
Java technologies -- table of contents

Development

 4.6: Java Technologies

 4.6.1: Using JavaMail
 4.6.1.1: Writing JavaMail applications
 4.6.1.2: Configuring JavaMail
 4.6.1.3: Debugging JavaMail
 4.6.1.4: Running the JavaMail sample

 4.6.2: JNDI (Java Naming and Directory Interface) overview
 4.6.2.1: JNDI implementation in WebSphere Application Server
 4.6.2.2: Using JNDI
 4.6.2.3: JNDI caching
 4.6.2.4: JNDI helpers and utilities
 4.6.2.4.1: JNDI helper class
 4.6.2.4.2: JNDI Name Space Dump utility

 4.6.3: Java Message Service (JMS) overview
 4.6.3.1: Using the JMS point-to-point messaging approach
 4.6.3.2: Using the JMS publish/subscribe messaging approach
 4.6.3.3: Support of Java Message Service resources
 4.6.3.4: Support for the use of MQSeries Java Message Service resources

Administration

 6.6.37: Administering mail providers and mail sessions

 6.6.37.0: Properties of JavaMail providers
 6.6.37.0.1: Properties of JavaMail sessions

 6.6.37.1: Administering JavaMail support resources with the Java console
 6.6.37.1.1: Configuring new JavaMail support resources with the Java administrative console

 6.6.37.9: Administering JavaMail providers and sessions with the ACRCT
 6.6.37.9.1: Configuring new JavaMail sessions with the ACRCT
 6.6.37.9.3: Removing JavaMail sessions with the ACRCT
 6.6.37.9.4: Updating JavaMail session configurations with the ACRCT

 6.6.38: Administering URL providers and URLs (overview)

 6.6.38.0: Properties of URL providers

 6.6.38.0.1: Properties of URLs

 6.6.38.1: Administering URL support resources with the Java administrative console
 6.6.38.1.1: Configuring URL resources with the Java administrative console
 6.6.38.1.2: Installing and uninstalling URL providers on nodes, with the Java administrative console

 6.6.38.9: Administering URL providers and URLs with the ACRCT
 6.6.38.9.1: Configuring new URL providers and URLs with the ACRCT
 Configuring new URLs with the ACRCT
 6.6.38.9.3: Removing URL providers and URLs with the ACRCT
 6.6.38.9.4: Updating URL and URL provider configurations with the ACRCT

 6.6.39: Administering messaging and JMS providers (overview)

 6.6.39.0: Properties of JMS providers
 6.6.39.0.1: Properties of JMS connection factories
 6.6.39.0.2: Properties of JMS destinations

 6.6.39.1: Administering JMS support resources with the Java administrative console
 6.6.39.1.1: Configuring JMS resources with the Java administrative console
 6.6.39.1.2: Installing and uninstalling JMS providers on nodes, with the Java administrative console

 6.6.39.9: Administering JMS providers, connection factories, and destinations with the ACRCT
 6.6.39.9.1: Configuring new JMS providers with the ACRCT
 Configuring new JMS connection factories with the ACRCT
 Configuring new JMS destinations with the ACRCT
 6.6.39.9.3: Removing JMS providers, connection factories, and destinations with the ACRCT
 6.6.39.9.4: Updating JMS provider, connection factory, and destination configurations with the
ACRCT

4.6: Java Technologies
The J2EE (Java TM 2 Platform Enterprise Edition) technologies providestandard architectures for defining and
supporting a multi-tiered programming model.

The technologies support all application components, namely:

Application clients●

Enterprise JavaBeans TM●

Servlets and JavaServer PagesTM●

Applets●

The Java technologies are:

JavaMail●

Java Naming and Directory Interface (JNDI)●

Java Message Service (JMS)●

See the Related information links for information on other programming topics.

4.6.1: Using JavaMail
WebSphere Application Server supports JavaMail version 1.1.3 and the JavaBeans Activation Framework (JAF) version 1.0.1.

In WebSphere Application Server, JavaMail is supported in all Web applicationcomponents, namely:

servlets●

JSP files●

enterprise beans●

application clients●

The JavaMail APIs model a mail system. These APIs provide a platform and protocol independent framework to build Java based,
e-mail clientapplications. The JavaMail APIs only provide general mail facilities for reading and sending mail. These APIs require
service providers to implement the protocols.

In addition to service providers, JavaMail requires the JavaBeans Activation Framework or JAFto handle mail content that is not
plain text as, for example, MIME (Multipurpose Internet Mail Extensions),URL (Uniform Resource Locator) pages, and file
attachments.

The service providers implement specific protocols. For example, SMTP (or SimpleMail Transfer Protocol), is a transport protocol
for sending mail. POP3 or Post Office Protocol 3 is the standardprotocol for receiving mail. IMAP or Internet Message Access
Protocol is an alternative protocol to POP3.

The following graphic illustrates the relationship among the different JavaMail components:

JavaMail APIs●

JavaBeans Activation Framework●

Service providers●

Mail protocols●

The dotted line around specific objects represents the grouping that comprises a working JavaMail installation. With the exception
of POP3, all the components in the installation view are shipped as part of WebSphere Application Server using the following Sun
licensed packages:

mail.jar - contains JavaMail APIs, the SMTP service provider, and the IMAP service provider.●

activation.jar - contains the JavaBeans Activation Framework.●

4.6.1.1: Writing JavaMail applications
According to the J2EE specifications, each javax.mail.Sessioninstance must be treated as a resource factory. Therefore, to use JavaMail, do the following:

Declare mail resource references in your application component's deployment descriptors,as described in this example:

<resource-ref><description>description</description><res-ref-name>mail/MailSession</res-ref-name><res-type>javax.mail.Session</res-type><res-auth>Container</res-auth></resource-ref>

1.

Configure, during deployment, each referenced mail resource.See article, 4.6.1.2: Configuring JavaMail, for a description of the parameters requiredto configure a mail resource.2.

Locate in your application component, during runtime, each specific JavaMail session using JNDI lookup. An example of the code follows:

Session session = (Session)ctx.lookup("java:comp/env/mail/MailSession");

Your application component can now use session to create messages and get store access.

3.

Coding example for sending and saving a message

The following code segment shows how an application component sends a messageand saves it to the mail account's Sent folder:

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
mail_session = (javax.mail.Session) ctx.lookup("java:comp/env/mail/MailSession");

MimeMessage msg = new MimeMessage(mail_session);
msg.setRecipients(Message.RecipientType.TO, InternetAddress.parse("bob@coldmail.net"));

msg.setFrom(new InternetAddress("alice@mail.eedge.com"));
msg.setSubject("Important message from eEdge.com");
msg.setText(msg_text);
Transport.send(msg);

Store store = mail_session.getStore();
store.connect();
Folder f = store.getFolder("Sent");
if (!f.exists()) f.create(Folder.HOLDS_MESSAGES);
f.appendMessages(new Message[] {msg});

See the related information links for the JavaMail APIs.

http://www.javasoft.com/products/javamail/1.2/docs/javadocs/javax/mail/Session.html

4.6.1.2: Configuring JavaMail
A mail resource is configured using appropriate system management facilities,as for example, the
administrative console.

Refer to article 6.6.37: Administering mail providers and mail sessionsfor detailed configuration instructions.

 The "mail originator" setting (the exact name in the administrative console varies depending
on the product edition; see 6.6.37.0.1 for a description) can beoverridden for individual messages
in your application, using methodMessage.setFrom()

See the related topics for more JavaMail documentation.

http://www.javasoft.com/products/javamail/1.2/docs/javadocs/javax/mail/Message.html#setFrom()

4.6.1.3: Debugging JavaMail
There will be times when you need to debug your JavaMail applications.One option is to turn on JavaMail's debugging feature. With this
option on, JavaMail will print to stdout its interactions with the mail servers. These interactions are printed in detail, in a step-by-step
format.

 With WebSphere Application Server,stdout and stderr are usually redirected to files.The specific file paths can be set
with an application server's Properties > File panel.For example, for the Default Server, stdout is redirected by defaultto
the file:
<WAS_HOME>\logs\default_server_stdout.log
See the Problem determination section for moreinformation on stdout and stderr.

Enable debugging programmatically, through the console, or through the command line.

The easiest way to turn on debugging is to call methodsetDebug()on the mail session after session is obtained through a JNDI
lookup, as shownbelow:

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
mail_session = (javax.mail.Session) ctx.lookup("java:comp/env/mail/MailSession");
mail_session.setDebug(true);
...

This debugging approach requires re-compiling and, very likely, re-loading the applicationcomponent in which this code is
embedded. This approach may be impractical at times.

●

One alternative is to set the system property mail.debug through the console.If your JavaMail code is embedded in a servlet, a
JSP, or an EJB, from the Administrative Console:

Select the server that owns the component1.

Open the Properties > JVM Settings panel2.

Add an entry to System Properties with Name=mail.debug and Value=true.3.

Restart the server.4.

●

If your JavaMail code is in a Java client which is invoked from the commandline, add the -Dmail.debug=true flag to the java
command, and the debugging output will be displayed in the command window.

 Property mail.debug,set with the last two approaches, is shared by all mail session instances within the
sameJVM process. When debugging is enabled in this manner, JavaMail will print out step-by-step,
mail-relatedinteractions to stdout for all these mail sessions.

●

The output in stdout looks like the following example:

...

DEBUG: getProvider() returning javax.mail.Provider[TRANSPORT,smtp]
DEBUG SMTP: useEhlo true, useAuth false

DEBUG: SMTPTransport trying to connect to host "smtp3.eedge.com", port 25

DEBUG SMTP RCVD: 220 relay14.eedge.com ESMTP Sendmail; Tue, 19 Dec 2000 15:08:42 -0700

DEBUG: SMTPTransport connected to host "smtp3.eedge.com", port: 25

DEBUG SMTP SENT: EHLO y2001
DEBUG SMTP RCVD: 250-relay14.eedge.com Hello testpc.eedge.com, pleased to meet you
250-8BITMIME
250-SIZE 20000000
250-DSN
250-ONEX
250-ETRN
250-XUSR
250 HELP

DEBUG SMTP SENT: MAIL FROM:<alice@mail.eedge.com>
DEBUG SMTP RCVD: 250 <alice@mail.eedge.com>... Sender ok

DEBUG SMTP SENT: RCPT TO:<bob@coldmail.net>

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/08.html
http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/mail/Session.html#setDebug(boolean)

DEBUG SMTP RCVD: 250 <bob@coldmail.net>... Recipient ok

Verified Addresses
 bob@coldmail.net
DEBUG SMTP SENT: DATA
DEBUG SMTP RCVD: 354 Enter mail, end with "." on a line by itself

DEBUG SMTP SENT:
...
DEBUG SMTP RCVD: 250 PAA125654 Message accepted for delivery

DEBUG SMTP SENT: QUIT

4.6.1.4: Running the JavaMail sample
The JavaMail sample is packaged in an ear file called jmsample.ear that is locatedin directory:

 product_installation_root/installableApps

The JavaMail sample contains three application components:

one stateful session bean1.

one servlet2.

one JSP file3.

Each component, when invoked, gathers data to compose a mail message,and then sends the message. Optionally, the sent message can also be saved in anIMAP account, in a folder named Sent. See article Writing JavaMail applicationsfor the coding example to send a message and create the Sent folder.

Complete the following tasks to use jmsample.ear:

Set up mail servers1.

Configure a MailSession resource2.

Install the jmsample.ear components3.

Set up mail servers

To send out email messages, you need a mail transport server.Since SMTP is the most widely used transport protocol, such a mailserver is also known as a SMTP server. An alternative to installing and configuringyour own SMTP server, is to use an existing implementation.For example, if your Internet mail address is john_smith@mycompany.com,then
mycompany.com could serve as your SMTP server. Ask your company's email administratorfor more information.

The components in the jmsample.ear file can optionally save a copy of thesent message into an email account. If you plan to try this capability, you will also need to set up an IMAP mail account.

1.

Configure a MailSession resource

See article Properties related to JavaMail supportfor information on MailSession resource properties.

One property that requires your attention when you configure the MailSession resource for jmsample.ear is JNDI Name.You can explicitly define this property or allow System Management to define it for you.

Since for all componentsin this sample the MailSession resource references have been pre-boundto the JNDI path mail/DefaultMailSession, enter this pathin the JNDI Name property.

If, at this time, you do not define the JNDI Name as shown above,you will have to bind the application's mail resource references to this mail sessionwhen you install jmsample.ear.

Review the tutorial, Create a JavaMail session,for detailed information on configuring the mail session resource.

2.

Install the jmsample.ear components

Install the jmsample.ear file as an enterprise application.See article Installing EJB modules with the JAVA administrative consolefor information on installing the jmsample.ear.

After the install, you can invoke the servlet or JSP by using one of the following URLs:

http://localhost:9080/jmsample/servlet

http://localhost:9080/jmsample/Email.jsp

To test the JavaMail servlet, do the following:

Open a browser window1.

Enter http://localhost:9080/jmsample/servlet
(The servlet GUI should display.)

2.

Enter the following information, replacing variable input as appropriate:

To: Your e-mail address as for example, anybody@mycompany.com●

Cc: Optionally enter another e-mail address here.●

From: somebody@mycompany.com●

Subject: JavaMail Servlet Test●

Message to send: Any text as for example, This is a test message that isbeing sent from the JavaMail Mail Servlet.●

Check the Save the sent message into mail store box.●

Send Option: As is●

Click the Send button.
(If the test number at the top of the page was incremented from 1 to 2, the message was sent successfully.)

●

3.

Log on to your e-mail account and verify that you received the mail4.

To test the JavaMail Java Server Page, do the following:

Open a browser window1.

Enter http://localhost:9080/jmsample/Email.jsp
(The Java Server Page GUI should display.)

2.

Enter the following information, replacing variable input as appropriate:

To: Your e-mail address as for example, anybody@mycompany.com●

Cc: Optionally enter another e-mail address here.●

From: somebody@mycompany.com●

Subject: JavaMail JSP Test●

Message to send: Any text as for example, This is a test message that isbeing sent from the JavaMail Mail JSP.●

Check the Save the sent message into mail store box.●

Send Option: As is●

Click the Send button.
(If the test number at the top of the page was incremented from 1 to 2, the message was sent successfully.)

●

3.

Log on to your e-mail account and verify that you received the mail4.

Use these instructions to invoke the EJB:

Locate file deplmtest.jar in the product_installation_root/InstalledApps/jmsample.ear directory.A.

Copy the deplmtest.jar file to the product_installation_root/classes directory.

 The deplmtest.jar file contains all the artifacts for the EJB, including the proxies and a simple client.

B.

The client uses the system properties as data input forthe message creation.The following example demonstrates how Java system properties are gathered for the EJB client on Windows NT:

 The line breaks in this example were added to make the information more legible. This information really exists as one line of input.

Change the property values in this example to the ones you defined for your test.

C.

3.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_javatechnav/0607.html
http://localhost/0802_makepdf/ae_orig/nav_javatechnav/0606050101.html
http://localhost/0802_makepdf/ae_orig/nav_javatechnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_javatechnav/root.html

For the Windows platform, specify the following:

product_installation_root\java\bin\java
-Djava.ext.dirs=product_installation_root\java\jre\lib\ext;product_installation_root\classes;product_installation_root\lib-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory-Dmailtest.to=bob@mycompany.com
-Dmailtest.cc=alice@mycompany.com-Dmailtest.from=john@mycompany.com -Dmailtest.subj="Important message sent from an
EJB"-Dmailtest.message="As the subject line says, this is a very important message." -Dmailtest.save_msg=off
-Dmailtest.ejbhome=ejb/JMSampEJB mailtest.MailClient

For UNIX platforms, specify the following:

 Entering the following command as one, continuous lineof input at a command prompt might not work on some UNIX platforms. Use the back slashto indicate the command continues on the next line, or invoke the command from a shell script.

product_installation_root/java/bin/java
-Djava.ext.dirs=product_installation_root/java/jre/lib/ext:product_installation_root/classes:product_installation_root/lib-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory-Dmailtest.to=bob@mycompany.com
-Dmailtest.cc=alice@mycompany.com-Dmailtest.from=john@mycompany.com -Dmailtest.subj="Important message sent from an
EJB"-Dmailtest.message="As the subject line says, this is a very important message." -Dmailtest.save_msg=off
-Dmailtest.ejbhome=ejb/JMSampEJB mailtest.MailClient

See the related topics for links to Javadoc and the Create a JavaMail session tutorial.

4.6.2: JNDI (Java Naming and Directory Interface)
overview
Distributed computing environments often employ namingand directory services to obtain shared components
and resources.Naming and directory services associate names with locations, services, information, and
resources.

Naming services provide name-to-object mappings. Directory services provideinformation on objects and the
search tools required to locate those objects.There are many naming and directory service implementations, and
theinterfaces to them vary.

Java Naming and Directory Interface or JNDI provides a common interface thatis used to access the various
naming and directory services.See URL java.sun.com/products/jndi/serviceproviders.htmlfor a list of naming
and directory service providers which supportaccess through the JNDI interface.

JNDI is an integral part of other Java programming models and technologies, such as:

Enterprise JavaBeans (EJB)●

JavaMail●

Java Database Connection Service (JDBC)●

Java Message Service (JMS)●

http://java.sun.com/products/jndi/serviceproviders.html
http://localhost/0802_makepdf/ae_orig/nav_javatechnav/0403.html
http://localhost/0802_makepdf/ae_orig/nav_javatechnav/04040201.html

4.6.2.1: JNDI implementation in WebSphere
Application Server
IBM WebSphere Application Server includes a name server to provideshared access to Java components, and
an implementation of thejavax.naming JNDI package which allows users to accessthe WebSphere name
server through the JNDI naming interface.

WebSphere Application Server does not provide implementations for:

javax.naming.directory or●

javax.naming.ldap packages●

Also, WebSphere Application Server does not support interfaces defined in the

javax.naming.event package.

However, to provide access to LDAP servers, the JDK shipped with WebSphere Application Server supports
Sun's implementation of:

javax.naming.ldap and●

com.sun.jndi.ldap.LdapCtxFactory●

WebSphere Application Server's JNDI implementation is based on version 1.2 of the JNDIinterface, and was
tested with version 1.2.1 of Sun's JNDI SPI (Service Provider Interface).

The default behavior of this JNDI implementation should be adequatefor most users. However, users with
specific requirements cancontrol certain aspects of the JNDI behavior. See the following section for information
on modifying the JNDI behavior:

JNDI caching - Description of the caching feature and properties, andthe effects of the different
properties on caching behavior.

●

http://www.javasoft.com/products/jndi/1.2/javadoc/index.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/directory/package-summary.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/ldap/package-summary.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/event/package-summary.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/ldap/package-summary.html
http://java.sun.com/products/jndi/tutorial/beyond/env/source.html#SYS

4.6.2.2: Using JNDI
Refer to these examples to learn how to use JNDI.

Get an initial context●

Get an initial context using JNDI properties found in the current environment●

Get an initial context by explicitly setting JNDI properties●

Look up a home for an EJB●

Look up a JavaMail session●

Get an initial context

In general, JNDI clients should assume the correct environment isalready configured so there is no need to explicitly set property values and passthem to the
InitialContext constructor. However, a JNDI client may needto access a name space other than the one identified in its environment.In this event, it is
necessary toexplicitly set one or more properties used by the InitialContext constructor. Anyproperty values passed in directly to the InitialContext
constructor take precedenceover settings of those same properties found elsewhere in the environment.

View the following examples for information on passing property values to the InitialContext constructor:

Get an initial context using JNDI properties found in the current environment:

The current environment includes the Java system properties and properties defined inproperties files found in the JNDI client's
CLASSPATH. See article Installing files and setting classpathsfor information on defining CLASSPATHs.

 ... import javax.naming.Context; import javax.naming.InitialContext; ... Context
initialContext = new InitialContext(); ...

■

Get an initial context by explicitly setting JNDI properties:

 ... import java.util.Hashtable; import javax.naming.Context; import
javax.naming.InitialContext; ... Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "iiop://myhost.mycompany.com:900"); Context initialContext = new
InitialContext(env); ...

■

Look up a home for an EJB

The example below shows a lookup of an EJB home. The actual home lookup nameis determined by the application's deployment descriptors.

 // Get the initial context as shown in the previous example ... // Look up the home interface
using the JNDI name try { java.lang.Object ejbHome =
initialContext.lookup("java:comp/env/comp/mycompany/accounting"); accountHome =
(AccountHome)javax.rmi.PortableRemoteObject.narrow((org.omg.CORBA.Object) ejbHome,
AccountHome.class); } catch (NamingException e) { // Error getting the home interface ...
}

■

Look up a JavaMail session:

The example below shows a lookup of a JavaMail resource. The actual lookup nameis determined by the application's deployment
descriptors.

 // Get the initial context as shown above ... Session session = (Session)
initialContext.lookup("java:comp/env/mail/MailSession");

■

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/0604.html

4.6.2.3: JNDI caching
To increase the performance of JNDI operations, WebSphere Application Server'sJNDI implementation employs caching to reduce the number of remote
calls to thename server. For most cases, use the default cache setting.

JNDI context objects employ caching to increase the performanceof JNDI lookup operations. Objects bound and looked up are cached in orderto speed up
subsequent lookups of those objects. Objects are cached asthey are bound or initially looked up. Normally, JNDI clients should beable to use the default
cache behavior. The following sectionsdescribe in detail cache behavior, and how JNDI clients can override defaultcache behavior if necessary.

Cache behavior●

Cache properties●

Coding examples●

Cache behavior

A cache is associated withan initial context when a javax.naming.InitialContext object is instantiatedwith the
java.naming.factory.initial property set to:

com.ibm.websphere.naming.WsnInitialContextFactory

WsnInitialContextFactory searches the environment properties for a cachename, defaulting to the provider URL. If no provider URL is defined,
acache name of "iiop:///" is used. All instances of InitialContext whichuse a cache of a given name share the same cache instance.

After an associationbetween an InitialContext instance and cache is established, the associationdoes not change. A javax.naming.Context object
returned from a lookup operationwill inherit the cache association of the Context object on which the lookupwas performed. Changing cache property values
with the Context.addToEnvironment()or Context.removeFromEnvironment() method does not affect cache behavior.Properties affecting
a given cache instance, however, may be changed witheach InitialContext instantiation.

A cache is restricted toa process and does not persist past the life of the process. A cached objectis returned from lookup operations until either the max
cache life forthe cache is reached, or themax entry life for the object's cache entryis reached.

After this time, a lookup on the object will cause the cacheentry for the object to be refreshed. If a bind or rebind operation isexecuted on an object, the
change will not be reflected in any caches otherthan the one associated with the context from which the bind or rebindwas issued. This "stale data" scenario
is most likely to happen when multipleprocesses are involved, since different processes do not share the samecache, and Context objects in all threads in a
process will typically sharethe same cache instance for a given name service provider.

Usually, cached objects are relatively static entities, and objects becoming staleshould not be a problem. However, timeout values can be set on cache
entriesor on a cache itself so that cache contents are periodically refreshed.

Cache properties

JNDI clients can use several properties to control cache behavior.These properties can be set in theenvironment Hashtable passed to the InitialContext
constructor.

You can set properties:

From the command line❍

In a properties file❍

Within a Java program❍

To set properties through the command line,enter the actual string value as indicated in this example:

 java -Dcom.ibm.websphere.naming.jndicache.maxentrylife=1440

●

To set properties in a file,create a text file listing the properties, as for example:

 ... com.ibm.websphere.naming.jndicache.cacheobject=none ...

●

To set properties in a Java program,use the following PROPS.JNDI_CACHE* Java constants, defined in com.ibm.websphere.naming.PROPS:

 public static final String JNDI_CACHE_OBJECT =
"com.ibm.websphere.naming.jndicache.cacheobject"; public static final String
JNDI_CACHE_OBJECT_NONE = "none"; public static final String JNDI_CACHE_OBJECT_POPULATED =
"populated"; public static final String JNDI_CACHE_OBJECT_CLEARED = "cleared"; public static
final String JNDI_CACHE_OBJECT_DEFAULT = JNDI_CACHE_OBJECT_POPULATED; public static final
String JNDI_CACHE_NAME = "com.ibm.websphere.naming.jndicache.cachename"; public static final
String JNDI_CACHE_NAME_DEFAULT = "providerURL"; public static final String JNDI_CACHE_MAX_LIFE =
"com.ibm.websphere.naming.jndicache.maxcachelife"; public static final int
JNDI_CACHE_MAX_LIFE_DEFAULT = 0; public static final String JNDI_CACHE_MAX_ENTRY_LIFE =
"com.ibm.websphere.naming.jndicache.maxentrylife"; public static final int
JNDI_CACHE_MAX_ENTRY_LIFE_DEFAULT = 0;

To set a property in your program, enter the following:

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE). // Sets a property to a value

●

Cache properties are evaluated when an InitialContext instance iscreated. The resulting cache association, including"none", cannot bechanged. The "max
life" cache properties affectthe individual cache's behavior. If the cache already exists, cache behavior will beupdated according to the new "max life"
property settings. If no"max life" properties exist in the environment, the cachewill assume default "max life"settings, irrespective of the previous

settings.The various cache properties are describedbelow. All property values must be string values.

com.ibm.websphere.naming.jndicache.cacheobject

Caching is turned on or off with this property. Additionally, an existingcache can be cleared.Listed below are the valid values for this property and
the resulting cachebehavior:

"populated" (default): Use a cache with the specified name. If the cache already exists, leave existing cache entries in cache; otherwise,
create a new cache.

■

"cleared": Use a cache with the specified name. If the cache already exists, clear all cache entries from cache; otherwise, create a new cache.■

"none": Do not cache. If this option is specified, the cache name is irrelevant. Therefore, this option will not disable a cache that is already
associated with other InitialContext instances. The InitialContext being instantiated will not be associated with any cache.

■

●

com.ibm.websphere.naming.jndicache.cachename

It is possible to createmultiple InitialContext instances, each operating on the namespace of adifferent name service provider. By default, objects
from each serviceprovider are cached separately, since they each involve independent namespacesand name collisions could occur if they used the
same cache. The providerURL specified when the initial context is created serves as the defaultcache name. With this property, a JNDI client can
specify a cache nameother than the provider URL. Listed below are the valid options forcache names:

"providerURL" (default): Use the value for java.naming.provider.url property as the cache name. The default provider URL is "iiop:///".
URLs are normalized by stripping off everything after the port. For example, "iiop://server1:900" and "iiop://server1:900/com/ibm/initCtx"
are normalized to the same cache name.

■

Any string: Use the specified string as the cache name. Any arbitrary string with a value other than "providerURL" can be used as a cache
name.

■

●

com.ibm.websphere.naming.jndicache.maxcachelife

By default, cached objects remain in the cache for the life of the process oruntil cleared with the com.ibm.websphere.naming.jndicache.cacheobject
propertyset to "cleared". This property enables a JNDI client to set the maximum lifeof a cache as follows:

"0" (default): Make the cache lifetime unlimited.■

Positive integer: Set the maximum lifetime of the cache, in minutes, to the specified value. When the maximum cache lifetime is reached, the
cache is cleared before another cache operation is performed. The cache is repopulated as bind, rebind, and lookup operations are executed.

■

●

com.ibm.websphere.naming.jndicache.maxentrylife

By default, cached objects remain in the cache for the life of the processor until cleared with the
com.ibm.websphere.naming.jndicache.cacheobjectproperty set to "cleared". This property enables a JNDI client to set themaximum lifetime of
individual cache entries as follows:

"0" (default): Lifetime of cache entries is unlimited.■

Positive integer: Set the maximum lifetime of individual cache entries, in minutes, to the specified value. When the maximum lifetime for an
entry is reached, the next attempt to read the entry from the cache will cause the entry to be refreshed.

■

●

Coding examples

import java.util.Hashtable;import javax.naming.InitialContext;import javax.naming.Context;/*****
Caching discussed in this section pertains to the WebSphere Application Server initial context
factory. Assume the property, java.naming.factory.initial, is set to
"com.ibm.ejs.ns.WsnInitialContextFactory" as a java.lang.System property.*****/Hashtable env;Context
ctx;// To clear a cache:env = new Hashtable();env.put(PROPS.JNDI_CACHE_OBJECT,
PROPS.JNDI_CACHE_OBJECT_CLEARED);ctx = new InitialContext(env);// To set a cache's maximum cache
lifetime to 60 minutes:env = new Hashtable();env.put(PROPS.JNDI_CACHE_MAX_LIFE, "60");ctx = new
InitialContext(env);// To turn caching off:env = new Hashtable();env.put(PROPS.JNDI_CACHE_OBJECT,
PROPS.JNDI_CACHE_OBJECT_NONE);ctx = new InitialContext(env);// To use caching and no caching:env =
new Hashtable();env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_POPULATED);ctx = new
InitialContext(env);env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);Context
noCacheCtx = new InitialContext(env);Object o;// Use caching to look up home, since the home should
rarely change.o = ctx.lookup("com/mycom/MyEJBHome");// Narrow, etc. ...// Do not use cache if data
is volatile.o = noCacheCtx.lookup("com/mycom/VolatileObject");// ...

4.6.2.4: JNDI helpers and utilities
Refer to the Sun JNDI specificationfor information on the base JNDI APIs. IBM WebSphere Application Server
provides the following JNDI extension and utility to help you implement and debug JNDI.

View the specific files for details.

JNDI helper class●

Name Space Dump utility●

http://www.javasoft.com/products/jndi/1.2/javadoc/index.html

4.6.2.4.1: JNDI helper class
The class com.ibm.websphere.naming.JndiHelpers contains static methodsto simplify common tasks. Refer to theAPI documentationfor more
information.

JNDI helper methods provide assistance with:

Recursively creating subcontexts.

 [...] import com.ibm.websphere.naming.JndiHelper; [...] try { Context
startingContext = new InitialContext(); startingContext =
startingContext.lookup("com/mycompany"); // Creates each intermediate subcontext, if
necessary, as well as leaf context. // AlreadyBoundException is not thrown.
JndiHelper.recursiveCreateSubcontext(startingContext, "apps/accounting"); } catch
(NamingException e) // Handle error. } [...]

●

Rebinding objects and creating intermediate contexts that do not already exist.

 [...] import com.ibm.websphere.naming.JndiHelper; [...] try { Context
startingContext = new InitialContext(); // Creates each intermediate subcontext, if necessary,
and rebinds object. JndiHelper.recursiveRebind(startingContext,
"com/mycompany/apps/accounting", someObject); } catch (NamingException e) // Handle
error. } [...]

●

Binding objects and throwing a NameAlreadyBoundException if the object is already bound.

There are two versions of this JndiHelper method:

 public static void recursiveBind(Context startingContext, Name name, Object obj) public
static void recursiveBind(Context startingContext, String name, Object obj)

 [...] import com.ibm.websphere.naming.JndiHelper; [...] try { Context
startingContext = new InitialContext(); // Creates each intermediate subcontext, if necessary,
and binds object. JndiHelper.recursiveBind(startingContext, "com/mycompany/apps/accounting",
someObject); } catch (NamingException e) // Handle error. } } catch
(Exception e) // Handle other errors. } [...]

●

http://localhost/0802_makepdf/apidocs/index.html

4.6.2.4.2: JNDI Name Space Dump utility
The name space stored by a given name server can be dumped withthe name space dump utility that is shipped with WebSphere Application Server.This
utility can be invoked from the command line or from a Java program. Thenaming service for the WebSphere Application Server host must be active when
this utilityis invoked.

To invoke this utility using the class com.ibm.websphere.naming.DumpNameSpace API, see the API documentation.

To invoke the utility through the command line, enter the following commandfrom the AppServer/bin directory:

 UNIX: dumpNameSpace.sh [[-keyword value]...]

 Windows NT: dumpNameSpace [[-keyword value]...]

The keywords and associated values for the dumpNameSpace utility are:

-host myhost.austin.ibm.com

Represents the bootstrap host or the WebSphere Application Server host whose name space youwant to dump. The value defaults to
localhost.

-port nnn

Represents the bootstrap port which, if not specified, defaults to 900.

-factory com.ibm.websphere.naming.WsnInitialContextFactory

Indicates the initial context factory to be used to get the JNDI initialcontext. The value defaults to:
com.ibm.websphere.naming.WsnInitialContextFactory
The default value generally does not need to be changed.

-startAt some/subcontext/in/the/tree

Indicates the path from the bootstrap host's root context to the toplevel context where the dump should begin. The utility recursively dumps
subcontextsbelow this point. It defaults to an empty string, that is, the bootstrap host root context.

-format {jndi | ins}

jndi Displays name components as atomic strings.

 The default format is jndi.

 ins Displays name components parsed per INS rules (id.kind).

-report {short | long}

short Dumps the binding name and bound object type. This output is also provided by JNDI Context.list().

 The default report option is short.

long Dumps the binding name, bound object type, local object type, and stringrepresentation of the local object (that is, the IORs,
string values, and other values that are printed).

For objects of user-defined classes to display correctly with the long report option, it may be necessary to add their
containing directories to the list of directories searched. This can be done by setting the environment variable
WAS_USER_DIRS.The value can include one or more directories, as for example:

UNIX:

 WAS_USER_DIRS=/usr/classdir1:/usr/classdir2 export WAS_USER_DIRS

Windows NT:

 set WAS_USER_DIRS=c:\classdir1;d:\classdir2

All zip, jar, and class files in the specified directories can then be resolved bythe class loader when running
dumpNameSpace

-traceString "some.package.name.to.trace.*=all=enabled"

Represents the trace string with the same format as that generated by the servers. The outputis sent to file, DumpNameSpaceTrace.out.

-help

Provides a description of Name Space Dump utility and command line usage.

Examples of Name Space Dump utility usage and output

Invoke the name space dump utility through a Java program.●

Invoke the name space dump utility through the command line.●

View the name space dump utility output.●

Invoke the name space dump utility by adding the following code to your Java program:■

http://localhost/0802_makepdf/apidocs/index.html

{ [...] java.io.PrintStream filePrintStream = ... Context ctx = new InitialContext(); ctx =
(Context) ctx.lookup("ejsadmin/node"); // Starting context for dump DumpNameSpace dumpUtil = new
DumpNameSpace(filePrintStream, DumpNameSpace.SHORT); dumpUtil.generateDump(ctx); [...]}

Invoke the name space dump utility from the command line by entering the following command:

dumpNameSpace -host myhost.mycompany.com -port 901

■

The generated output will look like the following example, which isthe SHORT dump format:

Getting the initial contextGetting the starting
context==Name
Space Dump Provider URL: iiop://will:901 Context factory:
com.ibm.websphere.naming.WsnInitialContextFactory Starting context: (top)=bootstrap host root
context Formatting rules: jndi Time of dump: Fri Mar 09 15:11:48 CST
2001==
==Beginning of
Name Space Dump==
1 (top) 2 (top)/jta
javax.naming.Context 3 (top)/jta/usertransaction
com.ibm.ejs.jts.jta.UserTransactionImpl 4 (top)/SecurityCurrent
com.ibm.ejs.security.util.SecurityCurrentRef 5 (top)/ContextHome
com.ibm.ejs.ns.CosNaming.EJSRemoteContextHome 6 (top)/PropertyHome
com.ibm.ejs.ns.CosNaming.EJSRemotePropertyHome 7 (top)/BindingHome
com.ibm.ejs.ns.CosNaming.EJSRemoteBindingHome 8 (top)/will
javax.naming.Context 9 (top)/will/resources javax.naming.Context
10 (top)/will/resources/sec javax.naming.Context 11
(top)/will/resources/sec/SecurityServer com.ibm.WebSphereSecurityImpl.SecurityServerImpl
12 (top)/ejsadmin javax.naming.Context 13 (top)/ejsadmin/node
javax.naming.Context 14 (top)/ejsadmin/node/will javax.naming.Context
15 (top)/ejsadmin/node/will/homes javax.naming.Context 16
(top)/ejsadmin/node/will/homes/DeployEJBHome com.ibm.ejs.sm.tasks.EJSRemoteDeployEJBHome 17
(top)/ejsadmin/node/will/homes/ServletEngineHome
com.ibm.ejs.sm.beans.EJSRemoteServletEngineHome[etc.]
==End of Name
Space Dump==

■

4.6.3: Java Message Service (JMS) overview
IBM WebSphere Application Server supports messaging as a method of communication based on the Java
MessageService programming interface.

Unlike JavaMail that enables communication initiated by people or by software components to people, Java
Message Service (or JMS)only provides communication between software components and applications.
Communication provided by JMS is loosely coupled, which meansthe sender and receiver do not have to be
active or aware of each other. The communication is also asynchronous. This meansclients do not have to
request messages from the JMS provider in order to receive them, and software components can send messages
to other components without stopping their processes to wait for a response.

In this peer-to-peer communication system, each client connects to a messaging agent that provides the
framework for sending and receiving messages.The client is required to know only the following:

message format●

destination of the message●

There are two approaches to messaging:

Point-to-point●

Publish/subscribe●

The point-to-point messaging approach uses such facilities as message queues, senders (or message producers),
and receivers (or message consumers). Clients send messages that are destined for a specific receiver to a
unique queue. When the receiving client extracts a message from the specific queue, it sends an
acknowledgement indicating the message was processed. Queues hold all messages until the messages are
received or until they expire.

The publish/subscribe messaging approach uses the concepts of publishers, subscribers, and topics. Clients send
messages to a topic or a content hierarchy.In order to receive the message, the message consumers must
subscribe to that topic. So, in this approach,the message producers are known as publishers and the message
consumers are known assubscribers. The JMS provider distributes the messages sent from the multiple
publishers to the topic, to the multiplesubscribers of that topic.

The MQSeries product is the default JMS provider for WebSphere Application Server. The MQSeries
administration tool, JMSAdmin, is used to bind JMS objects (connection factories and destinations) into the
namespace, and to set their properties.

WebSphere Application Server Enterprise Edition Version 4.0 also provides the JMS Listener function. Similar
to an event listener, the JMS Listenerenables WebSphere Application Server to react to anonymous, incoming
JMS messagesby invoking an appropriate enterprise java bean. The invoked enterprise bean is a stateless
session bean with anonMessage() method.

http://www.ibm.com/software/ts/mqseries/api/mqjava.html

4.6.3.1: Using the JMS point-to-point messaging
approach
This article describes the point-to-point messaging approach using WebSphere ApplicationServer's default JMS
provider, MQSeries. The MQSeries messaging server implements point-to-point communication. To enable the
MQSeries point-to-point messaging support, you need:

MQSeries Version 5.2 or greater●

With MQSeries Version 5.2, you need MQSeries SupportPac MA88●

MQSeries can now act as a resource manager in application transactions, and WebSphere Application Server can act as
the transaction coordinator.For example, when a client application sends a request, WebSphere Application Server,
using MQSeries, puts the message on an outqueue and waits for a response to return to the in queue.In this scenario,
there is no guarantee the message was sent, or that the receiver received the message. These types of messages are
known as non persistentmessages.

The point-to-point messaging approach in WebSphere Application Server and MQSeriesis illustrated in the following
graphic:

Message delivery can be defined as:

Persistent - this is the default mode of delivery. The "message send" is logged into stable storage.●

Non persistent - message delivery is not guaranteed. This mode of delivery improves performance and reduces
storage overhead.

●

Message delivery properties can be set:

On the queue within the queue manager●

On the queue object using the JMSAdmin tool●

On individual messages within your JMS application●

To define a queue in the JNDI namespace and to set thepersistence properties for the queue,enter the following
command in the MQSeries JMSAdmin tool:

 InitCtx> DEFINE Q(TESTQ) PERSISTENCE(xxx)

Where xxx is one of the following:

APP (Default) Persistence is defined by the application

QDEF Persistence is defined by the queue default (Set in the queue manager)

PERS Messages are persistent

NON Messages are non-persistent

If your application sends a message and requires a reply, set a reasonable timeoutvalue in your application to handle a
delayed or "no" reply situation. The followingapplication code waits for a maximum of 5000 milliseconds:

 Message inMessage = queueReceiver.receive(5000);

Set a similar timeout in your reply message.

Transactions to MQSeries are boundary transactions not end-to-end transactions.This means that only a put to a queue,
or a get from a queue is part of the transaction. The flow to a remote application is notpart of the transaction. In order to
guarantee the message is received bythe remote application, define that message in the JMSAdmin tool as a persistent
message.

WebSphere enterprise applications can use the JMS Listener function to automaticallyreceive messages from input
queues (JMS destinations) and to coordinate the processing of those messages. This enables automatic
asynchronousdelivery of messages to an enterprise application, instead of the applicationhaving to explicitly poll for
messages on the queue. For more information on the JMS Listener function, see An overview of the JMS Listener.

 The link to the JMS Listener documentation will not work unless the WebSphere Application
Server Enterprise Edition product extensions are installed on your system.

See the Support of the MQSeries Java Message Service resources article for configuration information.

http://localhost/0802_makepdf/ae_orig/jmslistn/concepts/cjlovrvw.htm

4.6.3.2: Using the JMS publish/subscribe messaging
approach
This article describes the "publish/subscribe" messaging approach using WebSphere ApplicationServer's default
JMS provider, MQSeries. You can implement the "publish/subscribe"messaging approach in MQSeries with the
Pub-Sub SupportPac or with Integrator.

To alleviate the complexity of a multiple queue manager topology, MQSeries introduced the concept of
Message Brokers with the MQSeries Integrator product. The following graphic illustrates five queue managers
configured to use a Message Broker:

In addition to the Message Broker, the Integrator product also supportsa Message Repository Manager, and the
publish and subscribe messaging approach.With this approach, the Message Broker matches a topic on a
published message with a list of clients who have subscribed to that topic. Neither publisher nor subscriber is
aware of each other. Publishers only know of the topics they describe for their messages, and subscribers only
know of the topicsthey requested.

In this topology, WebSphere Application Server can be a publisher or subscriber, or both, but requires the
configuration and resource support of the MQSeries Integrator product.

Visit the MQSeries Integratorsite for more information.

http://www.ibm.com/software/ts/mqseries/v5/pubsub.html
http://www.ibm.com/software/ts/mqseries/integrator/v202/

4.6.3.3: Support of Java Message Service resources
Unlike other J2EE resources that are typically objects that run in and are part of the application server, JMS
resources are external to WebSphere Application Server.This means administrators must first use a JMS
provider's administration tool to create the connection factories and destinations, and to assign these objects
with correctconfiguration attributes. After this step is completed, administrators can then use WebSphere
Application Servers' administrative client to create JMS resource objects to reference the external objects.

In WebSphere Application Server Version 4.0, the MQSeries product is defined as thedefault JMS provider.
However, since MQSeries is not shipped with WebSphere Application Server, this JMS provider is not installed
on any node.
Since this provider is predefined, after you install the MQSeries product, you only need to go to the Nodes tab
of theproperties editor for the Provider to install it on the desired nodes.

The following steps describe how to implement JMS support in WebSphere Application Server:

Configure a JMS provider. By default this will be the MQSeries product.1.

Create the destination and connection factory with the JMS provider's admin tool.
This will bind references to these objects in the JNDI namespace.

2.

Create corresponding JMS resources in WebSphere Application Server, declaring the location where
they were bound by the JMS admin tool as an attribute.
The RepositoryObjectimplementation for the resource binds the resource into the WebSphere
Application Servernamespace.

3.

Deploy the application, which resolves the JMS resource references with the JMS objects.4.

Start the application server containing the application.

At this point, the ResourceBinder object in the application server binds theJMS resource
objects into the namespace.

5.

The application code performs a "lookup" on a JMS resource.
The "lookup" finds the IndirectJNDILookup bound at the target WebSphere Application Server
location, and uses it to perform a subsequent lookup of the actualresource in the provider's namespace.

6.

4.6.3.4: Support for the use of MQSeries Java Message
Service resources
WebSphere Application Server Enterprise JavaBeans support the transactional use of MQSeries Java Message Service
(JMS) resources.

To use this feature, install MQSeries version 5.2 and the MQSeries classes for Java and JMS.Only MQSeries V5.2
provides this support; earlier versions will not work.

To configure JMS resources for use with WebSphere Application Server:

Download the MQSeries Java and JMS classes, or the pub-sub packagefrom one of the following URLs:

http://www.ibm.com/software/ts/mqseries/api/mqjava.html❍

http://www.ibm.com/software/ts/mqseries/txppacs/ma0c.html❍

1.

Review the MQSeries Using Java book for a description of the parameters required for WebSphere Application
Server.

 The instructions in this book refer to a WebSphere Application Server Version 3.5.3
environment, and are not valid for WebSphere Application Server Version 4.0. For example, the
following content in the book is invalid for Version 4.0:

Names of jar files❍

Dependent classpath❍

Adminserver classpath❍

2.

Do the following to configure WebSphere Application Server and MQSeries for JMS support:

Modify the JMSAdmin.bat file to include the option -java.ext.dirs=<WS AE>\lib when
running the MQSeries administration tool, JMSAdmin.

a.

Modify the JMSAdmin.config file by uncommenting the following lines:
INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory
PROVIDER_URL=iiop://localhost/ (or iiop://host-name)

b.

Comment out the following lines in the JMSAdmin.config file:
INITIAL_CONTEXT_FACTORY=com.ibm.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/C:/JNDI-Directory/

c.

Add the following to the application server classpath:

 You can add these classes in the console'sdefault JVM settings, or by editing
WebSphere Application Server's admin.config file.

<MQ JMS>\lib directory■

com.ibm.mq.jar file■

com.ibm.mqjms.jar file■

 An alternative way to set up the configuration isto use the administrative console. In
the Resources, JMS Providers folder, specifythe ContextFactory, the provider URL, and
the path to the MQSeries JMS .jar files.See the article about administering JMS
support resources for more information.

d.

3.

Bind the classes provided by the new function into the JNDI namespace using the MQSeries administration
tool, JMSAdmin.The JMSAdmin tool provides for two, new WebSphere Application Server JMS connection
factories:

WSQCF - a new type of queue connection factory❍

WSCTF - a new type of topic connection factory❍

4.

http://www.ibm.com/software/ts/mqseries/api/mqjava.html
http://www.ibm.com/software/ts/mqseries/txppacs/ma0c.html
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw.htm
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw11.htm
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw11.htm

WebSphere Application Server connection factory objects

The following calls can be used either in a global transactionor in an unspecified transaction context:

QueueSender.send●

MessageConsumer.receive●

MessageConsumer.receiveNoWait●

TopicPublisher.publish●

If another resource manager, as for example JDBC, is involved in a globaltransaction, the MQSeries JMS resources are
involved in a 2-phase commit.The 1-phase commit occurs if only the JMS resources are involved in a global
transaction. This is a feature of the Transaction Manager optimization.

In a global transaction, messages sent with QueueSender.send or published with TopicPublisher.publish
do not become visible until thetransaction is committed. Messages received by MessageConsumer.receiveor
MessageConsumer.receiveNoWait are requeued if the transaction isrolled back. Both bean-managed
transaction demarcation and container-managedtransaction demarcation are supported.

If no global transaction is active, then an "unspecified transaction context"situation occurs. The following
circumstances cause an "unspecified transaction context:"

EJB methods when a global transaction cannot occur (for example, ejbCreate)●

Bean Managed Transaction methods where the bean writer chose not to begin a transaction●

Container Managed Transaction NOT_SUPPORTED or NEVER methods●

Container Managed Transaction SUPPORTS methods when no transaction exists●

In an unspecified transaction context, the transactional behavior is specified in thetransacted flag that is passed when
the session is created. If the transacted flag is setto false, the messaging operations occur immediately. This is also
known as the 0-phase commit.If the flag is set to true, the send, receive, and publish operations occur on the commit of
the session,or also known as the 1-phase commit.

A summary of the transactional behavior for objects created on WSQCF or WSTCF is described in the following table:

Global transaction context Unspecified transaction context
transacted=false 2-phase commit 0-phase commit

transacted=true 2-phase commit 1-phase commit

To commit or to roll back the messaging work done on a transacted session, call method session.commit()or
session rollback().First check whether session.getTransacted() returns true before committing the
session.Session.getTransacted() returns true if:

The user passed in true as the transacted parameter when the session was created, and●

No global transaction is active at the moment of the call.●

If both tests are met, you can commit the session. Trying to commit a session when a global transaction is active will
result in the JMS exception, IllegalStateException, being thrown.

JMS XA support in WebSphere Application Server is integrated with local transactions.For container managed
transactions, an "unspecified transaction context" causes WebSphereApplication Server to start a local transaction.In
Version 4.0, the scope of the local transaction is the EJB method.The action taken at the end of the EJB method
(commit or rollback of the local transaction)depends on the information contained in the deployment descriptor. This
information is aWebSphere Application Server extension. The transaction manager will commit or rollback
anyoutstanding, uncommitted work done within the local transaction without any user intervention. The default is to
roll back.

Any work performed on a JMS session in an unspecified transaction context, will be rolled back or committed if the
corresponding local transaction is rolled back or committed.

 Requestors are only used with non-transacted sessions. Therefore, QueueRequestorand
TopicRequestor cannot be used with sessions created by WebSphere ApplicationServer JMS connection
factories.

Unsupported interfaces and methods

The following JMS interfaces are not designed for application use and, therefore,cannot be invoked:

Unsupported interfaces
javax.jms.ServerSession
javax.jms.ServerSessionPool
javax.jms.ConnectionConsumer
all the javax.jms.XA interfaces

The following JMS methods are inappropriatein this environment and interfere with connection management by the
container. Therefore, these methods cannot be used:

Unsupported methods
javax.jms.Connection.setExceptionListener
javax.jms.Connection.stop
javax.jms.Connection.setClientID
javax.jms.Connection.setMessageListener
javax.jms.Session.getMesssageListener
javax.jms.QueueConnection.createConnectionConsumer
javax.jms.TopicConnection.createConnectionConsumer
javax.jms.TopicConnection.createDurableConnectionConsumer
javax.jms.MessageConsumer.setMessageListener

All the above methods throw the JMS exception, IllegalStateException, when invoked.

 You cannot register a MessageListenerwith a QueueReceiver or TopicSubscriber.

The following methods throw the JMS exception, IllegalStateException, if used within a global transaction:

javax.jms.Session.commit
javax.jms.Session.rollback
javax.jms.Session.recover

 With the Enterprise JavaBeans programming model, you must ensure all JMS resources are closed
correctly.Since JMS resources never time-out, JMS resources that are not closed correctly will continue
to consume MQSeries resources.The MQSeries resources also persist until the application server or
MQSeries Queue manager is restarted.

Restrictions

The following restrictions exist regarding the use of JMS XA support in WebSphere Application Server:

A subscriber can only be used in the same type of transactional context (for example, a global transaction or
anunspecified transaction context) as the one that existed when the subscriber was created.

If this restriction is not respected, the JMS exception, subscriber restriction, is thrown.

If a global transaction is active at the creation of the subscriber, that subscriber can be used to receive messages
in different global transactions, but not in an unspecified transaction context.

If an unspecified transaction context is active when the subscriber is created, that subscriber cannotbe used with
a global transaction.

●

The use of JMS sessions across methods with different transactional attributes is restricted.

If a session was used within a global transaction, it cannot be reused in a differentglobal transaction or in an
unspecified context until the first transaction commits.Similarly, if there is work outstanding in a local
transaction then the session cannot be used in a global transaction until the local transaction has
finished.Session use, in this case, refers to the send, receive, and publish operations usingthe message producers
or consumers that were created on the session.

●

6.6.37: Administering mail providers and mail
sessions (overview)
WebSphere Application Server's implementation ofJavaMail does not provide mail servers. Even if your
application components can communicatewith mail servers, you still must configure separate IMAP and SMTP
serversto enable the mail functions.

Only the SMTP and IMAP service providers are shipped with WebSphere Application Server.To use other
protocols, install the appropriate service providers for those protocols.

When you configure your mail servers, use fully qualified internet host names.

For information on how to install a service provider, see Chapter 5, The Mail Session, in theJava Mail API
design specification.

The parameters used to configure a mail session resource can be dividedinto two groups:

mail send (transport) and1.

mail store access2.

If your enterprise application references a mail sessionresource, your application will use one of these functions:

only mail-send●

both mail-send and mail-store access●

only mail-store access

 Use of the only mail store-access option is rare. As such, the store access part of the
configuration is treated bySystem Management as optional while the mail-send function
is treated as mandatory.

●

http://java.sun.com/products/javamail/javamail-1_1_3.html
http://java.sun.com/products/javamail/javamail-1_1_3.html

6.6.37.0: Properties of JavaMail providers
Key:

 Applies to Java administrative console of Advanced Edition Version 4.0

 Applies to Web administrative console of Advanced Single Server Edition Version 4.0

 Applies to Application Client Resource Configuration Tool

Class Path

The path to the JAR file containing the implementation class for the JavaMail provider

Custom Properties

Name-value pairs for setting additional properties beyond those available in the administrative interface

Description

Optional description for your administrative records

Name

Administrative name of the JavaMail provider

6.6.37.0.1: Properties of JavaMail sessions
Key:

 Applies to Java administrative console of Advanced Edition Version 4.0

 Applies to Web administrative console of Advanced Single Server Edition Version 4.0

 Applies to Application Client Resource Configuration Tool

Category

Optional category for classifying this resource for your administrative records

Custom Properties

Name-value pairs for setting additional properties

Confirm Password or Re-Enter Password

Confirm the password that you entered in the preceding field

Description

Optional description for your administrative records

Enable Store

Enable JavaMail sessions

J2EE Resource Provider

The JavaMail provider with which this JavaMail session is associated

JNDI Binding Path or JNDI Name

The JNDI name for the resource, including any naming subcontexts. This name is used as the linkage
between the platform's binding information for resources defined in the client applications deployment
descriptor and actual resources bound into JNDI by the platform

JNDI Name

See JNDI Binding Path

Name

Administrative name of the JavaMail session object

Mail From or Outgoing Mail Originator

Value of replyTo field in mail messages sent through the mail transport host. The Internet email address
that by default will bedisplayed in the received message as either the "From" or the "Reply-To" address.
The recipient's reply will come to the specified address.

Mail Store Access Host or Mail Store Host

The server to which to connect when reading mail. This property combines with the mail store user ID

and password to represent a valid mail account. For example, if the mail account is
john_william@my.company.com, enter my.company.com.

Mail Store Access Password or Mail Store Password

The password to use when connecting to the mail store host. This property combines with the mail store
user ID and password to represent a valid mail account. For example, if the mail account is
john_william@my.company.com, enter the password corresponding to john_william.

Mail Store Access Protocol or Mail Store Protocol

The protocol to be used when reading mail. Should be IMAP.

Mail Store Access User Name or Mail Store User

The user ID to use when connecting to the mail store host.This property combines with the mail store
user ID and password to represent a valid mail account. For example, if the mail account is
john_william@my.company.com, enter john_william.

Mail Store Host

See Mail Store Access Host

Mail Store Password

See Mail Store Access Password

Mail Store Protocol

See Mail Store Access Protocol

Mail Store User

See Mail Store Access User

Mail Transport Host or Outgoing Mail Server

The server to which to connect when sending mail. Specify the fully qualified Internet host name of the
mail server, also known as the SMTP server

Mail Transport Password or Outgoing Mail Password

The password to provide when connecting to the mail transport host. This property is rarely used for the
default SMTP protocol. You can leave this field blank unless you use a transport protocol that requires a
user ID and password.

Mail Transport Protocol or Outgoing Mail Protocol

The transport or protocol to use when sending mail, such as "POP3", "IMAP4", or "SMTP"

The default is set to SMTP, and usually you should not change it. To use a different protocol, first install
the required service provider, and then enter the protocol name in this field.

Mail Transport User or Outgoing Mail User Name

The user ID to provide when connecting to the mail transport host. This property is rarely used for the
default SMTP protocol. You can leave this field blank unless you use a transport protocol that requires a
user ID and password.

Outgoing Mail Originator

See Mail From

Outgoing Mail Server

See Mail Transport Host

Outgoing Mail Password

See Mail Transport Password

Outgoing Mail Protocol

See Mail Transport Protocol

Outgoing Mail User Name

See Mail Transport User

Re-Enter Password

See Confirm Password

6.6.37.1: Administering JavaMail support resources
with the Java console
Use the Java administrative console to administer JavaMail sessions.

Work with resources of this type by locating them in the tree view:

WebSphere Administrative Domain -> Resources -> JavaMail Sessions

The instances will be displayed in the details view.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060001.html
http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060001.html

6.6.37.1.1: Configuring new JavaMail support
resources with the Java administrative console

Click Console -> New -> JavaMail Session from the console menu bar.1.

Specify JavaMail session properties.2.

Click OK.3.

Alternatively, use the Console -> New menu options pertaining to JavaMail resources.

6.6.37.9: Administering JavaMail providers and
sessions with the Application Client Resource
Configuration Tool
Use the Application Client Resource Configuration Tool to edit the configurations of JavaMail sessions to be
used by your application clients.

Work with objects of this type by locating them in the tree that is displayed by the tool when you use it to
openan EAR file. If file with which you are working contains JavaMail sessions, its tree will contain one or
more of the following:

Resources -> application.jar -> JavaMail Providers -> Mail Provider (a default mail provider) ->JavaMail
Sessions

Inside the JavaMail Sessions folder will be JavaMail sessioninstances.

6.6.37.9.1: Configuring new JavaMail sessions with
the Application Client Resource Configuration Tool
During this task, you will configure new mail sessions for your application client. The mail sessions will be
associated with the preconfigured default mail provider supplied by the product.

To configure a new JavaMail Session:

Start the tool and open the EAR file for which you want to configure the new JavaMail session. The
EAR file contents will be displayed in a tree view.

1.

From the tree, select the JAR file in which you wantto configure the new JavaMail session.2.

Expand the JAR file to view its contents.3.

Click JavaMail Providers -> MailProvider -> JavaMail Sessions. Do one of the following:

Right-click the JavaMail Sessions folder and select New Factory.❍

On the menu bar, click Edit -> New.❍

4.

In the resulting property dialog, configure the JavaMail session properties.5.

When finished, click OK.6.

On the menu bar, click File -> Save to save your changes.7.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060009a.html

6.6.37.9.3: Removing JavaMail sessions with the
Application Client Resource Configuration Tool
Please see "Removing objects from EAR files with theApplication Client Resource Configuration Tool", as this
task is similar for all object types supported by the tool.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/0606000903.html

6.6.37.9.4: Updating JavaMail session configurations
with the Application Client Resource Configuration
Tool
During this task, you will modify (update) the configuration of an existing JavaMail session. Note, you cannot
update the default JavaMail provider, but you can viewits properties by performing similar steps.

Start the tool and open the EAR file containing the JavaMail session. The EAR file contents will be
displayed in a tree view.

1.

From the tree, select the JAR file containing the JavaMail session that you want to update.2.

Expand the JAR file to view its contents.3.

Keep expanding the JAR file contents until you locate the particular JavaMail session that you want to
update. When you find it, do one of the following:

Right-click the object and select Properties❍

On the menu bar, click Edit -> Properties❍

4.

In the resulting property dialog, update the properties. For detailed field help, see:

JavaMail session properties❍

5.

When finished, click OK.6.

On the menu bar, click File -> Save to save your changes.7.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060009a.html

6.6.38: Administering URL providers and URLs
(overview)
A Default URL Provider is included in the initial product configuration. It utilizes the URL support provided by
the JDK. Any URL resources with protocols supported by the JDK (such as HTTP, FTP, FILE) can use the
Default URL Provider.

Please see the related information links for tasks and settings relatedto URL support.

6.6.38.0: Properties of URL providers
Key:

 Applies to Java administrative console of Advanced Edition Version 4.0

 Applies to Web administrative console of Advanced Single Server Edition Version 4.0

 Applies to Application Client Resource Configuration Tool

Classpath or Class Path or Server Classpath

The path to the JAR file containing the implementation classes for the URL provider

Custom Properties

Name-value pairs for setting additional properties

Description

Optional description of the URL Provider, for your administrative records

Name

Administrative name for the URL Provider

Node

The node with which the URL Provider is associated

If using the Java-based administrative console, use the buttons on the node panel to access dialogs for
installing drivers on specific nodes, and for uninstalling drivers.

Protocol

The protocol supported by this stream handler.

For Advanced Single Server Edition: This field is required

For the Application Client Resource Configuration Tool: This refers to a customprotocol. If you are
going to use a standardprotocol, such as "nntp," "smtp," or "ftp," then leave this field blank

Server Classpath

See Classpath

Stream Handler Class or Stream Handler Class Name

Fully qualified name of Java class that implements the stream handler for the protocol specified by the
Protocol property

6.6.38.0.1: Properties of URLs
Key:

 Applies to Java administrative console of Advanced Edition Version 4.0

 Applies to Web administrative console of Advanced Single Server Edition Version 4.0

 Applies to Application Client Resource Configuration Tool

Category

Administrative category for the URL

Custom Properties

Name-value pairs for setting additional properties

Description

Optional description of the URL, for your administrative records

JNDI Binding Path or JNDI Name

The JNDI name for the resource, including any naming subcontexts. This name is used to link the
platform's binding information. The binding associates the resources defined in the deployment
descriptor of the module to the actual (physical) resources bound into JNDI by the platform.

JNDI Name

See JNDI Binding Name

Name

Administrative name for the URL

Spec or URL

The string from which to form a URL

URL

See Spec

URL Provider

The URL Provider that implements the protocol for this URL

6.6.38.1: Administering URL resources with the Java
administrative console
Use the Java administrative console to administer URL providers and URLs.

Work with resources of this type by locating them in the tree view:

WebSphere Administrative Domain -> Resources -> URL Providers -> provider_name -> URLs

The URL instances will be displayed in the details view.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060001.html
http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060001.html

6.6.38.1.1: Configuring URL resources with the Java
administrative console
URL resources allow you to define specific locations for a resource on a network.

To create a URL resource, click Console -> Wizards -> Create URL Resource from the console menu bar.
This leads to the URL Resource task wizard.

Alternatively, use the Console -> New menu options pertaining to URL resources.

Using the URL Resource wizard

You use a URL Resource wizard to define a resource that uses the Default URL Provider. Using the wizard sets
basic properties pertaining to URL resources. To set other property values for URL resources, use the properties
dialogs for URL resources.

Naming the URL resource and specifying its URL string●

Completing the URL resource●

Naming the URL resource and specifying its URL string

On the Specifying the URL Resource panel:

Name your resource.1.

Describe your resource.2.

Specify the string for the URL. A sample string is http://www.ibm.com.

View URL resources properties help

3.

Click Next.4.

Completing the URL resource

The final panel lists the URL resource name and the URL string.

If you do not want to change the values specified, click Finish. Thewizard will define a URL resource with the
values you specified, and display a message indicating whether the resource was successfully created. Your
specifiedURL will be created using the Default URL Provider. If the wizard encounters an error, a message will
display explaining why a URL resource could not be defined.

To change the values specified, click Back to return to the appropriatepanel(s), make any needed changes, and
then click Finish on this panel.

6.6.38.1.2: Installing and uninstalling URL providers
on nodes, with the Java administrative console
To install a provider:

Locate a URL provider instance in the tree view.1.

Click the Nodes tabbed page.2.

Click the Install New button.3.

Configure the new provider:

Select a node on which to install the provider.1.

Specify or browse for the classpath directory (see URL provider properties).2.

Click Install.3.

4.

Click Apply on the URL provider properties view.5.

To uninstall a provider:

Locate a URL provider instance in the tree view.1.

Click the Nodes tabbed page.2.

Select a provider from the list of providers.3.

Click Uninstall.4.

Click Apply on the URL provider properties view.5.

You can also click a node instance in the tree view todisplay a similar configuration dialog.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060201.html

6.6.38.9: Administering URL providers and URLs with
the Application Client Resource Configuration Tool
Use the Application Client Resource Configuration Tool to edit the configurations of URL providers and URLs
to be used by your application clients.

Work with objects of this type by locating them in the tree that is displayed by the tool when you use it to
openan EAR file. If file with which you are working contains URL providers and URLs, its tree will contain
one or more of the following:

Resources -> application.jar -> URL Providers -> url_provider_instance

where url_provider_instance isa particular URL provider.

If you expand the tree further, you will also see the URLs folders containing the URL instances for each URL
provider instance.

6.6.38.9.1: Configuring new URL providers and URLs
with the Application Client Resource Configuration
Tool
During this task, you will create URL providers and URLs for your client application. Note, in a separate
administrative task, the Java code for the required URL provider must be installed on the client machine on
which the client application resides.

To configure a new URL provider:

Start the tool and open the EAR file for which you want to configure the new URL provider. The EAR
file contents will be displayed in a tree view.

1.

From the tree, select the JAR file in which you wantto configure the new URL provider.2.

Expand the JAR file to view its contents.3.

Click the folder called URL Providers. Do one of the following:

Right-click the folder and select New Provider.❍

On the menu bar, click Edit -> New.❍

4.

In the resulting property dialog, configure the URL provider properties.5.

When finished, click OK.6.

On the menu bar, click File -> Save to save your changes.7.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060009a.html

6.6.38.9.1.1: Configuring new URLs with the
Application Client Resource Configuration Tool
During this task, you will create URLs for your client application.

In the tree, click the URL provider for which you want to create a URL.

Configure a new URL provider.❍

Or, click an existing URL provider.❍

1.

Expand the URL provider to view its URLs folder.2.

Click the folder. Do one of the following:

Right-click the folder and select New Factory.❍

On the menu bar, click Edit -> New.❍

3.

In the resulting property dialog, configure the URL properties.4.

When finished, click OK.5.

On the menu bar, click File -> Save to save your changes.6.

6.6.38.9.3: Removing URL providers and URLs with
the Application Client Resource Configuration Tool
Please see "Removing objects from EAR files with theApplication Client Resource Configuration Tool", as this
task is similar for all object types supported by the tool.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/0606000903.html

6.6.38.9.4: Updating URL and URL provider
configurations with the Application Client Resource
Configuration Tool
During this task, you will modify (update) the configuration of an existing URL or URL provider.

Start the tool and open the EAR file containing the URL or URL provider. The EAR file contents will be
displayed in a tree view.

1.

From the tree, select the JAR file containing the URL or URL providerthat you want to update.2.

Expand the JAR file to view its contents.3.

Keep expanding the JAR file contents until you locate the particular URL or URL provider that you
want to update. When you find it, do one of the following:

Right-click the object and select Properties❍

On the menu bar, click Edit -> Properties❍

4.

In the resulting property dialog, update the properties. For detailed field help, see:

URL provider properties❍

URL properties❍

5.

When finished, click OK.6.

On the menu bar, click File -> Save to save your changes.7.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060009a.html

6.6.39: Administering messaging and JMS providers
(overview)
Please see the related information links.

6.6.39.0: Properties of JMS providers
Key:

 Applies to Java administrative console of Advanced Edition Version 4.0

 Applies to Web administrative console of Advanced Single Server Edition Version 4.0

 Applies to Application Client Resource Configuration Tool

Binding Classname or Binding Class or JNDI Binding Mechanism

Java classname to be used for namespace binding. This value is required only for providers with
non-standard binding requirements.

Classpath or Class Path or Server Class Path

The class path that identifies the location of the driver classes (the JMS initial context factory)

Context Factory Class or Context Factory Classname

The Java class name of the JMS providers initial context factory

Custom Properties

Name-value pairs for setting additional properties

Description

Optional description for your administrative records

External Initial Context Factory

Java classname of the initial context factory of a provider

External Provider URL or Provider URL

JMS provider URL for external JNDI lookups

JNDI Binding Mechanism

See Binding Classname

Name

Administrative name for this provider

Nodes

The nodes with which this provider is associated. See also node properties.

If using the Java-based console, use the buttons on the node panel to access dialogs for installing
providers on specific nodes, and for uninstalling providers.

Provider URL

See External Provider URL

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060200.html

Server Class Path

See Classpath

6.6.39.0.1: Properties of JMS connection factories
Key:

 Applies to Java administrative console of Advanced Edition Version 4.0

 Applies to Web administrative console of Advanced Single Server Edition Version 4.0

 Applies to Application Client Resource Configuration Tool

Category

Optional category for your administrative records

Connection Type

Whether the JMS Destination is a queue or topic. Queues are used for point-to-point messaging. Topics
are used for publish-and-subscribe messaging.

Custom Properties

Name-value pairs for setting additional properties

Description

Optional description for your administrative records

External JNDI Name or External JNDI Path

Namespace location of JMS created connection factory

External JNDI Path

See External JNDI Name

JMS Provider

The JMS provider with which this connection factory is associated

JNDI Name

Namespace location of JMS created connection factory, including any naming subcontexts.

The name is used to link the platform binding information. The binding associates the resources defined
the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Name

Administrative name for this JMS connection factory

6.6.39.0.2: Properties of JMS destinations
Key:

 Applies to Java administrative console of Advanced Edition Version 4.0

 Applies to Web administrative console of Advanced Single Server Edition Version 4.0

 Applies to Application Client Resource Configuration Tool

Category

Optional category for your administrative records

Custom Properties

Name-value pairs for setting additional properties

Description

Optional description for your administrative records

Destination Type

Whether the JMS Destination is a queue or topic. Queues are used for point-to-point messaging. Topics
are used for publish-and-subscribe messaging.

External JNDI Name or External JNDI Path

Namespace location of JMS created destination

External JNDI Path

See External JNDI Name

JMS Provider

The JMS provider with which this connection factory is associated

JNDI Name

Namespace location of JMS created connection factory, including any naming subcontexts.

The name is used to link the platform binding information. The binding associates the resources defined
the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Name

Administrative name for this JMS destination

6.6.39.1: Administering JMS support resources with
the Java administrative console
Use the Java administrative console to administer JMS providers, JMS connectionfactories, and JMS
destinations.

Work with resources of this type by locating them in the tree view:

WebSphere Administrative Domain -> Resources -> JMS Providers -> provider_name

Expand the tree further to see the JMS Connection Factories and JMS Destinationsfolders. The
corresponding instances will be displayed in the details view.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060001.html
http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060001.html

6.6.39.1.1: Configuring JMS resources with the Java
administrative console
To create a JMS connection factory or destination, click Console -> Wizards -> Create JMS Resource from
the console menu bar. This leads to the JMS Resource task wizard.

Alternatively, use the Console -> New menu options pertaining to JMS resources.

Using the JMS Resource wizard

You can use a JMS Resource wizard to define a connection factory or destination. Using the wizard sets basic
properties pertaining to JMS resources. To set other property values, use the properties dialogs for JMS
resources.

Selecting to create a new connection factory or destination●

Naming the JMS resource and specifying its JNDI path●

Specifying a JMS provider●

Creating a new JMS provider●

Completing the connection factory or destination●

Selecting to create a new connection factory or destination

On the Specifying a JMS Resource panel, select to create a new JMS connectionfactory or a new destination,
and then click Next.

Naming the JMS resource and specifying its JNDI path

On the Creating a JMS Connection Factory or Creating a JMS Destination panel:

Specify the JNDI path where the JMS administrative tool has bound this resource.

If a connection factory is being created, it is recommended that within the name you identify the JMS
resource to which the factory will provide connections. For example, enter
QueueConnectionFactory.

1.

Describe your resource.2.

Specify the external JNDI path where your JMS resource should be stored. A sample path is
jms/QueueConnectionFactory.

View JMS resources properties help

3.

Click Next.4.

Specifying a JMS provider

On the Specifying a JMS Provider panel, select an existing JMS provider or opt to create a new JMS provider,
and then click Next.

A JMS provider represents a library that implements the JMS interfaces fora specific vendor.

Creating a new JMS provider

On the Creating a JMS Provider panel:

Name your JMS provider. Further, specify a context factory class name and a URL for the provider.
Optionally, describe your JMS provider and specify a binding class name.

View JMS resources properties help

1.

Click Next.2.

Completing the connection factory or destination

The final panel lists the JMS resource name, the external JNDI path where the resource will reside, and the
provider name. If a new provider is being created, the panel also lists the context factory class name and the
provider URL.

If you do not want to change the values specified, click Finish. Thewizard will define a connection factory or
destination with the values you specified, and display a message indicating whether the resource was
successfully created. If the wizard encounters an error, a message will display explaining why a connection
factoryor destination could not be defined.

To change the values specified, click Back to return to the appropriatepanel(s), make any needed changes, and
then click Finish on this panel.

6.6.39.1.2: Installing and uninstalling JMS providers
on nodes, with the Java administrative console
To install a provider:

Locate a JMS provider instance in the tree view.1.

Click the Nodes tabbed page.2.

Click the Install New button.3.

Configure the new provider:

Select a node on which to install the provider.❍

Specify or browse for the classpath directory (see JMS provider properties).❍

Click Install.❍

4.

Click Apply on the JMS provider properties view.5.

To uninstall a provider:

Locate a JMS provider instance in the tree view.1.

Click the Nodes tabbed page.2.

Select a provider from the list of providers.3.

Click Uninstall.4.

Click Apply on the JMS provider properties view.5.

You can also click a node instance in the tree view todisplay a similar configuration dialog.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060201.html

6.6.39.9: Administering JMS providers, connection
factories, and destinations with the Application Client
Resource Configuration Tool
Use the Application Client Resource Configuration Tool to edit the configurations of JMS providers, JMS
connectionfactories, and JMS destinations to be used by your application clients.

Work with objects of this type by locating them in the tree that is displayed by the tool when you use it to
openan EAR file. If file with which you are working contains JMS providers, JMS connectionfactories, and
JMS destinations, its tree will contain one or more of the following:

Resources -> application.jar -> JMS Providers -> jms_provider_instance

where jms_provider_instance isa particular JMS provider.

If you expand the tree further, you will also see the JMS Connection Factories and JMS Destinations folders
containing the connection factory and destination instances for each JMS provider instance.

6.6.39.9.1: Configuring new JMS providers with the
Application Client Resource Configuration Tool
During this task, you will create new JMS provider configurations for your applicationclient. The client
application can make use of a messaging service through the Java Message Service APIs. A JMS provider
provides two kinds of J2EE factories. One is a JMS Connection factory, and the other is aJMS destination
factory.

Note, in a separate administrative task, the JMS client must be installed on the client machine where the client
application resides. The messaging product vendor must provide an implementation of the JMS client. For more
information, see your messaging product documentation.

To configure a new JMS provider:

Start the tool and open the EAR file for which you want to configure the new JMS provider. The EAR
file contents will be displayed in a tree view.

1.

From the tree, select the JAR file in which you wantto configure the new JMS provider.2.

Expand the JAR file to view its contents.3.

Click the folder called JMS Providers. Do one of the following:

Right-click the folder and select New Provider.❍

On the menu bar, click Edit -> New.❍

4.

In the resulting property dialog, configure the JMS provider properties.5.

When finished, click OK.6.

On the menu bar, click File -> Save to save your changes.7.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060009a.html

6.6.39.9.1.1: Configuring new connection factories
with the Application Client Resource Configuration
Tool
During this task, you will create a new JMS connection factory configuration for your applicationclient.

To configure a new connection factory:

In the tree, click the JMS provider for which you want to create a connection factory.

Configure a new JMS provider.❍

Or, click an existing JMS provider.❍

1.

Expand the JMS provider to view its JMS Connection Factories folder.2.

Click the folder. Do one of the following:

Right-click the folder and select New Factory.❍

On the menu bar, click Edit -> New.❍

3.

In the resulting property dialog, configure the JMS connection factory properties.4.

When finished, click OK.5.

On the menu bar, click File -> Save to save your changes.6.

6.6.39.9.1.2: Configuring new JMS destinations with
the Application Client Resource Configuration Tool
During this task, you will create new JMS destination configuration for your applicationclient.

To configure a new destination:

In the tree, click the JMS provider for which you want to create a destination.

Configure a new JMS provider.❍

Or, click an existing JMS provider.❍

1.

Expand the JMS provider to view its JMS Destinations folder.2.

Click the folder. Do one of the following:

Right-click the folder and select New Factory.❍

On the menu bar, click Edit -> New.❍

3.

In the resulting property dialog, configure the JMS destination properties.4.

When finished, click OK.5.

On the menu bar, click File -> Save to save your changes.6.

6.6.39.9.3: Removing JMS providers, connection
factories, and destinations with the Application Client
Resource Configuration Tool
Please see "Removing objects from EAR files with theApplication Client Resource Configuration Tool", as this
task is similar for all object types supported by the tool.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/0606000903.html

6.6.39.9.4: Updating JMS provider, connection
factory, and destination configurations with the
Application Client Resource Configuration Tool
During this task, you will modify (update) the configuration of an existing JMS provider, connection factory, or
destination.

Start the tool and open the EAR file containing the JMS provider, connection factory, or destination.
The EAR file contents will be displayed in a tree view.

1.

From the tree, select the JAR file containing the JMS provider, connection factory, or destinationthat
you want to update.

2.

Expand the JAR file to view its contents.3.

Keep expanding the JAR file contents until you locate the particular JMS provider, connection factory,
or destination that you want to update. When you find it, do one of the following:

Right-click the object and select Properties❍

On the menu bar, click Edit -> Properties❍

4.

In the resulting property dialog, update the properties. For detailed field help, see:

JMS provider properties❍

JMS connection factory properties❍

JMS destination properties❍

5.

When finished, click OK.6.

On the menu bar, click File -> Save to save your changes.7.

http://localhost/0802_makepdf/ae_orig/nav_javatechnav/06060009a.html

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

	P54:
	Numbers:
	Numbx:
	L: 54
	C:
	R:

	P55:
	Numbers:
	Numbx:
	L:
	C:
	R: 55

	P56:
	Numbers:
	Numbx:
	L: 56
	C:
	R:

	P57:
	Numbers:
	Numbx:
	L:
	C:
	R: 57

	P58:
	Numbers:
	Numbx:
	L: 58
	C:
	R:

	P59:
	Numbers:
	Numbx:
	L:
	C:
	R: 59

	P60:
	Numbers:
	Numbx:
	L: 60
	C:
	R:

	P61:
	Numbers:
	Numbx:
	L:
	C:
	R: 61

	P62:
	Numbers:
	Numbx:
	L: 62
	C:
	R:

	P63:
	Numbers:
	Numbx:
	L:
	C:
	R: 63

	P64:
	Numbers:
	Numbx:
	L: 64
	C:
	R:

	P65:
	Numbers:
	Numbx:
	L:
	C:
	R: 65

	P66:
	Numbers:
	Numbx:
	L: 66
	C:
	R:

