
Problem Determination -- table of contents

 8: WebSphere Application Server Problem Determination

 8.1: Problem Determination vs. Tuning

 8.1: Applying E-fixes

 8.2: Messages

 How to View Messages

 8.3: Logs

 Log samples

 8.4: Traces

 Trace Samples

 Enabling and Reading ORB Trace

 ORB Request Trace

 8.5: Identifying the Problem

 Plug-in Problems

 Servlet Redirector Problems

 Workload Management, Remote Administration and Cloning Problems

 Installation Problems

 8.6: Diagnosing Configuration and Installation Problems

 8.7: Using Application Level Facilities

 ORB-related Minor Codes

 8.8: Using Internal Tools

 Using the Log Analyzer for Advanced Edition

 8.9: WebSphere Application Server Threads

 8.10: Applying E-fixes

 8.11: Pointers to other resources

 8.12: Various Problem Determination Topics

 8.13: Problem Determination Hints and Tips

 8.14: How to Report a Problem to IBM

 Using the JRas Message Logging and Trace Facility

 Contents

 Introduction

 Overview of messages and trace

 The WebSphere JRas programming model

 Naming and managing loggers

 Message and trace event types

 Using JRas loggers

 Creating resource bundles and message files

 Creating manager and logger instances

 Using loggers

 Figures

 Tables

 Notices

 Using the Performance Monitoring Infrastructure Client Package

 Contents

 Introduction

 PMI organization and implementation

 PMI client interfaces

 Data organization and hierarchy

 PMI interfaces

 Using the PMI client interfaces

 Figures

 Tables

8: Problem determination

This section provides information about resources and techniques to help you
identifyand respond to problems. You can perform problem determination at different
levels within your system.Several resources are available for identifying problems:

Logs●

Trace files●

Messages●

Tools●

In order to identify a problem, it is important to understand both the topology of the
system and howyour application fits into this topology. See WebSphere Structure in
this section. Consider the following questions:

Are all the components installed successfully?●

What is your application attempting to do?●

How is your application deployed?●

What technology is used to connect to back-end systems?●

Can you re-create the problem?●

What resources best identify the problem?●

Next, choose the diagnostic tasks that can help you identifythe component within
WebSphere Application Server or within your application that iscausing the problem.
Diagnostic tasks include:

Determining what tuning parameters to specify●

Identifying error messages●

Locating logs and trace files●

Determining whether system and server classpath settings are set correctly●

Identifying failing product components●

Identifying appropriate tools for a problem●

Understanding how to invoke and use available tools●

WebSphere Structure topology

There are a number of configurable values which relate to the server launch. These
parametersare held in the path map, process definitions and the OLT configuration.
These parametersprovide important details regarding the server java process launch,
including debugging details.

The server information is contained within a server configuration file in the

serverconfiguration directory. There can be multiple configurations, one of which must
be selected bythe user when performing a launch.

You will see a couple of processes running. Instead of an administrative server, there is
anadministration enterprise application which runs on top of the application server.
These are running inthe same process. The Web server is running in a separate process
with the exception of when theinternal Web server is chosen. However, the latter
option is not the common operating mode.

The supported application databases are:

DB2●

Oracle●

instantDB●

WebSphere provides the DataSource interface to connect and access these databases.
This providesflexibility and efficiency to the application developer because it does not
matter which underlying database you choose.

During installation, the Web server that will interact with the WebSphere Application
Server is identified. Depending on which Web server is identified, a different plug-in
code is installed. The plug-in communicates via HTTP to the internal HTTP server,
which thenroutes the requests to the servlet engine or web container.

The application server also contains two subcomponents, the servlet engine/web
container and EJB container. The servlet engine interfaces with the plug-in code to
service HTTP requests from a Web browser. The EJB container interfaces with the
servlet engine or EJB clients to support access to enterprise beans. Both the servlet
engine or container can access the customer application data.

Interfaces

RMI/IIOP

This interface is provided by the CORBA component of the IBM-supplied Java 2
SDK which is installed with WebSphere Application Server. This interface
allows an application to transparently access Java objects that are located either
locally or remotely. This interface is also used for interactions between the
administrative server, the administrative client and the application server. The
SSL security layer is used when the user activates security.

●

HTTP

This interface is the externally defined interface used by Web browsers. The

●

Web server can either service the HTTP request or pass the request to the
application server via the OSE interface.

JDBC

This interface is defined by Java and allows Java programs to access data within
the supported databases.

●

Logs

The primary WebSphere Application Server processes produce that can be invaluable
when doing problem determination. See a description of each log in the Logs section.

8.1: Problem determination vs. tuning

This section describes a summary of the difference between problem determination and
tuning. Problem determination and tuning are closely related topics, each having the
same outcome: a betterperforming product. You might perceive tuning as a subset of
problem determination.

Understanding the difference between problem determination and tuning is important.
Knowing when to usetuning and when to use problem determination will save you
time.

Problem determination

Problem determination is the process of determining the source of a problem; for
example, a program component,machine failure, telecommunication facilities, user or
contractor-installed programs or equipment,environmental failure such as a power loss,
or user error.

Tuning

Tuning is the process of adjusting an application or a system to operate in a more
efficient manner in thework environment of a particular installation.

In other words, problem determination fixes functional problems, while tuning
alleviates slow processes.

The WebSphere Performance and Tuning Guidedescribes the parameters that should be
modified to create an optimum product environment.
● 9.1: WebSphere Application Server Tuning Guide

http://squidward/0901.html
http://squidward/0901.html

8.10: Applying E-fixes

E-fixes are individual fixes for critical problems. They have been individually
tested,but not integration tested and should only be applied if you have a critical
problem without a valid workaround. They may be applied to both versions of
WebSphere, except where specifically noted. All e-fixes are rolled into the next
scheduled FixPack. Each fix has a readme file with installation instructions.

To learn about the fixes made available since the last FixPack, see the FixPacks and
E-fixes website.

Related information...
● 8: Problem Determination

View the PDF file containing this article for easy printing

http://www-4.ibm.com/software/webservers/appserv/efix.html
http://www-4.ibm.com/software/webservers/appserv/efix.html
http://squidward/PDguide.pdf
http://squidward/PDguide.pdf

8.2: Messages

When WebSphere Application Server is running, it might issue messages related to any
of the following components:

Administrative GUI●

Administrative Repository●

Administrative Server●

Alarm*●

EJB Container●

Connection Manager*●

Database Manager●

Data Replication Service●

Cache Management●

Install●

J2EE Connector●

IBM Java ORB●

Security Association Server●

Java Server Pages●

Localizable Text●

Migration Tools●

JNDI - Name Services●

Web server Plug-ins and Native code●

Resource Analyzer●

Session and User Profiles●

WebSphere Systems Management Utilities●

Servlet Engine●

Tracing Component●

WebSphere Systems Management Commands●

Request Interceptors●

WebSphere Object Adapter●

WebSphere Persistence●

Client●

WSCP Command Line●

WebSphere Server Runtime●

WebSphere Transactions●

WebSphere Systems Management TASKS●

EJB Workload Management●

XML Configurations●

WebSphere Server Process Launch●

WebSphere Server Validation●

To help you diagnose problems and minimize the need to enable trace in any of the
above components, view the messages table. You can view the messages in
alphabetical order by prefix--> or component-->. All messages are documented with
user/system action and explanation.

By Prefix

ADGU Administrative GUI

ADMR Administrative Repository

ADMS Administrative Server

CHKJ IBM Validation Tool

ALRM Alarm*

CNTR EJB Container

CONM Connection Manager*

DBMN Database Manager

DRSW Data Replication Service

DYNA Cache Management

INST Install

J2CA J2EE Connector

JORB IBM Java ORB

JSAS Security Association Service

JSPG Java Server Pages

LTXT Localizable Text

MIGR Migration Tools

NMSV JNDI - Name Services

PLGN Webserver Plug-ins and Native code

PMON Resource Analyzer

SECJ WebSphere Security

SESN Session and User Profiles

SMTL WebSphere Systems Management Utilities

SRVE Servlet Engine

TRAS Tracing Component

WCMD WebSphere Systems Management Commands

WINT Request Interceptors

WOBA WebSphere Object Adapter

WPRS WebSphere Persistence

WSCL Client

WSCP WSCP Command Line

WSVR WebSphere Server Runtime

WTRN WebSphere Transactions

WTSK WebSphere Systems Management TASKS

WWLM EJB Work Load Management

XMLC XML Configuration

WSPL WebSphere Server Process

CHKW WebSphere Server Validation

http://squidward/msgref/WSCP.html

By Component

Administrative Server ADMS

Administrative GUI ADGU

Administrative Repository ADMR

IBM Validation Tool CHKJ

Alarm* ALRM

Cache Management DYNA

Data Replication Service DRSW

IBM Java ORB JORB

Client WSCL

Connection Manager* CONM

Database Manager DBMN

EJB Container CNTR

EJB Work Load Management WWLM

Install INST

J2EE Connector J2CA

Java Server Pages JSPG

JNDI - Name Services NMSV

Localizable Text LTXT

Migration Tools PMON

Resource Analyzer MIGR

Request Interceptors WINT

Security Association Service JSAS

Servlet Engine SRVE

Session and User Profiles SESN

Tracing Component TRAS

Webserver Plug-ins and Native code PLGN

WebSphere Object Adapter WOBA

WebSphere Persistence WPRS

WebSphere Security SECJ

WebSphere Server Runtime WSVR

WebSphere Systems Management Commands WCMD

WebSphere Systems Management TASKS WTSK

WebSphere Systems Management Utilities SMTL

WebSphere Transactions WTRN

WSCP Command Line WSCP

XML Configuration XMLC

WebSphere Server Process Launch WSPL

WebSphere Server Validation CHKW

8.2.1: How to view messages

All messages will show in the shell window from which the application server was
started. You canalso have these messages routed to a file by updating the trace service
object for a particularapplication server definition. This can be done by using the
administrative client web interface.If you select to have these messages routed to a file,
the administration client allows you to viewthe contents of the file from the browser.

8.3: Logs

WebSphere Application Server provides many error logs to help you diagnoserun-time
problems. This section describes these error logs telling you where to find andhow to
format the files. The logs are:

activity.log●

stderr.log●

stdout.log●

Plug-in log●

wssetup.log●

WebSphere.instl●

Serious error log●

The tools required to process some of these logs (as well as some of the trace logs) are
described in Using Internal Tools. You can also refer to Problem determination hints
and tips for additional tips on the use and processing of some of these error logs. If you
need to report a problem to IBM, you might need to gather some of these error logs and
send them to IBM for diagnosis; for moreinformation, refer to How to report a problem
to IBM.

Activity log for problem determination

The activity log captures events that show a history of WebSphere Application Server's
activities. Some of the entries in the log are informational, while others report on
systemexceptions, such as returned CORBA exceptions.

When you encounter WebSphere Application Server run-time errors, you will often
find it usefulto use Log Analyzer to read the activity log and try to diagnose the
problem yourself. When you need assistance from IBM to help you diagnose problems,
you will be asked to providethe formatted activity log output to IBM.

Location of the activity log

There is one activity log for each host machine. The activity.log file resides in the
logsdirectory of where the product is installed. All application servers, including the
administrativeserver, write error records to this file. The activity.log file is a binary file
and cannotbe viewed with an ascii editor. You can view the activity.log file in one of
two ways:

http://www-1.ibm.com/servlet/support/manager?rt=3&rs=0&navkey=1ByProduct&path=Product+Group%3DSoftware%00Product+Family%3DWeb+Application+Servers%00Product+Type%3DWebSphere+Application+Server%00category%3DHints+and+tips
http://www-1.ibm.com/servlet/support/manager?rt=3&rs=0&navkey=1ByProduct&path=Product+Group%3DSoftware%00Product+Family%3DWeb+Application+Servers%00Product+Type%3DWebSphere+Application+Server%00category%3DHints+and+tips

Log Analyzer●

showlog●

NOTE:The activity.log file should NOT be edited. If sections are deleted from this
filethe file will become corrupted.

How to view the activity.log file with Log Analyzer

Change the directory to:
product_installation_root/bin

1.

Run the waslogbr script file, which is called:

waslogbr.bat on Windows NT❍

waslogbr.sh on Unix systems❍

It needs to be run from the bin directory cited above.
This will start the Log Analyzer graphical interface.

2.

In the interface:

Select File>Open.1.

Navigate to the directory containing the activity.log file.2.

Select the activity.log file.3.

Select Open.4.

How to view the acitivity.log file on a remote machine using
showlog

If you plan to transfer the activity.log file to a remote machine, you must transer
the file usinga tool such as FTP. The file MUST be transferred in binary mode,
otherwise the log file could corrupt and will not be readable.

The Log Analyzer cannot be used to view remote files.An alternate tool named
showlog can be used instead of Log Analyzer to format the activity.log file for
viewing when no GUI display capabilities are available.

showlog.bat or showlog.sh is a script/batch file that can be found in the bin
directoryof the WebSphere Application Server installation. Follow these
instructions to use showlog:

Change directory to:
product_installation_root/bin

1.

Run the showlog tool with no parameters to display the usage instructions:

On Windows NT, run showlog.bat■

2.

3.

On Unix systems, run showlog.sh■

Examples:

To direct the activity log contents to stdout, use the invocation:
showlog activity.log

❍

To dump the activity.log to a text file that can be viewed using a text
editor, use the invocation:
showlog activity.log textFileName

❍

Changing activity.log file size

In the course of using Log Analyzer, you might have to set the maximum
activity.log file size.The activity.log file grows to a predetermined size and then
wraps. The default size is 1MB. Followthese steps to change the log size:

Open the properties file in a text editor:
product_installation_root/properties/logging.properties

1.

For the com.ibm.ws.ras.ActivityLogSize property, specify the value you
would like in Kilobytes (KB). If an individual size is entered, the default
size is used.

Example: To change the log size to 2MB, enter in the line:
com.ibm.ws.ras.ActivityLogSize=2048 (do not use spaces)

■

2.

The size change will take effect at the next server startup.

When making changes to the acitivity log, remember that the activity log uses a
lockfile named activityLog.lck, located in the same directory as the activity log,
to synchronize acces to the activity log. If you use either showlog or the Log
Analyzer, youmust have write access to the /logs/directory. These programs must
lock the activity log while making a copy of it. In order to do this, the
programsmust be able to create the lock file in this directory which requires
write access.

stderr and stdout logs for problem determination

The stderr and stdout logs capture events presented through two of the three
standard I/O streams, or:

stdin - arguments entered with a command or program❍

stdout - output displayed to the user❍

stderr - errors thrown by the code❍

In WebSphere Application Server, the stdout and stderr logs are created for:

Application servers❍

Servlet redirectors❍

The application server stderr and stdout logs contain application server
communication.Output from System.err.println and
System.out.println statements in the servlet code also appear in the
application server stdout and stderr logs.

Plug-in logs for problem determination

The native.log file is created by the plug-in running inthe Web server process.
This file are located in the ./logs directory of theWebSphere installation.
Different levels of information can be placed in this log.This log contains error
and informational messages generated from the Web server plug-in.This
information reflects server startup and server status change requests
(start/stop/restart).

The default log file mask setting for the plug-in log is error.If this log has a file
length of zero, no error messages were generated during the server status change
requests.

wssetup log

This log is created during the install process. Review this log to ensure the install
process was successful. The install process consists of:

Verifying prerequisites❍

Downloading files❍

Updating the configuration files for both WebSphere Application Server
and the Web server

❍

WebSphere.instl

On AIX and Solaris, a native install of WebSphere Application Server generates
theWebSphere.instl log that is located in the /tmp directory.

Information on the WebSphere Application Server install process on HP is
placed in the HP system log, swagent.log, that is located in
the/opt/WebSphere/AppServer/var/adm/sw directory.

Serious error log

If a fatal error occurs, the serious error log file may be produced. This log
contains the server nameand text that reads "fatal error."

8.3.1: Log samples

8.4: Traces

Traces are just logs.Traces and logs differ in that you must turn traces on to see output in atrace file. Logs are always enabled and log entries are automatically generated.

Tracing occurs as a single process for the administrative and application servers.

Trace can be enabled for any "trace component" that has registered with the trace system.Typically, a trace component and a JavaTM class have the same range, although itis not required. There are some trace components that do
not follow this such as the entireORB component. The ORB component consists of multiple java classes, but registers as a singletrace component. Determining the granularity of a trace component is left up to the descretionof the
developer or component. Review the WebSphere Application Server Java package names in the table underIdentifying the Problem.This table includes some of the Java classes that can be traced.

The trace subsystem does not trace user code (such asservlets or EJB components) unless System.err.println or System.out.println statements are added to the code. Output from the println statements appears
either in the application server stdout or stderr logs. A Trace/Log API called JRas is also availableto trace servlets and EJB components. User code instrumented with JRas will behave exactly like otherruntime trace.

See the stdout and stderr logs description for more information on stdout and stderr logs.

Beginning with WebSphere Application Server Version 3.0,an object level debugger is provided with the product to trace and debug user code.See the Object Level Tracing and Debugging (OLT and OLD) section for information
on object level tracing.

Enabling Trace

Trace for a server can either be enabled before the server is started startup trace enablement or can beenabled while the server is up and running dynamic trace enablement.

Startup trace enablement

Enabling an administrative server is different from enabling an application server. For the administrativeserver, you need to edit the admin.config file to set the com.ibm.ejs.sm.adminServer.traceString property.For an application
server, you need to launch the administrative GUI and follow these steps:

Click on the server.1.

On the righthand pane, select the Services tab.2.

Select Trace Service.3.

Select Edit Properties.4.

Enter the desired trace specification.5.

Select OK.6.

Select Apply.7.

SeeViewing traces/collecting traces for more information on writing trace specifications.

Trace and log entry format

WebSphere Application Server supports multiple trace formats which are specifiable by the user.There are three formats:

Basic●

Advanced●

Loganalyzer●

Basic

Since trace is just another log, both a WebSphere Application Server log entry anda trace entry will have the same format. The following example of a log entry illustratesthe basic format:

Log entry example: [00.07.11 22:47:12:191 EDT] 53ccc3c5 ActiveEJBCont W Could not create bean table xxx

The following table includes a description of each of part of the log entry:

[00.07.11 22:47:12:191 EDT] 53ccc3c5 ActiveEJBCont W Could not create bean table xxx

TS: The timestamp in fully
qualified date (YYMMDD),
Time (Millisecond precision),
and Time zone format.

TID: The thread ID
or the hash code of
the thread issuing
this message.

COMPONENT: The short name of
component issuing this message.

LEVEL: The level of the message or
trace. Possible levels are:

> Entry to a method (debug)●

< Exit a method (debug)●

A Audit●

W Warning●

X Error●

E Event (debug)●

D Debug (debug)●

TTerminate (exits process)●

F Fatal (exits process)●

MESSAGE: The text of the message. ARGUMENTS: Optional message arguments.

Advanced

The following is a sample of the advanced format:

[01.05.24 15:06:514 CDT] 1014f419 I UOW=1-829:Default Server
source=com.ibm.ws.runtime.utils.ResourceBinder org=IBM prod=WebSphereWSVR00491: Binding SampleDataSource as jdbc/SampleDataSource

The following table includes a description of each of part of the log entry:

[01.05.24
15:06:514

CDT]
1014f419 UOW=1-829:Default

Server I source=com.ibm.ws.runtime.utils.ResourceBinder org=IBM prod=WebSphere Component (see
Note 1) WSVR00491

Binding
SampleDataSource as

jdbc/SampleDataSource

TS: The
timestamp in
fully
qualified date
(YYMMDD),
Time
(Millisecond
precision),
and Time
zone format.

TID:
The
thread ID
or the
hash
code of
the
thread
issuing
this
message.

CORRELATION
ID: Generated by
the runtime.

LEVEL: The
level of the
message or trace.
Possible levels
are:

> Entry to a
method
(debug)

●

< Exit a
method
(debug)

●

A Audit●

W Warning●

X Error●

E Event
(debug)

●

D Debug
(debug)

●

TTerminate
(exits
process)

●

F Fatal
(exits
process)

●

SOURCE: The name of the component or class
issuing the message.

ORGANIZATION:
The organization who
wrote this code.

PRODUCT:
Name of the
product.

COMPONENT:
Name of the
component.

MESSAGE: The
text of the
message.

ARGUMENTS: Optional
message arguments.

Note 1: Organization, product and component can be set on JRas loggers. For existingWebSphere runtime code, defaults are provided for the organization and product, and do not displaya component.

Loganalyzer

The loganalyzer format is useful for combining and correlating traces from multiple server processes.Move all the trace files to a directory on a single system. The trace files MUST have been generated in loganalyzer format.
Launch the Log Analyzer and use File->Open to navigate to that directoryand open one of the trace files. Next, use the File->Merge with and select another trace file.This will merge the contents of the two files in the Log
Analyzer display.

Useful information when using the advanced and loganalyzer formats

If the startup trace is not enabled, the stdout.log and stderr.log files are always generated in basic format.If startup trace is enabled and sent to a user specified file, then the stdout.log and stderr.log files are generated in basic format
and the user-specified file is generated in the format specified by the user.

If startup trace is enabled and sent to stdout.log or stderr.log, then that file is generated in the formatspecified by the user. The ring buffer is always generated in the format specified by the user.

If a persistent file is configured, then the data in the file is generated in the selected format and the messages sent to the shell are always in basic format. If a persistent file is NOT configured, then the messagessent to the shell are
generated in the specified format.

Types of traces

The following are the traces you will find in WebSphere Application Server:

Trace file●

Nanny trace●

DrAdmin●

View the following graphic for a description of the log and trace points in WebSphere Application Server:

Trace file

The trace file provides trace entries on the interaction of various WebSphere ApplicationServer components with the administrative server.Use the trace file to identify a problem and to review events preceding the error situation.

Note: Always review trace entries prior to the error. Trace entries recorded after the error has occurred represent program recovery and will nothelp with problem determination.

Review the Collecting traces section for additional tracedocumentation.

Trace file samples

Nanny trace

On UNIX platforms, the nanny process starts the administrative server.The nanny.maxtries parameter in the admin.config file tells the nanny process how many timesit should attempt to restart the administrative server.

On Windows NT, the nannyservice is part of the IBM WebSphere Administrative Server service that is registered with the operating system.Starting the IBM WebSphere Administrative Server service invokes adminservice.exe. If
the service does not start, verify that:

The service was installed and is available from Start > Settings > Control Panel > Services●

The userID under which WebSphere Application Server was installed has service privileges●

If the nanny process fails to start the administrative server on UNIX or if the IBM WebSphere Administrative Server service does not start on Windows NT, you can bypass the nanny function and just start the administrative server.
Follow these steps to start the administrative server:

Go to the <WAS_root>bin/bin directory1.

Invoke adminserver.sh on UNIX or adminserver.bat on Windows NT

Note: Starting the administrative server without using the nanny function means that nothing is monitoring the administrative server. If it fails in thisstate, nothing will restart it.

2.

A nanny trace is only available on UNIX platforms.

On Windows NT, use the Event Viewer to view entries related to the WebSphere nanny service. Followthese steps to view the Event Viewer :

Select Start > Programs > Administrative Tools1.

Select Event Viewer2.

View events related to WebSphere Application Server3.

Nancy trace samples

DrAdmin trace function

The DrAdmin function generates thread dumps.

On UNIX platforms, the IBM JDK allows users to send signals to force javacore.txt filesto be created in the application server's working directory.The application server continues to run and a sequence of javacore files are created.
These filescan help in debugging "loop" or "system hang" problems.

To generate thread dumps similar to the javacore files, especially on a Windows NTplatform, use the DrAdmin function.

A unique DrAdmin port is generated each time an application server starts. To generate a thread dump for that port:

View the console messages area or the trace file for message SMTL0018I "DrAdmin available on port."1.

Enter the following command:
DrAdmin -serverport <port number> -dumpThreads

2.

Review the stderr log for the thread dump.3.

Note: A specific DrAdmin port may be configured. If the DrAdmin port is set to -1, which is a default, this indicates thata specific port has not been set and a port will automatically be generated.

After installing and starting WebSphere Application Server, you will see DrAdmin entries in the console messages area. These entries appear regardless of the options specified during installation, and have the following format:
 DrAdmin available on port 1,055

DrAdmin entries are also recorded in the trace file.To locate the DrAdmin entry in the trace file:

In the <WAS_ROOT>logs directory, open the trace file.1.

Go to the bottom of the trace file and then scroll up until you locate the following entry:DrAdmin available on port xxxx2.

What is DrAdmin?

DrAdmin is a service, provided by each of the servers, to enable and disable tracing. Each time a server starts, DrAdmin registers itself on a different (next available) port number. There are no output messages associated with
DrAdmin. The DrAdmin entries in the console messages area are generated to tell users the port number where DrAdmin is listening.

When to use DrAdmin?

http://squidward/060619010104.html

You should always use the administrative console trace facilities to debug a problem. DrAdmin provides useful lightweight access to several runtime functions, as well as provides access to a numberof different processes, including
nanny and administrative server processes. Opt to use DrAdmin when the followingsituations occur:

When input to the administrative console is not accepted●

When the administrative server is in a wait state●

When the administrative server is not responding (e.g., in an infinite loop orhung state)●

When you have to dump the thread stacks in a server●

When the administrative client topology tree disappears●

Note: DrAdmin is an internal interface that is used to assist users with problem determination. As aninternal interface, it is subject to change at any time, and there is no national language support for it.

How to use DrAdmin?

The DrAdmin interface is the same on all platforms. Since DrAdmin is another way of turning on a trace, the tracing mechanism is the same as the one used by the administrative console trace facilities.Therefore, whether you are
looking at the trace file or a DrAdmin output file,the trace entries will have the same format.

See the DrAdmin samples to learn how to invoke DrAdmin.

Use of the admin.config file for trace output does not apply to the single server product.Instead, server trace options are configured through the server configuration file:

INFO_USAGE_LINE_37=(Prepend the trace file with "!" to cause that file to
INFO_USAGE_LINE_38=be truncated when starting the server. Use the values
INFO_USAGE_LINE_39="stdout" or "stderr" to case trace output to be written,
INFO_USAGE_LINE_40=respectively, to standard output or to standard error.)

DrAdmin Help

DrAdmin has a help file available. You can access the DrAdmin help by using typing on the command linethe "- help" option.

DrAdmin samples

For more information on traces, see file What are messages, logs and traces?

For a quick overview of available traces and tools, see the Problem/Tool/Trace/Log Matrix.

http://squidward/0019.html

8.4.1: Trace samples

Select one of the following traces to view sample output:

Trace file●

Nanny trace (available on UNIX platforms only)●

DrAdmin●

Trace file

The following trace fragment is an example of a trace file.Use this trace to debug server startup or shutdown problems:

[00.07.17 15:59:57:200 EDT] f0c45c4c AdminServer A Initializing WebSphere
Administration server[00.07.17 15:59:57:230 EDT] a9d5dc4e DrAdminServer A DrAdmin
available on port 1,038[00.07.17 16:00:22:457 EDT] f0c45c4c SASConfig A SAS
Property:com.ibm.CORBA.principalName has been updated[00.07.17 16:00:25:191 EDT]
f0c45c4c InitialSetupI A Creating Sample Server Configuration[00.07.17 16:00:29:797
EDT] f0c45c4c JDBCDriverCon A Importing JDBCDriver : Admin DB Driver[00.07.17
16:00:31:209 EDT] f0c45c4c JDBCDriverCon A Installing JDBC Driver: Admin DB Driver on
node db[00.07.17 16:00:31:530 EDT] f0c45c4c JDBCDriverCon X Failed to install JDBC
Driver Admin DB Driver on node db.OpException
com.ibm.ejs.sm.exception.JDBCDriverAlreadyInstalledException[00.07.17 16:00:31:770
EDT] f0c45c4c DataSourceCon A Importing DataSource : Default DataSource[00.07.17
16:00:32:451 EDT] f0c45c4c NodeConfig A Importing Node : db[00.07.17 16:00:32:962
EDT] f0c45c4c ApplicationSe A Importing ApplicationServer : Default Server[00.07.17
16:00:33:823 EDT] f0c45c4c ContainerConf A Importing Container : Default
Container[00.07.17 16:00:35:746 EDT] f0c45c4c EJBConfig A Importing EJB :
HitCount Bean[00.07.17 16:00:37:859 EDT] f0c45c4c EJBConfig A Importing EJB :
BeenThere Bean[00.07.17 16:00:39:271 EDT] f0c45c4c ServletEngine A Importing
ServletEngine : Default Servlet Engine[00.07.17 16:00:40:843 EDT] f0c45c4c
WebApplicatio A Importing WebApplication : default_app[00.07.17 16:00:44:088 EDT]
f0c45c4c ServletConfig A Importing Servlet : snoop[00.07.17 16:00:44:248 EDT]
f0c45c4c ServletConfig W Updating Servlet : snoop, since it was already
created[00.07.17 16:00:48:604 EDT] f0c45c4c ServletConfig A Importing Servlet :
hello[00.07.17 16:00:48:694 EDT] f0c45c4c ServletConfig W Updating Servlet : hello,
since it was already created[00.07.17 16:00:51:508 EDT] f0c45c4c ServletConfig A
Importing Servlet : ErrorReporter[00.07.17 16:00:51:609 EDT] f0c45c4c ServletConfig W
Updating Servlet : ErrorReporter, since it was already created[00.07.17 16:00:53:982
EDT] f0c45c4c ServletConfig A Importing Servlet : invoker[00.07.17 16:00:54:182 EDT]
f0c45c4c ServletConfig W Updating Servlet : invoker, since it was already
created[00.07.17 16:00:56:586 EDT] f0c45c4c ServletConfig A Importing Servlet :
jsp10[00.07.17 16:00:56:806 EDT] f0c45c4c ServletConfig W Updating Servlet : jsp10,
since it was already created[00.07.17 16:01:02:825 EDT] f0c45c4c WebApplicatio A
Importing WebApplication : admin[00.07.17 16:01:05:428 EDT] f0c45c4c ServletConfig A
Importing Servlet : install[00.07.17 16:01:05:539 EDT] f0c45c4c ServletConfig W
Updating Servlet : install, since it was already created[00.07.17 16:01:07:982 EDT]
f0c45c4c ServletConfig A Importing Servlet : jsp10[00.07.17 16:01:08:092 EDT]
f0c45c4c ServletConfig W Updating Servlet : jsp10, since it was already
created[00.07.17 16:01:14:271 EDT] f0c45c4c ServletConfig A Importing Servlet :
file[00.07.17 16:01:14:361 EDT] f0c45c4c ServletConfig W Updating Servlet : file,
since it was already created[00.07.17 16:01:16:865 EDT] f0c45c4c ServletConfig A
Importing Servlet : invoker[00.07.17 16:01:16:975 EDT] f0c45c4c ServletConfig W
Updating Servlet : invoker, since it was already created[00.07.17 16:01:19:439 EDT]
f0c45c4c ServletConfig A Importing Servlet : ErrorReporter[00.07.17 16:01:19:529 EDT]
f0c45c4c ServletConfig W Updating Servlet : ErrorReporter, since it was already
created

Nanny trace

The following trace fragment is an example of a nanny trace.Use the nanny trace to monitor administrative server events:

[00.07.17 17:05:00:032 EDT] 1fa4cc16 Nanny > main
"admin.config"[00.07.17 17:05:00:032 EDT] 1fa4cc16 Nanny > Initial admin
server startup..[00.07.17 17:05:06:231 EDT] 1fa4cc16 Nanny < Initial
adminserver startup successful..[00.07.17 17:05:06:321 EDT] 1fa50b45 Nanny >
run : AdminServerMonitorThread[00.07.17 17:05:06:321 EDT] 1fa50b45 Nanny E
AdminServerMonitorThread: Waiting for process 1719 to terminate.

DrAdmin

To invoke DrAdmin:

Go to the <WebSphere\AppServer\bin\debug> directory.1.

Copy adminserver.bat to DrAdmin.bat

Note:On Unix platforms, the adminserver.bat file is adminserver.sh. Copy adminserver.sh to DrAdmin.sh.

2.

Replace the following line in the DrAdmin.bat file:
%JAVA_HOME%\bin\java -mx128m com.ibm.ejs.sm.server.AdminServer -bootFile %WAS_HOME%\bin\admin.config %restart% %1 %2 %3 %4

 with

%JAVA_HOME%\bin\java com.ibm.ejs.sm.util.debug.DrAdmin %1 %2 %3 %4 %5 %6 %7 %8 %9

3.

Save and close the DrAdmin.bat file4.

From a command prompt in the <WebSphere\AppServer\bin\debug> directory, type
DrAdmin [options]where options are:

-help [shows the help message]❍

-serverHost <Server host name> [Specify the host name of the server... defaults to local host]❍

-serverPort <Server port number> [Required... enter the port number where DrAdmin is listening]❍

-setTrace <Trace specification> [Specify any valid traceString, for example, "com.ibm.ejs.sm.*=all=enabled"]❍

-setRingBufferSize <Number of ring buffer entries in k> [Specify the number of trace entries to store in the main memory buffer... the default is 8k]❍

-dumpRingBuffer <Name of file to dump the ring buffer> [Defaults to file name JMONDump.xxxxxxxxxxxx where xxxxxxxxxxxx is a combination time of day and unique PID identifier extension]

Note: On Windows NT, if the administrative server is started as a service, the default DrAdmin dump file will be located in the <Winnt\system32> directory.

❍

-dumpState <dumpString> [Specify a unique identifier for this dump]❍

-stopServer [Stops the administrative server]❍

-stopNode [Does not apply unless the node is connected to the administrative server]❍

-dumpThreads [Dumps the threads in the server]❍

-testConnection [Determines if the DrAdmin server is running]❍

-retrieveServerNames [Shows names of the server associated with DrAdmin]❍

-retrieveTrace [Retrieves the current trace specification]❍

-retrieveComponents [Retrieves a list of the current active trace components]❍

-dumpConfig [Dumps configuration information to the server standard output]❍

-retrieveConfig [Dumps configuration information to the DrAdmin command line]❍

-list [Lists installed web applications and modules]❍

-long [Lists, in long format, installed web applications and modules]❍

5.

Another example of implementing a DrAdmin trace:

On Windows NT:

Create a DrAdminRun.bat file that contains the following information:set
CLASSPATH=C:/jdk1.1.7/lib/classes.zip;C:/WebSphere/AppServer/lib/ujc.jar;C:/WebSphere/AppServer/lib/ejs.jar;C:/WebSphere/AppServer/lib/admin.jarecho
%CLASSPATH%echoechojava -classpath %CLASSPATH% com.ibm.ejs.sm.util.debug.DrAdmin -serverPort %1 -setTrace %2=%3=%4

1.

Invoke DrAdminRun.bat with the port number and the trace string. Use the port number from DrAdmin entry in the trace file, xxxx. Your input from a command prompt will be: DrAdminRun xxxx com.ibm.ejs.* all
enabled

2.

Start administrative client with the debug option by invoking adminclient.bat from the WAS_ROOT bin directory: adminclient debug3.

On UNIX platforms:

Create a shell script file DrAdminRun that contains the following information:# modify classpath as appropriate for platform/environment# run as follows: sh DrAdminRun <server port>
<trace spec>export
CLASSPATH=/usr/jdk_base/lib/classes.zip:/usr/WebSphere/AppServer/lib/ujc.jar:/usr/WebSphere/AppServer/lib/ejs.jar:/usr/WebSphere/AppServer/lib/admin.jarecho
$CLASSPATHechoechojava -classpath $CLASSPATH com.ibm.ejs.sm.util.debug.DrAdmin -serverPort $1 -setTrace $2 Note: Verify the CLASSPATH is correct for your environment. The
script example was written for AIX. You must change the CLASSPATH for Solaris.

1.

Invoke DrAdminRun with the port number and the trace string. Use the port number from DrAdmin entry in the trace file, xxxx. Your input from a command prompt will be: sh DrAdminRun xxxx
com.ibm.ejs.*=all=enabled

2.

Start the administrative client with the debug option by invoking adminclient.sh from the WAS_ROOT bin directory: adminclient.sh debug3.

8.4.2: Enabling and reading ORB trace

In this section you will find information on how to read and enable ORB trace.

Reading ORB trace

In order to read ORB trace, you need to understand the ORB communications log.

ORB communications log

The ORB communications log, typically referred to as CommTrace, contains the sequence of
GIOP messages sent and received by the ORB during application execution. It might be necessary
to understand the low-level sequence of client-to-server or server-to-server interactions during
problem determination. This section uses trace entries from a sample log to explain the contents of
the log and help you understand the interaction sequence. It focuses only in the GIOP messages
and does not discuss in detail additional trace information which appears when intervening with
the GIOP-message boundaries.

The Sample Log Entry - GIOP Request and Sample Log Entry - GIOP Reply illustrate typical log
entries. The entries have been annotated with line numbers for easy reference.

Enabling CommTrace

The ORB property com.ibm.CORBA.CommTrace is used to enable/disable recording of trace
entries during execution. Trace entries are recorded when the property is set true. In addition, the
property com.ibm.CORBA.Debug must also be set true.

Identifying start of a GIOP messages

The start of a GIOP message is identified by a line which contains either "OUT GOING:" or "IN
COMING:" depending on whether the message is a request message or reply message.

Following the identifying line entry is a series of items, formatted for convenience, with
information extracted from the raw message that identify the endpoints in this particular message
interaction. See lines 3-12 in both figures. The formatted items include:

GIOP message type, e.g. "Request Message", "Reply Message", in line 3●

Date and time message was recorded, in line 4●

Information useful in uniquely identifying the thread in execution when the message was
recorded, along with other thread-specific information, in line 5

●

The local and remote TCP/IP ports used for the interaction, in lines 6-9●

The GIOP version, byte order and message size, in lines 10-12●

Service context information

Following the introductory message information, the service contexts in the message are also
formatted for convenience. Each GIOP message might contain a sequence of service contexts
sent/received by each endpoint. Service contexts, identified uniquely with an ID, contain data used

in the specific interaction, such as security, character codeset conversion and ORB version
information. The content of some of the service contexts is standardized and specified by the
OMG, while other service contexts are proprietary and specified by each vendor. IBM-specific
service contexts are identified with ID's which begin with 0x4942.

Lines 14-33 in Sample Log Entry - GIOP Request and Sample Log Entry - GIOP Reply illustrate
typical service context entries. There are three service contexts in both the request and reply
messages, as shown in line 14. The ID, length of data, and raw data for each service context is
printed next. Lines 15-17 show an IBM-proprietary context, as indicated by the ID 0x49424D12.
Lines 18-33 show two standard service contexts, identified by ID 0x6 (line 18) and 0x1 (line 31).
Refer to the CORBA specification for the definition of the standardized service contexts.

Service context 0x1 (CORBA::IOP::CodeSets) is used to publish the character codesets supported
by the ORB in order to negotiate and determine the codeset used to transmit character data; service
context 0x6 (CORBA::IOP::SendingContextRunTime) is used by RMI-IIOP to provide the
receiving endpoint with the IOR for the SendingContextRuntime object; and IBM service context
0x49424D12 is used to publish ORB PartnerVersion information in order to support
release-to-release inter-operability between sending and receiving ORBs.

Request ID, response expected and reply status

The request ID is an integer generated by the ORB. It is used to identify and associate each request
with its corresponding reply. This is necessary because the ORB can receive requests from
multiple clients and must be able to associate each reply with the corresponding originating
request.

Lines 34-35 in Sample Log Entry - GIOP Request show the request ID, followed by an indication
to the receiving endpoint that a response is expected (CORBA allows sending of one-way requests
for which a response is not expected.)

Lines 34-35 in Sample Log Entry - GIOP Reply show the request ID, followed by the reply status
received after completing the corresponding previously sent request. Line 35 shows the status of
"LOCATION_FORWARD", which indicates to the sending endpoint that the request needs to be
re-issued and forwarded to a different object. The message body contains the IOR for the new
object. The forwarding action is done automatically by the ORB and is transparent to the client
sending the request.

Object Key

Lines 36-42 in Sample Log Entry - GIOP Request show the object key, the internal representation
used by the ORB during execution to identify and locate the target object intended to receive the
request message. Object keys are not standardized.

Operation

Line 43 in Sample Log Entry - GIOP Request shows the name of the operation to be executed by
the target object in the receiving endpoint. In this sample the specific operation requested is named
"retrieve."

Principal identifier

Lines 44-46 in Sample Log Entry - GIOP Request show the length and contents of the CORBA
object known as "CORBA::Principal" used by the CORBA Security Service to identify security
credential information of the sender.

Data offset

Line 47 in Sample Log Entry - GIOP Request and line 38 in Sample Log Entry - GIOP Reply
show the offset, relative to the beginning of the GIOP message, where the remainder body of the
request or reply message is located. This portion of the message is specific to each operation and
varies from operation to operation. Therefore, it is not formatted, as the specific contents are not
known by the ORB.

The offset is printed as an aid to quickly locating the operation-specific data in the raw GIOP
message dump, which follows the data offset.

Raw GIOP message dump

Starting at line 50 in Sample Log Entry - GIOP Request and line 41 in Sample Log Entry - GIOP
Reply a raw dump of the entire GIOP message is printed in hexadecimal format. Request messages
contain the parameters required by the given operation and reply messages contain the return
values and content of output parameters as required by the given operation. Not all of the message
raw data has been included in the figures for brevity.

Sample ORB communications log entries

Sample Log Entry - GIOP Request

OUT GOING:

Request Message

Date: April 18, 2001 10:14:21 AM EDT

Thread Info: P=259545:O=0:CT

Local Port: 65454 (0xFFAE)

Local IP: njros1un1801.prudential.com/48.113.114.2

Remote Port: 9000 (0x2328)

Remote IP: njros1un1801.prudential.com/48.113.114.2

GIOP Version: 1.1

Byte order: big endian

Message size: 380 (0x17C)

--

Service Context: length = 3 (0x3)

Context ID: 1229081874 (0x49424D12)

Context data: length = 8 (0x8)

00000000 000C0001

Context ID: 6 (0x6)

Context data: length = 168 (0xA8)

00000000 00000028 49444C3A 6F6D672E

6F72672F 53656E64 696E6743 6F6E7465

78742F43 6F646542 6173653A 312E3000

00000001 00000000 0000006C 00010100

0000000D 34382E31 31332E31 31342E32

0000FFAF 0000002C 4A4D4249 00000010

42F65A47 33623030 30303030 30303030

30303030 00000024 00000008 00000000

00000000 00000001 00000001 00000018

00000000 00010001 00000001 00010020

00010100 00000000

Context ID: 1 (0x1)

Context data: length = 12 (0xC)

00000000 00010001 00010100

Request ID: 5 (0x5)

Response is expected? Yes.

Object Key: length = 87 (0x57)

4A4D4249 00000012 33C5F0DD 31303030

30303030 30303030 30303030 00000024

00000033 49454A50 01000D5F 5F61646D

696E5365 72766572 0F747261 6E4C6F67

53696D70 6C654F41 0000000B 7472616E

4C6F6757 697265

Operation: retrieve

Principal: length = 32 (0x20)

49424D44 3A000000 0000000D 34382E31

31332E31 31342E32 00000000 00000000

Data Offset: 17c

0000: 47494F50 01010000 0000017C 00000003 GIOP.......|....

0010: 49424D12 00000008 00000000 000C0001 IBM.............

0020: [remainder of message body deleted for brevity]

Sample Log Entry - GIOP Reply

IN COMING:

Reply Message

Date: April 18, 2001 10:14:21 AM EDT

Thread Info:
P=259545:O=0:StandardRT=0:LocalPort=65454:RemoteHost=48.113.114.2:RemotePort=9000:

Local Port: 65454 (0xFFAE)

Local IP: njros1un1801.prudential.com/48.113.114.2

Remote Port: 9000 (0x2328)

Remote IP: njros1un1801.prudential.com/48.113.114.2

GIOP Version: 1.1

Byte order: big endian

Message size: 396 (0x18C)

--

Service Context: length = 3 (0x3)

Context ID: 1229081874 (0x49424D12)

Context data: length = 8 (0x8)

00000000 000C0001

Context ID: 6 (0x6)

Context data: length = 168 (0xA8)

00000000 00000028 49444C3A 6F6D672E

6F72672F 53656E64 696E6743 6F6E7465

78742F43 6F646542 6173653A 312E3000

00000001 00000000 0000006C 00010100

0000000D 34382E31 31332E31 31342E32

0000FFAF 0000002C 4A4D4249 00000010

42F65A47 33623030 30303030 30303030

30303030 00000024 00000008 00000000

00000000 00000001 00000001 00000018

00000000 00010001 00000001 00010020

00010100 00000000

Context ID: 1 (0x1)

Context data: length = 12 (0xC)

00000000 00010001 00010100

Request ID: 5 (0x5)

Reply Status: LOCATION_FORWARD

Object Key: length = 1 (0x1)

00

Data Offset: f1

0000: 47494F50 01010001 0000018C 00000003 GIOP............

0010: 49424D12 00000008 00000000 000C0001 IBM.............

0020: [remainder of message body deleted for brevity]

Enabling ORB trace

Below, you will find instructions for enabling ORB trace in the WebSphere Administrative Server,
WebSphere Application Server, administrative client (console) on Windows NT, and the
administrative client (console) on Unix.

Tracing the WebSphere Administrative Server

Follow these steps:

Make sure the default server and administrative server are not running.1.

Make a backup copy of the admin.config file.2.

Add the following lines to the admin.config file:

com.ibm.CORBA.Debug=true❍

com.ibm.CORBA.CommTrace=true❍

com.ibm.ejs.sm.adminServer.traceString="ORBRas=all=enabled"❍

com.ibm.ejs.sm.adminServer.traceOutput=c\:/tracedirectory/adminserver.traceNOTE:
On Unix the directory path would look more like /opt/tracedirectory or
/usr/tracedirectory)

❍

3.

Start the administrative server.4.

The resulting trace file is ==> c\:/tracedirectory/adminserver.trace.5.

Tracing the WebSphere Application Server (default server)

Follow these instructions:

There is a checkbox on the ORB configuration property sheet which is accessible from the
Services tab of the application server property sheet in the administrative console. When that
checkbox is enabled, ORB communication trace is configured for that application server.

If there is already a traceOutput file defined for this application server, then the
communicationtrace output is directed to that file. If there is no output file defined, the
file"$WAS_HOME/logs/<server name>.trace" is defined to contain the communication trace
output.

Tracing the administrative client (console) on Windows NT

Follow these instructions:

Go to the WebSphere/AppServer/bin subdirectory and make a backup copy of
adminclient.bat file.

1.

Edit the adminclient.bat file for the following:
Change

2.

http://squidward/admcli

goto NODEBUG
:DEBUG
set DEBUGOPTS=-traceString "com.ibm.*=all=enabled"

to

goto NODEBUG
:DEBUG
set DEBUGOPTS=-traceString
"com.ibm.*=all=enabled:ORBRas=all=enabled"

Add the two trace parameters to the following "%JAVA_HOME%\bin\java" statement:

-Dcom.ibm.CORBA.Debug=true❍

-Dcom.ibm.CORBA.CommTrace=true❍

The statement should be in one continuous line. Add "%DEBUGOPTS%" also to the
statement if it does not already exist.

If "%DEBUGOPTS%"=="" does exist, go to START

%JAVA_HOME%\bin\java -Dcom.ibm.CORBA.Debug=true
-Dcom.ibm.CORBA.CommTrace=true -Xminf0.15 -Xmaxf0.25 -classpath %WAS_CP%
%CLIENTSAS%
-Dcom.ibm.CORBA.principalName=%COMPUTERNAME%/AdminClient
-Dserver.root=%WAS_HOME% com.ibm.ejs.sm.client.ui.EJSConsole %DEST%
%DESTPORT% %DEBUGOPTS% %QUALIFYNAMES%

Go to END

3.

After the administrative server has been started, using the statement "adminclient debug >
adminclientttrace" from WebSphere/AppServer/bin subdirectory.

4.

The resulting trace file is adminclienttrace.5.

Tracing administrative client(console) from Unix

Follow these instructions:

Go to WebSphere/AppServer/bin subdirectory and make a backup copy of adminclient.sh.1.

Edit the adminclient.sh for the following:

Change

elif ["$1" = "debug"]

thenDEBUGOPTS='-traceString "com.ibm.*=all=enabled" '

toelif ["$1" = "debug"]

thenDEBUGOPTS='-traceString

2.

"com.ibm.*=all=enabled:ORBRas=all=enabled" '

Add the three trace parameters to the "$JAVA_HOME/bin/java" statement. If
"$DEBUGOPTS" is already in the statment, then there is no need to add it again.
-Dcom.ibm.CORBA.Debug=true -Dcom.ibm.CORBA.CommTrace=true $DEBUGOPTS

After the administrative server has been started, using the statement "adminclient.sh debug
2>&1 | tee adminclienttrace" from WebSphere/AppServer/bin subdirectory.

3.

The resulting trace file is adminclienttrace (in the bin directory).4.

8.4.2: ORB request trace

ORB request trace can be enabled on the server to display the target object type/class and the function
name. It is a quick way to let you view function call flow and understand how objects work with each
other. ORB communication tracing is most appropriate when you want detailed information such as input
and output parameters.

This section describes how to turn on the ORB request trace and interpret thetrace output:

Setting the ORB request trace●

Sample: Formatted ORB request trace output●

Setting the ORB request trace

To set the ORB request trace, perform these steps:

Display the system manager user interface, and set the view level to Control.1.

Expand your Host Images.2.

Expand the Server Images folder.3.

Left click on your server image to see if it is running. The status bar at thebottom of the System
Manager user interface application displays the state (and health) of the selected server. Note: You
do not have to stop theserver to set this trace.

4.

Right-click on your server image and select Properties. This displays theProperties Editor for the
Server Image.

5.

In the Properties Editor window, click the Component Trace tab.6.

Set the ORB request trace level attribute value to Advanced. Click Applyand then OK to enable the
trace.

7.

This enables trace information to be collected over a period of time into filesin the subdirectory
service\serveServerName. Refer to showlog utility for more information on formatting trace logs. You
can use the Log Analyzer to view the output of showlog.

Sample: Formatted ORB request trace output

The formatted output file looks like the formatted activity log. Function callsare recorded in the activity
log. The function name can be seen in thefunctionName or PrimaryMessage fields. Here is an example of
the contentsof a formatted output file:

ComponentId: 393319

ProcessId: 567

ThreadId: 534

FunctionName:
CORBA::BOA::local_object_to_object_key(CORBA::Object_ORBProxy_ptr)

ProbeId: 2990

SourceId: 1.66 src/orb/src/somd/boa.cpp

Manufacturer: IBM

Product: Component Broker

Version: 1.3

SOMProcessType: 5

ServerName: PersonServer

clientHostName:

clientUserId:

TimeStamp: 10/6/98 9:54:14.343609431

UnitOfWork:

Severity: 3

Category: 3

FormatWarning: 0

PrimaryMessage: The function

CORBA::BOA::local_object_to_object_key(CORBA::Object_ORBProxy_ptr):2990

reported data.

ExtendedMessage:

RawDataLen: 0

———————————————————————————————-

ComponentId: 393319

ProcessId: 567

ThreadId: 534

FunctionName: CORBA::Request::send_deferred()

ProbeId: 1405

SourceId: 1.57.1.2 src/orb/src/request/request.cpp

Manufacturer: IBM

Product: Component Broker

Version: 1.3

SOMProcessType: 5

ServerName: PersonServer

clientHostName:

clientUserId:

TimeStamp: 10/6/98 9:54:14.371803789

UnitOfWork:

Severity: 3

Category: 3

FormatWarning: 0

PrimaryMessage: The function CORBA::Request::send_deferred():1405
reported data.

ExtendedMessage:

RawDataLen: 0

———————————————————————————————-

ComponentId: 393319

ProcessId: 567

ThreadId: 534

FunctionName: CORBA::Request::invoke()

ProbeId: 1338

SourceId: 1.57.1.2 src/orb/src/request/request.cpp

Manufacturer: IBM

Product: Component Broker

Version: 1.3

SOMProcessType: 5

ServerName: PersonServer

clientHostName:

clientUserId:

TimeStamp: 10/6/98 9:54:16.488164076

UnitOfWork:

Severity: 3

Category: 3

FormatWarning: 0

PrimaryMessage: The function CORBA::Request::invoke():1338 reported
data.

ExtendedMessage:

RawDataLen: 0

8.5: Identifying the problem

Available tools, traces and logs for specific problems

Problem/Tool/Trace/Log Matrix

Problem type Tool Trace/Log Description Location

Install failure
wssetup.log

WebSphere.instl

Traces install
events and
settings

<WebSphere/AppServer/logs> See
article Viewing logs fordirectory information

Startup failure jdbctest.java
Tests jdk
settings and
connectivity

Invoke jdbctest.java tool from command prompt

Administrative
server
startup/shutdown
failures

Events Viewer,

ShowCfg servlet

trace file and

 nanny trace

Displays fatal
errors during
startup or
shutdown

Displays
configuration
information

<WebSphere/AppServer/logs>

Application
Server startup
failure

Events Viewer,

ShowCfg servlet
trace file

Displays fatal
errors during
startup

Displays
configuration
information

<WebSphere/AppServer/logs>

Non-startup
server problems

Events Viewer trace file Traces runtime
problems

<WebSphere/AppServer/logs>

Administrative
server not
responding

DrAdmin

Tracing service
used primarily
to dump thread
stacks

<WebSphere/AppServer/bin/debug>

Runtime Log Analyzer logs/activity.log
Displays and
analyzes
runtime errors

Invoke from
<product_installation_root>/bin/waslogbr.bat|sh

Database
problems

jdbctest.java wasdb2.log

jdbctest.java
tests database
connectivity

wasdb2.loglists
database
configuration
problems

Invoke jdbctest.java tool from command prompt

<WebSphere/AppServer/logs>

Servlet/EJB/JSP
problems

Object Level
Trace

Object Level
Tracing and
Debugging

Enable OLT through the OLT Controller

http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://squidward/root.html
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp

Servlet/EJB/JSP
problems

Distributed
Debugger,

HitCount
servlet,
Snoop servlet

stdout and stderr

Identify
application
problems using
Debugger

Application
server stdout
and stderr logs,
and servlets

Review the Debugger documentation for
implementation instructions.

Trace directory is
<WebSphere/AppServer/logs>.

Communication
problems

JavaTM Socket
Level Trace

Describes
ORB
communication
problems over
heterogeneous
networks via
IIOP

Invoke socktrace tool from command prompt

Name space
problems

JavaTM Name
Tree Browser

Displays
elements in
WebSphere
Application
Server name
space

Invoke jntb tool from command prompt

Performance
problems

WebSphere
Resource
Analyzer

Describes how
to monitor and
tune
WebSphere
Application
Server

Review the documentation for implementation
instructions.

http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://squidward/nav_ra.html
http://squidward/nav_ra.html
http://squidward/nav_ra.html
http://squidward/nav_ra.html

8.5.1: Plug-in problems

HTTP servers are legacy Web products, created at a time when theywere the only conduit between browsers and HTML or
CGI files. With the evolution of Web technology, users now require servers to handle servlets, JSP files and
EJBs.WebSphere Application Server supports this technology, but to provide these functions it mustintercept requests sent
to the HTTP Server.

The plug-in component extends the function of the HTTP Server by interceptingrequests and passing them to either
WebSphere Application Server or the HTTP Server. The following three files in the <WAS_root>temp directory allow
the plug-in to determine the request's destination:

<WAS_root>/temp/rules.props

Provides a snapshot of the existing topology and lists available Web resources and pathsto handle service
requests

❍

●

<WAS_root>/temp/vhosts.props

Provides virtual hosting information that is transferred to the WebSphere ApplicationServer runtime
environment

❍

●

<WAS_root>/temp/queues.props

Provides names of links to different servlet engines. The number of links listed inthis file vary according to the
number of application servers, clones and other servlet engine resources that are defined in the product.

❍

This is the high level view of the plug-in process flow:

 Browser --> WebSphere plugin --> HTTP Server or WebSphere Application Server

Typical plug-in problems

Generally, plug-in failures are caused by missing files or an incorrectly configured HTTP Server.

To diagnose plug-in problems, verify the data in the files are consistent with both the HTTP request and the active
configuration in the servlet engine. The plug-in configuration files are generated periodically so a delay can occur
between the time a change is made in the system andthe time the change is reflected in the configuration files.

The following error descriptions are symptoms of plug-in problems:

Servlet requests are not fulfilled. Verify the following to determinethe cause of the problem:

The Web server can serve HTML pages■

The administrative console can connect to the Web server■

The Default server is started■

Ensure the Web server hostname and port number are identical to the ones definedin the virtual host's
alias table.

■

Ensure the appropriate .DLL file for the Web server is present in the <WebSphere-root>bin■

1.

Pipe broken messages appear. Verify the following to determine the cause ofthe problem:

TCP/IP connection exists between Web server and WebSphere Application Server.■

No process or thread failures occurred.■

No access violations occurred.■

2.

How to debug plug-in problems

Check for errors in the following logs, and in the trace file:

trace.log.<http server>.<date>❍

<AppServer>_stderr.log❍

<AppServer>_stdout.log❍

<AppServer>_native.log.<date>❍

See files 8.3: Logs and 8.4: Trace for more information on logs and trace file.

If there are no entries in the logs or trace file, comment out the WebSphere ApplicationServer plugin in the httpd.conf
file.This will help you determine if the failure originates with WebSphere Application Server or the HTTP Server.

●

The WebSphere plugin property in the httpd.conf file is:

Load Module ibm_app_server_module

Restart the HTTP Server. If the Web Server initializes and runs, then WebSphere Application Server has a problem.

8.5.2: Servlet redirector problems

Servlet redirectors are used to separate the HTTP server from the WebSphere
Application Server.There are different types of redirectors:

Thick - servlet redirector resides on the same machine as WebSphere
Administrative Server.

●

Thin - servlet redirector runs on a separate machine from the WebSphere
Administrative Server.
A thin servlet redirector is useful in network configurations where the HTTP
server is outside a firewall but WebSphere Application Server isbehind a
firewall, or where WebSphere Application Server is located in the DMZ, a
machine located between twofirewalls.

Note: If the Web server, application server and the server handling
servlet requestsall reside on the same machine, use Open Servlet
Engine(OSE), instead of a servlet redirector

●

See file, Entry point to servlet redirector configuration, for information on
configuringservlet redirectors.

Key features

The key features of servlet redirectors are:

Use Internet Inter-Orb Protocol (IIOP) for communication1.

Are initialized by copying the queues.properties, rules.properties,and
vhosts.properties files from the WebSphere Application Server machine to the
servlet redirector machine.

2.

Use the following ports to transfer the properties files:

port 900 - bootstrap port❍

port 9000 - name services port❍

redirector listener port❍

3.

Require the receiving RemoteSRP bean to be running on the WebSphere
Application Server

4.

When servlet redirectors are running, beside the ports previously listed, they
alsorequire the following, additional ports:

Application Server listener port❍

Admin server nanny listener port❍

Thick servlet redirectors also require repository database connection ports❍

5.

Typical problems

Typical problems with servlet redirectors are:

Error 404 - URL not found appears on browser when accessing a servlet.
The trace log for the HHTP server contains entry:
Failure while locating a vhost for <server>
This error may occur if:

The short (myserver) and fully qualified (myserver.mydomain.com) host
names of the HTTP server are not in the virtual host alias list.

❍

A port other than the standard port 80 is used and that port is not in the
virtual host alias list.

❍

1.

CORBA.COMM_FAILURE appears when running the thin servlet redirector.
Thiserror may occur if:

Syntax error exists in batch file❍

Host name/port number is not in DNS or hosts.properties file on servlet
redirector machine

❍

Hostname portis not in DNS or hosts.properties file on WebSphere
ApplicationServer machine

❍

-ListenerPort parameter value is not unique❍

Syntax error in -ListenerPort parameter❍

2.

Unable to initialize threads: (null) error when running the batch/script fileto
configure the plug-in files.This error may occur if:

Some JDK other than the IBM supported JDK is in the classpath ahead of
the supported JDK. To resolvethis problem, install the supported IBM
JDK, and change the path and classpath to point to it first.

❍

Path does not point to java.exe.❍

3.

When starting servlet redirector with batch/script file, get error message "Error
locating Remote SRP Home - Attribute Not Set." This error occurs because:

RemoteSRP bean was not added and started on WebSphere Application
Server

❍

4.

Do not use servlet redirectors if you must:

Enable security on your thin servlet redirector machine❍

Provide the real Web browser on your thin servlet redirector machine❍

Use the Network Address Translation feature of firewalls so that the
internal address of WebSphere Application Server is not available outside
the firewall

❍

5.

Reminder: Generally errors occur configuring the thin servlet redirector

function because required configuration files are missing. A thinservlet
redirector machine requires the following shell script files (on UNIX
platforms), or bat fileson Windows NT as well as the iiopredirector.xml
file to enable the servlet redirector function.

8.5.3: Workload management/cloning/remote
administration problems

Unlike WebSphere Application Server Advanced Edition, the Standard Edition does
not support the workload management function. WebSphere Application Server
Standard Edition is limited to a single physical server. However, Standard Edition
provides multiple JVMs that can be mappedto multiple virtual hosts on a single HTTP
Server. Therefore multiple Web sites can still be hosted using one Standard Edition
Application Server.

Remote administration

You can remotely administer WebSphere Application Server using:

Remote administrative console●

X Windows clients on UNIX machines●

Web based WebSphere administrative console●

Remote administrative console

Use can run admin console remotely using the adminclient.bat file on Windows NT,
oradminclient.sh file on UNIX. See article Administrative models for more information
on implementing a remoteadministrative client.

Typical remote admin console problems are:

The com.ibm.ejs.util.cache.FaultException error occurs in the stack trace
becausethe JDK running on the client machine cannot communicate with the
JDK running on the administrative servermachine. The resolution is to upgrade
the backlevel JDK.

●

The Network Address Translation (NAT) function in firewalls cannot be used
with a remote administrative client.The internal address of the administrative
server is not recognized by the administrative client outside thefirewall. No
circumvention exists for this problem.

●

X Windows clients on UNIX machines

X windows client software can run on any platform but requires a UNIX X Windows
server.(Currently the X Windows server is only available on AIX and Solaris
platforms.)

Typical X Windows client problems are:

You cannot run an administrative console remotely through the X Windows●

client using anauthorized, non-root account with global security enabled. The
error message, FATAL Could not bind to the Administrative Server on {0}{1},
appears onthe screen when the adminclient.sh or .bat file is executed. No
circumvention exists for this problem.

Web-based administrative console

See article Web administrative console overview for informationon configuring and
implementing a Web-based administrative console.

http://squidward/06060003.html

8.5.4: Installation problems

Succesful installation means that no errors occur during the install process and,more importantly, that the
product runs correctly the first time you start it.

Installation and start-up problems occur for one of the following reasons:

Database is not configured properly●

Classpath is incorrect●

Administrative server fails to start●

Install options

WebSphere Application Server provides a Java TM Graphical User Interface (GUI)install that is available on all
platforms, and a native install that is available on the UNIX platforms (AIX, Solaris, HP).

Note: If you used the native install option to install WebSphere Application Server on a UNIX
platform, you must also uninstallusing the native uninstall option. In other words, you cannot do
a nativeinstall and a Java GUI uninstall.

Follow the steps in one of the "platform specific" install guides to install the product. These install guides are
available from the InfoCenter, in the Selecting installation steps section.

Database configuration problems

If the database is not configured properly, installationof WebSphere Application Server will fail. If specific
WebSphere components did install but the database is misconfigured, the product will not run properly.

Starting WebSphere Application Server with an improperly configured database will generate the following
error messages and exceptions:
 Establishing connection please wait ... Error - could not get attributes
com.ibm.ejs.util.cache.FaultException at java.lang.Throwable<init>
com.ibm.ejs.sm.client.ClientException getAttributeFailure Attributes may be involved
com.ibm.ejs.sm.client.RpositoryOpException could not get attributes

Classpath problems

The classpath provides the JavaTM runtime environment for the following WebSphere Application Server
processes:

Administrative service - the backend process for system management●

Administrative console - the Graphical User Interface (GUI) used for system management●

One or more application servers - each application server consists of multiple containers for
deployment of Enterprise Java Beans (EJBs) and one servlet engine for deployment of Web applications

●

Nanny service (on UNIX platforms only) - a daemon that monitorsthe administrative service. The
nanny service starts the administrative serviceinitially and restarts it if it fails.

●

Each of these processes runs in its own Java Virtual Machine (JVM). The classpath for each process tells that
process where to search for classes. The classpath can be set:

In an administrative service startup script●

In an admin.config file●

With application server command line arguments●

By Web applications●

Classpath properties

http://squidward/022.html

Each process has an associated set of properties ("Java-speak" for environment variables).These properties are
defined in the admin.config file that is located in directory:

<WebSphere root> bin

The applicable properties in admin.config are:

com.ibm.ejs.sm.util.process.Nanny.maxtries●

com.ibm.ejs.sm.adminserver.classpath●

com.ibm.ejs.sm.util.process.Nanny.path●

com.ibm.ws.jdk.path●

The classpath settings in the admin.config file apply to the administrativeservice, and they are also inherited by
all other WebSphere Application Server processes.

For more information on these and other WebSphere Application Server properties, see file,6: Administer
applications.

Classpath failures

Typical classpath failures are:

When a servlet class is missing from a Web application classpath, the following errors occur:

In a browser window, the browser displays error Error 500 with message,"Failed to load target
servlet [snoop]."

❍

Browser stack trace and <AppServerName>_stderr.log show
java.lang.ClassNotFoundException

❍

<AppServerName>_stdout.log shows
javax.servlet.ServletException

❍

1.

When utility classes, such as dates.class or time.class, are in a Web application's classpath, the following
errors occur:

Browser shows error messagejava.lang.VerifyError❍

Verbose JVM output written to the <AppServerName>_stderr.log shows
java.lang.VerifyError: com/bcs/jsftest/test

Note: A WebSphere Application Server problem exists onthe Windows NT platform
which prevents the stderr buffer from being flushed until the applicationserver is
stopped. No circumvention for this problem is available at this time.

❍

2.

When classes use Java Native Interface (JNI), the following errors occur:

<AppServerName>_stdout.log shows
java.lang.UnsatisfiedLinkError

❍

To resolve the problem, do the following:

Ensure the shared libraries are available in the path statement on Windows NT. On UNIX, make
sure the LD_LIBRARY_PATH is defined in file startupServer.sh.

❍

Ensure that the property defined in com.ibm.ejs.sm.adminserver.classpath, in the admin.configfile,
includes classes that make JNI calls into shared libraries.

❍

3.

Administrative server problems

Successfully starting the administrative server not only indicates a successful install of WebSphere
ApplicationServer, but it also means the following tasks were completed:

System management repository tables were created in the database.●

Nodes and host aliases were created in the repository tables with xml.●

http://squidward/06.html
http://squidward/06.html

Default repository tables were created with xml.●

Therefore, when the administrative server fails to start, it also means the installation of WebSphere Application
Server is incomplete.

Administrative server start failures

The administrative server fails to start for the following reasons:

The port is in use. See the port problems section for more information.1.

Another administrative server is running. The administrative server service in the Windows NT control
panel or the startupServer.sh script on UNIX, is the same service/process as the one started through
WebSphere\Appserver\bin\debug\adminserver.bat file on Windows NT or adminserver.sh on UNIX.

2.

The WebSphere Application Server database repository, (WAS on DB2 or ORCL on Oracle), is not
created. The first time you start the administrative server process, it attempts to create the default
configuration in the WAS or ORCL database. You will see a 2140 error message if the database is not
created.

3.

Connection to DB2 or Oracle fails. This also shows up as a 2140 error message. Ensure DB2 is running.
Verify the connection to the WAS database is successful.
To test the DB2 connection, from a DB2 command window, type:

DB2 connect to was

If you cannot connect to DB2, verify the following:

Ensure the right level of code is installed on the WebSphere Application Server machine❍

For a remote repository, ensure the DB2 client is configured properly to point to DB2 server for
the WAS database.

❍

Perform the same tests for Oracle.

4.

User ID does not have proper authority or access:

To ensure proper authority, follow the database configuration steps in the install guides.❍

In the UNIX environment, log on as root to start AdminServer.❍

In the Windows NT environment, verify the following conditions are true:

User is logged in as an administrative user■

User name in security panel is correct■

User is part of the administrator's group.■

The Administrative server is registered as a service to NT. To manually add the
administrative server as a service, from a command prompt, enter:
<WebSphere\AppServer>\bin\adminservice.exe install
<WebSphere\AppServer>\bin\admin.config <HostName>\<User> <Password>

■

User ID has proper rights to start the administrative server. If using a domain ID, start the
administrative server with a local ID to see if the domain is the problem. To check a user's
rights:

From Start > Programs > Administrative Tools > User Manager1.

Select Policies > User Rights2.

Check Show Advanced User Rights checkbox in lower left corner3.

Add the following rights to the user ID:

Log on as a service■

Act as part of the operating system■

4.

■

❍

5.

http://squidward/022.html

If you change the Windows NT user ID/password but WebSphere Application Server is not
updated, then the administrative server startup will fail.
Update the user ID/password in the following areas:

In Windows NT services for the IBM WebSphere Administrative Server service:

From Start > Settings > Control Panel, double click Services1.

Select IBM WebSphere Administrative Server2.

Click Startup3.

Change the user ID/password under this account4.

■

in admin.config (if the DB2 userid/password also changed)■

■

Port problems

WebSphere Application Server will fail to start if certain ports are in use. Typical port problem descriptions
follow:

When the bootstrap port is in use, you may see the following error when starting WebSphere:

009.765.6005c5b F Nameserver Failed to start the Bootstrap server
org.omg.CORBA.INTERNAL: minor code: 8 completed: No

This error is similar to the Port 9000 in use error when starting WebSphere Application Server.

To fix the problem, change the bootstrap port (the default is 900) in file, admin.config, using property
name:

com.ibm.ejs.sm.adminServer.bootstrapPort

If this property does not exist in file admin.config, add it.

1.

Port 9000 is the default port of the Admin Server location service daemon. Port 9000 is also used by
many system resources including AIX X-windows manager. If you see error message,

Port 9000 in use-select another port

when executing the ./startupServer.sh command on AIX, the administrative server process cannot start
because port 9000 is in use. You can change the port the location service daemon listens on by:

specifying -lsdPort option on the admin server command line❍

setting com.ibm.ejs.sm.adminServer.lsdPort property in the admin.config file located in directory
<WAS_ROOT>\bin on Windows NT and <WAS_ROOT>/bin on UNIX.

❍

2.

8.6: Diagnosing configuration and installation problems

WebSphere Application Server uses a database to store and share configuration
information across nodes. Problems configuring the database are described in the
installation problemssection.

Generally, if the database is not configured properly, the WebSphere Application
Server installation process will fail. Configuration problems occur after the product is
installed.

The following table describes common configuration problems. Select an entry for
more information.

Problem description Cause of problem

Cannot retrieve data for a specific
session

Incorrect use of the database as a session store:

Datasource incorrectly created or
configured

●

Servlet requests are not satisfied

Web server problems:

Plug-in failure●

Virtual host configuration incorrect●

Error 404 - URL not found occurs
when accessing a servlet

HTTP Server hostname or port problem

Error 500 - Failed to load target
servlet

Servlet missing from Web application classpath

FATAL - Could not bind to the
administrative server error

Remote administration failure

Nanny process fails to start
administrative server

Verify all installation steps were successful

Administrative server fails to start Generally an installation setup problem

8.7: Using application level facilities

WebSphere Application Server Standard Editiononly supports Web applications, not
enterprise beans. WebSphere Application ServerAdvanced Edition supports both Web
applications and enterprise beans.

For more information on enterprise beans and Web applications, see the file on
developing applications.

Tools that are specifically designed to debug application, servlet and EJB problems
include OLTand Distributed Debugger.OLT provides an object level trace. The
Distributed Debugger allows you to set trace points in your code.

See the Problem/Tool/Trace/Log Matrix for more information on appropriatetools and
traces.

Typical application and EJB problems are:

Invoking a servlet from a browser window●

A modified servlet is not reloaded●

Incorrectly using of databases as a session store●

Invoking a servlet by its URL

The following example describes what you should enter in a browser window to invoke
a servlet. Errors occur when you fail to include the webappdirectory in the path.

http://server_machine/webapp/examples/showCfg

The components of the URL are:

server_machine webapp examples showCfg

http://squidward/04.html

Name of the
application server
computer

Virtual
directory of
the Web
application
loader.

Do not create a
webapp
directory. This
directory is
defined for
you by
WebSphere
Application
Server. For
more
information on
webapp, see
the file on the
programming
model and
environment.

Application
Web path

This is a
default
WebSphere
servlet Web
path.You can
create a
directory by
any name as
long as it is
defined in the
Web
application's
category.

Servlet URL, not the name of the
code.

In this example, the actual Servlet
class name
isServletEngineConfigDumper.

The URL illustrated above is the URL for showCfg, one of the default servlets shipped
with WebSphereApplication Server.

Reloading servlets

In earlier versions of WebSphere Application Server, specific reload directories in the
reload process had to be defined. Currently, the only reload requirement is to store
servlet classes in the Web application category. That is, ensure all your servlets are
handled in the context of the Web application loader. After you update your servlets,
the Web application loader will automatically reload them for you.

If your servlet classes are installed in the context of the Web application loader, but are
not being reloaded, ensure the Auto Reload property is set to true.Follow these steps to
check the setting of the Auto Reload property:

From the WebSphere Administration Console, select your application (or
default_app if you stored your servlets in the default directory structure).

1.

From the Web Application:default_app panel, select the Advanced tab.2.

Verify that the Auto Reload is set to true.3.

http://squidward/0401.html
http://squidward/0401.html
http://squidward/0401.html

Incorrect use of a database as a session store

WebSphere Application Server makes JDBC calls, using a predefined JDBC driver, to
communicatewith a database. Both the JDBC driver and datasources must be
configured using the administrative console.

The following errors occur if a datasource is misconfigured or does not exist:

The browser window displays Error 500 with the message:
java.lang.NullPointerException

●

The <App_Server>.stderr.log displays the message:
javax.naming.NameNotFoundException: jdbc/xxx

●

The <App_Server>.stdout.log displays the message: Failure while
creating connection COM.ibm.db2.jdbc.app.DB2Exception:
[IBM] [CLI Driver] SQL1013NThe database alias name or
database name "SAMPLE" could not be found.
SQLSTATE=42705

●

Database connectivity problems cause persistence exceptions.
AnEJSPersistenceException error may indicate JDBC or connection problems:

An invalid JDBC driver will prevent access to jar and class files1.

Review the SQLSTATE:COM.ibm.db2.jdbc.app.DB2Exception:
[IBM][CLI Driver]SQL1224N A database agent could not
be started...SQLSTATE=55032...The SQLSTATE code of 55032
indicates the system is out of connections.

Note: Not using connection pooling causes most problems for
BMP type EJBs. Common symptoms include:

Performance problems connecting to the database❍

Running out of connections❍

To resolve the problem:

Increase the number of connections permitted by DB2 or
Oracle.

1.

On AIX, catalog the database as if it were remote.2.

Ensure you close connections when programming exceptions
occur.

3.

Verify that connections obtained in one method, are returned
to the pool via close().

4.

Verify that your application does not try to access pre-empted
connections (idle connectionsthat are now used by other

5.

2.

resources).

A database init failure could indicate the database does not
exist:com.ibm.ejs.persistence.EJSPersistenceException:
Database init failure:Nested exception
is:COM.ibm.db2.jdbc.app.DB2Exception: [IBM][CLI
Driver]SQL1013N The database alias name or database
name "YYY" could not be found...SQLSTATE=42705...The
SQLSTATE code of 42705 indicates the database does not exist or the server
cannotconnect to it.

3.

● 8.5: Identifying the problem

8.7.1: ORB-related minor codes

This document provides explanations of the minor error codes used by the WebSphere
Application Server Advanced Edition Java ORB. These minor codes are not
CORBA-compliant. CORBA-compliant minor codes usually begin with an OMG-assigned
identification code, which consists of the vendor ID and digits that identify the minor code.
However, the Java ORB minor codes do not contain the vendor ID.

Minor codes are associated with CORBA exceptions and provide greater detail about the
errors that can occur. There is not a one-to-one mapping of exception names to minor codes.
Instead, a minor code can be associated with several exception names. A minor code message
can have different meanings depending on the exception that was thrown.

Minor codes are scoped to system exceptions in the range 0 to 4095. A minor code ID must be
a unique number within the scope for each system exception, but there is no restriction that
minor codes be unique across all system exceptions.

The following table lists the system exceptions and the corresponding minor error codes,
where:

Minor code: The minor error code●

Static variable: The name of the static variable for the minor error code●

Explanation: A description of the problem that caused the error●

User response: Actions to resolve the problem●

org.omg.CORBA.BAD_PARAM
Minor code: 1●

Static variable: com.sun.rmi.util.MinorCodes.NULL_PARAM●

Explanation: A parameter with a value of NULL was received. The parameter is not
valid.

●

User response: Ensure that parameters are initialized correctly.●

org.omg.CORBA.COMM_FAILURE
Minor code: 1●

Static variable: com.sun.rmi.util.MinorCodes.CONNECT_FAILURE●

Explanation: The ORB could not establish a connection to the server on the host and
port that was identified by the object reference.

●

User response: Ensure that the server is running and listening on the designated host
and port.

●

Minor code: 2●

Static variable: com.sun.rmi.util.MinorCodes.CONN_CLOSE_REBIND●

Explanation: A client request could not be processed, because the server had notified
the client to close the connection and a new connection could not be established.

●

User response: Ensure that the server is running and try the request again.●

Minor code: 3●

Static variable: com.sun.rmi.util.MinorCodes.WRITE_ERROR_SEND●

Explanation: An error was encountered while writing the request to the output stream.●

Minor code: 4●

Static variable: com.sun.rmi.util.MinorCodes.GET_PROPERTIES_ERROR●

Explanation: An exception was encountered while reading the initial services from a
URL.

●

User response: Ensure that the initial services URL is valid.●

Minor code: 6●

Static variable: com.sun.rmi.util.MinorCodes.INVOKE_ERROR●

Explanation: The ORB was unable to successfully connect to the server after several
attempts.

●

User response: Ensure that the server is running.●

org.omg.CORBA.DATA_CONVERSION
Minor code: 1●

Static variable: com.sun.rmi.util.MinorCodes.BAD_HEX_DIGIT●

Explanation: The object reference in string format contains at least one hexadecimal
character that is not valid.

●

User response: Obtain the original object reference and reformat it as a string using the
object_to_string method on the ORB.

●

Minor code: 2●

Static variable: com.sun.rmi.util.MinorCodes.BAD_STRINGIFIED_IOR_LEN●

Explanation: The length of the string-formatted object reference is not valid.●

User response: Obtain the original object reference and reformat it as a string using the
object_to_string method on the ORB.

●

Minor code: 3●

Static variable: com.sun.rmi.util.MinorCodes.BAD_STRINGIFIED_IOR●

Explanation: The string-formatted object reference is not valid.●

User response: Obtain the original object reference and reformat it as a string using the
object_to_string method on the ORB.

●

Minor code: 4●

Static variable: com.sun.rmi.util.MinorCodes.BAD_MODIFIER●

Explanation: The initial reference could not be resolved, because the host or the port is
not valid or was not specified.

●

User response: Specify the correct host and port.●

Minor code: 5●

Static variable: com.sun.rmi.util.MinorCodes.CODESET_INCOMPATIBLE●

Explanation: While processing the service context code sets for a request, an
incompatible code set was encountered.

●

org.omg.CORBA.INTERNAL
Minor code: 8●

Static variable: com.sun.rmi.util.MinorCodes.CREATE_LISTENER_FAILED●

Explanation: The ORB could not establish a listener thread on the port identified by
the object reference. The port was already in use or there was an error in creating the
daemon thread.

●

Minor code: 9●

Static variable: com.sun.rmi.util.MinorCodes.BAD_LOCATE_REQUEST_STATUS●

Explanation: The locator performed a locate request for an object reference and
returned a locate reply with a status that is not valid.

●

Minor code: 10●

Static variable: com.sun.rmi.util.MinorCodes.STRINGIFY_WRITE_ERROR●

Explanation: An exception was encountered while attempting to create a
string-formatted object reference.

●

org.omg.CORBA.INV_OBJREF
Minor code: 1●

Static variable: com.sun.rmi.util.MinorCodes.NO_PROFILE_PRESENT●

Explanation: The object reference does not contain a profile.●

User response: The current object reference is not valid. Obtain a valid object
reference from the object supplier.

●

Minor code: 2●

Static variable: com.sun.rmi.util.MinorCodes.BAD_CODE_SET●

Explanation: An unsupported code set or a code set that is not valid was used to write
the data to the input stream.

●

User response: Use a Unicode or ASCII code set.●

org.omg.CORBA.MARSHAL
Minor code: 4●

Static variable: com.sun.rmi.util.MinorCodes.READ_OBJECT_EXCEPTION●

Explanation: An error was encountered while trying to read and convert a marshalled
object reference into an in-memory object.

●

User response: Ensure that the object (passed as a parameter) is in one of the locations
identified by the system CLASSPATH environment variable.

●

Minor code: 6●

Static variable: com.sun.rmi.util.MinorCodes.CHARACTER_OUTOFRANGE●

Explanation: While marshalling or unmarshalling an object, a character that is not
compliant with ISO Latin-1 (8859.1) was encountered. The character is not in the

●

range 0 to 255.

org.omg.CORBA.NO_IMPLEMENT
Minor code: 2●

Static variable:
com.sun.rmi.util.MinorCodes.GETINTERFACE_NOT_IMPLEMENTED

●

Explanation: The get_interface method is not implemented on the server.●

Minor code: 3●

Static variable:
com.sun.rmi.util.MinorCodes.SEND_DEFERRED_NOTIMPLEMENTED

●

Explanation: Deferred sends are not supported by the ORB.●

org.omg.CORBA.OBJ_ADAPTER
Minor code: 1●

Static variable: com.sun.rmi.util.MinorCodes.NO_SERVER_SC_IN_DISPATCH●

Explanation: The object reference could not be dispatached to the server, because an
object adapter that matches the object key could not be found.

●

User response: Ensure that the object server still services the requested object.●

Minor code: 2●

Static variable: com.sun.rmi.util.MinorCodes.NO_SERVER_SC_IN_LOOKUP●

Explanation: The requested object could not be located, because an object adapter that
matches the adapter that matches the object key could not be found.

●

User response: Ensure that the object server that processes the locate requests still
services the requested object.

●

Minor code: 3●

Static variable:
com.sun.rmi.util.MinorCodes.NO_SERVER_SC_IN_CREATE_DEFAULT_SERVER

●

Explanation: The ORB was unable to create the default object adapter for an object in
the server that processes the actual method call.

●

Minor code: 4●

Static variable: com.sun.rmi.util.MinorCodes.ORB_CONNECT_ERROR●

Explanation: An error was encountered while trying to connect to an object in the
server that processes the actual method call.

●

User response:●

org.omg.CORBA.OBJECT_NOT_EXIST
Minor code: 1●

Static variable: com.sun.rmi.util.MinorCodes.LOCATE_UNKNOWN_OBJECT●

Explanation: A locate request was performed and the response indicated that the object
is not known to the locator.

●

User response: Ensure that the locator that processes the locate requests still services
the requested object.

●

Minor code: 2●

Static variable: com.sun.rmi.util.MinorCodes.BAD_SERVER_ID●

Explanation: The server ID of the server that received the request does not match the
server ID of the request object reference. The server that originally served the object is
no longer identified by that server ID.

●

User response: Obtain a new object reference for the object from the server that is now
servicing that object.

●

Minor code: 3●

Static variable: com.sun.rmi.util.MinorCodes.BAD_IMPLID●

Explanation: The implementation ID (identified by the object reference) does not
match any implementation on the server.

●

User response: Obtain a new object reference for the object from the server that is now
servicing that object.

●

Minor code: 4●

Static variable: com.sun.rmi.util.MinorCodes.BAD_SKELETON●

Explanation: A skeleton that matches the object reference (identified by the object
key) could not be found on the server.

●

User response:●

Minor code: 5●

Static variable: com.sun.rmi.util.MinorCodes.SERVANT_NOT_FOUND●

Explanation: The object adapter identified by the object key within the object
reference could not locate the servant (an object on the server) to process the object
request.

●

User response: Ensure that the servant is known to the object adapter.●

org.omg.CORBA.UNKNOWN
Minor code: 1●

Static variable: com.sun.rmi.util.MinorCodes.UNKNOWN_CORBA_EXC●

Explanation: The server threw an unknown user exception.●

User response: Ensure that all user exceptions that can be thrown are declared on the
throws clause of the method.

●

Minor code: 3●

Static variable: com.sun.rmi.util.MinorCodes.RUNTIMEEXCEPTION●

Explanation: The server encountered an unknown application error.●

Minor code: 4●

Static variable: com.sun.rmi.util.MinorCodes.UNKNOWN_SERVER_ERROR●

Explanation: The server threw an unknown exception.●

8.8: Using internal tools

You can use WebSphere Application Server servlets and internal tools to help diagnose problems.

Servlets

View file samples.html for information on sample serlvetsshipped with the product. Most WebSphere Application Server
servlets are located in the examples directory:

The following table describes servlets that can be used as debug tools:

http://squidward/samples.html

servlet location description

Hit Count <WebSphere\AppServer>\hosts\default_host\examples\

Verifies correct
implementation of servlets,
JSPs, EJBs, and HTTP
Session.

Snoop servlet <WebSphere\AppServer>\hosts\default_host\default_app\servlets\Snoop.class

Useful for examining
request parameters coming
from the client and for
verifying the operation of
the servlet engine.

ShowCfg <WebSphere\AppServer>\hosts\default_host\examples\
Useful for validating the
configuration of the
system.

BeenThere <WebSphere\AppServer>\hosts\default_host\examples\web\beenthere.html
Useful for demonstrating
and testing session
persistance.

Internal tools

The available internal tools apply to specific operations. For example, the jdbctest.javaTM tool tests JDKTM settings and
database access.

See theWebSphere Problem Determination Tools website for detailed information about these tools. Thewebsite also
offers you the opportunity to add ideas about tools and add a new tool. Check the websiteperiodically for updates.

For a quick overview of available logs, traces and tools, see the Problem/Tool/Trace/Log Matrix.

Jdbctest.java Tests JDKTM settings and database connectivity

JavaTM Name Tree Browser Displays elements in WebSphere Application Server name space

JavaTM Socket Level Trace Describes ORB communication problems over heterogeneous networks via IIOP

DrAdmin trace function Dumps the thread stacks in a server

OLT Object level trace

Distributed Debugger Debugs application level problems

http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp

8.8.1: Using the Log Analyzer for Advanced Edition

The Log Analyzer takes one or more activity logs, mergesall of the data, and displays the entries. Based on its "symptomdatabase," it analyzes and interpretsthe
error conditions in the log entries to help you debug problems. The Advanced Edition Log Analyzer has a special feature enabling itto download the latest
symptom database from the IBM Web site. See"About the Log Analyzer" for details.

About the Log Analyzer●

About the activity log●

Using the Log Analyzer●

Related tasks:

Set the maximum activity.log size❍

Changing the port of the logging service❍

View an activity.log on a remote machine❍

●

About the Log Analyzer

A Log Analyzer quite similar to the one available for use with IBMWebSphere Application Server is available with IBM Component Broker, partof the
Enterprise Edition of IBM WebSphere Application Server.

To learn about the Component Broker Log Analyzer, see the Component Brokerproblem determination guide (currently, Chapter 11). You can view
thedocument on the IBM Web site without having to obtain Enterprise Edition:

ftp://ftp.software.ibm.com/software/websphere/info/appserv/v35/ee/cbprbdet.pdf

The main differences between the Log Analyzer available withWebSphere Application Server and the Component Broker Log Analyzerare the following:

The Log Analyzer for Advanced Edition is capable of downloading the latest symptom database (bin/symptomdb.xml) from the IBM support site. Use the
file -> Update Database -> Adv Symptom Database option in the Log Analyzer interface to take advantage of this feature.

●

The functions for ORB trace formatting, minor codes, message IDs and GPF are not supported for Advanced Edition●

The script for starting the Log Analyzer is in a different location (see below for instructions)●

The default directory for opening logs for Advanced Edition is the logs directory. For Enterprise Edition, it is the service directory.●

About the activity log

Recall, the Log Analyzer collects messages from various product componentsand places them in a shared file. The file is a binary file located at:

product_installation_root/logs/activity.log

The activity.log cannot be easily viewed using a texteditor. The Log Analyzer is the tool for viewing the file.

Using the Log Analyzer

To view the activity.log using the Log Analyzer:

Change directory to:

product_installation_root/bin

1.

Run the waslogbr script file, which is called:

waslogbr.bat on Windows NT❍

waslogbr.sh on UNIX systems❍

It needs to be run from the bin directory cited above.

This will start the Log Analyzer graphical interface.

2.

In the interface:

Select File-> Open.1.

Navigate to the directory containing the activity.log file.2.

Select the activity.log file.3.

Select Open.4.

3.

Related tasks

In the course of using the Log Analyzer, you might need to perform the following tasks.

Setting the maximum activity.log file size

The activity.log file grows to a predetermined size, then wraps. The default size is 1 Megabyte (MB).

To change the log size:

Open the properties file in a text editor:

product_installation_root/properties/logging.properties

1.

For the com.ibm.ws.ras.ActivityLogSize property, specify the value you would like, in Kilobytes (KB).

If an invalid size is entered, the default size is used.

2.

The size change will take effect at the next server startup.

Syntax example:

ftp://ftp.software.ibm.com/software/websphere/info/appserv/v35/ee/cbprbdet.pdf
http://squidward/root.html
http://squidward/root.html
http://squidward/root.html

To change the log size to 2MB, enter in the line:

com.ibm.ws.ras.ActivityLogSize=2048

without any spaces in it.

●

Changing the port of the logging service

The logging service starts automatically at server startup. It requires theuse of a dedicated port. The default port is 1707.

To change the port value:

Stop all application servers and the WebSphere administrative server. (Ifyou do not stop a server, it will not pick up the property changeuntil it is stopped
and started again).

1.

Open the properties file in a text editor:

product_installation_root/properties/logging.properties

2.

For the SHARED_LOG_LOCK_PORT property, specify the value you would like.3.

Start the application and administrative servers that you stopped.4.

Syntax example:

To change the port to 1708, specify:

SHARED_LOG_LOCK_PORT=1708

●

If the port is in use by another application, the logging service might not be able to start or might not function correctly. The activity.log file will not be created
or updated correctly. See article 1.2.8 forinformation about how to tell whether a port is currently allocated to anotherapplication.

To diagnose a port conflict, perform these heuristic checks:

Check to see if the activity.log file has been created, and check the timestamp of the file.●

Check these files:

product_installation_root/<server_name>_stderr.logproduct_installation_root/logs/adminserver_stderr.log

Note: The above paths are the default locations of the files. The administratormight have configured different locations.

Look for a stack trace such as the following:

 java.lang.Exception: Unable to obtain Shared Log Lock on port1707 at
com.ibm.ejs.ras.SharedLogBase.acquireHostLock(SharedLogBase.java:187) at
com.ibm.ejs.ras.SharedLogWriter.<init>(SharedLogWriter.java:130) at
com.ibm.ejs.ras.SharedLogWriter.getInstance(SharedLogWriter.java:100) at
com.ibm.ejs.ras.Tr.initialize(Tr.java:241) at
com.ibm.ejs.sm.server.ManagedServer.main(ManagedServer.java:121)

●

Viewing an activity.log file in the absence of a GUI.

The Log Analyzer cannot be used to view remote files. If the operating system on which you are running WebSphere Application Server does not support the
use of a graphical interface, then transfer the file in binary to the systemon which you are running the WebSphere Java administrative console. Use the Log
Analyzer tool there.

In cases in which transferring the file is impractical or inconvenient, an alternate tool named "showlog" is provided for viewing the activity.log file:

Change directory to:

product_installation_root/bin

1.

Run the showlog tool with no parameters to display the usage instructions:

On Windows NT, run showlog.bat❍

On UNIX systems, run showlog.sh❍

2.

Syntax examples:

To direct the activity log contents to stdout, use the invocation:

showlog activity.log

●

To dump the activity.log to a text file that can beviewed using a text editor, use the invocation:

showlog activity.log textFileName

●

http://squidward/root.html
http://squidward/010208.html
http://squidward/root.html
http://squidward/root.html
http://squidward/root.html

8.9: Thread dumps

This section introduces the concept of thread dumps in WebSphere Application Server.

What is a thread dump?

A thread represents a work item or task, such as a servlet request. Java processes are usually multi-threaded. This means there can be many tasks occurring
simultaneously(i.e. multi-threading)within one JVM (Java Virtual Machine) process. Therefore, understanding what is occurring within a JVM process means
obtaining information about all the different threads that are defined within the process.

There are two types of thread dumps that could appear when running Java programs:

System thread dumps●

Java thread dumps●

System thread dumps

System thread dumps provide a system view of a failing JVM (Java Virtual Machine) process. On Unix systems, they usually appear as core files. On Window's
systems they appear as drwtsn32.log files.

System dumps do not understand Java classes. Everything in a system dump is C library oriented. The system dump information provided for JVM processes refers
to Java's C libraries and not the referenceclass files.

System dumps should only be interrogated when a Java thread dump is unavailable. Pertinent information can be obtained from system dumps. However, mapping
this information back into Java source code is very difficult. The following sections explain how to interrogate the core and drwtsn32.log files. When theyare
generated by the system, they need to be interrogated.

Unix platforms

Core files

Core files on Unix systems can be interrogated by dbx and gdb. Dbx is a tool that is part of the AIX install. On Sun, dbx can be installed for an additional expense.
The gdb (GNU debugger)is freeware that can be downloaded.

Core file tips:

Ensure that the system core file size specification is unlimited.1.

Ensure that the file system containing the core file has enough space.2.

The following is a sample of how to use ulimit to verify and set the core dump size. If it is too small, a unusable core file will be generated.

Ulimit sample:

[pwh501]:root> ulimit -a

time(seconds) unlimited

file(blocks) unlimited

data(kbytes) unlimited

stack(kbytes) unlimited

memory(kbytes) unlimited

coredump(blocks) unlimited

nofiles(descriptors) 2000

The following commands will change the coredump (-c) and file (-f) to unlimited:

ulimit -f unlimited

ulimit -c unlimited

The following is an example of using the df command to verify that there isenough room in the file system for the core. The core file is placed in the ./bin directory.
On AIX this is in the /usr filesystem. A core file can be 200MB.

Df sample:

[pwh501]:root> df

Filesystem 512-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 131072 80416 39% 2480 8% /

/dev/hd2 8306688 2835096 66% 76320 8% /usr

/dev/hd9var 606208 55176 91% 390 1% /var

/dev/hd3 475136 459808 4% 32 1% /tmp

http://www.gnu.org/directory/gdb.html

/dev/hd1 1310720 426120 68% 12453 8% /home

/dev/lv00 65536 47048 29% 96 2% /usr/lpp/netviewdm

/dev/lv01 606208 296504 52% 915 2% /db2

/dev/lv02 4014080 2806320 31% 3328 1% /Projects

Note: These samples were taken from the AIX 4.3.3 system.

DBX command

The purpose of the dbx command is to provide an environment to debug and run programs under the operating system. The dbx command provides a symbolic
debug program for C, C++, Pascal, andFortran programs, allowing you to carry out operations including:

Examine object and core files●

Provide a controlled environment for running a program●

Set breakpoints at selected statements or run the program one line at a time●

Debug using symbolic variables and display them in their correct format●

DBX syntax

dbx [-a ProcessID] [-c CommandFile] [-d NestingDepth] [-I Directory]

[-E DebugEnvironment] [-k] [-u] [-F] [-r] [-x] [ObjectFile

[CoreFile]]

The ObjectFile parameter is an object (executable) file produced by a compiler. Use the -g (generate symbol table) flag when compiling your program to produce
the information the dbx command needs.

Note: The -g flag of the cc command should be used when the object file iscompiled. If the -g flag is not used or if symbol references are removedfrom the xcoff
file with the strip command, the symbolic capabilities of the dbx command are limited.

If the -c flag is not specified, the dbx command checks for a .dbxinit file inthe user's $HOME directory. It then checks for a .dbxinit file in the user'scurrent
directory. If a .dbxinit file exists in the current directory, that file overrides the .dbxinit file in the user's $HOME directory. If a .dbxinit file exists in the user's
$HOME directory or current directory, that file's subcommands run at the beginning of the debug session. Use an editor to create a .dbxinit file.

If ObjectFile is not specified, then dbx asks for the name of the object file to be examined. The default is a.out. If the core file exists in the current directory or a
core file parameter is specified, then dbx reports the location where the program failed. Variables, registers and memory held in the core image may be examined
until execution of ObjectFile begins. At that point the dbx debug program prompts for commands.

Note: The commands are referenced in the AIX Version 4.3 Commands Reference, Volume 2.

DBX tips

The common procedure of interrogating a core file is to change the directory to where the core file resides. You can then issue the command with the binary
executable file as the parameter. It is important that the binary executable is used. Usually the java command is a shell script that calls the executable. If you enter
the shell script, java, as the parameter a "cannot find" error message is returned.

The following commands show you how to find the binary executable and invoke the dbx command. It also shows an illegal instruction was executed (i.e. Invalid
opcode):

[pwh501]:root> cd /usr/jdk_base

[pwh501]:root> find . -name java -print

./bin/aix/native_threads/java

./bin/java

[pwh501]:root> cd /usr/WebSphere/AppServer/bin

[pwh501]:root> ls -l core

-rw-r--r-- 1 root system 191495883 Aug 07 15:08 core

[pwh501]:root> dbx /usr/jdk_base/bin/aix/native_threads/java

Type 'help' for help.

Warning: The core file is truncated. You may need to increase the ulimitfor file and core dump, or free some
space on the file system.

Reading symbolic information ...Warning: no source compiled with -g [using memory image in core]

Illegal instruction (reserved addressing fault) in . at 0x0 ($t29)0x00000000 00000001 Invalid opcode.

If you don't know where the java binary is located, the following command will display the true java executable name of the core:

strings core | more

After you enter dbx, the where command provides a stack trace of where the error occurred. The following example shows a:

Stack trace●

Output of the help command●

How to exit dbx●

Stack trace

(dbx) where

warning: could not locate trace table from starting address 0x0

ExecuteJava(??, ??) at 0xd2f9913c

do_execute_java_method_vararg(??, ??, ??, ??, ??, ??, ??, ??) at 0xd2fabd30

execute_java_dynamic_method(0x20e355e0, 0x3002fdb0, 0xd3016aa4, 0xd3016aa8, 0x0, 0x0, 0x0, 0x0) at 0xd2fabef4

ThreadRT0(0x3002fdb0) at 0xd300cd88

sysThread_shell(??) at 0xd2fb50a8

pthread._pthread_body(??) at 0xd010f358

Output of the help command

(dbx) help

Commands:

alias assign attribute call case catch

clear cleari condition cont delete detach

display(/) down dump edit file func

goto gotoi help ignore list listi

map move multproc mutex next nexti

print prompt quit registers rerun return

run rwlock screen search(/?) set sh

skip source status step stepi stop

stopi thread trace tracei unalias unset

up use whatis where whereis which

Topics:

startup execution breakpoints files data

machine environment threads expressions scope

set_variables usage

Type "help" for help on a command or topic.

How to exit dbx

(dbx) quit

[pwh501]:root>

Another useful purpose of the dbx command is to monitor a running process. The -a parameter allows the user to attach to a process. The catch and run
commands can be used to walk through the processing of the JVM process and see all signals that are caught. Use of the help xxx command will provide
additional information on each of the above commands.

DBXTRACE.SH

There are shell scripts that call the dbx command and format the thread information from the core file. The name of the script is usually dbxtrace.sh. There is an
AIX version and a Solaris version.

Here's a description on how to run the shell script:

[pwh501]:root> ./dbxtrace -a

Usage: Automate getting dbx trace information

For core files:

Usage: dbxtrace [executable] [core] or : dbxtrace -c corefile

Example: dbxtrace /usr/jdk_base/bin/aix/native_threads/java core

To attach to a running or hung process:

Usage: dbxtrace -a PID

Example: dbxtrace -a 1234

The following information describes the beginning of the output when using dbxtrace on AIX:

[pwh501]:root> ./dbxtrace.sh | more
**
* Failure of this script or dbx may *
* overwrite your existing core file. *
* It is recomended that you rename your *
* existing core file and use the -c flag *
* Do you wish to continue (y/n): **
Creating subcommand file....
Running dbx...
Type 'help' for help.
warning: The core file is truncated. You may need to increasethe ulimitfor file and coredump, or free some
space on the filesystem.
Reading symbolic information ...warning: no source compiled with -g

Note: The the user is prompted for (y/n). Therefore, if the user redirects the output to a file [pwh501]:root> ./dbxtrace.sh > myfile 2>&1 a
standalone "y" must be entered before the output is generated.

The output of the dbxtrace.sh provides information about each defined thread. The output has thefollowing sections:

Error condition●

One line description of each thread●

Detail thread information●

Stack trace of each thread●

Error condition:
Illegal instruction (reserved addressing fault) in . at 0x0 ($t29)
0x00000000 00000001 Invalid opcode.

One line description for each thread:
$t29 is the current thread
thread state-k wchan state-u k-tid mode held scope function
$t1 run blocked 37671 u no sys _pthread_ksleep
$t2 run blocked 38197 u no sys _pthread_ksleep
..
>$t29 run running 46443 k no sys

Detail thread information
thread state-k wchan state-u k-tid mode held scope function
>$t29 run running 46443 k no sys
general:
pthread addr = 0x20df04e0 size = 0x18c
vp addr = 0x20e376b4 size = 0x284
thread errno = 2
start pc = 0xf0545994
joinable = yes
pthread_t = 1c1d
scheduler:
kernel =
user = 1 (other)
event :
event = 0x0
cancel = enabled, deferred, not pending
stack storage:
base = 0x20df5738 size = 0x40000
limit = 0x20e35738
sp = 0x20e35040

Stack trace of each thread
thread state-k wchan state-u k-tid mode held scope function
*$t29 run running 46443 k no sys
warning: could not locate trace table from starting address 0x0
ExecuteJava(??, ??) at 0xd2f9913c

do_execute_java_method_vararg(??, ??, ??, ??, ??, ??, ??, ??) at 0xd2fabd30
execute_java_dynamic_method(0x20e355e0, 0x3002fdb0, 0xd3016aa4, 0xd3016aa8, 0x0, 0x0, 0x0, 0x0) at 0xd2fabef4

ThreadRT0(0x3002fdb0) at 0xd300cd88
sysThread_shell(??) at 0xd2fb50a8
pthread._pthread_body(??) at 0xd010f358

Windows platform

The drwtsn32.log files are similar to core files on Unix. On Windows 2000, these files are found in the following directory: C:\Documents and Settings\All
Users\Documents\DrWatson.

After entering drwtsn32 ?, the "Dr. Watson for Windows 2000" box appears. The DrWatson log file overview option will display a screen which explains the format
of the drwtsn32.log files. The output of the dbxtrace.sh provides information about each defined thread. The output has the samesection as a Unix platform:

Error condition●

One line description of each thread●

Detail thread information●

Stack trace of each thread●

Java thread dumps

Java thread dumps provide a Java view of a failing JVM process. Depending on the platform, Java dumps can appear with different names and at different locations.

A Java dump provides information about the executing Java classes and allows the problem determinationprocess to reference the Java source code.

How to obtain a JAVA Thread Dump

There are two ways to obtain a Java thread dump:

DrAdmin function●

kill -3 command●

DrAdmin works on all platforms. On Unix, the kill -3command serves the same function and is easier to use. Therefore, DrAdmin is discussed in the Windows
platform section and kill -3 is discussed in the Unix platforms section.

Unix platforms

Sometimes Java thread dumps will occur due to an error in the JVM. At other times, the user might need to understand what is occurring within a JVM that is
currently active. In either case, the Java thread dump is placed at the location described in the locations table. Information on how to manually obtain a thread dump
is available in the remainder of this section.

When a process hangs or is working hard (i.e. looping), it might be helpful to understand what the individual threads of a JVM process are doing. Obtaining a stack
trace of the individual threads will provide this information. The kill -3 process ID command provides this stack trace information. This command should not impact
the running process.

Identifying process IDs

WebSphere supports four processes:

Nanny - started with startupServer.sh●

Administrative server - started by the nanny process●

Administrative client - started with adminclient.sh●

Managed server - started by the administratiave server either automatically or manually via the administration client console●

These processes are usually started in the sequence that they are listed. Therefore, their process IDs increase in value. The ps -ef | grep java command will display
all the processes that are associated with java.

The process IDs are listed under the second column in the command's output. The user can not use the administration client interface if managed servers are
automatically started by the administrative server.

Unfortunately, the ps -ef | grep java command does not always allow the user to identify the different processes. The command string to start the processes can be
very long and the length of the command string saved by the system may not be adequate for the ps -ef | grep java command.

On AIX, the complete command line is listed in the above ps -ef | grep command output. The user can also enter the following commands to focus on an individual
process ID:

ps -ef | grep Nanny●

ps -ef | grep AdminServer●

ps -ef | grep AdminClient●

ps -ef | grep ManagedServer●

There could be multiple managed servers running simultaneously. The managed server process ID(s) are also displayed within the ./bin/tracefile with:

Starting Server: "Default Server" (pid "116032")

Default server is the name of the managed server. On the administration client window, the General tab information for the managed server also displays the
process ID.

As the root user, the kill -3 xxxx can now be entered where xxxx is the process ID of the WebSphere JVM in which you need to see a thread dump.

Location of thread dump

The location of the thread dump depends on the operating system.

Process AIX 4.3.3 Sun OS 5.7 HP-UX B.11.0.0

Administrative server ./bin/javacore....txt Appended to
./logs/tracefile

Appended to
./logs/tracefile

Managed server ./bin/javacore...txt ./Appended to stderr.file
for managed server
(Note 1)

Appended to stdout file
for managed server
(Note 1)

Administrative client ./bin/javacore...txt Prompted at window
used to enter
adminclient.sh

Window used to enter
adminclient.sh

Nanny ./bin/javacore...txt Prompted at window
used to enter
startupServer.sh

Window used to enter
startupServer.sh

Note 1: The stderr and stdout files are defined within the managed server configuration. The configuration can be viewed with the administrative console. Click on
the managed server (for example default server). The standard output file and standard error file are defined within fields on the General Tab.

If the user starts a server in the background, the kill command may not dump the thread information. The workaround for this situation is to do the following:

startupServer.sh &

Ctrl-Z

fg

kill -3 xxxx

Windows platform

DrAdmin.bat file

The DrAdmin.bat file is located in the WebSphere/AppServer/bin directory. The DrAdmin.bat file will execute the DrAdmin function. In Unix, the DrAdmin.bat
file is DrAdmin.sh.

Find the port number of interest

The next step is to identify the port number for either the administratiave server or a managed server. The port number is different for the administratiave server and
each of the managed server(s). The port number values are contained in the standard out files for each of these processes. Information on how to find these files and
the port number are described below.

After starting the administratiave server, you should obtain the DrAdmin port number within the .\logs\tracefile file inside the message:

DrAdmin available on port xxxx

After starting the managed server (for example, default server), you should obtain the DrAdmin port number provided in the standard output file for the managed
server. The location of the file can be found with the administrative console interface in the managed server configuration via the General tab to standard output
field. The message within the file containing the port number is:

DrAdmin available on port xxxx

Execute DrAdmin

The DrAdmin.bat file can now be executed providing the port number obtained above. The format of the command to use is:

DrAdmin -serverPort xxxx -dumpThreads

where xxxx is the port number from the above message (without the comma).

Locate the thread dump

The administratiave server thread information is placed in .\logs\adminserver_stderr.log file. Because this file is not closed, it's length of 0 will not change. The
application server thread information is placed in the standard error file which can be found with the administrative console interface in the application server
configuration via the General tab to standard error field. The thread information is dumped immediately into this file.

In order to view the thread information, copy the above files into a new file. Edit the new file with an HTML editor, which will display the thread information.
Some editors (i.e. emacs and vi) will allow you to view the thread information directly from the .\logs\adminserver_stderr.log file or the standard error file.

How to interrupt a Java thread dump

A thread dump can be forced or can occur when a Java process error occurs. When a thread dump is not forced, it usually means that an error within a Java process
has occurred and it should to be investigated. A thread dump of a Java process needs to be forced when the process has a thread deadlock condition. A thread
deadlock condition is defined as:

Thread A currently owns Lock X.
Thread B owns Lock Y.
Thread A is waiting for the release of Lock Y in order to continue processing.
Thread B is waiting for the release of Lock X in order to continue processing.

Because of this stalemate condition, neither thread is able to complete its processing.

Note:The referenced Java thread dump information is taken from a sample AIX dump. Java thread dumps on other platforms have similar information, but they may
be formatted different.

Monitors

In order to have a thread safe application, the application may have to ensure that two threads don't execute the same code simultaneously. This can be accomplished
with the use of a synchronized()statement or a synchronized modifier of a class method.

Each of the above threads in the thread deadlock condition will create a monitor/lock that will prevent other threads from executing the same code. It is important to
understand that threads can be holding multiple monitors/locks while processing a request. Therefore two threads could find themselves in a deadlock condition
defined by the following situation:

Thread A owns Lock X.
Thread B owns Lock Y.
Thread A is waiting for the release of Lock Y.
Thread B is waiting for the release of Lock X.

Because of this stalemate condition, neither thread is able to complete its processing.

Example of a deadlock condition

You can recognize a deadlock when looking within the native stack information. For example, when lookingat the native stack information of Thread A you can
easily recognize that it is blocked by a monitor/lock held by Thread B. This information does not appear in the native stack information of the Thread B.Thread B is
currently deleting a connection, (deleteConn), from the ConnectionTable. The deleteConn()is a synchronized method which causes a monitor/lock to occur for the
ConnectionTable class. There is only one ConnectionTable instance. The monitor/lock held by Thread B is preventing the Thread A process from completing.

The above diagnosis requires an understanding of the involved source code (i.e. which methods are synchronized). However, the Java thread dump does provide the
pointers to do this additional investigation.

A summary of the object monitors will provide additional information that identifies Thread A is blocked by Thread B:
com.ibm.CORBA.iiop.IIOPConnection@4fe89740: owner: "Thread B""Thread A" (0x36951ba8) blocked

Unfortunately, this information does not appear in the summary for the monitor being held by Thread A.

Stack traces

Stack traces represent the current call path of a thread. Call path information explains what functional calls were made to get to the thread's current location.

System dump stack trace

Note that the sysAcceptFD() call is the last function called on the stack. It is a system call that was invoked by java_net_PlainSocketImpl_socketAccept() call. The
call indicates that a Java thread did an accept operation on a socket. Question marks appear as parameters. This is because the Java process was not run in debug
mode. For Java 1.1 installations (i.e. before WebSphere 3.5), debug mode is started by using the java_g command. For Java 1.2 installations(i.e. WebSphere 3.5),
the -Xdebug options should be used with the Java command. For either type of installation, the administration console screen for a managed server configuration has
a Debug tab. Debug mode can be set within this tab. As stated above, no class file information appears in the stack trace. Only the functions with C libraries are
referenced.

Java dump stack trace

The reader is able to follow the sequence of calls from the run() method through the read() method of the SocketInputSteam class. The package names of the classes
are also present. The "Compiled Code" characters appears as parameters in the call because the Java dump occurred for a JVM that was not running in debug mode.
When running in debug mode, the line number of the call within the source replaces the "Compiled Code" characters. For Java 1.1 installations (i.e. before
WebSphere 3.5), debug mode is started by using the java_g command. For Java 1.2 installations (i.e. WebSphere 3.5), the -Xdebug options should be used with the
java command. For either type of installation, the administration console screen for a managed server configuration has a Debug tab. Debug mode can be set with
this tab. Another way of obtaining the source line number is to turn off the JIT (Just In Time) compiler. This can be done by starting the JVM with the
-Djava.compiler=NONE parameter. This parameter can also be placed on the managed server command line. The command line information can be displayed with
the administration console interface on the General tab of the managed server configuration.

WebSphere Application Server thread information

Object Request Broker information

During startup of the different WebSphere Application Server processes, the processes are initialized and placed in a state to accept additional network activity. One
of the first steps in initializing a process is to create an ORB instance. This step will create threads that will be used to complete the initialization step and later
accept network activity to be processed.

These activities are described within each of the two diagrams of the next two sections. The diagrams describe:

Administratiave server startup and immediate administrative server takedown●

Managed server startup with servlet traffic●

The administratiave server has two ORBs defined within it. For each ORB is at least one ORB server listener thread that continually waits for input on a port. When
input is received, it is dispatched to an ORB server reader thread so the ORB server listener thread can again wait for input on the port. The ORB server reader
thread again dispatches the request to a third thread that completes the work activity. The reply to the work activity is sent from the third thread to an ORB client
reader thread that receives replies from the ORB reader thread. An ORB request has four steps/threads involved:

ORB server listener thread receives input on port X.1.

ORB server reader thread is given a request.2.

Pooled/instantiated thread handles the request and sends a reply.3.

ORB client reader thread handles the reply.4.

The managed server has one ORB defined within it. There are two ORB server listener threads and multiple ORB client threads. The servlet traffic does not use the
ORB for communications. It is done with the plug-in interface. This interface supports a pool of worker threads (Worker#_) that complete the HTTP requests.

The following port numbers are preset:

9000 is used for obtaining naming services (i.e. data source names, EJB names)●

900 is used by the administratiave server to listen for administrative client requests●

Other port numbers are randomly chosen for ORB communications.

Thread names

ORB threads

The ORB instance creates reader and listener threads. The names of these threads get changed after they begin processing (i.e. during run() method processing). The
name is constructed with the following parameters separated by a colon (:):

ORB information

P = unique for this process and algorithmically constructed from a time stamp❍

O = number of ORB's within this process❍

●

Thread type

StandardRT = identifies which reader thread is within the ORB❍

CT = client thread❍

LT = listener thread❍

●

Connection values

LocalPort = Local port that thread is dealing with❍

RemoteHost = Hostname for ORB server reader thread, or IP address for ORB client reader thread❍

RemotePort = Port number on the remote host for the connection❍

●

Worker#__ (SERVLET ENGINE THREADS)

These thread names begin with Worker# and process HTTP requests.

Thread-x

These thread names are the default thread name for Windows 2000 and AIX. Because no thread name is provided this name is used. X is incremented as each new
thread is created.

Pooled ORB request dispatch WorkerThread

These threads are created by the main thread (i.e. P=479481:O=0:CT)and handle the request/replies that are sent across IIOP connections.

Web server plug-in configuration thread

Thread used for setting the Web server configuration.

Alarm manager

This thread manages the creation of alarm thread x's.

Alarm thread 1

The alarm thread 1 reclaims unused connections.

BackgroundLruEvictionStrategy

This thread sweeps a cache, reclaiming the least recently used objects.

Refresh

This thread insures that any changes to a model get propagated to clones.

Thread stack traces

When a thread is created, the start() method is used to invoke the run() method. The start() method is executed on one thread and the run() method is executed on the
newly created thread. Depending on when the stack trace is obtained, an activity (i.e. piece of work) could have different stack traces. Therefore, thread names have
two base method calls. The following text describes these base method calls for the common thread names used for both the administratiave server and the managed
server. Two stack trace examples of base method calls are also provided:

Base method calls
Main or P=xx:O=0:CT

run ---> com.ibm.ejs.sm.server.AdminServer.main()❍

1.

ORB server listener thread (JavaIDL Listener or P=xx:O=0:LT=0:port=9000)

start ---> com.ibm.ejs.sm.server.AdminServer.main()❍

run ---> com.ibm.CORBA.iiop.ListenerThread.run()❍

2.

ORB server reader thread (JavaIDL Reader for hostname:port# or P=xx:O=0:StandardRT=0:LocalPort=port#:RemoteHost=hostname:RemotePort=port#:)

start ---> com.ibm.CORBA.iiop.ListenerThread.run()❍

run ---> com.ibm.CORBA.iiop.StandardReaderThread.run()❍

3.

ORB client reader thread (JavaIDL Reader for ipaddr:port# or P=xx:O=1:StandardRT=1:LocalPort=port#:RemoteHost=ipaddr:RemotePort=port#:)

start ---> com.ibm.ejs.sm.server.AdminServer.main()❍

run ---> com.ibm.CORBA.iiop.StandardReaderThread.run()❍

4.

Pooled ORB request dispatch WorkerThread

start ---> com.ibm.CORBA.iiop.StandardReaderThread.run()❍

run ---> com.ibm.ejs.oa.pool.ThreadPool$PooledThread.run()❍

5.

Worker#__

start ---> com.ibm.ejs.sm.server.AdminServer.main()❍

run ---> com.ibm.servlet.engine.oselistener.outofproc.OutOfProcThread$CtlRunnable.run() java.lang.Thread.run()❍

6.

Web server plug-in configuration thread

start ---> com.ibm.ejs.sm.server.AdminServer.main()❍

run ---> com.ibm.servlet.engine.oselistener.outofproc.OutOfProcThread$CtlRunnable.run() java.lang.Thread.run()❍

7.

Alarm manager

start ---> com.ibm.ejs.sm.server.AdminServer.main() <--AdminServer❍

com.ibm.ejs.oa.pool.ThreadPool$PooledThread.run() <--AppServer❍

run ---> com.ibm.ejs.util.am.AlarmManagerThread.run() java.lang.Thread.run()❍

8.

Alarm thread 1

start ---> com.ibm.ejs.util.am.AlarmManagerThread.run() java.lang.Thread.run() <--AdminServer❍

com.ibm.ejs.oa.pool.ThreadPool$PooledThread.run() <--AppServer❍

run ---> com.ibm.ejs.oa.pool.ThreadPool$PooledThread.run() <--AdminServer❍

com.ibm.ejs.util.am.AlarmThread.run() <--AppServer❍

9.

BackgroundLruEvictionStrategy

start ---> com.ibm.ejs.sm.server.AdminServer.main()❍

run ---> com.ibm.ejs.util.cache.BackgroundLruEvictionStrategy.run()❍

10.

RefreshThread

start ---> com.ibm.ejs.sm.server.AdminServer.main()❍

run ---> com.ibm.ejs.wlm.server.config.ServerGroupRefresh$RefreshThread.run()❍

11.

Examples

Thread dump of a standard reader thread:

"P=863240:O=1:StandardRT=16:LocalPort=10502:RemoteHost=gofast:RemotePort=2619:"
(TID:0x11ccef0, sys_thread_t:0xcdd81d0, state:R, native ID:0x128) prio=5
>at java.net.SocketInputStream.socketRead(Native Method)
at java.net.SocketInputStream.read(SocketInputStream.java(Compiled Code))
at com.ibm.rmi.iiop.Message.readFully(Message.java(Compiled Code))
at com.ibm.rmi.iiop.Message.createFromStream(Message.java:173)
at com.ibm.CORBA.iiop.IIOPConnection.createInputStream(Unknown Source)
at com.ibm.CORBA.iiop.StandardReaderThread.run(Unknown Source)

The base method, com.ibm.CORBA.iiop.StandardReaderThread.run(), is identified as the run base method for JavaIDL Reader for hostname:port# threads. Also,
the thread is waiting for input because it is in the java.net.SocketInputStream.socketRead() method.

Thread dump of a worker thread:

"Worker#49" (TID:0x10793660, sys_thread_t:0xab25b0, state:R, native ID:0x19a) prio=5
at com.ibm.servlet.engine.oselistener.outofproc.NativeServerQueueImp.nativeGetSeviceMessageId()
at com.ibm.servlet.engine.oselistener.outofproc.NativeServerQueueImp.getSeviceMessageId()
at
com.ibm.servlet.engine.oselistener.serverqueue.SQWrapperEventSource$SelectRunnable.getNewConnectionFromQueue()
at com.ibm.servlet.engine.oselistener.serverqueue.SQWrapperEventSource$SelectRunnable.run()
at com.ibm.servlet.engine.oselistener.outofproc.OutOfProcThread$CtlRunnable.run()
at java.lang.Thread.run()

The base method, java.lang.Thread.run(), is identified as the run base method for Worker#__ threads. Also, the thread is waiting for input from the Web server
plug-in (native code) because it is in the com.ibm.servlet.engine.oselistener.outofproc.NativeServerQueueImp.nativeGetSeviceMessageId() method.

Administrative Server Startup with Immediate Takedown Diagram

The following diagram has highlighted request flows that start with a SendReqXXX where XXX is the port number of the send request. The steps in the flow
changes between different threads. The sequence of the steps are identified with, for example, 1A,1B, 1C and 1D. It also shows how the port that the request is sent
to determines which thread the proccessing has completed.

Diagram Legend

In each diagram, every continuous line (-------) is a thread. The name of the thread always appears between (...). The letters in the diagram have the following
meanings:

C = Thread name changed to (.....)
S = Start method called on this thread
R = Run method called on this thread
W = Thread is in wait state waiting for notify
WM = Thread is waiting for message from plugin (Worker# threads only)
SendReq____ = Request sent to port number (____)
SendReply___ = Reply sent to port number (____)

For example:

C(P=479481:O=0:CT) = thread name is changed to P=479481:O=0:CT
R = thread is placed in a running state

Diagram

ORB 0 Threads(i.e. O=0)

main

|

|

C(P=479481:O=0:CT)

|

|S(JavaIDL Listener) R C(P=479481:O=0:LT=0:port=9000)

|---> | |

| S(JavaIDL Reader for rbostick:1294)

| |

| |

| R

| |

| |

| C(P=479481:O=0:StandardRT=0:LocalPort=9000:

| RemoteHost=rbostick:RemotePort=1294:)

| |

| 1B

| |S(Thread-1) R

SendReq9000(1A) |-1C--------------------->

| |

| 2B

| |S(Thread-2) R

SednReq9000(2A) |-2C--------------------->

| |

| 5B

| |

| |

| |

| V

|

|S(JavaIDL Reader for 9.27.63.245:9000) R C(P=479481:O=1:StandardRT=1:LocalPort=1294:

| RemoteHost=9.27.63.245:RemotePort=9000:)

|------1D--2D--5D---> |

|

|

|

|

|

|

|

|

|

|

|

V

ORB 1 Threads (i.e. O=1)

|

|

|

|S(JavaIDL Listener) R C(P=479481:O=1:LT=1:port=1295)

|--> |

|

|

|

|

|S(JavaIDL Listener) R C(P=479481:O=1:LT=2:port=1296)

|-->

| |

| S(JavaIDL Reader for rbostick:1299)

| |

| R

| |

| C(P=479481:O=1:StandardRT=5:LocalPort=1296:

| RemoteHost=rbostick:RemotePort=1299:)

| |

| 6B

| |

| V

|

|

|

|S(JavaIDL Reader for 9.27.63.245:1299) R C(P=479481:O=1:StandardRT=4:LocalPort=1299:

| RemoteHost=9.27.63.245:RemotePort=1296:)

|------6D--->

|

|

|

|S(JavaIDL Listener) R C(P=479481:O=1:LT=3:port=900)

|--> | |

| S(JavaIDL Reader for rbostick:1297)

| |

| R

| |

| C(P=479481:O=1:StandardRT=3:LocalPort=900

| :RemoteHost=rbostick:RemotePort=1297:)

| |

| 3B

| |

| 4B

| |

| V

|

|

|S(JavaIDL Reader for 9.27.63.245:900) R C(P=479481:O=1:StandardRT=2:LocalPort=1297:

| RemoteHost=9.27.63.245:RemotePort=900:)

|-----3D--4D--->

|

|

|

SendReq900(3A)

|

SendReq900(4A)

|

SendReq9000(5A)

|

SendReq1296(6A)

|

SednReq1296(7A)

|

Other Threads

|

|

|

|

|

|S(Pooled ORB request dispatch WorkerThread) W R

|------3C--5C--->

|

|

|

|S(Pooled ORB request dispatch WorkerThread) W R |------4C--6C--->

|

|

|

|

|S(Alarm Manager) R

|--->

| S(Alarm Thread 1)

| |

| R

| |

| V

|

|S(Thread-3) R

|-->

|

|

|S(Thread-4) R

|-->

| | | | | |

| S(Thread-8) S(Thread-9) S(Thread-10) S(Thread-11) S(Thread-12) | | | | | |

| R R R R R

| | | | | |

| V V V V V

|

|

|S(Worker#0) R S(Worker#0) R

|-->

|

|

|S(WebServer-Plugin-Cfg-Thread) R

|-->

|

|S(BackgroundLruEvictionStrategy) R

|-->

|

|S(RefreshThread) R

|--->

V

Thread-1(2) (worker threads)

start ---> com.ibm.CORBA.iiop.StandardReaderThread.run()run ---> com.ibm.CORBA.iiop.WorkerThread.run()●

Thread-3 (transaction timeout)

start ---> com.ibm.ejs.sm.server.AdminServer.main()●

run ---> com.ibm.ejs.jts.tran.JavaClock.run()●

Thread-4 (used for administrative server takedown)

start ---> com.ibm.ejs.sm.server.AdminServer.main()●

run ---> com.ibm.ejs.sm.server.ManagedServer$DiagonisticThread.run()●

Thread-8,9,10,11,12 (threads for takedown process)

start ---> com.ibm.ejs.sm.server.ManagedServer$DiagonisticThread.run()●

run ---> com.ibm.ejs.sm.util.task.AsyncTaskEngine$WorkerThread.run()●

Note: Thread-x are default names of threads. The above numbers may be different depending on the system that the administratiave server runs on.

Managed Server Startup with Servlet Traffic Diagram

The Worker#_threads are the threads on which servlet requests are processed. The threads start during the managed server startup and wait on input from the Web
server plug-in interface.

main

|

|

C(P=905990:O=0:CT)

|

|

|S(Thread-0) R

|--->

|

|

|S(Pooled ORB request dispatch WorkerThread) W R

|-->

| | | | | | | |

| S | | S(Worker#0)S(Worker#1).......S(Worker#24) S(Thread-6) (BackgroundLruEvictionStrategy) | | | |

| | | R WM WM WM R

| R | | | | | |

| | S(AlarmManager) | S(Worker#0) | Servlet |

| | | | | | Request |

| | | S(pluginRegenScheduler) | | | |

| | R | WM | WM |

| | | V V V V V

| | |

| | |

| V |S(AlarmThread1) R

| |---------------------------->

| V

|

|

|S(Pooled ORB request dispatch WorkerThread) W R W |-->

|

|S(Thread-1) R

|-->

|

|

|

|S(Thread-3) R

|-->

|

|

|

|

ORB 0 Threads (i.e. O=0)

|

|S(JavaIDL Reader for 9.27.63.129:9000) R C(P=905990:O=0:StandardRT=0:LocalPort=1480:

| RemoteHost=9.27.63.129:RemotePort=9000:

|-->

|

|

|

|S(JavaIDL Listener) R C(P=905990:O=0:LT=0:port=1481)

|--->

|

|

|S(JavaIDL Reader for 9.27.63.129:1434) R C(P=905990:O=0:StandardRT=1:LocalPort=1482:

| RemoteHost=9.27.63.129:RemotePort=1434:)

|--->

|

|

|

|

|S(JavaIDL Reader for 9.27.63.129:900) R C(P=905990:O=0:StandardRT=2:LocalPort=1483:

| RemoteHost=9.27.63.129:RemotePort=900:)

|--->

|

|

|

|S(JavaIDL Reader for 9.27.63.129:1433) R C(P=905990:O=0:StandardRT=3:LocalPort=1484:

| RemoteHost=9.27.63.129:RemotePort=1433:)

|--->

|

|

|

|

|S(JavaIDL Listener) R C(P=905990:O=0:LT=1:port=1485)

|-->

| |

| S(JavaIDL Reader for rbostick:1487)

| |

| R

| |

| C(P=905990:O=0:StandardRT=4:LocalPort=1485:

| RemoteHost=rbostick:RemotePort=1487:)

| |

| |

| V

V

Thread-0 (transaction timeout)

start ---> com.ibm.ejs.sm.server.ManagedServer.main()●

run ---> com.ibm.ejs.jts.tran.JavaClock.run()●

Thread-1 (Used for logging messages)

start ---> com.ibm.ejs.sm.server.ManagedServer.main()●

run ---> com.ibm.ejs.sm.server.SeriousEventListener$DeliveryThread.run()●

Thread-3

>

start ---> com.ibm.ejs.sm.server.ManagedServer.main()●

run ---> com.ibm.ejs.sm.server.ManagedServer.main()●

Thread-6 (administrative server ping)

start ---> com.ibm.ejs.oa.pool.ThreadPool$PooledThread.run()●

run ---> com.ibm.ejs.sm.server.ManagedServer$PingThread.run()●

Note: Thread-x are default names of threads. The above numbers may be different depending on the system the managed server runs on.

Summary

In multi-processing and multi-thread environments, problem determination can require analysis of actively running threads. This thread information can be obtained
with system thread dumps and Java thread dumps. When doing problem determination in a WebSphere Application Server environment, Java thread dumps provide
much more information and are recommended. However, sometimes system thread dumps are the only information obtained and should be interrogated.

When dealing with thread deadlock problems, Java thread dumps can be forced using kill -3 on Unixplatforms and DrAdmin on all platforms.

The output of these commands provides thread information necessary to diagnose the problem.

8.10: Applying e-fixes

E-fixes are individual fixes for critical problems. They have been individually
tested,but not integration tested and should only be applied if you have a critical
problem without a valid workaround. They may be applied to both versions of
WebSphere, except where specifically noted. All e-fixes are rolled into the next
scheduled FixPack. Each fix has a readme file with installation instructions.

To learn about the fixes made available since the last FixPack, see the FixPacks and
E-fixes website.

http://www-4.ibm.com/software/webservers/appserv/efix.html
http://www-4.ibm.com/software/webservers/appserv/efix.html

8.11: Resource reference

Use these links to learn about other performance tools and techniques.

● 9.1: Tuning the product

http://squidward/0901.html

8.12: Various problem determination topics

This section will provide information about various problem determination topics.

8.13: Problem determination hints and tips

When you encounter an error or problem with WebSphere Application Server, you can
followthe Hints and Tips to help you quickly gather relevant data to diagnose the
problem.

The referenced link provides access to the WebSphere Application Server Standardand
Advanced technotes. To view version 3.5 specific technotes:

Go to the navigation frame located on the left.1.

Enter 3.5 in the search box.2.

Select Just this category from the pull-down menu.3.

Press Go.4.

The V3.5 technotes appear in the same window.5.

http://www-1.ibm.com/servlet/support/manager?rt=3&rs=0&navkey=1ByProduct&path=Product+Group%3DSoftware%00Product+Family%3DWeb+Application+Servers%00Product+Type%3DWebSphere+Application+Server%00category%3DHints+and+tips

8.14: How to report a problem to IBM

Use the information in this section to help you report a problem to IBM.

Before reporting problems to IBM, please review the known problems in the Release
Notes,Hints and Tips, FAQ's, and other resources on the support website. If you find
that the problem is not a known defect, then report the problem to IBM.

There are a variety of ways to report your problem to IBM:

Phone●

Fax●

Internet●

If you need assistance with problems, you are required to purchase technical support.
You can select the exact mix of services to fit your specific business needs. IBM
Software Support is delivered in a consistent manner for all IBM software products
based upon the way in which a product is charged (one time charge or monthly license
charge basis).

You can report suspected defects via fax, mail or electronically until the product's
service expiration date. This free service is called Warranty/Defect Support. For
information on reporting suspected defects, call 1-800-237-5511 in theUnited States
and Puerto Rico. In Canada, call 1-800-465-9600. Telephone numbers for countries
outside North Americaare also available. The service expiration date is defined in your
License Information booklet under Program Services.

What to provide when reporting problems

You will need the following information available when reporting a problem to IBM:

The product name and version number●

The kind of hardware and software you are using●

What happened and what you were doing when the problem occurred●

Whether you tried to solve the problem and how●

The exact wording of any messages displayed●

After you have reported a problem to IBM support using any of the methods above,
especially by phone, you might want to provide relevant logs, traces or files. You can
also send an ASCII text description of the problem in your own words. Send logs and
text files together in a zip file for ease of transfer.

Follow these steps to send files to IBM:

http://www-4.ibm.com/software/webservers/appserv/support.html
http://ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.html
http://ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.html

Note the problem record number assigned to you by IBM support.1.

FTP testcase.software.ibm.com2.

Login: anonymous3.

Password: [your email id]4.

Change directory: cd /ps/toibm/internet5.

Make a directory: mkdir pmrnumber [use your problem number, for example,
pmr89401]

6.

Put [filename]7.

Call IBM Support back and ask that it be noted in your problem record that files
are available on the testcase ftp server. Give the path to the files. Files will
remain available on the testcase ftp server for 72 hours and will then be deleted.

8.

Technical support by phone

If you are a licensed customer in the U.S. or Puerto Rico who has a support contract
and youneed support, please call IBM Support at 1-800-237-5511. In Canada, call
1-800-IBM-SERV (1-800-426-7378). Telephonenumbers for countries outside North
America are also available.

If you are a licensed customer and wish to purchase support, you may contact IBM or
yourIBM authorized business partner.

If you have an IBM customer number, call 1-888-426-4343 Monday - Friday 8:00 a.m.
to 7:00 p.m. Eastern Standard Time.
In Canada, call 1-800-465-9600 Monday - Friday 8:00 a.m. to 5:00 p.m. Central
Standard Time.

If you do not have an IBM customer number, call 1-800-237-5511 Monday - Friday
8:00 a.m. to 5:00 p.m. Central Standard Time.
In Canada, call 1-800-465-9600 Monday - Friday 8:00 a.m. to 5:00 p.m. Central
Standard Time.

Technical support by fax

Contact us via the Faxback System: 1-800-426-4329.
Telephone numbers for countries outside North America are also available.

Technical support on the Internet

Online help is available through the IBM Support Line.Support Line is the service
offering through which IBM delivers electronic support for installation, usage,

http://ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.html
http://ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.html
http://ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.html
http://service.software.ibm.com/supportline.html

andcode-related questions. Electronic support is also available through Passport
Advantage's online incident report page. Solution developers can also receive online
help through the PartnerWorld for Developers.

Information on IBM SupportLine and IBM Services is available on the Internet at the
URL listed above. For IBM Lotus Passport Advantage customers, support information
is also available at this Internet site.

Note: Information may not apply to all products. Support information is subject to
change without notice.

http://www.developer.ibm.com/welcome/ebusiness/index.html

Contents

Figures

Tables

Using the JRas Message Logging and Trace Facility

Introduction

Overview of messages and trace❍

●

The WebSphere JRas programming model

Naming and managing loggers❍

Message and trace event types❍

●

Using JRas loggers

Creating resource bundles and message files❍

Creating manager and logger instances❍

Using loggers❍

●

http://squidward/atswpj05.html#Header_3

Introduction

The IBM(R) JRas toolkit is a set of Java(TM) packages that enablesdevelopers to
incorporate message logging and trace facilities into Javaapplications. Although JRas is
a standalone product, it has beencustomized for use with the Standard, Advanced, and
Enterprise (ComponentBroker) Editions of WebSphere(TM) Application Server. The
WebSphereimplementation of JRas integrates with the WebSphere run-time
environment andsystem-management utilities (for instance, Advanced
Edition'sAdministrative Console and Component Broker's System Manager).This
document discusses the WebSphere implementation of JRas and using it towrite
WebSphere applications that log and manage application-specific messagesand trace.
Use of the non-WebSphere implementation of JRas is notdiscussed in this document.

Note:
The non-WebSphere (base) implementation of JRas is not supported for use
withWebSphere Application Server. The use of JRas with WebSphere
issupported only with the WebSphere-specific JRas implementation and
programmingmodel discussed in this document.

Overview of messages and trace

Applications often need to provide information about their internaloperations to users,
system administrators, programmers, and other interestedparties. This information is
typically provided as text that can besent to a console or terminal, written to a log file,
directed to a standardoutput or error device, or all three. The JRas toolkit
dividesinformational text into the following two categories:

Messages, consisting of information about the application thatis brief, clear, and
meaningful to an end user. An example of a messageis a string indicating that the
application started successfully.Messages are generated by default; they are not
normallysuppressed. Messages can be localized; that is, the messagecatalogs can
be translated into various national language versions, andmessages can be
displayed in the user's preferred language.

●

Trace, consisting of detailed technical information about thecurrent state of one
or more of the application's internal datastructures, including summaries of all
objects in those datastructures. Trace information is meant for use by developers
andsupport personnel when debugging applications; it is not generallyintended
for use by end users. An example of trace information is astring listing an error,
the time at which the error occurred, the thread inwhich the error occurred, the
method that was being executed when the erroroccurred, and a description of the
error. Trace information is notnormally generated by applications and is enabled
only to help resolvespecific problems, because the creation of trace information
consumes systemresources beyond the application's normal requirements. Trace
isnot localizable; that is, it cannot be translated into national languageversions.

●

The JRas packages implement objects called loggers,handlers, formatters, and
managers to providemessaging and trace capabilities. These objects are described in
thefollowing list.

Loggers are the primary objects with which the application codeinteracts.●

Handlers receive data that is to be logged from alogger.●

Formatters are objects invoked by handlers to formatdata.●

Managers provide methods to predefine and manage logger,handler, and
formatter configurations. These configurations can be keptin a persistent data
store. Using managers simplifies programming withJRas; when a manager is
used to obtain a logger, the manager retrievesthe logger's configuration data,
creates the logger and populates it withthe correct handlers, performs any other
needed tasks, and returns theconfigured logger to the caller. The Manager class
provided withWebSphere is WebSphere specific and cannot be used with generic
JRasimplementations. Using this class to create and manage WebSphere
JRasobjects ensures that all derived objects (loggers, handlers, and
formatters)conform to the requirements of the WebSphere JRas implementation.

●

To view message and trace text, you must read the appropriate logfiles. WebSphere
currently logs all messages to single-level logfiles; that is, application messages and
run-time messages are written tothe same log file. It is recommended that you monitor
the size of thelog files and increase the allowable size of the files depending on the
numberof messages written to the log. WebSphere also logs all trace events,whether
application trace or run-time trace, to the same trace logfile. All editions of WebSphere
Application Server provide facilitiesto view message and trace logs; see the
documentation for your edition ofWebSphere for more information.

The WebSphere JRas programming model

This section discusses the supported model for programming with JRas inWebSphere
Application Server.

In WebSphere, you create and manage JRas loggers and managers by using
theManager class of the com.ibm.websphere.raspackage. The Manager class provides
mechanisms to obtain JRas messageand trace loggers that are integrated with
WebSphere; it also providesthe ability to group trace loggers into logical groups. The
basicprocess for creating JRas objects is to retrieve a reference to the JRasmanager by
using the getManager method of thecom.ibm.websphere.ras.Manager class, then
toretrieve message and trace loggers by using methods on the returnedmanager. See
Creating manager and logger instances for sample code illustrating this process.

The retrieved loggers are implementations of the RASIMessageLogger
andRASITraceLogger interfaces. You then program to these interfaces, bothof which
are derived from the RASILogger interface. The loggers arestateful objects with their
states tied to an existing Java Virtual Machine(JVM) and run-time instance. These
interfaces are discussed in Using loggers.

Note:
Although loggers implement the Java java.io.Serializableinterface, they must not
be serialized.

Naming and managing loggers

This section discusses considerations for naming and managingloggers.

WebSphere JRas loggers have no predefined granularity or scope. Anapplication
consisting of many different classes can be instrumented by usinga single logger, can
be subdivided into several components with a logger foreach component, or can have a
logger for each class.

Loggers are named objects; the manager maintains a hierarchical namespace of
loggers, with separate name spaces for message loggers and traceloggers. For each
unique logger name, the logger instance is created onthe first request to the manager
and the same instance is returned onsubsequent calls. The following recommendations
apply to namingloggers:

To prevent name-space conflicts, it is recommended that a dot-separated,fully
qualified class name be used to name each logger.

●

It is recommended that the full logger name reflect the name of the classthat
retrieves the logger from the manager.

●

Application developers are responsible for ensuring that the logger namesused
by an application do not conflict with names in use by the WebSphere runtime;
using full logger names based on retrieval class namesautomatically provides
this assurance.

●

Because of potential name-space conflicts and limitations in the size ofthe name
space, it is recommended that any given class have no more than onemessage
logger or trace logger associated with it.

●

The name ORBRas is reserved for use by the WebSphere runtime. Do not use
this name in WebSphere applications that useJRas.

●

The WebSphere run time and system-management utilities enable you to enableand
disable trace at any level of the name-space hierarchy. Changingthe trace state at any
level of the hierarchy automatically makes the samestate change for all child levels. For
instance, enabling trace at themiddle level of a hierarchy automatically enables trace
for all levels belowthe middle level.

Trace loggers can be combined into logical sets called groups totrack events across
various components of an application. For example,if an application contains three
different components, you can create a groupthat includes trace loggers from each
component, thereby providing a way totrace the flow of a particular function across all
three components.Application developers must provide group names that are unique to
theapplication and that do not conflict with other group names in the name
space,including names used by the WebSphere run time.

JRas objects are managed by the WebSphere run time. When a logger iscreated, the
JRas manager queries the WebSphere system-management utility todetermine the
initial state for the logger's mask. The state ofthe mask is updated dynamically in
accordance with settings provided to thesystem-management utility. The default initial
states for the differenttypes of loggers are as follows:

For message loggers, the default initial state is always for logging to beenabled
to the logger's specified state. There is currently no wayto specify an initial state
of disabled. For a list of possible initialstates, see Table 1.

●

For trace loggers, the default initial state is for logging to bedisabled; however,
an initial state of enabled can be specified by usingthe appropriate WebSphere
system-management utility. The tracelogger's mask is set as specified in the
system-managementutility. For a list of possible initial states, see Table 2 and
Table 3. Some editions of WebSphereApplication Server enable you to change
the state of the mask dynamically byenabling tracing for one or more trace
loggers; refer to thedocumentation for your WebSphere system-management
utility for moreinformation.

All enabling and disabling of trace must be performed through theappropriate
WebSphere system-management utility.

●

Message and trace event types

This section discusses the message and trace types that are availablethrough the
WebSphere implementation of JRas. Message types areprovided by the
RASIMessageEvent interface, and trace types are provided bythe RASITraceEvent
interface.

Message types and usage

Message types are provided by the RASIMessageEvent interface. Typesinclude the
following:

TYPE_INFORMATIONAL for informational messages. This typecan be
abbreviated as TYPE_INFO.

●

TYPE_WARNING for warning messages. This type can beabbreviated as
TYPE_WARN.

●

TYPE_ERROR for error messages. This type can beabbreviated as TYPE_ERR.●

These types, which are provided by JRas, do not correspond exactly to themessage
types supported by the different editions of the WebSphere runtime. The following
table shows the mappings between the JRas messagetypes and their WebSphere
equivalents. Note that the Enterprise Editiontypes apply to Component Broker on
workstations.

Table 1. JRas message types and their WebSphere equivalents

JRas message type Equivalent WebSphere
Standard/Advanced
Edition type

Equivalent WebSphere
Enterprise Edition
(Component Broker
forworkstations) type

TYPE_INFO,
TYPE_INFORMATION

Audit Informational

TYPE_WARN,
TYPE_WARNING

Warning Warning

TYPE_ERR,
TYPE_ERROR

Error Error

Trace types and usage

Trace types are provided by the RASITraceEvent interface. Thisinterface defines two
sets of JRas trace types: a basic set of leveledtypes for simple trace implementations
and a more complex set of nonleveledtypes that can be logically combined to create
precise information about anygiven trace event. It is recommended that only one of

these sets beused in any given application.

The basic set of types consists of the TYPE_LEVEL1,TYPE_LEVEL2, and
TYPE_LEVEL3 trace levels. Theselevels are hierarchical; enabling a higher level of
trace automaticallyenables all levels beneath it (for instance, enabling
TYPE_LEVEL2automatically enables TYPE_LEVEL1).

The complex set of types consists of the following trace values:

TYPE_API

TYPE_CALLBACK

TYPE_ENTRY_EXIT

TYPE_ERROR_EXC

TYPE_MISC_DATA

TYPE_OBJ_CREATE

TYPE_OBJ_DELETE

TYPE_PRIVATE

TYPE_PUBLIC

TYPE_STATIC

TYPE_SVC

These values can be combined logically (that is, by using operators suchas AND, OR,
and NOR) to provide detailed information about any given traceevent.

As with the message types, the JRas trace types do not correspond exactlyto the types
used by the WebSphere run time. The following tables showthe mappings between the
JRas trace types and their WebSphereequivalents. Note that the WebSphere equivalents
apply to StandardEdition, Advanced Edition, and, for Enterprise Edition, Component
Broker onworkstations.

Table 2. Leveled JRas trace types and their WebSphere equivalents

JRas level event type WebSphere equivalent

TYPE_LEVEL1 Event

TYPE_LEVEL2 Entry/Exit

TYPE_LEVEL3 Debug

Table 3. Nonleveled JRas trace types and their WebSphere equivalents

JRas nonleveled event types WebSphere equivalent

TYPE_ERROR_EXC,
TYPE_OBJ_CREATE,TYPE_OBJ_DELETE,
TYPE_SVC

Event

TYPE_API,
TYPE_CALLBACK,TYPE_ENTRY_EXIT,
TYPE_PRIVATE,
TYPE_PUBLIC,TYPE_STATIC

Entry/Exit

TYPE_MISC_DATA Debug

Using JRas loggers

This section discusses how to use JRas loggers in WebSphereapplications. Creating
resource bundles and message files provides an overview of creating resourcebundles
to provide localized (translated) messages. Creating manager and logger instances
discusses how to obtain a JRas manager, and subsequently howto obtain message and
trace loggers. Using loggers describes the logger interfaces and shows how to usethem.

Creating resource bundles and message files

This section provides an overview of how to create resource bundles thatcan be translated to provide localized
messages in WebSphereapplications. The Java programming language provides thejava.util.ResourceBundle class
and its subclasses,java.util.ListResourceBundle andjava.util.PropertyResourceBundle, to enable national
languagesupport for applications. The ResourceBundle class is used inconjunction with the
java.text.MessageFormat class to providelocalized (translated) text support. See the Java documentation for afull
discussion of the ResourceBundle and MessageFormat classes.

ResourceBundle is a class that encapsulates the retrieval of text.Entries in a resource bundle consist of message keys
and their correspondingmessage text. When a resource bundle is translated, only the messagetext is translated into
the national language. The translated resourcebundles are packaged together and shipped with the application to
providelocalized messages.

This section discusses how to create resource bundles in the form of textproperties files that can be accessed by
PropertyResourceBundle. Youcan also create resource bundles by using a Java class that
extendsListResourceBundle. The class encapsulates the mapping of keys tovalues by using arrays. For information
on creating resource bundles byusing ListResourceBundle, see the Java documentation.

The simplest way to create a resource bundle is to create a text propertiesfile that lists message keys and the
corresponding messages. Theproperties file must have the following characteristics:

Each property in the file is terminated with a line-terminationcharacter.●

If a line contains only white space, or if the first non-white spacecharacter of the line is the symbol # (pound
sign) or !(exclamation mark), the line is ignored. The # and! characters can therefore be used to put
comments into thefile.

●

Each line in the file, unless it is a comment or consists only of whitespace, denotes a single property. A
backslash (\) is treatedas the line-continuation character.

●

The syntax for a property line consists of a key, a separator, and anelement. Valid separators include the equal
sign (=), colon(:), and white space ().

●

The key consists of all characters on the line from the first non-whitespace character to the first separator.
Separator characters can beincluded in the key by escaping them with a backslash (\), butdoing this is not
recommended, because escaping characters is error prone andconfusing. It is instead recommended that you
use a valid separatorcharacter that does not appear in any keys in the properties file.

●

White space after the key and separator is ignored until the firstnon-white space character is encountered. All
characters remainingbefore the line-termination character define the element.

●

See the Java documentation for the java.util.Propertiesclass for a full description of the syntax and construction of
propertiesfiles.

The following example shows a properties file namedDefaultMessages.properties.

Figure 1. Sample resource bundle

Contents of DefaultMessages.properties fileMSG_KEY_00=A message with no
substitution parameters.MSG_KEY_01=A message with one substitution parameter:
parm1={0}MSG_KEY_02=A message with two substitution parameters: parm1={0},
parm2={1}MSG_KEY_03=A message with three substitution parameters: parm1={0},
parm2={1}, \parm3={2}

This file can then be translated into localized versions of the file (forexample, DefaultMessages_de.properties for
German andDefaultMessages_ja.properties for Japanese). When the translatedresource bundles are available, they
are written to a system-managedpersistent storage medium. Resource bundles are then used to convertthe messages
into the requested national language and locale. When amessage logger is obtained from the JRas manager, it can be
configured with adefault resource bundle. At run time, the user's locale is used todetermine the properties file from
which to extract the message specified by amessage key, thus ensuring that the message is delivered in the

correctlanguage. If a default resource bundle is not specified, the msg methodof the RASIMessageLogger interface
can be used to specify a resource bundlename.

The application locates the resource bundle based on the file'slocation in the directory structure. For instance, if the
resourcebundle is located in thebaseDir/subDir1/subDir2/resources directory andbaseDir is in the classpath, the
namesubDir1.subDir2.resources.DefaultMessageis passed to the message logger to identify the resource bundle.

Creating manager and logger instances

This section provides sample code in which message loggers and traceloggers are obtained in the main method of a standalone
application. Toobtain a logger, you first obtain a manager by calling the getManager methodon the
com.ibm.websphere.ras.Manager class.You then obtain a message logger by calling createRASIMessageLogger on thereturned
manager object, or a trace logger by calling createRASITraceLogger onthe returned manager object. Figure 2 demonstrates
these methods.

Figure 2. Example code: Obtaining a manager, a message logger, and a trace logger

// Import the appropriate JRas and WebSphere packagesimport com.ibm.ras.*;import
com.ibm.websphere.ras.*;// Declare the logger attributes and a group name for trace
loggers. The storage// scope used here depends on the application.static
RASITraceLogger trcLogger = null;static RASIMessageLogger msgLogger = null;// Define
some convenience stringsstatic String svOrg = "My organization name";static String
svProd = "My product name";static String svComponent = "My component name";static
String svClassName = "Fully qualified class name";static java.lang.String groupName =
"MyProduct_someGroup";...public static void main(String[] argv){// Get a reference to
the Manager instance and create the loggers.// Because "Manager" is a common term,
fully qualify it to ensure we// get the right one.com.ibm.websphere.ras.Manager mgr =
com.ibm.websphere.ras.Manager.getManager();msgLogger =
mgr.createRASIMessageLogger(svOrg, svProd, svComponent, svClassName);trcLogger =
mgr.createRASITraceLogger(svOrg, svProd, svComponent, svClassName);// Configure the
message logger with the default resource
bundlemsgLogger.setMessageFile("subDir1.subDir2.resources.DefaultMessages");// Add
the trace logger to a groupmgr.addLoggerToGroup(trcLogger, groupName);}

Using loggers

This section discusses the use of JRas loggers in WebSphereapplications. Message and trace parameters discusses the message
and trace parameters usedwith JRas objects. The RASILogger interface discusses the RASILogger interface, The
RASIMessageLogger interface discusses the RASIMessageLogger interface,and The RASITraceLogger interface discusses the
RASITraceLogger interface. Figure 3 shows examples of using thesemethods.

Message and trace parameters

The JRas methods accept parameter types of Object, Object[], andException. The following is a list of parameter types and how
they arehandled by the WebSphere implementation of JRas.

Primitives--Primitive data types such as int and long arenot recognized as subclasses of the Object class and cannot be
directly passedto JRas methods. A primitive value must be transformed to its propertype (for instance, Integer or Long)
before being passed as aparameter.

●

Object--JRas methods accept members of the Objectclass; the toString method is called on the object and the
resultingString is returned. The toString method must therefore be implementedon Objects of traced classes.

●

Object[]--JRas methods accept members of the Object[]class when two or more Object parameters need to be passed to
themethod. The toString method is called on each Object in thearray. Nested arrays (that is, arrays with elements that are
alsoarrays) are not supported.

●

Throwable--JRas methods accept members of the Throwableclass, returning the stack trace of the Throwable object.●

Arrays of primitives--An array of primitives (for example,byte[] or int[]) is considered to be an Object by Java; however,
becauseof potentially inconsistent processing, it is recommended that members of thearray be converted to String and
then passed to the method. If suchconversion is not performed, the results are unpredictable.

●

The RASILogger interface

The RASILogger interface is the base interface for both theRASIMessageLogger and RASITraceLogger classes. This section
discussestopics that are common to both of these classes, including the isLoggable,getName and setName, and isSynchronous
and setSynchronous methods. See Figure 3 for examples of the classes and methods being used incontext.

The RASILogger interface provides the isLoggable method to determinewhether a logger is currently enabled to log a particular
event type.The event type to be checked is passed to the method. The definition isas follows:

public boolean isLoggable(long type);

where type is a valid message or trace type. See Message and trace event types for a discussion of message and trace types.

The getName and setName methods provide access to logger names.Because all loggers are assigned an unchangeable name by
the manager when theyare created, the setName method results in a null operation if used.The getName method can be used at
any time to retrieve a logger'sname. The definitions of these methods are as follows:

public String getName();public void setName (String name);

where name is the logger's name.

The isSynchronous and setSynchronous methods enable applications toconfigure loggers to perform synchronous or
asynchronous logging, assumingthat the logger can accept the configuration. The configuration is setby the WebSphere run
time, so the setSynchronous method is currentlyimplemented as a null operation. The definitions of these methods areas follows:

public boolean isSynchronous();public void setSynchronous(boolean flag);

where flag is a Boolean value indicating True (forsynchronous logging) or False (for asynchronous logging).

The RASIMessageLogger interface

The RASIMessageLogger interface provides methods that enable localizablemessage logging. These methods include
getMessageFile andsetMessageFile, message, msg, and textMessage. When an instance ofRASIMessageLogger is obtained from
the manager, you must provide nonnullstrings that specify the logger's organization name, product name, andcomponent
information. These strings are unchangeable for the lifetimeof the logger.

The logger interface includes support for an internal mask that identifieswhich categories of messages are to be logged and
which categories are to bedisregarded. The mask is set by the WebSphere run time when the loggeris created.

The getMessageFile method enables you to specify a resource bundle that thelogger uses to localize messages. If the name of
the resource bundle isnot specified, a default name is assumed. The setMessageFile enablesyou to configure the message logger

with a message file that is used by amessage logged by the message interface. There is no default value forthe message file; if
this value is not specified, using the messageinterface can have unpredictable results. See Creating resource bundles and
message files for information on resource bundles. The definitionsof the methods are as follows:

public String getMessageFile();public void setMessageFile(String file);

where file is the name of the resource bundle.

The message method provides flexible access to message strings. Thedefinition of the method is as follows:

public void message(long type, Object obj, String methodName, String key,Object
parameter);

where:

type is a valid message type. See Message and trace event types for a discussion of trace types.●

obj is a class name to be passed to the logger. You canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thethis object; in this case, the logger retrieves the class namefrom the this reference by
callingthis.getClass().getName().

●

methodName is a valid method name.●

key is the message key of the localizable message. Theresource bundle that was specified by the setMessageFile method
is used toretrieve the message text.

●

parameter represents an Object that is to be substitutedpositionally into the message text. More than one parametercan be
passed. See Message and trace parameters for more information.

●

The msg method also provides access to message strings; unlike themessage method, it enables you to specify the resource
bundle from whichmessage text is to be retrieved. The definition of the method is asfollows:

public void msg(long type, Object obj, String methodName, String key,String file,
Object parameter);

where:

type is a valid message type. See Message and trace event types for a discussion of message types.●

obj is a class name to be passed to the logger. You canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thethis object; in this case, the logger retrieves the class namefrom the this reference by
callingthis.getClass().getName().

●

methodName is a valid method name.●

key is the message key of the localizable message.●

file is the resource bundle to use when retrieving the messagetext.●

parameter represents an Object that is to be substitutedpositionally into the message text. More than one parametercan be
passed. See Message and trace parameters for more information.

●

The textMessage method enables applications to send text messages that arenot accessed from a resource bundle. This method is
intended for use indevelopment environments or environments in which localization support is notrequired. This method is not
intended to be used in productioncode. The definition of the method is as follows:

public void textMessage(long type, Object obj, String methodName,String text, Object
parameter);

where:

type is a valid message type. See Message and trace event types for a discussion of message types.●

obj is a class name to be passed to the logger. You canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thethis object; in this case, the logger retrieves the class namefrom the this reference by
callingthis.getClass().getName().

●

methodName is a valid method name.●

text is the message text. No resource bundle is accessedto provide the text, and the text cannot be localized.●

parameter represents an Object that is to be appended to themessage text. More than one parameter can be passed.See
Message and trace parameters for more information.

●

The RASITraceLogger interface

The RASITraceLogger interface provides methods that enable generic tracingmechanisms. These methods include entry, exit,
trace, andexception. When an instance of RASITraceLogger is obtained from themanager, you must provide nonnull strings that
specify the logger'sorganization name, product name, and component information. Thesestrings are unchangeable for the
lifetime of the logger.

The logger interface includes support for an internal mask that identifieswhich categories of trace events are to be logged and
which categories are tobe disregarded. The mask is set by the WebSphere run time when thelogger is created.

The entry method provides access to trace entry events. Thedefinition of the method is as follows:

public void entry(long type, Object obj, String methodName, Object parameter);

where:

type is a valid trace type. See Message and trace event types for a discussion of trace types.●

obj is a class name to be passed to the logger. You canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thethis object; in this case, the logger retrieves the class namefrom the this reference by
callingthis.getClass().getName().

●

methodName is a valid method name.●

parameter represents a parameter to be added to the tracetext. See Message and trace parameters for more information.●

The exit method provides access to trace exit events. The definitionof the method is as follows:

public void exit(long type, Object obj, String methodName, Object retValue);

where:

type is a valid trace type. See Message and trace event types for a discussion of trace types.●

obj is a class name to be passed to the logger. You canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thethis object; in this case, the logger retrieves the class namefrom the this reference by
callingthis.getClass().getName().

●

methodName is a valid method name.●

retValue is a return value for the event. See Message and trace parameters for more information.●

The trace method provides a way to write text strings as traceevents. The definition of the method is as follows:

public void trace(long type, Object obj, String methodName, String text,Object
parameter);

where:

type is a valid trace type. See Message and trace event types for a discussion of trace types.●

obj is a class name to be passed to the logger. You canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thethis object; in this case, the logger retrieves the class namefrom the this reference by
callingthis.getClass().getName().

●

methodName is a valid method name.●

text is a text string to be written to the trace eventrecord.●

parameter represents a parameter to be added to the tracetext. See Message and trace parameters for more information.●

The exception method provides access to exceptions. The definitionof the method is as follows:

public void exception(long type, Object obj, String methodName,Exception exc);

where:

type is a valid trace type. See Message and trace event types for a discussion of trace types.●

obj is a class name to be passed to the logger. You canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thethis object; in this case, the logger retrieves the class namefrom the this reference by
callingthis.getClass().getName().

●

methodName is a valid method name.●

exc is an exception whose stack trace is to be written to thetrace event record.●

Figure 3 shows an example of using a message logger and a tracelogger.

Figure 3. Example code: Using a message logger and a trace logger

private void methodX(int x, String y, Foo z){// Trace an entry point. Use the guard
to ensure tracing is enabled. Do this// checking before we waste cycles gathering
parameters to be traced.if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {//
Because we want to trace three parameters, package them into an Object[]Object[]
parms = {new Integer(x), y, z};trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT, this,
"methodX", parms);} // ...additional logic here... // A debug or verbose trace
pointif (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA))
{trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA, this, "methodX", "reached here");} //
... // Call methodY on Foo. Assume that Foo is provided by another vendor or user.//
This method throws no Exceptions, so any run-time exceptions such as a//
NullPointerException coming out of it must be logged as errors.// Although it is not
good practice to put stack traces into message,// it is not explicitly prohibited.try
{z.methodY(...);}catch (Throwable t) {msgLogger.message(RASIMessageEvent.TYPE_ERR,
this, "methodX", "MSG_KEY_01", t);}// ... // Another classification of trace event.
An important state change was// detected, so a different trace type is used.if
(trcLogger.isLoggable(RASITraceEvent.TYPE_SVC))
{trcLogger.trace(RASITraceEvent.TYPE_SVC, this, "methodX", "an important event");} //
... // Ready to exit method, trace. No return value to trace.if
(trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT))
{trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX");} }

Figures

Sample resource bundle1.

Example code: Obtaining a manager, a message logger, and a trace logger2.

Example code: Using a message logger and a trace logger3.

Tables

JRas message types and their WebSphere equivalents1.

Leveled JRas trace types and their WebSphere equivalents2.

Nonleveled JRas trace types and their WebSphere equivalents3.

First Edition (March 2001)

This softcopy version is based on the printed edition of this book.Some formatting
amendments have been made to make this information moresuitable for softcopy.

Order publications through your IBM representative or through the IBMbranch office
serving your locality.

© Copyright International Business Machines Corporation 2001. All rights
reserved.
Note to U.S. Government Users -- Documentation related to restricted rights -- Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
contract with IBM Corp.

Contents

Figures

Tables

Using the Performance Monitoring Infrastructure Client Package

Introduction

PMI organization and implementation❍

●

PMI client interfaces

Data organization and hierarchy❍

PMI interfaces❍

●

Using the PMI client interfaces●

http://squidward/atswpm05.html#Header_3

Introduction

The Performance Monitoring Infrastructure (PMI) is a set of packages andlibraries
designed to assist with gathering, delivering, processing, anddisplaying performance
data in WebSphere Application Server Advanced Editiondomains. This document
discusses the client packages of the PMIapplication programming interface (API) and
describes how to use them to writeWebSphere Application Server clients that collect
and display performance datafrom servers.

PMI organization and implementation

PMI follows a client/server architecture. In PMI terms, a server isany application that uses the
PMI API to collect performance data;servers can include application servers, HTTP servers, and
Javaapplications. WebSphere Application Server provides a server namedPerfServer that is
responsible for retrieving performance data from otherservers in the domain and making the data
available to interested clients, asshown in Figure 1. A client is an application that receives
performancedata from a server or servers and processes the data; clients can includegraphical
user interfaces (GUIs) that display performance data in real time,applications that monitor
performance data and trigger different eventsaccording to the current values of the data, or any
other application thatneeds to receive and process performance data.

Figure 1. The role of PerfServer in collecting and distributing performance data

Each piece of performance data has two components, a static component and adynamic
component. The static component consists of a name and an ID toidentify the data, as well as
other descriptive attributes that assist theclient in processing and displaying the data. The
dynamic componentconsists of information that changes over time, such as the current value of
acounter and the time stamp associated with that value.

Performance data is classified into the following four types:

Numeric data, consisting of a single numeric value such as aninteger, a long, or a double.
It is used to represent data such ascounts and sizes.

●

Statistical data on a sample space. It consists of thenumber of elements in the sample set,
the sum of the elements, and the sum ofsquares. These values can be used to obtain the
mean, the variance, andthe standard deviation of the mean. An example of statistical data

●

isthe response time for each invocation of an enterprise bean.

Load data, which monitors a value as a function of time.Example uses include tracking the
number of threads or the number of servicerequests in a queue. Load data tracks the
current value, the time thevalue was reached, and the integral over time of the value.
Thesevalues can be used to obtain the weighted average for the level over a periodof time.
An example of load data is the average size of a databaseconnection pool during a
specified time interval.

●

Group data is a collection of performance data intended to beused by groups. It enables
servers to create sets of performance datathat can be retrieved by clients with a single call.

●

Data is organized by modules; each module has a configuration file inextensible markup
language (XML) format that determines itsorganization. The configuration file lists a unique
identifier for eachpiece of performance data in the module. A client can use thedata's unique ID
to retrieve the data's static information; theserver then sends the dynamic information associated
with that data to theclient. A server can track many instances of each type of
performancedata--for example, a number of pieces of performance data tracking theaverage
response time of bean methods. In this case, each piece ofperformance data shares the same ID,
and the server sends additionalidentifying information (for example, the bean's home name)
along withthe performance data so that clients can distinguish among the differentinstances.

PMI interfaces with WebSphere administration utilities to enableadministrators to control the
amount and level of performance datacollected. You can access the PMI administrative interface
by using theAdministrative Console.

PMI client interfaces

This section discusses PMI's client implementation, including theorganization of data
sent to clients and the interfaces clients use toretrieve and process performance data
from servers. Performance dataused by PMI's client implementation is referred to as
clientperformance data (CPD).

Data organization and hierarchy

PMI data is provided to clients in a hierarchical structure. TheCpdSnapshot object is
the root of the hierarchy. Descending from theCpdSnapshot object are node
information, server information, moduleinformation, and PerfCollection and CpdData
objects. See Figure 2 for a diagram of the data hierarchy. Note that
thenode-information and server-information objects contain no performancedata.

Figure 2. Organization of PMI data

Organization
of PMI data

Each time a client retrieves performance data from a server, the data isreturned in a
subset of this structure; the form of the subset depends onthe data that is retrieved. You
can update the entire structure withnew data or update only part of the tree, as needed.

PMI interfaces

The PMI PerfServer exports the CpdCollection, CpdData, and CpdValueinterfaces to provide performance data to interested
clients. The PMIAPI provides the PmiClient interface to enable clients to receive performancedata from servers. For details on
these interfaces, see The CpdCollection interface, The CpdData and CpdValue objects, and The PmiClient class. In addition,
PMIprovides the CpdEventListener and CpdEvent interfaces to enable clients toregister as listeners, and thus to be informed
when new or changed data isavailable at the server; see The CpdEventListener and CpdEvent interfaces for details. Finally, PMI
provides the CpdFamilyclass to assist with displaying data in table form; see The CpdFamily class for details.

The CpdCollection interface

The CpdCollection interface is the base interface to PMI. Itorganizes performance data in the hierarchy described in Data
organization and hierarchy. Each member of the hierarchy is an instance ofCpdCollection that contains a number of data
members and a number ofCpdCollection children.

The CpdCollection interface extends two other PMI interfaces, CpdXML andCpdEventSender. These interfaces are defined as
follows:

Figure 3. Definitions of the CpdCollection, CpdXML, and CpdEventSender interfaces

public interface CpdCollection extends Serializable, CpdXML, CpdEventSender {
public PerfDescriptor getPerfDescriptor(); public String getDescription();
public int numDataMembers(); public CpdData[] dataMembers(); public CpdData
getData(int index); public int numSubcollection(); public CpdCollection[]
subcollections(); public CpdCollection getSubcollection(int i); public
CpdCollection findCollection(PerfDescriptor pd); public void
addSubcollection(CpdCollection col); public CpdCollection getParent(); public
void update(CpdCollection other); public CpdCollection reset();} public interface
CpdXML { public String toXML(); public void fromXML(String xmlStr);} public
interface CpdEventSender extends Cloneable { public void
addCpdEventListener(CpdEventListener al); public void
removeCpdEventListener(CpdEventListener al); public void notifyListeners(CpdEvent
evt); public void notifyListeners(int evt_type);}

The update method updates collections of data. To illustrate thefunctionality of this method, assume that
thecollection1.update(collection2) statement is used to updatea data collection named collection1 with the
data in a collectionnamed collection2. In this case, the update method works asfollows:

If collection1 and collection2 represent the samecollection (that is, if they are instances of the same
PerfDescriptor object,with collection2 representing a more recent version of thePerfDescriptor object than
collection1), the update method performsthe following tasks:

If any member of collection2 does not have a correspondingmember in collection1, the update method
creates a child collectionof collection1 that contains the member fromcollection2.

❍

For each member of collection2 that has a corresponding memberin collection1, the update method
updates the member incollection1 with the corresponding data incollection2.

❍

The update method then returns a value of true to thecaller.

●

If collection1 and collection2 do not represent thesame collection, the update method performs the following
tasks:

For any member of collection1 that has a corresponding memberin collection2, the update method
updates the member incollection1 with the corresponding data incollection2.

❍

If collection2 is a descendant of collection1, theupdate method creates a child collection of
collection1 and updateseach member of the child collection with the corresponding data incollection2.

❍

If neither of these conditions is met, the update method returns a valueof false.

●

The PerfDescriptor interface is used to specify the data that the client isinterested in. It includes methods that return node name,
server name,module name, collection name, and full name. Its definition is asfollows:

Figure 4. Definition of the PerfDescriptor interface

public interface PerfDescriptor extends Serializable { public int getType(); //
Types include node, server, module, instance, // and data public String
getNodeName(); public String getServerName(); public String getModuleName();
public String getName(); // Returns node, server, module, instance, // or
data name, depending on type public String getFullName(); // Returns a name in
the following form: // node.server.module.instance.data public String[]
getPath(); public boolean equals(PerfDescriptor pd); public boolean
isDescendingFrom(PerfDescriptor pd); public int[] getDataIds(); // Returns all
data IDs (null, one, or multiple) // in the descriptor}

The PerfDescriptorList class is used to gather data from multiplePerfDescriptor instances. It includes methods to add, remove,
and getPerfDescriptor instances. Its definition is as follows:

Figure 5. Definition of the PerfDescriptorList interface

public class PerfDescriptorList { public boolean addDescriptor(PerfDescriptor
pd); // If pd is not in the // list, add it and return true; otherwise,
return false public boolean removeDescriptor(PerfDescriptor pd); // If pd is in
the // list, remove it and return true; otherwise, return false public
int numDescriptors(); // Return the number of PerfDescriptor // instances in
the list public PerfDescriptor[] getDescriptors(); // Return all PerfDescriptors
// in an array}

The CpdData and CpdValue objects

The CpdData object is the lowest level in the CPD hierarchy. EachCpdData instance contains all the static information for the
performance dataas well as a getValue method to return the data's dynamic information inthe form of an instance of the
CpdValue object. The CpdData interfaceprovides an update method to take a reference to a new version of a piece ofdata and
update the current object with the new value. The value isupdated only if the new data has the same name as the original
object.The CpdData interface also includes an addListener interface to enable dataobjects to register as event listeners; see The
CpdEventListener and CpdEvent interfaces for details. The CpdData interface extends the CpdXMLand CpdEventSender
interfaces, which are shown in Figure 3.

The definition of CpdData is as follows:

Figure 6. Definition of the CpdData interface

public interface CpdData extends Serializable, CpdXML, CpdEventSender { public
PerfDescriptor getDescriptor(); public String getDescription(); public void
setValue(CpdValue value); public void update(CpdData other); public CpdValue
getValue(); public Object getParent(); public void setParent(Object parent);
public boolean reset();}

A variety of data types extend the CpdValue interface. The interfaceprovides the getValue, getTime, delta, and rate methods to
work with datavalues. The definition of CpdValue is as follows:

Figure 7. Definition of the CpdValue interface

public inteface CpdValue extends Serializable, Cloneable { public int getType();
public long getTime(); public double getValue(); public CpdValue
delta(CpdValue prev); // return the difference public CpdValue rate(CpdValue
prev); // return the rate of the difference public void combine(CpdValue other);
// add another value to this value public Object clone();}

Each client value type extends the CpdValue interface. The specifictypes are listed in Table 1.

Table 1. CpdValue types and associated methods

Type Method Description

CpdInt int intValue() Value as an int

CpdLong long longValue() Value as a long

CpdDouble double doubleValue() Value as a double

CpdStatData double mean() Mean of the sample set

int count() Element count

double sumsquares() Sum of squares of the
elements

double variance() Variance

double standardDeviation() Standard deviation

double confidence(int level) Confidence interval of the
mean

CpdLoad double mean() Time-weighted average
value

double getCurrentValue() Last data point

long getWeight() Measured time period

The getValue method retrieves the value and, if possible, converts it to adouble value. If it cannot make the conversion, it
returnsDouble.NaN. The values returned by getValue can beused for displaying and graphing data.

The getTime method returns the server time associated with the data.

The delta method takes the current value and a previous value of a piece ofdata, and returns an object that represents the change
between thevalues. The delta method also returns a deltaTime value, whichrepresents the time associated with the delta value
and the current value ofthe data. The delta method is defined for all objects listed in Table 1. For CpdStatData, the delta between
two valuesprovides the statistics on all members of the current sample set, not onmembers of any previous set. The delta method
is also defined forgroups. For two groups, g1 and g2, the objectreturned by the statement g1.delta(g2) is a group
whosemembers include all members common to both g1 andg2. For each member m1 of group g1with a corresponding value
of m2 in g2, thecorresponding delta value is represented bym1.delta(m2).

The rate method returns the rate of change. This method is definedfor the CpdInt, CpdLong, and CpdDouble types. If the rate
cannot becalculated (for instance, if the method is used with the CpdStatData orCpdLoad types), the original value is returned.

For the CpdLoad object, the mean method returns the time-weighted averageof the value being tracked. It is computed by
dividing the integralvalue by the delta time. If the delta time is 0 (zero), the differencebetween the object's current time and its
creation time is used.

The PmiClient class

The PmiClient class is used by clients to access performance data.It looks up session beans and invokes remote APIs, thus
freeing the programmerfrom having to implement these tasks manually. A client can create aninstance of PmiClient and call all
subsequent methods on that object.The PmiClient object converts wire-level data to a client-side data collectionhierarchy and
exports methods for clients to create PerfDescriptor objects ifthe objects' names are known. If you know the static names for
thenode, server, module, instance, or data, you can callpmiClient.createPerfDescriptor to obtain the PerfDescriptor.Otherwise,
you can get the names by issuing the listNodes, listServers, andlistMembers methods on PmiClient.

The definition of PmiClient is as follows:

Figure 8. Definition of the PmiClient class

public class PmiClient { // Constructor: Look up a PerfRetrieve session bean home
and // create a bean object. Do all initialization (for example, // get
all configuration files). // Default hostName is localhost; default port is
900 // Default JNDI name for perfRetrieveHome is "PerfRetrieveHome"
PmiClient(); PmiClient(String hostName); PmiClient(String hostName, String
port); PmiClient(String hostName, String port, String perfRetrieveHome); //
The top-level collection of the data hierarchy. CpdCollection
createRootCollection(); // The following methods serve as wrappers for the
remote // methods in PerfRetrieve so that users do not need to // deal with
remote APIs or wire-level data. // List all nodes in the domain, then call
// PerfDescriptorInstance.getName() to get the node names. PerfDescriptor[]
listNodes(); // List all servers in a node; pd is the one returned from //
listNodes. Call PerfDescriptorInstance.getName() to get // the server names.
PerfDescriptor[] listServers(String nodeName); PerfDescriptor[]
listServers(PerfDescriptor pd); // List the members in a server. The returned
PerfDescriptor // can be passed to the next listMembers call until it //
returns null (that is, when the leaf node is reached). PerfDescriptor[]
listMembers(PerfDescriptor pd); // Get module configuration, which contains all
the static // information for the data. PmiModuleConfig[] getConfigs();
PmiModuleConfig[] getConfigs(String nodeName); PmiModuleConfig getConfig(String
moduleID); // Retrieve performance data. The following modes are available:
// - Single pd versus an array of pds // - With or without time interval // -
Recursive versus nonrecursive (recursive retrieves data // for each subgroup
instead of aggregate data) CpdCollection get(PerfDescriptor pd, boolean
recursive); CpdCollection get(PerfDescriptor pd, boolean recursive, int time);
CpdCollection[] gets(PerfDescriptorList pds, boolean recursive); CpdCollection[]
gets(PerfDescriptorList pds, boolean recursive, int time);

 // Retrieve performance data in XML format String getXML(PerfDescriptor pd,
boolean recursive); String getXML(PerfDescriptor pd, boolean recursive, int
time); String getXML(PerfDescriptorList pds, boolean recursive); String
getXML(PerfDescriptorList pds, boolean recursive, int time); // Convert
data ID and name public static String getDataName(String moduleID, int dataId);
public static int getDataId(String moduleID, String name); // Methods to create
a PerfDescriptor, used when you know // static names public PerfDescriptor
createPerfDescriptor(){ public PerfDescriptor createPerfDescriptor(String[]
dataPath); public PerfDescriptor createPerfDescriptor(String[] dataPath,
int dataId); public PerfDescriptor createPerfDescriptor(String[] dataPath,
int[] dataIds); public PerfDescriptor createPerfDescriptor(PerfDescriptor parent,
String name); public PerfDescriptor createPerfDescriptor(PerfDescriptor parent,
int dataId); public PerfDescriptor createPerfDescriptor(PerfDescriptor parent,
int[] dataIds); }}

The CpdEventListener and CpdEvent interfaces

The PMI client package provides event and listener interfaces to informclients (for instance, a GUI display) when new or
changed data isavailable. The CpdEventObject interface, which extendsjava.util.EventObject, is the parent to the PMI event
andlistener interfaces. The CpdEventListener interface, which extendsCpdEventObject, is the interface that objects need to
implement to receiveperformance data events. Objects can use the addListener method toregister as event listeners. The
definition of the method is asfollows:

void addListener(CpdEventListener listener);

The definitions of the CpdEventListener and CpdEvent interfaces are asfollows:

Figure 9. Definitions of the CpdEventListener and CpdEvent interfaces

public interface CpdEventListener { public void CpdEventPerformed(CpdEvent evt);}
public class CpdEvent { final static int EVENT_NEW_MEMBER = 0; final static
int EVENT_NEW_SUBCOLLECTION = 1; final static int EVENT_NEW_DATA = 2;
private int type; private Object source = null; public CpdEvent(Object
source, int type); public CpdEvent(int type); public Object getSource();
public int getType();}

The CpdFamily class

The PMI client provides the CpdFamily class to simplify displaying data ina table. When two data objects have the same
module identifier, theyare in the same family and can be displayed in the same table by using thisclass. The definition of
CpdFamily is as follows:

Figure 10. Definition of the CpdFamily class

public class CpdFamily { static public boolean isSameFamily(CpdData d1, CpdData
d2); static public boolean isSameRow(CpdData d1, CpdData d2); static public
boolean isSameColumn(CpdData d1, CpdData d2); static public boolean
getRow(CpdData d1); static public boolean getColumn(CpdData d1); static
public boolean getFamilyName(CpdData d1);}

Using the PMI client interfaces

This section discusses the use of the PMI client interfaces inapplications. The basic programming model is as follows:

A client uses the CpdCollection interface to retrieve an initialcollection, or snapshot, of performance data from the server.
Thissnapshot, which is called Snapshot in this example, is provided ina hierarchical structure as described in Data
organization and hierarchy, and contains the current values of all performance datacollected by the server. The snapshot
maintains the same structurethroughout the lifetime of the CpdCollection instance.

1.

The client processes and displays the data asspecified. Processing and display objects (for example, filters andGUIs) can
register as CpdEvent listeners to data of interest; see The CpdEventListener and CpdEvent interfaces for details. When the
client receives updated data,all listeners are notified.

2.

When the client collects new or changed data (forexample, data collections named S1, S2, and so on) fromthe server, the
client uses the update method to update Snapshotwith the new data:

Snapshot.update(S1);// ...later...Snapshot.update(S2);

3.

Step 2 and Step 3 are repeated through the lifetime of theclient.4.

Figure 11 lists a sample of PMI client code.

Figure 11. Example of PMI client code

import com.ibm.websphere.pmi.*;import com.ibm.websphere.pmi.server.*;import
com.ibm.websphere.pmi.client.*; public class PmiTest implements PmiConstants { //
A test driver // If arguments are provided: // args[0] = node name //
args[1] = port number // args[2] = The JNDI name of PerfRetrieve // // Note:
This will not work unless an admin server and // perfServer are running //
public static void main(String[] args) { String hostName = null; String
portNumber = null; String homeName = null; if (args.length >= 1)
hostName = args[0]; if (args.length >=2) portNumber = args[1]; if
(args.length >=3) homeName = args[2]; PmiClient pmiClnt = new
PmiClient(hostName, portNumber, homeName); // Root of PMI data tree
CpdCollection rootCol = pmiClnt.createRootCollection();

 // Set performance descriptor (pd) list // pdList will include all
PerfDescriptors for data retrieval PerfDescriptorList pdList = new
PerfDescriptorList(); try { // If you want to query PmiClient to find
the PerfDescriptor // you need, you can go through listNodes, listServers,
and // listMembers to list all the PerfDescriptors and extract //
the one you want. PerfDescriptor[] nodePds = pmiClnt.listNodes();
String nodeName = nodePds[0].getName(); System.out.println("after
listNodes:" + nodeName); PerfDescriptor[] serverPds = pmiClnt.listServers(
nodePds[0].getName()); System.out.println("after listServers"); if
(serverPds == null || serverPds.length == 0) { System.out.println("NO
app server in node"); return; } // For a simple test,
get from the first server PerfDescriptor[] myPds =
pmiClnt.listMembers(serverPds[0]); // You can add all pds to
PerfDescriptorList for (int i = 0; i < myPds.length; i++) { if
(myPds[i].getModuleName().equals("com.ibm.websphere.pmi.beanModule")
|| myPds[i].getModuleName().equals(
"com.ibm.websphere.pmi.connectionPoolModule") ||
myPds[i].getModuleName.equals("com.ibm.websphere.pmi.webAppModule"))
pdList.addDescriptor(myPds[i]); } // Or, if you know the data path
you want, you can create your own String[] thisPath = new
String[]{"thisNode", "thisServer",
"com.ibm.websphere.pmi.transactionModule"}; // Suppose you are interested
only in dataIds 1, 2, and 3 PerfDescriptor thisPd =
pmiClnt.createPerfDescriptor(thisPath, new int[]{1, 2, 3});
pdList.addDescriptor(thisPd); } catch (Exception ex) {
System.out.println("Exception calling CollectorAE");
ex.printStackTrack(); }

 // Retrieve the data in pdList CpdCollection[] cpdCols = null; try {

for (int i = 0; i < 10; i++) { java.lang.Thread.sleep(1000);
cpdCols = pmiClnt.gets(pdList, true); if (cpdCols == null ||
cpdCols.length == 0) { System.out.println(
"PMI data return null--possible wrong pds"); } for (int j
= 0; j < cpdCols.length; j=++) { rootCol.update(cpdCols[j]);
report(cpdCols[j]); } } } catch (Exception ex {
System.out.println("Exception to call thread sleep"); } } // Simple method
to make sure we are getting the correct CpdCollection private static void
report(CpdCollection col) { System.out.println("\n\n"); if (col ==
null) { System.out.println("report: null CpdCollection");
return; } System.out.println("report--CpdCollection ");
printPD(col.getDescriptor()); CpdData[] dataMembers = col.dataMembers();
if (dataMembers != null) { System.out.println("report CpdCollection:
dataMembers is " + dataMembers.length); for (int i = 0;
i < dataMembers.length; i++) { CpdData data = dataMembers[i];
printPD(data.getDescriptor()); } } CpdCollection[]
subCollections = col.subcollections(); if (subCollections != null) {
for (int i = 0; i < subCollections.length; i++) {
report(subCollections[i]); } } } // Simple method to write
the full name of a pd private static void printPD(PerfDescriptor pd) {
System.out.println(pd.getFullName()); }}

Figures

The role of PerfServer in collecting and distributing performance data1.

Organization of PMI data2.

Definitions of the CpdCollection, CpdXML, and CpdEventSender interfaces3.

Definition of the PerfDescriptor interface4.

Definition of the PerfDescriptorList interface5.

Definition of the CpdData interface6.

Definition of the CpdValue interface7.

Definition of the PmiClient class8.

Definitions of the CpdEventListener and CpdEvent interfaces9.

Definition of the CpdFamily class10.

Example of PMI client code11.

Tables

CpdValue types and associated methods1.

