WebSphere Application Server Enterprise Services

Business Rule Beans (BRBeans)

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices"on

page .

© IBM Corporation 2001 US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents
Contents

Part I: Concepts and Architecture
Business Rule Beans (BRBeans)
What is a business rule?
Different types of business rules
BRBeans development and maintenance
0] [=T S
Why externalize rules?cccoccceeeeeeenn.
Part Il: Where to begincccoovvvvivvvviiinnnnnnn.
Database considerationsccceeen.
Oracle considerationscccceeu.....
Sybase considerationsccc.......
Informix considerations
Getting Started with BRBeans

Installing a BRBeans jar file on AE -
OVEIVIEW oottt
Installing a BRBeans jar file on AEd -
OVEIVIEW .iiiieiee e eiieeee e
Starting the BRBeans Rule Management
Applicationccccoevii
Part Ill: Rule Administrationcccccoe......
Rule administrationcccoeeeeenes
Part IV: The BRBeans framework
The BRBeans framework - overview
Business Rule Beans - overview
Rule Statesccoccveevviiiieeeeice e
Rule attributesccocveevviiieeeeinen.
Returning results from rules
Dependent Rulesccccovvviveeininnen.
BRBeans Rule Foldersccccceee....
Trigger Point Framework - overview

How to place a trigger point
Types of Trigger Points - overview
Using strategy objects to control triggers

Pre-defined rule implementors
BRBeans framework runtime
Externalized business rules
Runtime behaviorccccccceeeenn.
Runtime exception handling
Rule Management APIScccccveeeeeennn.
Part V: TOOIS e,
Using the Rule Management Application
(RMA) - OVEIVIEW ...
Creating rulescccceveeviiiieeeeennn,
Creating rule folderscccccceeeeeenn.
Copying or moving rules or rule folders

Using QUIck Copy ...ccccvvvvveeeiieeeeeiieins
Findingarulecooocccvviviieeeeeeeee,

©OPO~Nyoooh pWNNpN

[EnN
N

14

16
16

17
17
18
19
19
21

21
21
22

23

23
24
27

29

30

30

31
31
32
32
33
34
36
36

36
37
37

37
38

Deleting rulesccccovvviveeeiiiiiieeens
Deleting rule foldersccccvvveeeeeen.
Changing the Properties of a rule
Importing arulecccoeoeevviiiiiiinennn.
Exportingarulecccooveeeeeeeeeniiinnns
Renaming rulescccoccveveeeeeiiiinnnns
Renaming rule foldersccco....
Formatting columnscccceeeeennen.
Changing the date/time format
Using the Rulelmporter and the
RuleExporter toolscccvvviiiieeiiiennnnnn,
Using the Rulelmporter tool
Using the RuleExporter tool
Part VI: Advanced TOpPICS ...ccccvvvveerreeeeennnn.
Improving performance - overview
Caching to improve performance
Using servlets to improve performance

Changing the firing location to improve
PEerformancecccccccovvveccvvieiieeeeeeee,
Writing your own strategiescueee...
AS Of datevvvveeeiieeieee e,
The BRBeans Properties file

Including BRBeans in your application
Part VII: Samplescccceeeeeiiiiiiciiiiieeeeeee,
Business Rule Beans samples - overview

38
38
38
39
39
39
39
40
40
40

40
41

43
43
43

44

44
44
45
47
47
47

49
49

WebSphere Application Server Enterprise Services - Page 3

WebSphere Application Server Enterprise Services - Page 1

Part I: Concepts and Architecture
* “What is a business rule?” on page 2
« ‘“Different types of business rules” on page 3
* “BRBeans development and maintenance roles” on page 4
* “Why externalize rules?” on page 4

Business Rule Beans (BRBeans)

The Business Rule Beans (BRBeans) framework extends the scope of Websphere
Application Server Enterprise Edition to support business applications that externalize their
business rules. You can use BRBeans to create and modify rules to keep pace with your
complex business practices so that your application's core behavior, and user interface
objects remain intact and untouched.

Rule externalization is accomplished by extending the application analysis and design
processes to identify the points of variability in application behavior. These are called
trigger points: small pieces of code that interface with the BRB trigger point framework to
run business rules during application execution.

The user can also employ standard Java development tools to attach BRBeans to either
Enterprise Java Beans (EJBs) or ordinary Java objects. Programming a unique new rule
implementation in Java is usually a simple process, made easier by the set of pre-defined
rule implementors provided that can be used to create your own business rules.

What is a business rule?

A business rule is a statement that defines or constrains some aspect of a business by
asserting control over some behavior of that business. A business rule officiates over
frequently changing business practices, and can come from within the company, or be
mandated from outside, typically by regulatory agencies.

At its simplest level, a business rule is little more than a well placed IF/THEN statement that
compares a variable against a determined value, and then issues a command when they
match.

For example, consider the following business rules:
Example 1:
IF a person is a senior citizen, THEN provide a 5% discount.

In this case, the variable information includes:
» the age at which a person is considered to be a senior citizen
» the amount of the discount.

Example 2:

IF a person drives more than 150 miles a week to and from work, THEN add $25 to their
auto insurance premium.

In this case, the values that might change are:
» the number of miles
e the amount of money to add to the premium.

WebSphere Application Server Enterprise Services - Page 2

Example 3:

A bank wants to classify its customers based on their investment (checking, savings, CDs,
loans) according to the following business rules:

e IF a customer invests less than $5000 THEN place the customer in the bronze level.

» IF a customer invests $5000 or more but less than $10,000, THEN classify the customer
as silver.

* IF a customer invests more than $10,000, THEN consider the customer as gold.

In this case, the bank would run into long-term problems if these categories were coded into
their application data. What would happen if the bank wanted to change the boundaries
between each level? Or, what if they decided to add another level in the future, such as
platinum? If the rules were internal, they would have to be modified at their every
occurrence in the code. This is just one advantage to externalizing rules. For more, see
“Why externalize rules?” on page 4 .

Different types of business rules
The two types of rules are:
» base rules (of which there are several kinds), and
» classifier rules.

Base rules are the most common type of rule used, and are triggered with the
Tri gger Poi nt.tri gger method.

There are a number of kinds of base rules:

» Derivation rule: A rule that uses an algorithm to return a value. It can return any type of
value that makes sense in the business context in which it is used. For example, a
derivation rule may calculate a discount or compute the total price of an order.

« Constraint rule: A rule that confirms that an operation has met all of its obligations, and
that a particular constraint or edit has been met. For instance, it may check that a value
entered by an external user is within legal bounds. BRBeans provides a special return
type: com i bm webspher e. br b. Const r ai nt Ret ur n, which can be returned by a
constraint-type rule. A Const r ai nt Ret ur n object contains a boolean value so that if it
is false, it can contain information that can be used to produce an external message
explaining what constraint was not met.

* Invariant rules: A rule that ensures that multiple changes made by an operation are
properly related to one another.

e Script rules: Scripts implement "micro-workflow" or electronic performance support.
They are small, variable pieces of business process which can provide assistance to
end-users to get the most from the application.

On the surface, classifier rules are much like base rules, however they differ in that they
can be used to determine the ways in which variables are classified by a business.
Classifier rules are triggered with the Tri gger Poi nt . tri gger C assi fi er method.

A classifier rule is used to compute a classification for a particular business situation. The
classification returned is required to be a String. For instance, a bank customer may be
classified into Gold, Silver, and Bronze categories based on their spending history or the
amount of money they have in their account. For more information on the kind of support
that BRBeans has for this type of rule, refer to “Situational Trigger Point - an example” on
page 26.

BRBeans development and maintenance roles

WebSphere Application Server Enterprise Services - Page 3

Business Rule Beans can be used by anyone needing to externalize their business rules.
Specifically though, they are created and maintained by the following individuals:

» the application developer and
» the business analyst.

The application developer is the individual who writes the application that uses the rules,
and so is responsible for their initial creation.

The application developer will typically assign the following to a rule:

* aname

e adescription

» possibly a classification

* rule implementor class

» afiring location

» adefault start date (optional)

» adefault set of init parameters (the business rule values) (optional)

In contrast, the business analyst determines the values for the business rules. They would
provide the following additional information:

» start and end date
* init parameters
* business intent

This kind of working arrangement is advantageous as both individuals may work with the
same tool (the Rule Management Application), the developer may create a rule without
needing to know the values that are to be contained inside it, and the analyst can modify it
armed only with the knowledge of the rule name and the folder it is located in.

Why externalize rules?
Here is a list of some advantages of externalizing business rules:

» Explicit documentation of business practice decisions. Externalizing them gets the
rules out of people's heads and out of the application code making it available for others
to view and understand.

» Clearer understanding of application behavior. Externalization makes it possible to
inspect the application to see which business rules are being applied, when, and under
what circumstances.

* Reuse of rules across business processes. Separating rules from the business logic
of the application makes it easy to reuse a business practice decision in a consistent
fashion.

» Increased consistency of business practices. Because externalized rules promote
reuse and facilitate clear understanding of business practice decisions, they provide a
basis for improving business practice consistency across applications.

« Decreased maintenance and testing costs. Externalized rules have a clearly defined
scope and are not tightly coupled to the application code. This makes them easy to
modify and quick to test, decreasing costs and improving cycle time.

* Improved manageability of business practice decisions. Externalization, change
history, and inspectability all promote clear ownership and consequently a better
definition of who can change rules and under what circumstances.

WebSphere Application Server Enterprise Services - Page 4

* Increased confidence in predicting the business impact of proposed changes.
Because rules are available for inspection, have well-defined scope, and are not tightly
coupled to application business logic, they make it easy to understand the likely impact
of changes and to predict whether contemplated modifications or additions will have
unwanted ripple effects.

» Easy ability to identify and correct conflicting business rules in different parts of
the business. Externalized rules make it easy to check that rules being used in two
different parts of an application, or even two different applications dealing with different
parts of the business, are consistent.

WebSphere Application Server Enterprise Services - Page 5

Part Il:

Where to begin

* “Getting Started with BRBeans” on page 8
« ‘“Database considerations” on page 6
« “Oracle considerations” on page 7
e “Sybase considerations” on page 7
« ‘“Informix considerations” on page 8
* ‘“Installing a BRBeans jar file on AE - overview” on page 9
e “Creating a database” on page 9
* “Creating a datasource and jdbc provider” on page 9
e “Creating a server” on page 10
« ‘“Installing the BRBeans <.jar file>" on page 10
e “Creating the database tables” on page 11
* ‘“Installing a BRBeans jar file on AEd - overview” on page 12
« “Deploying the code” on page 12
e “Creating a database” on page 12
e “Creating the database tables” on page 13
e “Creating a datasource” on page 13
« ‘“Installing the BRBeans <.jar file>.” on page 13
» ‘“Launching the BRBeans Rule Management Application” on page 14

Database considerations

The following relational databases are supported by BRBeans:

- DB2

* Oracle

» Sybase
e Informix

This documentation does not provide you with specific instructions on how to use any of
these databases. For help with specific commands, consult the documentation that
accompanied your database software . For installation and configuration instructions, refer
to the documentation for Advanced Edition (InfoCenter).

Large character data

There are several attributes in the BRBeans Rule EJB that may contain large amounts of
data. This would include such fields as: busi nessl ntent, dependent Rul es,
description, firingParaneters, initParanmeters, original Req,and

user Def i nedDat a. The value for these attributes is stored in a character type column
within a database table. When possible, they are stored in large character fields like LONG
VARCHAR (for DB2) and TEXT (for Sybase).

There are several cases where the use of large character fields is problematic, mostly in
terms of a lack of query support. Refer to each of the supported database sections for
details on the column type used for storing the values in these attributes.

Isolation level

WebSphere Application Server Enterprise Services - Page 6

All EJBs accessed in a transaction must specify the same isolation level. If your application
contains EJBs that are used in the same transaction as the rules, you must do one of the
following:

1. Change the BRBeans EJBs (Rul e, Rul eFol der, and Rul eHel per) to the same
isolation level as your beans.

2. Change your beans to the same isolation level as the BRBeans EJBs.
Place the BRBeans EJBs in a different database than your EJBs, and configure the

application to run two phase. This causes the beans to run in a different transactions,
thereby removing the restriction that they need to have the same isolation level.

Oracle considerations

Large character data

The preferred Oracle data type for storing large character objects is CLOB. However, Oracle
does not allow a CLOB to be queried. Because of this, a datatype of VARCHAR? is used by
BRBeans. A specific length must be specified when specifying VARCHAR2. The maximum
length for a VARCHARZ is 4000.

To determine the default size of VARCHAR2, look in the table.ddl file that was generated
when you deployed the code. If the default size is not acceptable for your application, you
can do one of the following:

1. Increase the size of the columns.

Keep in mind that maximum size for a VARCHAR?Z in Oracle is 4000. Increase the column
size either by changing the value in the create table statement, or by changing the
schema mapping and deploying the BRBeans jar file.

2. Change the schema mapping to specify CLOB

Do this for any of the attributes that you do not wish to query, and then deploy the
BRBeans jar file.

Isolation level

The default isolation level is REPEATABLE_READ. Oracle does not support this isolation
level. Therefore, the Websphere runtime will convert this to the next highest isolation level,
which in this case is SERI ALI ZED. Be aware that this isolation level tends to be overly
restrictive, as it prevents two clients from reading data at the same time. The

BRBeansOr acl e. j ar file specifies an isolation level of READ_COVM TTED.

Sybase considerations

Allowing null values

By default, Sybase does not allow null values in string columns (like VARCHAR, TEXT, etc).
You can change this default value for a database using "isgl" by issuing the following
command:

sp_dbopti on dat abasenane, "allow nulls by default", true

In this example "databasename" is your database name.

Large character data

The large character data fields are stored in a column of type TEXT. Sybase allows TEXT
fields to be queried only using the SQL "LI KE" operator. Queries against these columns that

WebSphere Application Server Enterprise Services - Page 7

perform the SQL "I S NULL" or "I S NOT NULL" operations are not allowed by Sybase. The
alternative is to specify a column type of VARCHAR. However, the maximum allowed size for
a VARCHAR in Sybase is 255 characters. This is not considered a large enough value for the
default size for storing fi ri ngParanmeters, initParaneters, descriptions, etc.

If performing "I S NULL" and "I S NOT NULL" type queries is important and the 255
character limitation is acceptable, change these column types to VARCHAR. This should be
accomplished by altering the schema mapping for the Rule bean and then deploying the
BRBeans jar file.

The query APIs (in the com i bm webspher e. br b. query package) allow for "I S NULL"

and "l S NOT NULL" type queries to be performed on several of these fields. In addition, the
“Rule Management Application” on page 14allows the firing parameters to be queried in this
manner. These queries will fail on Sybase with the default column type of TEXT.

Informix considerations
Large character data

The preferred Informix data type for storing large character data is CLOB. However, Informix
does not allow a CLOB to be queried. Because of this, a datatype of LVARCHAR is used by
BRBeans. The maximum length for an Informix LVARCHAR is 2K. If 2K is not acceptable,
and your application does not need to query these datatypes, you can change the schema
mapping to specify CLOB. Then deploy the BRBeans jar file.

Custom properties for the datasource

When configuring the datasource for your application, you must specify the following
properties:

Note: The following configuration values are subject to change. Consult your Informix
documentation for updates.

e i fxlI FXHOST=Nanme of the physical nachine on which the |Informx
instance is installed

e serverNanme=Inform x i nstance nane

e portNunmber=Port nunber for which the Infornmx instance is
configured

e inform xLockMbdeWai t =500
A setting of 500 causes a connection to wait for up to 500 seconds for a lock. If you have

a busy system, this wait can appear to be a system hang. This setting has the same
effect as running SET LOCK MODE TO WAIT 500 on the connection.

Getting Started with BRBeans

To work with BRBeans rules, you must install the EJBs that are used to implement them. To
do this, use one of the following two methods:

1. Install one of the 2 sample ear files that are provided in the
<WAS- HOVE>\ Ent er pri se\ sanpl es\ BRBeans directory. For detailed installation
instructions on how to do this, see BRBeansSi npl eSanpl e. ht M and
BRBeansMbvi eSanpl e. ht nl in this directory.

2. Install one of the BRBeans...jar files in the <WAS- HOVE>\ Ent er pri se\ BRBeans
directory. If you are running AE, then go “here” on page 9 for instructions. If you are
running AEd, then go “here” on page 12.

WebSphere Application Server Enterprise Services - Page 8

When you are ready to ship your application, you should include a BRBeans jar file in your
ear file. See “Including BRBeans in your application” on page 47fo details on how to do this.

When you have completed these steps, you will have installed and configured Business
Rules Beans for use with WebSphere. To familiarize yourself with it, you can test it out with
the Samples provided in “Part VII” on page 49.

Installing a BRBeans jar file on AE - overview

There are several BRBeans jar files in the <WAS-HOME \Enterprise\BRBeans directory,
each of their names reflecting the database that they support (ex: BRBeansDB2.jar). To
install the one for your database, follow these tasks in sequence:

“Create a database” on page 9

“Create a datasource and jdbc provider” on page 9
“Create a server” on page 10

“Install the BRBeans <.jar file>" on page 10

a kM wDde

“Creating the database tables” on page 11

When you have completed these steps, you will have installed and configured Business
Rules Beans for use with WebSphere AE. To familiarize yourself with it, you can test it out
with the Samples provided in “Part VII” on page 49.

Creating a database
The following task applies to both the AE and AEd platforms.

Determine whether you want to use an existing database with the BRBeans tables, or
create a new one. If you decide to create a new one, consult your database documentation
for instructions on how to do this. (If you're using DB2, you would create a new database
called brbeans, by typing db2 creat e dat abase brbeans ata DB2 prompt.

You have successfully created a database.

Proceed to “Creating a datasource and jdbc provider” on page 9 .

Creating a datasource and jdbc provider

Follow this procedure when installing on an AE platform, if you are using AEd, then see
“Installing a BRBeans jar file on AEd - overview” on page 12

You need to make sure that you have a data source and JDBC provider specified for the
database. You may use existing ones or create new ones. To create new ones, here are
some steps you may follow:

1. From the WebSphere Administrative Console, start the Create Data Source
Wizard.

a In the Specifying Datasource Resources
window, specify the following:

*« Name: brbds

» Database name: brbeans (or the name of the
database you are using)

b In the Specifying JDBC Provider window:
e Select - Create a new JDBC provider
c In the Create New JDBC Provider window,

specify the following:

WebSphere Application Server Enterprise Services - Page 9

¢ Name:
brbjdbc

« Implementation class: - from button on right,
select the class corresponding to the platform
and database. So, for example, for Windows and

DB2, select
COM i bm db2. j dbc. DB2Connect i onPool Dat aSour ce.
d In the Completing the DataSource wizard
panel, click Finish.
2. In the WS Admin Console, expand the folders to Resources/JDBC Providers
and click on brbjdbc
a Click on the Nodes tab in the right panel
b Click on the Install New button
c In the Install Driver window:

e Click on the node for the driver. For the
classpath, specify the classpath directory to the
db driver.

e Click Install.

d Click Apply.

You have successfully created a datasource and jdbc provider.

Proceed to “Creating a server” on page 10.

Creating a server
Follow this procedure when installing on an AE platform, if you are using AEd, then see
“Installing a BRBeans jar file on AEd - overview” on page 12

Decide on a server to use for the sample. You may use an existing server or create a new
one. To create a new one, follow these directions:

1. From the Administrative Console, start the Create Application Server wizard
2. In the Specifying Application Server Properties window, proceed as follows:
a Application server: brbsrv
b Select the node
c Click Next
d Click Next on the following window
e Click Finish on the next window

You have successfully created a server.

Proceed to “Installing the BRBeans <.jar file>" on page 10.
Installing the BRBeans <.jar file>

Follow this procedure when installing on an AE platform, if you are using AEd, then see
“Installing a BRBeans jar file on AEd - overview” on page 12

From the WebSphere Administrative Console, start the Install Enterprise Application
Wizard and proceed as follows:

1. In the Specifying the Application or Module window, select to Install

WebSphere Application Server Enterprise Services - Page 10

10.
11.

12.
13.

14.

standalone-module (*.war, *.jar), and then browse for the path to the
BRBeans<DBtype>.jar file. Click Next to continue.

In the Unprotected Methods window, click Yes.

In the Mapping Users to Roles window, click Next if you have not enabled

security. If you have enabled security, click Select for each of the Roles and
make the appropriate selections. Choose at least 1 user or group for each of
the following roles: RuleManager and RuleUser. Click Next.

In the Mapping EJB RunAs Roles to Users window, click Next.

In the Bind EJB to JNDI Name window, make sure there are 3 EJBs listed with
JNDI Names starting with br beans/ appl i cati on/. ... Click Next to
proceed.

In the Mapping EJB References to EJB window, make sure there are 6 EJB
References listed (3 for Rule, 3 for RuleFolder). Click Next.

In the Mapping Resource References to Resources window, click Next.

In the Specifying the Default Datasource for EJBModule window, make sure
the BRBeans<DBtype>.jar file is selected. Then click Select Datasource... and
choose the datasource for the database where the BRBeans tables were

created above. (For, example, select brbds if you created it above.) Click Next.

In the Specifying Datasource for Individual CMP Beans window, click Next.
In the Selecting the Virtual Hosts for Web Modules window, click Next.

In the Selecting the Application Server window, make sure
BRBeans<DBtype>.jar is listed. Then click Select Server... and select a server
to use. Click Next.

In the Completing the Application Installation Wizard window, click Finish.

In the window asking if the application should be deployed, click Yes. In the
subsequent window proceed as follows:
a For the Dependent classpath the following jar
files need to be in the classpath: (On a
Windows system, use ";" as the separator
between jar files, on a Unix based system, use
":" as the separator)

« WAS HOWE\lib\brbdient.jar
e WAS HOVE>\I|i b\ brbServer.jar

b For the Database type, select the type of
database that you are using.
c Click OK

If the install is successful, an info dialog should appear that says Command
"EnterpriseApp.install* completed successfully.

You have successfully installed the BRBeans <.jar file>.

Proceed to “Creating the database tables” on page 11.
Creating the database tables

Follow this procedure when installing on an AE platform, if you are using AEd, then see
“Installing a BRBeans jar file on AEd - overview” on page 12

1.

Extract the file of SQL statements that was generated in “Installing the

BRBeans <.jar file>" on page 10 . This file can be found in the

WAS_HOME\ i nst al | edApps\ BRBeans<DBt ype>. ear\ BRBeans<DBt ype>. j ar
file as META- | NF/ Tabl e. ddI .

Use the SQL statements to create the database tables. For example, if you are

WebSphere Application Server Enterprise Services - Page 11

using DB2, launch a DB2 command window and type the following:
db2 connect to <dat abase- name>
db2 -tf <fully-qualified-path-to-Table.ddl >

You have successfully created the database tables.

This is the last of the steps necessary to install Business Rules Beans for use with
WebSphere AE. To familiarize yourself with it, you can test it out with the Samples provided
in “Part VII” on page 49.

Installing a BRBeans jar file on AEd - overview

There are several BRBeans jar files in the <WAS- HOME>\ Ent er pri se\ BRBeans directory,
each of their names reflecting the database that they support (ex: BRBeansDB2.jar). To
install the one for your database, follow these tasks in sequence:

1. “Deploy the code” on page 12

2. “Create a database” on page 12

3. “Create the database tables” on page 13

4. “Create a datasource” on page 13

5. “Install the BRBeans <.jar file>" on page 13

When you have completed these steps, you will have installed and configured Business
Rules Beans for use with WebSphere AEd. To familiarize yourself with it, you can test it out
with the Samples provided in “Part VII” on page 49.

Deploying the code

Follow this procedure when installing on an AEd platform, if you are using an AE platform,
then see “Installing a BRBeans jar file on AE - overview” on page 9

1. Launch the Application Assembly Tool by typing assenbl y. bat/ sh ona
command line.
2. Open BRBeans<DBType>jar in the WAS-HOME \Enterprise\BRBeans
directory.
3. From the File menu, select Generate code for deployment....
a Specify the following paths for the Dependent

classpath. The paths should be separated
either by a";" (on Windows platforms) or by a
":" (on Unix based platforms).

« WAS HOVE\lib\brbdient.jar
e WAS HOWE\ | i b\ brbServer.jar

b For Database type, select the type that you will
be using.
c Click Generate Now.

This will create a new .jar file called Deployed_BRBeans<DBType>.jar in the
same directory.

You have successfully deployed the code.

Proceed to “Creating a database” on page 12.

Creating a database
The following task applies to both the AE and AEd platforms.

Determine whether you want to use an existing database with the BRBeans tables, or

WebSphere Application Server Enterprise Services - Page 12

create a new one. If you decide to create a new one, consult your database documentation
for instructions on how to do this. (If you're using DB2, you would create a new database
called brbeans, by typing db2 creat e dat abase brbeans ata DB2 prompt.

You have successfully created a database.

Proceed to “Creating the database tables” on page 13.
Creating the database tables

Follow this procedure when installing on an AEd platform, if you are using an AE platform,
then see “Installing a BRBeans jar file on AE - overview” on page 9

1. Extract the file of SQL statements that was generated in “Deploying the code”
on page 12 . If you opted for the default values in that step, this file can be
found in the
WAS_HOME\Enterprise\BRBeans\Deployed BRBeans<DBtype>.jar file as
META-INF/Table.ddl

2. Use the SQL statements to create the database tables. For example, if you are
using DB2, launch a DB2 command window and type the following:
db2 connect to <dat abase- nane>
db2 -tf <fully-qualified-path-to-Table.ddl >

You have successfully created the database tables.

Proceed to “Creating a datasource” on page 13.
Creating a datasource

Follow this procedure when installing on an AEd platform, if you are using an AE platform,
then see “Installing a BRBeans jar file on AE - overview” on page 9

1. Start the server (from a Command Prompt, type st art Ser ver . bat/sh).

2. Launch a browser, and start the Administrative Console (URL -
http://localhost:9090/admin).

3. Type in a userid (and password if required) and click Submit.

4, In the left panel, expand the folders Resources > JDBC Drivers and click on
driver that you want to use

5. In the right panel, specify a Server Class Path if it doesn't already exist.

6. Expand the driver folder and click on Data Sources.

7. To create a new data source, click the New button, and define at least the
following:

* Name (ex: brbds)
« JNDI Name (ex: jdbc/brbds)
« Database Name (ex: brbeans)

You have successfully created a datasource.

Proceed to “Installing the BRBeans <.jar file>.” on page 13.
Installing the BRBeans <.jar file>.

Follow this procedure when installing on an AEd platform, if you are using an AE platform,
then see “Installing a BRBeans jar file on AE - overview” on page 9

1. Start the server (from a Command Prompt, type st art Server. bat/sh).
2. Launch a browser, and start the Administrative Console (URL -

WebSphere Application Server Enterprise Services - Page 13

10.

11.

12.
13.
14.
15.

http://localhost;9090/admin).
Type in a userid (and password if required) and click Submit.

In the left panel, expand the folders Nodes > <node-name>, and click on
Enterprise Applications

In the right panel (Enterprise Applications), click the Install button.

In the Application Installation Wizard, choose the section which applies,
based on where the Depl oyed_BRBeans<DBType>. j ar file is located.

Browse to the path of this jar file, and type in an Application name. Click Next to
continue.

In Mapping Roles to Users window, select at least 1 user or group for each
role (RuleManager and RuleUser). Alternatively, select the check-box for either
Everyone or All Authenticated. Click Next to proceed.

In the Binding Enterprise Beans to JNDI Names window, make sure there
are 3 EJBs listed with INDI names.

In the Mapping EJB References to Enterprise Beans window, make sure
there a 6 EJB references.

In the Mapping EJB Jar Default Data Source References to JNDI Names
window, fill in the JNDI name of the datasource for the
Deployed_BRBeans<DBType>.jar file (ex: jdbc/brbds).

In the EJB Deploy window, clear the box under the Re-Deploy option. (This is
very important.)

Click Finish.

Save the configuration by clicking on Save at the top of the right panel.
Click OK.

Stop (st opSer ver . bar/ sh) and restart the server.

You have successfully installed the BRBeans <.jar file>.

This is the last of the steps necessary to install Business Rules Beans for use with
WebSphere AEd. To familiarize yourself with it, you can test it out with the Samples
provided in “Part VII” on page 49.

Starting the BRBeans Rule Management Application
Follow the instructions below to start the BRBeans Rule Management Application.

1.

Open a command prompt, and browse to
WAS HOVE\ AppServer\ Enterprise\bin

For Windows platforms, type r ul engnt . bat <properties-fil e>

For UNIX platforms, type r ul engnt . sh <properties-file>

Where properties-file is a fully qualified name of a file containing port, host, and
the JNDI names used for the BRBeans EJBs. If you're using localhost and
port=900, and installed BRBeans according to these instructions, use

WAS HOVE\ AppSer ver\ Ent er pri se\ bi n\ br beansDef aul t Properti es.
For a full definition of the contents of this file, refer to “The BRBeans Properties
file” on page 47.

You have successfully started the WebSphere BRBeans Rule Management Application.

The Business Rules Beans framework has been installed and configured on your system.
You may now begin using it. To familiarize yourself with it, you can test it out with the
Samples provided in “Part VII” on page 49.

WebSphere Application Server Enterprise Services - Page 14

WebSphere Application Server Enterprise Services - Page 15

Part Ill: Rule Administration

“Rule administration” on page 16

Rule administration

In BRBeans, rule administration involves making changes to the set of business rules being
used by applications. This can include any of the following activities:

creating new rules that didn't exist before,

deleting existing rules,

creating a new rule with the same name as an existing rule to replace it,
setting existing rules to expire when a change is to go into effect, or,

moving rule changes from a development/test system to a production system.

There are two different interfaces that can be used for rule administration:

“Rule Management Application: ” on page 36An external user interface that allows
users to manage rules interactively. It provides a very general purpose interface for
managing rules where no assumptions are made about the content or implementation of
the rules.

“Rule Management APIs: ” on page 34A programmatic interface that can be used by
programmers writing code to manage rules or to customize an external user interface.

Rules can be administered in any way that makes sense for your application, but the
BRBeans framework was designed with the following adminstrative paradigm in mind:

1.
2.

Understand the change in business behavior that is desired.

Inspect the application documentation (in particular information indicating where trigger
point are located) to understand where the changes will need to be made in the system.

. Inspect the corresponding set of existing business rules using the Rule Management

Application (or your own custom management application, if you have one) to
understand which rules need to change.

On a test system, use the Rule Management Application to create one or more new
rules that implement the required new behavior. Give these rules the correct name so
that they will be triggered by the appropriate trigger point. Also make sure that these new
rules are currently in effect.

On the test system, withdraw (by setting the end date of the rule) all rules that are to be
superseded.

Test the application to ensure it behaves as expected.

Using the Rule Exporter on the test system, export the new rules. Schedule them to
become effective at the correct point in time.

Using the Rule Exporter on the test system, export the rules to be superseded. Set them
to expire at the point in time at which the new rules come into effect.

Using the Rule Importer on the production system, import the new rules. This will create
the new rules and schedule them to become effective at the date specified when they
were exported.

10. Using the Rule Importer on the production system, import the rules to be superseded.

This will put the new end date into the existing rules on the production system, thus
setting them to expire on the specified date.

WebSphere Application Server Enterprise Services - Page 16

Part IV: The BRBeans framework
* “The BRBeans framework - overview” on page 17
e “Business Rule Beans - overview” on page 18
¢ “Rule States” on page 19
e “Rule Attributes” on page 19
e “Returning results from rules” on page 21
* “Dependent rules” on page 21
¢ “Rule Folders” on page 21
» “Trigger Point Framework - overview” on page 22
- “Determining where to place a trigger point” on page 23
e “How to place a trigger point” on page 23
e “Types of Trigger Points - overview” on page 24
e “Simple Trigger Point - an example” on page 24
« “Classifier Trigger Point - an example” on page 25
« “Situational Trigger Point - an example” on page 26
e “Using strategy objects to control triggers” on page 27
« “Finding strategy” on page 27
» “Filtering strategy” on page 28
e “Firing strategy” on page 28
e “Combining strategy” on page 29
* “Rule Implementor Interface - overview” on page 29
¢ “How Rule Implementors are invoked” on page 30
e “Writing your own rule implementors” on page 30
* “Pre-defined rule implementors” on page 31
» “BRBeans framework runtime” on page 31
« ‘“Externalized business rules” on page 32
« “Runtime behaviour” on page 32
¢ “Runtime exception handling” on page 33
e “Rule Management APIs” on page 34

The BRBeans framework - overview
The BRBeans Framework is comprised of the following components:

 BRBeans Trigger Point Framework: The Trigger Point Framework forms the
application writer's major interface to BRBeans. Your application invokes trigger point
methods that find, filter, fire, and combine results of the appropriate rules at runtime. As
provided, the Trigger Point Framework covers all of the common patterns of rule use and
is designed so you can easily extend it to support new ones

 BRBeans Rule Implementors: Many times the logic contained in business rules occurs
repeatedly. For example, a parameterized range check (is "x" between "a" and "b"?) is
very common. For that reason, BRBeans provides a set of rule implementors that
perform common algorithms that can be used in many of the rules that you create. In
addition, since a BRBeans Rule Implementor is simply Java code that implements a
small, simple interface, it's easy to write your own. The source for these rule
implementors is installed with the samples.

WebSphere Application Server Enterprise Services - Page 17

« BRBeans EJBs: The WebSphere application server in which the BRBeans EJBs are
installed is referred to as the BRBeans rule server. These EJBs provide the underlying
implementation for the business rule persistence, the runtime facilities required to find
and instantiate rules as necessary, and the management facilities required to inspect,
clone, adjust, and otherwise maintain the persistent business rules. They are managed
by the Trigger Point Framework and by the Rule Management APIs, so the programmer
does not have to deal with them directly in the application. There is a set of Rule
Management APIs available to simplify the interaction with the EJBs.

* BRBeans Rule Management Application: The BRBeans Rule Management
Application is implemented as a Java Application that runs stand-alone, remotely or
locally to the BRBeans rule server. It is used to create, update, expire, and delete
BRBeans Rules, and can also be used to interactively import and export BRBeans Rules
from/to XML.

 BRBeans Rule Management APIs: The Rule Management APIs provides a way for the
application programmer to develop a rule management utility geared specifically for the
domain of the application.

« BRBeans Rule Importer and Exporter: When deploying a rule driven application
(moving it from a test system to a production system) it is often convenient to update the
production rule system in batch mode, along with other artifacts of the application. The
stand-alone, batch oriented Rule Importer tool provided with BRBeans does this.

Business Rule Beans - overview

The business rules defined by the BRBeans framework are organized in a straight-forward
manner. Each rule is represented by an entity EJB that is used to persistently store
information related to that rule. It is assigned an appropriate rule name, and stored in an
appropriate rule folder. It is set up much like the file system on your computer's hard drive,
and has many of the same characteristics. For example:

* Rules can be placed in folders based on any criteria the user desires.

« Two different rules can share the same name as long as they are stored in different rule
folders.

* Arule folder can contain any number of rules and/or other folders.

In terms a naming scheme for the folders, it is recommended that the Java package naming
convention be adhered to. That is, base the names on the domain name of the organization
where the rules are developed. So, ACME's i sSeni or G ti zen rule's fully-qualified rule
name, or full rule name, might be conf acne/ ageRul es/ i sSeni or Ci ti zen. In this
example, the coni acrre path would be used by all rules developed by ACME, and the
ageRul es folder would be used to separate "age" rules from rules of other kinds. Note that
the root folder has no name meaning that fully-qualified path names never start with a '/".

A fully-qualified rule name consists the following:
» the full path of the folder followed by a '/'

» the name of the rule.

This fully-qualified rule name is used by a trigger point to identify the rule that is to be
triggered. Note that when there is more than one rule with the same fully-qualified name, all
the rules with that name that are currently in effect are triggered, and the results are
combined using the combining strategy specified on the trigger point.

A business rule has a start date and an end date (see “Rule Attributes” on page 19) that
together define the interval during which the rule is in effect (see “Rule States” on page 19).
By default, trigger points will only trigger rules that are currently in effect based on the
current date and time when the trigger point is called. This can be overridden by specifying
a date on the trigger point. This date is referred to as the “As Of date” on page 47. If no start

WebSphere Application Server Enterprise Services - Page 18

date is specified, then the rule is not valid, and will not be found by trigger points.
Conversely, if no end date is specified, then the rule will never expire. Dates and times with
a precision of one second can be assigned using the “ Rule Management Application " on
page 36.

Rule States

Rules can be in any one of these four states at any particular time:

» scheduled: The rule is scheduled to become effective (its start date is in the future), and
will not be found by current trigger points.

» in effect: The rule is currently in effect and can be found by trigger points.

« expired: The rule is no longer in effect (the end date is in the past), and will not be found
by trigger points.

* invalid: The rule is not correctly defined and will not be found by trigger points.

Typically, only those rules which are "in effect" are found by the BRBeans runtime. This
behavior can be overriden by setting an asOf Dat e on the TriggerPoint object, which will
then execute "as if" the current date is the given date.

When a Rule is first created, it is marked as "ready for use" and will be found when firing
Rules. If the Rule is not complete and you don't want it to be found by BRBeans, then mark
the Rule using one of the following:

» Use the method set Ready(f al se) in the Rule Management APIs
» Use the Rule Management Application to mark the rule as not ready

Rule attributes
Rule Name

Assign a name for the rule that is appropriate to its business context. Two different
rules can share the same name as long as they are stored in different rule folders.

Rule Folder
The folder that contains the rule.
Start Date

This is the date and time at which the rule goes into effect. Prior to this time, it will
not be found by trigger points. Together with the end date, the start date defines a
period of time during which the rule is effective. A rule with no start date specified is
not a valid rule and will not be found by trigger points.

End Date

This is the date and time at which the rule is no longer effective. After this date and
time the rule is no longer in effect and will not be found by trigger points. Together
with the start date, the end date defines a period of time during which the rule is
effective. A rule with no end date specified is valid and will never expire.

Ready

Indicates whether or not the rule is ready to be used. Rules which are not marked
as ready will not be found by trigger points. This is intended to be an easy way to
keep a rule from being used until it is completely defined or to temporarily turn a rule
off without having to change the basic rule data such as start and end dates.

Java Rule Implementor Name

This is the fully package-qualified name of a Java class that implements the
BRBeans Rulelmplementor interface. The f i r e method of the class performs the
function of the rule. BRBeans provides several pre-defined rule implementors or you
can write your own. Refer to the “Rule Implementor Interface” on page 29for more
information on both of these choices.

WebSphere Application Server Enterprise Services - Page 19

Initialization Parameters

This is an array of parameters that are passed to the rule implementor to initialize it.
Each element in the array can be any Object. This can also be referred to as the
rule data, which is the external data that may change over time. The initialization
parameters defined for a rule are passed directly to the i ni t method of the rule
implementor when it is instantiated. Refer to the “Rule Implementor Interface” on
page 29for more information on how rule implementors can use initialization
parameters.

Firing Parameters

Normally firing parameters are simply the parameters passed on the trigger point
when a rule is triggered. However, it is allowed to override these parameters by
specifying parameters on the rule itself. This is where these overriding parameters
are specified.

Firing Location

This specifies where the rule implementor for this rule will be instantiated and run.
Three values are allowed:

1. Local: This option instantiates the rule implementor and runs it local to the
trigger point (in the same JVM as the trigger point call). This would be on the
client machine if the trigger point call is done there, or the server if the server
part of an application makes a trigger point call. Use this option for the best
performance since, once a rule is cached on the client, the entire triggering
process can be performed locally without going to the server at all. The main
disadvantage of this option is that the class files for the rule implementors need
to be available on every client that can trigger rules.

2. Remote: This will instantiate the rule implementor and run it on the application
server where the BRBeans EJBs are installed. When using this option at least
one remote method call will always be required to trigger a rule since the trigger
takes place on the server. The advantage is that the rule implementor class files
only need to be available on the server.

3. Anywhere: This option will try to instantiate and run the rule implementor locally,
and, if the class cannot be found, it will try to trigger it remotely.
Classification

For classified rules, this is the classification to which the rule applies. This is used
when performing a situational trigger. Once a classification is computed for the
situational trigger point, rules that apply to that classification are found and
triggered. For more details see “Situational Trigger Point - an example” on page 26.

Classifier

Indicates whether or not this rule computes a classification. This is used where
performing a situational trigger. A classifier rule is used to perform the first step of a
situational trigger which is to compute a classification that will be used to find rules
to deal with the situation. For more details see “Situational Trigger Point - an
example” on page 26.

Dependent Rules

This is an array containing the fully-qualified names of the dependent rules of this
rule. Dependent rules are rules that this rule can use when it is triggered. For more
details see “Dependent Rules” on page 21.

Business Intent
This is a text description of the intent of this rule from the point of view of the
business analyst. Any text string can be stored here.

Description
This is a text description of the rule at the programmer's level. Any text string can be

WebSphere Application Server Enterprise Services - Page 20

stored here.

Original Requirement

This is a text description of the initial business analyst requirement of this rule. It
can be used to keep track of why this rule was originally created, for example to
keep auditing records. Any text string can be stored here.

User-Defined Data

A user-defined text string can be stored here. The format and use of this data is
completely determined by the user.

Primary Key

Every rule has a primary key to uniquely identify it in the database where the EJBs
are stored. Normally a unique primary key is generated automatically when you
create a new rule. However, you can use the rule management APIs to specify your
own primary key, if desired.

Precedence

This is the relative priority of this rule. The default finding strategy uses this value to
order the rules found in the database, from lowest to highest, when more than one
rule is found for a particular trigger point. Rules are sorted numerically by
precedence with the numerically lowest precedence first and the numerically
highest precedence last.

Returning results from rules

In general, a rule can return any type of result that makes sense for the business purpose of
the rule. The return type on the fire method is j ava. | ang. Cbj ect so any Java object can
be returned, including arrays. You cannot return a Java primitive since the results must be
an Object, however you can return the Object form of the primitives. For example, you can
return aj ava. | ang. | nt eger instead ofani nt .

Dependent Rules

When a business rule triggers other business rules as part of its implementation, then the
rules that are triggered are called dependent rules of the first rule. An example is the

Rul e AND rule implementor supplied with BRBeans. It uses two or more dependent rules,
each of which is assumed to return a true or false value. When a rule with Rul eAND as its
implementor is triggered, each of its dependent rules performs a logical AND operation on
all the returned results. The result of this AND operation is returned as the result of the
top-level rule.

Dependent rules are specified in the attributes of the top-level rule where the fully-qualified
name of each dependent rule is listed. When the top-level rule is triggered, an array of
dependent rule names is passed to the rule implementor's i ni t method. They are stored
here until they are triggered by the f i r e method. Note that the BRBeans framework does
not ensure that the dependent rules specified in the EJB are actually triggered.

Dependent rules can be nested within other dependent rules. In other words, a dependent
rule of some particular rule can have its own dependent rules which, in turn, can have their
own dependent rules, and so on. The BRBeans framework does not place any restriction on
the number of levels that dependent rules can be nested. The only practical restriction is the
complexity of the rule set that is built up when dependent rules are nested many levels
deep.

BRBeans Rule Folders

Rule folders are similar to the directories that divide a computer's hard drive in that they split
a large number of files into conceptual units. The rule folder adds its path to the fully
qualified rule name, and allows two names with the same name to be stored in separate
folders effectively avoiding name collisions. Like the directories on a hard drive, a rule folder

WebSphere Application Server Enterprise Services - Page 21

can contain any number of rules of rule folders.

Although you can name the folders whatever you deem appropriate, it is recommended that
you follow the Java package naming convention. That is, base the names on the domain
name of the organization where the rules are developed. So, ACME'si sSeniorCiti zen
rule's fully-qualified rule name, or full rule name, might be

conif acre/ ageRul es/ i sSeni or Ci ti zen. In this example, the coml acne path would be
used by all rules developed by ACME, and the ageRul es folder would be used to separate
"age" rules from rules of other kinds. Note that the root folder has no name meaning that
fully-qualified path names never start with a '/".

When using the Rule Management APIs, a rule folder contains instances of | Rul es, which
are also referred to as "rules". To begin working with rules, get the root rule folder by using
the method get Root Fol der on class Rul eMgnt Hel per . From the root rule folder you can
add, delete, and retrieve folders and rules using methods on this interface.

Trigger Point Framework - overview

A trigger point is simply the location in a method of an object at which externalized business
rules are invoked. Proper placement of trigger points can add substantially to the flexibility
and speed with which a business application adapts to new business practices.

Wherever a trigger point is placed in user-written code, the BRBeans trigger point
framework needs to do the following:

1. Assemble the parameter list to send to the rules.
Find the potential rules that apply.

Optionally, filter out any rules which do not apply.
Fire the rules in the filtered rule set.

a M wnN

Combine the results of the rule firings is some meaningful way

The application code that contains the trigger point needs to perform the following functions:

1. Establish a value for the target object. Usually the target object is the object in which the
trigger point is encountered. The target object is one of the parameters passed to the fire
method of the Rul el npl enent or.

2. Build the array of objects containing the runtime parameters needed to satisfy the trigger
point's business purpose. This array is normally passed as one of the parameters of the
fi re method of the Rul el npl enent or . If firing parameters are specified on the rule
itself, then those firing parameters are passed instead of the ones passed by the caller.

3. Invokethetrigger(), triggerC assifier(), ortriggerSituational ()
method of the Tr i gger Poi nt class.

4. Catch and handle any exceptions that might occur as a result of firing the rules, else take
action based upon the rule firing results.

The two simple trigger methods, t ri gger andtri gger d assi fi er, perform their
function in four steps:

1. find the rules

2. filter out those rules which are not desired
3. fire the remaining rules

4. combine the results and return to the caller

The complex trigger method, t ri gger Si t uati onal does this sequence of steps twice,
the first step to find the classification which is fed into the second step. The second step

WebSphere Application Server Enterprise Services - Page 22

triggers rules which have the classification equal to the value returned in the first step.

How each of these steps is performed can be modified through various methods on the
TriggerPoint object. The implementation of each step is defined by a strategy object. For
more information on strategies, see “Using strategy objects to control triggers” on page 27.

Determining where to place a trigger point
Using Use Case Analysis to place trigger points.

Trigger points can be found during analysis by inspecting the use cases or user interaction
scenarios that are typically developed as statements of requirement as input to the analysis
process. A fragment of a use case is shown below:

The vehicle is entered into the system or chosen. The customer service representative
attempts to locate the named driver in the system. If the driver is not found, she/he is added
to the system and then picked.

Otherwise the found driver is just picked. If the vehicle is an auto, anyone between the ages
of 16 and 75 can be picked as a driver. If the vehicle is a truck, only drivers 16 to 70 years
old can be picked. And if the vehicle is a motorcycle, drivers 14 to 65 can be picked.

After the driver has been picked, a rate quote can be performed...

To identify potential trigger locations in use case analyses such as this one, look for certain
keywords such as:

* "if X isin a special category Y" (e.g., “if the vehicle is a truck” above)
* ‘“except when”,

* ‘“unless”, or

* ‘“depends on”

Using an Object Interaction Diagram to place trigger points

OIDs that are based on use cases can yield a number of observable patterns that can be
used to identify trigger points fairly easy. Below are some of the rules to look for and where
the trigger point might be placed:

» Validation of edits on create methods.
+ Validation of edits on set methods.
» Referential integrity of edits on methods that set references.

» Cardinality checks at a consistency point (a point in time where all of the data is
expected to be self con-sistent).

* Required fields checks at a consistency point.
e Cross field edits at a consistency point.

» Constraints or derivations that have a high potential for reuse (especially if the algorithm
is complex) at any appropriate point.

» Constraints or derivations that a business desires to be consistent across applications
(at any appropriate point).

» Constraints or derivations where the business wants to decouple the maintenance cycle
for a rule from the maintenance cycle for the code (at any appropriate point).

How to place a trigger point

The Tri gger Poi nt class is the primary interface of the BRBeans Trigger Point
Framework, and is used to transfer control to the Trigger Point Framework in order to find

WebSphere Application Server Enterprise Services - Page 23

and fire those rules in the application's trigger point.

Perform the following steps to place a trigger point in your code:

1. Create an instance of the com i bm websphere. br b. Tri gger Poi nt class. All rule
triggers must be performed against an instance of this class. You should also set any
desired strategies on the Tri gger Poi nt instance.

2. Gather together the parameters to be passed on the trigger.

For the simpletri gger () andtri gger C assifi er () methods this includes the
following:

* An optional target object. This can be used to specify an object
that is to be the target of the rule's algorithm. Whether or not this
makes sense depends completely on the design of the rule
implementor being used.

e The firing parameters for this rule trigger. This is an array of
runtime parameters needed by the rule to satisfy its business
purpose. Note that any firing parameters defined on the rule itself
will override whatever is passed here.

* Information identifying the rule(s) to be triggered. Normally
this is either a single String containing the name of the rule to be
triggered or an array of Strings each element of which is the name
of a rule to be triggered. However if a custom finding strategy is
being used, this could be whatever information it needs in order to
find the correct rules.

Thetrigger Si tuati onal method differs in that it takes two sets of firing parameters
and two sets of rule identification information: one set for the classifier rules and one for
the classified rules.

3. Invokethetrigger(),triggerC assifier(),ortriggerSituational ()
method of the TriggerPoint instance. This will actually trigger the rule(s).

4. Process the results of the triggered rule(s)

Examples of how to code a trigger point call are shown in “Types of Trigger Points -
overview” on page 24.

For a detailed description of the trigger point programming interfaces refer the Trigger
Point Class in the

Types of Trigger Points - overview

Follow these links for examples of three types of trigger points used in the BRBeans
framework.

« “Simple Trigger Point - an example” on page 24
» “Classifier Trigger Point - an example” on page 25
» “Situational Trigger Point - an example” on page 26

Simple Trigger Point - an example

A simple trigger point is used to trigger a rule or rules specified by name. This type of trigger
point is used by invoking the trigger method on an instance of the Tr i gger Poi nt class. All
rules with the specified name will be triggered and the results combined using the combining
strategy specified on the Tr i gger Poi nt object. This type of trigger point only finds rules
that are marked as not being classifiers.

WebSphere Application Server Enterprise Services - Page 24

The following shows an example of using a simple trigger point to trigger a rule named
i sSeniorCitizen (in the conf acre/ ageRul es folder) that determines whether a
person is classified as a senior citizen based on the passed in age.

/'l create an instance of TriggerPoint for triggering the rule and
specnf%/ that the o))
I F? UFnFlrstCDnblnlngStrategy is to be used to return only the first
resu i

[/ multiple rules are found.)

TriggerPoint tp = new TriggerPoint();

tp.sethnblnlnEStrate y(Conbi ni ngSt r at egy. RETURN_FI RST,

Tri gger Poi nt . AL RULES?;

[/ “define parandter list that's passed to the rule

hject [] plist = new Object[1];

/1" define age of person to be tested

I nt eger age = new I nteger(64);

// déefine name of ruleto be fired)) e

String rul eName = "conf acne/ ageRul es/isSeniorCitizen";

[/ define result of rule firing

hject result = null;)

[/ initialize paraneter |ist

|IS%[0] = age;

ry . . . L .
[l fire "com acne/ ageRul es/isSeniorCitizen" rule passing
parandter |ist containing age.))
Note: in this case the target object is not used and coul d

be nul|.

result = tp.trigger(this, plist, ruIeNarre?;)
) [/ put result into usable format. A single result is returned
since we specified to use -

/1 the ReturnFirstConbiningStrategy. By default an array of
results woul d be returned.

bool ean seniorCitizen = ((Bool ean)result). bool eanVal ue();

/| make use of result

if(seniorCtizen) {

}

%:atch(Busi nessRul eBeansException e) {
/1 handl e exception

}

Classifier Trigger Point - an example

A classifier trigger point is identical to a simple trigger point except that it only finds rules
marked as being classifiers. These are rules whose purpose is to determine what sort of
business situation is present and return a classification string indicating the result. Usually
these rules are used as part of a situational trigger point, but they can be triggered on their
own too. This type of trigger point is used by invoking the t ri gger Cl assi fi er method on
an instance of the Tri gger Poi nt class.

The following shows an example of using a classifier trigger point to trigger a rule named

det er mi neCust oner Level (in folder cont acne/ cust onmer Cl assfi ers). This rule
classifies customers into levels (Gold, Silver, and Bronze) based on their spending history.

/1 create an jnstance of TriggerPoint for triggering the rule and

specif%/ that the o i)
I IRte _u][nFlrstOorrbl ningStrategy is to be used to return only the first
resu i

[/ multiple rules are found.)

TriggerPoint tp = new TriggerPoint();

t p. set Conbi ni nESt r at egy(Conbi ni ngStr at egy. RETURN_FI RST,

Tri gger Poi nt . AL RULES?;

[/ “define parandter list that's passed to the rule

hject [] plist = new Object[1];)))
[/ information about the custoner to be checked is stored in this

obj ect
dustorrer cust = .

[/ define name of rule to be fired
ng rul eNane = o .

oml acne/ cust omer Cl assi fi ers/ det erm neCust oner Level ";

[define result of rule firing

hject result = null;)

nitialize paraneter |ist

WebSphere Application Server Enterprise Services - Page 25

PlISt[O] = cust;

[/ fire "conlacne/custonerC assifiers/detern neCust oner Level "
rul e passing paraneter

/1 ~11st containing the custonmer to be checked.
5 N /1l Note: in this case the target object is not used and coul d
e null.

result = tp. tr| ?erG assifier(this, plist, ruleNane);

/1 put result o usable formt. A single result Is returned

/1l the ReturnFlrsthnblnlngStrategy By default an array of
results woul d be returned.

String custonerLevel = (String) result;

[/ make use of result

i f(custonerlLevel .equal s("Gold")) {

} else if (custonerLevel.equals("Silver")) {

} else if (custonerLevel.equal s("Bronze")) {

} else {

) e

cat ch(Busi nessRul eBeansException e) {
/1 handl e exception

}

Situational Trigger Point - an example

A situational trigger point is used when the rule(s) to be triggered depend on the business
situation. This example evaluates a customer's past purchasing history to place them into
one of three levels (Gold, Silver, or Bronze) which in turn determines how much of a
discount they receive.

To use a situational trigger point to handle this case, it is first necessary to define four rules:
* one classifier rule to determine which of the three levels the customer falls into, and
» three classified rules to determine the actual discount to offer.

All of the classified rules have the same name and each is marked as applying to one of the
three customer levels by specifying the level in its classification attribute. For example, the
rule to determine the discount for a Gold level customer will contain the string "Gold" in its
classification attribute.

The situational trigger point then proceeds in two phases:
1. Find the specified classifier rule and trigger it to generate a classification string.

2. Find the rules with the same name of the classification string returned in the first step.
These rules are then triggered to produce the final result, in this case the discount to offer.

The following shows an example of using a situational trigger point to handle the case
described above.

1 cgeatﬁ ?ntlnstance of TriggerPoint for triggering the rule and
eci a

?/ P$¥u¥nF|rsthnb|nlngStrategy is to be used to return only the first

resu i

[/ multiple rules are found.

TrlggerP0|nt tp = new TriggerPoint();

t p. sSet Conmbi n EStrate y(Conbi ni ngStr at egy. RETURN_FI RST,

TrlggerP0|nt AL ES);

[/ ~define_parangter l1st that's passed to the classifier rule
hject [] classifierPlist = neM/iject{

[/ define paraneter |ist that s passed to the classified rule
hject [] classifiedPlist = new Cbject[1];

[information about the customer to be checked is stored in this

ogbect
stoner cust =
/1 define name of ciaSS|f|er rule to be fired

WebSphere Application Server Enterprise Services - Page 26

String classifierRul eName =
"conl acme/ cust oner Cl assi fi ers/ det er mi neCust oner Level
[/ define name of classified rule to be fired
String cl assifiedRul eNane =
"conl acne/ di scount Rul es/ det er mi neDi scount
[/ define result of rule firing
hject result = null;)
[/ initialize Paraneter lists
classifierPlist[0] = cust;
?I as{5|f|edPI|st 0] = cust;
r
Y [/ fire the rules to get the discount to offer
g . /] Note: in this case the target object is not used and coul d
e null.
result = tp.triggerSituational (this, classifiedPlist,
classifierPlist, classifiedRul eNane, classifierRul eNane):
/] put result into usable format. A single result is returned
since we sPeC|f|ed to use
t he ReturnFirstConbi ni ngStrategy. By default an array of

results woul d be returned.
Fl oat di scount ToOffer = (Float) result;
/'l make use of result

%:atch(Bu5| nessRul eBeansException e) {
/1 handl e exception

}

Using strategy objects to control triggers
Strategy objects are used to alter Tri gger Poi nt functions.

Recall that the two simple trigger methods, tri gger () andtriggerd assifier(),
perform their function in the following sequence:

1. find the rules

2. filter out those rules which are not desired
3. fire the remaining rules

4. combine the results and return to the caller

And that the complex trigger method, t ri gger Si t uat i onal () does this sequence of
steps twice, the first step to find the classification to feed into the second step.

Default strategy objects are already defined for each of the four Tri gger Poi nt steps, and

they are used if none are specified explicitly. For each of these steps, there are at least two

strategy objects used, one for triggering classifier rules, and one for triggering non-classifier

rules. For the filtering step, there are actually three pairs of strategies which are used, based
on the number of rules which the finding strategy returns (zero, one, or multiple).

While the sheer number of strategies which are available can be intimidating (twelve
different strategy classes can be set), typically very few will need updating, and in reality
most users will only modify the filtering strategies or the combining strategies.

A number of pre-defined strategy objects are provided that should be adequate for the
majority of cases. The Java classes for these strategy object are defined in package

com i bm webspher e. brb. st rat egy. Static constants are also defined in the interfaces
for the various strategies to allow easy access to instances of the strategy classes to set
them on the Tri gger Poi nt .

It is also possible to write your own strategy class if the supplied ones don't perform the
function you need. See “Writing Your Own Strategies” on page 45for more details.

Finding strategy

The job of the Fi ndi ngSt r at egy is to access the datastore and return those rules which
meet the search criteria specified. There are two Fi ndi ngSt r at egy classes provided by
BRBeans:

WebSphere Application Server Enterprise Services - Page 27

e« Defaul td assifierFindi ngStrategy, and
» Defaul t NonC assi fi erFi ndi ngSt r at egy

Both of these strategies perform a case-sensitive search for Rules marked ready that match
the given search criteria. Results are ordered by precedence from highest to lowest (the first
rule in the array has the numerically smallest precedence, the next rule has the next
smallest precedence, etc.). If no rules are found, then an empty array is returned. The
former strategy only returns classifier rules (cl assi fi er =t r ue) and the latter only returns
non-classifier rules (cl assi fi er =f al se).

These default strategies are used automatically by the Tri gger Poi nt . There is no need to
call set Fi ndi ngSt r at egy to use these strategies. Instances of these two default finding
strategies are stored in static constants defined on the Fi ndi ngSt r at egy interface.

Filtering strategy

The job of the Fi | t eri ngSt r at egy is to take the list of rules which were found by the
Fi ndi ngSt r at egy and filter out those rules which should not be fired. There are three
sets of filtering strategies used in Tr i gger Poi nt :

1. strategy for zero rules found
2. strategy for one rule found
3. strategy for multiple rules found

A different strategy can be used for each of these scenarios, along with different strategies
for classifier and non-classifier rules. The zero rules strategy is invoked if no rules are found
by the finding strategy, the one rule strategy is invoked if exactly one rule is found, and the
multiple rules strategy is invoked if more than one rule is found.

BRBeans provides several filtering strategies that can be used:

e Accept Any - any and all rules found are utilized (this is the default).
» Accept One - exactly one rule is expected.

e Accept First - only the first rule found is utilized.

» Accept Last - only the last rule found is utilized.

Instances of these filtering strategies are stored in static constants defined in the
FilteringStrategy interface. You can use these for setting the strategies on a
Tri gger Poi nt .

As an example, here is one common way to use filtering strategies. Say you want to ensure
that exactly one rule is found on a Tr i gger Poi nt call. You would set all three strategies
(zero rules, one rule, and multiple rules) for this Tri gger Poi nt to
FilteringStrategy. ACCEPT_ONE. This strategy throws an exception if the number of
rules is not exactly one. The following sequence of method calls would accomplish this for
Tri gger Poi nt tp:

tp. set NoRul esFilteringStrategy(FilteringStrategy. ACCEPT ONE,

Tri1gger Point. ALL_RULES);) .
tp.set OneRul eFiTteri g};St rategy(FilteringStrategy. ACCEPT_ONE,

TriggerPoint. ALL RULES);,) .
tp.set Mil tipl eRul esFilteringStrategy(FilteringStrategy. ACCEPT_ONE,

Tri gger Poi nt. ALL_RULES) ;

Firing strategy

The firing strategy takes the rules which were found by the Fi ndi ngSt r at egy, (possibly
modified by the Fi | t eri ngSt r at egy), fires them each in order, and returns an array
containing the results of each rule.

WebSphere Application Server Enterprise Services - Page 28

A single default Fi ri ngSt r at egy is provided by BRBeans, as all types of rules are fired in
the same way. This implementation takes each rule in order and performs the following
steps:

1. Determines what firing parameters to pass to the rule. If there are no firing parameters
specified for this rule, uses the firing parameters passed on the Tri gger Poi nt call.
Otherwise uses the firing parameters specified in the rule in place of the parameters
passed on the Tri gger Poi nt call.

2. Calls the fire method on the rule, passing the firing parameters from the first step.

Unexpected exceptions result in an Busi nessRul eBeansExcept i on being thrown that
contains the original exception.

Combining strategy

The job of the Conbi ni ngSt r at egy is to take the results of the rules which were fired by
the Fi ri ngSt r at egy and to combine them to form a reasonable result to the

Tri gger Poi nt caller. BRBeans provides several combining strategies to be used in
applications:

* Return All - Return results from all rules fired in an array (this is the default)
* Return First - Return only the result from the first rule fired
e Return Last - Return only the result from the last rule fired

* Return AND - Return the logical AND of the results from all the rules fired. This strategy
requires that all the results returned by the fired rules are either Const r ai nt Ret urn
objects or j ava. | ang. Bool ean objects. An exception is thrown if this is not the case.

* Return OR - Return the logical OR of the results from all the rules fired. This strategy
requires that all the results returned by the fired rules are either Const r ai nt Ret ur n
objects or j ava. | ang. Bool ean objects. An exception is thrown if this is not the case.

* Throw Violation - Throws a Const r ai nt Vi ol ati onExcept i on containing all failed
Const r ai nt Ret ur n objects if any Const r ai nt Ret ur ns contain false. Otherwise just
return a true Const r ai nt Ret ur n.

Instances of these combining strategies are stored in static constants defined in the
Conbi ni ngSt r at egy interface. You can use these for setting the strategies on a

Tri gger Poi nt . For example, the following method call sets the combining strategy on
Tri gger Poi nt tp to be the Return First strategy:

t p. set Conbi ni ngSt r at egy(Conbi ni ngSt r at egy. RETURN_FI RST,
Tri gger Poi nt . AL _RULES?;

Rule Implementors interface - overview

A BRBeans Rule is a persistent object that exists on the BRBeans Rule server. It has
several persistent attributes, such as startDate, endDate, initParams, etc. One of the
persistent attributes is j avaRul el npl errent or Narre, which is the name of its Rule

Implementor.

A BRBeans Rulelmplementor is an alogrithm written in Java that implements the BRBeans
Rul el npl errent or interface. BRBeans provides a set of common implementations that
can be used as the logic for specific user defined BRBeans Rules.

User defined Rul el nmpl enent or s are written in Java code that implements the BRBeans
Rul el npl enent or Interface. This code should be packaged in a jar file which appears in
the CLASSPATH of the BRBeans Rule Server (for "remote" firing), or co-located with and in
the CLASSPATH of the application(s) using it (for "local" firing). Typically, the

WebSphere Application Server Enterprise Services - Page 29

Rul el mpl enment or will be in the application ear file.

How Rule Implementors are invoked
When a Rule is fired for the first time, the following sequence of events takes place:
1. aninstance of the Rul el npl enent or class is created using the default constructor,
2. thei ni t method is called, passing the initialization parameters defined for the Rule, and
3. the fire method is called to elicit the RuleiImplementor's behavior.

It is guaranteed that the i ni t method is called at least once before the f i r e method is
called for the first time, although it may be called more than once. Once the

Rul el npl errent or is instantiated, the Rule caches it so that it doesn't have to be created
and initialized again the next time that Rule is fired. On subsequent fires, only the

Rul el npl erent or's fi r e method is called, not its i ni t method. Thus the

Rul el npl errent or is generally initialized only once but can be fired many times.

In some scenarios, the method f i r e may be called from multiple processes on the same
instance of a Rul el npl enent or . This could happen if more than one client triggers the
same rule at the same time. The implication of this is that the method f i r e should not
change instance attributes of the implementor unless synchronization of the data being
changed is performed.

Writing your own rule implementors

To write your own rule implementor, create a new Java class that implements the
com i bm webspher e. brb. Rul el npl enment or interface. This class must implement the
following methods:

+ A default constructor

The class must have a default, no argument constructor so that it can be instantiated
when a rule using it is triggered.

e init
This method comes from the Rul el npl enent or interface and is called when the rule
implementor is first instantiated. Its purpose is to perform an initialization needed by the

rule implementor instance before it is actually fired. The following parameters are passed
to the i ni t method:

e Theinitialization parameters defined for the rule being
triggered. These can be any parameters needed to properly
initialize the rule implementor instance. Often the initialization
parameters consist of constants required by the algorithm. For
example, when using a rule implementor that checks whether a
number is greater than a threshold value, the threshold value
would normally be passed as an initialization parameter. This will
be null if there are no initialization parameters for the rule.

e An array of names of dependent rules for the rule being
triggered. Normally the rule implementor should store these to be
used when the f i r e method is called. These depenent rules are
intended to be triggered as part of the algorithm performed by the
rule implementor. Refer to “Dependent Rules” on page 21 for
more information. This will be null if there are no dependent rules
defined for the rule.

« The user-defined data for the rule being triggered. This data is
completely defined by the user of BRBeans. BRBeans does not
interpret this data in any way. This will be null if there is no
user-defined data defined for the rule.

WebSphere Application Server Enterprise Services - Page 30

e Avreference to the actual rule being triggered. This can be
used to extract attribute values from the rule, if needed.

o fire

This comes from the Rul el npl enent or interface. This method is called to actually
perform the algorithm of the rule implementor. Any desired algorithm can be performed
here. Normally some value is returned by the f i r e method. This value is ultimately
returned as the result of triggering the rule. The following parameters are passed to the
fire method:

« The TriggerPoint object which is being used to trigger the
rule. This is needed if the rule has dependent rules that the fire
method needs to trigger.

» The target object for this particular trigger call. This can be
any object that can be thought of as the target of the rule. This
may be null.

« Avreference to the actual rule being triggered. This can be
used to extract attribute values from the rule, if needed.

« The firing parameters for this particular trigger call. Normally
these are the firing parameters passed by the code invoking the
trigger point. However, these can be overridden by specifying
firing parameters on the rule itself. Wherever they ultimately come
from, these are the parameters that the rule implementor needs at
runtime to perform its function. Normally these will be runtime
variables that are to be processed in some fashion by the rule
implementor. For example, when using a rule implementor that
checks whether a number is greater than a threshold value, the
number to be checked would normally be passed as a firing
parameter. This will be null if no firing parameters are passed by
the caller and none are defined on the rule itself.

» getDescription

This comes from the Rul el npl enent or interface. The purpose of this method is to
return a text string that describes the function of the rule implementor. This could be
used, for example, to display on a user interface to help a user select what implementor
to use. This method is currently not used by the BRBeans framework.

Pre-defined rule implementors

BRBeans supplies a number of pre-defined rule implementor classes that can be used in
user-defined rules. (see). The Java source code for these rule implementors is supplied as
BRBeans sample code in package com i bm webspher e. br b. i npl enent or . These can
be used as examples when writing your own rule implementors.

BRBeans framework runtime
The BRBeans runtime code that is used to find and trigger rules is made up of two parts:

1. The part that runs on the client ("client" here meaning wherever a the trigger point is
located). This consists of code that is used to do the following:

» finds the specified rules,
« decides where they should be triggered,
« calls the fire method on all the rules, and
« combines the results from the rules.
2. The part that runs on the server consists of the EJBs used to represent rules and rule

WebSphere Application Server Enterprise Services - Page 31

folders. These EJBs do the following:
» provide for business rule persistence, and

« provide query functions that the client part of the runtime can use
to find rules to be triggered

Externalized business rules

The objects used to implement a business rule contain methods and attributes used by the
BRBeans runtime and/or its administrative component. An externalized business rule is
implemented as a pair of objects:

+ aRule,and
* aRulelmplementor.

The Rule is an entity EJB that stores all the persistent data for the business rule. This is the
object that the trigger point framework code actually deals with directly. When a trigger point
is invoked, the internal framework code performs a query to find the Rule object(s)
representing the business rules to be triggered. Once the Rules are found, the framework
code determines where the Rule is to be invoked, either local to the trigger point or remotely
on the application server. It then invokes the f i r e method on either the Rule EJB itself (for
remote triggering) or on a local copy of the EJB (for local triggering) to perform the function
of the business rule.

The class name of the business rule's Rul el npl erment or is stored persistently in the Rule.
The Rul el npl enent or is a transient object (not managed by the application server) which
the Rule instantiates and then uses to do the actual work. When the fi r e() method is
called on the Rule object, the Rule object combines its persistent set of values with the
parameters it received on invocation to create the parameter list for the

Rul el mpl enment or, then itinvokes fi r e() on the Rul el npl enment or with this
parameter list. The actual execution of the Rul el npl emrent or algorithm can take place
either remotely (within the application server where the BRBeans EJBs are installed) or
locally (within the JVM where the trigger point was called).

Runtime behavior

BRBeans runtime behaviour can best be described by giving a simple example of a trigger
point selecting, executing, and then responding to the results of a business rule.

The first step in triggering a rule is for the trigger point framework to invoke a query method
on the rule server to find the rules to be triggered. The main item used for the query is the
fully-qualified rule name. Other items used in the query include start and end date, whether
or not this is a classifier, the classification of the rule, and whether or not the Rul e is
marked "ready". This query will return zero or more Rules. If there is at least one Rul e, the
trigger point will assemble the data that will be sent as parameters to each Rul e. The
trigger point will then loop through the list of Rul e invoking the fire method on each and
passing the parameters. The results will be combined depending on the combining strategy
being used.

When the trigger point framework invokes fire on a Rul e, it instantiates the

Rul el npl erent or and uses it to do the actual work (to execute the rule algorithm or test).
Once it has arrived at a result, the Rul el npl enent or returns that result. For constraint
rules (ones that arrive at a boolean true/false answer) the returned value is, by convention,
a ConstraintReturn. A ConstraintReturn is a data structure indicating whether or not the
constraint was satisfied, and if not, what went wrong. For derivation rules (ones that
calculate a single, generally non-boolean value) the return value may be of any type. In the
simplest case, the return value from each Rul el npl ement or is returned back to the
trigger point where it is analyzed to determine what action to take.

WebSphere Application Server Enterprise Services - Page 32

Here is an example of what happens when a rule is triggered:

A Rul e exists named maxTr uckG ossWei ght . The puspose of this rule is to check that
the weight entered by a user for a particular truck does not exceed the maximum allowed
value. This Rul e contains an initialization parameter list consisting of a single value of
42000 (meaning a maximum gross weight of 42,000 Ibs.). This Rul e is bound to a

Rul el npl errent or class called MaxRul el npl . MaxRul el npl , when invoked, tests the
parameter it is passed against the initialization list value and returns a

Constrai nt Ret ur n. The Const r ai nt Ret ur n will be set to true if the passed parameter
is less than or equal to the initialization value. Otherwise, a Const r ai nt Ret ur n is set to
false and some information is added describing which values were compared and why the
test failed.

Here is what actually happens when this rule is triggered:

1. During the execution of the application, it reaches a point where it needs to check that
the truck weight entered is valid. The application code invokes a simple trigger point
passing the name of the rule to be triggered and a parameter list containing the entered
weight of the truck.

2. The trigger point framework performs a query on the rule server to find a non-classifier
rule with the specified name. It receives back an sequence of Rul e objects. In this case
this sequence contains one Rul e, maxTr uckGr oss\Wei ght .

3. The framework determines whether this rule is to be triggered locally or remotely. If local,
the framework gets a local copy of the Rul e object and calls the fire method on the
copy. If remote, the framework calls fire on the EJB reference. The parameter list
containing te enter weight is passed on the fire method.

4. The maxTruckG ossWei ght rule (either the copy of the EJB itself) creates an instance
of the rule implementor class, maxRul el npl , if it does not already have one. When a
new rule implementor instance is created, the rule calls its init method passing any
initialization parameters defined for the rule. In this case the initialization parameter list
contains the single value 42000. If the rule already has a rule implementor instance, it
will use that one and will not call the init method again.

5. The maxTruckG ossWei ght rule calls the fire method on the rule implementor
instance. The firing parameters passed on the trigger point are passed to the rule
implementor, possibly modified by any firing parameters defined in the rule itself. In this
case the firing parametering are passed directly from the trigger point.

6. The maxRul el npl returns a Const r ai nt Ret ur n object to the Rul e indicating the
result of its comparison. This Const r ai nt Ret ur n is returned to the trigger point
framework and ultimately to the application.

7. The application checks the value in the Const r ai nt Ret ur n and takes appropriate
action.

Runtime exception handling

BRBeans defines one general exception class for exceptions that could be exposed to the
user. All other BRBeans exceptions inherit from this class. The name of this class is

com i bm websphere. br b. Busi nessRul eBeansException. A

Busi nessRul eBeansExcept i on will generally be thrown when an unexpected error
occurs within BRBeans. A Busi nessRul eBeansExcept i on may have information in it
about the original exception that caused the error. Doing a pri nt St ackTr ace on the
Busi nessRul eBeansExcept i on will print out this information as well as the stack trace
for the BusinessRuleBeansException itself. There are also methods on

Busi nessRul eBeansExcept i on to access the original exception programmatically, if
desired.

BRBeans also defines a Const r ai nt Vi ol ati onExcept i on, which extends
Busi nessRul eBeansExcepti on. A Const rai nt Vi ol ati onExcept i on is thrown if the

WebSphere Application Server Enterprise Services - Page 33

Thr owVi ol at i onCombi ni ngSt r at egy is specified on the Tri gger Poi nt and the rule
returns a false value (either a Const r ai nt Ret ur n or a Boolean).

Finally, BRBeans defines two exceptions, NoRul eFoundExcepti on and

Mul ti pl eRul esFoundExcepti on, that are thrown by some of the pre-defined filtering
strategies if an unexpected number of rules is found on a trigger point call. These two
exception both extend Unexpect edRul esFoundExcept i on which, in turn, extends
Busi nessRul eBeansExcepti on.

Rule Management APIs

BRBeans provides a set of APIs to perform rule management tasks programmatically.
These tasks include creating, deleting, and updating rules and folders. These APIs are
provided to simplify the interaction with the BRBeans EJBs. Users should use these APlIs to
perform rule management tasks instead of coding directly to the EJB interfaces.

The rule management APIs consist of the classes in the com i bm webspher e. brb. ngnt
package. The main classes that users will be interested in are the following:

IRule

This is the interface used to access the object representing a business rule in BRBeans. It
provides methods to read and update attributes of the rule, to delete the rule, and to make a
copy of the rule. The methods to create rules are on the IRuleFolder interface since you
must always create a rule into a particular folder. In the rule management APls, any time
you get a rule you have the option to get a reference to the EJB itself or to get a local copy
of the data contained in the EJB. Regardless of which option is chosen, the IRule interface
can be used to access the returned object. If a local copy is requested, it is possible to cast
the returned object to an IRuleCopy. IRuleCopy extends IRule and adds a couple additional
methods to those defined by IRule. See below for more details.

IRuleCopy

This is the interface used to access a local copy of the EJB representing a business rule. An
object implementing this interface is returned from rule management APl methods if you ask
for a local copy of the rule. The main reason for requesting a local copy is performance.
Calling a method on a local copy will be much faster than calling the method on the actual
EJB. If you need to access several different rule attributes, this may make a big difference.
Similarly, when updating a rule, all updates can be sent to the EJB in one method call
instead of many. The individual set methods are called on the copy and then the
updatePersistentRule method is called to actually send the updates to the EJB.

IRuleFolder

This is the interface used to access the object representing a rule folder. It provides
methods to create, delete, and find rules and subfolders. It also provides methods to move
and rename the folder, and to get the parent folder. The IRuleFolder representing the root
folder is generally what you start with when performing rule management tasks. Once you
have the root folder you can navigate up and down the folder hierarchy and access rules
contained with the folders.

RuleMgmtHelper
This is a helper class intended to contain methods that are of general use for performing

rule management tasks. Currently the only methods available are used to get the
IRuleFolder representing the root folder. The root folder is normally the starting point for

WebSphere Application Server Enterprise Services - Page 34

performing rule management tasks.
IParameter

This is the interface used to represent an initialization or firing parameter stored in a Rule
EJB. Every parameter has a user description and a value. Methods are provided on this
interface to access these. Three classes are provided that implement the IParameter
interface:

» ConstantParameter: This is the most common type of parameter. It represents a single
constant value that is to be passed as an initialization or firing parameter.

» MethodCallParameter: This class represents a parameter whose value is determined
by calling a method the target object. The method to call must be a public method and
must take zero parameters. This is only used for firing parameters.

e TriggerPointParameter: This class represents a parameter which is retrieved from one
of the trigger point firing parameters. This is mainly used for reordering the firing
parameters passed on the trigger point. This is only used for firing parameters.

For more details on the rule management interfaces, including a number of coding
examples, refer to the

WebSphere Application Server Enterprise Services - Page 35

Part V: Tools

* “Using the Rule Management Application - overview” on page 36
e “Creating rules” on page 36
e “Creating rule folders” on page 37
e “Copying / moving rules or rule folders” on page 37
e “Using Quick Copy” on page 37
* “Finding a rule” on page 38
e “Deleting rules” on page 38
» “Deleting rule folders” on page 38
e “Changing the Properties of a rule” on page 38
* “Importing a rule” on page 39
e “Exporting a rule” on page 39
¢ “Renaming rules” on page 39
e “Renaming rule folders” on page 39
* “Formatting columns” on page 40
e “Changing the date/time format” on page 40
» “Using the Rulelmporter and the RuleExporter tools” on page 40
e “Using the Rulelmporter tool” on page 40
e “Using the RuleExporter tool” on page 41

Using the Rule Management Application (RMA) - overview

The Rule Management Application (RMA) is a simple tool that assists the user in the high
level administration of rules and rule folders. This includes the capability to create, modify,
delete, import or export rules or rule folders. The RMA tool can be used initially by the
programmer to define rules interactively, and then by the domain analyst for rule
management tasks.

The graphic user interface main window for the RMA is the Rules Browser.

The column on the left side of the Rule Browser window shows a nested hierarchy of all
existing rule folders. Click on one of these folders to display the rules it contains. The names
of these folders appear in the right column.

Navigate as you would in a typical file-management browser.
» Click the "+" icon to expand by one level; click the "-" icon to collapse it.

» Click a filename to highlight it; right-click it to launch a list of actions, or select an option
from the main menu.

RMA is designed to be a very general purpose tool for interactive management of rules.
Many users of BRBeans will want to write their own user interface that is tailored more
specifically for the domain in which they work. For instance, a domain-specific user interface
may be able to provide more help to the user in the task of managing rules than a general
purpose tool such as RMA. Users wishing to write their own user interface can refer to the .

Creating rules
To create a rule using the Rule Management Application, proceed as follows:

1. In the Rule Browser window, select the folder where you want the new rule to

WebSphere Application Server Enterprise Services - Page 36

1.

be created.

From the main menu, click File > New > Rule.

In the New Rule properties window, use the following tabs to define the rule:

General: Use this tab to enter general information about
the rule.

Implementation: Use this tab to define the manner in
which the rule is implemented.

Description: Use this tab to define the purpose and
intent of the rule.

Dependent Rules: Use this tab to specify the rules that
the newly created rule will depend upon.

Other: Use this tab to to establish precedence, and enter
information that is relevant to you, but doesn't fit into any
other category.

To complete the creation of the rule, click OK.

If there are any mandatory fields still undefined, you will either have to go back
and give them a value, or make the rule unavailable for use (see Status in the
) General tab for more information on this).

Creating rule folders

To create a rule folder using the Rule Management Application, proceed as follows:

In the Rule Browser window, select the folder where you want the new folder

to be nested.

From the main menu, click File > New > Folder.
A new folder appears in the folder hierarchy in edit mode. Enter a folder name

and hit the enter key.

Copying or moving rules or rule folders
Copy or move rules or rule folders either by cutting and pasting, or dragging and dropping.

Cutting and pasting.Use menu commands (Edit > Copy, Edit > Cut and Edit > Paste)
or keyboard commands (CTRL-C, CTRL-V and CTRL-X).

Dragging and dropping Highlight the rule or rule folder you want to copy. Then press
and hold the right mouse button, drag the cursor to the target location, and release.
Select Copy or Move from the list.

Note: A rule can also be copied so that the copy will replace the existing rule at a specified
date. This is referred to as a “ Quick Copy ” on page 37.

Using Quick Copy

Use Quick Copy to make a copy of a rule that will replace the existing one on a specified

date.

For example, suppose that we have an "isSeniorCitizen" rule. Currently a person is
considered a senior citizen if they are 62 years of age or older. Starting on January 1, 2002,
we are going to change this to 65. Use Quick Copy to specify the new date, and change the
age from 62 to 65. The current rule will be set to expire on the same date that the new rule
will take effect with the new senior citizen age defined as 65.

Use Quick Copy from the Rule Browser or Search Results windows.

Select the rules you want to Quick Copy.

WebSphere Application Server Enterprise Services - Page 37

2. From the main menu, click Edit > Quick Copy.

3. In the Quick Copy window, specify how the copy will differ from the original as
follows:
follows:

4, Click OK to finish.

Note: The Quick Copy function should only be used for simple changes, and is not
intended to be used in all cases.

Finding arule
You can search for a specific rule using the RMA Find function.

1. To search through all rules in all folders:
a From the main menu of the Rule Browser, click
Edit > Find.
b Use the tabs in the Find Rules window to
determine your search criteria.
2. To search a specific folder:
a Right-click on the folder and select Find from
the list.
b Use the tabs in the Find Rules window to

determine your search criteria.
The results of your search are displayed in a Search Results window.

Deleting rules
You can delete rules from the Rule Browser or Search Results windows.

1. Select the rules you want to delete.
2. From the main menu, click File > Delete.
3. Click Delete, and then confirm the delete request.

Note: you cannot delete coni i bni webspher e/ br b/ BRB CacheRul e as this rule is
needed by the Business Rule Beans runtime.

Deleting rule folders
You can delete rule folders from the Rule Browser window.

1. Select the folder you want to delete.
2. From the main menu, click File > Delete.
3. Click Delete, and then confirm the delete request.

Note: you cannot delete the root folder, or any of the folders in the path
coni i bm webspher e/ br b.

Changing the Properties of arule

To change to properties of a rule, perform the following steps in either the Rule Browser or
Search Result windows:

1. Highlight the rule you wish to edit.
From the main menu, click File >Properties.

In the Rule Properties properties window, use the following tabs to edit the
rule's definition:

WebSphere Application Server Enterprise Services - Page 38

Importing arule

General: Use this tab to edit general information about
the rule.

Implementation: Use this tab to edit the manner in
which the rule is implemented.

Description: Use this tab to edit the purpose and intent
of the rule.

Dependent Rules: Use this tab to edit the list of rules
that the newly created rule will depend upon.

Other: Use this tab to to establish precedence, and enter
information that is relevant to you, but doesn't fit into any
other category.

To complete the editing of the rule, click OK.

If there are any mandatory fields still undefined, you will either have to go back
and give them a value, or make the rule unavailable for use (see Status in the
General tab for more information on this).

You can use the Rule Browser window to import rules from an XML format.

1
2.
3.

Exporting arule

In the main menu click File > Import.
In the Import Rules window, specify the file you want to import.

Click OK.

Rules and rule folders are created as specified within the XML.

You can export rules from the Rule Browser or Search Results windows.

1.
2.

3.
Renaming rules

In the main menu click File > Export.
In the Export Rules series of windows, proceed as follows:

a

Click Export to finish.

In the Specify Rules to Export window, select
the rule(s) that you want to export, and click
Next.

In the Change Effective Dates On Exported
Rules window, alter the start and end dates of
the rule if desired, and click Next.

In the Select File For Rule Export window,
chose a name and location for the exported
rule.

You can rename rules from the Rule Browser or Search Results windows.

1.
2.

w

Highlight the rule you want to rename.
From the main menu, click File->Rename.

Type a new name and press the Enter key.

To cancel the name change while still in progress, press the Esc key.

Renaming rule folders
You can rename rule folders from the Rule Browser or Search Results windows.

WebSphere Application Server Enterprise Services - Page 39

1. Place the folder name in edit mode by doing either of the following:

Place the folder name in edit mode by doing either of the following:
2. Type a new name and press the Enter key.

To cancel the name change while still in progress, press the Esc key.

Note: You cannot change the name of the root folder.

Formatting columns
To choose which columns you want shown in your Rule Browser window, perform the
following steps in either the Rule Browser or Search Results windows:
1. From the main menu, click View > Specify Columns.
2. In the Specify Column window, proceed as follows:

. In the Specify Column window, proceed as follows:
Changing the date/time format

You can change the date and time format from either the Rule Browser or Search Results

windows:

1. In the main menu, click View > Specify Date/Time Format.
In t_he Specify Date/Time Format window, choose one of the three radio button
options:
options:

3. When the example in the lower left of the window meets your needs, click OK
to finish.

Using the Rulelmporter and the RuleExporter tools

Rules can be imported or exported using the Rul el nport or Rul eExport classes
respectively. The import takes place into a database from one or more XML documents. By
contrast, the export takes place from the database into an XML document. The rules that
are exported are determined by an XML document which is provided to the tool.

The rule importer and rule exporter functions can be invoked using the “ Rule Management
Application ” on page 36 . The user interface in RMA provides some assistance in
specifying the parameters required by the importer and exporter. Alternatively, the rule
importer and rule exporter can be invoked from the command line using the following
scripts:

* For Windows platforms

e rul ei nporter. bat

e rul eexporter.bat ()
e For UNIX platforms

e ruleinporter.sh

e rul eexporter.sh (f)

Using the Rulelmporter tool

rul ei nporter <properties-file> <inport-files> [options]

<properties-file>
The fully qualified name of a file containing the JNDI hames of the BRBeans EJBs

WebSphere Application Server Enterprise Services - Page 40

for the rule set that is to be accessed. Refer to “The BRBeans Properties file” on
page 47for a definition of the contents of this file. This parameter is required.

<export-list-files>

One or more fully qualified names of the files containing XML rule definitions to be
imported. These files must contain XML in the format defined in

WAS HOVE\ AppServer\ Ent er pri se\ bi n\ brb. dt d. This XML format is also
defined here. This parameter is required.

Options
-[v]erbose

Show verbose output while importing. This will show the rule definition of every rule
that is imported.

-[t]est
Only parse the input files, do not create rules in the application server. This will
ensure that there are no errors in the syntax of the rule definitions provided in the

XML document. Combined with the -verbose option it can also be used to see
exactly what rules will be imported.

-[u]pdate

When a rule in an input file has the same primary key as an existing rule, update the
existing rule with values from the input file. If this option is not specified, then any
rule with the same primary key as an existing rule will cause an error and that rule
will not be imported.

-[clommiteach

Perform a commit after each rule is created rather than creating all rules in a single
transaction. If this option is not specified, then all rules are created in a single
transaction. This means that if any rule causes an error, the entire transaction will
be rolled back and none of the rules will be imported. If -commiteach is specified,
then when a rule causes an error only that rule will not be imported. Other rules will
still be imported.

Using the RuleExporter tool

ter <properties-file> <export-list-files>

<properties-file>

The fully qualified name of a file containing the JNDI names of the BRBeans EJBs
for the rule set that is to be accessed. Refer to “The BRBeans Properties file” on
page 47for a definition of the contents of this file. This parameter is required.

<export-list-files>

One or more fully qualified names of files containing a list of rules and/or folders to
be exported. These files must contain XML in the format defined in

WAS HOME\ AppSer ver\ Ent er pri se\ bi n\ brb-export-1ist.dtd. This XML
format is also defined here. This parameter is required.

Options
-[v]erbose
Show verbose output while exporting.
-[o]utput <file-name>

The name of the file to which rules should be output. This is where the XML rule
definitions are stored. This is a required parameter.

WebSphere Application Server Enterprise Services - Page 41

WebSphere Application Server Enterprise Services - Page 42

Part VI: Advanced Topics
* “Improving performance” on page 43
e “Caching to improve performance” on page 43
* “Using servlets to improve performance” on page 44
e *“Using indexes to improve performance” on page 44
» “Changing the firing location to improve performance” on page 44
e “Writing Your Own Strategies” on page 45
» “As Of date” on page 47
* “The BRBeans Properties file” on page 47
* ‘“Including BRBeans in your application” on page 47

Improving performance - overview

The externalization of business logic using BRBeans has many benefits, but doesn't come
completely without a cost. Since every business rule is represented by an EJB, then, in the
general case, every rule trigger is performed in two parts:

1. aquery is performed to find the EJBs representing the rules to be triggered,

2. aremote method call is performed on the EJB to actually trigger the rule.

Since both of these steps require going to the server, this can get rather slow. (There is also
a third remote method call that is made to determine whether the rule is to be fired locally or
remotely.)

This section documents the following ways to improve performance:

» “Caching to improve performance” on page 43

» “Using servlets to improve performance” on page 44

» “Using indexes to improve performance” on page 44

» “Changing the firing location to improve performance” on page 44

Caching to improve performance

The BRBeans framework incorporates a cache on the client side, i.e. wherever the trigger
method on the TriggerPoint object is called. This cache is scoped to the JVM in which the
client is running so that any trigger calls performed in a particular JVM will use the same
cache, and two triggers performed in different JVMs will use two different caches. The
BRBeans cache caches the results of all queries performed to find a set of rules to be
triggered. The next time a trigger is performed in that JVM with the same rules specified, the
rules will be found in the cache and the query will not actually require going to the server.

Once the rules are found in the cache they are triggered, either locally or remotely,
depending on how they were defined. If a rule found in the cache is specified to be triggered
locally, then the entire trigger process for that rule is performed on the client. No calls to the
server are required. Even if the rule is specified to be triggered remotely, finding the rule in
the cache eliminates one call to the server since the query does not have to be performed
on the server.

The BRBeans cache can improve performance greatly, however it has one disadvantage:
changes made to rules are not recognized immediately.

When a change is made to a rule on the server there is no way to inform all the potential

clients that something has changed and that they therefore may need to refresh their
caches. This effectively means that the client cache must check periodically to see if

WebSphere Application Server Enterprise Services - Page 43

anything in the persistent rule data has changed. This is implemented by associating a
polling frequency with the cache. This polling frequency specifies an interval of time that the
cache will wait before checking to see if anything has changed. The next time a trigger is
performed after a polling interval has passed, the cache will check to see if any changes at
all have been made to the persistent rule data stored on the server. If no changes have
been made, then the cache is not refreshed. If any changes at all have been made, the
entire cache is cleared so that the changes will be picked up. Thus changes to the rules are
only picked up by the cache after a polling interval has passed.

The default polling frequency is 10 minutes. The user can change this value by changing the
single initialization parameter specified for the special rule named

coni i bm webspher e/ br b/ BRB CacheRul e. The value for this initialization parameter
has the following format:

e hh: mm ss.

where hh stands for hours, mm stands for minutes, and ss stands for seconds.

Thus the default of 10 minutes is specified by a value of 00: 10: 00. To specify a polling
frequency of, for example, 1 hour, 30 minutes, specify 01: 30: 00

. Note that when this value is changed it will not take effect until the previous polling interval
has passed. Thus, if the previous polling interval is set to 24 hours and the polling frequency
is changed to 1 hour, the new frequency will not take effect until the previous 24 hour polling
interval passes. The only other ways to get the new frequency to take effect are to restart
the client (since this will cause the cache to be reinitialized from scratch) or to have the
client code call the r ef r eshCache method on the Tri gger Poi nt object. If there is more
than one client JVM performing triggers, this has to be done for each client since each JVM
has its own cache. Note that there is only one BRB CacheRul e and this rule applies to all
clients. There is no way to set different polling frequencies for different clients.

Caching can be disabled for a particular Tr i gger Poi nt object using the

di sabl eCachi ng method. After di sabl eCachi ng is called any triggers performed using
that Tr i gger Poi nt object will not use the cache. Triggers performed using other

Tri gger Poi nt objects are not affected.

Using servlets to improve performance

Another way that performance can be improved is to have all "client" code that triggers rules
run in a servlet. This assumes that the servlet is running on the same physical system as
the EJB server where the BRBeans EJB are installed. This way when remote calls are
made to the EJB rule server, they are going to another JVM on the same machine and not
going across a network to a different physical system. Of course, this becomes less
important if the BRBeans cache hit ratio is high enough and most triggers are local. If this is
the case, then most triggers will be completely local to the client code triggering the rules
and it doesn't matter which machine it is running on.

Using indexes to improve performance

Creating an index over the database table that is used to store rules is an important way to
improve the performance of rule queries. It is recommended that an index be created over
the rulename column of the table containing the rules. This greatly improves the
performance of rule-triggered queries that are looking for a rule(s) with a specific name. The
index saves teh query the effort of searching every row in the table. Please refer to the
documentation for your database for instructions on how to create an index.

Changing the firing location to improve performance

The BRBeans framework allows you to specify where a particular rule should be fired. This
determines where the rule implementor for the rule is actually instantiated and invoked.
There are three possible values for the firing location:

WebSphere Application Server Enterprise Services - Page 44

1. Local: Fires the Java rule implementor local to the client that fired the rule. This means
in the same JVM in which the trigger was performed.

2. Remote: Fires the Java rule implementor on the server where the rules exist.

3. Anywhere: First tries to fire the Java rule implementor locally. If the Java rule
implementor cannot be found, then it fires the Java rule implementor remotely. This is
the default value.

For simple rule implementors that do not perform any server-intensive work, specifying local
usually results in the best performance. This is true both with and without caching.

Without caching, the work done to fire a rule remotely involves the following:
1. finding the rule
2. determining whether the rule is to be fired locally or remotely

3. calling fire on the remote rule
Each of these three operations requires a remote call to the server.

With caching the work done to fire a rule locally involves the following:
1. finding the rule
2. determining whether the rule is to be fired locally or remotely

3. calling fire on a local copy of the rule
This requires only two remote calls.

With caching, local firing results in even more dramatic improvements since, if the rule is
found in the cache, the entire rule firing process takes place locally with no remote calls. In
fact, to get the full benefit of the cache, rules should be fired locally, (although remotely fired
rules still benefit from the cache due to the elimination of the query on the server).

There may be some cases where a rule implementor must perform some work that requires
much interaction with the server. In these cases it may actually be beneficial to have rules
using this rule implementor defined to be fired remotely. This should make the server
interaction performed by the implementor more efficient.

Note that, in addition to performance, maintenance must also be considered in relation to
specifying a firing location. The rule implementor classes for rules that are defined to be
fired locally must be present on any client system that tries to fire those rules. Otherwise the
implementor cannot be instantiated when the rule is fired. This can result in maintenance
problems when the rule implementors are changed since they must be updated on many
different systems.

Writing your own strategies

The process of triggering a rule or set of rules is controlled by a set of strategy objects. Four
strategies are used each time a rule is triggered:

1. Finding strategy: The finding strategy accesses the persistent datastore to find the set
of rules matching the search criteria passed on the trigger call. The search criteria are
based on the rule ID information passed on the trigger call. The set of rules found is
passed to the filtering strategy.

2. Filtering strategy: The filtering strategy can change the set of rules that were found by
the finding strategy. The set of rules returned is the set that will actually be fired by the
firing strategy.

3. Firing strategy: The firing strategy fires the rules found by the finding strategy, possibly
modified by the filtering strategy. It gathers up the results of the individual rules and
these results are passed to the combining strategy.

WebSphere Application Server Enterprise Services - Page 45

4. Combining strategy: The combining strategy takes the results from firing the rules and
combines them in some fashion to produce the final result of the trigger.

Tri gger Poi nt object has its own set of strategies that can be changed independent of
any other Tr i gger Poi nt object. There is a set of default strategies that are used by the
Tri gger Poi nt if none are explicitly set.

For each of the four strategies you are allowed to set different strategies for classifier rules
and for non-classifier rules. The strategies set for classifier rules are to be used when the
BRBeans framework is triggering a classifier rule. The strategies for non-classifier rules are
used in all other cases.

It is also possible to set three different sets of filtering strategies:
1. one to be used if no rules are found
2. one to be used if exactly one rule is found

3. one to be used if more than one rule is found
This capability can be used to set up filtering strategies that will throw exceptions if the
expected number of rules is not found.

Strategy classes must implement one of the strategy interfaces provided by BRBeans in the
com i bm webspher e. br b package:

1. Findi ngStrat egy
2. FilteringStrategy
3. FiringStrategy

4. Conbi ni ngStr at egy

The user is also allowed to write his or her own strategy implementations to perform special
functions not performed by the predefined implementations. This should be done with care
since part of the functionality of the BRBeans framework is actually being replaced when
you write a custom strategy. One simple example of writing a custom strategy is creating a
new firing strategy that logs every rule that is fired.

The basic requirement for a strategy implementation is that it implements the appropriate
strategy interface.

The filtering and combining strategies are particularly simple. For these, a class should be
created that implements either Fi | t eri ngSt r at egy or Conbi ni ngSt r at egy and
implements either the fi | t er Rul es method (for Fi | t eri ngSt r at egy) or the

conbi neResul t s method (for Conbi ni ngSt r at egy) to perform the required functions.
At runtime, an instance of the new class should be created and passed to the

Tri gger Poi nt object using the appropriate set method so that the new strategy is used
when rules are triggered using that Tr i gger Poi nt .

The finding and firing strategies are somewhat more complicated to customize since they
provide more function than the simple filtering and combining strategies. Default finding and
firing strategy implementations are provided that define a general outline of the steps
necessary to perform the function. We recommend subclassing these when customizing
your own strategies, and then overriding the desired methods on the default implementation
to provide the new behavior.

Refer to either the or the source code for the default implementations in
com i bm websphere. brb. strat egyfor more details.

WebSphere Application Server Enterprise Services - Page 46

As Of date

Normally, a rule can only be triggered if it is "in effect" (see “Rule States” on page 19) as of
the current date and time. By using the As Of Date method, you can trick the rules into
triggering themselves prematurely. This is especially useful when you want to test a rule,
see what effect a future change in rules or regulations may have on the overall framework,
or see what past or future rates and/or discounts might be.

To set an "As Of Date", call the set AsOf Dat e method on the Tr i gger Poi nt object, and
pass the date that you want to be used. To use the current date again, call
unset AsCrf Dat e or call set AsOf Dat e and pass null for the date.

The BRBeans Properties file

Applications that use the BRBeans EJBs (this includes those that trigger rules or use the
rule management APIs) must specify the INDI names for these EJBs so that the code can
find them at runtime. If the application is running in a J2EE client container, in a servlet, or
on the application server itself (e.g. as part of another EJB), then these names have
probably already been specified by the person who configured the application.

At runtime, the BRBeans code looks for a special Java property that identifies the name of
the properties file. The default name of the Java property is br bProperti esFi |l e, but it
can be specified on the command line as - Dbr bPr operti esFi | e=<fil e- nane>.

When an application attempts to reference BRBeans EJBs, the code will first look for the
brbPropertiesFile Java property. If this property is specified, then the names listed in that file
are used to find the EJBs, overriding any EJB references that were specified in the
container (if the application is running in a container). If the property is not specified, then
BRBeans attempts to use the EJB references specified in the container.

The host name and port number used to access the name server can also be set in this file.
If these are not specified, then the name server used by the container in which the
application is running is used. If the application is not running in a container, then localhost
is used for the host name, and 900 is used for the port number.

The properties file must be in the following format (entries can be specified in any order):

host =<host - nane- f or - name- server >
Emort =<port - nunber - f or - nane- server >
| eJndi =<JNDI - nane- f or - Rul e- EJB>
Rul eFol der Jndi =<JNDI - nane- f or - Rul eFol der - EJB>
Rul eHel per Jndi =<JNDI - name- f or - Rul eHel per - EJB>

A default properties file is shipped as

WAS HOVME\ AppSer ver\ Ent er pri se\ bi n\ br beansDef aul t Properti es. This default
file contains default names that are used in the BRBeans. j ar file that is shipped with
BRBeans. This file can be used if that jar file is installed without changing the names. Note
that the file name still must be specified even if you want to use the default file. There is no
file that is used automatically if the br bPr operti esFi | e property is not set.

The tools shipped with BRBeans (the Rule Management Application, the rule importer, and
the rule exporter) all run outside of any container. Hence the JNDI names need to be
specified when these tools are run. The scripts for these tools all require that a proerties file
name be passed as a command line parameter. This name is then specified as the value for
the brbPropertiesFile property when the tool is run.

Including BRBeans in your application
When you are ready to ship your application, you should include a BRBeans jar file in your

WebSphere Application Server Enterprise Services - Page 47

ear file. There are several of these jar files in the <WAS- HOVE>\ Ent er pri se\ BRBeans
directory, one for each supported database. Each name reflects the database type that it
uses (ex: BRBeansDBZ2.jar). These jar files contain 3 EJBs, with the following JNDI names:

* brbeans/application/Rule
* brbeans/application/Rul eFol der
* brbeans/application/ Rul eHel per

In your ear file, you should change these names to make them unique for your application.
For example, if your application is called MyApp, you could change the first one to
br beans/ MyApp/ Rul e, or possibly com MyConpany/ MyApp/ Rul e.

In your ear file, you will also need to define EJB references to these 3 EJBs. These should
be defined in any module where atrigger... () method exists in one or more of its
classes. You can do this using the Application Assembly Tool. The Name field should
contain the following, corresponding to the EJBs listed above:

e ejb/comibnws/brb/Rule
e ejb/comibn ws/brb/ Rul eFol der
o ejb/conibn ws/brb/Rul eHel per

The JNDI name on the Bindings tab should be the same as the JNDI names that you gave
earlier to the EJBs.

WebSphere Application Server Enterprise Services - Page 48

Part VII: Samples

* “Business Rule Beans samples - overview” on page 49

Business Rule Beans samples - overview

If you selected to install samples during the installation of WebSphere Enterprise Edition,
the Business Rule Beans samples can be found in
WAS HOME\ Appserver\ Ent er pri se\ sanpl es\i ndex. ht mdirectory.

The BRBeans Simple Sample allows you to do 2 things:
» create 2 rules using the rule management APIs and,
» fire the 2 rules using Tri gger Poi nt . t ri gger ...() methods

For directions on how to install and run the samples, launch
... sanpl es\ BRBeans\ Si npl eSanpl e\ BRBeansSi npl eSanpl e. ht ml . The source for
this sample is in BRBeansSi npl eSanpl eSour ce. j ar in the same directory.

In this sample, you will:

» configure a database for use with BRBeans

» install an application containing BRBeans

* run a client application to create 2 rules

» use the Rule Management Application to view the 2 rules that were created
* run a client application to trigger the 2 rules that were created.

The BRBeans Movie Samples demonstrate the capabilities of Business Rule Beans
(BRBeans) Framework. These have a common theme which is www.moviestore.com, an
e-business that sells movies. A complete working system is not provided but rather only the
components of a rule-enabled application necessary for demonstration of basic trigger point
patterns and variations in trigger point behavior.

The samples themselves utilize rule-enabled CMP beans to persistently store data and
Session bean to keep the shopping cart contents. The interface to the user is in the form of
servlets that are used to send input and requests and display results to/from the servlets.
Additional version that utilizes interface html input form->servlet->jsp is also provided.

The following samples are available:
* Customer Sample

* Movie Sample

» Shopping Cart Sample

e Online Movie Store Sample

For directions on how to install and run the samples, launch

... sanpl es\ BRBeans\ Movi eSanpl e\ BRBeansMovi eSanpl e. ht nl . The source for
this sample is in BRBeansMovi eSanpl eSour ce. j ar in the same directory.

WebSphere Application Server Enterprise Services - Page 49

	Contents
	Part I: Concepts and Architecture
	Business Rule Beans (BRBeans)
	What is a business rule?
	Different types of business rules

	BRBeans development and maintenance roles
	Why externalize rules?

	Part II: Where to begin
	Database considerations
	Oracle considerations
	Sybase considerations
	Informix considerations

	Getting Started with BRBeans
	Installing a BRBeans jar file on AE - overview
	Installing a BRBeans jar file on AEd - overview

	Starting the BRBeans Rule Management Application

	Part III: Rule Administration
	Rule administration

	Part IV: The BRBeans framework
	The BRBeans framework - overview
	Business Rule Beans - overview
	Rule States
	Rule attributes
	Returning results from rules
	Dependent Rules
	BRBeans Rule Folders
	Trigger Point Framework - overview

	Determining where to place a trigger point
	How to place a trigger point
	Types of Trigger Points - overview
	Using strategy objects to control triggers

	Rule Implementors interface - overview
	How Rule Implementors are invoked
	Writing your own rule implementors
	Pre-defined rule implementors

	BRBeans framework runtime
	Externalized business rules
	Runtime behavior
	Runtime exception handling

	Rule Management APIs

	Part V: Tools
	Using the Rule Management Application (RMA) - overview
	Creating rules
	Creating rule folders
	Copying or moving rules or rule folders
	Using Quick Copy
	Finding a rule
	Deleting rules
	Deleting rule folders
	Changing the Properties of a rule
	Importing a rule
	Exporting a rule
	Renaming rules
	Renaming rule folders
	Formatting columns
	Changing the date/time format

	Using the RuleImporter and the RuleExporter tools
	Using the RuleImporter tool
	Using the RuleExporter tool

	Part VI: Advanced Topics
	Improving performance - overview
	Caching to improve performance
	Using servlets to improve performance
	Using indexes to improve performance
	Changing the firing location to improve performance

	Writing your own strategies
	As Of date
	The BRBeans Properties file
	Including BRBeans in your application

	Part VII: Samples
	Business Rule Beans samples - overview

