.

51

6.6.8.0.13: Assembly properties for welcome files

A Welcomefileis an entry-point file (for example, index.html) fora group of related HTML files. Welcome
files are located by using agroup of suggested partial URIs. A Welcome fileis an ordered list ofpartial URIs that
the container uses to attempt to find a valid file when theinitial URI cannot be found. The container appends
these partial URI sto the requested URI to arrive at avalid URI. For example, the usercan define a Welcome file
of index.html so that arequest to a URL suchas host: port/webapp/directory (where directory is a directoryentry
in the WAR file that is not mapped to a servlet or JSP file) can befulfilled.

Welcomefile (Required, String)

The Welcomefile list isan ordered list of partial URLs with no trailingor leading slash characters (/).
The Web server appends each file inthe order specified and checks whether aresource in the WAR file
is mapped tothat request URI. The container forwards the request to the firstresource in the WAR that
matches.

52

6.6.8.0.14: Assembly properties for MIME filters

Filters transform either the content of an HT TP request or response and canal so modify header information.
MIME filters forward HT TP responseswith a specified MIME type to one or more designated servlets for
furtherprocessing.

MIME Filter - Target
Specifies the target virtual host for the servlets.
MIME Filter - Type
Specifies the MIME type of the response that isto be forwarded.

53

6.6.8.0.15: Assembly properties for JSP attributes

JSP attributes are used by the servlet that implements JSP processingbehavior.
JSP Attribute (Name)

Specifies the name of an attribute.
JSP Attribute (Value)

Specifies the value of an attribute.

54

6.6.8.0.16: Assembly properties for file-serving
attributes

File serving allows a Web application to serve static file types, such asHTML. File-serving attributes are used
by the servlet that implementsfile-serving behavior.

File Serving Attribute (Name)
Specifies the name of an attribute.

File Serving Attribute (Value)
Specifies the value of an attribute.

55

6.6.8.0.17: Assembly properties for invoker attributes

Invoker attributes are used by the servlet that implements the invocationbehavior.
Invoker Attribute (Name)

Specifies the name of an attribute.
Invoker Attribute (Value)

Specifies the value of an attribute.

56

6.6.8.0.18: Assembly properties for servlet caching
configurations

Dynamic caching can be used to improve the performance of servlet andJavaServer Pages (JSP) files by serving
reguests from an in-memorycache. Cache entries contain the servlet's output, results of theservlet's execution,
and metadata.

The properties on the General tab define a cache group and govern how longan entry remainsin the cache. The
properties on the ID Generation tabdefine how cache IDs are built and the criteria used to cache or
invalidateentries. The properties on the Advanced tab define external cachegroups and specify custom interfaces
for handling servlet caching.

Caching group name (Required, String)
Specifies aname for the group of servlets or JSP files to becached.
Priority

An integer that defines the default priority for servlets that arecached. The default value is 1. Priority is
an extension of theleast Recently Used (LRU) caching algorithm. It represents the numberof cycles
through the LRU algorithm that an entry is guaranteed to stay in thecache. The priority represents the
length of time that an entry remainsin the cache before being eligible for removal. On each cycle of
thealgorithm, the priority of an entry is decremented. When the priorityreaches zero, the entry is eligible
for invalidation. If an entry isrequested while in the cache, its priority is reset to the priorityval ue.
Regardless of the priority value and the number of requests, anentry is invalidated when its timeout
occurs. Consider increasing thepriority of aservlet or JSP file when it is difficult to calculate the
outputof the servlet or JSP file or when the servlet or JSP file is executed moreoften than average.
Priority values should be low. Higher valuesdo not yield much improvement but use extra LRU cycles.
Use timeout toguarantee the validity of an entry. Use priority to rank the relativeimportance of one entry
to other entries. Giving all entries equalpriority resultsin a standard LRU cache that increases
performancesignificantly.

Timeout

Specifies the length of time, in seconds, that a cache entry isto remainin the cache after it has been
created. When thistime elapses, theentry is removed from the cache. If the timeout is zero or a
negativenumber, the entry does not time out. It is removed when the cache isfull or programmatically,
from within an application.

Invalidate only
Specifiesthat invalidations for a servlet are to take place, but that nocaching isto be performed for the
servlet. For example, this propertycan be used to prevent caching of control servlets. Control

servletstreat HT TP requests as commands and execute those commands. By default,this checkbox is not
sel ected.

Caching group members

Specifies the names of the servlets or JSP files to be cached. TheURIs are determined from the servlet
mappings.
Use URIsfor cache ID building

Specifies whether or not the URI of the requested servlet isto be used tocreate a cache ID. By default,
URIs are used.

Use specified string
Specifies a string representing a combination of request and sessionvariables that are to be used to create

cache IDs. (This propertydefines request and session variables, and the cache uses the values of
thesevariables to create IDs for the entries.)

Variables- 1D
57

The name of arequest parameter, request attribute, session parameter, orcookie.
Variables- Type

Indicates the type of variable specified in the ID field. The validvalues are Request parameter, Request
attribute, Session parameter, orCookie.

Variables- Method

The name of a method in the request attribute or session parameter.The output of this method is used to
generate cache entry IDs. If thisvalue is not specified, the toString method is used by default.

Variables- Data |D

Specifies a string that, combined with the value of the variable,generates a group name for the cache
entry. The cache entry is placedin this group. This group can later be invalidated.

Variables- Invalidate ID

Specifies astring that is combined with the value of the variable on therequest or session to form a
group name. The cache invalidates thegroup name.
Required

Indicates whether a value must be present in the request. If thischeckbox is selected, and either the
request parameter, request attribute, orsession parameter is not specified, or the method is not specified,
therequest is not cached.

External cache groups - Group name
Specifies the name of the external cache group to which this servlet willbe published.
ID generator

Specifies a user-written interface for handling parameters, attributes,and sessions. The value must be a
full package and class name of aclass extendingcom.ibm.websphere.servlet.cache.ldGenerator. The
properties specified in the Application Assembly Tool will still be usedand passed to the IdGenerator in
the initialize method inside acom.ibm.websphere.servlet.cache.CacheConfigobject.

Meta data gener ator

Specifies a user-written interface for handling invalidation, prioritylevels, and external cache groups.
The value must be the full packageand class name of aclass
extendingcom.ibm.websphere.servlet.cache.MetaDataGenerator. The properties specified in the
Application Assembly Tool will still be usedand passed to the MetaDataGenerator in the initiaize
method inside acom.ibm.websphere.servlet.cache.CacheConfigobject.

58

6.6.8.0.aa: Assembly properties for Web modules

File name (Required, String)
Specifies the file name of the Web module, relative to the top level ofthe application package.
Alternative DD

Specifies the file name for an alternative deployment descriptor file touse instead of the original deployment descriptor
filein the module'sJAR file. Thisfileis the postassembly version of the deploymentdescriptor file. (The original
deployment descriptor file can be editedto resolve dependencies and security information. Directing the use ofthe
dternative deployment descriptor allows you to keep the originaldeployment descriptor file intact). The value of the
Alternative DDproperty must be the full path name of the deployment descriptor file relativeto the modul€'s root
directory. By convention, the fileisin theALT-INF directory. If this property is not specified, the deploymentdescriptor
fileisread directly from the module's JAR file.

Context root (Required, String)

Specifies the context root of the Web application. The context rootis combined with the defined serviet mapping (from
the WAR file) to composethe full URL that users type to access the servlet. For example, if thecontext root is
/gettingstarted and the servlet mapping is MySession, then theURL is http://host: port/gettingstarted/My Session.

Classpath

Specifiesthe full class path for the Web application. Specify thevalues relative to the root of the EAR file and separate
the values withspaces. Absolute values that reference files or directories on the harddrive are ignored. To specify classes
that are not in JAR files but arein the root of the EAR file, use a period and forward slash(./). Consider the following
example directory structure inwhich the file myapp.ear contains a Web module namedmywebapp.war. Classes reside in
classl.jar andclass2.zip. A class hamed xyz.classis not packaged in aJAR file but isin the root of the EAR file.

nmyapp. ear / mywebapp. war myapp. ear/ cl assl.j arnyapp. ear/ cl ass2. zi pnyapp. ear/ xyz. cl ass
Specify cl assl.jar class2.zip ./ asthevalue of the Classpath property. (Name only the directory for.class
files.)

Display name
Specifies a short name that isintended to be displayed by GUIs.

Description
Contains a description of the Web module.

Distributable
Specifies that this Web application is programmed appropriately to bedeployed into a distributed servlet container.

Small icon

Specifies a JPEG or GIF file containing a small image (16x16pixels). The imageis used as an icon to represent the
modulein aGUI.

Largeicon

Specifies a JPEG or GIF file containing alarge image (32x32pixels). Theimage is used as an icon to represent the
module in aGUI.

Session configuration

Indicates that session configuration information is present.Checking this box makes the Session timeout property
editable.

Session timeout

Specifies atime period, in seconds, after which a client is consideredinactive. The default value is zero, indicating that
the sessiontimeout never expires.

L ogin configuration -- Authentication method

Specifies an authentication method to use. As a prerequisite togaining access to any Web resources protected by an
authorization constraint,a user must authenticate by using the configured mechanism. A Webapplication can authenticate
auser to aWeb server by using one of thefollowing mechanisms: HTTP basic authentication, HTTP
digestauthentication, HTTPS client authentication, and form-basedauthentication.

o HTTP basic authentication is not a secure protocol because the userpassword is transmitted with a simple Base64
encoding and the target server isnot authenticated. In basic authentication, the Web server requests aweb client to
authenticate the user and passes a string called the realm ofthe request in which the user isto be authenticated.

59

o HTTP digest authentication transmits the password in encryptedform.

o HTTPSclient authentication usesHTTPS (HTTP over SSL) and requires theuser to possess a public key
certificate.

o Form-based authentication allows the devel oper to control the appearanceof login screens.

The Login configuration properties are used to configure the authenticationmethod that should be used, the realm name
that should be used for HT TP basi cauthentication, and the attributes that are needed by the form-based |oginmechanism.
Valid values for this property are Unspecified, Basic,Digest, Form, and Client certification.

Note: HTTP digest authentication is not supported as aloginconfiguration in this product. Also, not al login
configurations aresupported in all of the product's global security authenticationmechanisms (Loca Operating system,
LTPA, and custom pluggable userregistry). HTTP basic authentication and form-based |oginauthentication are the only
authentication methods supported by the L ocal Operating system user registry. Because Advanced Single Server
Editionuses the local operating system as the user registry for authentication, itcan only support these two login methods.
LTPA and the custom pluggableuser registry are capable of supporting HT TP basic authentication, form-basedlogin, and
HTTPS client authentication. LTPA and the custom pluggableuser registry is available only in Advanced Edition.

L ogin configuration -- Realm name

Specifies the realm name to use in HTTP basic authorization. It isbased on a user name and password, sent as a string
(with asimple Base64encoding). An HTTP ream is astring that allows URIs to be groupedtogether. For example, if a
user accesses a secured resource on a Webserver within the "finance realm,” subsequent access to the same or
differentresource within the same realm does not result in a repeat prompt for a userlD and password.

Login configuration -- Login page (Required, String)

Specifies the location of the login form. If form-basedauthentication is not used, this property is disabled.
Form Login Config -- Error page (Required, String)

Specifies the location of the error page. If form-basedauthentication is not used, this property is disabled.
Reload interval

Specifies atimeinterval, in seconds, in which the Web application'sfile system is scanned for updated files. The default
is O(zero).

Reloading enabled
Specifies whether file reloading is enabled. The default isfalse.
Default error page

Specifies afile name for the default error page. If no other errorpage is specified in the application, this error pageis
used.

Additional classpath

Specifies an additional class path that will be used to referenceresources outside of those specified in the archive. Specify
the valuesrelative to the root of the EAR file and separate the values withspaces. Absolute values that reference files or
directories on the harddrive are ignored. To specify classes that are not in JAR files but arein the root of the EAR file,
use a period and forward slash(./). Consider the following example directory structure inwhich the file myapp.ear
contains a Web module namedmywebapp.war. Additional classes reside in classl.jar andclass2.zip. A class named
xyz.classis not packaged in aJAR file but isin the root of the EAR file.

nmyapp. ear / mywebapp. war myapp. ear/ cl assl.j arnyapp. ear/ cl ass2. zi pnyapp. ear/ xyz. cl ass
Specify cl assl.jar class2.zip ./ asthevalueof the Additional classpath property. (Name only the
directoryfor .classfiles.)

File serving enabled

Specifies whether file serving is enabled. File serving allows theapplication to serve static file types, such asHTML and
GIF. Fileserving can be disabled if, for example, the application contains only dynamiccomponents. The default valueis
true.

Directory browsing enabled

Specifies whether directory browsing is enabled. Directory browsingallows the application to browse disk directories.
Directory browsingcan be disabled if, for example, you want to protect data. The defaultvalueistrue.

Serve servlets by classname

Specifies whether a servlet can be served by requesting its classname. Usually, servlets are served only through a URI
reference. The class name is the actual name of the servlet on disk. For example,afile named SnoopServlet.java compiles

60

intoSnoopServlet.class. (Thisis the class name.)SnoopServlet.classis normally invoked by specifying snoop in theURI.
However, if Serve Servlets by Classname is enabled, the servlet isinvoked by specifying SnoopServlet. The default value
istrue.

Virtual hosthame

Specifies avirtual host name. A virtual host is a configurationenabling a single host machine to resemble multiple host
machines. Thisproperty alows you to bind the application to a virtual host in order toenable execution on that virtual
host.

61

6.6.8.1. Administering Web modules with the Java
administrative console

Work with resources of thistype by locating them in the tree view.

To locate modules according to their membership in enterprise applications, click:

WebSphere Administrative Domain -> Nodes -> node_name -> Enterprise Applications ->
application_name ->Web modules

To locate modulesinstalled on a particular application server, click:

WebSphere Administrative Domain -> Nodes -> node_name -> Application Servers->
application_server_name ->Installed Web modules

In either case, the instances of the module will be displayed in thedetails view.

62

http://localhost/0802_makepdf/ae_orig/nav_servletnav/06060001.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/06060001.html

6.6.8.1.1: Installing Web modules with the Java
administrative console

Use the application installation wizard to install Web modules onto an application server.

63

http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606010101.html

6.6.8.1.2: Viewing deployment descriptors of Web
modules with the Java administrative console

To view the deployment descriptor of aWeb module:
1. Locate the Web module instance.
2. Right-click your Web module in the details view and select View Deployment Descriptor from the
popup menu.

A Web Module window opens, providing descriptive information about the selected module's Web.xml,
servlets, servlet mappings, welcome file, security constraints and role, login configuration, and EJB reference.

64

http://localhost/0802_makepdf/ae_orig/nav_servletnav/003501lite.html

6.6.8.1.3: Showing the status of Web modules with
the Java administrative console

During thistask, you will view the status (such as running or stopped) of each Web module in an enterprise
application.

1. Locate the application instance.

2. Click the Installed EJB modules folder of the application to display its Web module instancesin the
details view.

3. Right-click an instance and select Show Status to display the Module Status window.
4. When finished viewing status, close the window.

65

http://localhost/0802_makepdf/ae_orig/nav_servletnav/06060101.html
http://localhost/0802_makepdf/ae_orig/nav_servletnav/06060001.html

6.6.8.1.5: Moving Web modules to other application
servers with the Java administrative console

Y ou can move a Web module from one application server to a different application server or server group. To
move a module:

1. Locate the Web module instance.

2. Right-click your Web module in the details view and select M ove from the popup menu.

3. Inthe Select atarget server or ServerGroup dialog that opens, specify the target application server or
server group and click OK

4. Copy WAR files containing the module to the node that contains the destination server. If the
destination is a server group, then copy the WAR file to al nodes that contain the clones of the
destination server group.

66

6.6.8.5: Administering Web modules with Application
Assembly Tool

A Web module is used to assemble one or more servlets, JavaServer Pages(JSP) files, Web pages, and other
static content into a single deployableunit. The Application Assembly Tool is used to create and edit
modules,verify the archive files, and generate deployment code. See the relatedtopics for links to concepts,
instructions for creating a Web module, andfield help.

67

6.6.8.5.1: Creating a Web module

Web modules can be created by using property dialog box or by using awizard.
« Using the property dialog boxes
« Using the Create Web Module wizard

Using the property dialog boxes

The steps for creating a Web module are as follows:

1. Click File->New->Web M odule. Thenavigation pane displays a hierarchical structure used to build the
contentsof the module. The icons represent the components, assembly properties,and files for the
module. A property dialog box containing generalinformation about the module is displayed in the
property pane.

2. By default, the archive file name and the module display name are thesame. It is recommended that you
change the display name in theproperty pane. Enter values for other properties as needed. Viewthe help
for 6.6.8.0.ac Assembly properties for Web modules.

3. By default, the temporary location of the Web module isinstallation_directory/ bi n. You must specify a
newfile name and location by clicking File->Save.Y ou must first add at least one Web component
(servlet or JSP file) beforesaving the archive.

4. Add Web components (servlets or JSP files) to the module. Y ou mustadd at |east one Web component.
There are several ways of addingcomponents to a module:

o Import an existing WAR file containing Web components. In thenavigation pane, right-click the
Web Componentsicon and choosel mport. Click Browse to browse the file systemand locate the
desired archive file. When the file is located, clickOpen. The Web applicationsin the selected
archive file aredisplayed. Select a Web application. Its Web components aredisplayed in the right
window. Select the servlets or JSP files to beadded and click Add. The components are
displayed in theSel ected Components window. Click OK. The propertiesassociated with the
archive are also imported and the property dialog boxesare automatically populated with values.
Double-click the WebComponents icon to verify that the servlets or JSP files are included in
themodule.

o Use a copy-and-paste operation to copy archive files from an existingmodule.

o Create anew Web component. Right-click the Web Components icon andchoose New. Enter a
component name and choose a componenttype. Browse for and select the classfiles. By defaullt,
theroot directory or archiveisthe current archive. If needed, browse thefile system for the
directory or archive where the class files reside.After you choose a directory or archive, itsfile
structure isdisplayed. Expand the structure and locate the files that youneed. Select the file and
click OK. In the New WebComponent property dialog box, click OK. Verify that the
Webcomponent has been added to the module (double-click the Web Componentsiconin the
navigation pane). The Web components are also listed in the topportion of the property pane.
Click the component to view itscorresponding property dialog box in the bottom portion of the
pane.

5. Enter properties for the Web component as needed. View the help for6.6.8.0.1: Assembly properties for
Web components.

6. Enter assembly properties for each Web component. Click the plussign (+) next to the component
instance to revea propertygroups. Right-click each property group's icon. ChooseNew to add new
values, or edit existing valuesin the propertypane.

o Specify Security Role References. View the help for 6.6.43.0.3: Assembly properties for security
68

http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606430003aa.html#HDRPROPSSECREFS

O

O

role references.

Specify Initialization Parameters. View the help for 6.6.8.0.2: Assembly properties for
initialization parameters.

Specify Page List Extensions. View the help for 6.6.8.0.3: Assembly properties for page lists.

7. Specify additional properties for the Web module. Right-click eachproperty group'sicon. Choose New
to add new values, oredit existing values in the property pane.

O

O

O

Specify Security Constraints. View the help for 6.6.8.0.4: Assembly properties for security
constraints. If you add a security constraint, you must add atleast one Web resource collection.

Specify Web resource collections, HT TP methods, and URL patterns.View the help for 6.6.8.0.5:
Assembly properties for Web resource collections.

Specify Context Parameters. View the help for 6.6.8.0.8: Assembly properties for context
parameters.

Specify EJB references. View the help for 6.6.43.0.1: Assembly properties for EJB references.

Specify Environment Entries. View the help for 6.6.34.0.ac Assembly properties for environment
entries.

Specify Error Pages. View the help for 6.6.8.0.9: Assembly properties for error pages.

Specify MIME Mappings. View the help for 6.6.8.0.10: Assembly properties for MIME
mapping.

Specify Resource References. View the help for 6.6.43.0.2 Assembly properties for resource
references.

Specify Security Roles. View the help for 6.6.5.0.5: Assembly properties for security roles.
Specify Servlet Mapping. View the help for 6.6.8.0.11: Assembly properties for servliet mapping.
Specify Tag Libraries. View the help for 6.6.8.0.12: Assembly propertiesfor tag libraries.
Specify Welcome Files. View the help for 6.6.8.0.13: Assembly properties for welcome files.

8. Optionally, specify assembly property extensions. In the navigationpane, double-click theicon for
Assembly Property Extensions.

O

O

0

Specify MIME filters. View the help for 6.6.8.0.14: Assembly properties for MIME filters.
Specify JSP Attributes. View the help for 6.6.8.0.15: Assembly properties for JSP attributes.

Specify File Serving Attributes. View the help for 6.6.8.0.16: Assembly properties for
file-serving attributes.

Specify Invoker Attributes. View the help for 6.6.8.0.17: Assembly properties for invoker
attributes,

Specify Servlet Caching Configurations. View the help for 6.6.8.0.18: Assembly properties for
servlet caching configurations.

9. Add any other files needed by the application. In the navigationpane, click the plus sign (+) next to the
Filesicon.Right-click Add Class Files, Add JAR Files, or AddResour ce Files. Choose Add Files.
ClickBrowse to navigate to the desired directory or archive and thenclick Select. If you are adding an
entire archive, selectthe directory that contains the archive. The directory structure isdisplayed in the left
pane. Browse the directory structure. Fromthe right pane, select one or more files to be added and
clickAdd. If you select adirectory and click Add, allfilesin the directory, including the directory, are
added. Relativepath names are maintained. When the Selected Files window contains thecorrect set of
files, click OK.

69

http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606430003aa.html#HDRPROPSSECREFS
http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606430001aa.html#HDRPROPSEJBREFS
http://localhost/0802_makepdf/ae_orig/nav_servletnav/06063400aa.html#HDRPROPSENVREFS
http://localhost/0802_makepdf/ae_orig/nav_servletnav/06063400aa.html#HDRPROPSENVREFS
http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606430002aa.html#HDRPROPSRESOURCEREFS
http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606430002aa.html#HDRPROPSRESOURCEREFS
http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606050005aa.html#HDRPROPSSECROLE

10. Click File->Save to save the archive.

Using the Create Web Module wizard

Use thiswizard to create a Web module. The module can then be usedas a stand-alone application, or it can
become part of a J2EE applicationcontaining other modules. A Web module consists of one or more servletsand
JSPfiles. Y ou can use existing archives (by importing them), orcreate new ones.

During creation of the Web module, you specify the files for each servletor JSP file to be included in the
module. Y ou also specify assemblyproperties for the servlets and JSP files, such as references to
enterprisebeans and resource connection factories, and security roles. Thecontent information and assembly
properties are used to create a deploymentdescriptor.

Before you start the wizard, you must have the required files for yourservlet or JSP file. When the wizard is
completed, your Web module (WAR(ile) is created in the directory that you specify.

To create a Web module, click the Wizar dsicon on the tool barand then click Web M odule. Follow the
instructions on eachpanel.

« Specifying Web module properties

o Adding files

« Specifying optional Web module properties
« Choosing Web Module icons

« Adding Web components

« Adding security roles

« Adding servlet mappings

« Adding resource references

« Adding context parameters

« Adding error pages

« Adding MIME mappings

« Adding Tag Libraries

« Adding Welcome Files

« Adding EJB references

« Setting additional properties and saving the archive

Specifying Web module properties

On the Specifying Web M odule Properties panel:

1. Indicate the application to which this module is to be added. If aparent application is not indicated, the
module is created as a stand-al oneapplication.

2. Specify afile name and display name for the module. The displayname is used to identify your module
in the Application Assembly Tool and canbe used by other tools. The file name specifies alocation on
yoursystem where the WAR file is to be created.

3. Provide a short description of the module.

4. Click Next.
70

Adding files

On the Adding Files panel, specify the files that are to beassembled for your Web module.

1. Click Add Resource Files, Add Class Files, orAdd JAR files, depending on the type of file you are
adding.First, browse for the root directory or archive where the files are locatedand click Select. If you
are adding an entire archive,select the directory that contains the archive. The directory structureis
displayed in the |eft pane. Browse the directory structure.From the right pane, select one or morefilesto
be added and clickAdd. If you select adirectory and click Add, allfilesin the directory, including the
directory, are added. Relativepath names are maintained. The selected files are displayed in theSel ected
Fileswindow. Click OK. Thefiles are listedin a table on the wizard panel.

2. If you want to remove afile, select the file in the table and then clickRemove.
3. Continue to add or remove files until you have the correct set offiles.
4. Click Next.

Specifying optional Web module properties

On the Specifying Optional Web M odule Properties panel:
1. Indicate whether the module can beinstalled in a distributable Webcontainer. The default value isfalse.
2. Specify the full classpath for the Web application.
3. Click Next.

Choosing Web Module icons

On the Choosing Web M oduleicons panel, specify icons for yourmodule.
1. Specify the full path name of a GIF or JPEG file. Theicon must bel6x16 pixelsin size.
2. Specify afull path name of a GIF or JPEG file. The icon must be32x32 pixelsin size.
3. Click Next.

Adding Web components

On the Adding Web components panel, add new servlets or JSPfiles or import existing ones.

To add a new Web component:
1. Click New.

2. On the Specifying Web Component Properties panel, specify thecomponent name and enter values for
other properties. View the help for6.6.8.0.1: Assembly properties for Web components.

3. On the Specifying Web Component Type panel, indicate the typeof Web component and specify the
servlet class name or JSPfile.

4. Onthe Choosing Web Component | cons panel, specify afilecontaining a JPEG or GIF image.

5. Onthe Adding Security Role Refer ences panel, enter values forsecurity role references. Click Add to
enter arolename. Click OK. Therole nameis displayed in thetable on the wizard panel. To remove a
role, select the role in thetable and then click Remove. Repeat as necessary.View the help for 6.6.43.0.3:

Assembly properties for security role references. Click Next.

6. Onthe Adding Initialization Parameter s panel, enter values forthe Web component's initialization
parameters. ClickAdd to add a parameter. Y ou must enter a name andvalue. Click OK. The parameter is
displayed in atable on the wizard panel. To remove a parameter, select the parameterand click Remove.
Repeat as necessary. View the helpfor 6.6.8.0.2: Assembly properties for initialization parameters.

71

http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606430003aa.html#HDRPROPSSECREFS
http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606430003aa.html#HDRPROPSSECREFS

7. Click Finish.

To import an existing Web component:
1. Click Import.

2. Browsethefile system to locate the desired archive. The contentsof the archive are displayed in a
window. Select the desired componentand then click Add. The components are added to the
SelectedComponents window. Click OK.

To remove a Web component, select the component name in the table and clickRemove.

When you are finished adding Web components, click Next.
Adding security roles

On the Adding Security Roles panel:

1. Click Add. Type arole name and, optionally, type adescription. Click OK. Therole nameis displayed
inatable on the wizard panel. View the help for 6.6.5.0.5: Assembly properties for security roles.

2. Continue to add security roles as needed. If you need to remove arole, select the role in the table and
then click Remove.

3. Click Next.
Adding servlet mappings

On the Adding Servlet M appings panel:

1. Click Add. Enter aURL pattern and select a servlet fromthe menu. View the help for 6.6.8.0.11.:
Assembly properties for servliet mapping. Click OK. The servlet mappings aredisplayed in atable on the
wizard panel.

2. Continue to add and remove URL patterns and corresponding servlets asneeded. If you need to remove
mapping, select the entry in the tableand then click Remove.

3. Click Next.

Adding resource references

On the Adding Resour ce Refer ences panel, enter references forresource connection factories.

1. Click Add to add areference. Y ou must enter avalue fora name, type, and authorization mode. View the
help for 6.6.43.0.2 Assembly properties for resource references. Click OK. The reference isdisplayed in

the table on the wizard panel.
2. Toremove areference, select the reference in the table and then clickRemove.
3. Continue to add and remove references as needed.
4. Click Next.

Adding context parameters

On the Adding Context Parameter s panel, enter values for contextparameters.

1. Click Add to add a parameter. Y ou must enter a name andvalue. View the help for 6.6.8.0.8: Assembly
properties for context parameters. Click OK. The parameter isdisplayed in the table on the wizard panel.

2. Toremove a parameter, select the parameter and then clickRemove.
72

http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606050005aa.html#HDRPROPSSECROLE
http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606430002aa.html#HDRPROPSRESOURCEREFS

3.
4.

Continue to add and remove parameters as needed.
Click Next.

Adding error pages

On the Adding Error Pages panel, enter values for errorpages.

1

2.
3.
4.

Click Add to add a page. Y ou must enter alocation. Then choose Error Code or Error Exception. Enter
aname for the error code or exception.View the help for 6.6.8.0.9: Assembly properties for error pages.

Click OK. The error page isdisplayed in the table on the wizard panel.

To remove an error page, select the item in the table and then clickRemove.
Continue to add and remove error pages as needed.

Click Next.

Adding MIME mappings

On the Adding MIM E Mappings panel, enter values for MIMEmappings.

1

2.
3.
4.

Click Add to add a mapping. Y ou must enter an extensionand a MIME type. View the help for
6.6.8.0.10: Assembly properties for MIME mapping. Click OK. The mapping is displayedin the table on

the wizard panel.

To remove a mapping, select the mapping and then clickRemove.
Continue to add and remove mappings as needed.

Click Next.

Adding Tag Libraries

On the Adding Tag Libraries panel, enter values for taglibraries.

1

2.
3.
4.

Click Add to add atag library. Y ou must enter atagfile name and library location. View the help for
6.6.8.0.12: Assembly propertiesfor tag libraries. Click OK. The tag library isdisplayed in the table on

the wizard panel.

To remove atag library, select the library and then clickRemove.
Continue to add and remove tag libraries as needed.

Click Next.

Adding Welcome Files

On the Adding Welcome Files panel, enter values for welcomefiles.

1

Click Add. Enter afile name or use the file browser tolocate the file. View the help for 6.6.8.0.13:
Assembly properties for welcome files. Click OK. The file name isdisplayed in the table on the wizard
panel.

Toremove afile, select the file in the table and then clickRemove.
Continue to add and remove files as needed.
Click Next.

Adding EJB references

73

On the Adding EJB Refer ences panel, enter values for EJBreferences.

1. Click Add to add areference. Y ou must enter a value forthe name, home interface, remote interface, and
type. View the help for6.6.43.0.1: Assembly properties for EJB references. Click OK. The reference

isdisplayed in the table on the wizard panel.
2. Toremove areference, select the entry in the table and then clickRemove.
3. Continue to add and remove references as needed.

Setting additional properties and saving the archive

Click Finish to complete the wizard. To change settingsfor properties, click Back to return to the
appropriatepanel. Make any needed changes, and then clickFinish.

After you click Finish, the contents of the archive aredisplayed in the Application Assembly Tool window. In
the navigationpane, continue adding or modifying properties as needed. For example,you can add binding
information. When you are finished editing thearchive, click File->Save to save the archivefile.

74

http://localhost/0802_makepdf/ae_orig/nav_servletnav/0606430001aa.html#HDRPROPSEJBREFS

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

	P54:
	Numbers:
	Numbx:
	L: 54
	C:
	R:

	P55:
	Numbers:
	Numbx:
	L:
	C:
	R: 55

	P56:
	Numbers:
	Numbx:
	L: 56
	C:
	R:

	P57:
	Numbers:
	Numbx:
	L:
	C:
	R: 57

	P58:
	Numbers:
	Numbx:
	L: 58
	C:
	R:

	P59:
	Numbers:
	Numbx:
	L:
	C:
	R: 59

	P60:
	Numbers:
	Numbx:
	L: 60
	C:
	R:

	P61:
	Numbers:
	Numbx:
	L:
	C:
	R: 61

	P62:
	Numbers:
	Numbx:
	L: 62
	C:
	R:

	P63:
	Numbers:
	Numbx:
	L:
	C:
	R: 63

	P64:
	Numbers:
	Numbx:
	L: 64
	C:
	R:

	P65:
	Numbers:
	Numbx:
	L:
	C:
	R: 65

	P66:
	Numbers:
	Numbx:
	L: 66
	C:
	R:

	P67:
	Numbers:
	Numbx:
	L:
	C:
	R: 67

	P68:
	Numbers:
	Numbx:
	L: 68
	C:
	R:

	P69:
	Numbers:
	Numbx:
	L:
	C:
	R: 69

	P70:
	Numbers:
	Numbx:
	L: 70
	C:
	R:

	P71:
	Numbers:
	Numbx:
	L:
	C:
	R: 71

	P72:
	Numbers:
	Numbx:
	L: 72
	C:
	R:

	P73:
	Numbers:
	Numbx:
	L:
	C:
	R: 73

	P74:
	Numbers:
	Numbx:
	L: 74
	C:
	R:

