
Web services -- table of contents

Development

 4.8: Web services

 4.8.1: Web services components
 4.8.1.1: UDDI4J Overview
 4.8.1.1.1: UDDI4J samples
 4.8.1.2: SOAP support
 4.8.1.2.1: SOAP samples
 4.8.1.2.2: Building a SOAP client
 Accessing enterprise beans through SOAP
 4.8.1.2.3: Deploying a programming artifact as a SOAP accessible Web service

 4.8.2: Apache SOAP deployment descriptors
 4.8.2.1: SOAP deployment descriptors

 4.8.3: Quick reference of Web services resources

 4.8.4: Securing SOAP services
 4.8.4.1: Running the security samples
 4.8.4.2: SOAP signature components
 4.8.4.2.1: Keystore files for testing purposes
 4.8.4.2.2: Envelope Editor
 4.8.4.2.3: Signature Header Handler
 4.8.4.2.4: Verification Header Handler

Administration

 6.6.0.14: XML-SOAP Admin tool

4.8: Web services - an overview
Web services are self-contained, modular applications that can be described, published, located, and invoked
over a network.Web services could be weather reports or stock quotes. Transaction Web services,supporting
business-to-business (B2B) or business-to-client (B2C) operations, could be airline reservationsor purchase
orders.

Web services reflect a new "service-oriented" approach to programming, based on the idea of building
applications by discovering and implementing network-available services, or by invoking available
applicationsto accomplish some task. This "service-oriented" approach is independent of specific programming
languages or operating systems.Instead, Web services rely on pre-existing transport technologies (such as
HTTP) and standard data encoding techniques (such as XML)for their implementation.

The Web services architecture describes three roles:

Service provider1.

Service requester2.

Service broker3.

Web services components provide three basic operations:

Publish1.

Find2.

Bind3.

In order for some component to become a Web service, it must be:

Created, and its interfaces and invocation methods must be defined●

Published to some repository●

Easy to locate by potential users●

Invoked and implemented by users●

Unpublished when it is no longer available●

As illustrated in the graphic,

Web service descriptions can be created and published by service providers who create on-line resources
for personal and business use.

●

Web services can be categorized and searched by specific broker services.●

Web services can be located and invoked by requesters of the services.●

With Web services, programming complexity is reduced because application designers do not have to worry
about implementing the services they are invoking. Interactions in Web services are bound dynamically at
runtime.A service requester describes the features of the required service and uses the service broker to find an
appropriate service.

WebSphere Application Server supports making the following artifacts into Web services:

Java beans●

Enterprise Java Beans●

BSF supported scripts●

DB2 stored procedures●

See article Web services components for a description of the key components that comprisea Web service.

Visit URL, www.alphaworks.ibm.com/tech/webservicestoolkit,to access the Web services toolkit on
Alphaworks. This site provides tools for creating WSDL files and SOAP clients, and describes working
examples.

Learn more about Web services. Register for the Web services tutorialon Alphaworks.

http://www.alphaworks.ibm.com/tech/webservicestoolkit
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument

4.8.1: Web services components
These are the key components of a Web service:

SOAP (simple object access protocol)●

WSDL (Web Services Description Language)●

UDDI (Universal Discovery , Description and Integration Protocol)●

UDDI4J (client version of UDDI)●

SOAP or Simple Object Access Protocol

is a new protocol created by IBM, Microsoft, Userland, and DevelopMentor to support remote procedure calls and other requests over HTTP.Built on
HTTP and XML, SOAP attempts to convert application servers into object servers.

See the W3C SOAP protocol site for more information on SOAP messages, supported datatypes, and attributes. For SOAP implementation guidelines,
visit the Apache site.

SOAP requests and the responses are XML based. The following examples illustrate a SOAP request and response:

Sample SOAP Request
 Sample SOAP Request POST /Supplier HTTP/1.1 Host: www.somesupplier.com Content-Type: text/xml;
charset="utf-8" Content-Length: nnnn SOAPAction: "Some-URI" <SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <SOAP-ENV:Body>
<m:OrderItem xmlns:m="Some-URI"> <RetailerID>557010<</RetailerID>
<ItemNumber>1050420459</ItemNumber> <ItemName>AMF Night Hawk Pearl M2</ItemName>
<ItemDesc>Bowling Ball</ItemDesc> <OrderQuantity>100</OrderQuantity>
<WholesalePrice>130.95</WholeSalePrice> <OrderDateTime>2000-06-19 10:09:56</OrderDateTime>
</m:OrderItem> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

The SOAP request indicates that the OrderItem method, from the "Some-URI" namespace, should be invoked from
http://www.somesupplier.com/Supplier.Upon receiving this request, the supplier application at www.somesupplier.com executes the business logic that
corresponds to OrderItem.

The SOAP protocol does not specify how to process the order. The supplier could run a CGI script, invoke a servlet, or perform any other process that
generates the appropriate response.

 See article SOAP support for the list of artifacts that WebSphere Application Server supports as Web services.

In this example, the SOAP Envelope element is the top element of the XML document that represents the SOAP message. The reference to the XML
namespace (xmlns:m="Some-URI") specifies the namespace to use for the SOAP identifiers. This request is asking the application to place an
order for the item identified by the elements:

RetailerId❍

ItemNumber❍

ItemName❍

ItemDesc❍

OrderQuantity❍

WholesalePrice❍

OrderDateTime❍

The response comes in the form of an XML document that contains the results of the processing, in this case, the order number for the order placed by
the retailer. The response is sent by the service provider located at http://www.somesupplier.com/Supplier.

Sample SOAP Response
 HTTP/1.1 200 OK Content-Type: text/xml; charset="utf-8" Content-Length: nnnn <SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> <SOAP-ENV:Body>
<m:OrderItemResponse xmlns:m="Some-URI"> <OrderNumber>561381</OrderNumber>
</m:OrderItemResponse> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

The response does not include a SOAP-specified header.The results are placed in an element whose name matches the method name (OrderItem) with
the suffix, "Response" as inOrderItemResponse.

Although Apache SOAP allows for SOAP over SMTP, WebSphere Application Server only supports SOAP over HTTP.

The SOAP Javadoc is shipped with WebSphere Application Server.

Review WebSphere Application Server's Javadoc for SOAP implementation details.

●

WSDL or Web Services Description Language●

http://www.w3.org/TR/SOAP/
http://xml.apache.org/dist/soap
http://localhost/0802_makepdf/apidocs/index.html

is an XML-based interface definition language that provides operational information about a service, such as the service interface, implementation
details, access protocol, and contact endpoints. Compliant server applications must support these interfaces, and client users can learn from
thedocument how a service should be accessed.

 WebSphere Application Server does not provide toolsfor generating WSDL files.

View a WSDL representation in the AddressBook2 sample.

See article UDDI4J samples for more information.

Review the WSDL specifications at W3C WSDL protocol site.

UDDI or Universal Discovery Description and Integration (Project)

is a comprehensive, open industry initiative enabling businesses to:

Discover each other1.

Define how they interact over the Internet, and share information in a global registry architecture.2.

WebSphere Application Server does not provide a private UDDI directory. IBM, among others,provides public UDDI registries. For more information
about UDDI, see www.uddi.org.Also visitAlphaworksfor the Web services toolkit, which includes an IBM implementation of a private UDDI
registry.

UDDI is the building block which enables businesses to quickly, easily, and dynamically find and transact with one another by means of their
preferred applications.

As described in the Web services overview, UDDI provides the three basic Web services functions: publish, find, and bind.

●

UDDI4J

is an open-source Java implementation of the Universal Discovery, Description, and Integration protocol (UDDI).UDDI4J contains an implementation
of the client side of UDDI (everything your application needs to publish, find, and bind a Web service).It also includes the source code, and the
complete Javadoc for the APIs. For more information,visit the UDDI4J open source site at oss.software.ibm.com/developerworks/projects/uddi4j.

Review IBM's Javadoc for UDDI4J implementation details.

●

http://www.w3.org/TR/wsdl#_introduction
http://www.uddi.org/
http://www.alphaworks.ibm.com/tech/webservicestoolkit?open&c=cdws&p=uddi
http://oss.software.ibm.com/developerworks/projects/uddi4j
http://localhost/0802_makepdf/apidocs/index.html

4.8.1.1: UDDI4J Overview
UDDI4J is a Java class library that provides an API that is used to interact with a UDDI registry. This class
library generates and parses messages sent toand received from a UDDI server.

The central class in this set of APIs is:

com.ibm.uddi.client.UDDIProxy

This class is a proxy for the UDDI server thatis accessed from the client code. Its methods map to theUDDI
Programmer's API Specification.Review IBM's Javadoc foradditional implementation details.

The classes within com.ibm.uddi.datatype represent data objects that send or receiveUDDI information.
In the business and servicemodel, the data objects are also known as subpackages.

The subpackage com.ibm.uddi.request contains messages sent to the server.Generally, these classes are
not used directly;rather, they are invoked by the UDDIProxy class.

Similarly, the subpackage com.ibm.uddi.response represents response messages from a UDDIserver.

UDDI4J error handling

When invoking UDDIProxy inquiry methods, UDDIException is thrown when errors are received fromthe
UDDI proxy.UDDIException can contain a DispositionReport with information regarding the error.

APIs that do not return a data object, providethe disposition report.

SOAPException is thrown if a communication error occursor if the resulting data cannot be parsed as a valid
SOAP message.

View the file 4.8.1.1.1: UDDI4J Samples for API usage examples.

For more information,visit the UDDI4J open source site at
oss.software.ibm.com/developerworks/projects/uddi4j.

http://www.uddi.org/pubs/UDDI_Programmers_API_Specification.pdf
http://www.uddi.org/pubs/UDDI_Programmers_API_Specification.pdf
http://localhost/0802_makepdf/apidocs/index.html
http://oss.software.ibm.com/developerworks/projects/uddi4j

4.8.1.1.1: UDDI4J samples
A set of samples is provided to illustrateusing the inquiry and publishAPIs, and to demonstrate error handling.

Note: WebSphere Application Server does notprovide a UDDI registry. The IBM UDDI test registry is located at www.ibm.com/services/uddi/

Any sample that requires you to "publish," "save," or "delete" requires a userid and password. You can only invoke the "find" sample without a userid and password.

To get a userid and password:

Access the UDDI test registry1.

Register for your userid and password

The registration process requires you to activate your id beforeattempting to use the publish or delete examples.

Note: If the registry is not operational, keep trying. This is a test registry andat times it is not available.

2.

Use your registered userid and password when running the SaveBusinessExampleand DeleteBusinessExample samples.3.

Your samples consist of:

FindExample - is the "Hello world" of UDDI programs. It is the simplest sample of the UDDI API.●

SaveBusinessExample - is an example of using the publish API. It logs into the server using the get_authToken method; then attempts to save a business.●

DeleteBusinessExample - searches for a particular business using the inquiry API, finds the associated businesskey, logs into the server, and then attempts to delete
the business it found.

 When running DeleteBusinessExample, you might receive the following error messages:

Get authtokenReturned authToken:ADA3DC40-2531-11D5-9EB0-832611502FD0Search for 'Sample business' to
deleteFound business key:D3DD4036-00E4-F124-050B-C6113996AA77Errno:10140 ErrCode:E_userMismatch
ErrText:E_userMismatch (10140) Cannot change data that is controlled by another party.
businessEntity = D3DD4036-00E4-F124-050B-C6113996AA77Found business
key:61AE2CC0-0F2C-11D5-BC1E-B763254A2930Errno:10140 ErrCode:E_userMismatch
ErrText:E_userMismatch (10140) Cannot change data that is controlled by another party.
businessEntity = 61AE2CC0-0F2C-11D5-BC1E-B763254A2930Found business
key:3BB274CF-00E3-FA94-9B72-C6113996AA77

This is not a problem with the sample. DeleteBusinessExample issues a query for the business name specified in the code and receives a list of
entries with that name. The sample then tries to delete each entry in the list. These error messages occur when the sample tries to delete entries that
you do not own.

●

Accessing the samples

To access these samples, you can either installthe soapsamples.ear, or you canexpand the soapsamples.ear using the EarExpandertool.

These are the steps to access the samples:

Create a directory to hold the expanded soapsamples.earcontents.1.

From the product_installation_root\bin directory,enter the following commands:

EarExpander -ear ..\installableApps\soapsamples.ear-expandDir ..\temp\soapsamples -operationexpand
-expansionFlags war

2.

Issue the cd command to change to the installedApps/soapsamples.ear orto the target directory specified in the-expandDir argument3.

Issue the cd command to change to UDDISamples directory. The source for the samplesis included in the src directory.4.

The samples require several pieces of information.The sample source files can be edited and these valuessubstituted. The required values are:

InquiryURL: The URL of the UDDI server against which to run inquiries.●

PublishURL: The URL of the UDDI server to run publish requests. Typically, this is a SSL connection.●

Userid: When publishing, a userid is required for authentication.●

Password: This is the password for the referenced userid. Password is referred to as a credential in UDDI terminology.●

Running the samples

WebSphere Application Server provides an number of UNIX scripts and DOS .bat files to run the samples. These scripts (or .bat files) add the required jar files to the
classpath. Use a text editor (such as Notepad on Windows NT or VI or E3 on UNIX) to view the scripts (or .bat files). They describethe resources that you need to run the
samples.

The scripts are located in directory UDDISamples/unix_scripts.On Windows NT, the .bat files are located in directory UDDISamples\nt_bat.

 The scripts are put in this locationas a result of running the EarExpandercommand.

All the scripts (or .bat files) are named after the samples they run. So, for example, to invoke the FindExample sample, you would run theFindExample.sh script.

A UDDI registry might limit the number of business entities that you publish.The IBM Test registry limits you to one business entity.This means, for example, that after
running the SaveBusinessExample, youmust run the DeleteBusinessExample before attempting to publish another business entity.

See the related information links for an enablement scenario.

http://www.ibm.com/services/uddi/
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html

4.8.1.2: SOAP support
Version 2.2 of the Apache SOAP implementation is integrated into WebSphere Application Server Version 4.0.
Apache SOAP Version 2.2 is a Java-based implementation of the SOAP 1.1 specification with support for
SOAP with attachments.

WebSphere Application Server Version 4.0 allows you to expose the following artifacts as SOAP services:

Standard Java classes●

Enterprise beans●

Bean Scripting Framework (BSF) supported scripts●

DB2 stored procedures●

Tools are provided to assist you with deployingthese artifacts as SOAP services. See article Deploying a
programming artifact as a SOAP accessible Web service for more information.

As part of deploying your services,you can choose to enable the XML-SOAP Admin tool,which allows you to
manage your SOAP-enabled services.

WebSphere Application Server also contains an implementation of the security extensions for SOAP. These
security extensions provide secure connections and enable digitally signed messages.See article Securing SOAP
services for more information.

See the related information links for an enablement scenario.

4.8.1.2.1: SOAP samples
WebSphere Application Server 4.0 provides sample services and clients that demonstrate how to access SOAP
services. The SOAP samples code is based on the the Apache SOAP 2.2 samples.These samples are contained in the
soapsamples.ear that is located in the installableApps directory. The source for the sample services is
located in the soapsamples.ear.

See article DB2 Stored procedure sample setupfor information on configuring a datasource to set the db2-userid and
db2-password entries.

Perform the following steps to install the samples in your server:

Use the enterprise application wizard in theadministrative console to install the EAR file. See article Installing
files and setting classpaths for more information.

1.

To access the sample services from an external Web server, run the file GenPluginCfg.sh on UNIX or
GenPluginCfg.bat on Windows NT. This file makes the Web server aware of the SOAP samples.

2.

Start the product.3.

Check on the availability of the sample services using the XML-SOAP Admin tool:

From a browser, go to URL
http://localhost/soapsamples/admin/index.html

a.

At this site, you can:

List available services■

View the Apache SOAP descriptors■

Stop and start sample services■

b.

4.

Running the sample clients

Sample clients are provided to demonstrate how to access the installed SOAP services.These scripts require you to
specify the server that will handle the request.

 If you run the script with no arguments, as for example StockQuoteSample, you will be provided
with help on how to use the sample, and you will receive a description of the command line arguments
that the script requires.

To access the samples, change the directory to the following on Windows NT:
product_installation_root\installedApps\soapsamples.ear\ClientCode\nt_bat

On UNIX platforms, the samples directory is:
product_installation_root/installedApps/soapsamples.ear/ClientCode/unix_scripts

 Issue the chmod 755 *.sh command to restore the executionpermissions of the UNIX scripts.

Sample Command (entered on a single line)

Stock quote (requires Internet access)

stockquotesample localhost IBM

 If the request appears to hang, and then you receive an
"Operation timed out" error, the service was unable to reach a
server on the Internet to obtain the stock quote information.
You may need a direct connection to the Internet.

http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0607.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/06060001.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0604.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0604.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0606a.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html

Address book

AddressBookSample
GET localhost "John B. Good"
AddressBookSample
ALL localhost
AddressBookSample
PUT localhost "Herman Munster" 1313 "Mockingbird
Lane" Salem MA 10013 111 222 3434

Address book example 2 Addressbook2sample localhost

EJB
EJBAdderSample localhost
On UNIX platforms, enter:
EJBAdderSample.sh localhost

Send Message sendMessageSample localhost ..\data\msg1.xml

Calculator Sample

CalculatorSample localhost

 Unlike the other SOAP samples, which are either java or
enterprise beans, the Calculator Sample is a JavaScript sample.
The actual calculator processing is performed by the Web
service.

Mime Client sample MimeClientSample localhost ..\data\foo.txt

DB2SPSample sample
DB2SPSample localhost
On UNIX platforms, enter:
DB2SPSample.sh localhost

Troubleshooting SOAP sample problems

If you cannot run the SOAP samples, check for the following problems:

Can you run any of the samples, such as http://localhost/servlet/snoop?If not, make sure the
Web server is running.

If you can run the snoop sample, try accessing one of the SOAP samples again, butthis time specify
the port number 9080 in addition to the host name, as for example:

MimeClientSample localhost:9080 ...\data\foo.txt

If adding the port number resolves the problem, you need to update the plugin configurationby running
the GenPluginCfg.bat file on the Windows platform, or theGenPluginCfg.sh file on UNIX
platforms.

●

If the stockquote sample fails but the other samples work, you are having problems accessing the external
Internet.

●

See the Related topics section for links to an enablement tutorial.

4.8.1.2.2: Building a SOAP client
Creating clients to access the SOAP services published in WebSphere Application Server is a straightfoward process.The Apache SOAP
implementation, integrated with WebSphere Application Server, contains a clientAPI to assist in SOAP client application development.

The SOAP API documentation is available in WebSphere Application Server's javadoc.

These are the steps for creating a client thatinteracts with a SOAP RPC service:

Obtain the interface descriptionof the SOAP service

This provides you with thesignatures of the methods that you wish toinvoke.You can either look at a WSDL file for theservice, or view the
service itself to see its implementation.

1.

Create the "Call" object

The SOAP "Call" object is the main interfaceto the underlying SOAP RPC code.

2.

Set the target URI (Uniform Resource Identifier) in the "Call"object using the setTargetObjectURI() method.

Pass the URN (Uniform Resource Name, a type of URI), that the service uses for itsidentifier, in the deployment descriptor.

3.

Set the method name that you want to invoke in the "Call" object using the setMethodName() method

This method must be one of the methods exposed bythe service located at the URN from the previousstep.

4.

Create the necessary "Parameter" objectsfor the RPC call and then set them in the "Call"object using the setParams()
method.

Ensure you have the same number and same type ofparameters as those required by the service.

5.

Execute the "Call" object's invoke()method and retrieve the "Response" object

Remember the RPC call is synchronous, so it may take some time to complete.

6.

Check the response for a fault using thegetFault() method, and then extract any results or returnedparameters

While most of the providers only returna result, the DB2 stored procedure providercan also return output parameters.

7.

Interacting with a "document-oriented" SOAP service requires you to use lower-levelApache SOAP API calls. You must first construct an
"Envelope" object which containsthe contents of the message (including thebody and any headers) that you wish to send.Then create a "Message"
object where you invoke the send() method to perform theactual transmission.

To create a secure SOAP service, do the following:

Create a simple object1.

Define an envelope editor2.

Specify a pluggable envelope editor3.

Define the transports4.

Your code may look like the following example:

EnvelopeEditor editor=new PluggableEnvelopeEditor(new InputSource(conf), home);SOAPTransport
transport =new FilterTransport(editor, new SOAPHTTPConnection());call.setSOAPTransport(transport);

The characteristics of the secure session are specified by the configuration file, "conf."

See article Securing SOAP servicesfor more information on creating secure Web services.

See article 4.8.1.2.2.1: Accessing enterprise beans through SOAPfor information on calling an EJB service.

Since the SOAP API is a standard for Web services, any clients that you create to access the WebSphere Application Server SOAP services can
also runin different implementations.

See the related information links for an enablement scenario.

http://localhost/0802_makepdf/apidocs/index.html

4.8.1.2.2.1: Accessing enterprise beans through SOAP
Calling enterprise beans through SOAP is handled in the same manner ascalling Java bean methods through SOAP. The SOAP runtime handles the
bean cases for you, such as calling anenterprise bean's create method if the create was not calledpreviously.

A Web service can be a simple stateless sessionbean that performs number processing and returns a data value.When the client code makes a call to
the data processing method of this service and aninstance of the stateless session is not available, the SOAP runtimedoes the following:

Calls the EJB create method to obtain a stateless session●

Calls the requested method●

At times the client code must do additional work to use enterprise beans throughSOAP. For example, if a Web application intends to use stateful or
entity beans that persist data between calls, the clientrequires a reference to identify the bean instance that must be accessedin subsequent calls to
methods. This reference/key can be obtained from the response objectthat the client receives on the initial call to the bean.

Response objects are created:

When the client explicitly calls a create method●

From a findByPrimaryKey() Entity Bean method call●

From a regular bean method call●

The following code example demonstrates calling a bean'screate method with parameters:

/*This code snippet is from a simple MessageBoard bean thatstores strings sent to it for retrieval
at a later date.*/
...
/*Call create with \"This is a test\"to initialize the EJB*/
 call = new Call();
 call.setTargetObjectURI("urn:messageboard");

/*Note, you can explicitly call a create. Parameters for the bean's create can be passed like
parameters to any SOAP RPC call.*/
 call.setMethodName("create");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 params = new Vector();
 params.addElement(new Parameter("msg", String.class, "This is a test", null));
 call.setParams(params);

 System.out.println("Calling create with \"This is a test\"");
 resp = call.invoke(url, "");

/*Now use the same instance of the bean that you just 'created' and initialized.Obtain the reference
from the response object through the method getFullTargetObjectURI()*/
 ejbKeyURI = resp.getFullTargetObjectURI();

/*Subsequent calls to this bean can now be made by using theobtained ejb key.*/
/*Call getMessage using the handle from the create*/
 call = new Call();
 call.setFullTargetObjectURI(ejbKeyURI);
 call.setMethodName("getMessage");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 System.out.println("Calling getMessage:");
 resp = call.invoke(url, "");
...

4.8.1.2.3: Deploying a programming artifact as a SOAP accessible Web
service
Complete these steps to deploy a SOAP accessible Web service in WebSphere Application Server:

Create or locate the software resourceto be exposed as a service

To deploy a service,create a programming artifact, one of the supported types,or locate an existing piece of code of the supported type.

1.

Assemble an Enterprise Archive (EAR)file

Package the code artifactinto an Enterprise Archive (EAR). This stepis a deployment packaging requirement of WebSphere Application Server. Use
the Application Assembly Tool (AAT)to package the artifact. See article Application Assembly Toolfor information on using the tool.

2.

Create the Apache SOAP deploymentdescriptor for the desired service

In order to deploy an artifact as a SOAPservice, create a Apache SOAP deploymentdescriptor that describes the service you are creating.This step
exposes the programming artifact as a "service." The descriptor describes and defines the parts of the code that will be invoked with the SOAP calls.

The information containedin the deployment descriptor varies, depending on the type of artifact you are exposing.For example, the following
deployment descriptor might be used with the StockQuoteSample:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" id="urn:service-urn"
[type="message"]> <isd:provider type="java" scope="Request | Session |
Application" methods="exposed-methods"> <isd:java class="implementing-class"
[static="true|false"]/> </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

View the Apache SOAP deployment descriptor documentationfor more information.

3.

Execute the SoapEarEnabler tool toenable your Web service

As mentioned above, your code artifact must first be packagedinto an Enterprise Archive (EAR). Next, using thedeployment descriptor as input, add
thenecessary pieces to the EAR file to enable the artifact as a Web service. To facilitate this process,use the Java based tool called
SoapEarEnabler.Depending on whether you secure the Web service, this tool will add two Web modules: soap.war and soap-sec.war to
the EAR file.These Web modules include the SOAP deployment descriptors plus the necessary parts to deploy the service into the WebSphere
Application Server runtime.

 The service does not become available until the soap-enabled EAR file is installed, and the server is restarted.

View the SoapEarEnabler tool documentationfor more information on SoapEarEnabler.

4.

Install the service-enabled EAR file

Take the modified EARfile, created in the previous step,and install it in WebSphere Application Server.

View article Installing application filesfor information on installing EAR files.

5.

Update the Web server plugin configuration

Run the GenPluginCfg.bat file on Windows NT or the GenPluginCfg.sh script on UNIX to regenerate the plugin configuration.

6.

Restart the application server7.

See the related information links for an enablement scenario.

http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/06060005.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/06060010.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0604.html

4.8.2: Apache SOAP deployment descriptors
Apache SOAP utilizes XML documents called"deployment descriptors" to provide the SOAP runtime with
information on client services.

Deployment descriptors provide an array ofinformation such as the:

Service's URN (Uniform Resource Name)(which is used to route the request whenit arrives)●

Method and class details, ifthe service is being provided by a Java class●

User ID and password information, if the serviceprovider must connect to a database●

The contents of the deployment descriptor vary,depending on the type of artifact that isbeing exposed using
SOAP.

4.8.2.1: SOAP deployment descriptors in WebSphere Application Server
This article describes the different types of deploymentdescriptors that can be used in WebSphere Application Server.Deployment descriptors for each of the
soap samples are included in the soapsamples.ear file in the ServerSamplesCode directory(for example,
<product_installation>/installedApps/soapsamples.ear/ServerSampleCode/src/addressbook/DeploymentDescriptor)

Standard Java class deployment descriptor

A deployment descriptor which exposes a servicethat is implemented with a standard Javaclass (including a normal java bean) lookslike this example:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" id="urn:service-urn"
[type="message"]> <isd:provider type="java" scope="Request | Session |
Application" methods="exposed-methods"> <isd:java class="implementing-class"
[static="true|false"]/> </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

where:

service-urn is the URN that you give to a service.(All services deployed within a single EARfile must have URNs that are unique withinthat EAR file.)●

exposed-methods is a list of methods, separated by spaces,which are being exposed●

implementing-class is a fully qualified class name (that is, a packagename.classname)that provides the methods that are beingexposed.●

On the <service> element,there is an optional attribute called type which is set to the value "message"if the service is document-oriented insteadof
RPC-invoked.

On the <java>element, there is an optional attribute calledstatic, which may be set to either "true"or "false", depending on whetherthe methods are exposed or
not exposed. If exposed, this attribute indicates whetherthe method is static or not static.

On the <provider> element, there isa scope attribute which indicates the lifetime ofthe instantiation of the implementing class.

"Request" indicates the objectis removed after the request completes.●

"Session" indicates the objectlasts for the current lifetime of theHTTP session.●

"Application" indicates the object lasts until the servlet thatis servicing the requests, is terminated.●

EJB deployment descriptor

A deployment descriptor that exposes a servicewhich is implemented with an Enterprise JavaBean looks like this next example:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" id="urn:service-urn">
<isd:provider type="provider-class" scope="Application"
methods="exposed-methods"> <isd:option key="JNDIName" value="jndi-name"/>
<isd:option key="FullHomeInterfaceName" value="home-name" /> </isd:provider>
<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

 The default values for the iiop URL and context provider keys are:

 <isd:option key="ContextProviderURL" value="iiop://localhost:900" /> <isd:option
key="FullContextFactoryName" value="com.ibm.websphere.naming.WsnInitialContextFactory" />

To use your own values, you must specify:

 <isd:option key="ContextProviderURL" value="<URL to the JNDI provider>" /> <isd:option
key="FullContextFactoryName" value="<Context factory full class name>" />

A description of the keys and variables follows:

service-urn and exposed-methods have the same meaning as in the standardJava class deployment descriptor●

provider-class is one of the following depending on the implementation of the bean:

Provider class Bean implementation
com.ibm.soap.providers.WASStatelessEJBProvider stateless session bean

com.ibm.soap.providers.WASStatefulEJBProvider stateful session bean

com.ibm.soap.providers.WASEntityEJBProvider entity bean

●

jndi-name is the registered JNDI name of the EJB●

home-name is the fully qualified class name of theEJB's home.●

Bean Scripting Framework (BSF) script deployment descriptor

A deployment descriptor that exposes a servicewhich is implemented with a BSF script lookslike the following example:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" id="urn:service-urn">
<isd:provider type="script" scope="Request | Session | Application"
methods="exposed-methods"> <isd:script language="language-name"
[source="source-filename"]>[script-body] </isd:script> </isd:provider>

http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html

<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

where:

service-urn, exposed-methods, and scope have the same meaning as in the standardJava class deployment descriptor●

language-name is the name of the BSF-supported language that isused to write the script.●

The deploymentdescriptor must also have a source attribute on the <script> element,or a script-body attribute. The script-body attribute contains the actual
script that is used to providethe service. If the deployment descriptorhas the source attribute, then source-filename refers to the file which contains the
serviceimplementation.

DB2 stored procedure deployment descriptor

A deployment descriptor which exposes oneor more DB2 stored procedures as a serviceslooks like the following example:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" id="urn:service-urn">
<isd:provider type="com.ibm.soap.providers.WASDB2SPProvider" scope="Application"
methods="* | exposed-methods"> <isd:option key="userID" value="db-userid"/>
<isd:option key="password" value="db-password"/> [<isd:option
key="fullContextFactoryName" value="context-factory"/> <isd:option key="datasourceJNDI"
value="jndi-name"/>] [<isd:option key="dbDriver" value="db-driver"/>
<isd:option key="dbURL" value="db-url"/>] </isd:provider>
<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

where:

service-urn and exposed-methods have the same meaning as in the standardJava class deployment descriptor.●

db-userid is a valid user ID used to access the databasewhere the stored procedures reside.●

db-password is a valid password for the specified user ID

 The db-userid and db-passwordentries are optional. These entries can be set in the datasource.In WebSphere Application Server, the
preferred way for administering the db-userid and db-password entriesis with a datasource. Changing the user ID and password is easier
when the information is located in a datasource rather than in a separate deployment descriptor file. See article DB2 Stored procedure
sample setupfor more information.

●

context-factory is the name of the context factoryused to access the database●

jndi-name is the datasource used to accessthe database●

db-driver is the database driver usedto access the database.

 A db-driver is not required if a datasource JNDI name is specified.

●

db-url is the URL that specifies the database to access●

The methods attribute on the <provider> elementcan contain a list of space separatedprocedure names to expose, or an "*" (asterisk).An asterisk indicates all
available stored procedures shouldbe exposed.

See the related topics section for links to an enablement scenario.

http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0607.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0607.html

4.8.3: Quick reference of Web services resources
Use the following table to link directly to Web services descriptions, and additional resources.

Click on any heading in the Topic category for a description of that topic.

Click on any heading in the Resources category for links to external sites that provide sample scenarios,
toolkits, tutorials, and additional information.

Reference the Related topics section for links to the SOAP EAR enabler tool and to a Web servicesenablement
tutorial.

Topic Resources

Web services overview

Web services topics and development
environment

●

Web services wizard●

Web services toolkit●

Web services tutorial●

SOAP overview●

SOAP support in WebSphere Application
Server

●

SOAP samples●

Building a SOAP client●

Deploying a programming artifact as a SOAP
accessible Web service

●

Apache SOAP implementation

UDDI overview●

IBM's UDDI test registry●

IBM's UDDI registry implementation

UDDI4J overview●

UDDI4J support in WebSphere Application
Server

●

UDDI4J samples●

IBM's Javadoc●

UDDI4J topics

WSDL overview WSDL topics

See the Related topics section for links to an enablement tutorial.

http://www.ibm.com/developerworks/webservices
http://www.ibm.com/developerworks/webservices
http://www.alphaworks.ibm.com/tech/wsde
http://www.alphaworks.ibm.com/tech/webservicestoolkit
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument
http://xml.apache.org/soap
http://www.ibm.com/services/uddi/
http://www.alphaworks.ibm.com/tech/webservicestoolkit?open&c=cdws&p=uddi
http://localhost/0802_makepdf/apidocs/index.html
http://oss.software.ibm.com/developerworks/projects/uddi4j/
http://www.ibm.com/developerworks/library/w-wsdl.html

4.8.4: Securing SOAP services
Since the SOAP specification left security issuesopen, several proposals evolved to bridge the security gaps.
Recentlythe SOAP Security Extension [SOAP-SEC] was published as a W3C Note, specifically addressing the
XML Digital Signature.

The SOAP security extension, included withWebSphere Application Server Version 4.0, is a security
architecturebased on the SOAP security specification,and widely-accepted security technologiessuch as Secure
Sockets Layer or SSL.

There are three options for security when using HTTP as the transport protocol.

HTTP basic authentication●

SSL (HTTPS)●

SOAP signature●

Application developers are free to combine these security options according to their security requirements.The
following scenarios describe the implementation of the security options.

HTTP basic authentication

Many applications require users toprovide identifying information.You cannot provide access control for
individual services. You can onlyprovide access control for the router servlets (as for example the rpcrouter
servlet URI). If auser can get to a servlet, he can access any of the Web services served through the
servlet.Therefore, if you have a set of "secure" services and "unprotected" services, you have to partition them
differently so that "secure" servicesare accessed through an URI that is secured (for example,
/secureRPCRouter) andthe unprotected services are open for everyone to access (for example,
/uprotectedRCPRouter).

Using the ApplicationAssembly tool, you can set authorization levels by assigning roles to HTTP methods and
byassigning users to roles. You can then authenticate users, verifying they are authorized to view specific
information. There are many ways to prompt users for authentication data.See articles Overview: Using
programmatic and custom login andThe WebSphere authorization modelfor more information on different
authentication methods, and on role-based authorization scenarios.

SOAP on SSL with HTTP basic authentication

To make a request over HTTPS, using the SSL support of Apache SOAP, you needa separate Java Secure
Socket Extension (JSSE) provider.

WebSphere Application Server includesthe ibmjsse.jar in the JDK extensions.

The "SOAP on SSL" scenario is useful for many business-to-business (B2B) applications because:

The data in transit is protected from eavesdropping or forgery by SSL.●

The client identity is authenticated through userid and password, which are encrypted by the SSL
transport.

●

For example, if an inventory application is configured as a Web service, the service provider has the following
two SOAP service entries:

https://foo.com/inventory/inquiry●

https://foo.com/inventory/update●

http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/xmldsig-core/
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0505.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0505.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0504.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/0504.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/050103.html
http://java.sun.com/products/jsse/
http://java.sun.com/products/jsse/

Each SOAP service entry should be deployedas a separate enterprise application (EAR)because each service has
a different access controlpolicy, which is: anyone can inquire about the inventorybut only the inventory clerks
can updatethe contents.

The SOAP enablement model limits you to one context root for theunsecured services and another for the
secured services. In this example, you want to make the inquiry service unsecured and the update service
secured. Ifyou want different levels of security for a "secured" service, then you mustdeploy the entries in the
"secured" service as separate EAR files.

Do the following to enable the "SOAP on SSL" scenario:

Configure the web server (httpd.conf) so that it only allows SSL access to these servlets.●

Configure the security role for the RPCRouterServlet in the inquiry services EAR so that the
RPCRouterServlet for the 'inquiry' service is accessible by everyone, while the
RPCRouterServlet for the 'update' service requires authentication based on the HTTP basic
authentication (userid/pasword).

●

In this case, the 'update' application does not know the identity of the requester; it only knows that access is
granted. In other words, the "update" application is not concerned with the identity ofthe user because it knows
WebSphere Application Server is ensuring that only authenticated usershave access.

SOAP on SSL with SOAP Signature

Applications might need non-repudiable proof of exchanged messages.One example is a web service that
accepts part orders.The business partners establish a form of trust relationship based on public keys. This can be
done using the public key infrastructure (PKI) through a third party certificate authority (CA), or by exchanging
public keys with a secure channel. The following service is deployed with a signature verification function:

 https://foo.com/partorder

Configure signature verification with the following information:

Scope of signature (indicates the portion of the SOAP envelope that must be authenticated. The default
is the content of SOAP-ENV:Body).

●

Trusted keys or trusted root keys.●

Default key to verify signature if no KeyInfo is specified.●

Other policies regarding signature validation.●

Behavior when signature verification fails.●

Additional requirements on signature (as for example, specific requirements on hash/C14N algorithms
to be used, timestamp validity, and so forth).

●

If the signature is missing or if signatureverification fails, the signature verification function canbe configured
so that the servlet returnsa SOAP fault.

To send part orders to the https://foo.com/partorder service,the service requester should sign his
SOAP messages with a signature component.The signature component is initialized using two templates:

<ds:SignedInfo> template1.

<ds:KeyInfo> template2.

The <ds:SignedInfo> template controls the following:

What parts of the SOAP envelope must be signed●

What algorithms (canonicalization, transformation, digest, sign) should be used●

The <ds:KeyInfo> template controls the following:

Whether or not to include the entire certificate chain in <ds:KeyInfo>●

Decision to include only certificate and serial number●

Public key value●

Decision to provide no key information (so that the default key must be used for verification).●

You can combine the service request with HTTP basic authentication, if necessary.

4.8.4.1: Running the security samples
The process for running the SOAP signed samples is identical to the process forrunning the non-signed samples. The soapsamples.ear must be
installed, and the server must be started before these samples are invoked.

See article SOAP samples for informationon installing the SOAP samples.

SOAP Signature

The client samples are included in the soapsamples.ear file.Do the following to locate and execute the samples:

Change your directory (cd) to

 product_installation_root/installedApps/soapsamples.ear/ClientCode

A set of batch files or script files (on UNIX platforms) have beenincluded to facilitate running the client samples. These batch or script files are
located inthe nt_bat subdirectory on Windows NT, or in the unix_scriptssubdirectory on UNIX platforms. These scripts setthe classpath
and supply parameters.

1.

Invoke the samples using the following scripts:

DSigAddressSample localhost "c:\WebSphere\AppServer\installedApps\soapsamples.ear""John B. Good"

DSigMessageSample localhost "c:\WebSphere\AppServer\installedApps\soapsamples.ear"..\data\msg1.xml

 If you run the script with no arguments, as for example DSigAddressSample, you will be provided with help on how to use the
sample, and you will receive a description of the command line arguments that the script requires.

2.

View the output.

For each sample, at the server, you should see that the signature ofthe request is validated. At the client,you should see that the signature of the
responseis validated.

The validation results for both theclient and server are logged to thefollowing files that are created in
theproduct_installation_root/InstalledApps/soapsamples.ear/soapsec.war/logs directory

SOAPVHH-all-cl.log❍

SOAPVHH-fail-cl.log❍

SOAPVHH-all-sv.log❍

SOAPVHH-fail-sv.log❍

3.

Soap signature with SSL connection

Ensuring that a connection is over SSL isnot specific to Web services. You must configurethe Web server to ensure that the clientto Web server
connection is over SSL. You must also configure WebSphere Application Server to ensure thatthe Web server to WebSphere Application Server
connection isover SSL.

Article Configuring SSL in WebSphere Application Serverdiscusses how to configure SSL in WebSphere.See your Web server documentation for
information on configuring the SSL server.

For testing purposes, sample client and server keystoredatabases are shipped with the SOAP samples.You must use the IBM Key ManagementTool to
extract the certificates located in files:

test●

keystore●

databases●

Import the certificatesinto your key databases. See article, Tools for managing certificates and keysfor more information on the IBM Key Management
tool.

The test keystores are described in articleKeystore files.

Export the client certificates from the testkeystore file

Perform the following steps to export the client cerificates:

Invoke the Key Management Tool (IKeyman)1.

From the file menu, select open2.

Change directory (CD) to
product_installation_root/InstalledApps/soapsamples.ear/soapsec.war/key/

3.

Select the SOAPClient keystore file.
(The keystore password is "client".)

4.

Change the key database content type to "Signer Certificates".5.

Highlight the soapca certificate.6.

http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/06061801a07.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/050506.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html

Click the Export button.7.

Change the exported file name to "soapca.arm".8.

Highlight the "intca1" certificate9.

Click the Export button.10.

Change the exported file name to "intca1.arm".11.

Import the certificates into the web serverkey database

Invoke the Key Management Tool (IKeyman)1.

From the file menu, select open (or new if you are creating a new keystore)2.

Change directory (CD) to the directory where the keystore file is located.3.

Select the file.4.

For Signer Certificates, add the "intca1.arm" and the "soapca.arm" you exported in the previous section.5.

For Personal Certificates, click Import.6.

Specify a key type of PKCS127.

Browse the sslserver.p12 file located in:
product_installation_root/InstalledApps/soapsamples.ear/soapsec.war/key/

8.

Click OK.9.

Enter "server" when prompted for a password.10.

Select "sslserver" from the key list and press OK.11.

Save the updated keystore file12.

http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html

4.8.4.2: SOAP signature components
An overview of the SOAP signature architecture is illustrated in the figure below.

Using the SOAP transport hook, you can plug-in the security components:

signer●

verifier with logging capability●

The transport hook is called the EnvelopeEditor. A PluggableEnvelopeEditor is also provided, which allows you to plugin your
security components. As illustrated, the EnvelopeEditor is encapsulated in the SOAPTransport on the client side.On the server
side, EnvelopeEditor is encapsulated in RPC/MessageRouterServlet.This means the same components can be used on either
side.

When a client application sends a request, the request is signed and transmitted to the server. At the server side, the request is
verified and delivered to a server application or, in the case of a RPC, to a Java object.The response is processed in the same
manner.The verifier component also has a logging function to log the verified messages in a file.Signatures and verifier
components are configurable. You can specify encryption, digest message algorithm, certificate path policy, and other security
technologies.

Signature Components
There are two signature components:

Signature Header Handler●

Verification Header Handler●

Signature Header Handler (SHH)

The Signature Header Handler is a XML-based configuration file, which enables:

Template for <SignedInfo> (for customizing references, sign/hash algorithms, C14N algorithms, optional
timestamp)

❍

Template for <KeyInfo> (for customizing the public key such as X.509 certificate)❍

Verification Header Handler (VHH)

The Verification Header Handler is a XML-based configuration file, which enables:

Configurable policy (required scope of signature, trusted root, certstore, certpathchecker) (more sophisticated
policy such as timestamp validation may not be included in 2/15 deliverable)

❍

Exit for Logging (additional application-specific verification) A reference implementation of logging component
is also provided.

❍

The digital signature configuration can be changed by editing the configuration for the following components:

Envelope Editor●

Signature Component●

Verification Component●

SOAP Security-related Files

The following table provides an inventory of the SOAP security elements contained in the SOAP security samples module
(soapsec.war).a quick reference for SOAP security topics.

Path Contents Description

/installedApps/soapsamples.ear/soapsec.war Web-INF, conf, key, log,
etc.

Home of the soap
security servlets

/installedApps/soapsamples.ear/soapsec.war/WEB-INF web.xml
Servlet configuration
file for SOAP security
samples

/installedApps/soapsamples.ear/soapsec.war/conf config files
Configuration files for
envelope editors and
signature components

/installedApps/soapsamples.ear/soapsec.war/key SOAPclient
SOAPserver

See article Keystore
files for more
information.

/installedApps/soapsamples.ear/soapsec.war/logs Log files Logs generated during
security exchange

/installedApps/soapsamples.ear/ServerSamplesCode/src/<service_name> server side
samples

Source for both the
non-secure and secure
samples

/installedApps/soapsamples.ear/ClientCode/nt_bat scripts to run
client samples

Batch files for invoking
the client side samples
to interact with the
server-side services

/installedApps/soapsamples.ear/ClientCode/unix_scripts scripts to run client
samples

Batch files for invoking
the client side samples
to interact with the
server-side services

/installedApps/soapsamples.ear/ClientCode/data data files used by samples

/installedApps/soapsamples.ear/ClientCode/src client side samples source

/lib soap.jar, soap-sec.jar,
ws-soap-ext.jar Location of all jar files

Related Documents
Simple Object Access Protocol (SOAP) 1.1 - W3C NOTE.●

SOAP Security Extensions: Digital Signature - W3C NOTE.●

XML-Signature Syntax and Processing - W3C CR.●

XML Security Suite - XML digital signature, encryption, access control.●

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/xmldsig-core/
http://www.alphaworks.ibm.com/tech/xmlsecuritysuite

4.8.4.2.1: Keystore files for testing purposes
Two keystore files, (SOAPserver and SOAPclient), are available for testing purposes.These files are located in
directory:

product_installation_root/installedApps/soapsamples.ear/soapsec.war/key

This article describes the certificates that are stored in these two keystore files.

File name Store password Description
SOAPserver server This keystore is used by a service provider.

SOAPclient client This keystore is used by a service requester.

Common Certificate Authority certificates

The following three certificates are commonly stored in both keystore files.

Alias Issuer Description
soapca soapca itself The certificate of the root Certificate Authority (CA) used for testing purposes.

intca1 soapca The certificate of the CA to issue SSL-related certificates.

intca2 soapca The certificate of the CA to issue SOAP-DSIG-related certificates.

Certificates for service providers

The following two certificates are stored in the SOAPserver keystore.

Alias Issuer Description

sslserver intca1
This is the certificate of the SSL server. This is also stored in the SOAPclient keystore
as a trusted certificate. The PKCS12 file including the corresponding private key for
this certificate is sslserver.p12.

soapprovider intca2 This certificate might be used by a service provider to digitally sign its response
message. The key password is "server".

Certificates for service requesters

The following three certificates are stored in the SOAPclient keystore.

Alias Issuer Description

sslclient intca1 This certificate might be used for the SSL client authentication. The key password is
"client".

sslserver intca1
This is the certificate of the trusted SSL server and the same as the one stored in the
SOAPserver keystore. The PKCS12 file, including the corresponding private key for
this certificate, is sslserver.p12.

soaprequester intca2 This certificate might be used by a service requester to digitally sign its request
message. The key password is "client".

IBM HTTP Server documentation on configuring SSL●

Tools for managing certificates and keys●

http://www.ibm.com/software/webservers/httpservers/doc/v1312/ibm/9atstart.htm
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/050506.html

4.8.4.2.2: Envelope Editor
The Envelope Editor is a component thatcan be plugged into the Apache SOAP transports.At the server side, it is embedded into theRPC and
MessageRouterServlets. At the clientside, it is embedded in the FilterTransport,which implements the SOAPTransport interface.WebSphere
Application Server provides a PluggableEnvelopeEditor,which can be usedto plug-in some editing componentssuch as signature and verification.

Enabling Envelope Editor

At the client side, the configuration ofthe eEnvelope eEditor is explicitly programmed.On the server side, the transport hook isenabled automatically
in the soapsec.war filewhen you add the "init" param to the RPC and Messagerouter servlets for the EnvelopeEditorFactory.This entry in
the web.xml for the soapsec.war fileis added automatically when you "soap enable"an application and indicate the service is secure.

Description of the factory class to instantiate Envelope Editors

A factory class creates Envelope Editors at runtime. The factory class is called DSigFactory. The DSigFactory class consumes an editor
configuration file, and creates an instance of Envelope Editor. The factory class and the configuration file are specified in:

product_installation_root\installedApps\ear_file_name\soapsec.war\WEB-INF\web.xml

The factory class is describedunder the <servlet id="Servlet_1">and <servlet id="Servlet_2">elements:

 <display-name>Apache-SOAP-SEC</display-name> <description>SOAP Security Enablement
WAR</description> <servlet id="Servlet_1"> <servlet-name>rpcrouter</servlet-name>
<display-name>Apache-SOAP Secure RPC Router</display-name> <description>no
description</description>
<servlet-class>com.ibm.soap.server.http.WASRPCRouterServlet</servlet-class> <init-param
id="InitParam_1"> <param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value> </init-param>
<init-param id="InitParam_2"> <param-name>EnvelopeEditorFactory</param-name>
<param-value>com.ibm.soap.dsig.dsigfactory.DSigFactory</param-value> </init-param>
<init-param id="InitParam_3"> <param-name>SOAPEvnelopeEditorConfigFilePath</param-name>
<param-value>conf/sv-editor-config.xml</param-value> </init-param> </servlet>
<servlet id="Servlet_2"> <servlet-name>messagerouter</servlet-name>
<display-name>Apache-SOAP Secure Message Router</display-name>
<servlet-class>com.ibm.soap.server.http.WASMessageRouterServlet</servlet-class> <init-param
id="InitParam_5"> <param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value> </init-param>
<init-param id="InitParam_6"> <param-name>EnvelopeEditorFactory</param-name>
<param-value>com.ibm.soap.dsig.dsigfactory.DSigFactory</param-value> </init-param>
<init-param id="InitParam_7"> <param-name>SOAPEnvelopeEditorConfigFilePath</param-name>
<param-value>conf/sv-editor-config.xml</param-value> </init-param> </servlet>

EnvelopeEditorFactory is a factory class.SOAPEnvelopeEditorConfigFilePath is a configurationfile for Envelope Editor.

Configuration file of Envelope Editor

The configuration file, sv-editor-config.xml is located in:

product_install_root\installedApps\<ear_file_name>\soapsec.war\conf\sv-editor-config.xml

Under the SOAPEnvelopeEditorConfig element, thereare two optional elements:

incoming●

outgoing●

The incoming and incoming element definitions look like the following example:

 <incoming class="com.ibm.xml.soap.security.dsig.SOAPVerifier"> <init-param>
<param-name>filename</param-name> <param-value>conf/sv-ver-config.xml</param-value>
</init-param> </incoming> <outgoing class="com.ibm.xml.soap.security.dsig.SOAPSigner">
<init-param> <param-name>filename</param-name>
<param-value>conf/sv-sig-config.xml</param-value> </init-param> </outgoing>

The incoming element specifies a class which "edits" incoming messages, and a configuration file for the editing class. The outgoing element
specifies a class for outgoing message and a configuration file.

Changing the configuration

You do not have a digital signature for response messages if you remove the outgoing element from

product_installation_root\installedApps\<ear_file_name>\soapsec.war\conf\sv-editor-config.xml

and remove the incoming element from

product_installation _root\installedApps\<ear_file_name>\soapsec.war\conf\cl-editor-config.xml

http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html

4.8.4.2.3: Signature Header Handler
The Signature Header Handler (SHH) insertsa digital signature header into a SOAP envelope.You can customize the SHH configuration
with a configuration file. For example, you canspecify a signing policy and the key storefile.

There are two signature configurationfiles:

product_installation_root\installedApps\<ear_file_name>\soapsec\conf\sv-sign-config.xml
product_installation_root\installedApps\<ear_file_name>\soapsec\conf\cl-sign-config.xml

The soapsamples.ear file contains samples of these configuration files.

An explanation of each configuration element in the Signature Header follows:

KeyStore

The KeyStore element specifies a keystore file that holds the signingkey. In the following example, the attribute "type" indicates a
keystore type, and "jks" indicates Java Key Store. "path" is a keystorefile, and "storepass" is its store password.

 <KeyStore type="jks" path="key\SOAPserver" storepass="server" />

The Key Management tool (iKeyman) can beused to create a keystore file.

●

Policy

The PublicKey element specifies the information that should be included inthe <ds:KeyInfo> element. With the current
implementation, you must either include the complete certificate chain, oromit the <ds:KeyInfo> When <ds:KeyInfo> is ommitted,
the recipientmust know the default key to verify the signature.

●

Template

The contents of the Template element specify all the details relatedto XML Signature, including signature algorithms, digest
algorithms,canonicalization algorithms, transform algorithms, the portion of theSOAP envelope to be signed, and so on.

●

Object

The template can also have Object element(s) for additionalauthentication information, such as a timestamp.

●

ValueOfTimestamp

This SHH understands one special element type, ValueOfTimestamp, whichis replaced with a current time and date before being
inserted intothe signature.

●

http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html

4.8.4.2.4: Verification Header Handler
The Verification Header Handler (VHH) validatesa digital signaure header in a SOAP envelope.Its configuration can be customized usinga configuration file
where you specify the following:

a verification policy●

the certificate path●

logging files to record verified messages●

There are two signature configuration files:

product_installation_root\installedApps\<ear_file_name>\soapsec.war\conf\sv-ver-config.xml
product_installation_root\installedApps\<ear_file_name>\soapsec.war\conf\cl-ver-config.xml

Samples of these configuration files areprovided in the soapsamples.ear file.

An explanation of each configuration element in the Verification Header follows:

AllowedAlgorithms

All the algorithms supported by this VHH must be listed in this element. Algorithms other than these cannot be used in SOAP-SEC:Signature
header. The current implementation supports all required algorithms in the XML Signature specification, except for SHA1-MAC.

●

RequiredAuthenticatedParts

This section specifies what parts of SOAP message need to be authenticated through the SOAP-SEC:Signature header. Currently two values are
supported for the part attribute:

When part="root," the whole evelope must be signed through the enveloped-signature transform.1.

When part="body," the SOAP-ENV:Body element in the SOAP envelope must be referenced by one of the reference elements in the
signature.

2.

Part="" allows an attachment to be specified.

If the specified parts are not authenticated through the signature header entry, verification fails.

●

DefaultVerificationKeys

When KeyInfo is missing in the signature, the content of this elementis used as a part of the signature. When communicatingparties know the
identity of each other, the default KeyInfo can beused to reduce the communication data volume.

●

Log

Specifies the logging behavior. The following versions of logging exist:

When target="all," all verification attempts are logged.❍

When target="success," only successful verification are logged.❍

When target="fail," only unsuccessful verification are logged.❍

 Multiple LogFile elements can be specified.

The following example illustrates how to specify logging:

 <Log> <SOAPDSigLogger class="com.ibm.xml.soap.security.dsig.SOAPDSigLoggerImpl">
<LogFile target="all" path="SOAPVHH-all.log" append="yes"/> </SOAPDSigLogger> <SOAPDSigLogger
class="com.ibm.xml.soap.security.dsig.SOAPDSigLoggerImpl"> <LogFile target="fail"
path="SOAPVHH-fail.log" append="yes"/> </SOAPDSigLogger> </Log>

●

PKIXParameters

Currently VHH supports X.509/PKIX certificates only (no HMAC, no PGP, and so forth). The policies for PKIX certificate verification are specified
in this element. This is a straightforward mapping of Java CertPath API. Not all of the entries are meaningful in this initial release.

Current implementation only allows the useof keystore as the means of specifying trustedroot.

●

http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/root.html

6.6.0.14: XML-SOAP Admin tool
Use the SOAPEarEnabler toolto add administrative interfaces to your EAR files. You can then use the
XML-SOAP Admin tool with these EAR files.

WebSphere Application Server provides a modified version of theApache SOAP XML-Admin interface (or
XML-SOAP Admin tool) for each SOAP-enabled EAR file.This interface allows you to do the followingfor
each context root:

List configured services, showing active and stopped services●

Stop a service●

Start a service●

View the Apache Soap deployment descriptor for a service●

Accessing the XML-SOAP Admin tool

Access the XML-SOAP Admin tool through a Web browser by specifying:

 http://localhost/<contextroot>/admin/index.html

Note: The context root, in this example, is the context specified when installing the
SOAP-enabled .ear file.The context root for SOAP samples is soapsamples.

Therefore to use this interface with the SOAP samples,enter:

 http://localhost/soapsamples/admin/index.html

You cannot use the XML-SOAP Admin tool to add or remove a service. Usethe SOAP Ear Enabler tool to add
or removeservices. A "stopped" service is persistedacross starts and stops of the applicationserver. Therefore, if
you stopa service, it will remain stopped until thenext time you use the XML-SOAP Admin toolto start it again.

You can add the XML-SOAP Admin tool interface to an enterpriseapplication when you SOAP-enable the EAR
file.In interactive mode, you are asked whether you want to add the XML-SOAP Admin tool interface.Replying
"yes" will add the necessaryJSP files and bindings that allow you to accessthe XML-SOAP Admin tool
interface for the application.The interface is an optional addition becauseyou may not want to expose itin a
production environment. Optionally,you may choose to use the application assemblytool to assign roles to the
XML-SOAP Admin toolso that it is secure.

Updating an existing SOAP-enabled Enterprise Application

The Application Assembly tool is used toupdate the contents and configuration ofan enterprise application. For
example, tosecure the XML-SOAP Admin tool interfacefor a particular EAR, use the application assemblytool
to secure the resource. (See article Securing applicationsfor security information.) However, you cannot use the
application assembly toolto add or remove a Web service.

To add or remove a service to the XML-SOAP Admin tool, startwith the original EAR file and execute the
enabling process again.

Note: The SOAPEar Enabler tool saves a backup copy of the EAR file.

http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/06060010.html
http://localhost/0802_makepdf/ae_orig/nav_webservicesnav/05.html

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

