
WebSphere™ Application Server

Using the Performance Monitoring
Infrastructure Client Package

Version 4.0

GC09-3951-00

IBM

ii WebSphere: Using the Performance Monitoring Infrastructure Client Package

Contents

Figures v

Tables vii

Using the Performance Monitoring
Infrastructure Client Package 1
Introduction 1

PMI organization and implementation . . 1

PMI client interfaces 3
Data organization and hierarchy 3
PMI interfaces. 4

Using the PMI client interfaces 12

Notices 17
Trademarks and service marks 19

© Copyright IBM Corp. 2001 iii

iv WebSphere: Using the Performance Monitoring Infrastructure Client Package

Figures

1. The role of PerfServer in collecting and
distributing performance data 2

2. Organization of PMI data 4
3. Definitions of the CpdCollection,

CpdXML, and CpdEventSender interfaces 5
4. Definition of the PerfDescriptor interface 6
5. Definition of the PerfDescriptorList

interface 7

6. Definition of the CpdData interface 7
7. Definition of the CpdValue interface 8
8. Definition of the PmiClient class 10
9. Definitions of the CpdEventListener and

CpdEvent interfaces 12
10. Definition of the CpdFamily class 12
11. Example of PMI client code 13

© Copyright IBM Corp. 2001 v

vi WebSphere: Using the Performance Monitoring Infrastructure Client Package

Tables

1. CpdValue types and associated methods 8

© Copyright IBM Corp. 2001 vii

viii WebSphere: Using the Performance Monitoring Infrastructure Client Package

Using the Performance Monitoring Infrastructure Client
Package

Introduction

The Performance Monitoring Infrastructure (PMI) is a set of packages and
libraries designed to assist with gathering, delivering, processing, and
displaying performance data in WebSphere Application Server Advanced
Edition domains. This document discusses the client packages of the PMI
application programming interface (API) and describes how to use them to
write WebSphere Application Server clients that collect and display
performance data from servers.

PMI organization and implementation
PMI follows a client/server architecture. In PMI terms, a server is any
application that uses the PMI API to collect performance data; servers can
include application servers, HTTP servers, and Java applications. WebSphere
Application Server provides a server named PerfServer that is responsible for
retrieving performance data from other servers in the domain and making the
data available to interested clients, as shown in Figure 1 on page 2. A client is
an application that receives performance data from a server or servers and
processes the data; clients can include graphical user interfaces (GUIs) that
display performance data in real time, applications that monitor performance
data and trigger different events according to the current values of the data,
or any other application that needs to receive and process performance data.

© Copyright IBM Corp. 2001 1

Each piece of performance data has two components, a static component and
a dynamic component. The static component consists of a name and an ID to
identify the data, as well as other descriptive attributes that assist the client in
processing and displaying the data. The dynamic component consists of
information that changes over time, such as the current value of a counter and
the time stamp associated with that value.

Performance data is classified into the following four types:
v Numeric data, consisting of a single numeric value such as an integer, a long,

or a double. It is used to represent data such as counts and sizes.
v Statistical data on a sample space. It consists of the number of elements in

the sample set, the sum of the elements, and the sum of squares. These
values can be used to obtain the mean, the variance, and the standard
deviation of the mean. An example of statistical data is the response time
for each invocation of an enterprise bean.

v Load data, which monitors a value as a function of time. Example uses
include tracking the number of threads or the number of service requests in
a queue. Load data tracks the current value, the time the value was
reached, and the integral over time of the value. These values can be used
to obtain the weighted average for the level over a period of time. An
example of load data is the average size of a database connection pool
during a specified time interval.

v Group data is a collection of performance data intended to be used by
groups. It enables servers to create sets of performance data that can be
retrieved by clients with a single call.

Figure 1. The role of PerfServer in collecting and distributing performance data

2 WebSphere: Using the Performance Monitoring Infrastructure Client Package

Data is organized by modules; each module has a configuration file in
extensible markup language (XML) format that determines its organization.
The configuration file lists a unique identifier for each piece of performance
data in the module. A client can use the data’s unique ID to retrieve the data’s
static information; the server then sends the dynamic information associated
with that data to the client. A server can track many instances of each type of
performance data—for example, a number of pieces of performance data
tracking the average response time of bean methods. In this case, each piece
of performance data shares the same ID, and the server sends additional
identifying information (for example, the bean’s home name) along with the
performance data so that clients can distinguish among the different instances.

PMI interfaces with WebSphere administration utilities to enable
administrators to control the amount and level of performance data collected.
You can access the PMI administrative interface by using the Administrative
Console.

PMI client interfaces

This section discusses PMI’s client implementation, including the organization
of data sent to clients and the interfaces clients use to retrieve and process
performance data from servers. Performance data used by PMI’s client
implementation is referred to as client performance data (CPD).

Data organization and hierarchy
PMI data is provided to clients in a hierarchical structure. The CpdSnapshot
object is the root of the hierarchy. Descending from the CpdSnapshot object
are node information, server information, module information, and
PerfCollection and CpdData objects. See Figure 2 on page 4 for a diagram of
the data hierarchy. Note that the node-information and server-information
objects contain no performance data.

Using the Performance Monitoring Infrastructure Client Package 3

Each time a client retrieves performance data from a server, the data is
returned in a subset of this structure; the form of the subset depends on the
data that is retrieved. You can update the entire structure with new data or
update only part of the tree, as needed.

PMI interfaces
The PMI PerfServer exports the CpdCollection, CpdData, and CpdValue
interfaces to provide performance data to interested clients. The PMI API
provides the PmiClient interface to enable clients to receive performance data
from servers. For details on these interfaces, see “The CpdCollection
interface”, “The CpdData and CpdValue objects” on page 7, and “The
PmiClient class” on page 9. In addition, PMI provides the CpdEventListener
and CpdEvent interfaces to enable clients to register as listeners, and thus to
be informed when new or changed data is available at the server; see “The
CpdEventListener and CpdEvent interfaces” on page 11 for details. Finally,
PMI provides the CpdFamily class to assist with displaying data in table
form; see “The CpdFamily class” on page 12 for details.

The CpdCollection interface
The CpdCollection interface is the base interface to PMI. It organizes
performance data in the hierarchy described in “Data organization and

Figure 2. Organization of PMI data

4 WebSphere: Using the Performance Monitoring Infrastructure Client Package

hierarchy” on page 3. Each member of the hierarchy is an instance of
CpdCollection that contains a number of data members and a number of
CpdCollection children.

The CpdCollection interface extends two other PMI interfaces, CpdXML and
CpdEventSender. These interfaces are defined as follows:

The update method updates collections of data. To illustrate the functionality
of this method, assume that the collection1.update(collection2) statement
is used to update a data collection named collection1 with the data in a
collection named collection2. In this case, the update method works as
follows:
v If collection1 and collection2 represent the same collection (that is, if

they are instances of the same PerfDescriptor object, with collection2
representing a more recent version of the PerfDescriptor object than
collection1), the update method performs the following tasks:
– If any member of collection2 does not have a corresponding member in

collection1, the update method creates a child collection of collection1
that contains the member from collection2.

public interface CpdCollection extends Serializable, CpdXML,
CpdEventSender {

public PerfDescriptor getPerfDescriptor();
public String getDescription();
public int numDataMembers();
public CpdData[] dataMembers();
public CpdData getData(int index);
public int numSubcollection();
public CpdCollection[] subcollections();
public CpdCollection getSubcollection(int i);
public CpdCollection findCollection(PerfDescriptor pd);
public void addSubcollection(CpdCollection col);
public CpdCollection getParent();
public void update(CpdCollection other);
public CpdCollection reset();

}

public interface CpdXML {
public String toXML();
public void fromXML(String xmlStr);

}

public interface CpdEventSender extends Cloneable {
public void addCpdEventListener(CpdEventListener al);
public void removeCpdEventListener(CpdEventListener al);
public void notifyListeners(CpdEvent evt);
public void notifyListeners(int evt_type);

}

Figure 3. Definitions of the CpdCollection, CpdXML, and CpdEventSender interfaces

Using the Performance Monitoring Infrastructure Client Package 5

– For each member of collection2 that has a corresponding member in
collection1, the update method updates the member in collection1
with the corresponding data in collection2.

The update method then returns a value of true to the caller.
v If collection1 and collection2 do not represent the same collection, the

update method performs the following tasks:
– For any member of collection1 that has a corresponding member in

collection2, the update method updates the member in collection1
with the corresponding data in collection2.

– If collection2 is a descendant of collection1, the update method
creates a child collection of collection1 and updates each member of the
child collection with the corresponding data in collection2.

If neither of these conditions is met, the update method returns a value of
false.

The PerfDescriptor interface is used to specify the data that the client is
interested in. It includes methods that return node name, server name,
module name, collection name, and full name. Its definition is as follows:

The PerfDescriptorList class is used to gather data from multiple
PerfDescriptor instances. It includes methods to add, remove, and get
PerfDescriptor instances. Its definition is as follows:

public interface PerfDescriptor extends Serializable {
public int getType(); // Types include node, server, module, instance,

// and data
public String getNodeName();
public String getServerName();
public String getModuleName();
public String getName(); // Returns node, server, module, instance,

// or data name, depending on type
public String getFullName(); // Returns a name in the following form:

// node.server.module.instance.data
public String[] getPath();
public boolean equals(PerfDescriptor pd);
public boolean isDescendingFrom(PerfDescriptor pd);
public int[] getDataIds(); // Returns all data IDs (null, one, or multiple)

// in the descriptor
}

Figure 4. Definition of the PerfDescriptor interface

6 WebSphere: Using the Performance Monitoring Infrastructure Client Package

The CpdData and CpdValue objects
The CpdData object is the lowest level in the CPD hierarchy. Each CpdData
instance contains all the static information for the performance data as well as
a getValue method to return the data’s dynamic information in the form of an
instance of the CpdValue object. The CpdData interface provides an update
method to take a reference to a new version of a piece of data and update the
current object with the new value. The value is updated only if the new data
has the same name as the original object. The CpdData interface also includes
an addListener interface to enable data objects to register as event listeners;
see “The CpdEventListener and CpdEvent interfaces” on page 11 for details.
The CpdData interface extends the CpdXML and CpdEventSender interfaces,
which are shown in Figure 3 on page 5.

The definition of CpdData is as follows:

A variety of data types extend the CpdValue interface. The interface provides
the getValue, getTime, delta, and rate methods to work with data values. The
definition of CpdValue is as follows:

public class PerfDescriptorList {
public boolean addDescriptor(PerfDescriptor pd); // If pd is not in the

// list, add it and return true; otherwise, return false
public boolean removeDescriptor(PerfDescriptor pd); // If pd is in the

// list, remove it and return true; otherwise, return false
public int numDescriptors(); // Return the number of PerfDescriptor

// instances in the list
public PerfDescriptor[] getDescriptors(); // Return all PerfDescriptors

// in an array
}

Figure 5. Definition of the PerfDescriptorList interface

public interface CpdData extends Serializable, CpdXML, CpdEventSender {
public PerfDescriptor getDescriptor();
public String getDescription();
public void setValue(CpdValue value);
public void update(CpdData other);
public CpdValue getValue();
public Object getParent();
public void setParent(Object parent);
public boolean reset();

}

Figure 6. Definition of the CpdData interface

Using the Performance Monitoring Infrastructure Client Package 7

Each client value type extends the CpdValue interface. The specific types are
listed in Table 1.

Table 1. CpdValue types and associated methods

Type Method Description

CpdInt int intValue() Value as an int

CpdLong long longValue() Value as a long

CpdDouble double doubleValue() Value as a double

CpdStatData double mean() Mean of the sample set

int count() Element count

double sumsquares() Sum of squares of the
elements

double variance() Variance

double standardDeviation() Standard deviation

double confidence(int level) Confidence interval of the
mean

CpdLoad double mean() Time-weighted average
value

double getCurrentValue() Last data point

long getWeight() Measured time period

The getValue method retrieves the value and, if possible, converts it to a
double value. If it cannot make the conversion, it returns Double.NaN. The
values returned by getValue can be used for displaying and graphing data.

The getTime method returns the server time associated with the data.

The delta method takes the current value and a previous value of a piece of
data, and returns an object that represents the change between the values. The
delta method also returns a deltaTime value, which represents the time
associated with the delta value and the current value of the data. The delta

public inteface CpdValue extends Serializable, Cloneable {
public int getType();
public long getTime();
public double getValue();
public CpdValue delta(CpdValue prev); // return the difference
public CpdValue rate(CpdValue prev); // return the rate of the difference
public void combine(CpdValue other); // add another value to this value
public Object clone();

}

Figure 7. Definition of the CpdValue interface

8 WebSphere: Using the Performance Monitoring Infrastructure Client Package

method is defined for all objects listed in Table 1 on page 8. For CpdStatData,
the delta between two values provides the statistics on all members of the
current sample set, not on members of any previous set. The delta method is
also defined for groups. For two groups, g1 and g2, the object returned by the
statement g1.delta(g2) is a group whose members include all members
common to both g1 and g2. For each member m1 of group g1 with a
corresponding value of m2 in g2, the corresponding delta value is represented
by m1.delta(m2).

The rate method returns the rate of change. This method is defined for the
CpdInt, CpdLong, and CpdDouble types. If the rate cannot be calculated (for
instance, if the method is used with the CpdStatData or CpdLoad types), the
original value is returned.

For the CpdLoad object, the mean method returns the time-weighted average
of the value being tracked. It is computed by dividing the integral value by
the delta time. If the delta time is 0 (zero), the difference between the object’s
current time and its creation time is used.

The PmiClient class
The PmiClient class is used by clients to access performance data. It looks up
session beans and invokes remote APIs, thus freeing the programmer from
having to implement these tasks manually. A client can create an instance of
PmiClient and call all subsequent methods on that object. The PmiClient
object converts wire-level data to a client-side data collection hierarchy and
exports methods for clients to create PerfDescriptor objects if the objects’
names are known. If you know the static names for the node, server, module,
instance, or data, you can call pmiClient.createPerfDescriptor to obtain the
PerfDescriptor. Otherwise, you can get the names by issuing the listNodes,
listServers, and listMembers methods on PmiClient.

The definition of PmiClient is as follows:

Using the Performance Monitoring Infrastructure Client Package 9

public class PmiClient {
// Constructor: Look up a PerfRetrieve session bean home and
// create a bean object. Do all initialization (for example,
// get all configuration files).
// Default hostName is localhost; default port is 900
// Default JNDI name for perfRetrieveHome is "PerfRetrieveHome"
PmiClient();
PmiClient(String hostName);
PmiClient(String hostName, String port);
PmiClient(String hostName, String port, String perfRetrieveHome);

// The top-level collection of the data hierarchy.
CpdCollection createRootCollection();

// The following methods serve as wrappers for the remote
// methods in PerfRetrieve so that users do not need to
// deal with remote APIs or wire-level data.

// List all nodes in the domain, then call
// PerfDescriptorInstance.getName() to get the node names.
PerfDescriptor[] listNodes();

// List all servers in a node; pd is the one returned from
// listNodes. Call PerfDescriptorInstance.getName() to get
// the server names.
PerfDescriptor[] listServers(String nodeName);
PerfDescriptor[] listServers(PerfDescriptor pd);

// List the members in a server. The returned PerfDescriptor
// can be passed to the next listMembers call until it
// returns null (that is, when the leaf node is reached).
PerfDescriptor[] listMembers(PerfDescriptor pd);

// Get module configuration, which contains all the static
// information for the data.
PmiModuleConfig[] getConfigs();
PmiModuleConfig[] getConfigs(String nodeName);
PmiModuleConfig getConfig(String moduleID);

// Retrieve performance data. The following modes are available:
// - Single pd versus an array of pds
// - With or without time interval
// - Recursive versus nonrecursive (recursive retrieves data
// for each subgroup instead of aggregate data)
CpdCollection get(PerfDescriptor pd, boolean recursive);
CpdCollection get(PerfDescriptor pd, boolean recursive, int time);
CpdCollection[] gets(PerfDescriptorList pds, boolean recursive);
CpdCollection[] gets(PerfDescriptorList pds, boolean recursive,

int time);

Figure 8. Definition of the PmiClient class (Part 1 of 2)

10 WebSphere: Using the Performance Monitoring Infrastructure Client Package

The CpdEventListener and CpdEvent interfaces
The PMI client package provides event and listener interfaces to inform clients
(for instance, a GUI display) when new or changed data is available. The
CpdEventObject interface, which extends java.util.EventObject, is the parent to
the PMI event and listener interfaces. The CpdEventListener interface, which
extends CpdEventObject, is the interface that objects need to implement to
receive performance data events. Objects can use the addListener method to
register as event listeners. The definition of the method is as follows:
void addListener(CpdEventListener listener);

The definitions of the CpdEventListener and CpdEvent interfaces are as
follows:

// Retrieve performance data in XML format
String getXML(PerfDescriptor pd, boolean recursive);
String getXML(PerfDescriptor pd, boolean recursive, int time);
String getXML(PerfDescriptorList pds, boolean recursive);
String getXML(PerfDescriptorList pds, boolean recursive,

int time);

// Convert data ID and name
public static String getDataName(String moduleID, int dataId);
public static int getDataId(String moduleID, String name);

// Methods to create a PerfDescriptor, used when you know
// static names
public PerfDescriptor createPerfDescriptor(){
public PerfDescriptor createPerfDescriptor(String[] dataPath);
public PerfDescriptor createPerfDescriptor(String[] dataPath,

int dataId);
public PerfDescriptor createPerfDescriptor(String[] dataPath,

int[] dataIds);
public PerfDescriptor createPerfDescriptor(PerfDescriptor parent,

String name);
public PerfDescriptor createPerfDescriptor(PerfDescriptor parent,

int dataId);
public PerfDescriptor createPerfDescriptor(PerfDescriptor parent,

int[] dataIds);
}

}

Figure 8. Definition of the PmiClient class (Part 2 of 2)

Using the Performance Monitoring Infrastructure Client Package 11

The CpdFamily class
The PMI client provides the CpdFamily class to simplify displaying data in a
table. When two data objects have the same module identifier, they are in the
same family and can be displayed in the same table by using this class. The
definition of CpdFamily is as follows:

Using the PMI client interfaces

This section discusses the use of the PMI client interfaces in applications. The
basic programming model is as follows:
1. A client uses the CpdCollection interface to retrieve an initial collection, or

snapshot, of performance data from the server. This snapshot, which is
called Snapshot in this example, is provided in a hierarchical structure as
described in “Data organization and hierarchy” on page 3, and contains
the current values of all performance data collected by the server. The
snapshot maintains the same structure throughout the lifetime of the
CpdCollection instance.

public interface CpdEventListener {
public void CpdEventPerformed(CpdEvent evt);

}

public class CpdEvent {
final static int EVENT_NEW_MEMBER = 0;
final static int EVENT_NEW_SUBCOLLECTION = 1;
final static int EVENT_NEW_DATA = 2;

private int type;
private Object source = null;

public CpdEvent(Object source, int type);
public CpdEvent(int type);
public Object getSource();
public int getType();

}

Figure 9. Definitions of the CpdEventListener and CpdEvent interfaces

public class CpdFamily {
static public boolean isSameFamily(CpdData d1, CpdData d2);
static public boolean isSameRow(CpdData d1, CpdData d2);
static public boolean isSameColumn(CpdData d1, CpdData d2);
static public boolean getRow(CpdData d1);
static public boolean getColumn(CpdData d1);
static public boolean getFamilyName(CpdData d1);

}

Figure 10. Definition of the CpdFamily class

12 WebSphere: Using the Performance Monitoring Infrastructure Client Package

2. The client processes and displays the data as specified. Processing and
display objects (for example, filters and GUIs) can register as CpdEvent
listeners to data of interest; see “The CpdEventListener and CpdEvent
interfaces” on page 11 for details. When the client receives updated data,
all listeners are notified.

3. When the client collects new or changed data (for example, data
collections named S1, S2, and so on) from the server, the client uses the
update method to update Snapshot with the new data:
Snapshot.update(S1);
// ...later...
Snapshot.update(S2);

4. Step 2 and Step 3 are repeated through the lifetime of the client.

Figure 11 lists a sample of PMI client code.

import com.ibm.websphere.pmi.*;
import com.ibm.websphere.pmi.server.*;
import com.ibm.websphere.pmi.client.*;

public class PmiTest implements PmiConstants {

// A test driver
// If arguments are provided:
// args[0] = node name
// args[1] = port number
// args[2] = The JNDI name of PerfRetrieve
//
// Note: This will not work unless an admin server and
// perfServer are running
//

public static void main(String[] args) {
String hostName = null;
String portNumber = null;
String homeName = null;
if (args.length >= 1)

hostName = args[0];
if (args.length >=2)

portNumber = args[1];
if (args.length >=3)

homeName = args[2];

PmiClient pmiClnt = new PmiClient(hostName, portNumber, homeName);

// Root of PMI data tree
CpdCollection rootCol = pmiClnt.createRootCollection();

Figure 11. Example of PMI client code (Part 1 of 3)

Using the Performance Monitoring Infrastructure Client Package 13

// Set performance descriptor (pd) list
// pdList will include all PerfDescriptors for data retrieval
PerfDescriptorList pdList = new PerfDescriptorList();
try {

// If you want to query PmiClient to find the PerfDescriptor
// you need, you can go through listNodes, listServers, and
// listMembers to list all the PerfDescriptors and extract
// the one you want.
PerfDescriptor[] nodePds = pmiClnt.listNodes();
String nodeName = nodePds[0].getName();
System.out.println("after listNodes:" + nodeName);
PerfDescriptor[] serverPds = pmiClnt.listServers(
nodePds[0].getName());

System.out.println("after listServers");

if (serverPds == null || serverPds.length == 0) {
System.out.println("NO app server in node");
return;

}

// For a simple test, get from the first server
PerfDescriptor[] myPds = pmiClnt.listMembers(serverPds[0]);
// You can add all pds to PerfDescriptorList
for (int i = 0; i < myPds.length; i++) {
if (myPds[i].getModuleName().equals(

"com.ibm.websphere.pmi.beanModule")
|| myPds[i].getModuleName().equals(

"com.ibm.websphere.pmi.connectionPoolModule")
|| myPds[i].getModuleName.equals(

"com.ibm.websphere.pmi.webAppModule"))
pdList.addDescriptor(myPds[i]);

}

// Or, if you know the data path you want, you can create your own
String[] thisPath = new String[]{"thisNode", "thisServer",

"com.ibm.websphere.pmi.transactionModule"};
// Suppose you are interested only in dataIds 1, 2, and 3
PerfDescriptor thisPd = pmiClnt.createPerfDescriptor(thisPath,

new int[]{1, 2, 3});
pdList.addDescriptor(thisPd);

} catch (Exception ex) {
System.out.println("Exception calling CollectorAE");
ex.printStackTrack();

}

Figure 11. Example of PMI client code (Part 2 of 3)

14 WebSphere: Using the Performance Monitoring Infrastructure Client Package

// Retrieve the data in pdList
CpdCollection[] cpdCols = null;
try {

for (int i = 0; i < 10; i++) {
java.lang.Thread.sleep(1000);
cpdCols = pmiClnt.gets(pdList, true);
if (cpdCols == null || cpdCols.length == 0) {

System.out.println(
"PMI data return null--possible wrong pds");

}
for (int j = 0; j < cpdCols.length; j=++) {

rootCol.update(cpdCols[j]);
report(cpdCols[j]);

}
}

} catch (Exception ex {
System.out.println("Exception to call thread sleep");

}
}

// Simple method to make sure we are getting the correct CpdCollection
private static void report(CpdCollection col) {

System.out.println("\n\n");
if (col == null) {

System.out.println("report: null CpdCollection");
return;

}
System.out.println("report--CpdCollection ");
printPD(col.getDescriptor());
CpdData[] dataMembers = col.dataMembers();
if (dataMembers != null) {

System.out.println("report CpdCollection: dataMembers is " +
dataMembers.length);

for (int i = 0; i < dataMembers.length; i++) {
CpdData data = dataMembers[i];
printPD(data.getDescriptor());

}

}
CpdCollection[] subCollections = col.subcollections();
if (subCollections != null) {

for (int i = 0; i < subCollections.length; i++) {
report(subCollections[i]);

}
}

}

// Simple method to write the full name of a pd
private static void printPD(PerfDescriptor pd) {

System.out.println(pd.getFullName());
}

}

Figure 11. Example of PMI client code (Part 3 of 3)

Using the Performance Monitoring Infrastructure Client Package 15

16 WebSphere: Using the Performance Monitoring Infrastructure Client Package

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 2001 17

be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

For Component Broker:
IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

For TXSeries:
IBM Corporation
ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

18 WebSphere: Using the Performance Monitoring Infrastructure Client Package

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

Advanced Peer-to-Peer Networking
AFS
AIX
APPN
AS/400
CICS
CICS OS/2
CICS/400
CICS/6000
CICS/ESA
CICS/MVS
CICS/VSE
CICSPlex
DB2
DCE Encina Lightweight Client
DFS
Encina
IBM
IBM System Application Architecture
IMS
IMS/ESA
Language Environment
MQSeries

MVS/ESA
NetView
Open Class
OS/2
OS/390
OS/400
Parallel Sysplex
PowerPC
RACF
RAMAO
RMF
RISC System/6000
RS/6000
S/390
SAA
SecureWay
TeamConnection
Transarc
TXSeries
VSE/ESA
VTAM
VisualAge
WebSphere

Notices 19

Domino, Lotus, and LotusScript are trademarks or registered trademarks of
Lotus Development Corporation in the United States, other countries, or both.

Tivoli is a registered trademark of Tivoli Systems, Inc. in the United States,
other countries, or both.

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Windows, Windows
NT, and the Windows 95 logo are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Some of this documentation is based on material from Object Management
Group bearing the following copyright notices:

Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 Ing. C. Olivetti &C.Sp
Copyright 1997 International Computers Limited
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited
Copyright 1995, 1996 Novell USG
Copyright 1995, 1996 02 Technolgies
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software

20 WebSphere: Using the Performance Monitoring Infrastructure Client Package

Copyright 1995, 1996 Servio, Corp.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1996 Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.
Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Object Management Group and the companies
listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use
of this material.

This software contains RSA encryption code.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 21

	Contents
	Figures
	Tables
	Using the Performance Monitoring Infrastructure ClientPackage
	Introduction
	PMI organization and implementation

	PMI client interfaces
	Data organization and hierarchy
	PMI interfaces
	The CpdCollection interface
	The CpdData and CpdValue objects
	The PmiClient class
	The CpdEventListener and CpdEvent interfaces
	The CpdFamily class

	Using the PMI client interfaces

	Notices
	Trademarks and service marks

