WebSphere Application Server CORBA support

CORBA support (Reference articles)

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices"on
page 308 .

© IBM Corporation, 2001 US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents
Contents

CORBA support reference articles
Interface Definition Language (IDL)

IDL nName SCOPING ..cocevrvvveeeeriiiieeeeriiieenn
IDL interface declarationsc.c........
IDL constant declarations
IDL type declarationsccccccceeeenee
IDL exception declarations
IDL attribute declarations
IDL operation declarations
Multiple IDL interfacescccccccvveeeeeiinnnns
IDL include directivescccccveeeeeviiicnnnnns
IDL pragma directivescocoeeeeeriinnenn.
The idlc command (IDL compiler)
Options for the idlc command
The IDL-to-Java compilerccceenneee
Options for the IDL-to-Java compiler

Conventions used in documenting IDL

)Y 1 ¥ QOSSR

IDL lexical rulesccoccovvvveeeeeiiiiiiiiiieeen,

IDL reserved WOrdsSccccvveeeeeeiiniicnnnnns

Syntax for comments in IDL code
The implementation registration utility

(regimpl) ..o
CORBA programmingccccoeeeevvvvvveeeeennn.

CORBA C++ bindingsccvvvveeeeviiiiiinne,
CORBA C++ bindings for constants

CORBA C++ hinding restrictions
CORBA programming: Name scoping
and modules in the C++ bindings
Commonly used CORBA interfaces
CORBA class interfacesc.c.......
CORBA::0object interfaces
CORBA::ORB interfacesccc.......
C++ bindings for CORBA interfaces
Managing CORBA obiject references

CORBA programming: narrowing to a

C++ implementationccccceeeeeeen.
CORBA programming: Storage
management and _var types

CORBA programming: Argument

passing considerations for C++ bindings

CORBA internationalization: Initializing
client programsccccceeeeeeeeeeeeececcciinee,

mm\]h#WI\)I\)H

RPrRRrRERREPER
N~NhWRE RO

21
21
22

22

23
24
24

24
24
26

39
39

40
40
40
41
41
43
43
43
44
44

45

51

51

CORBA internationalization: Character set
FESTICHON ...
CORBA internationalization: Passing
object references over multiple platforms
CORBA internationalization: Using the
OMG char data type in IDL files

The CORBA Modulecooovevviiiiiiiiieeeeenn,

CORBA module: TYPesSccccceevvvvveeennnne
CORBA module: AliasDef Interface
AliasDef::original_type_def
CORBA module: Any Class
ANy Nil
ANy::operator<<cccccceeeveeeieeinnnnnn
Any::operator>>cccccciiineeeieiiinnnn.
ANy:replace ..o,
ANYITYPE oo
CORBA module: ArrayDef Interface
ArrayDef::element_typeocee
ArrayDef::element_type def
ArrayDef::length ...,

CORBA module: AttributeDef Interface
AttributeDef::describeccccoeneee.
AttributeDef::mode ...,
AttributeDef::type_defcoeee

CORBA module: BOA Classcccc........
BOA::_duplicateceeevirvvrvnennnn.
BOA: Nil oveeeeieeiiiiceeeeeeee e
BOA:Createccccovvvvviviiiieeeeceeeeen
BOA::deactivate_implcccceeevnnen.
BOA::dISPOSEevvveeeiiiieiiee it
BOA::execute_next_request
BOA::execute_request_loop
BOA::get idcccuvvviiiieiiiiieeee
BOA::get_principalcccccvvvvnenennn.
BOA::impl_is_readycccccceveeeeviiiinnns
BOA::request_pendingcccvveeee

CORBA module:

BOA::Dynamiclmplementation Class
BOA::Dynamiclmplementation::invoke

ConstantDef::itype_defcccccvveeeeeennn.
ConstantDef::valuecccoeeveevivvnnnnn.
CORBA module: Contained Interface
Contained::absolute_name
Contained::containing_repository
Contained::defined_in
Contained::describeccocevveeeenn.
Contained::idcoeevveeviiiiiiieee e,
Contained::nameccoeeeeveveeveeeeenenns
Contained::VerSionceeveevveeeennnnns
CORBA module: Container Interface
Container::contentsccoecevvunreennn.
Container::.create_alias
Container::create_constant

51

51

51

52
52
54
54
55
57
57
58
60
60
61
62
62
63
64

64
65
66
67
67
68
68
69
70
71
71
72
73
73
74
75

75

76

77
78
78
79
80
81
81
82
83
84
84
85
86
87
88

WebSphere Application Server CORBA support - Page 3

Contents

Container::create_enumccccee.....
Container::create_exception

Container::create_i

nterface

Container::create_module
Container::create_struct
Container::create_union
Container::describe_contents

Container::lookup .
Container::lookup_|

name

CORBA module: Context Class
Context::_duplicateccccueeeveeeeennnn.

Context::_nil

Context::context_name

Context::create_ch

1o R

Context::delete_valuescccceee..
Context::get_valuescccceeeennnen.

Context::parent

Context::set_one_value
Context::set_valuescccceeeeeeeen.
CORBA module: ContextList Class
ContextList::_duplicatecccc.........

ContextList::_nil
ContextList::add ...

ContextList::add_consume
ContextList::countccoeeevvivivneeeennn.
ContextList:iitemoovvvveeeeiieieieeeee,
ContextList::removeccoocevveeeeennnn.

CORBA module: CO

RBA Class

CORBA::_boacoovveiiiiiieececeeee,

CORBA::is_nil
CORBA::ORB_init
CORBA::release ...

CORBA::string_allocceeveveviienennn.
CORBA::string_dup «.ccceeeeveviiiiiiiiineen,
CORBA::string_freecccuvveveeeeneenn.

CORBA::wstring_a
CORBA::wstring_d

| (oo,
UP coveevieeeee e

CORBA::wstring_freecccccccvvveeeeennn.
CORBA module: Current Class

Current::_duplicate
Current::_nil

CORBA module: EnumDef Interface

EnumDef::member

S

CORBA module: Environment Class

Environment::_dup

licatecooeeveereennee,

Environment::_nilccccovvvvieieiininns

Environment::clear

Environment::exception
CORBA module: Exception Class
Exception::_duplicateccccccceeennn.

Exception::_nil
Exception::id

CORBA module: ExceptionDef Interface

ExceptionDef::describe
ExceptionDef::members
CORBA module: ExceptionList Class
ExceptionList::_duplicate

ExceptionList::_nil

89
90
91
92
93
94
95
96
97
98
99
99
99
100
100
101
101
102
102
103
103
104
104
104
105
105
106
106
109
109
110
111
112
113
113
114
114
115
115
116
116
116
117
118
118
118
119
119
120
120
120
121
121

122
122
123
124
124

ExceptionList::
ExceptionList::
ExceptionList::
ExceptionList::i

ExceptionList::re
CORBA module: IDLType Interface
IDLType::type ...
CORBA module: ImplementationDef

Interface

add ...,
add_consume
(olo 101 o | AOUR

MOVE ...,

ImplementationDef::get_alias
ImplementationDef::get_id
CORBA module: ImplRepository Class
" ImplRepository::find_impldef
ImplRepository::find_impldef_by_alias

InterfaceDef::

InterfaceDef::cre
InterfaceDef::cre

InterfaceDef::
InterfaceDef::

base_interfaces

ate_attribute
ate_operation

describecccvvineeen,
describe_interface

InterfaceDef:is_accooovevviiiecieininn
CORBA module: IRObject Interface
IRObject::def_Kindcccvvveeeeieiennnnn.
IRObject::destroycccccceveeeeienninnns
CORBA module: ModuleDef Interface
ModuleDef::describec.ccoccvveeeenes
CORBA module: NamedValue Class
NamedValue::_duplicate
NamedValue:_nilccceeeiviiiennnne
NamedValue:flagscoccceeviiiieennnne
NamedValue::nameccccoeevenee
NamedValue::valueocouvennneee
CORBA module: NVList Class
NVList::_duplicateccecvvvvvvennnn.

NVList::_nil

NVList:;:add

NVList::
NVList:
NVList::
NVList::

NVList::count

NVList::

NVList::item
NVList::remove .
CORBA module: Object Class

Object:

Object
Object
Object
Object

Object::
Object:
Object:
Object::
Object:
Object:

._Create_

add_itemccceeeiiiiieeeees
add_item_consume
add_valueccoccvieennnnn.
add_value_consume

requestc.ccvevee...

»_duplicatecccviiiiieieieen,
_get_implementation
;_get_interfacecccvvvveeee,
chash o

._harrow

:_request

_is_a ...
_is_equivalentccoeeeeene

nil........
. non_existentoccceeeieeennnn.

125
125
125
126
126
127
127
128

129
129
130

130
131

132

133
134
135
136
137
138
138
139
139
140
140
141
142
142
142
143
143
144
144
145
145
146
146
147
148
148
149
149
150
150
151
153
153
154
155
155
156
157
157
158
158

WebSphere Application Server CORBA support - Page 4

Contents

Object::_this

CORBA module: OperationDef Interface

OperationDef::contextscccceveeeee...
OperationDef::describe
OperationDef::exceptions

OperationDef::mode

OperationDef::paramscccceeueee.

OperationDef::result

OperationDef::result_def

CORBA module: ORB

ORB::_duplicate

ORB:: nil ..cccvvevenn.

ORB::EOA_init

Classcooeeeeunnnnenn

ORB::create_alias_tCcccccevruvrenn.
ORB::create_array_tCcccccevvererenn.
ORB::create_context_list
ORB::create_enum_{Ccevvvvvvnnnnn.
ORB::create_environment
ORB::create_exception_list
ORB::create_exception_tc
ORB::create_interface _tc

ORB::create_list

ORB::create_named_value
ORB::create_operation_list
ORB::create_recursive_sequence_tc

ORB::create_sequence_{C
ORB::create_string_tCccccccvveeeeennnn.
ORB::create_struct_tCccvvvvveeees
ORB::create_union_tcCccceeeeuneee.
ORB::get_default_context
ORB::get_next_response
ORB::get_service_information
ORB::list_initial_services
ORB::0object_to_stringcccvveeeen..
ORB::poll_next_response
ORB::resolve_initial_references

ORB::resolve_initial_references_remote

ORB::string_to_objectcccveeeeee..
CORBA module: Policy Interface
CORBA module: PrimitiveDef Interface

PrimitiveDef::kind

CORBA module: Principal Interface
CORBA module: Repository Interface
Repository::create_array
Repository::create_sequence
Repository::create_string
Repository::create_wstring
Repository::get_primitive
Repository::lookup_idcccceeeenneee
CORBA module: Request Class

Request::_duplicate

159
160

161
162
163
163
164
165
166
167
168
168
169
170
171
171
172
173
173
174
175
175
176
177
177

178
179
180
180
181
182
183
184
184
185
186
186

188

188

189
189
190

190
191
191
192
192
193
194
194
195
195
197

Request::_nil ...

Request::add_in_argcooeeuvvveneeee
Request::add_inout_argcc........
Request::add_out_argccccceeeeeeennnn.
Request::argumentsccccoeeevevenneen.
Request::contextsccccveeeeininnennn,

Request::ctx
Request::env ...

Request::exceptionscccceeeeenunnen.
Request::get_responsecccceeuees
Request:iinvokecccccceveeeiiiniiins
Request::operationcccccvvvnneee.
Request::poll_responsec......

Request::result

Request::return_valueccoeeenne
Request::send_deferred
Request::send_oneway

Request::set_re
Request::target

turn_typeccceveeeenne

CORBA module: RequestSeq Class

RequestSeq::all

ochuf eeviiiiiiiiieies

RequestSeq::freebufccccvvvvneeeen.
RequestSeq::lengthcccccvvvevveeeeenn.
RequestSeq::maximum
RequestSeq::operator[]cccceerrnnnn
CORBA module: SequenceDef Interface

SequenceDef::boundcccvveeeeeennn.
SequenceDef::element_type
SequenceDef::element_type def
CORBA module: ServerRequest Class

ServerRequest:

ServerRequest::
ServerRequest::
ServerRequest::
ServerRequest::
ServerRequest::
ServerRequest::
ServerRequest::

Nl

(o] o J (-]
op_Nameccceeeennn.
paramscoceeeeenns
result ...cooevvveeeveennnnee.

CORBA module: StringDef Interface
StringDef::boundccccciiiiiiiiiin,
CORBA module: StructDef Interface
StructDef::memberscccevveveinnen.
CORBA module: SystemException Class

SystemException::_duplicate
SystemException::_nilcccceeeenee
SystemException::completed
SystemException::minor
CORBA module: TypeCode Class
TypeCode::_duplicatecccceeeveennnn.

TypeCode::_nil

TypeCode::content_type
TypeCode::default_index
TypeCode::discriminator_type
TypeCode::equalooovvvvvririeeennnnnn.

TypeCode::id ...

TypeCode::kind

197
198
198
199
199
200
200
201
201
202
202
202
203
203
204
204
204
205
205
206
206
206
207
207
208
208

209
209
210
211

211
212
212
213
213
213
214
215
215
216
216
217
218

219
219
220
220
221
222
222
222
223
223
224
224
225

WebSphere Application Server CORBA support - Page 5

Contents

TypeCode::lengthccoeeeeviiiiieennnn,
TypeCode::member_count
TypeCode::member_label
TypeCode::member_name
TypeCode::member_type
TypeCode::Namecccccevveveeereeiinnnnns
CORBA module: TypedefDef Interface
TypedefDef::describec.cocvveeen.
CORBA module: UnionDef Interface
UnionDef::discriminator_type
UnionDef::discriminator_type def
UnionDef::membersccccoovvveeeens
CORBA module: UnknownUserException
ClaSS .evviiiiieiiie e
UnknownUserException::_duplicate
UnknownUserException::_nil
UnknownUserException::exception

UserException::_duplicate
UserException::_nilcccccevvvvieeeenns
CORBA module: WstringDef Interface
WstringDef::boundoooeee
CosNaming in the Naming Service
CosNaming::Bindinglterator Interface
Bindinglterator::destroycccccccee....
Bindinglterator::next_ncccoeuvee.
Bindinglterator::next_one
CosNaming::NamingContext Interface
NamingContext::bindcccccceeeen.
NamingContext::bind_context
NamingContext::bind_new_context
NamingContext::destroy
NamingContext::listcccveeeernnnen
NamingContext::new_context
NamingContext::rebind
NamingContext::rebind_context
NamingContext::resolve
NamingContext::unbind
CosTransactions in the Transaction Service
CosTransactions:: Control Interface
Control::get_coordinator
Control::get_terminatorcccc.......
CosTransactions::Coordinator Interface
Coordinator::get_parent_status
Coordinator::get_statusccccceeeennnn.
Coordinator::get_top_level_status
Coordinator::get_transaction_name

225
225
226
226
227
227
228

228
229
230
230
231
232

232

233
233

234

234
234
235

235
237
237
238
241
242
242

243
244
245

245
246
247
247
248
248
249
251

252
252
253
254

255
256
256
257

258

Coordinator::hash_top_level_transaction
Coordinator::hash_transaction
Coordinator::is_ancestor_transaction

Coordinator::is_same_transaction
Coordinator::is_top_level_transaction
Coordinator::register_resource
Coordinator::register_subtran_aware

Current::beginccceoeevviviiiiiieeeeeee,
Current::commitoeeevviiveeeeiiiiienennn
Current::get_controlcccceeeennee.
Current::get_statuscccceevveeeeeeeeennnn.
Current::get_transaction_name
CUurrent::;reSUMEcccvvveeevivveeeesennennn,s
Current::rollbackcccoevvvvviiiinnnns
Current::rollback_only
Current;:set_timeoutceeeeuuvnns
Current;:suspendcccceveeeeeeviiiiinnnns
CosTransactions::RecoveryCoordinator
INterfacecccvvveeeieiiee e
CosTransactions::Resource Interface
CosTransactions::Synchronization
INterfaceccvveeeeieiiie e,
Synchronization::after_completion
Synchronization::before_completion

Terminator::commitcccccceveeeeeennnn
Terminator::rollbackccccvveeeeee.
CosTransactions:: TransactionalObject
INterfaceccveveeeeiiiiii e,
CosTransactions:: TransactionFactory
INterfacecccoovvvveeeeiiiie e,
C++ value type library, methods
implementedcccoooieiin
Runtime properties for CORBA clients and
SEIVEIS ..ciitiiee e ettt e e e ettt e e etee e e e srae e e e
Reference information for problem
determinationcccoooviiiiiieeieee s
Description of a formatted activity log entry

258

258
259

260

260

261
262

263
263

263

263

264
265
267
268
269
270

271
273

274
275
276

276
276

276
277

277
278
279
280
280
281
289
298
298

301

WebSphere Application Server CORBA support - Page 6

CORBA support reference articles

This part contains reference topics about the CORBA support provided by WebSphere
Application Server 4.0 enterprise services. These topics are intended to provide reference
information that provides extra detailed information relevant to CORBA support that support
the concept and task articles.

e “CORBA support concept articles” on page
» “CORBA support example articles” on page
e “CORBA support task articles” on page

WebSphere Application Server CORBA support - Page 1

Interface Definition Language (IDL)

The Object Management Group (OMG) Interface Definition Language (IDL) is the formal
language used to define object interfaces independent of the programming language used
to implement the those methods.

You can write IDL for an object class or use tools to generate appropriate IDL. For example,
you can use the Java rmic -idl command to generate IDL files from an enterprise bean's
remote and home interfaces.

If you are writing your own IDL files, or want to examine existing IDL files, consider the
following reference information about IDL:

» “IDL name scoping” on page 2

« “IDL Interface declarations” on page 3

* “Multiple IDL interfaces” on page 10

« “IDL include directives” on page 11

* “IDL pragma directives” on page 11

e “The idlc command (IDL compiler)” on page 13
» “The IDL-to-Java compiler” on page 17

» “Conventions used in documenting IDL syntax” on page 21
» “IDL lexical rules” on page 21

* “IDL reserved words” on page 22

e “Syntax for comments in IDL code” on page 22

IDL name scoping

An IDL file forms a naming scope (referred to, in short, as a scope). Modules, interface
statements, structures, unions, methods (operations), and exceptions form nested scopes.
An identifier can only be defined one time in a particular scope. Identifiers can be redefined
in nested scopes.

Names can be used in an unqualified form within a scope, and the name will be resolved by
successively searching the enclosing scopes. When an unqualified name is defined in an
enclosing scope, that name cannot be redefined.

Fully-qualified names have the following form:
scope- nane: :i dentifier

For example, the method name mymethod defined within the interface Test of module M1
has the fully-qualified name:
ML: : Test : : nynet hod

A qualified name is resolved by first resolving the scope-name to a particular scope, S, and
then locating the definition of the identifier within that scope. Scopes that enclose the scope
S are not searched.

Qualified names can also have the following form:
cridentifier

WebSphere Application Server CORBA support - Page 2

These names are resolved by locating the definition of identifier within the outermost name
scope.

Every name defined in an IDL specification is given a global name, constructed as follows:

» Before the IDL compiler scans the IDL file, the name of the current root and the name of
the current scope are empty. When each module is encountered, the string of two colons
(::) and the module name are appended to the name of the current root. At the end of the
module, they are removed.

» When each interface, struct, union, or exception definition is encountered, the string of
two colons (::) and the associated name are appended to the name of the current scope.
At the end of the definition, they are removed. While parameters of an operation
declaration are processed, a new unnamed scope is entered so that parameter names
can duplicate other identifiers.

» The global name of an IDL definition is then the concatenation of the current root, the
current scope, two colons (::), and the local name for the definition.

The names of types, constants, and exceptions defined by base interfaces are accessible in
a derived interface. References to these names must be unambiguous. Ambiguities can be
resolved by using a scoped name (prefacing the name with the name of the interface that
defines it, and the two colons (::), as in base-interface::identifier). Scope names can also be
used to refer to a constant, type, or an exception name defined by a base interface but
redefined by a derived interface.

IDL interface declarations

The IDL specification for a class of objects must contain a declaration of the interface these
objects will support.

IDL interfaces and types should be enclosed inside a module scope. IDL declared outside of
a module scope takes up namespace in the global IDL namespace and risks having name
collisions with names declared by other IDL developers. For more information, see “IDL
name scoping” on page 2 .

When objects are implemented using classes, the interface name is used as a class name
as well. In addition to the interface name and its base interface names, an interface
indicates new methods (operations), and any constants, type definitions, and exception
structures that the interface exports.

An interface declaration has the following syntax:

i ?t erface interface-nane [: base-interfacel, base-interface2, ...]
constant decl arations
type decl arations
exception declarations
attribute declarations
. operation decl arati ons
All of the declaration elements are optional, and their order is not usually significant.
However you must bear in mind the following considerations:

» Interface names must be declared before they are referenced.

» Types, constants, and exceptions, as well as interface declarations, must be defined
before they are referenced (as in C or C++).

» Using one declaration can mandate another, and determine the order in which they are
declared. For example, if an operation raises an exception, the exception must be
declared and must come before the operation in the list.

The base-interface names specify the interfaces from which interface-name is derived.

WebSphere Application Server CORBA support - Page 3

Parent-interface names are required only for the immediate base interfaces. Each base
interface must have its own IDL specification (which must be #included in the IDL file). A
base interface cannot be named more than one time in the interface statement header.

The following topics describe the declaration elements that can be specified within the body
of an interface declaration:

“IDL constant declarations” on page 4 .
“IDL type declarations” on page 4 .

“IDL exception declarations” on page 7 .
“IDL attribute declarations” on page 8 .
“IDL operation declarations” on page 8 .

IDL constant declarations

Constants are declared in IDL just as in C++, except that the type of the constant must be a
valid IDL type. IDL Constant declarations take the following form:

const const-type identifier =constant-expression ;

The const-type must be a valid IDL integer, char, boolean, floating point, string, or
user-defined type name. The identifier is the name of the constant being defined. The
constant-expression is a constant expression as in C or C++, and can include the usual
C or C++, unary and binary operators (|, », &, >>, <<, +, -, *, /, %, ~~), parentheses for
controlling operator precedence, literal values (integer, string, character, and floating
point), and the boolean literal values TRUE and FALSE.

IDL type declarations

IDL specifications can include the following type declarations as in C++, with the restrictions
and extensions described in these topics:

IDL Basic types:
« “IDL integer types” on page 4
« “IDL floating point types” on page 5
* “IDL character type” on page 5
« “IDL boolean type” on page 5
* “IDL octet type” on page 5
e “IDL any type” on page 5

“IDL constructed types” on page 5

“IDL template types” on page 6

“IDL arrays” on page 7

“IDL object types” on page 7

The form of a type declaration within the body of an interface declaration is described in
“IDL interface declarations” on page 3 .

IDL integral types

IDL supports only the following integral types, which represent the corresponding value
ranges:
Table: 1. Supported IDL integer types and their value ranges

Integral type

Value range

short

-215 through (215)-1

WebSphere Application Server CORBA support - Page 4

long

-231 through (231)-1

unsigned short

0 through (216)-1

unsigned long

0 through (232)-1

IDL floating point types

IDL supports the float and double floating-point types. The float type represents the IEEE
single-precision floating-point numbers; double represents the IEEE double-precision
floating-point numbers.

Because returning floats and doubles by value might not be compatible across all Windows
compilers, client programs should return floats and doubles by reference.

IDL character type

IDL boolean

IDL supports a char type, which represents an 8-bit quantity. The ISO Latin-1 (8859.1)
character set defines the meaning and representation of graphic characters. The meaning
and representation of null and formatting characters is the numerical value of the character
as defined in the ASCII (ISO 646) standard. Unlike C and C++, type char cannot be qualified
as signed or unsigned. (The “octet type” on page 5 can be used in place of unsigned char.)

type
IDL supports a boolean type for data items that can take only the values zero (FALSE) and
one (TRUE).

IDL octet type

IDL supports an octet type, an 8-bit quantity guaranteed not to undergo conversion when
transmitted between a client and server process. The octet type can be used in place of the
“unsigned char” on page 5 type.

IDL any type

IDL supports an any type, which permits the specification of values of any IDL type.
Conceptually, an any consists of a value and a TypeCode that represents the type of the
value. The TypeCode class provides functions for obtaining information about an IDL type.

IDL constructed types

In addition to the “basic types” on page 4 , IDL also supports three constructed types:
e Structure (struct).

* Union (union).

* Enumeration (enum).

The structure and enumeration types are specified in IDL just as they are in C and C++, with
the following restrictions:

* Recursive type specifications are allowed only through the use of the sequence template
type.

e Structures and enumerations in IDL must be tagged. For example, struct{inta; ... }is an
inappropiate type specification (because the tag is missing). The tag introduces a new
type name.

» Structure and enumeration type definitions need not be part of a typedef statement;
furthermore, if they are part of a typedef statement, the tag of the struct must differ from
the type name being defined by the typedef. For example, the following are valid IDL
struct and enum definitions:
struct nyStruct {I)

. dgﬂgl é' y;

WebSphere Application Server CORBA support - Page 5

/* defines type name nyStruct */
enum col ors ¥ red, white, blue };
/* defines type name colors */

The following IDL definitions are not valid:

typedef struct Struct
A ”)7* NOTR/ALID */

| ong_x; .
/* “Tag nyStruct is the same */
doubl ey;
* “as the type nane bel ow; */
} m7/Struct; .
* nyStruct has been redefined */
typedef enumcolors { red, white, blue } colors;
/* NOT VALID */

The IDL union type is a cross between the C union and switch statements. This type is
specified in IDL just as it is in C and C++, with the restriction that discriminated unions in IDL
must be tagged. The syntax of a union type declaration is as follows:

union identifier swtch
(switch-type) { case+ }

» The identifier following the union keyword defines a new legal type. (Union types can
also be named using a typedef declaration.)

» The switch-type specifies an integral, character, boolean, or enumeration type, or the
name of a previously defined integral, boolean, character or enumeration type.

» Each case of the union is specified with the following syntax:

case-| abel + type-spec decl arator ;

Where

* Each caselabel has one of the following forms:

case const-expr :

default: The const-expr is a constant expression that must match
or be automatically castable to the switch-type . A default case
can appear no more than once.

e type-spec is any valid type specification.

« declarator is an identifier or an array declarator (such as,
foo[3][5]).

Note: A deviation from CORBA specifications exists; there is no support of longlong
discriminators in unions.

IDL template types

IDL defines two template types not found in C and C++: sequences and strings. A sequence
is a one-dimensional array with two characteristics: an optional maximum size (specified at
compile time) and a length (determined at run time). Sequences permit passing unbounded
arrays between objects. Sequences are specified as follows:

* sequence sinple-type [, positive-integer-const]

where simple-type specifies any valid IDL type, and the optional positive-integer-const
is a constant expression that specifies the maximum size of the sequence (as a positive
integer).

A string is similar to a sequence of type char. It can contain all possible 8-bit quantities
except NULL. Strings are specified as follows:

e string [positive-integer-const]

where the optional positive-integer-const is a constant expression that specifies the

WebSphere Application Server CORBA support - Page 6

IDL arrays

maximum size of the string (as a positive integer, which does not include the extra byte
to hold a NULL as required in C or C++).

» Since CORBA gives no specific rules on how to process blanks contained within strings,

IBM WebSphere Application Server treats
" ABC"
and
" ABC

as referring to different managed objects. If you do not want blanks to be treated as
significant you should pre-process your code to either remove trailing blanks, or to add
trailing blanks to some fixed string length.

Multidimensional, fixed-size arrays can be declared in IDL as follows:

e identifier { [positive-integer-const] }+

where the positive-integer-const is a constant expression that specifies the array size,
in each dimension, as a positive integer. The array size is fixed at compile time.

IDL object types

The name of the interface to a class of objects can be used as a type name. For example, if
an IDL specification includes an “interface declaration” on page 3 for a class (of objects) C1,
then C1 can be used as a type name within that IDL specification. When used as a type, an
interface name indicates a reference to an object that supports that interface. An interface
name can be used as the type of an operation argument, as an operation return type, or as
the type of a member of a “constructed type (a struct, union, or enum)” on page 5 . In all
cases, the use of an interface name indicates a reference to (instead of an instance of) an
object that supports that interface.

IDL exception declarations

IDL specifications can include exception declarations, which define data structures to be
returned when an exception occurs during the execution of an operation. A name is
associated with each type of exception. Optionally, a struct-like data structure for holding
error information can also be associated with an exception. Exceptions are declared as
follows:

exception identifier
menber *
i
The identifier is the name of the exception, and each member has the following form:

type-spec declarators ;

The type-spec is a valid IDL type specification and declarators is a list of identifiers or array
declarators, delimited by commas. The members of an exception structure should contain
information to help the caller understand the nature of the error. The exception declaration
can be treated like a struct definition: whatever you can access in an IDL struct, you can
access in an IDL exception. Unlike a struct, an exception can be empty, meaning the
exception is just identified by its name.

If an exception is returned as the outcome of an operation, the exception identifier indicates
which exception occurred. The values of the members of the exception provide additional
information specific to the exception. “IDL operation declarations” on page 8 describes how
to indicate that a particular operation can raise a particular exception.

The following is an example showing the declaration of a BAD_FLAG exception:

efcept i on BAD FLAG

WebSphere Application Server CORBA support - Page 7

. I ong ErrCode; char Reason[80];

In addition to user-defined exceptions, there are several predefined exceptions for system
run-time errors. The standard exceptions as prescribed by CORBA are subclasses of
CORBA::SystemException. These exceptions correspond to standard run-time errors that
can occur during the execution of any operation (regardless of the list of exceptions listed in
the operation's IDL specification).

Each of the standard exceptions has the same structure: an error code (to designate the
subcategory of the exception) and a completion status code. For example, the
NO_MEMORY standard exception has the following definition:

enum conpl eti on_stat us
COVPLETED_YES, COWPLETED_NO, COVPLETED_NAYBE
excepti on NO MEMORY

unsi gned | ong m nor;
conpl eti on_status conpl et ed;

The "completion_status" value indicates whether the operation was never initiated
(COMPLETED_NO), if the operation completed its execution prior to the exception
(COMPLETED_YES), or if the operation's completion status is indeterminate
(COMPLETED_MAYBE).

IDL attribute declarations

Declaring an attribute as part of an interface is equivalent to declaring one or two accessor
operations: one to retrieve the value of the attribute (a get or read operation) and (unless the
attribute specifies readonly) one to set the value of the attribute (a set or write operation).

Attributes are declared as follows:

[readonly] attribute type-spec declarators ;
where:

e type-spec specifies any valid IDL type (except a sequence).

» declarators is a list of identifiers, delimited by commas. An array declarator cannot be
used directly when declaring an attribute, but the type of an attribute can be a
user-defined type that is an array. Although the type of an attribute cannot be a
sequence, it can be a user-defined type that is a sequence. The optional readonly
keyword specifies that the value of the attribute can be accessed but not modified. (In
other words, a readonly attribute has no set operation.) Below are examples of attribute
declarations, which are specified within the body of an interface statement:
interface Goodbye: Hello

ALV bot e Shott xpos;

attribute char cl, c2;
readonly attribute float xyz;

Attributes are inherited from base interfaces. An inherited attribute name cannot be
redefined to be a different type.

IDL operation declarations

Operation declarations define the interface of each operation introduced by the interface.
(An IDL operation is typically implemented by a method in the implementation programming
language. Hence, the terms operation and method are often used interchangeably.) An
operation declaration is similar to a C++ virtual function definition:

[oneway] type-spec identifier (parameter-list) [raises-expr [context-expr] ;

WebSphere Application Server CORBA support - Page 8

where

» identifier is the name of the operation.

» type-spec is any valid IDL type, except a sequence, or the keyword void, indicating that
the operation returns no value. (Although the return type cannot be a sequence, it can
be a user-defined type that is a sequence.) Unlike C and C++ procedures, operations
that do not return a result must specify void as their return type.

The remaining syntax of an operation declaration is elaborated in the following topics:

» “IDL operation declarations: "oneway" keyword” on page 9 .
» “IDL operation declarations: parameter list” on page 9 .
» “IDL operation declarations: "raises" expression” on page 9 .

_* "“IDL operation declarations: "context" expression” on page 10.
IDL operation declarations: "oneway" keyword

For an overview of IDL operation declarations, see “IDL operation declarations” on page 8 .

The optional oneway keyword specifies that when a caller invokes the operation, no reply is
expected or received. The invocation semantics of a oneway operation are best-effort,
which does not guarantee delivery of the call. Best-effort implies that the operation will be
invoked at most once. A oneway operation must not have any output parameters and must
have a return type of void. A oneway operation also must not include a raises expression.

If the oneway keyword is not specified, then the operation has at-most-once invocation
semantics if an exception is raised, and it has exactly-once semantics if the operation

succeeds. This means that an operation that raises an exception has been implemented
zero or one times, and an operation that succeeds has been implemented exactly once.

IDL operation declarations: parameter list

For an overview of IDL operation declarations, see “IDL operation declarations” on page 8 .

The parameter-list contains zero or more parameter declarations for the operation, delimited
by commas. (The target object for the operation is not explicitly specified as an operation
parameter in IDL.) If there are no explicit parameters, the syntax "()" must be used, rather
than "(void)". A parameter declaration has the following syntax:

» {in|out|inout} type-spec declarator

where type-spec is any valid IDL type (except a sequence), and declarator is an
identifier or an array declarator. Although the type of a parameter cannot be a sequence,
it can be a user-defined type that is a sequence.

The required injout|inout directional attribute indicates whether the parameter is to be
passed from caller to callee (in), from callee to caller (out), or in both directions (inout). The
following are examples of valid operation declarations:

short methl(in char c, out float f);

oneway void nmeth2(in char c);
float neth3();

An operation's implementation should not modify an in parameter. If a change must be
made by the implementation, the implementation should copy the parameter and only
modify the copy.

If an operation raises an exception, the values of the return result and the values of the out
and inout parameters (if any) are undefined.

IDL operation declarations: "raises" expression

WebSphere Application Server CORBA support - Page 9

For an overview of IDL operation declarations, see “IDL operation declarations” on page 8 .

The optional raises expression in an IDL operation declaration indicates which exceptions
the operation can raise. A raises expression is specified as follows:

raises (identifierl, identifier2, ...)

where each identifier is the name of a previously defined exception. In addition to the
exceptions listed in the raises expression, an operation can also signal any of the standard
exceptions. Standard exceptions, however, should not appear in a raises expression. If no
raises expression is given, then an operation can raise only the standard exceptions. “IDL
exception declarations” on page 7 contains further information on defining exceptions and
the list of standard exceptions.

IDL operation declarations: "context" expression
For an overview of IDL operation declarations, see “IDL operation declarations” on page 8 .

The optional context expression (context-expr) in an operation declaration indicates which
elements of the caller's context the operation's implementation can consult. A context
expression is specified as follows:

context (identifierl, identifier2, ...)

where each identifier is a string literal made up of alphanumeric characters, periods,
underscores and asterisks. The first character must be alphabetic, and an asterisk can only
appear as the last character, where it serves as a wildcard matching any characters. If
convenient, identifiers can consist of period-separated valid identifier names, but that form is
optional.

The Context is a special object that is specified by the CORBA standard. It contains a
property list: a set of property-name/string-value pairs that the caller can use to store
information about its environment that operations can find useful. It is used in much the
same way as environment variables. It is passed as an additional parameter to operations
that are defined as context-sensitive in IDL.

The context expression of an operation declaration in IDL specifies which property names
the operation uses. If these properties are present in the Context object supplied by the
caller, they will be passed to the object implementation, which can access them through the
interface of the Context object.

The argument that is passed to the operation having a context expression is a Context
object, not the names of the properties. The caller must create a Context object and use the
interface of the Context object to set the context properties. The caller then passes the
Context object in the operation invocation. The CORBA standard allows properties in
addition to those in the context expression to be passed in the Context object.

Multiple IDL interfaces

A single IDL file can define multiple interfaces. When a file defines two or more interfaces
that reference one another, forward declarations can be used to declare the name of an
interface before it is defined. This is done as follows:

interface interfaceNane ;

The actual definition of the interface for interfaceName must appear later in the same IDL
file.

If multiple interfaces are defined in the same IDL file, they can be grouped into modules, by

WebSphere Application Server CORBA support - Page 10

using the following syntax:
nodul e nodul eNare { definition+ };

where each definition is a type declaration, constant declaration, exception declaration,
interface statement or nested module statement. Modules are used to scope identifiers.

Alternatively, multiple interfaces can be defined in a single IDL file without using a module to
group the interfaces. Whether a module is used for grouping multiple interfaces or not, the
languages bindings produced from the IDL file will include support for all of the defined
interfaces.

IDL include directives

If your interface declaration refers to a parent interface, or uses some other referenced
types, the IDL file must contain #include statements that tell the IDL compiler where to find
the referenced interface definitions (the IDL files).

If your interface declaration refers to IDL types (defined by the CORBA specification) that
are not IDL reserved words, then the IDL file should contain an #include statement for the
orb.idl file.

As in C and C++, if an #include statement specifies a filename that is enclosed in angle
brackets ([]), the search for the file begins in system-specific locations. If the filename is
enclosed in double quotation marks ("), the search for the file begins in the current working
directory, before searching the system-specific locations.

For information on other preprocessor directives that can be used in IDL, see “IDL pragma
directives” on page 11.

IDL pragma directives
IBM WebSphere Application Server supports the following pragmas:

* ‘“localonly” on page 11

* ‘“localonly abstract” on page 12
» ‘“cpponly” on page 12

e “init” on page 12

* “ID”on page 12

« “Prefix” on page 12

» ‘“version” on page 13

For information on other preprocessor directives that can be used in IDL, see “IDL include
directives” on page 11 .

localonly pragma

This pragma supports the generation of bindings for objects that are known to be local (not
distributed). This pragma can occur at any point in the IDL file following the definition or
forward declaration of the designated interace.

The syntax is:
#pragma neta interface-nane |ocalonly

The IDL interface identified by interface-name is treated by generated bindings as strictly
local to the caller's process. No calls to the CORBA ORB occur when invoking the

WebSphere Application Server CORBA support - Page 11

operations defined in this interface. interface-name can be a simple name of an interface in
the current scope or a fully- or partially-qualified interface name. The interface must be
previously defined or forward declared when the pragma statement is encountered.

localonly abstract pragma

This pragma is like the localonly pragma, but it signifies an abstract function that cannot be
instantiated. These types of interfaces are used to just define interfaces.

The syntax is:

#pragma neta interface-nane |ocalonly abstract

cpponly pragma
This pragma suppresses the generation of IOM interlanguage bindings.

The syntax is:

#pragna neta interface_name cpponly

In the default case, without this pragma, two sets of bindings are produced:

» The standard CORBA C++ bindings suitable for use with the ORB component.
» IOM bindings suitable for interlanguage interaction.

Without this pragma, only the standard CORBA C++ bindings are produced.

init pragma

This pragma specifies a function to use to initialize newly created objects.

The syntax is:
#pragma neta nethod-nanme init

This pragma allows the IDL to specify the nhame of a function to be used to initialize the
newly created method. When this pragma is not used, the emitters produce a _create()
function that takes no parameters and does no initialization after the new object is created.
For example, if the IDL contains:

interface A
voi d initFunction(int);

#pragma neta A :initFunction init

the C++ class A that implements interface A will have a _create() function that takes an int
parameter (because initFunction takes an int). Also, the code inside _create(int) creates a
new instance of class A and then call initFunction(int) on the newly created object, passing
along its int parameter.

ID pragma

This CORBA-defined pragma overrides the default RepositorylD for an IDL entity.
The syntax is:

#pragma | D scoped-nane literal-string

which sets the RepositorylD of scoped-name to literal-string instead of the default
Repository ID.

Prefix pragma

WebSphere Application Server CORBA support - Page 12

This CORBA-defined pragma sets the RepositorylD prefix

The syntax is:
#pragma prefix string
which sets the current prefix used in generating OMG IDL format RepositorylDs. The

specified prefix applies to RepositorylDs generated after the pragma until the end of the
current scope is reached or another prefix pragma is encountered.

version pragma
This CORBA-defined pragma sets the RepositorylD version number.

The syntax is:

#pragna version scoped-nanme mgj or . m nor

which uses the major.minor as the version number for RepositoryID of the scoped-name .

The idlc command (IDL compiler)

The Interface Definition Language Compiler (idlc) command creates usage and
implementation bindings for interfaces described in IDL files. You use this command to
compile one or more files containing CORBA 3.5-compliant IDL statements, and (optionally)
to emit generated language bindings appropriate to each named input file.

The syntax for the idlc command is:
idlc [options] filenane...

where options are as described in “Options for the idlc command” on page 14, and filename
is one (or more, by use of a wildcard character) of your IDL files.

The filenamecan be specified with or without a file name extension. If no file name extension
is supplied, it is assumed to be ".idl". The wildcard character or asterisk (*) is permitted to
appear one time in the non-path portion of the filename. For example, the following are
acceptable ways to refer to xyz.idl in directory E:\idl\src:

e E:Nid\src\xyz.idl

* E:NidI\src\xyz

« E:NidI\src*.idl (all IDL files)

* E:idh\src\x*.idl (all IDL files starting with x)
» xyz.idl (if E:\idl\src is the current directory)
» xyz (if E:\id\src is the current directory)

« x*(if E:\idl\src is the current directory)

Any of the idlc command options can also be specified in the environment by adding the
option to the string named IDLC_OPTIONS environment variable. Options specified in the
IDLC_OPTIONS variable are treated as if they were keyed on the command line before any
of the actual command line options. For example, if:

| DLC_OPTI ONS="- ntpponl y -mdl | nane=nydl | *
and the command line is:
idlc -ehh idifile

the result is the same as if the IDLC_OPTIONS variable was not set and the command line

WebSphere Application Server CORBA support - Page 13

was:
idlc -ncpponly -ndl | name=nydl| -ehh idlifile

Emitters (see -e emit-list in “Options for the idlc command” on page 14) can also be
specified in an emit-list held in the IDLC_EMIT environment variable. When you run the idlc
command, it looks for emitters specified by the -e or -s options, and also looks in any
IDLC_EMIT environment variable. If it cannot find an emit-list in either source, then only the
syntax of the named files is checked, and any errors are reported. When a compilation error
(but not a warning) is detected for a particular input file, the emit phase for that file is
skipped.

When all specified input files are compiled, the idlc command returns a value of zero if no
errors were detected; otherwise, a non-zero value is returned.

Options for the idlc command

Options for the idlc command are preceeded with a dash (-) character and can be specified
individually or run together. For example, -p -v -Vor-pvV are acceptable.

Some options accept an argument. Where several options have the same argument, these
options can also be specified individually or run together. For example, -p -mti e or-pm
t i eare acceptable.

The space between the option and its argument is optional. For example, either - nti e or
-m ti eare acceptable.

All options are case-sensitive, even on platforms where filenames are not case-sensitive.

The following table describes each available option:

Table: 1. idlc command options

Option

Description

-d directory-name

Specifies the directory in which to place emitted output
files and directories. If none is specified, the default is
the current directory.

-V Shows the version number of the idic command.

-V Specifies verbose mode. This shows all internal
commands (and their arguments) issued by the idlc
command.

-? (or -h) Writes a brief description of the idic command syntax to

standard output.

-D define-expression

Predefines a preprocessor variable for the IDL
compiler.

-l include-directory

Adds a directory to the list of directories used by the
IDL compiler to find #include files. In addition to the -
option, the IDLC_INCLUDE environment variable can
be used to specify a list, with include-directory names
separated by the PATH separator character.

-i file-name

Specifies the name of a file to be compiled that does
not have the .idl extension. The file-name should not
have an implicit .idl suffix added to its name.

WebSphere Application Server CORBA support - Page 14

-p Used as a shorthand for -D__ PRIVATE__.

-e (or -s) emit-list Specifies a list of emitters to run. Emitters generate
output files that contain language-specific usage and
implementation bindings appropriate to each named
input file. The rules used to generate the names of
these output files are described in the following topics:

e “The idlc command: Emitted C++ filenames” on
page 16
Each emitter in the list is separated from the others by
a colon (:) or semicolon (;) character. Valid emitter
names are:
hh

Produces C++ usage bindings. If no modifiers are
present, bindings with support for remotable
cross-language operation are produced. The
cpponly, localonly, and somthis modifiers cause
specialized bindings to be produced (see
-mname[=value]).

sc
Produces a C++ skeleton for the basic object
adapter of the ORB. If no modifiers are present,
bindings with support for remotable cross-language
operation are produced. The cpponly, localonly, and
somthis modifiers cause specialized bindings to be
produced (see -mname[=value]).

uc
Produces local implementations needed by the C++
usage bindings. If no modifiers are present, bindings
with support for remotable cross-language operation
are produced. The cpponly, localonly, and somthis
modifiers cause specialized bindings to be produced
(see -mname[=value]).

ih
Produces a C++ implementation header.

ic
Produces a template file for the C++ managed
object implementation code.

ir
Updates the CORBA Interface Repository with the
interfaces in this compilation unit.

-m name[=value] Specifies an output modifier. A modifier can be given as
a name or a name=value expression. The emitters are
sensitive to the following modifiers:
LINKAGE=value
Used to insert customized C++ linkage modifiers
into the generated bindings.

notcconsts

Eliminates the generation of C++ TypeCode
constants and overloaded any operators.

tie

WebSphere Application Server CORBA support - Page 15

Generates "tie-style" bindings that assume
delegation rather than inheritance.

cpponly
Suppresses the production of cross-language
bindings and produces standard CORBA C++
bindings suiitable for use with a standalone ORB.
cpponly affects the bindings produced by the hh, sc,
and uc emitters.

localonly
Generates bindings that can only be used to access
a local object for all of the most-derived interfaces in
the IDL file.

orbadaptor
Generates C++ bindings that allow the C++ ORB to
dispatch Java implementations.

IRforce
Forces the interface repository (IR) emitter to
destroy objects already present in the IR with the
same name as in the IDL being produced.

dliname=value

Puts Windows NT import or export, or both,
specifications into classes contained in the DLL
named by value.

preinclude=file-name
Adds the line:

#include file-name

to the .hh file, just before the line that includes
corba.h.

postinclude=file-name
Adds the line:

#include file-name

just before the end of the .hh file.

-J Passes options through to the Java interpreter used
internally. For example:
-J"-mx32nt

sets the heap size for the interpreter to 32M.

The idlc command: Emitted C++ filenames

The names of the generated output files are derived from the filename of the corresponding
IDL file. For a file named filestem.idl, the following list of output files can be emitted when
the idlc command is run. The list contains the emitter and its corresponding output file
name.

hh
filestem.hh

sc
filestem_S.cpp

uc
filestem_C.cpp

WebSphere Application Server CORBA support - Page 16

ih
filestem.ih

ic
filestem_l.cpp

The IDL-to-Java compiler
The IDL-to-Java compiler generates Java bindings for a given IDL file.

The command to invoke the IDL-to-Java code compiler has the general form:
idlj [options] source_|DL

where source_IDL is the name of a file that contains IDL definitions, and [options] is any
combination of the options listed in “Options for the IDL-to-Java compiler” on page 17.

Options for the IDL-to-Java compiler
Options can appear in any order, but must precede the IDL file specification.

The following table describes each available option:

Table: 1. IDL-to-Java command options

Option Description

-d symbol Defines a symbol before compilation. This is equivalent
to putting the line #define symbol in an IDL file. It is
useful when you want to define a symbol for
compilation that is not defined within the IDL file, for
example to include debugging code in the bindings.

-emitAll Emits all types, including those found in #include files.
By default, only those types found in idl file are emitted.
For more information see “Emitting bindings for include
files” on page 19.

-fside Defines what bindings to emit. side is one of cl i ent,
server,all,serverTie,andal |l Ti e. Assumes
-fclient if the flag is not specified. For more information
see “IDL-to-Java: Emitting client and server bindings”
on page 18

-iinclude_ path By default, the current directory is scanned for included
files. This option adds another directory. For more
information see “Specifying alternative locations for
include files” on page 18.

-keep Preserves preexisiting bindings. The default is to
generate all files without considering if they already
exist. If the Java binding files do already exist, this
option stops the compiler from overwriting them. Useful
if you have customized those files (which you should
not do unless you are very comfortable with their
contents).

-pkgPrefix type package Wherever type is encountered, ensures it resides within
package in all generated files.

Note: type must be a fully-qualified, Java-style name.

WebSphere Application Server CORBA support - Page 17

For more information see “Inserting package prefixes”
on page 20.

-td target_directory

By default, the compiler outputs bindings to the
directory from which it was invoked (the current
directory). To direct the output to another directory,
specify the target directory immediately following the -td
flag. The target directory can be absolute or relative.

-V, -verbose

Generates status messages so that you can track the
progress of compilation. If this option is not selected, no
messages are output unless there are errors.

-version

Displays the build version of the IDL-to-Java compiler.
Any additional options appearing on the command-line
are ignored.

Note: Version information also appears within the
bindings generated by the compiler.

IDL-to-Java:

IDL-to-Java:

Emitting client and server bindings

To generate the Java bindings for an IDL file named My.idl, set the current working directory
to that containing My.idl and issue the following command:

idlj M.idl
This command generates client-side bindings only and is equivalent to:
idlj -fclient My.idl

Client-side bindings include all generated files except the Skeleton. If you want to generate
server-side bindings for My.idl, issue the command:

idj -fserver My.idl

This command generates all client-side bindings plus an inheritance-model Skeleton
(ImplBase). Currently, server-side bindings include all generated files, even the Stub. Thus,
the command above is currently equivalent to each shown below:

idlij—fc

lient -f
id -fall N

erver My.idl
W

S
di

The compiler generates inheritance-model Skeletons by default. Given an interface My
defined in My.idl, the compiler generates Skeleton _MylmplBase.java. You provide the
implementation for My, which must extend _MylmplBase.

Specifying alternative locations for include files

If My.idl included another IDL file, MyOther.idl, the compiler assumes that MyOther.idl
resides in the local directory. If it resides in directory /includes, for example, you would
invoke the compiler with the following command:

idlj -i /includes My.idl

If My.idl also included Another.idl that resided in /morelncludes, then you would invoke the
compiler as:

idlj -i /includes -i /norelncludes M.idl

You can begin to see that if you have a number of places where included files can come
from, the command will become long and unmanageable. So there is another means of
indicating to the compiler where to search for included files. This technique is very similar to
the idea of an environment variable. You must create a file called idl.config in a directory

WebSphere Application Server CORBA support - Page 18

IDL-to-Java:

that is listed in your CLASSPATH. Inside of idl.config you must provide a line of the
following form:

i ncl udes=/i ncl udes; / nor el ncl udes

The compiler take the first version of the file it locates and read in its includes list. Notice
that in this example, the separator character between the two directories is a semicolon (;).
This separator character is platform-dependent. The separator character is a semicolon (;)
on Windows NT, and it is a colon () on AlX.

Note: Some platforms will fail when issuing a long command line. If the command line to
invoke the compiler becomes too long, use the idl.config file.

Emitting bindings for include files

By default, only those interfaces, structs, and so on, that are defined in the IDL file on the
command line have the Java bindings generated for them. The types defined in included
files are not generated. For example, assume the following two IDL files:

i ncl ude MyCt her. i dI
int erfaceMK/y

The following command will only generate bindings for types within My:
idlj M.idl

To generate bindings for all of the types in My.idl and all of the types in files that My.idl
includes (in this example, MyOther.idl), use the following command:

idlj -emitAl M.idl

There is a caveat to the default rule. #include statements which appear at the global scope
are treated as described. These #include statements can be thought of as import
statements. #include statements which appear within some enclosing scope are treated as
true #include statements, meaning that the code within the included file is treated as if it
appeared in the original file and, therefore, Java bindings are emitted for it. Here is an
example:

N%l ncI ude %CI her.idl

interface
_#include Enbedded.idl

M/Qt her . i dI
interface MyQt her

nbedded. i dl
enum E {one, two, three};

Running the following command:
idlj M.idl
will generate the following list of Java files:

./ M/Hol der . j ava
i Hel per.java
. St ub. j ava
A ackage

o Package/ EHol der . j ava
./ MyPackage/ EHel per.] ava
./ MyPackage/ E. j ava
.IM.java

Notice that MyOther.java was not generated because it is defined in an import-like #include.
But E.java was generated because it was defined in a true #include. Notice also that

WebSphere Application Server CORBA support - Page 19

IDL-to-Java:

IDL-to-Java:

because Embedded.idl was included within the scope of the interface My it appears within
the scope of My (that is, in MyPackage).

If the -emitAll flag were used in the previous example, all types in all included files would be
emitted.

Inserting package prefixes
This option has the following form:

-pkgPrefix type package

It ensures that wherever type is encountered it resides within package in all generated files.

For example, let us suppose that a company called ABC has constructed the following IDL
file:

W dgets.idl

?D ul e Wdgets
interface WL
interface W2

Running this file through the IDL-to-Java compiler places the Java bindings for W1 and W2
within the package Widgets. But what if there is an industry convention that states that a
company's packages should reside within a package named com.company name? Then the
Widgets package does not conform. To follow the convention, it should be
com.abc.Widgets. To place this package prefix onto the Widgets module, you implement the
following:

idj -pkgPrefix Wdgets comabc Wdgets.idl

You should be aware that, if you have an IDL file which includes Widgets.idl, the -pkgPrefix
flag must appear on that command as well. If it does not, then your IDL file will be looking
for a Widgets package rather than a com.abc.Widgets package.

If you have a number of these packages that require prefixes, it might be easier to place
them into the idl.config file as described in “Specifying alternative locations for include files”
on page 18 . Each package prefix line should be of the form:

PkgPrefix. type=prefix

So the line for the above example would be:

PkgPrefi x. Wdget s=com abc
Emitting makefiles and specifying the path separator character

When the Java bindings are compiled using a makefile, it can become tedious to build the
makefile by hand. There are two arguments to the IDL-to-Java compiler which help to build
the makefile.

idj -mM.id
Besides the usual bindings, this will generate bfile My.u that will contain the following lines:

Iper]ava lvy idl
ava:
| der. ava Lidl
Package/ El_aeava Enbedded. i dI .
ckage/ EHel per.java: Enbedded. i dl
Package/ EHol der j ava Enbedded. i dI
St ub.’j ava:
el per java \
ava
I der java \
Package/ El_aeava
Package/ EHel per.java \

WebSphere Application Server CORBA support - Page 20

Package/ EHol der . j ava \
ub.j ava

If you are building a makefile that will run on multiple platforms, the slash (/) character is not
necessarily the file separator character. Perhaps the build environment has a special
variable for the file separator character. If this variable were $(Sep), then the compiler can
place this in place of the slash in My.u with the following command:

idlj -m-sep \$\(Sep\) M.idl
Now My.u contains the following:

Hel per. java M/ idl
ava:
| der. ava
Package Hjeava Enbedded. i dI
Package$ Sep EHel per.java: Enbedded.id
Sep EkbhFer]ava Enbedded. i d

Package$
St ub.j ava:
el per.java \

.java \,
Ider.gava\

Package$(Se ava \
: Segi EHIeI per.java \
Sep
a

Package$
Package$ EHol der.j ava \

bj av

Conventions used in documenting IDL syntax

The following conventions are used in these topics to describe the syntax of IDL as
specified by the CORBA standard:

bold Indicates literals (such as keywords).

variable Indicates user-supplied elements.

{} Groups related items together as a single item.

[1 Encloses an optional item.

* Indicates zero or more repetitions of the preceding
item.

+ Indicates one or more repetitions of the preceding item.
Separates alternatives.

_ Within a set of alternatives, an underscore indicates the
default, if defined.

IDL lexical rules

IDL generally follows the same lexical rules as C and C++. Exceptions to C++ lexical rules
include:

e IDL uses the ISO Latin-1 (8859.1) character set.
* White space is ignored except as token delimiters.
e C and C++ comment styles are supported.

» IDL supports standard C or C++ preprocessing, including macro substitution, conditional
compilation, and source file inclusion.

« Identifiers (user-defined names for operations, attributes, instance variables, and so on)
are composed of alphanumeric and underscore characters (with the first character
alphabetic) and can be of arbitrary length, up to an operating-system limit of about 250
characters.

» Identifiers must be spelled consistently with respect to case throughout a specification.
» Identifiers that differ only in case yield a compilation error.

WebSphere Application Server CORBA support - Page 21

« Within a particular name scope, there is a single namespace for all identifiers, regardless
of their type. For example, using the same identifier for a constant and an interface name
within the same name scope yields a compilation error.

* Integer, floating point, character, and string literals are defined as in C and C++.

IDL reserved words

The terms listed below are reserved words and cannot be used otherwise. Reserved words
must be spelled using upper- and lower-case characters exactly as shown in the table. For
example, "void" is correct, but "Void" yields a compilation error.

Table: 1. Reserved words for IDL

any default FALSE oneway read-only
attribute double float out seguence
boolean enum in raises short
case exception inout unsigned string
char Fkk interface union struct
const i long void switch
context ok module ok TRUE

ok ok Object ok ok

rkk *kk octet Fkk typedef

Syntax for comments in IDL code

IDL supports both C and C++ comment styles. Two slashes (//) start a line comment, which
finishes at the end of the current line. A slash and an asterisk (/*) start a block comment that
finishes with an asterisk and a slash (*/). Block comments do not nest. The two comment
styles can be used interchangeably.

Because comments appearing in an IDL specification can be transferred to the files that the
IDL Compiler generates, and because these files are often used as input to a programming
language compiler, avoid using characters that are not generally allowed in comments of
most programming languages. For example, the C language does not allow an asterisk and
a slash (*/) to occur within a comment, so its use is to be avoided, even when using C++
style comments in the IDL file.

IDL also supports throw-away comments. They can appear anywhere in an IDL
specification. Throw-away comments start with the string of two slashes and a number sign
(/#), and end at the end of the line. Use throw-away comments to comment out portions of
an IDL specification.

WebSphere Application Server CORBA support - Page 22

The implementation registration utility (regimpl)

Before an implementation (a server program and class libraries) can be used by client
applications, it must be registered in the Implementation Repository by running the
implementation registration utility, regimpl.

The regimpl command can be entered at a command prompt. For WebSphere Application
Server enterprise services, regimpl takes the following usage syntax, with the parameters
described in the following table.

To enter interactive mode

regi mpl
To add an implementation

reginpl -A -i alias_string [-p svr_string] [-m{on|off}] [-t
string]

To update an implementation

reginpl -A -i alias_string [-p svr_string] [-m{on|off}] [-t
prot_string]

To delete one or more implementations
reginmpl -D -i alias_string [-i ...]
To list all, or selected, implementations
reginpl -L [-i alias_string [-i ...]]
To list all implementation aliases
regi npl -S

Table: 1. regimpl command parameters used by WebSphere enterprise services

Parameter Description
-i alias_string Implementation alias name (maximum of 16 -i names)
-p svr_string Server program name (default: null)
-m{on|off} Enable multi-threaded server (optional)
-t prot_string Protocol name (default: SOMD_TCPIP)

WebSphere Application Server CORBA support - Page 23

CORBA programming

CORBA 2.1 specifies standard forms by which client code can manipulate data whose types
are described using IDL. Reference material on programming these standard forms is
grouped under the following topics:

e “CORBA C++ bindings” on page 24.
» “Commonly used CORBA interfaces” on page 40.

e “C++ bindings for CORBA interfaces” on page 41.
» “CORBA programming: Storage management and _var types” on page 44.

CORBA C++ bindings

C++ bindings are generated, based on CORBA 2.1 standard forms, to enable client C++
code to manipulate data whose types are described using IDL. C++ bindings that support
the standard forms are called compliant and client code that uses (only) these forms is
called conformant.

For more information about C++ bindings, see the following topics:

» “CORBA C++ bindings for constants” on page 24.
» “CORBA types and business objects” on page 24.
» “CORBA C++ bindings for data types” on page 26.
e “CORBA C++ binding restrictions” on page 39.
“CORBA programming: Name scoping and modules in the C++ bindings” on page 39.

CORBA C++ bindings for constants

Constants can be defined within the IDL in either of the following ways:

» Within a module or interface.
e Globally, outside any module or interface.

If you declare an IDL constant within a module or interface, the constant is mapped as a
static data item local to the C++ class for that module or interface. If you declare an IDL
constant globally, the constant is mapped as a static data item global to that client
application.

For example, consider the following IDL:

nodul e M

const string nane = "testing";

After compiling the client bindings a C++ client application can refer to the constant using
the expression M : nane.

If the same constant is declared globally, outside any module or interface, then (after
compiling the client bindings) a C++ client application can refer to the constant using the
expression nare.

CORBA types and business objects

Most of the CORBA types map directly onto C++ types and can be used transparently to
C++. For more information on these types, see the topic “CORBA basic types” on page 25.

Other CORBA types are more complex to use because they return object references to the

WebSphere Application Server CORBA support - Page 24

caller. For more information on these types, see the topic “CORBA types that return object
references” on page 25.

CORBA basic types
The following basic C++ types map directly into CORBA types:

e Atomic data types:

* Boolean

e Char

e Double

¢ Float

* Long

¢ Octet (hexadecimal)
e Short

« ULong (unsigned long)
e UShort (unsigned short)
e Enum (enumerations)
e LongLong (long long)
» Struct
e ULongLong (unsigned long long)
* WChar (wide character)

All these types are scoped to the class CORBA and must be declared accordingly. Their
use in C++ is transparent and straightforward. For example:

CORBA: : Short aShortvari abl e;
aShortVariable = 12;

CORBA types that return object references
The following CORBA types return object references to the caller:

* Any

e Array

* Sequence
e String

* Union

» WString (wide string)

It is the responsibility of the caller to manage the object references and their associated
memory. There are two facilities provided by CORBA to do this:
A_var

This is the facility most frequently used by client code because it is a smart pointer
and automatically releases its object reference when it is deallocated or assigned a
new object reference. This is the safest and most straightforward approach to
managing these types.

A_ptr

This is a pointer type and provides the most basic object reference, which has
similar semantics to a standard C++ pointer.

Note: Avoid declaring C++ Static variables as _var. The _var holds a reference to an object.

WebSphere Application Server CORBA support - Page 25

During the end of the process, this object could reference another object that was removed
before end processing completes for this Static type. As a result, the _var could reference
an inappropriate address or null pointer and thereby cause an undesirable ending.

CORBA C++ bindings for data types
C++ bindings can be created for the following CORBA data types:

e “Any type” on page 26

* “Array types” on page 30

» “Atomic data types” on page 31
* “Enumerations” on page 32

* “Sequence types” on page 32

e “Strings” on page 35

e “Struct types” on page 36

e “Union types” on page 37

“WStrings” on page 38
C++ bmdmgs for CORBA Any type

The purpose of the IDL "any" type is to encapsulate data of some arbitrary IDL type. The
C++ bindings provide a C++ class named CORBA::Any that provides this functionality. A
CORBA::Any object encapsulates a void* pointer and a CORBA::TypeCode object that
describes the thing pointed to by the void*.

The Any type can be used with many of the CORBA types and is useful where different
types can be used that are unknown to the receiver of the data, or as a common storage
mechanism for passing a variety of types. It is used easily with many of the CORBA types
but has a unique method of redirection operators for setting and retrieving data.

The following types are handled in this manner:

* Double

» Enumerations
* Float

* Long

* Short
 ULong

* UShort

e Unbounded Strings
» Object References

For example:
: CORBA: : Any anythin
an t hi ng <)<l_ Y. C(REA Long) 123456,
BA: : Long anythl ngSt ar = 123456

: CORBA: : Long anyt hi ngLongResuIt = 0;
pol i char >anyt hi ng(anyt hi n
y var anyt hi ngResuIt _var(polic Var >anyt hing());
: CORBA: : Any anyt hi ngResul t &anyt hi n? sul
anyt hi ngResuI t >>= anyt hi nﬁ t;
if"(anythingStart != anything ongResuIt)

cout << "Anything not set" << endl;
return 1;

se

~—

cout << "Anything set correctly..." << endl;

WebSphere Application Server CORBA support - Page 26

There are also specialized structures provided for the following types for conversion with
Any:

e Boolean
e Char

e Octet

» String

The data in an Any object is initialized and accessed using insertion (<<=) and extraction
(>>=) operators defined by the C++ bindings. These operators are provided (using
overloading) by CORBA::Any for each primitive data type, and are provided by the
generated C++ bindings for each user-defined IDL type. As a result, there is usually no need
to indicate a typecode when inserting or extracting data from a CORBA::Any (although the
CORBA::Any class does provide methods for manipulate the data using an explicit
TypeCode).

Types that cannot be distinguished by C++ overloading are inserted into and extracted from
Any's using special wrapper classes. These wrapper classes are not transparent to the
application; the application must explicit create and use them when inserting or extracting
ambiguous types into or from Any's. For primitive IDL types that do not map to distinct C++
types (boolean, octet, and char), the wrapper classes are defined within the CORBA::Any
scope; they are called from_boolean, to_boolean, from_octet, to_octet, from_char, and
to_char. For information on the scope, see “IDL name scoping” on page 2 . Because
bounded strings cannot be distinguished in C++ from unbounded strings, CORBA::Any
provides the from_string and to_string wrapper classes, for inserting/extracting bounded
strings. For extracting object references from Any's as the base CORBA::Object type,
CORBA::Any provides a to_object wrapper class.

For application-specific arrays, the bindings provide a special forany class, for inserting or
extracting the array into or from an Any. For example, here is an IDL array definition:

typedef | ong LongArray[4][5];

For this array definition, the emitted bindings define the following:

typedef CORBA::Long LongArray[4][5];

t ypedef CORBA: : Long LongArray S |ce[5];

t ypedef LongArray slice* LongArray_sli ce vPtr;
t?/pedef const LongArray_slice* LongArray_slice cvPtr;
c

{

ass LongArray_forany

ublic:

ongArray_forany {

LongArray_f orany(LongArray_sl *, CORBA: : Bool ean nocopy=0);
LongArray_; orany(const Lon forany)'

==aQq|
1 II?

gArray_slice*);

LongArra
g v st LongArray_| gorany)

LongArray_f oran oper at o
~L0%?Arr¥1y fora% y(); P

i
r

or any oper at o g

const LongArray_| sl [ce opera o
or

int const,
:ULong) const;

1]

const LongArray_slice operat
LongArray_slice operat or
LongArray_slice operat or
operator CongArray_slice_cv
operat or LongArray_slice thr

(IP A ULong)
_const;

1
voi d operat or<<=(Any , const LongArray f orany ;
CORBA: : Bool ean oper at or >>= (Any , LongArray_forany);

Note: The nocopy optional parameter of the _forany's second constructor indicates whether
the _forany makes a copy of the input array or assumes ownership of it. (The default is for
the _forany to assume ownership of the input array; that ownership will then be transferred
to the Any when the _forany is inserted into the Any.)

To determine what kind of data is in Any, invoke the type method on a CORBA::Any to
access a TypeCode that describes the data it holds. Alternatively, you can try to extract data
of a particular type from the Any; the extraction operator returns a boolean to indicate
success. If the extraction operation fails, the Any does not hold data of the type you tried to
extract.

WebSphere Application Server CORBA support - Page 27

A CORBA::Any object always owns the data that its void* points to, and deletes (or
releases) it when the Any is given a new value or deleted. The only question is whether this
data is a copy of the data that was inserted into the Any. When primitives (including strings
and enums) are inserted, a copy is made, and a copy is returned when the data is extracted.

For non-primitive (constructed) data, extraction from an Any always updates a pointer
(owned by the caller) so that it points to the data owned by the Any. The caller should not,
therefore, free this data or reference it after the Any has been given a new value or deleted.
For constructed IDL type T, the emitted bindings define the following extraction operator:

CORBA: : Bool ean oper at or >>=(Any&, T*&);

When a reference to constructed data is inserted into an Any (when the C++ syntax looks as
if you are inserting a value instead of a pointer) a copy is made. In this case, the caller
retains ownership of the original data. For example, for constructed type T and interface I,
the emitted bindings define the following insertion operators, which copy (or, in the case of
object references, _duplicate) the inserted value):

voi d oper at or <<=(Any&, const T&);
voi d operator<<=(Any& T_ptr);

When a pointer to constructed data is inserted into an Any, as when using the following
insertion operators emitted for type T and interface I

R RO R e T

The Any takes ownership of the constructed type's top-level storage only; however, the Any
makes no copy of the top-level storage or any embedded storage. All further use of the
pointer that was inserted is forbidden; the Any now owns it and is free to delete it at any
time. The next time data is inserted into the Any, or when the Any is destroyed, the Any
deletes the previously-inserted pointer. However, if the constructed type consists of multiple
dynamically-allocated regions of memory, only the top-level storage is deleted. (The Any
deletes arrays using a single array delete; other constructed types are deleted using a
single, normal delete.) Further, the top-level storage is deleted as a void*, rather than its
true type, which means that the constructed type's destructor will not be run. Due to these
restrictions, insertion by pointer of constructed types into an Any should be used with
caution.

In summary, when extracting data from an Any, the caller does own the data for primitive
types, but does not own the data for constructed types. When inserting data into an Any, the
caller retains ownership of the data for primitive types, for constructed types inserted by
value, and for storage embedded within constructed types inserted by pointer. The caller
does not retain ownership of the top-level contiguous storage for a constructed type inserted
into an Any by pointer.

The followng is an example that illustrates the previously discussed aspects of CORBA::Any
usage. The IDL for this example appears immediately below. It defines a struct and an array
that will be inserted into an Any.

Modul e M
Struct S

string str;
| ongl ng;

t'ypedef long longl[2][3];
A C++ program illustrating Any insertion and extraction appears below:

#i nclude stdio.h
#i ncl ude any_C. cpp
mai n()

WebSphere Application Server CORBA support - Page 28

CORBA: : Any a; // the Any that we'll be using
/T test along

long | = 42;
a <<=
i{f (a. type() >equal (CORBA: : _tc_long))
| ong v,
a >>= .
} prlntf(the any holds a long = %\ n", v);
el se
})rlntf(failure: long insertion\n");
[test a string
char *str = "abc"
a <<= st
|{f (a. type() >equaI(CO?BA _tc_string))
char *ch;
a >>= ch;
printf(" t he any holds the string = %\n", ch);
delete ch
a >>= ch;
prlntf(" the any still holds the string = %\n", ch);
del ete ch;
}
el se
;)rlntf(faI ure: stri g insertion\n");
/| test a bounded string -- note you do not use a typecode here
char *bstr = "abcd";
char *rstr;
a <<= CORBA: : Any: : fromstring(bstr, 6) ;
if (a >>= CORBA :Any::to string(rstr,5))
prlntf(t he any hol ds” a bounded strin ng<6> = %\ n", rstr);
;)rlntf(failure: bounded string insertion\n")
/| test a user-defined struct

S *sl1l = new M: S
char *saveforlater = CORBA::string_dup("abc");
sl->str = savef orlater;
sl->Ing =
a <<= s1; I/ insertion bX/I gm nter
if (a. type() >equal (_tc_|

M : S*sp

a >>=

prlntf(the any holds an M:S = {%, %}\n", sp->str, sp->Ing);
R,,“mf& failure: struct insertion by pointer\n");
s2.str = gg?BA::stri ng_dup("def");

s2.lng =
a <<= 52 /1 note: this del etes *sl, but not saveforlater
printf(" saveforlater still = %\n", saveforlater);
CORBA: : string_: freefsavef rlater);
if (a type()->equal (_tc_MS))

M:S *sp;

a >>=

prlntf(Pthe any holds an M:S = {%, %l}\n", sp->str, sp->Ing);

els
Rﬂrlntf(failure: struct insertion by value\n");

S var s3 = ne K .
s3->Str = CORBA: : strlng dup("ghi");
s3->Ing = 96;
a <<=
|{f (a. type() >equal (_tc_M 9S))
M S*sp,
>>= P
pr|ntf(the any holds an M:S = {%, %}\n", sp->str, sp->lng);
el se . .
Prlntf(failure: struct insertion by ref to value\n");
/ test an array
:longl var |1v. = M:longl_alloc();
for !-O i <2; |++
1<3

Ilv i = '|+1 *(j+1

1 Tup iu (140 () hXX
|f (a type()->equal (_tc Iongl))
:lon %_forany I 1s;

a>>— S;

rintf("the any holds the array: ");
or (i ;|<2 |++

for %—) |

print "°d "o 1As[i1[i]);

printf

]else printf("failure: array insertion\n");

}
Output from the above program is:

the any holds a long = 42

the any holds a string = abc

the any still holds a string = abc

the any holds a bounded string<6> = abcd

the any holds an M:S = {abc, 42}
saveforlater still = abc

the any holds an M:S = {def, 23
the any holds an M:S = {ghi, 96

WebSphere Application Server CORBA support - Page 29

the any holds the array: 1 2 3 2 4 6

C++ bindings for CORBA Array types

An IDL array type is mapped to the corresponding C++ array definition. There is also a
corresponding _var type. For example, given the following IDL definition:

typedef |ong LongArray [4][5];

The C++ bindings provide the following definitions:

typedef CORBA: :Long LongArray[4] [

t ypedef CORBA: : Long LongArray_s |ce[5];

t ypedef LongArray slice* LongArray_sli ce vPtr;

pedef const LongArray_slice* LongArray_slice cvPtr;
class LongArray_var

~—e

ublic:

ongArray_var l

LongArray_var (LongArray_slice*);

LongArray_var (const LongArray_var&);

LongArray_var & operator= LongArray slice*);

LongArray_var & operator= (const LongArray var &);

~LongArray_var();

const LongArray_: sl i ce& operat or int const

const LongArray_slice& operat or ULong) const ;

LongArray_slice & operat or
OO? A ULong

LongArray_slice & operat or
E const

operator CongArray_slice_cv
operator LongArray_slice thr&
tongArray slice * LonEArray al loc();

voi d LongArray_free (LongArray_slice *%'
LongArray_slice * LongArray_dup (co st LongArray_slice*);

As shown above, array mappings provide alloc, dup, and free functions (for allocating,
copying, and freeing array storage), as static member functions of the class within which the
array type name is scoped. The alloc function dynamically allocates an array, which can be
later freed using the free function. The dup function dynamically allocates an array and
copies the elements of an existing array into it. A NULL pointer can be passed to the free
function. None of these functions throws exceptions.

The type of the pointer returned from LongArray_alloc is LongArray_slice*. The C++
bindings define array "slice" types for all arrays declared in IDL. The reason is that using the
name LongArray in a program does not denote the array LongArray; rather, it denotes a
pointer to the array. For historical reasons (related to the fact that arrays are not an actual
data type in C and C++) the type of this pointer has one less array dimension than the array
LongArray. Thus, the bindings for LongArray include the following typedef:

typedef string LongArray_slice[5];

Hence, LongArray_slice* is the correct type for a pointer to an array of IDL type LongArray.

As with structs and sequences, arrays use special auxiliary classes for automatic storage
management of String and object reference elements. The auxiliary classes for Strings and
object references manage the storage just as the associated _var classes do.

When assigning a value to an array element that is an object reference, the assignment
operator will automatically release the previous value (if any). When assigning an object
reference pointer to an array element, the array assumes ownership of the pointer (no

_duplicate is done), and the application should no longer access the pointer directly (if this is
not the desired behavior, then the caller can explicitly _duplicate the object reference before
assigning it.) However, when assigning to an object reference array element from a _var
object or from another struct, union, array, or sequence member (rather than from an object
reference pointer), a _duplicate is done automatically.

For an array of Strings, when assigning a value to an element or deleting the array, any
previously held (non-null) char* is automatically freed. As when assigning to String_vars,
assigning a char* to a string element does not make a copy, but assigning a const char * or
another struct/union/array/sequence String element does make a copy. One should never

WebSphere Application Server CORBA support - Page 30

assign a string literal (for example, "abc") to a String array element without an explicit cast to
"const char*". When assigning a char* that occupies static storage (rather than one that was
dynamically allocated) the caller can use CORBA::string_dup to duplicate the string before
assigning it.

The following is an example that involves multidimensional arrays, and array_vars, from the
IDL snippet immediately below:
Y pader *5i g 53 0t o] £hi

The code that exercises the C++ arrays that correspond to the above IDL is shown below.
Notice that in the following example:

» There is no need to explicitly use slice types when working with the array _var types,
because the bindings declare the pointer held by an array _var type using the
appropriate slice type.

« Atthe end, the program explicitly frees the storage pointed to by s2_3p (using an array
delete operator), but does not do this for s3_2v, because its pointer is deleted when the
destructor for s3_2v is implemented. (This is the purpose of the _var types.)

#i nclude arr_C. Cﬁp
#i ncl ude stdio.

mai n()
int i,j;
char | d{ 40] ;
/] create arrays
s2_3_slice* s2°3p = s2_3 alloc();
s3_2"var s3_2v = s3_2 alToc();
//710ad the arrays
for(i=0; i<2; i+%)
Eor (1=0; j<3; j++)
sprintf(id, "s2_3 el enent [O/d][o/d]",i,jl;
/1 Use string_dup when assigning a char o
/] if you do not want the array to own the original:
} s2_3p[i][j] = CORBA: :string_dup(id);

%or(i:O; i<3; i++)
for (j=0; j<2; j++)
sprintf(id, "s3_2_var element [%][%]",i,]);
/] Use string_dup when assigning a char*

// if you do not want the array to own the original:
s3_2v[i][j] = CORBA: :string_dup(id);

}
}/ print the array contents
Eor(|:0; 1<2; i++

Eor (j=0; j<3; j++)

} printf("%\n", s2_3p[il[j]l);
%or(i:O; 1<3; i++)

Eor (1=0; j<2; j++)

} printf("us\n", s3_2v[i][j]);
%iel ete [] s2_3; // needed to prevent a storage |eak.
/] Nothing is needed for s3_2v, because
/Il it is a _var type.

) _
Output from the above program is:

s2_3 el ement [01) O]1
s2_3 el ement
s2_3 elenent [0][2

s2_3 elenent [1][0
s2_3 elenment [1][1
s2_3 element [1][2

s3”2_var el enen
s3"2"var el ement
s3”2"var el ement
s3”2"var el ement
s3_2"var el ement
s3”2"var el ement

C++ bindings for CORBA Atomic data types

NP RO
RPORORFRO

WebSphere Application Server CORBA support - Page 31

The atomic IDL data types (long, short, unsigned long, unsigned short, float, double, char,
boolean, and octet) are mapped into types defined in corba.h, nested within the CORBA
scope. See “IDL name scoping” on page 2 for more information. The first letter of the
mapped type is capitalized. For example, to introduce and initialize a local variable named
Myvar whose type corresponds to the IDL type named long, a C++ programmer could
employ the following expression:

CORBA: : Long Myvar = 1,

The mapping for the IDL boolean type (CORBA::Boolean) defines only the values 0 and 1.
The unsigned long and unsigned short IDL types are mapped to CORBA::ULong and
CORBA::UShort, respectively.

C++ bindings for CORBA Enumerations
An IDL enum is mapped to a corresponding C++ enum. For example, given the following
IDL:

nmodul e M
enum Col or
~ red, green, blue

b

A C++ programmer could introduce a local variable of the corresponding C++ type and
initialize it with the following code:

{
}

M : Col or MYCOLOR = M :red;

The enumeration constant red is not denoted using the expression M::Color::red. For this
reason, names of enumeration constants must be carefully chosen.

C++ bindings for CORBA Sequence types

An IDL sequence type is mapped to a C++ class that behaves like an array with a current
length (how many elements have been stored) and a maximum length (how much storage is
currently allocated). The array indexing operator [] is used to read and write sequence
elements. (Indexing begins at zero.) It is the programmer's responsibility to check the
current sequence length or maximum to prevent accessing the sequence beyond its
bounds. The length and maximum of the sequence are not automatically increased to
accommodate new elements; the programmer must explicitly increase them.

The maximum length of a bounded sequence is implicit in the sequence class's type and
cannot be changed. The initial maximum length of an unbounded sequence is set to zero by
the default constructor, or initialized by the programmer using a non-default constructor.
Setting the initial maximum length of an unbounded sequence using the non-default
constructor causes storage to be allocated for the specified number of sequence elements.

Sequence classes provide an overloaded member function length that either returns or sets
the length of the sequence. Setting the length of an unbounded sequence to a value larger
than the current maximum causes the sequence to allocate new storage of the required
size, copy any previous sequence elements to the new storage, free the old storage (if any),
and reset the maximum to the new length. Sequence classes also provide allocbuf and
freebuf member functions for explicitly allocating/freeing the sequence's storage buffer.
Decreasing a sequence's length does not cause any storage to be deallocated, but any
orphaned sequence elements are no longer accessible, even if the sequence length is
subsequently increased.

Sequences may or may not manage (own) the storage that contains their elements, and the
elements themselves By default, a sequence manages this storage, but a release

WebSphere Application Server CORBA support - Page 32

constructor parameter allows client programmers to request otherwise (when passing in a
buffer explicitly allocated using the allocbuf function).

The following IDL:

typedef sequence sl1; // unbounded sequence

is mapped to the following C++ sequence class:

class s1

pu
sl) // defaul t constructor
sl :ULong nmax);// "max" constructor
sl CORBA: : ULong nax, CORBA: : ULong I'ength,
dat a, CORBA! : Bool ean rel ease=
// "data" construct or
sl(const s1&);// coPy constructor
sl &operator= (const " s1&); /| assi gnnent operat or
~s1();// destructor
CORBA: : ULong naxi mun() const;
CORBA: : ULon Ieng\th(ui const;
voi d | engt h{ CORB ong | en)
T& operator[] (CORBA:: ULong |nde X) ;
const T& oper at or CORBA! : ULong |ndex) const ;
static T* allocbu A ULong nel ens);
static void freebuf (T* dat a a);

I
The default constructor sets the length and maximum to zero. (For a bounded sequence,

the default constructor sets the maximum to the sequence bounds and allocates storage for
the maximum number of elements, which the sequence owns.)

The "max" constructor sets the initial sequence maximum and allocates a storage buffer for
the specified number of sequence elements, which the sequence owns. The length of the
sequence is initialized to zero.

Note: This method is not available for bounded sequences.

The "data" constructor sets the initial length and maximum of the sequence, as well as its
initial contents. (For bounded sequences, the maximum cannot be set by the "data”
constructor.) The input storage should match the specified sequence maximum. Ownership
of the input storage is indicated by the "release" parameter. Passing release=1 specifies
that the storage was allocated using s1::allocbuf, that the sequence should delete the
storage and the sequence elements when the sequence is deleted or when the storage
needs to be reallocated, and that the caller will not directly access the storage after the call
(because the sequence is free to delete it at any time). In general, sequences constructed
with release=0 should not be passed as inout parameters, because the callee must assume
that the sequence owns the sequence elements.

The copy constructor creates a new sequence with the same maximum and length as the
input sequence and copies the sequence elements to storage that the sequence owns. The
assignment operator performs a deep copy, releasing the previous sequence elements if
necessary. It behaves as if the destructor were run, followed by the copy constructor.

The destructor destroys each of the sequence elements (from zero through length-1), if the
sequence owns the storage.

The allocbuf function allocates enough storage for the specified number of sequence
elements; the return value can then be passed to the "data" constructor. Each sequence
element is initialized using its default constructor; string elements are initialized to NULL;
object reference elements are initialized to nil object references. NULL is returned if storage
cannot be allocated for any reason. If ownership of the allocated buffer is not transferred to
a sequence using the "data" constructor with release=1, the buffer should be subsequently
freed using the freebuf function. The freebuf function insures that each sequence element's
destructor is run (or, for strings, that CORBA::string_free is called, or for object references,
that CORBA::release is called) before the buffer is deleted. The freebuf function ignores

WebSphere Application Server CORBA support - Page 33

NULL pointers passed to it. Neither allocbuf nor freebuf throw CORBA exceptions.

As with structs, sequences that manage their elements use special auxiliary classes for
automatic storage management of String and object reference sequence elements. These
auxiliary classes manage Strings and object references just as the associated _var classes
do.

For a storage-managing sequence whose elements are object references, when assigning a
value to an element, the assignment operator will automatically release the previous value,
if any. When assigning an object reference pointer to such a sequence element, the
sequence assumes ownership of the pointer (no _duplicate is done), and the application
should no longer access the pointer directly. (If this is not the desired behavior, then the
caller can explicitly _duplicate the object reference before assigning it to the sequence
element.) However, when assigning to such an object reference sequence element from a
_var object or from another struct, union, array, or sequence (rather than from an object
reference pointer), a _duplicate is done automatically.

For a storage-managing sequence whose elements are Strings, when assigning a value to
such an element or deleting the sequence, any previously held (non-null) char* is
automatically freed. As when assigning to String_vars, assigning a char* to a string element
does not make a copy, but assigning a const char *, a String_var, or another
struct/union/array/sequence String member does automatically make a copy. Thus, one
should never assign a string literal (such as "abc") to such an element without an explicit
cast to const char*. When assigning a char* that occupies static storage (rather than one
that was dynamically allocated), the caller can use CORBA::string_dup to duplicate the
string before assigning it.

There is a corresponding _var type defined for every sequence class.The _var type for a
sequence provides an overloaded operator[] that forwards the operator the underlying
sequence.

Following is an example that illustrates loading and accessing the elements of a sequence.
This example illustrates a recursive sequence (whose entries are structs of the same type
that contain the sequence). The IDL for the example is shown below:

struct S

long sf1;
sequence sf2

ypedef sequence Sseq

The following is an example program that creates and loads a sequence of type Sseq and
then prints out its contents.

#i ncl ude seq_C. c
#i ncl ude s?ﬁio.ﬁp

mai n()
int i,j;
Sseq seq; /] create an Sseq
seq.length(3); // set length of seq to 3 .
for (i=0; 1<3; i++) } /] Tndex the three S structs in seq
seq[I].sfl =1; Il place a nunber in the i-indexed struct
seq[i].sf2.length(i+1); // set length of the sequence in
I the i-indexed struct. . .
for (j=0; j<i+l; j++) // index the i+1 S structs in the sequence
/I in the i-indexed struct .
seq[l%.sf?[]].sfl = (|+l%*10+]; /'l place a nunber in
11 he j-1ndexed struc

}/,CK. Print out what you have created!

Prlntf("seg = (% sequence elements)\n", seq.length());

{or (i=0; i<3; i++)
printf(" struct[%d] = {\n", i);
printf(" sfl = %l\n", seq[l].sfl)
printf(" .. sf2 = (%l sequence el enents)\n"
seq[i].sf2[j].length());
Eor (1=0; J<i+1; J++)

WebSphere Application Server CORBA support - Page 34

printf struct[qml =

printf(" /el\ seq[l sf2[1% sf)
printf(" f = (9@ sequence el enents)\
seq[l} sf2[]] sf2 Ien th())

frlnt (" ?

tf(" }\n");

Note that the above program never explicitly constructs any data of type S, even though the
sequences contain structs of this type. The reason is that when a sequence buffer is
allocated, default constructors are run for each of the buffer elements. So, when the above
program sets the length of a sequence of S structs (either at the top level for the seq
variable, or for the sf2 field of an S struct in seq), the resulting buffer is automatically
populated with default structs of type S.

The output from the above program is:

seq = (3 seguence el ement s)

sf2 = (1 sequence el enents)
struct[0] = {
sfl1 = 10
) sf2 = (0 sequence el enents)
}
struct[1] =
Sf1[=]1 {
sf2 = (2 sequence el enents)
struct[0] = {
sfl1 = 20
} sf2 = (0 sequence el enents)
struct[1] =
sf1[=]21{
} sf2 = (0 sequence el ements)
}
struct[2] =
sfl[:]Z {
sf2 = (3 sequence el enents)
struct[0] = {
sf1 = 30
sf2 = (0 sequence el enents)
}étruct[l] = {
sfl = 31
} sf2 = (0 sequence el enents)
struct[2] =
sfl[:]32{
sf2 = (0 sequence el enents)

}
}
C++ bindings for CORBA Strings

The mapping for strings is provided by corba.h, within the CORBA scope. See “IDL name
scoping” on page 2 for more information. The user-visible types are CORBA::String and
CORBA::String_var. CORBA::String is a typedef name for char*. The CORBA::String_var
class performs storage management of a dynamically allocated CORBA::String. The
following functions are for dynamic allocation/deallocation of memory to hold a String:

* CORBA::string_alloc
» CORBA::string_free
* CORBA::string_dup

A String_var object behaves as a char*, except that when it is assigned to, or goes out of
scope, the memory it points to is automatically freed by CORBA::string_free. When a
String_var is constructed or assigned from a char*, the String_var assumes ownership of
the string and the caller should no longer access the string directly. (If this is not the desired
behavior, as when the char* occupies static storage, the caller can use CORBA::string_dup
to copy the char* before assigning it.) When a String_var is constructed or assigned from a
const char*, another String_var, or a String element of a struct, union, array, or sequence,
an automatic copy of the source string is done. The String_var class provides subscripting
operations to access the characters within the embedded string.

C++ compilers do not treat a string literal (such as "abc") as a const char* upon assignment;

WebSphere Application Server CORBA support - Page 35

given both a const and a non-const assignment operator, the compiler will choose the
non-const operator. As a result, when assigning a string literal to a String_var, no copy of
the string into dynamically allocated memory is made; the pointer "owned" by the String_var
will point to memory that cannot be freed. Thus, string literals should not be assigned to a
String_var without an explicit cast to const char*.

Some examples using String_var objects are:

/1 first sonme supporting functions for the exanples
({:har* f1()
} return "abc";
{char* f2()
char* s=CORBA: :string_alloc(4);strcpy(s,"abc");return s;
}/ then the exanpl es
}/m d main()
CORBA: : Stri n? var ;
if (0) s1 = I() /I WongIl The poi nter cannot be freed and
/] no copy is .
if (0) sl' = ‘abc"; /[Also wong, for the sanme reason.
const char* const_string = "abcd™; // *const_string cannot be changed
sl = const_string; // . A copy of the string is nade because

/1 it is const, and the co y can be freed.

CORBA: : String_ var s3 = f 2();11 K no copy is made, but f2

/1 returns a String that can be freed

CORBA: : String_var s4 = CORBA :string alIoc(lOL // also OK. no copy
s4 = s3; [/ SA will use strlng free foll owed by string_dup
strlen(s4); // 14 wiTl receive

Istlrlen sl 1111 will recelve4

|
4 >=
%/ s4,s1); // OK, but only because of the condition.
e that s4's buffer only has size=4.

const strlnﬁ K. s4"will use string_free followed by
ring_dup. The cop¥ is made because String_vars

nust reference a buffer that can be nodified.

}/ The s1, s3 and s4 destructors run successfully, freeing their buffers

C++ bindings for CORBA Struct types

An IDL struct type is mapped to a corresponding C++ struct whose field names correspond
to those in the IDL declaration, and whose field types support access and storage of the
C++ types corresponding to the IDL struct field types. Dynamically allocated storage used to
hold such a C++ struct must be allocated and freed using the C++ new and delete
operators.

When a new struct is created, the default constructor for each of its fields implements.
Object reference fields are initialized to nil references, and String fields are initialized to
NULL. When the struct is deleted (or goes out of scope), the destructor for each of its fields
implements. The (default) copy constructor performs a deep copy, including duplicating
object references; the (default) assignment operator acts as the destructor followed by the
copy constructor.

The actual types of the fields in the C++ struct to which an IDL struct is mapped may be
auxiliary classes for the purpose of storage management. In particular, String and object
reference field types are auxiliary classes that manage Strings and object references in the
same way that the associated _var classes do. Although client code should not depend on
the names of these auxiliary classes, the client code does need to know that struct fields
containing Strings and object references are managed by these auxiliary classes.

When assigning a value to a struct field that is an object reference, the assignment operator
for the struct field will automatically release the previous value (if any). When assigning an
object reference pointer to a struct member, the struct member assumes ownership of the
pointer (no _duplicate is done), and the application should no longer access the pointer
directly. (If this is not the desired behavior, then the caller can explicitly _duplicate the object
reference before assigning it to the struct member.) However, when assigning to an object
reference struct member from a _var object or from another struct, union, array, or
sequence member (rather than from an object reference pointer), a _duplicate is done
automatically.

WebSphere Application Server CORBA support - Page 36

When assigning a value to a struct field that is a String, or when the struct is deleted or goes
out of scope, any previously held (non-null) String is automatically freed. As when assigning
to String_vars, assigning a char* to a String field does not make a copy, but assigning a
const char *, a String_var, or another struct/union/array/sequence String member does
automatically make a copy. One should never assign a string literal (for example, "abc") to a
String struct member without an explicit cast to "const char*". When assigning a char* that
occupies static storage (rather than one that was dynamically allocated), the caller can use
CORBA::string_dup to duplicate the string before assigning it.

As with all constructed types, a _var type is provided for managing an instance of the C++
struct that corresponds to an IDL struct. When assigning one struct's _var to another, the
receiving _var deletes its current pointer (thus running all contained destructors), and
creates a new struct to hold the assignment result, which is initialized using copy
constructors for each of the contained fields. Thus, for example, if the source struct has an
object reference field, the struct _var assignment will automatically duplicate this reference.

The IDL that follows is used in the succeeding example, which shows both correct and
incorrect ways to to create and manipulate the corresponding C++ struct and the
corresponding _var type :

Interface A
struct S
N itri ng ;%
IS
The following code illustrates both correct and incorrect ways to create and manipulate the
corresponding C++ struct and the corresponding _var type.

{

. S;
->f1 = "abc"; -- Wong! f1 cannot free this pointer |ater
1->f1 = CORBA: :string_alloc(20);
A ptr al = // get an sonmehow
Aptr a2 = [/ ?et an A sonehow
- ; /T al still has ref cnt =1
sv2->f1 = CORBA: :string_alloc(20);
sv2->f2 = a2; // a2 still has ref cnt =1
svl = sv2; // This runs copy ctors, and increnents a2's ref cnt.
/Il Also, al's ref count is decrenented.
svl->f1 = sv2->f1;

}
C++ bindings for CORBA Union types

Union fields are not directly accessible to C++ programmers. Instead, the C++ mapping for
IDL unions defines a class that provides accessor methods for the union discriminator and
the corresponding union fields. The union discriminator accessor is named _d. The union
field accessors are named using the IDL union field names and are overloaded to allow both
reading and writing.

Note: A deviation from the CORBA specifications exists; there is no support of longlong
discriminators in unions.

Setting a union's value using a field accessor automatically sets the discriminator, and
releases the storage associated with the previous value, if any. It is an error for an
application to attempt to access the union's value through an accessor that does not match
the current discriminator value. It is also an error for the application to use the discriminator
modifier method to implicitly switch between difference union members.

Unions with implicit default members (those that do not have an explicit default case and do
not list all possible values of the discriminator as cases) provide a _default method, for
setting the discriminator to a legal default value. This method causes the union's value to be
composed only of the legal default value, because there is no explicit default member in this
case.

WebSphere Application Server CORBA support - Page 37

A _var type is defined, for managing a pointer to a union in dynamically allocated memory.

To illustrate the C++ bindings for IDL unions, consider the following IDL:

nodul e A
interface X

union U switch (I ong)
case 1: long ul;

case 2: string u2;
case 3: X u3;

ji 5
The following code illustrates usage of the C++ bindings corresponding to the previous IDL:

t Xptr x = =// get an X sorrehow
A:U.var uv = new A : . o
uv u2((const char estin sets the discrimnator to
2 t char*) "testing" /1 ts the d t to 2
[/ and co ies the string
if Su. Il the condltlon eval uates to true
u(23 // freesthe string, and sets the discrimnator to 1
f gu. d(1) // the condition eval uates to true
u3(x); m dupllcates x and sets discrimnator to 3

The default constructor of a union class does not initialize the discriminator or the union
members, so the application must initialize the union before accessing it. The copy
constructor and assignment operator perform deep copies. The assignment operator and
destructor release all storage owned by the union.

With respect to memory management, accessor and modifier methods for union members
work similarly to those for struct members. Modifier methods make a deep copy of their
input when passed by value (for simple types) or by reference (for constructed types).
Accessor methods that return a non-const reference can be used by the application to
update a union member's value, but only for struct, union, sequence, and any members.

The modifier method for a string union member makes a copy when given a const char* or a
String_var, but not when given a char*. As shown in the example above, a string literal
should not be assigned to a union without an explicit "const char*" cast. The accessor
method for a string union member returns a const char*, therefore the string union member
cannot be modified. (This is done to prevent the string union member from being assigned
to a String_var, resulting in memory management errors.)

The modifier method for an object reference union member always duplicates the input
object reference and releases the previous object reference value, if any. The accessor
method for an object reference union member does not duplicate the returned object
reference, because the union retains ownership of it.

The accessor method for an array union member returns a pointer to the array slice. The
application can thus read or write the union-member array elements using subscript
operators. If the union member is an anonymous array (one without an explicit type name),
the union defines (typedefs) the slice type, by cocatenating a leading underscore and
appending "_slice" to the union member name.

C++ bindings for CORBA WStrings

The WString type provides support for wide strings. It is fairly comparable to using strings
except for type declarations and assignments:

#i nclude westr.h // For Wchar and WString support

const wchar_t* wcomments = L"This policy | ooks pretty good

wehar _t* weonment sResul t=:: CORBA: : wstring_al | oc(wes| en?wconmants))
1 CORBA: : WBt ri ng_var wconment sResul t _var (Wwconmment sResul t)

pol i cyVar >wecomrent s(wconmrent s) ;

I f (!'wescnp(weconmment sResul t _var, wcomments))

WebSphere Application Server CORBA support - Page 38

cout << "Wonments not set" << endl;
return 1;

el se
cout << "Wonmments set correctly..." << endl;

wcomment sResul t = pol i cyVar - >wcoment s() ;

CORBA C++ binding restrictions

When a forward reference to an interface appears within an IDL module, the IDL compiler
issues an error message if the referenced interface is not defined within the module. When
a similar unresolved forward reference appears at global (file) scope, a warning is issued
that indicates the bindings being emitted will not include a mapping for the undefined
interface. For information on the scope see “IDL name scoping” on page 2 . The assumption
is that the interface will be defined by other bindings than those being currently generated.
This approach supports IDL files with mutually-referential interfaces (as long as they appear
at global scope). The following example illustrates how to organize the IDL files for such

cases:

/] file foo.idl

#i fndef foo_idl

#define foo_idl . .
interface Foo; // declare Foo so bar.idl can refer to it
#i tnclude bar . idl

Bar fool(); // notice the use of Bar

{
o .
#endi f // foo_idl

/[file bar.idl

ndef bar_idl|

fine bar_idl . .
erface Bar; // declare Bar so foo.idl can refer to it
ncl ude foo.idl

terface Bar

f
e
t

e
/
#i
#d
n
#i
In
~ Foo bar1(); // notice the use of Foo
endif // bar_idl

Due to problems inherent to the CORBA 2.1 mapping for C++, there are currently two
known limitations with respect to handling legal CORBA 2.1 IDL. The compiler provides
informative error messages in these two cases, and indicates that C++ bindings cannot be
generated. The cases are:

» The C++ bindings map most IDL data types to C++ classes contained within a nesting
scope provided by another C++ class. However, it is not legal to define a nested C++
class (or any other type) that has the same name as a containing C++ class. Thus, for
example, the following IDL cannot be mapped to useful C++ bindings:
nmodul e X

interface X ...;

[l or struct X ... ;

// or union X ...;

H or typedef sequence < > X;

b

» The C++ bindings map attributes into overloaded C++ accessor functions whose name is
the attribute name. As a result, for example, the following IDL will not map to useful C++
bindings (because Y's | method interferes with the inherited mapping for X's attribute). If
Y's method took any arguments, there would not be a problem, because of C++
overloading. The compiler indicates an error only when C++ overloading will not
distinguish inherited accessors from newly introduced methods (or vice versa).
interface X

attribute long |;
interface Y : X

{
| 1();
y 1oms [0

CORBA programming: Name scoping and modules in the C++ bindings
IDL scoped names are mapped to C++ scopes as follows.

* Inthe IBM C++ bindings, IDL modules are, by default, mapped to C++ classes of the

WebSphere Application Server CORBA support - Page 39

same name. If the programmer using the bindings #defines USE_NAMESPACE before
including the bindings, then the bindings map the IDL module to a C++ namespace of
the same name. IDL definitions occurring within a module are mapped to corresponding
C++ definitions within the C++ module class or namespace.

» IDL interfaces are mapped to C++ classes. All IDL constructs defined within an interface
are mapped to corresponding C++ definitions within the C++ interface class.

» Every use in IDL of a C++ keyword (such as "class") is mapped into the same identifier
with a leading underscore.

Commonly used CORBA interfaces
The most commonly used CORBA interfaces are described in the following topics:

» “CORBA class interfaces” on page 40
* “CORBA::0bject interfaces” on page 40
* “CORBA:ORB interfaces” on page 41

For more information on operations defined by these interfaces, refer to the ORB section
within the CORBA module of the Programming Reference.

CORBA class interfaces

The CORBA interface provides the following commonly used class operations. These are
used like a C++ class reference (for example CORBA: : i s_ni | (sonePoi nter);).

is_nil
This operation returns a boolean that indicates if the input object reference is nil.
This is useful for many operations involving object references, including those

operations that do not throw exceptions when they fail - for example
CORBA: : Qbj ect:: _narrow().

release

This operation releases resources associated with an object or pseudo-object
reference.This operation may or may not perform a C++ delete operation. A
reference count is used by this operation and CORBA: : Cbj ect : : _dupli cate().
When the reference count reaches zero then the appropriate delete operations are
performed. Care must be taken when using the release and _duplicate operations
to ensure that objects are not leaked or inadvertently deleted. Alternatively use the
_var technique described for string_dup below.

string_dup

This operation copies a string. A common example of its use is when returning a
string from an operation. Strings and wide strings, unlike the other basic CORBA
types, have associated allocated memory. So care must be taken when using these
variables. The resulting string should subsequently be freed by using the
CORBA::string_free operation, or by assigning the string to a _var variable which
will free the string appropriately.

CORBA::0object interfaces
The CORBA interface provides the following object interfaces:

_duplicate

This operation duplicates an object reference. This is particularly useful when
passing references to objects to resolve memory ownership issues. For every
_duplicate that is performed on an object an equal number of release() must also be
performed for proper memory management. An alternative to the _duplicate() and
release() logic is to use _var support as described for string_dup in “CORBA class
interfaces” on page 40 .

WebSphere Application Server CORBA support - Page 40

_is_a
This operation is used to determine whether an object reference supports a given

IDL interface. If the object supports the interface the _narrow operation can be
successfully performed.

_is_equivalent
This operation is used to determine whether two object references refer to the same
object.

_harrow

This operation is used to narrow a more generic interface to a more specific
interface. This operation will return an empty pointer without throwing an exception
if the interface cannot be narrowed to the requested type. Care must be taken to
check the returned value before using it.

_nil
This operation returns a nil CORBA::Object. This object could be used for
comparison operations.

_nhon_existent

This operation determines whether an object reference refers to a valid object. This
will result in verification of the object reference only, no other operations are
performed on the requested object.

CORBA::ORB interfaces
The CORBA interface provides the following ORB interfaces:
object_to_string
This operation converts an object reference to an external form that can be stored

for later use or exchanged between processes. The string_to_object operation can
be used to reconstruct the object reference.

string_to_object
This operation converts a stringified object reference to a reconstructed object

reference. The object_to_string operation must have been used to create the input
stringified data.

Note: Although object to_string is the way to save object references for future usage, the
returned data should only be used with string_to_object to reconstruct that object reference.
Do not use the string for comparing equivalence of object references. The object_to_string
operation may return different values at different times because various Object Services
may be adding information to this IOR.

C++ bindings for CORBA interfaces

The CORBA 2.1 C++ client bindings define a variety of C++ types corresponding to a single
IDL interface. For example, an IDL interface | is mapped to C++ types with the following

four names:
o |

e | _ptr

e | Ref

e | _var

The types named | and | _var are classes. The types | _ptr and | Ref are unspecified by
CORBA, but are required to name the same type; these types are the C++ form for an
object reference.

Note: The use of the IRef types will be removed by the CORBA 2.1 specification.

WebSphere Application Server CORBA support - Page 41

The class | is referred to as the interface class corresponding to IDL interface named | |;
the C++ mappings of the typedefs, operations, and constants defined within the IDL
interface | appear publicly within the C++ interface class | . For example, an IDL operation
that accepts an in parameter of interface type | is mapped to a C++ virtual member function
of the class named | that has a parameter of type | _pt r. Similarly, an IDL operation in |
that returns data of type | is mapped to a C++ member function in the class | that returns
data of type | _ptr.

As with other user-defined IDL types, the | _var type is used to assist storage
management. Specifically, an | _var type holds an | _ptr and can be used as if it were an
| _ptr.Whenanl _var type is assigned a new value or when it goes out of scope, it
releases the | _pt r itis holding at that time.

The CORBA 2.1 specification prohibits CORBA-compliant applications from:

» Explicitly creating an instance of an interface class, as in:
I ny_instance; /1 NOT ALLOWED!
| _pfr ny_instance = new |; // NOT ALLOWED!
» Declaring a pointer (I *) or a reference (I) to an interface class.

Instead, the | _ptr, | Ref,and | _var types must be used to hold object references, and
object references can only be created (by client applications) by invoking methods that
return object references. The interface class | is used by client applications only as a name
scope.

IDL operations defined in (or inherited by) interface | are invoked in C++ using the arrow
(->) operator on eitheran| _ptr, | Ref,orl _var type.

Nil object references of type | _pt r can be obtained using a static member function of |
called _ni | (). Operations cannot be invoked on nil object references. The

CORBA: : i s_ni | function is the only CORBA-conformant way to determine whether a given
object reference is nil. CORBA: : r el ease can be invoked on a nil object reference, but is
not needed. The _dupl i cat e and _nar r owfunctions defined by the C++ bindings can be
given a nil object reference.

In the IBM C++ bindings, the CORBA-prescribed types are implemented as follows:

1. The interface class for | is derived using virtual inheritance from the interface classes for
| 's IDL parents. When | has no IDL parents, its interface class is derived using virtual
inheritance from CORBA: : Cbj ect . Types, constants, and operations declared within the
| interface are mapped to types, constants, and member functions declared within the
corresponding interface class.

2. The object reference types | _ptr andl Ref are typedef'dto | * (for example,an| _ptr
points to an object of type |). However, CORBA 2.1 specifies that treating an | _ptr as
a C++ pointer (e.g., using conversion to void*, arithmetic and relational operators, test for
equality) is not conformant, although this is not enforced by the bindings.

3. Aninstance of | addressed is called a proxy, and is created by a proxy factory object of
class Pr oxyFact ory. For each interface | , the bindings define a ProxyFactory class,
and provide a global instance of this class with the name _Pr oxyFact ory.

4. Nil object references are represented as NULL pointers (but CORBA 2.1 conformant
applications should not assume so, and should instead use the _nil () andis_nil ()
functions to manipulate nil object references).

5. The |l _var class introduces an instance variable of type | _pt r. The purpose of an
| _var object is to handle release operations on the | _pt r that it holds.

6. An auxiliary class | _SeqEl emis used to return sequence elements, and is similar to the

WebSphere Application Server CORBA support - Page 42

| _var class. Itis returned from array access operations on an IDL type sequence. An
| _SeqEl emis different from an | _var in that it must honor the release setting of the
sequence from which it is selected (that is, it only owns the object thatits | _ptr
references if it was taken from a sequence that owns its buffer storage).

For more details on C++ bindings for CORBA interfaces, see the following topics:

« “Managing object references” on page 43
* “Widening object references” on page 43
« “Narrowing object references” on page 43

) . “Narrowingbtp a C++ implementation” on page 44
Managing CORBA object references

The mapping for interface | defines a static member function named _dupl i cat e that
takes as input an object reference of type | _pt r and returns an object reference of type

| _ptr (potentially the same reference, when reference counting is employed, as is the case
with WebSphere Application Server C++ bindings). The CORBA: : r el ease function
indicates that the caller will no longer access the object reference, and the resources
associated with the object reference can be deallocated. (In the WebSphere Application
Server C++ bindings, an object reference is only deleted when its reference count falls to
zero, that occurs only if CORBA: : r el ease is called for each _dupl i cat e or _narr ow
performed on the object reference.)

Duplicating an object reference using _dupl i cat e is analogous to copying a string before
transferring ownership of it, and releasing an object reference is analogous to deleting a
string that is no longer needed. Unlike strings, object references cannot be directly copied or
deleted by the client programmer; object references are managed by the ORB and can only
be duplicated or released by the application.

Widening CORBA object references

If interface A is a (direct or indirect) base of interface B, the following assignments do not
require an explicit C++ cast:

» B ptr toA var
e B ptrtoA ptr
« B ptr to Obj ect _var
* B ptr toObject_ptr
B vartoA ptr
* B var to Qbj ect _ptr

B _var cannot be assigned to A var or a compile-time error occurs. To assign B_var to
A var:

e UseB:: duplicateonB var tocreate B ptr.

) * AssignB_ptr to A var.
Narrowing CORBA object references

The mapping for an interface | defines a static member function named _nar r owthat takes
as input an object reference of any type (for example, an bj ect _pt r) and returns an
object reference of type | _pt r . If the referenced object (the actual implementation object
corresponding to the proxy addressed by the input object reference) does not support the |
interface, the result is NULL; otherwise, the | _pt r addresses an object that also supports
the | interface. In the case where the proxy addressed by the input argument does not
support interface | and the actual implementation object does, the | _ptr returned by

| :: _narrowaddresses a different proxy object than the input argument.

The _nar r ow static member function does an implicit _dupl i cat e of the input argument.

WebSphere Application Server CORBA support - Page 43

Therefore, the caller is responsible for releasing both the object reference input to
__nar r owand the return result.

CORBA programming: narrowing to a C++ implementation

Given an interface pointer to an object, it is sometimes useful to narrow to the
implementation pointer of the object. For example, given interface | , the C++
implementation hierarchy for I might look like:

N
| _SLeI eton
N
| _' mpl

You might want to convert a pointer to | into a pointerto | _I npl . There is no
CORBA-prescribed mechanism for this conversion. Within the confines of the C++
language, dynamic cast can be used.

CORBA programming: Storage management and _var types

The C++ bindings try to make the programmer's storage management responsibility as easy
as possible. One aspect of this is the "_var" types. For each user-defined structured IDL
type T (struct, union, sequences, and arrays) and for interfaces, the bindings generate both
aclass T and a class T_var. The classes CORBA::String and CORBA::Any also have
corresponding CORBA::String_var and CORBA::Any_var classes.

The essential purpose of a _var object is to hold a pointer to dynamically allocated memory.
A _var object can be used as if it were a pointer to the IDL type for which it is named;
special constructors, assignment operators, and conversion operators make this work in a
way that is invisible to programmers. The memory pointed to by a _var object is always
considered to be owned (managed) by the _var object, and when the _var object is deleted,
goes out of scope, or is assigned a new value, it deletes (or, in the case of an object
reference, releases) the managed memory.

A typical _var object is declared by a programmer as an automatic (stack) variable within a
code block, and is then used to receive an operation result or is passed to an operation as
an out parameter. Later, when the code block is exited, the _var object destructor runs and
its managed memory is deleted (or, for object references, released).

When a pointer (rather than another _var object or struct/union/array/sequence element) is
assigned to (or used to construct) a _var object, this pointer should point to dynamically
allocated memory, because the _var object does not make a copy; it assumes ownership of
the pointer and will later delete it (or, for object references, release it). The single exception
is that pointers to const data can be assigned to a _var object. When this occurs, the _var
object dynamically allocates new memory and copies the const data into the new memory.
A pointer assigned to a _var object must not be "owned" by some other data structure, and
the pointer should not be subsequently used by the application except by the _var object.

The default constructor for a _var type loads the contained pointer with NULL. You must
assign a value to a _var object created by a default constructor before invoking methods on
it, just as you must assign a value to a pointer variable before invoking methods on it.

The copy constructor and _var assignment operator of a _var type perform a deep copy of
the source data. The copy is later deallocated (or released, in the case of object references)
when the _var is destroyed or when it is assigned a new value.

The following is the typical form for a T_var class, emitted for an IDL--constructed data type
named T:

WebSphere Application Server CORBA support - Page 44

cl{ ass T_var

ublic:
var)r;
T var *);
T_var (const T var&);

~T_var ()
T var operator= (T*);

T var operator= (const T_var&);
T * operator-> const ();

i

For more information on storage management and argument passing see “Argument
passing considerations for C++ bindings” on page 45.

CORBA programming: Argument passing considerations for C++

bind

ings

Rules must be observed when passing parameters to a CORBA object implementation. The
type used to pass the parameters of a method signature is dependent on the IDL type and
the directionality of the parameter (in , inout, out, or return value).

The following rules for passing these parameters are dictated by CORBA OMG IDL to C++
mapping, and must be followed to:

» Ensure the required access authority.
* Prevent memory leaks.

» Ensure that the allocation and deallocation of memory is performed consistently.
in parameters

The caller (client) must allocate the input parameters. The callee (implementation) is
restricted to read access. The caller is responsible for the eventual release of the
storage. Primitive types and fixed-length aggregate types may either be heap
allocated or stack allocated. By their nature, variable-length aggregates cannot be
completely stack allocated.

inout parameters

For inout parameters, the caller provides the initial value and the callee may change
that value. For primitive types and fixed-length aggregates this is straight forward.
The caller provides the storage and the callee overwrites the storage on return. For
variable-length aggregates the size of the contained data provided on input may
differ than the size of the contained data provided on output. Therefore, the callee is
required to deallocate any input contained data that is being replaced on output with
callee allocated data. For object references, the caller provides an initial value: if the
callee reassigns the value the callee must first release the original input value. The
callee assumes or retains ownership of the returned parameters and must
eventually deallocate or release them.

out parameters

For primitive types and fixed-length aggregate types, the caller allocates the storage
for the out parameter and the callee sets the value. For variable-length aggregate
types, the caller allocates a pointer and passes it by reference and the callee sets
the pointer to point to a valid instance of the parameter's type. For object references
the caller allocates storage for the _ptr and the callee sets the _ptr to point to a valid
instance. Because a pointer to an array in C++ must actually be represented as a
pointer to the array element type, CORBA defines an array_slice type, where a slice
is an array with all the dimensions of the original except the first. The output
parameter is typed as a reference to an array_slice pointer. The caller allocates the
storage for the pointer and the callee updates the pointer to point to a valid instance
of an array_slice. The caller assumes or retains ownership of the output parameter
storage and must eventually deallocate it or, in the case of object references,
release it.

return values

WebSphere Application Server CORBA support - Page 45

For primitive types and fixed-length aggregate types, the caller allocates the storage
for the return value and the callee returns a value for the type. For variable-length
aggregate types, the caller allocates a pointer and the callee returns a pointer to an
instance of the type. For object references the caller allocates storage for the _ptr
and the callee returns a _ptr that points to a valid object instance. As a pointer to an
array in C++ must actually be represented as a pointer to the array element type,
the array_slice type is used for returning array values. The caller allocates storage
for a pointer to the array_slice and the callee returns a pointer to a valid instance of
an array_slice. The caller assumes or retains ownership of the storage associated
with returned values and must eventually deallocate it or, in the case of object
references, release it.

These rules for passing parameters are captured in and enforced by the header files
produced when an IDL interface description is compiled. Some rules cannot be enforced by
the bindings. For example, parameters that are passed or returned as a pointer type (T*) or
reference to pointer(T*&) should not be passed or returned as a null pointer. Memory
management responsibilities cannot be enforced by the bindings. Client (caller) and
implementation (callee) programmers must understand and implement according to these
rules.

For more detailed information on storage management and argument passing see the
following topics:

« “C++ type mapping for argument passing” on page 46.

» “Storage management responsibilities for arguments” on page 48.
CORBA programming: C++ type mapping for argument passing

Argument type mappings are discussed in this topic and summarized in the two tables
below. For the rules that must be observed when passing parameters (in , inout, out, or
return value) to a CORBA object implementation, see “Argument passing considerations for
C++ bindings” on page 45 .

For primitive types and enumerations, the type mapping is straightforward. For in
parameters and return values the type mapping is the C++ type representation (abbreviated
as "T" in the text that follows) of the IDL specified type. For inout and out parameters the
type mapping is a reference to the C++ type representation (abbreviated as "T&" in the text
that follows).

For object references, the type mapping uses _ptr for in parameters and return values and
_ptr& for inout and out parameters. That is, for a declared interface A, an object reference
parameter is passed as type A_ptr or A_ptr&. The conversion functions on the _var type
permit the client (caller) the option of using _var type rather than the _ptr for object
reference parameters. Using the _var type may have an advantage in that it relieves the
client (caller) of the responsibility of deallocating a returned object reference (out parm or
return value) between successive calls. This is because the assignment operator of a _ptr to
a _var automatically releases the embedded reference.

The type mapping of parameters for aggregate types (also referred to as complex types) are
complicated by when and how the parameter memory is allocated and deallocated. Mapping
in parameters is straightforward because the parameter storage is caller allocated and read
only. For an aggregate IDL type t with a C++ type representation of T the in parameter
mapping is const T&. The mapping of out and inout parameters is slightly more complex. To
preserve the client capability to stack allocate fixed length types, OMG has defined the
mappings for fixed-length and variable-length aggregates differently. The inout and out
mapping of an aggregate type represented in C++ as T is T& for fixed-length aggregates
and as T*& for variable-length aggregates.

WebSphere Application Server CORBA support - Page 46

Table: 1. Basic argument and result passing

Data Type In Inout Out Return
short short short& short& short
long long long& long& long
unsigned short ushort ushort& ushort& ushort
unsigned long ulong ulong& ulong& ulong
float float float& float& float
double double double& double& double
boolean boolean boolean& boolean& boolean
char char char& char& char
wchar wchar wchar& wchar& wchar
octet Octet Octet& Octet& Octet
enum enum enumé& enumé& enum
object objref_ptr objref_ptr& objref_ptr& objref_ptr
reference ptr
struct, fixed const struct& struct& struct& struct
struct, variable const struct& struct& struct*& struct*
union, fixed const union& union& union& union
union, variable const union& union*& union*& union*
string const char* char*& char*& char*
wstring const char* char*& char*& char*
sequence const sequence& sequence*& sequence*
sequence&
array, fixed const array array array array slice*
array, variable const array array array slice*& array slice*
any const any& any& any*& any*

For an aggregate type represented by the C++ type T, the T_var type is also defined. The
conversion operations on each T_var type allows the client (caller) to use the T_var type
directly for any directionality, instead of using the required form of the T type (T, T& or T*&)
The emitted bindings define the operation signatures in terms of the parameter passing
modes shown in the table“T_var argument and result passing” on page 47, and the T_var
types provide the necessary conversion operators to allow them to be passed directly.

Table: 2. T_var argument and result passing

Data Type In Inout Out Return

object const objref_var& objref_var& objref_var

reference_var object_var&

struct_var const struct_var& struct_var& struct_var
struct_var&

union_var const union_var& union_varé& union_var
union_var&

string_var const string_var& string_var& string_var

WebSphere Application Server CORBA support - Page 47

string_var&

sequence_var

const sequence_var& sequence_var& sequence_var
sequence_var&

array_var

const array_var& array_var& array_var
array_var&

For parameters that are passed or returned as a pointer type (T*) or reference to
pointer(T*&) the programmer should not pass or return a null pointer. This cannot be
enforced by the bindings.

CORBA programming: Storage management responsibilities for arguments

The storage access and allocation responsibilities for argument passing are summarized in
the two tables below. For the detailed rules that must be observed when passing
parameters (in , inout, out, or return value) to a CORBA object implementation, see
“Argument passing considerations for C++ bindings” on page 45 .

As an overall requirement when allocating and deallocating argument storage, the storage
allocation rules for the specific type must be followed. Specifically, for strings, sequences,
and arrays or for aggregate types composed of these types, the associated memory
allocation and dealloaction functions must be used. For string types this means the use of
string_alloc(), string_dup(), and string_free(), for sequence types this means the use of
allocbuf() and freebuf() and for arrays this means the use of T_alloc(), T_dup() and T_free().
The memory deallocation responsibilities of the client can be minimized by stack allocation
and the use of the _var types when that is possible. When an argument is passed or
returned as a pointer type, a NULL pointer value should never be passed or returned.

Table: 1. Argument storage responsibilities

Data Type Inout Out Return
short 1 1 1
long 1 1 1
unsigned short 1 1 1
unsigned long 1 1 1
float 1 1 1
double 1 1 1
boolean 1 1 1
char 1 1 1
octet 1 1 1
enum 1 1 1
object reference pointer 2 2 2
struct, fixed 1 1 1
struct, variable 1 3 3
union, fixed 1 1 1
union, variable 1 3 3
string 4 3 3
sequence 5 3 3

WebSphere Application Server CORBA support - Page 48

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

For definitions of the numerical values in the above table, refer to the table below:

Table: 2. Argument passing cases

Case Description

1 Caller allocates all necessary storage, except that
which may be encapsulated and managed within the
parameter itself. For inout parameters, the caller
allocates the storage but need not initialize it, and the
callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For
inout parameters, the caller provides an initial value; if
the callee wants to reassign the inout parameter, it will
first call CORBA:release on the original input value. To
continue to use an object reference passed in as an
inout, the caller must first duplicate the reference. The
caller is responsible for the release of all out and return
object references. Release of all object references
embedded in other structures is performed
automatically by the structures themselves.

3 The callee sets the pointer to point to a valid instance of
the parameter's type. For returns, the callee returns a
similar pointer. The callee is not allowed to return a null
pointer in either case. In both cases, the caller is
responsible for releasing the returned storage. To
maintain local/remote transparency, the caller must
always release the returned storage, regardless of
whether the callee is located in the same address
space as the caller or is located in a different address
space. Following the completion of a request, the caller
is not allowed to modify any values in the returned
storage: in order to do so, the caller must first copy the
returned instance into a new instance, then modify the
new instance.

4 For inout strings, the caller provides storage for both
the input string and the char* pointing to it. Because the
callee may deallocate the input strings and reassign the
char* to point to new storage to hold the output value,
the caller should allocate the input string using
string_alloc(). The size of the out string is therefore
not limited by the size of the in string. The caller is
responsible for deleting the storage for the out using
string_free(). The callee is not allowed to return a null
pointer for an inout, out or return value.

5 For inout sequences and any's, assignment or
modification of the sequence or any may cause
deallocation of owned storage before any reallocation
occurs, depending upon the state of the Boolean

WebSphere Application Server CORBA support - Page 49

release parameter with which the sequence or any was
constructed.

For out parameters, the caller allocates a pointer to an
array slice, which has all the same dimensions of the
original array except the first, and passes the pointer by
reference to the callee. The callee sets the pointer to
point to a valid instance of the array. For returns, the
callee returns a similar pointer. The callee is not
allowed to return a null pointer in either case. In both
cases, the caller must always release the returned
storage, regardless of whether the callee is located in
the same address space as the caller or is located in a
different address space. Following completion of a
request, the caller is not allowed to modify any values
in the returned storage: in order to do so, the caller
must first copy the returned array instance into a new
array instance, then modify the new instance.

WebSphere Application Server CORBA support - Page 50

CORBA internationalization considerations

When you code CORBA applications for international use, consider the following issues:

» ‘“Initializing client programs” on page 51.

e “Character set restriction” on page 51.

» “Passing object references over multiple platforms” on page 51.
e “Using the OMG char data type in IDL files” on page 51.

CORBA internationalization: Initializing client programs

All C++ clients should have their locale information set correctly. To do this, add the
following as the first line executed in the program:

setlocal e(LC_ALL, "");

CORBA internationalization: Character set restriction
When developing CORBA applications, use only the Portable Character Set (PCS) in your
IDL string type parameters.

The PCS consists of the following characters:

1A St~ {]} " #S%&() ¥+, - . | <space>

4
a'bcd_ef%hijklmnog1 rstuvwxy{z
ABCDEFGHI JKLMNO %RSTUVWX z

CORBA internationalization: Passing object references over multiple
platforms

When passing an object reference that is stored in a file from one platform to another, any
stringified values must be passed with the appropriate code page conversion.

For example, when you transfer files between Windows NT and OS/390, you must use an
ASCll-aware mechanism (such as FTP in ASCIl mode, or an ASCII NFS mount). Do not use
FTP in binary mode.

CORBA internationalization: Using the OMG char data type in IDL files

Successful data transportation between client and server can involve code set conversions.
But CORBA limits the size of a char data item to one octet during transportation. So if any
char data item is expanded to more than one octet in length during code set conversion, a
CORBA::DATA_CONVERSION exception is generated.

Use the char data type for a parameter or return result only when the parameter or return
result can contain data only from the “Portable Character Set” on page 51 (PCS).
Otherwise, use a st ri ng data type.

WebSphere Application Server CORBA support - Page 51

The CORBA module

The CORBA module, defined in orb.idl, encompasses the interfaces that make up the
following programming elements:

* The CORBA-compliant ORB.
» The TypeCode library.
» The Interface Repository Framework (IR).

The interfaces within this module are intended to be used to write CORBA-compliant,
distributed client-server applications, in which objects can be accessed across address
spaces, even across different machines. These interfaces constitute a CORBA-compliant
Object Request Broker (ORB), a standardized transport for distributed object interaction.

The TypeCode and Interface Repository (IR) interfaces contained in the CORBA module are
intended to be used to write client applications using the Dynamic Invocation Interface
(wherein the interfaces to be used by the client are not know at compile time). The
TypeCode library provides run-time access to descriptions of IDL data types. The Interface
Repository (IR) Framework allows run-time access to information specified in IDL.

The files relating to the CORBA module are listed in the table below.

Table: 1. Files for the CORBA module

AlIX Windows NT Visual

C++

Solaris

module file name

orb.idl

Java package file
name

not applicable

C++ Header file name

corba.h

Linker files

libsomoror.a (for ORB)

libsomoror.so (for
ORB)

libsomorir.a (for IR)

libsomorir.so (for IR)

somorirm.lib (for IR)

somororm.lib (for ORB)

The portions of the CORBA module that can be referenced in application-specific IDL is
contained in orb.idl. The C++ language mapping for the CORBA module is contained in
corba.h. This file includes not only C++ mappings for the interfaces defined in orb.idl, but
also C++ mappings for CORBA pseudo-objects (objects that cannot be accessed remotely
nor referenced in application IDL, but which provide services used in-process by client and
server applications).

For information on the syntax and definition of types within the CORBA module, see
“CORBA module: Types” on page 52.

For information on each of the many classes and interfaces within the CORBA module, see
the related topics.

CORBA module: Types

The following code fragment shows the syntax and definition of the available types within
the CORBA module:

typedef sequence<octet, 1024> ReferenceDat a;

WebSphere Application Server CORBA support - Page 52

pedef string ScopedName;

pedef string Repositoryld,

pedef string ldentifier;

pedef string VersionSpec;

pedef sequence<I|nterfaceDef> |nterfaceDef Seq;
pedef sequence<Cont ai ned> Cont ai nedSeq;

pedef sequence<Struct Member> Struct Menber Seq;

pedef sequence<Uni onMenber > Uni onMenber Seq;

pedef sequence<l|dentifier> EnumVenber Seq; o

pedef sequence<Par anet er Descr i P_t i on> ParDescri ptionSeq;
pedef ldentifier Contextldentifier;

pedef sequence<Context!|dentifier> Contextl|dSeq;

pedef sequence<ExceptionDef> ExceptionDef Seq; =~

pedef sequence<ExceptionDescription> ExcDescri ptionSeq;
pedef sequence<Rep05|_torHad> ReP95|toryl dSeq; .

pedef sequence<Oper ationDescri ption> ﬂ)Descrl pti onSeg;
pedef sequence<AttributeDescription> Attr eq;
uct Struct Menber

leemCioni er ?ama;
e e e;
| EEType tyge_def ;

uct Uni onMenber

Descri ption

KKK <

B R L e et ad

~~n—
——-
-

Identifier nane;

any | abel ;
TEEECOde type;

| DLType type_def;

uct Modul eDescri ption

~—~n~
-
=

| dentifier nane;
Repositoryld id; .
Reposi toryld defined_in;
Ver si onSpec versi on;

uct Constant Descri ption

~—~n—
-
-

I dentifier nane;
Repositoryld id; . .
Repositoryld defined_in;
Ver si onSpec versi on;
TypeCode type;

any val ue;

uct TypeDescription

~—~
P
=

I dentifier name;
Repositoryld id;)
Reposi toryld defined_in;
Ver si onSpec ver si on;
TypeCode type;

uct ExceptionDescription

)
- -
=

I dentifier name;
Repositoryld id;)
Repositoryld defined_in;
Ver si onSpec versi on;
TypeCode type;

uct AttributeDescription

)
-
=

I dentifier name;
Repositoryld id;. .
Repositoryld defined_in;
Ver si onSpec ver si on;
T%/Pe_Code type;

Attri but eMbde nbde;

uct Paranet er Description

~—~n~
- -
=

ITdentCiOfdi er tnan‘e;
eCode e;
| EEType tyge_def ;
Par airet er Mode node;

uct QOperationDescription

)
-
-

I dentifier nane;
Repositoryld id; . .
Repositoryld defined_in;
Ver si onSpec ver si on;
TypeCode resul t;
Qper ati onMbde node;

Cont ext | dSeq cont exts;
Par Descri ptionSeq paraneters;
ExcDescri ptionSeq exceptions;

uct InterfaceDescription

~—~n~
-
=

I dentifier nane;
Repositoryld id; . .

Reposi t oryl d defined_in;
Ver si onSpec Ver si on;

Reposi toryl dSeq base_i nterfaces;

%hum TCKi nd

tk_null, tk_void,

tk“short, tk”l ong tk_ushort, t k_ul ong,

tk”fl oat, t k_doubl e, tk”bool ean, tk_char,)
tkZoctet, tk—any, tk_TypeCode, tk”Principal, tk_objref,
tk”struct, t k—uni on, tk”—enum tk”string,

tk”sequence, tk”array tkZali as, t k_except,

tk~I ongl ong, tk_ul ongl ong,

tk_wchar, tk_wstring, tk_fixed

WebSphere Application Server CORBA support - Page 53

}ehum Def i ni tionkKi nd

dk_none, dk_al |,
dk_Attribute, dk”Constant
dk”Mbdul e, d CPer atio
dk”Ali as, dk~Struct,
dk“Primtive, dk“String,
} dk“Repository dk_Wtring
enum PrimtivekKind
nul |, k_voi d, k
3 “ul ong, Bk float, gk
pk_oct et pk”any,
p obhref pk_I ongl ong, pk
p pkZwstring
enum Attri but eMbde
enum Qper at i onMbde s
enum Par anet er Mode { PARAM I N,

ception,
pedef ,

I on,
_Sequence,

dk_I nterface,

dk_Enum
dk”Array,

dk_Ex
, dk_T
dk”
dk_

| on

boo ean
Pri nci pal

| ongdoubl e,

pk_ushort,
pk_char,
pk”stri ng,

short,
doubl e,
YpeOode

k
k|
k”|
ongl ong, pk_|

p
p
p
u p

ATTR NORMAL, ATTR READONLY};
OP_NORMAL, OP_ONEWAY};

PARAM OUT, ' PARAM | NOUT} ;

CORBA module: AliasDef Interface

Overview Used by the Interface Repository to represent an OMG
IDL definition that aliases another definition.

File name somir.idl

Local-only True

Ancestor interfaces

“TypedefDef Interface” on page 228

Exceptions

“CORBA::SystemException” on page

Supported operations

“AliasDef::original_type_def” on page 54

“IDLType::type” on page 127

Intended Usage
An instance of an AliasDef obj

ect is used within the Interface Repository to represent an

OMG IDL type that aliases another type. The AliasDef is typically used within the Interface

Repository to represent a type

def statement as defined in OMG IDL. An instance of an

AliasDef object can be created via the create_alias operation of the Container interface.

IDL syntax

nodul e CORBA

interface AliasDef: Typedef Def

attribute | DLType or
¥

AliasDef::original_type_def

Overview

gi nal _type_def;

The original_type_def read and write operations provide for access and update of the type

being aliased by an OMG IDL

alias definition (AliasDef) in the Interface Repository.

Original interface

“AliasDef Interface” on page 54

Exceptions

“CORBA::SystemException” on page

The original_type_def attribute identifies the type being aliased. Read and write operations

are provided with parameter d
IDL Syntax

attribute I DLType origi nal _type_|

Read operations
Input parameters

efinitions as defined below.

def ;

WebSphere Application Server CORBA support - Page 54

none
Return values

CORBA: : | DLType_ptr

The returned pointer references an IDLType that represents the type aliased by the

AliasDef. The memory is owned by the caller and can be released by invoking
CORBA: release.

Write operations
Input parameters

CORBA: : | DLType_ptr origi nal _type_def

This parameter is used to modify the type aliased within the alias definiton. Setting the
original_type_def attribute also updates the inherited type attribute.

Return values

none
Example
Il C++
/] assune that 'this_alias' and 'this_struct'
11 have alread been initialized
Al i asDe this_alias
O(PBA Struct Def * thi§_struct
/1 change 'this aIlas fo be an alias for thls _struct’
this_alias-> original_type_def (this_struct
y

// obtain the aliased type fromthe alias def|n|t|on
CORBA: : | DLType * returned_aliased_type;
returned aliased_type = this_alias-> original _type_def ();

CORBA module: Any Class

Overview Represents a value having an arbitrary data type.
File name any.h
Supported methods “Any::_nil " on page 57

“Any::operator<<” on page 57

“Any::operator>>" on page 58

“Any::replace” on page 60

“Any::type” on page 60

Intended Usage

The Any class constitutes the C++ mapping of the IDL data type "any". An Any object can
be used by a client or server application to represent application data whose type is not
known at compile time. The Any contains both a data structure and a TypeCode that
describes the data structure.

The Any class provides a non-default constructor whose parameters are: a
CORBA::TypeCode_ptr (describing the type of data held by the Any), a void* pointer (the
value to be contained by the Any) and a CORBA::Boolean indicating whether the Any is to
assume ownership of the data. (The Any always duplicates the TypeCode rather than
assuming ownership of the original.) After the Any assumes ownership of a value, the
application should make no assumptions about the continued lifetime of the value. The
default value for the Boolean flag is zero (indicating that the Any does not assume
ownership of the value). The void* pointer given to the Any non-default constructor can be
NULL.

The default constructor creates an Any with a tk_null TypeCode and no value. The copy

WebSphere Application Server CORBA support - Page 55

constructor and assignment operator for Any perform deep copies of both the TypeCode
and the value contained by the Any being copied.

The Any class provides insertion (<<=) and extraction (>>=) operators that allow it to hold
data of simple IDL types, while maintaining type safety (preventing one from creating an Any
whose TypeCode and value do not match). The operators are also convenient because they
alleviate the programmer from manipulating TypeCodes; the programmer simply streams
data structures into or out of the Any, and the TypeCode is implied by the C++ type of the
value being inserted or extracted.

Since the IDL boolean, octet, and char types do not map to distinct C++ types, the Any class
introduces helper types for each, to allow each IDL type to have distinct insertion and
extration operators. These types (from_boolean, to_boolean, from_octet, to_octet,
from_char, and to_char) are shown in the Types section below. To insert a boolean, octet,
or char into an Any, or to extract one from an Any, construct a helper object (by passing the
data to be inserted/extracted to the helper's constructor), then use the helper object with the
corresponding Any insertion/extraction operator.

Similarly, because both bounded and unbounded strings in IDL map to char* in C++, the
to_string and from_string helper types are introduced (see below) for inserting/extracting
both bounded and unbounded strings to/from an Any. (Unbounded strings are signified by
constructing the to_string or from_string helper with a bound of zero.) The nocopy_flag of
the from_string helper is used for non-copying insertion of a string into an Any (in which the
Any assumes ownership of the string). Unbounded strings can also be inserted into or
extracted from an Any without the use of the from_string helper type by using the char*
insertion and deletion operators.

The to_object helper type (see below) is used to extract an object reference from an Any as
a generic CORBA::Object type. The Any extraction operator corresponding to the to_object
helper type widens its contained object reference to CORBA::Object (if it contains one). No
duplication of the object reference is performed by the to_object extraction operator.

In addition to the insertion/extraction operators defined in the Any class, corresponding to
the basic IDL data types, the emitters generate global insertion/extraction operators for all
types defined in IDL. This allows any type that can be defined in IDL to be inserted into or
extracted from an Any in a type-safe manner.

In cases where the type-safe Any operators cannot be used, the Any non-default
constructor (described above), the replace method, the type method, and the value method
can be used to explicitly set or get the TypeCode and value contained by the Any.

Types
str uct{ from bool ean

from bool ean(Bool ean b) : val (b) {}
Bool ean val ;

str uét’ from octet

fromoctet(Cctet 0) : val(o
Cct et val;() (0 8

}s
str U({:t fromchar

fromchar(Char c) : val(c) {}
Char “val ;

}s .
strU({:t fromstring
fromstring(char *s, ULong b, Bool ean nocopy = 0);
char "*val ;
ULong bound;
. Bool ean nocopy_fl ag;
struct to_bool ean

t o_bool ean(Bool ean &b) : ref(b) {}
~ Bool ean é&ref;

WebSphere Application Server CORBA support - Page 56

Any:: n

struct to_char
to_char(Char &c) : ref(c
i (f,) () {}

stru%t’ to_octet
to_octet(Cctet &) : ref(o
Cctet &n(ef;) (o) {}

}; .
struct to_object

t o_obj ect (Cbj ect _ptr &ob : ref(obj
Oc)jec]t pt$ &Jref =) (obj) {3

strut}:t to_string
to strlngfchar * &, ULong b) : val(s), bound(b) {}

char *&va
~ ULong bound;

Overview

Returns a nil CORBA::Any reference.

Original class

“CORBA::Any” on page 55

Intended Usage

This method is intended to be used by client and server applications to create a nil Any
reference.

IDL Syntax
static CORBA: : Any_ptr _nil ();

Return value
CORBA::Any_ptr

A nil Any reference.
Example

#i ncl ude "corba. h"

CORBA: : Any* any ptr .
any ptr—C(RB Any _nil();

Any::operator<<

Overview

Inserts data into an Any.

Original class

“CORBA::Any” on page 55

Intended Usage

This operator is intended to be used for type-safe insertion of a data value into an Any. The
C++ type of the data being inserted determines what TypeCode is automatically created and
stored in the Any. The operators are type-safe in that they insure that an Any is not created
with a TypeCode that doesn't match the value it holds.

When inserting a value into an Any, the previous value held by the Any is deallocated.

The from_boolean, from_char, and from_octet helper types are used to distinguish between
the IDL types boolean, char, and octet, since these IDL types are mapped to the same C++
type. To insert a boolean, octet, or char into an Any, construct a helper object (by passing
the data to be inserted to the helper's constructor), then use the helper object with the
corresponding Any insertion operator.

The from_string helper type is used to insert a bounded or unbounded string into an Any,
since both IDL types are mapped to char* in C++. (Unbounded strings are signified by
constructing the from_string helper with a bound of zero.) The nocopy_flag of the
from_string helper is used for non-copying insertion of a string into an Any (in which the Any
assumes ownership of the string). Unbounded strings can also be inserted into an Any

WebSphere Application Server CORBA support - Page 57

without the use of the from_string helper type.

In addition to the insertion operators defined in the Any class, corresponding to the basic
IDL data types, the emitters generate global insertion operators for all types defined in IDL.
This allows any type that can be defined in IDL to be inserted into an Any in a type-safe
manner. Both copying and non-copying insertion operators are defined in the bindings.

To insert an array into an Any, the <array-name>_forany helper type (defined in the emitted
C++ bindings) should be used. In the C++ bindings, an array within a function argument list
decays into a pointer to the first element, thus Any-insertion operators cannot be overloaded
to distinguish between arrays of different sizes. Instead, Any-insertion operators are
provided for each distinct <array-name>_forany type. To insert an array into an Any, create
an appropriate <array-name>_forany object, initializing it from the array to be inserted, then
use the global operator<< (the Any insertion operator) defined for that <array-name>_forany
type. There is no from_object helper type corresponding to the to_object helper type.

IDL Syntax
voi d operat or <<= (CO?BA Short data);
voi d operat or <<= CORBA: : UShort dat a)
voi d operator<<= (CORBA: :Long dat az
voi d operator<<= (CORBA: : ULon?) dat a
voi d operator<<= (CORBA:: Fl oaf data
voi d operator<<= (CORBA: : Doubl e data);
voi d operator<<= (const CORBA::Any &data);
voi d operator<<= (const char* data);
voi d operator<<= (const Wchar* data);
voi d oper at or <<= (CORBA: :Any from bool ean dat a);
voi d oper at or <<= (CORBA: : y :fromchar data);
voi d oper at or <<= (CORBA: : y :fromoctet dat a)
voi d operat or <<= (CORBA:: Any::fromstring data)
Parameters
data
The data to be inserted into the Any.
Example
#i ncl ude "corba. h"
#i ncl ude

/* Assert a value of short type properly insert or
*/extract froman Any

CORBA: : Any any;

CORBA: : Short s1 = 1, s2 = 2;

[* sl extracted from any */

any <<= s2 /* insert s2'into any */ any>>= sl
assert(sl == s2

/* Assert a value of the fronfto hel per type nethods
o whi ch properly inserted or extracted

CO?BA Any anyc;

char my_char = z';

CORBA: : Char x_char = "u';

/* insert ny char |nto anyc */

anyc <<= corba::any::from chargr’ry char);
/*°x_char_extracted from anyc

anyc>>= CORBA: : Any::to_char(x char)
assert(x_char == ny_char);

Any::operator>>

Overview

Extracts data from an Any.

Original class

“CORBA::Any” on page 55

Intended Usage

This operator is intended to be used for type-safe extraction of a data value from an Any. If
the C++ type of the data being extracted matches the TypeCode in the Any, the operator's
parameter is updated with the Any's value. For simple types, the Any's value is copied to the
parameter passed to the extraction operator. Non-primitive types are extracted by pointer; if
the extraction is successful, the pointer passed to the extraction operator is modified to point
to the Any's value. The Any retains owernship of the value and the caller must not delete it,
and should not use the value after the Any is destroyed or given a new value. (For this
reason, avoid using Any extraction operators to extract values into <type>_var variables.)

WebSphere Application Server CORBA support - Page 58

The to_boolean, to_char, and to_octet helper types are used to distinguish between the IDL
types boolean, char, and octet, since these IDL types are mapped to the same C++ type. To
extract a boolean, octet, or char from an Any, construct a helper object (by passing the data
to be inserted to the helper's constructor), then use the helper object with the corresponding
Any extraction operator.

The to_string helper type is used to extract a bounded or unbounded string from an Any,
since both IDL types are mapped to char* in C++. (Unbounded strings are signified by
constructing the from_string helper with a bound of zero.) Unbounded strings can also be
extracted from an Any without the use of the from_string helper type.

In addition to the extraction operators defined in the Any class, corresponding to the basic
IDL data types, the emitters generate global extraction operators for all types defined in IDL.
This allows any type that can be defined in IDL to be extracted from an Any in a type-safe
manner.

To extract an array from an Any, the <array-name>_forany helper type (defined in the
emitted C++ bindings) should be used. In the C++ bindings, an array within a function
argument list decays into a pointer to the first element, thus Any-extraction operators cannot
be overloaded to distinguish between arrays of different sizes. Instead, Any-extraction
operators are provided for each distinct <array-name>_forany type. To extract an array from
an Any, create an appropriate <array-name>_forany object, initializing it from the array to be
extraction , then use the global operator>> (the Any extraction operator) defined for that
<array-name>_forany type.

After extracting a bounded string or an array from an Any, applications are responsible for
checking the Any's TypeCode (using the Any::type() method) to insure they do not overstep
the bounds of the array or string when using the extracted value.

The to_object helper type is used to extract an object reference from an Any as a generic
CORBA::Object type. The Any extraction operator corresponding to the to_object helper
type widens its contained object reference to CORBA::Object (if it contains one). No
duplication of the object reference is performed by the to_object extraction operator.

IDL Syntax
CORBA: : Bool ean oper at or >>= (CORBA Short& dat a% const ;
CORBA: : Bool ean oper at or >>= (CORBA: : UShort & d a) const ;
CORBA: : Bool ean oper at or >>= (CORBA: : Long& data) const ;
CORBA: : Bool ean

per at or >>= (CORBA: : ULongé& data) const;
CORBA: : Bool ean
CORBA: : Bool ean oper at or >>= (CORBA: : Doubl e& data) const;
CORBA: : Bool ean oper at or >>= (CORBA: : %/& data) const;
CORBA: : Boo| ean operat or >>= (char*& da a) const;

o]
o
oper at or >>= (CORBA: : Fl oaf & dat a
o
o
o]
CORBA: : Bool ean operat or >>= (WChar *& dat a% const ;
o
o]
o]
o]
o]

const;

CORBA: : Bool ean oper at or >>= (CORBA: : Any: : t o_bool ean dat a) const;
CORBA: : Bool ean oper at or >>= (CORBA: : Any: : t O

per at or >>= (CORBA: : Any to_octet data) const ;
per at or >>= (CORBA: : ‘to_object data) const;
per at or >>= (CORBA: : Any to_: const;

_char data) const;
CORBA: : Bool ean
CORBA: : Bool ean
CORBA: : Bool ean

Parameters
data

The data whose value is to be extracted from the Any.

Return value
CORBA::Boolean

A non-zero result indicates successful extraction and that the Any actually contained
the type of data requested. A zero return value indicates that the Any's TypeCode
does not match the C++ type of the operator's parameter and that nothing was
extracted. For primitive types, a zero return value indicates that the parameter has not
been modified. For non-primitive types, a zero return value indicates that the pointer
passed to the operator has been set to NULL.

Example

string data

See example in “Any::operator<<” on page 57 .

WebSphere Application Server CORBA support - Page 59

Any::replace

Overview

Replaces the data value and TypeCode held by an
Any.

Original class

“CORBA::Any” on page 55

Any::type

Intended Usage

This method is intended to be used to reiniitalize an Any to hold a new TypeCode and data
value. This method is not type-safe (no checking is done to insure that the given TypeCode
actually matches the given data value.) This method is intended to be used only when the
type-safe Any insertion operators cannot be used.

The replace interface mirrors the interface to Any's non-default constructor.

If the Any previously owned the value it contained, that value is deleted and the new value is
stored in the Any. The TypeCode previously contained by the Any is released, and the input
TypeCode is duplicated and stored in the Any. If the release parameter is nonzero, then the

Any assumes ownership of the new value, and the application should make no assumptions
about the continued lifetime of the value.

IDL Syntax

voi d repl ace (CORBA:: TypeCode_ptr tc, void * val ue,
CORBA: :'Bool ean rel ease = 0);

Parameters
tc

The TypeCode describing the value parameter. The Any duplicates this TypeCode, so
the caller retained ownership of the input TypeCode.

value

The new data to be stored in the Any. The type of this data must be described by the
tc parameter. This parameter can be NULL.

If the value is a simple type (char, octet, float, etc.), the value parameter should be a
pointer to the data. If the value is a string, the value parameter should be of type
char**. If the value is an object corresponding to an IDL interface (such as
MyInterface), the value parameter should be of type Mylnterface ptr. If the value is a
TypeCode, the value parameter should be of type CORBA::TypeCode_ptr. If the value
is a constructed IDL type (struct, sequence, union), the value parameter should be a
pointer to the data. If the value is an Any, the value parameter should be of type
CORBA::Any*. If the value is an IDL array, the value parameter should be a pointer to
the first element of the array.

release

Specifies whether the Any should assume ownership of the value parameter (whether
the value should be deallocated when the Any is released). Default is zero (meaning
that the Any does not assume ownership of the value).

Example
#i ncl ude "corba. h"
CORBA: : An §n¥§

const Val
CORBA: : ULong ul val = Val 7;
/* rel ease == > any owns val ue nenory */

CORBA: : Bool ean _an%/_owns_g =0
/* put a Uong into any */ .
any. replace(A::_tc_ulong, (void*) &ul_val, any_owns_p);

WebSphere Application Server CORBA support - Page 60

Overview

Accesses the TypeCode contained by an Any.

Original class

“CORBA::Any” on page 55

Intended Usage

This method is intended to be used to access the TypeCode associated with an Any (the
TypeCode that describes the data held by the Any). The caller must subsequently release
the TypeCode using CORBA::release(TypeCode_ptr).

In many cases, Any objects can be used without explicit manipulation of TypeCodes, using
the type-safe insertion/extraction operators defined for Any. The type() method is for
situations in which the type-safe Any interface is not applicable, or to determine the type of
variable needed for extraction.

IDL Syntax
TypeCode_ptr type() const;
Return value
CORBA::TypeCode_ptr
The TypeCode contained by the Any. The caller must subsequently release the
TypeCode using CORBA::release(TypeCode_ptr).

Example
#i ncl ude "corba. h"

CORBA: : TypeCode ptr tc

CORBA: : Any const AnyVar

const Any ar6 <<= (cor ba short) (6);
tcp— const AnyVar 6. type();

CORBA module: ArrayDef Interface

Overview An ArrayDef represents an OMG IDL array type.
File name somir.idl

Local-only True

Ancestor interfaces “IDLType Interface” on page 127

Exceptions “CORBA::SystemException” on page
Supported operations “ArrayDef::element_type” on page 62

“ArrayDef::element_type_def” on page 62

“ArrayDef::length” on page 63

“IDLType::type” on page 127

Intended Usage

The ArrayDef interface is used by the Interface Repository to represent an OMG IDL array
data type. The ArrayDef is not a named Interface Repository data type (it is in a group of
interfaces known as Anonymous types). An ArrayDef may be created using the create_array
operation of the Repository interface, by specifying the length of the array and a
CORBA::IDLType* indicating the array element type.

Since an ArrayDef object only represents a single dimenstion of an array, multi-dimensional
IDL arrays are represented by multiple ArrayDef objects, one per array dimension. The
element_type_def attribute of the ArrayDef representing the index that is on the farest left
side of the array, as defined in IDL, refers to the ArrayDef representing the next index to the
right, and so on. The innermost ArrayDef represents the rightmost index and the element
type of the multi-dimensional OMG IDL array.

WebSphere Application Server CORBA support - Page 61

IDL syntax
nodul e CORBA
interface ArrayDef:|DLType
attribute unsigned | ongol engt h;

readonl yattribute TypeCode el ement _type;
_attribute IDLType element_type_def?

I
ArrayDef::eIement_type

Overview The element_type operation returns a type
(CORBA::TypeCode *) representative of the array
element of an ArrayDef.

Original interface “ArrayDef Interface” on page 61

Exceptions “CORBA::SystemException” on page

Intended Usage

The element_type attribute of an ArrayDef object points to a CORBA::TypeCode that
represents the type of the array element. The element_type read operation returns a copy of
the CORBA::TypeCode referenced by the element_type attribute.

IDL Syntax

readonly attribute TypeCode el enent_type;
Input parameters

None.

Return values
TypeCode *

The returned value is a pointer to a copy of the CORBA::TypeCode referenced by the
element_type attribute. The memory is owned by the caller and can be returned by
invoking CORBA::release.

Example

[l C++
[/l _assune that 'this_array' has already been initialized
CORBA: : ArrayDef * this_array;
/1 retrieve the TypeCode which repr esents the array el ement
CORBA: : TypeCode * arra¥1 el ement _t ype
array_el ement _type = thi

ArrayDef:.element_type_def

s_array->" el ement _type ();

Overview The element_type_def read and write operations allow
the access and update of the element type definition of
an array definition (ArrayDef) in the Interface

Repository.
Original interface “ArrayDef Interface” on page 61
Exceptions “CORBA::SystemException” on page

Intended Usage

The type of the elements within an array definition is identified by the element_type_def
attribute.

IDL Syntax

attribute |IDLType el ement_type_def;

Read operations
Input parameters

none

WebSphere Application Server CORBA support - Page 62

Return values
CORBA: : | DLType_ptr

The returned object is a pointer to a copy of the IDLType referenced by the
element_type_def attribute of the ArrayDef object. The returned object is owned by the
caller and can be released by invoking CORBA::release.

Write operations
Input parameters

CORBA: : | DLType_ptr el enent _type_def

The element_type_def parameter represents the new element definition for the

ArrayDef.

Return values
none

Example

Il C++ .
/1 assune that "this
CORBA: : ArrayDef * th
CORBA: : Uni onDef * thi

'S
i

array' and 'this_union' have already been initialized
array
s_uni o

/1 change the array el ement t

e deflmtlon to 'this_union'

y
this arra% > el ement _type_def ?thls uni on)
e

[/ read t

el enent Type definition from thls _array’

CORBA: : | DLType * retur ned_el enment _type_def ;
ret urned_el ement _type_def = this_array=> el enent _type_def ();

ArrayDef::length

Overview

The length read and write operations allow the access
and update of the length attribute of an array definition
(CORBA::ArrayDef) within the Interface Repository.

Original interface

“ArrayDef Interface” on page 61

Exceptions

“CORBA::SystemException” on page

Intended Usage

The length attribute specifies the number of elements in the array. Read and write length

operations are supported.
IDL Syntax

attribute unsigned | ong | ength;

Read operations
Input parameters

none

Return values
CORBA: : ULong

The returned value is the current value of the length attribute of the array definition

(CORBA::ArrayDef) object.

Write operations
Input parameters

CORBA: : ULong | ength

The length parameter is the new value to which the length attribute of the
CORBA::ArrayDef object will be set.

Return values
none

Example

WebSphere Application Server CORBA support - Page 63

Il C++
[/ _assume that 'this array has al ready been initialized
CORBA: : Arra Def * this_array;
I chan% e length attrlbute of the array definition
CORBA: : ULong new [ength = 51
this array-> length (new |ength);
[/ _obtain the length of an array definition
CORBA: : ULong returned_| ength;
returned_|ength = this_array-> length ();

CORBA module: AttributeDef Interface

Overview The AttributeDef interface is used within the Interface
Repository to represent the information that defines an
attribute of an interface.

File name somir.idl

Local-only True

Ancestor interfaces “Contained Interface” on page 79

Exceptions “CORBA::SystemException” on page

Supported operations “AttributeDef::describe” on page 64

“AttributeDef::mode” on page 65

“IDLType::type” on page 127

“AttributeDef::type_def” on page 66

Intended Usage

The AttributeDef object is used to represent the information that defines an attribute of an
interface. An AttributeDef may be created by calling the create_attribute operation of the
InterfaceDef interface. The create_attribute parameters include the unique Repositoryld
(CORBA::Repositoryld), the name (CORBA::Identifier), the version (CORBA::VersionSpec),
the type (CORBA::IDLType?*) to indicate the type of the attribute, and a parameter to
indicate the mode of the attribute (read. read/write, etc.).

IDL syntax

m)dul{e CORBA

enum At tri but eMbde BeTT NORMAL, ATTR_READONLY};
interface AttributeDef: Contai ned

readonl %/at tribut e TypeCodet ype;
attribute |IDLTy e_def;
attribute Attrl ute de node;

struct AttributeDescription
I dentifier nane;
Repositoryld id;

Reposi toryld defined_in;
Ver si onSpec versi on;

) A%IPF%ﬂFe}ViV)de node;

}
AttributeDef::describe

Overview The describe operation returns a structure containing
information about a CORBA::AttributeDef Interface
Repository object.

Original interface “CORBA module: AttributeDef Interface” on page 64

Exceptions “CORBA::SystemException” on page

Intended Usage

The inherited describe operation returns a structure (CORBA::Contained::Description) that

WebSphere Application Server CORBA support - Page 64

contains information about a CORBA::AttributeDef Interface Repository object. The
CORBA::Contained::Description structure has two fields: kind (CORBA.::DefinitionKind data
type), and value (CORBA::Any data type).

The kind of definition described by the returned structure is provided using the kind field,
and the value field is a CORBA::Any that contains the description that is specific to the kind
of object described. When the describe operation is invoked on an attribute
(CORBA::AttributeDef) object, the kind field is equal to CORBA::dk_Attribute and the value
field contains the CORBA.::AttributeDescription structure.

IDL Syntax
struct AttributeDescription

I dentifier name;
Repositoryld id;
Repositoryld defl ned_i n;
Ver si onSpec ver5| on;

%/PeCode t
Attribute de node;
i

struct Description

{ Def i n|t| onKi nd ki nd;

any val ue;
EESCI'I ption describe ();

Input parameters
None.

Return values
Description *

The returned value is a pointer to a CORBA::Contained::Description structure. The
memory is owned by the caller and can be removed by invoking delete.

Example

[l C++

11 assune that "this_attribute' has already been initialized

CORBA: : AttributeDef * this_attribute;

11 retrleve a description of the attribute

CORBA: : Attri but eDef : Descrlptlon * returned_description;

ret ur ned descrlptlon = this_attribute-> desCribe ();

/[retrieve the attribute description fromthe returned description

/] structure

CORBA: : AttributeDescription * attribut

attribute description = (CORBA : Attri buf
returned_description-> val ue.val ue (

e_description;
51 TeDescription *)

AttributeDef::mode

Overview

The mode read and write operations allow the access
and update of the mode attribute of an attribute
definition (CORBA::AttributeDef) within the Interface
Repository.

Original interface

“CORBA module: AttributeDef Interface” on page 64

Exceptions

“CORBA::SystemException” on page

Intended Usage

The mode attribute specifies read only or read/write access for this attribute. Read and write
mode operations are supported with parameters as defined below.

IDL Syntax
attribute AttributeMde node;

Read operations
Input parameters

none

Return values
CORBA: : Attri but eMbde node

WebSphere Application Server CORBA support - Page 65

The returned value is the current value of the mode attribute of the attribute definition
(CORBA::AttributeDef) object.

Write operations
Input parameters

CORBA: : Attri but eMbde node

The mode parameter is the new value to which the mode attribute of the
CORBA::AttributeDef object will be set. Valid mode values include
CORBA::ATTR_NORMAL (read/write access) and CORBA::ATTR_READONLY (read
only access).

Return values
none

Example

Il C++
/// assume that 'this_attribute' has already been initialized
CORBA: : AttributeDef *"this_attribute;
/| _set the new npde in the attribute definition

CORBA: : AttributeMbde new _npbde = CORBA: : ATTR_READONLY;

this attribute-> node (new_nod %

I/ retrieve the node fromthe trlbute definition

CORBA: : Attri buteMbde returned_node;

returned mode = this_attribute-> mode 0);

AttributeDef::type_def

Overview

The type_def operation returns a pointer to an IDLType
that is representative of the type of the attribute defined
by the AttributeDef.

Original interface

“CORBA module: AttributeDef Interface” on page 64

Exceptions

“CORBA::SystemException” on page

Intended Usage

The type_def attribute within an AttributeDef references an IDLType that identifies the type
of attribute. Both read and write type_def operations are supported, the parameters of which
are identified below.

IDL Syntax

attribute | DLType type_def;

Read operations
Input parameters

none

Return values

CORBA: : | DLType_ptr

The returned CORBA::IDLType * is a pointer to a copy of the information referenced

by the type_def attribute. The object and the associated memory are owned by the
caller and can be released by invoking CORBA::release.

Write operations
Input parameters

CORBA: : | DLType_ptr type_def
The type_def input parameter identifies the new setting for the type_def attribute.

Return values
none

WebSphere Application Server CORBA support - Page 66

Example

Il C++
/] assume that 'this_at
/1 _have alread%/ been”i ni
CORBA: : AttributeDef * t
CORBA: : PrimtiveDef * {)
/] set the type_def at
{/ to represent a CORBA
/
CIRtBA pe * a

his_attribute-> type def

/ etrlevethet Pe def a
%/ trlbutes t%/ ef;

|butes ype_def = this_at ribute:> type_def();

te' and ' pk_l ong_def’

i zed

ttribute;

g_def;

e of the AttributeDef

(PE | ong_def)

t rlbute fromthe Attri but eDef

J”DQ_C

CORBA module: BOA Class

Overview

Provides services for writing server applications.

File name

boa.h

Nested classes

CORBA::BOA::Dynamiclmplementation

Supported methods

“BOA::_duplicate” on page 67

“BOA::_nil” on page 68

“BOA::create” on page 68

“BOA::deactivate_impl” on page 69

“BOA::dispose” on page 70

“BOA::execute_next_request” on page 71

“BOA::execute_request_loop” on page 71

“BOA::get_id” on page 72

“BOA::get_principal” on page 73

“BOA::impl_is_ready” on page 73

“BOA::request_pending” on page 74

Methods introduced by BOA in the CORBA
specification but not implemented in this product. 1

change_implementation

deactivate_obj

obj_is_ready

Intended Usage

The BOA (Basic Object Adapter) class is intended to be used by application-specific server
programs, to access server-side services of the ORB. The BOA class provides methods for
activating and deactivating the server and executing remote requests from client
applications. The BOA class also provides methods that allow the server application to
participate in the exporting and importing of object references and the selection of threads
on which remote requests are dispatched. Most of the BOA methods are intended to be
called from an application-specific server program. The BOA::get_principal method,
however, is typically called from an implementation of an IDL interface residing in a server,
to determine the identity of the remote caller.

Types

t ypedef CORBA: : ReferenceData *

typedef OCRBA:: Cbj ectmﬂ;[; rSefdata t o_obj

éNLtO refdata (CORBA: : bj ect _ptr obj);

Ref erenceData *refdata);

j (CORBA::
typedef void SOMLI NK sondTD_t hread_di spatch (CORBA: : Request _ptr req);

Constants

static const CORBA::Flags SOVD WA
static const CORBA: :Flags SOMD NO V\AIT

BOA::_duplicate

1 If invoked, a CORBA::SystemException is thrown

WebSphere Application Server CORBA support - Page 67

Overview Duplicates a BOA object.

Original class “CORBA module: BOA Class” on page 67

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to a BOA object.

IDL Syntax

static CORBA::BOA ptr _duplicate (CORBA: :BQA ptr p);
Input parameters
p

The BOA object to be duplicated. The reference can be nil, in which case the return
value will also be nil.

Return values
CORBA::BOA_ptr

The new BOA object reference.

Example
See example in “CORBA::Object::_duplicate” on page 153
BOA:: nil
Overview Returns a nil CORBA::BOA reference.
Original class “CORBA module: BOA Class” on page 67
Intended Usage
This method is intended to be used by client and server applications to create a nil BOA
reference.
IDL Syntax
static CORBA :BOA ptr _nil ();
Return value
CORBA::BOA_ptr
A nil BOA reference.
Example
See example in “CORBA::Object::_nil” on page 157
BOA::.create
Overview Maps ReferenceData to a local object, and prepares
that object for export.
Original class “CORBA module: BOA Class” on page 67
Exceptions “CORBA::SystemException” on page

Intended Usage
Typical server applications need never use this method.

This method is part of the CORBA specification.
IDL Syntax

virtual CORBA::Cbhject_ptr create

WebSphere Application Server CORBA support - Page 68

const CORBA: : Ref er enceDat a& r ef dat a,
BA: : I nter f aceDef ptr intf,
CORBA: : | npl ement ati onDef _ptr i npl def);

Input parameters
refdata

The application-specific ReferenceData of an object residing in a server.
intf
The InterfaceDef object, retrieved from the Interface Repository, that describes the

interface supported by the object described by the refdata parameter. Currently, this
parameter is unused and can be NULL. The caller retains ownership of this object .

impldef

The ImplementationDef of the server in which the call is being made. Currently, this
parameter is unused and can be NULL. The caller retains ownership of this object.

Return value
CORBA::Object_ptr

The local object in the server that corresponds to the input ReferenceData, after it has
been prepared for export. Ownership of this object reference is transferred to the
caller, and should be subsequently released using CORBA::release.

Example

#i ncl ude "corba. h" .
extern CORBA:: BOA ptr srvboa; /* assunme gr eviously initialized
usi ng A: ::BOA init */

CO?B :ReferenceData * rd = (::CORBA : ReferenceData *) NULL;
rd = srvboa- >get |d(th|)
: CORBA: : Obj ect _ptr Obj =
srvboa->create(*rd,
CORBA: : | nt er f aceDef :
CORBA: : | npl enent at i onDef n| 1());

BOA::deacti\)éte_impI

Overview

Causes a server to stop accepting incoming request
messages and informs the somorbd deamon that it is
no longer active.

Original class

“CORBA module: BOA Class” on page 67

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by every server application, to indicate that it no longer
wishes to accept incoming request messages from remote clients, prior to server
termination (whether normal or abnormal). It should only be invoked if the server has
previously successfully called BOA::impl_is_ready.

The method informs the somorbd daemon that the server is no longer active, and that
subsequent requests to locate that logical server should cause a new instance of the server
to be automatically activated. It also prevents any new request messages from being
received by the server; clients issuing such requests will receive SystemExceptions
indicating a communications failure. Any requests received by the server prior to calling
BOA::deactivate_impl that have not yet been serviced (by a call to
BOA::execute_request_loop or BOA::execute_next_request) will be deleted; no response
will be sent to the clients that sent them.

This method is part of the CORBA specification.
IDL Syntax

virtual void deactivate |rrp (
CORBA: | npl ement ati onDef _ptr i npldef);

Parameters

WebSphere Application Server CORBA support - Page 69

impldef
The ImplementationDef of the server making the call. This should be the same

ImplementationDef originally passed to BOA::impl_is_ready. The caller retains
ownership of this parameter.

Example

#i ncl ude_ "corba. h"
void main(int argc, char* argv[])

[* Initialize the server's |nplenentationDef, ORB, and BOA: */
CORBA: : | npl Reposi tory_ptr inplrep = new CG?BA | npl Reposi tory;
/* assume dummyServer 1s al ready regl stered in
t he i npl enent ati on rep05|tory
CORBA: : | npl. enentatlonDef ptr inp =
inpl rep->find Tnpldef_by alias ("dummyServer");
/* Assume op- parmls initialized For workstation initialize to "DSOM */

char *

/* {‘\stSu i Bp parmls initialized. For workstation initialize to
char * b— arm

static A: . ORB_ptr

op = CORBA: : ORB_init(argc, argv, op- parm;
static CORBA: : BOA | ptr bp = op->BOA_init(argc, argv bp- parm ;
bp->i npl_i s_ready(i np) ;

bp— >deactivate_inpl (inp);

}
BOA::dispose

Overview Destroys an object residing in a server.

Original class “CORBA module: BOA Class” on page 67

Intended Usage

This method can be used to destroy (delete) a local object residing in a server. All
outstanding references to the object are henceforth invalid. Outstanding remote references
(proxies) to the object are valid only if the server is capable of reactivating to the object. The
current implementation of this method simply deletes the input object.

This method is part of the CORBA specification.
IDL Syntax

virtual void di spose(CORBA: : Obj ect _ptr obj);
Parameters
obj
The object to be deleted.

Example

#i ncl ude "corba. h"
void nain(int argc, char* argv[])

[* Initialize the server's |nplenentationDef, ORB, and BOA: */
CORBA: : | npl Rep05|tory ptr inmplrep = new (IPBA | npl Reposi tory;
/* Assune dummyServer is already registered in

t he |rrpl ementation repository */

CORBA: : | npl; enent ationDef _ptr inp =
alias ("dunmyServer"),

inplr g—>f|nd|r’rp|def b .
extern static ORB_ptr op; /* assune previously initialized */
extern static CORBA : BOA ptr bp; /* assune previously initialized */
bp->i npl _i s_ready(i np)

/* Assune that p is a local object pointer already declared
and define d *
bp- >di spose(p);

}

#i ncl ude_"corba. h"
void main(int argc, char* argv[])

/* Inltlallze the server's |npl enentationDef, mB and BOA: */
CORBA: : | npl Repository_ptr inplrep = new CORBA: npl Reposi tory;
/* Assune dummyServeris al ready regl stered in

the inplementation repository *
CORBA: : | npl ement ati onDef _ptr inmp =

|rrp| ->find_Tnpldef by alias ("dummyServer");

static CORBA : (ng ptr op = CORBA "ORB_init(argc, argy, DSO\/I)
static CORBA:: BOA ptr bp = op->BOA_init(argc, argv, "DSO\/I_BOL\'S;
bp->i mpl _i s ready(’l) ;

/* Assume that p is a |local object pointer already declared

WebSphere Application Server CORBA support - Page 70

and defined */
bp- >di spose(p);

o
BOA::execute_next_request

Overview

Executes the next pending remote request in a server
application.

Original class

“CORBA module: BOA Class” on page 67

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by a server application to execute the next remote
request received from a remote client, and send the response to the waiting client. Both
blocking and non-blocking calls are supported. Requests are executed in first-in-first-out
order only. This method should be called only after CORBA::BOA::impl_is_ready has been

called successfully.

This method is an IBM(r) extension to the CORBA specification.
IDL Syntax

virtual CORBA:: Status execute_next_request (CORBA::Flags waitFlag);

Input parameters
waitFlag

Whether the application wants to wait (block), if there is no request currently available
to process. Valid values are CORBA::BOA::SOMD_WAIT and
CORBA::BOA::SOMD_NO_WAIT.

Return values
CORBA::Status

A zero return value indicates success. If the input parameter is
CORBA::BOA::SOMD_NO_WAIT, a return value of SOMDERROR_NoMessages
indicates that there is no available request to service.

Example

#i ncl ude_ "corba. h"
void nmain(int argc, char* argv[])

/* Initialize the server's_ |nplenmentationDef, ORB, and BOA: */
CORBA: : Inpl Reposnory ptr implrep = new CCRBA | npl Reposi tory;
/* Assune dummyServer "1 s al ready reglstered in
t he |an ement ati on rep03|tory */
CORBA: : | npl e ntatlonDef_p rinp =
i m ->find Tnpldef_b allas (" dunmySer ver"

D I
extern stati c BA: : ORB_ptr op; /* assune previously initialized */
extern static CORBA : BOA ptr bp; /* assune previously initialized */
bp->i mpl _i s_ready(i rrp)

\/N; IExecute the next pending renote request */
i
bp- >execut e_next _request (CORBA: : BOA: : SOMD_WAI T) ;
y o
#i ncl ude "corba. h"
void main(int argc, char* argv[])
/* Initialize the server's |nplenmentationDef, ORB, and BOA: */

CORBA: : | npl Reposnory ptr implrep = new O(PBA Irrpl Reposi tory;
/* Assune dummyServer i s already registered in

t he i npl enent ati on rep05|tory */
CORBA: : Inpl emantanonDef ptr inp =

ORE >f|nd Tnpldef by alias ("dunmyServer");

statlcCO?BA op = CORBA: ORB_init(argc, argyv, DSOVI)
static CORBA:: BOA] ptr bp = op->BOA init(argc, argv, "DSOM BOA"
bp->i mpl _i s_r eady(i np) ;
I* Execute the next pending renote request */

whi | e
bp- >execut e_next _request (CORBA: : BOA: : SOVMD_WAI T) ;

}
BOA::execute_request_loop

WebSphere Application Server CORBA support - Page 71

Overview Repeatedly executes remote requests in a server
application.

Original class “CORBA module: BOA Class” on page 67

Exceptions “CORBA::SystemException” on page

Intended Usage

This method is intended to be used by a server application to repeatedly execute remote
requests as they are received from remote clients, and sends the responses to the waiting
clients. Both blocking and non-blocking calls are supported. Requests are executed in
first-in-first-out order only, by calling CORBA::BOA::execute_next_request. This method
should be called only after CORBA::BOA::impl_is_ready has been called successfully.

This method is an IBM extension to the CORBA specification.
IDL Syntax

virtual CORBA:: Status execute_request_| oop (CORBA:: Fl ags waitFl ag);

Input parameters
waitFlag

Whether the application wants to wait (block), when there are no more requests

available to process. Valid values are CORBA::BOA::SOMD_WAIT and
CORBA::BOA::SOMD_NO_WAIT.

Return values
CORBA::Status

If the input parameter is CORBA::BOA::SOMD_NO_WAIT,
SOMDERROR_NoMessages is returned when there are no more available requests to
service. Otherwise, this method never returns to the caller.

Example
See example in “CORBA::ORB::BOA init” on page 169
BOA::get_id
Overview Returns the ReferenceData associated with a local
object in a server.
Original class “CORBA module: BOA Class” on page 67
Exceptions “CORBA::SystemException” on page

Intended Usage

This method is intended to be used by a server application, to access the ReferenceData
used by that server to identify the object.

Typical server applications would only need to call this method to obtain the ReferenceData
required by the CORBA::BOA::create method.

This method is part of the CORBA specification.
IDL Syntax
virtual CORBA:: ReferenceData *get _id (CORBA:: Cbject_ptr obj);
Input parameters
obj
The local object for which ReferenceData is needed. If this parameter is NULL or is a
proxy object (rather than a local object in a server), an exception is thrown.

WebSphere Application Server CORBA support - Page 72

Return values
CORBA::ReferenceData*

The ReferenceData associated with the given object. Ownership of the ReferenceData
is transferred to the caller.

Example
See example in “CORBA::BOA::create” on page 68 .
BOA::get_principal

Overview Returns a Principal object identifying, in a server, the
client of a remote request.

Original class “CORBA module: BOA Class” on page 67

Exceptions “CORBA::SystemEXxception” on page

Intended Usage

This method is intended to be used by implementations of IDL interfaces, residing in a
server process, to find the identity of the calling client. This might be used, for example, to
implement security authorization checks.

This method is part of the CORBA specification.
IDL Syntax

virtual CORBA:: Princi gal ptr get_principal (
BA: : Gbj ect_ptr obj,
CORBA: : Enjvi roﬁgent_pjt r env);

Input parameters

obj

The target of a remote invocation in a server. Typically, it is the "this" pointer in C++ for
the method calling CORBA::BOA:get_principal. Currently this parameter is not used
and NULL can be passed.

env
Currently unused (NULL can be passed).

Return values
CORBA::Principal_ptr

A Principal object identifying the client that initiated the remote request. If
CORBA::BOA::get_principal is called outside the context of any remote request, NULL
is returned. The caller does not assume ownership of the returned Principal object and
should not delete it.

Example

#i ncl ude "corba, h" L . .
/* Assune previ ousl%/ initialized using CORBA:: ORB::BOA init () */
extern A: : BOA_ptr srvboa;

:: CORBA: : Bool ean t npBool ean;

:: CORBA: : Principal _ptr prncpl Ftr; L . .

/* Assurme the following is called fromw thin an inplenentation
oflsorre IDL operation */ | (thi

rnc tr = srvboa->get_principal (this,

P PP g' p' P CORBA: : Environment::_nil());

tmpBool ean = :: CORBA::is_nil (prncpl _ptr);

/* Error checking */

BOA::impI_ié;ready

Overview Initializes an application as a server, allows it to accept
incoming request messages, and registers it with the
somorbd daemon

Original class “CORBA module: BOA Class” on page 67

WebSphere Application Server CORBA support - Page 73

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by all server applications, to initialize themselves. A
server application cannot receive remote requests and cannot export objects (for instance,
using CORBA::ORB::0object_to_string or CORBA::BOA::create) without first calling
CORBA::BOA::impl_is_ready. This method initializes the server's communications
resources so that it can accept incoming request messages, and (optionally) registers the
server with the somorbd daemon so that client applications can locate it via the daemon.

After a server has called CORBA::BOA::impl_is_ready, it should call
CORBA::BOA::deactivate_impl before termination (either normal or abnormal), to inform the
somorbd daemon that it is no longer active.

This method is part of the CORBA specification.
IDL Syntax

virtual void inpl_is ready(CCRBA 1 ngcljglnggrt]artéglngerfatplténl rrpll)def

Parameters

impldef

The ImplementationDef, obtained from the Implementation Repository, that describes
the server. The ImplementationDef is typically obtained using the
CORBA::ImplRepository find_impldef or find_impldef by alias method. On-the-fly
servers that are not registered in the Implementation Repository can create
ImplementationDef objects using operator new.

registration

The default value (1) indicates that the server should register itself with the somorbd
daemon. A zero value indicates that the server should not register itself with the
somorbd daemon; this should only be done for lightweight servers of transient objects.
This parameter is an IBM extension to the CORBA specification.

Example
See example in “CORBA::ORB::BOA _init” on page 169

BOA::request_pending

Overview

Determines whether there are any requests in a server
waiting to be serviced.

Original class

“CORBA module: BOA Class” on page 67

Intended Usage

This method is intended to be used by a server application to determine whether there are
any outstanding requests (from remote clients) waiting to be serviced. Hence, this method
can be used to determine whether a blocking call to CORBA::BOA::execute_next_request
will block.

This call does not modify the queue of waiting requests.

This method is an IBM extension to the CORBA specification.
IDL Syntax

virtual CORBA:: Bool ean request _pending ();

Return values
CORBA::Boolean

WebSphere Application Server CORBA support - Page 74

A zero return value indicates that there are no outstanding requests waiting to be
processed. A one return value indicates that there is at least one request pending.

Example

#i ncl ude_ "corba. h"
void main(int argc, char* argv[])

/* Initialize the server's_ |nplenmentationDef, ORB, and BOA: */
CORBA: : | npl Repository_ptr inplrep = new CORBA: : | npl Repository;
/* Assume dunmmyServer Is already registered in the

i npl ementation repository */
CORBA: : | npl ement ati onDef _pti inmp = .
. i mpl rep->find_inpldef by alias ("dumyServer");
static CORBA : _ptr op = CORBA “CRB_init(argc, argy, "DSOM);:
static CORBA: : BOA ptr bp = op->BOA_init(argc, argv, "DSOM BOA");
bp->i nmpl _i s_ready(i np);

/* Deternine if there's request waiting */
CORBA: : Bool ean retval = bp->request_pending();

/* S'tOP processi ng requests */
bp->i nterrupt _server();

}

#i ncl ude_ "corba. h"
void nmain(int argc, char* argv[])

/* Initialize the server's |nplenmentationDef, ORB, and BOA: */
CORBA: : | npl Repository_ptr inplrep = new CORBA: : | npl Repository;
/* Assume dunmmyServer Is already registered in the

i npl ementation repository */
CORBA: : | npl ement ati onDef _ptr inmp = .
i mpl reg— >find Tnpldef_by alias ("dummyServer");
extern static A:: ORB_ptr op; /* assune previously ini
extern static CORBA : BOA ptr bp; /* assune previously in
bp->i npl _i s_ready(i np);

/* Deternine if there's request waiting */
CORBA: : Bool ean retval = bp->request_pendi ng();

tialized */
tialized */

I* StoP processing requests */
bp->i nterrupt_server();

CORBA module: BOA::Dynamiclmplementation Class

Overview Allows an object to be dynamically dispatched in a
server.

File name boa.h

Supported methods “BOA::Dynamiclmplementation::invoke” on page 75

Intended Usage

This class is intended to be subclassed by implementations of IDL interfaces so that those
implementations can be invoked dynamically in a server that was not statically linked with
the C++ bindings for that IDL interface. For example, this technique might be used to
implement objects residing in an inter-ORB bridge server, or gateway. This class is part of
the Dynamic Skeleton Interface (DSI).

Subclasses of CORBA::BOA::Dynamiclmplementation must implement the invoke method.
BOA::Dynamiclmplementation::invoke

Overview Invokes a method dynamically within a server.
Original class “CORBA::BOA::Dynamiclmplementation” on page 75
Exceptions This method must not throw any exceptions. Instead,

exceptions should be stored on the input
ServerRequest object, using the exception method.

Intended Usage

This pure virtual method is intended to be overridden in subclasses of
CORBA::BOA::Dynamicimplementation. It is never called directly by applications; rather, the

WebSphere Application Server CORBA support - Page 75

BOA residing in a server calls this method to dispatch remote calls on objects that inherit
from CORBA::BOA::Dynamiclmplementation. This method is part of the Dynamic Skeleton
Interface (DSI), used primarily to construct inter-ORB bridges or gateway servers.

When a remote invocation arrives at a server, if the target of the invocation is an object that
inherits from CORBA::BOA::Dynamiclmplementation, BOA calls the invoke method on the
target object. BOA constructs and passes in a ServerRequest object that contains all the
information about the incoming request that is needed for the object to dispatch it. As an
example, an implementation of the invoke method could do the following:

e Obtain the name of the operation to be invoked from the ServerRequest.

» Discover the signature of the operation to be invoked (for example, using the Interface
Repository or a cache of InterfaceDef objects, or by invoking _get_interface on the target
object).

« Create an NVList containing the TypeCodes (but not the values) corresponding to the
signature of the operation to be invoked.

» Call ServerRequest::params, passing in the NVList; the ServerRequest::params method
stores the in and inout parameter values in the NVList.

» Dispatch the operation on the target object using the in and inout parameter values now
available from the NVList.

» Store the inout and out parameter values in the NVList.

» Call ServerRequest::result to record the operation result.

The BOA then sends the response to the calling client. If an exception is thrown by the
dispatched operation, the invoke method must catch it and record it by calling

ServerRequest::exception. CORBA::BOA::Dynamiclmplementation::invoke must never
throw any exceptions.

IDL Syntax

virtual void invoke (Server Request_é)tr request,
Envi ronnment “&env) throw () = 0;

Input parameters
request

A ServerRequest object that provides information about the operation to be invoked,
the target object, and the values of the in and inout parameters.

env
An Environment object, to be used only when calling “BOA::get_principal’ on page 73 .

Return values
None.

CORBA module: ConstantDef Interface

Overview The ConstantDef interface defines a named constant.
File name somir.idl

Local-only True

Ancestor interfaces “Contained Interface” on page 79

Exceptions “CORBA::SystemException” on page

Supported operations “ConstantDef::describe” on page 77

“IDLType::type” on page 127

“ConstantDef::type_def” on page 78

WebSphere Application Server CORBA support - Page 76

“ConstantDef::value” on page 78

Intended Usage

The ConstantDef interface is used within the Interface Repository to represent a constant as
defined within OMG IDL. An instance of a ConstantDef object defines the data type of the
constant, the constant value, and the constant name. A ConstantDef object can be created
using the create_constant operation of the Container interface.

IDL syntax
nmodul e CORBA
interface Constant Def: Contai ned

readonl %/attri bute TypeCode type;
attribute | DLType type_def;
_attribute anyval ue;

str ?(':t Const ant Descri ption

| dentifier name;
Repositoryld id;
Ver si onSpec ver si on;
TypeCode type;
anyval ue;

b

I
ConstantDef::describe

Overview

The describe operation returns a structure containing
information about a CORBA::ConstantDef Interface
Repository object.

Original interface

“CORBA module: ConstantDef Interface” on page 76

Exceptions

“CORBA::SystemException” on page

Intended Usage

The inherited describe operation returns a structure (CORBA::Contained::Description) that
contains information about a CORBA::ConstantDef Interface Repository object. The
CORBA::Contained::Description structure has two fields: kind (CORBA::DefinitionKind data
type), and value (CORBA::Any data type).

The kind of definition described by the returned structure is provided using the kind field,
and the value field is a CORBA::Any that contains the description that is specific to the kind
of object described. When the describe operation is invoked on a constant
(CORBA::ConstantDef) object, the kind field is equal to CORBA::dk_Constant and the value
field contains the CORBA.::ConstantDescription structure.

IDL Syntax

struct Constant Description
I dentifier name;
Repositoryld id; .
Repositoryld defined_in;
Ver si onSpec ver si on;
TypeCode type;

- any val ue;
struct Description

DefinitionKind kind,
any val ue;

Des%:?i ption describe ();

Input parameters
None.

Return value
Description *

The returned value is a pointer to a CORBA::Contained::Description structure. The
memory is owned by the caller and can be removed using delete.

WebSphere Application Server CORBA support - Page 77

Example

/] C++
/| _assume that 'this_constant' has already been initialized
CORBA: : Const ant Def *7t his_constant;
I/ retrieve a description of the constant o
CORBA: : Const ant Def : : Descri ption * returned_description;
returned_description = this_constant-> describe (); L
/] retrieve the constant description fromthe returned description
/] structure o o
CORBA: : Const ant Descri ption * constant_description;
const ant _descri ption = (CORBA:: Const ant Descri ption *)

returned_description-> val ue.value ();

ConstantDef::type_def

Overview

The type_def operation returns a pointer to an IDLType
that is representative of the type within a ConstantDef.

Original interface

“CORBA module: ConstantDef Interface” on page 76

Exceptions

“CORBA::SystemEXxception” on page

Intended Usage

The type_def attribute within a ConstantDef references an IDLType that identifies the
definition of the type of the constant. Both read and write type_def operations are
supported, the parameters of which are identified below.

IDL Syntax

attribute | DLType type_def;

Read operations
Input parameters

none

Return values
CORBA: : | DLType_ptr

The returned CORBA::IDLType * is a pointer to a copy of the information referenced
by the type_def attribute. The object and the associated memory are owned by the
caller and can be released by invoking CORBA::release.

Write operations
Input parameters

CORBA: : | DLType_ptr
The CORBA::IDLType_ptr must reference a simple typez.

Return values
none

Example

Il C++
/] assume that 'this_constant' and 'pk_|l ong_def"’
// _have already been initialized
A: : Const ant Def * this_constant;
CORBA: : PrimitiveDef * pk_Tong_def;
/] set the type_def attribute of the constant
/] to represent a CORBA::Long
this_constant-> type_def (pk_long_def);
I/ retrieve the type_def attribute fromthe constant
58 ype * constants_type_def;
constants_type_def = this_constant-> type_def();

ConstantDef::value

Overview

The value read and write operations allow the access
and update of the value attribute of a ConstantDef.

Original interface

“CORBA module: ConstantDef Interface” on page 76

CORBA::ka:string

Lama=— Lpma=— L= Lama=— L= =

WebSphere Application Server CORBA support - Page 78

Exceptions

| “CORBA::SystemException” on page

Intended Usage

The value attribute contains the value of the constant, not the computation of the value (for
example, the fact that it was defined as "1+2"). Read and write value operations are
provided with parameters as defined below.

IDL Syntax

any val ue;

Read operations
Input parameters

none

Return values
CORBA: : Any *

The returned pointer to a CORBA::Any data type represents the value attribute of the
constant. The object memory belongs to the caller, and can be removed by invoking
delete.

Write operations
Input parameters

CORBA: : Any & val ue

The value parameter is a reference to a CORBA::Any data type that provides the
constant value to change the value attribute of the ConstantDef. When setting the
value attribute, the TypeCode of the supplied CORBA::Any must be equal to the type
attribute of the ConstantDef.

Return values
none

Example

[l C++
/| _assume that 'constant_409' has already been initialized
CORBA: : Const ant Def * const ant _409;
/] set the value '409' in the Any,
/1 _and |nvoke the val ue operation to update the constant
Any new val ue;
new vaI ue <<= (CORBA: : Long) 409;
const ant _409- > val ue (new val ue)
[/ _read the constant val ue fromthe Const ant Def
A:: Any * returned_val ue
ret ur ned _val ue = consfant 409 > value ();

CORBA module: Contained Interface

Overview The Contained interface is inherited by all Interface
Repository interfaces that are contained by other
objects. All objects within the Interface Repository,
except the root object (Repository) and definitions of
anonymous types (ArrayDef, StringDef, and
SequenceDef), and primitive types are contained by
other objects.

File name somir.idl

Local-only True

Ancestor interfaces “IRObject Interface” on page 138

Exceptions “CORBA::SystemException” on page

Supported operations “Contained::absolute_name” on page 80

“Contained::containing_repository” on page 81

WebSphere Application Server CORBA support - Page 79

“Contained::defined_in" on page 81

“Contained::describe” on page 82

“Contained::id” on page 83

“Contained::name”

on page 84

“Contained::version” on page 84

Contained:

Intended Usage

The Contained interface is not itself instantiated as a means of accessing the Interface
Repository. As an ancestor to certain Interface Repository objects, it provides a specific list
of operations as noted below. Those Interface Repository objects that inherit (directly or
indirectly) the operations defined in Contained include: ModuleDef, ConstantDef, StructDef,
UnionDef, EnumDef, AliasDef, ExceptionDef, AttributeDef, OperationDef, and InterfaceDef.

IDL syntax
nmodul e CORBA

ty{)edef string VersionSpec;
|{n erface Contained: | j ect

/] read/wite interface

attribute Repositoryld id;

ttribute ldentifier nane;.

ttribute VersionSpec version;

/ read interface . . .

eadonly attribute Container defined_in;

eadonly attribute ScopedNane absol ute_name;
eadonly attribute Repository containing_repository;
truct scription

DefinitionKind kind;
any val ue;

. Des?:}iption describe ();
b

:absolute_name

Overview

The absolute_name operation retrieves the absolute
ScopedName that identifies a Contained object within
its enclosing Repository.

Original interface

“CORBA module: Contained Interface” on page 79

Exceptions

“CORBA::SystemException” on page

Intended Usage

The absolute_name attribute is an absolute ScopedName that identifies a Contained object
uniquely within its enclosing Repository.

If the Container within which this object is defined is a Repository, the absolute name is
formed by concatenating the string "::" and this object's name attribute. Otherwise, the
absolute_name is formed by concatenating the absolute_name attribute of the object
referenced by this object's defined_in attribute, the string "::", and this object's hame
attribute.

A read operation is provided to retrieve the absolute_name value for all Interface Repository
objects that have a name attribute.
IDL Syntax

readonly attribute ScopedName absol ute_nane;

Input parameters
None
Return values

WebSphere Application Server CORBA support - Page 80

Contained:

ScopedName

The returned value is a CORBA::ScopedName data type, the memory of which is
owned by the caller. The caller can release this memory by invoking the
CORBA::string_free function.

Example

Il C++
/1 _assume the interface_def ptr has already been initialized
CORBA: : I nterfaceDef * interface def ptr;
/] the following call returns the absol ute name associated with the
11 |nt erface
BedNarre returned absol ut e_nane;
returned absol ute_nanme = interface_def ptr > absol ute_nane();

:containing_repository

Overview

The containing_repository attribute identifies the
Repository that contains this object.

Original interface

“CORBA module: Contained Interface” on page 79

Exceptions

“CORBA::SystemException” on page

Contained::

Intended Usage

A Contained object has a defined_in attribute that identifies the Container within which it is
contained. The containing_repository attribute identifies the Repository that is eventually
reached by recursively following the object's defined_in attribute.

The containing_repository attribute read operation retrieves a pointer to the Repository.
IDL Syntax

readonly attribute Repository containing_repository;

Input parameters
None

Return values
CORBA::Repository_ptr

A pointer to the Repository object is returned.

Example

Il C++
/// assume that 'interface_1' has already been initialized
A:: I nterfaceDef * interface_1;
11 retrreve a poi nter to the Reposrtory obj ect
CORBA: Rep05|tory Posmory
repository_ptr = |nter ace_1-> contar ni ng_repository();

defined _in

Overview

The defined_in operation returns the Container object
of a Contained object.

Original interface

“CORBA module: Contained Interface” on page 79

Exceptions

“CORBA::SystemException” on page

Intended Usage

Contained objects have a defined_in attribute that identifies the Container within which they
are defined. Objects can be contained either because they are defined within the containing
object (for example, an interface is defined within a module) or because they are inherited
by the containing object (for example, an operation may be contained by an interface
because the interface inherits the operation from another interface). If an object is contained
through inheritance, the defined_in attribute identifies the InterfaceDef from which the object
is inherited.

WebSphere Application Server CORBA support - Page 81

Contained

The defined_in operation is read-only and returns a pointer to a copy of the Container object
identified by the defined_in attribute.

IDL Syntax

readonly attribute Container defined_in;

Input parameters
None

Return values
Container *

A pointer to the Container object of the defined_in attribute is returned. The caller
owns the memory associated with this object, that can later be released using
CORBA:release.

Example

Il C++
/| _assume the interface_def ptr has already been initialized
CORBA: : I nterfaceDef * interface def _ptr; . .
// _the following call returns the defined_in Container * for the interface
CORBA: : Cont ai ner * defined_i n_cont ai ner; . .
defined_in_container = interface_def_ptr-> defined_in ();

;:describe

Overview

The describe operation returns a structure containing
information about a CORBA::Contained Interface
Repository object.

Original interface

“CORBA module: Contained Interface” on page 79

Exceptions

“CORBA::SystemException” on page

Intended Usage

The describe operation returns a structure that contains information about an Interface
Repository object. The CORBA::Description structure has two fields: kind
(CORBA::Contained::DefinitionKind data type), and value (CORBA::Any data type).

The kind of definition described by the returned structure is provided using the kind field,
and the value field is a CORBA::Any that contains the description that is specific to the kind
of object described. For example, if the describe operation is invoked on an attribute
(CORBA::AttributeDef) object, the kind field is equal to CORBA::dk_Attribute and the value
field contains the AttributeDescription structure.

The list of Interface Repository object types on which the describe operation may be called
includes: modules (CORBA::ModuleDefs), constants (CORBA::ConstantDefs), type
definitions (CORBA::TypedefDefs), exceptions (CORBA::ExceptionDefs), attributes
(CORBA::AtttributeDefs), operations (CORBA::OperationDefs), and interfaces
(CORBA::InterfaceDefs). For further information on the describe operation, please reference
the describe operation descriptions for the object types listed above.

CORBA 2.1 specifies that the describe method on named IR objects will return a decription
structure that includes the repository ID of the container within which the IR object is
defined. However, one common container has no repository ID, that is the Repository itself.
In this situation, the IBM implementation returns a pointer to the empty string.

IDL Syntax

struct Description

DefinitionKind kind;
_any val ue;

Description describe ();

WebSphere Application Server CORBA support - Page 82

Contained::i

Input parameters
None

Return values
Description *

The returned value is a pointer to a CORBA::Contained::Description structure. The
memory is owned by the caller and can be removed using delete.

Example

/] C++
// _assume that 'this_attribute' has already been initialized
CORBA: : AttributeDef * this_attribute;
11 retrleveadescrlptlon of the attribute .
CORBA: : Attri but eDef: Descrlptlon * returned_description;
ret ur ned descrlptlon = this_attribute-> descCribe (5)

Overview

The id operations provide read and write capability for
the id attribute of a Contained Interface Repository
object.

Original interface

“CORBA module: Contained Interface” on page 79

Exceptions

“CORBA::SystemException” on page

Intended Usage

An object that is contained by another object has a unique id attribute that identifies it
globally within the Interface Repository. The id read (Get) operation provides the ability to
retrieve a copy of the id attribute, and the id write (Set) operation allows the unique id
attribute to be changed.

IDL Syntax

v0|d |d CORBA: : Re 05|toryld repositoryid)
posnory did

Read operatlons
Input parameters

none

Return values
CORBA: : Repositoryld

The returned CORBA::Repositoryld is a copy of the id attribute of the Contained
object. The associated memory is owned by the caller and can be freed by invoking
CORBA::string_free.

Write operations
Input parameters

CORBA: : Repositoryld new_id

The new_id parameter defines the new CORBA::Repositoryld value that will be used
to uniquely identify the Contained object in the Interface Repository.

Return values
none

Example

/] C++

[/ _assume that 'thi
CORBA: : UnlonDef *
//_change the '
CORBA: : 03|t0r
this unlon > id { w_r epi d
CCRB7-\ string_fre (newrepld) . .

uer the union to get a copy of the 'id attribute

p05|t0ryld returned_rep_id;

returned rep_id = this_union=> id ();

is_union' has already been initialized
thls uni on;

attribute of the union (which is a contained obj ect)
Id new_reld CORBA: : string_dup ("new_repid_test
ne

e

WebSphere Application Server CORBA support - Page 83

Contained:

.name

Overview

The name operations are used to read and write the
name attribute of an Interface Repository object.

Original interface

“CORBA module: Contained Interface” on page 79

Exceptions

“CORBA::SystemException” on page

Contained:

Intended Usage

An object that is contained by another object has a name attribute that identifies it uniquely
within the enclosing Container object. Both Read and Write operations are supported, with
parameters listed.

IDL Syntax

attribute identifier nane;
Read operations
Input parameters
none

Return values
CORBA: : I dentifier

This operation returns a copy of the name of the object, that is owned by the caller.
The caller may later free this memory by invoking CORBA::string_free.

Write operations
Input parameters

CORBA: : I denti fier nane

A name that identifies the new name for the Interface Repository object.

Return values
none

Example

Il C++
/] assune 'interface_1' has already been created
CORBA: : Inte faceDef ¥ interface_1;
/1 establish a new name for the interface
interface_1-> nanme ("interface_409");
11 retrleve the interface nane™
dentlfler retrieved_nane;
retneved nanme = interface_TI-> name 0

version

Overview

The version read and write operations allow access and
update of the version attribute of an Interface
Repository Object.

Original interface

“CORBA module: Contained Interface” on page 79

Exceptions

“CORBA::SystemException” on page

Intended Usage

The version attribute distinguishes an object from the other versions. Both Read and Write
methods are supported, with parameters listed below.

IDL Syntax

voi d version (CORBA:: VersionSpec versionspec)
CORBA: : Ver si onSpec versi on;

WebSphere Application Server CORBA support - Page 84

Read operations
Input parameters

none

Return values
CORBA: : Ver si onSpec

The returned value is owned by the caller. It can be freed using CORBA::string_free.

Write operations
Input parameters

CORBA: : Ver si onspec version

The version parameter specifies the new version attribute value for the object.

Return values
none

Example

[l C++
/] _assunme that this interface has already been initialized.
CORBA: : I nterfaceDef * this_interface;

hange the version of this |nterface

_interface-> version (<<2.0>>

etrieve the version fromthe i nterface

s Ver si onSpec returned_version;
ret ur ned _version = this_interface-> version();

/Il ¢
this
Il r

CORBA module: Container Interface

Overview

The Container interface is used to form a containment
hierarchy in the Interface Repository.

File name

somir.idl

Local-only

True

Ancestor interfaces “IRObject Interface” on page 138

Exceptions

“CORBA::SystemException” on page

Supported

operations “Container::contents” on page 86

“Container::

create_alias” on page 87

“Container::

create_constant” on page 88

“Container::

:create_enum” on page 89

“Container::

create_exception” on page 90

“Container::

create_interface” on page 91

“Container::

create_module” on page 92

“Container::

create_struct” on page 93

“Container:

:create_union” on page 94

“Container::

describe_contents” on page 95

“Container::

lookup” on page 96

“Container::

lookup_name” on page 97

Intended Usage

A Container can contain any number of objects derived from the Contained interface. All
Containers, except for Repository, are also derived from Contained. The Container interface
is not itself instantiated as a means of accessing the Interface Repository. As an ancestor to
certain Interface Repository objects, it provides a specific list of operations as noted below.

WebSphere Application Server CORBA support - Page 85

Container:

Those Interface Repository objects that inherit (directly or indirectly) the operations defined
in Container include: Repository, ModuleDef, and InterfaceDef.

IDL syntax

nodul e CORBA

t ypedef seggence

I'n ?rface

//read interface
Cont ai ned | ookup (in Sco
Cont ai nedSeq contents (i

e Contai nedSeq;
nt ai ner: | RObj ect

0T
1]
o
5

me search_nane) ;

initionKind |imt_type

f
i ool ean excl ude_i nhérited);

n
Cont ai nedSeq | ookup_nane (in Identifier search_nane,

struct Description

long | evel s _to_search,
finitionKind™lint_type
bool ean excl ude_i nheri t edj ;

Cont ai ned cont ai ned_obj ect ;
DefinitionKi nd kind;

any val ue;

typedef sequence Descri ptionSeq;

DescriptionSeq describe_contents (in Dg
|

-~

/writ

ite interface . . .
Modul eDef create_nodule (in Recyi)osyt oryld id,

finitionKind Ii m't_tyPe,
ool ean excl ude_i nherited,
ong max_returned_objs);

in
in

in ldentifieér nane,
in VersionSpec version);

Const ant Def create_constant (in Repositoryld Id,

ldentifieér name,
Ver si onSpec ver si on,
I DLTyp

i
i
i e pe,
in any val uey;

5353535

Struct Def create_struct (in Repositoryld id,

in ldentifieér nane,
in VersionSpec version
in Struct Menber Seqmenbers) ;

Uni onDef create_union (in Rl’edposi toryld id,

n entifier nane,
n VersionSpec version,
n | DLType di scri m nator_type,

i
i
i
i n Uni onMenber Seq nenbers);

EnunDef create_enum (in Ffe&msi.t oryld id,

AliasDef create_alias (in

in entifier nanme,

in VersionSpec version,

in Enumvenber Seq menbers);
Redp05|_t oryid id,

in ldentifier name,

in VersionSpec version,

n | DLType ori gi nal t)gae);

i

i
InterfaceDef create_interface (in Repositoryl

y: }s

:contents

in ldentifieéer nane,
n VersionSpec version

i)
in InterfaceDef Seq base_interfaces);

Overview

The contents operation returns the list of objects
directly contained by or inherited into the object.

Original interface

“CORBA module: Container Interface” on page 85

Exceptions

“CORBA::SystemException” on page

Intended Usage

The contents operation can be used to navigate through the hierarchy of objects. Starting
with the Repository object, a client uses this operation to list all of the objects contained by
the Repository, all of the objects contained by the modules within the Repository, all of the
interfaces within a specific module, and so on.

IDL Syntax

Cont ai nedSeq contents (in DefinitionKind linit_ type

Input parameters
exclude_inherited

i n bool ean excl ude_i nherited);

An object can be contained within another object because it is defined within the
containing object (for example, an interface is contained within a module). It may also

WebSphere Application Server CORBA support - Page 86

Container:

be defined as contained because it is inherited by the containing object (for example,
an operation may be contained by an interface because the interface inherits the
operation from another interface).

When exclude_inherited is TRUE, inherited objects, if present, are not returned. If
exclude_inherited is FALSE, all contained objects (whether contained due to
inheritance or because they were defined within the object) are returned.

limit_type

If the limit_type is set to CORBA::dk_all, objects of all interface types are returned. For
example, if this is an InterfaceDef, the attribute, operation, and exception objects are
returned. If limit_type is set to a specific interface, only objects of that interface type
are returned. For example, only attribute objects are returned if limit_type is set to
CORBA::dk_Attribute. The accepted values for limit_type are: CORBA::dk_all,
CORBA::Attribute, CORBA::dk_Constant, CORBA::dk_Exception,
CORBA::dk_Interface, CORBA::dk_Module, CORBA::dk_Operation,
CORBA::dk_Typedef, CORBA::dk_Alias, CORBA::dk_Struct, CORBA::dk_Union, and
CORBA::.dk_Enum.

Return values
ContainedSeq *

The returned value is a pointer to a ContainedSeq that is the list of Contained objects
retrieved from the Interface Repository based upon the input criteria. The memory
associated with the ContainedSeq is owned by the caller. The caller can invoke delete
on the ContainedSeq * to delete the memory when no longer needed.

Example

[l C++
/| _assume that ' regosi tory_ptr' has already been initialized
CORBA: : Reposi t or%/ repository_ptr; .
// retrieve all the objects conained by the Repository
A: : Cont ai nedSeq * returned_sequence;
returned_sequence = repository ptr-> contents (CORBA::dk_all, 0);

:create_alias

Overview

The create_alias operation creates a new alias
definition (AliasDef) in the Interface Repository.

Original interface

“CORBA module: Container Interface” on page 85

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_alias operation creates a new alias definition in the Interface Repository
persistent database, and returns a pointer to a new AliasDef object associated with the alias
definition. An AliasDef is typically used by the Interface Repository to represent an OMG IDL
‘typedef'.
IDL Syntax
AliasDef create_alias (in Repositoryid id,
in Identifier nane,
in VersionSpec version,
in | DLType original_type);
Input parameters
name

The name that will be associated with this AliasDef object in the Interface Repository.
original_type
The original_type identifies the original type to which this AliasDef refers. The

original_type may be an instance of a SequenceDef, ArrayDef, StringDef, PrimitiveDef,
UnionDef, StructDef, AliasDef, EnumDef, or InterfaceDef.

WebSphere Application Server CORBA support - Page 87

id

The id represents the CORBA::Repositoryld that will uniquely identify this AliasDef
within the Interface Repository.

version

The version number that will be associated with this AliasDef object in the Interface

Repository.

Return values
AliasDef ptr

A pointer to the created AliasDef object is returned to the caller. The memory
associated with this object can later be released by invoking CORBA::release.

Example
Il C++

/[assume the 'repository_ptr' and 'structure_1' objects
// _and these_ pointers have already been established
CORBA: : Repository * reposnor{_ptr;

CORBA: : Struct Def " * structure_1;

/| _establish the id,

and version values for the alias definition

CORBA: : Repositoryld rep_id;

CORBA: : | denti fi er nane;

CORBA: : Ver si onSpec versi on; . .) .
rep_id = CORBA: :string_dup ("unique RepositorylD for this alias");
nane = CORBA.:string_dup ("alias _new');

version = CORBA: :string_dup ("1. U"%;

I/ create the new alias for "structure_1' . . .

CORBA: : Al i asDef * new_ ali as; - . .

new alias = re5305| tory_ptr-> create_alias (rep_id, nane, version,

Structure_1

Container::create_constant

Overview

The create_constant operation creates a new
ConstantDef object.

Original interface

“CORBA module: Container Interface” on page 85

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_constant operation creates a new ConstantDef object with the specified type
and value. A representation of the new ConstantDef object is created in the Interface
Repository persistent database and a pointer to the memory representation of the
ContstantDef object is returned to the caller.

IDL Syntax

Const ant Def create_constant (in, Ref)gsi toryld Id,
n

Input parameters
value

entifier name,
n VersionSpec version,
n | DLType ype,
n)

i
i
i
in any val ue

The value parameter is an CORBA::Any reference. The Any contains the value of the

constant.
name

The name that is associated with this ConstantDef object in the Interface Repository.

type

The type parameter is a CORBA::IDLType * that specifies the type of the ConstantDef.
The type should be a CORBA::PrimitiveDef object of a simple type (pk_short, pk_long,
pk_ushort, pk_ulong, pk_float, pk_double, pk_boolean, pk_char, pk_wchar, pk_string,

pk_wstring, or pk_octet).
id

The id represents the CORBA::Repositoryld that will uniquely identify this ConstantDef

WebSphere Application Server CORBA support - Page 88

Container:

within the Interface Repository.

version

The version number that will be associated with this ConstantDef object in the
Interface Repository.

Return values
ConstantDef_ptr

A pointer to the created ConstantDef object is returned to the caller. The memory
associated with this object can later be released by invoking CORBA::release.

Example

/] C++
/| _repository_ptr and nodul e_one has already been initialized .
CORBA: : Repository * repository_ptr;
CORBA: : Modul eDef " * nodul e_one; .
CORBA: : Repositoryl d constants_rep_id;
CORBA: : | dentifier constants_namne,
CORBA: : Ver si onSpec ver si on;
CORBA: : Const ant Def * const ant _def _one;
CORBA: : Any constants_val ue;
CORBA: : PrimitiveDef ¥ primtive_|ong;
/'l establish the id, nanme, and Version values for the constant
constants_rep_id = CORBA: :string_dup ("unique RepositorylD for ny
const ant " s]; .
constants_nane = CORBA :string dup ("constant_of_2001");
version = CORBA: :string_dup ("I.0");
/'l establish the Any with a "value of 2001
constants_val ue <<= (CORBA:: Long) 2001;

I/ create a PrimtiveDef that represents a CORBA: : Long\ data type
;)I’I mtive_|long = rep05|tory_ﬁtr—>_ et primtive (CORBA: :pk_long);
/ create the new constant tThat will be contained in nodul €_one
const ant _def _one = npdul e_one-> create_constant (constants_rep_id,

constants_name, version, primtive_|long, constants_value);

:Create_enum

Overview

The create_enum operation creates a new enumeration
definition (EnumDef) in the Interface Repository.

Original interface

“CORBA module: Container Interface” on page 85

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_enum operation creates a new enumeration definition in the Interface
Repository persistent database, and returns a pointer to a new EnumDef object associated
with the enumeration definition.

IDL Syntax
EnunDef create_enum (in Repositoryld id,
in I'dentifier nane,

i n VersionSpec version,
in Enumvenber Seq nenbers);

Input parameters
members

This is a reference to a CORBA::EnumMemberSeq that provides the list of the
elements will comprise the new enumeration (EnumDef). The length of the
CORBA::EnumMemberSeq must be greater than zero. The
CORBA::EnumMemberSeq contains a distinct name for each possible value of the
enumeration.

name

The name that will be associated with this EnumDef object in the Interface Repository.
id

The id represents the CORBA::Repositoryld that will uniquely identify this EnumDef
within the Interface Repository.

version

The version number that will be associated with this EnumDef object in the Interface
Repository.

WebSphere Application Server CORBA support - Page 89

Container:

Return values
EnumDef_ptr

A pointer to the created EnumDef object is returned to the caller. The memory
associated with this object can later be released by invoking CORBA::release.

Example

/] C++
/| _assume that 'repository_ptr' had already been intitialized .
CORBA: : Repository * repository_ptr; . .
/| _establish the id, nane, and version values for the enuneration
CORBA: : Repositoryld rep_id;
CORBA: : | dentifier nane;’
CORBA: : Ver si onSpec ver si on; . . .
rep_id = CORBA: :stri ng_du ("uni que Repositoryl D for ny enuneration");
nane = CORBA:.:string_dup E)"enuneratl on new');
version = CORBA: :string d% ("1.0");
/1] instantiate an EnuniVerper Seq and set the length to 2
CORBA: : EnumMenber Seq enum nmenber's;
enum menbers. | engt h(ﬁ%\l;E . .
H elstablltsh the Enu nmber Seq to represent an enuneration with two
el enent s

enum nenbers[0] = (char *) CORBA::string_dup ("enumvalue_0");
enum_nmenbers|[1] = (char *) CORBA::string_dup ("enumvalue_1");
/| create the hew enuneration . . .

CORBA: : EnunDef * new_enum . .
new_enum = repository_ptr-> create_enum (rep_id, name, version,
enum nenbers) ;

:Create_exception

Overview

The create_exception operation returns a new
exception definition (CORBA::ExceptionDef) contained
in the CORBA::Container on which it is invoked.

Original interface

“CORBA module: Container Interface” on page 85

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_exception operation returns a new CORBA::ExceptionDef contained in the
CORBA::Container on which it is invoked. A representation of the new
CORBA::ExceptionDef object is created in the Interface Repository persistent database and
a pointer to the memory representation of the CORBA::ExceptionDef object is returned to
the caller.

The id, name, version, and members attributes are set as specified. The type attribute is
also set.

An error is returned if an object with the specified id already exists within the Interface
Repository, or if an object with the specified name already exists within the
CORBA::Container on which the create_exception is invoked.

IDL Syntax
Excepti onDef * create_exception(Repositoryld id
I ndentifier name
Ver si onSpec ver si on
Struct Menber Seq & nmenbers) ;
Input parameters
name

The name that will be associated with this CORBA::ExceptionDef object in the
Interface Repository.

id

The id represents the CORBA::Repositoryld that will uniquely identify this
CORBA::ExceptionDef within the Container.

members

The members parameter defines the members of the exception definition. Each
element of the members parameter has 3 fields. The name field is the name of the

WebSphere Application Server CORBA support - Page 90

element. The type field (a reference to a CORBA::TypeCode *) is not used for
create_exception and should be set to CORBA::_tc_void. The type_def field
references a CORBA::IDLType * that defines the type definition of the member
element.

The members parameter can have a length of zero to indicate that the exception
definition has no members.

version
The version number that will be associated with this CORBA::ExceptionDef object in
the Interface Repository.

Return values
ExceptionDef *

The return value is a pointer to the newly created CORBA::ExceptionDef. The memory
is owned by the caller and can be released using CORBA::release.

Example
[l C++ .

/] assune that 'this_nodule' and 'this_struct’
// _have already been initialized
CORBA: : Mbdul eDef * this_nodul e;
CORBA: : Struct Def * thls_truct
/1 _establish the 'create_exc ptl on' rep_id, nane, and version paraneters
CORBA: : Repositoryld rep_id = "Uni queRepo i toryI d"
CORBA: : I dentifier name = "this exception”
CORBA: : Ver si onSpec version = 0";
/1 establish and initialize a CORBA :Stru ctNEnberSeq
/1 _with which to create the CORBA:: Exce ept i onDef
CORBA: : Struct NErTberSeq menbers_| i st;

menbers_| i st length (1);

menbers_| i st[0] . name = CORBA: : strlng dup ("exception_0");
nenbers”|ist[0].type = CORBA:; _tc_void;
menbers”|ist[0].type_def = this struct;
/[creafe the exception def i ni tTon . .
this_nodul e-> create_exception (rep_id, name, version, nmenbers_list);
del efe (nenbers_list);
/'] cl eanup.
Container::create_interface
Overview The create_interface operation is used to create a new

interface definition (InterfaceDef) within the Interface
Repository.

Original interface

“CORBA module: Container Interface” on page 85

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_interface operation returns a new empty InterfaceDef with the specified
base_interfaces. Type, exception, and constant definitions can be added using the
Container::create_, Container::create_exception, and Container::create_constant operations
respectively on the new InterfaceDef. OperationDefs can be added using
InterfaceDef::create_operation and AttributeDefs can be added using
Interfacedef::create_attribute. Definitions can also be added using the Contained::move
operation.

IDL Syntax

InterfaceDef create_interface (in Re,)osmoryl did,
in [dentifier nane,
in V er si onSpec versi on,
in InterfaceDef Seq base _interfaces);

Input parameters
name

The name that will be associated with this InterfaceDef object in the Interface
Repository.

base_interface

WebSphere Application Server CORBA support - Page 91

Container:

The base_interfaces parameter lists all of the interfaces from which this interface
inherits.

id
The id represents the CORBA::Repositoryld that will uniquely identify this InterfaceDef
within the Interface Repository.

version

The version number that will be associated with this InterfaceDef object in the
Interface Repository.

Return values
InterfaceDef ptr

A pointer to the created InterfaceDef object is returned to the caller. The memory
associated with this object can later be released by invoking CORBA::release.

Example
Il C++
/[assume that 'nodule_1' nterface_A', and 'interface_B
/1 _have al ready been imiti I zed

: Modul eDef * nodul e_1
CORBA: : I nterfaceDef * intertface A
CORBA: : | nterfaceDef * interface_B; .
1 establlsh the id, nane, and Version values for the interface
CORBA: : Reposi toryld rep_id;
CORBA: : | dentifier name;
CORBA: : Ver si onSpec ver si on; . .
rep_id = CORBA: : strlng du "uni que RecposmoryID for ny interface");
nane = CCRBA strlng up E) |nterface)
version = CORBA: :StrT ng_dup ("1.0"
H es}]ablltsh the base interfaces from which the new interface will
i nheri
CORBA: : | nt er f aceDef Seq base interfaces;
base_| nterfaces, | engt h(2
base”i nterfaces 0 = :InterfaceDef: _dupl icate (interface_A);
base”i nt erfaces = OO?BA InterfaceDef:: _duplicate (interface_B);
11 createanewmterface |nterfaceC ..
CORBA: : I nterfaceDef * interface_GC; .
interface C = nodul e_1-> create’interface (rep_id, nane, version,
base_interfaces);

:create_module

Overview

The create_module operation creates a new module
definition (ModuleDef) in the Interface Repository.

Original interface

“CORBA module: Container Interface” on page 85

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_module operation returns a new empty ModuleDef object after it creates a
corresponding new module representation in the Interface Repository persistent database.
Definitions can be added using Container::create_ operations on the new module, or by
using the Contained::move operation.

IDL Syntax

Mbdul eDef create_nodul e (i n Rep05|toryl did,
dentifier name,
| n Ver si onSpec version);

Input parameters
name

The name that will be associated with this ModuleDef object in the Interface
Repository.

id

The id represents the CORBA::Repositoryld that will uniquely identify this ModuleDef
within the Interface Repository.

version
The version number that will be associated with this ModuleDef object in the Interface

WebSphere Application Server CORBA support - Page 92

Repository.

Return values
ModuleDef ptr

A pointer to the created ModuleDef object is returned to the caller. The memory
associated with this object can later be released by invoking CORBA::release.

Example

Il C++
/| repository_ptr has already been initialized . . .
CORBA: : Repository * repository_ptr;
CORBA: : Modul eDef " * new_nodul e —
CORBA: : Reposi toryl d nodul es_rep_i d;
CORBA: : | denti fi er nodul es_nane;
CORBA: : Ver si onSpec ver si on; i
/'l establish the id, nanme, and version values for_ the nodul e
nmodul es_rep_id = CORBA::stri ng_dup ("uni que RepositorylD for nmy nodul e");
modul es_name_= CORBA: : string_dup ("modul e neW'SJ;
version = CORBA: :stri nF_dup ™10%);
/| create the new nodule .
new_nodul e = repository_ptr-> create_nodul e (nodul es_rep_i d, nodul es_nane

Container::create_struct

Overview The create_struct operation creates a new structure
definition (StructDef) in the Interface Repository.

Original interface “CORBA module: Container Interface” on page 85

Exceptions “CORBA::SystemException” on page

Intended Usage

The create_struct operation creates a new structure definition in the Interface Repository
persistent database, and returns a pointer to a new StructDef object associated with the
struct definition.

IDL Syntax
StructDef create_struct (in Repositoryld id,
in ldentifier name,

in VersionSpec version
in Struct Menber Seq nenbers);

Input parameters
name

The name that will be associated with this StructDef object in the Interface Repository.
id

The id represents the CORBA::Repositoryld that will uniquely identify this StructDef
within the Interface Repository.

members

This is a reference to a CORBA::StructMemberSeq that provides the list of the
elements will comprise the new structure (StructDef). The length of the
CORBA::StructMemberSeq must be greater than zero.

Each CORBA::StructMember within the CORBA::StructMemberSeq has 3 fields. The
name field identifies the name of the StructMember. The type field of the
StructMember is ignored by create_struct, and should be set to CORBA::_tc_void. The
type_def field is a CORBA::IDLType * that represents the type definition of the
StructMember.

version

The version number that will be associated with this StructDef object in the Interface
Repository.

Return values

StructDef_ptr

A pointer to the created StructDef object is returned to the caller. The memory

WebSphere Application Server CORBA support - Page 93

Container:

associated with this object can later be released by invoking CORBA::release.

Example
Il C++ L

/[assume pr!mtlve_lonﬁ "primtive_double'

//_and 'repository pir' have already been inst anti at ed

CORBA: : PrimitiveDef * primtive_double;

CORBA: : Prim tiveDef * primtive_ Iong
A: : Repository * repository ptr

[/ _establish the id, name, and version val ues for the structure
BA: : Repositoryld rep_id;

CORBA: : | dentifier nane;

CORBA: : Ver si onSpec ver si on;
repld—CCRB strin du uni que Repositoryld for nmy structure");
nane = CORBA: : strlng ?structure new') ;
version = CORBA: : strlng dup
/1] instantiate StructManberSeq and set the length to 2
CORBA: : Struct Men‘oerSeq struct _menbers;
struct _nmenbers. Iength(Z?ve
I/ establish the StructMenberSeq to represent a structure with two
/] elenments: a CORBA: : Double call ed ,, and a CORBA::Long called "y’
struct _nmenbers O -name = CORBA: : strlng dup ("x");
struct _menber s . type_ def =
CORBA: IDLTE dupllcate(prlmtlve double
struct manbersr] nane = CO?BA string_dup ("y");

struct _menber s type

CORBA: : | DLType: dupl |

I/ _create the new structu

CORBA: : St ruct Def * new_st

new struct = repository_p
Struct _nenbers);

cate (prlmtlve I ong);
re . .

ruc
tr-

ct;
> create_struct (rep_id, name, version,

:Create_union

Overview

The create_union operation creates a new union
definition (UnionDef) in the Interface Repository.

Original interface

“CORBA module: Container Interface” on page 85

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_union operation creates a new union definition in the Interface Repository
persistent database, and returns a pointer to a new UnionDef object associated with the
union definition.

IDL Syntax
Uni onDef create_union (in Reposnoryl did,
in Identifier nane,
in VersionSpec version,
I
i

n |DLT di'scri m nator_type,
n Uni om\’/lenberSeq merr‘r;)ers)yp

Input parameters
name

The name that will be associated with this UnionDef object in the Interface Repository.
discriminator_type

This is a CORBA::IDLType * that identifies the union's discriminator type. The
discriminator type can be a PrimitiveDef (with a primitive kind of CORBA::pk_long,
CORBA::pk_short, CORBA::pk_ulong, CORBA::pk_ushort, CORBA::pk_char,
CORBA::pk_wchar, or CORBA::pk_boolean) or an EnumDef (which represents an
enumerator definition).

id

The id represents the CORBA::Repositoryld that will uniquely identify this UnionDef
within the Interface Repository.

members
This is a reference to a CORBA::UnionMemberSeq that provides the list of the

elements that will comprise the new union (UnionDef). The length of the
CORBA::UnionMemberSeq must be greater than zero.

Each CORBA::UnionMember within the CORBA::UnionMemberSeq has 4 fields. The

WebSphere Application Server CORBA support - Page 94

Container:

name field identifies the name of the UnionMember. The type field of the
UnionMember is ignored by create_union, and should be set to CORBA::_tc_void. The
label field of each UnionMember is a CORBA::Any data type that represents a distinct
value of the discriminator_type (a label of type CORBA::Octet and value 0 indicates
the default union member). The type_def field is a CORBA::IDLType * that represents
the type definition of the UnionMember.

version

The version number that will be associated with this UnionDef object in the Interface
Repository.

Return values

UnionDef_ptr

A pointer to the created UnionDef object is returned to the caller. The memory
associated with this object can later be released by invoking CORBA::release.

Example
Il C++
[/ assume 'primtive_|long', ‘Prlmtlve_double
Il _"structure_1', and 'reposi or?/ ptr' "have al ready been instantiated
CORBA: : PrimitTveDef * primtive_ og
CORBA: : PrimtiveDef * primtive_dou Ie;
A: : Struct Def * structure_1;
CORBA: : Repository * repository_ptr; .
11 est ablish the'i nane, and version values for the union

CORBA: Repos toryld rep_ id;
CORBA: : | dentifier name;
CORBA: : Ver si onSpec ver si on;

rep_ |d = CORBA: :string_dup ("uni que Rep03|toryld for ny union");
nane = OCRBA strlng gu (" uni on W)

versjon = CORBA::string du ("1.0"

/[_the discrini nator type |s inthis case CORBA: : Long

CORBA; : | DLType * discrim nator_type;

di scri m nat or type = primtive_l on

/] instantiate Uni onMenber Seq ang set the length to 2
CORBA: : Uni onMenberSeq uni on_nenbers;

uni on_menbers. | en t h(?\/E

/] establish the Uni onMenber Seq to represent a union with two

/] elenments: a CORBA: Doubl e called 'x', and a previously created
I structure called '

uni on_nenbers[0 narre = CORBA: : string_dup ("x");
uni on nenbers ty e def =
g dupllcate Egrlmtlve doubl e)
uni on_nenbers | abel <<= A Long
uni on_nenber s[1] . nane = A :strin up D
uni on_nenber s[1] . type def = CORBA: : pe: dupl icate (structure_1);
uni on_nenbers[1] . | abell <<= (CCRBA Longy

[/ _create the new union .

CORBA: : Uni onDef * new_uni on; .

new_uni on = repository ptr-> create_union (rep_id, nane, version,
di scrimnator_type, uni on_nenbers);

:describe_contents

Overview

The describe_contents operation combines the
contents operation and the describe operation.

Original interface

“CORBA module: Container Interface” on page 85

Exceptions

“CORBA::SystemException” on page

Intended Usage

The describe_contents operation combines the contents operation and the describe
operation. For each object returned by the contents operation, the description of the object
is returned (i.e., the object's describe operation is invoked and the results returned).

IDL Syntax
stru?t Descri ption
Cont ai ned cont ai ned_obj ect;
DefinitionKi nd ki nd;
. any val ue;
Descr i ptionSeq describe_contents (in DefinitionKind limt tyP u,
e

i n bool ean excl ude_i nheri
sin | ong max_returned_objs);

Input parameters
exclude_inherited

WebSphere Application Server CORBA support - Page 95

CORBA::Contained objects have a defined_in attribute that identifies the
CORBA::Container within which they are defined. Objects can be contained either
because they are defined within the containing object (for example, an interface is
defined within a module) or because they are inherited by the containing object (for
example, an operation may be contained by an interface because the interface inherits
the operation from another interface).

If the exclude_inherited parameter is set to TRUE, inherited objects (if there are any)
are not returned. If exclude_inherited is set to FALSE, all contained objects are
returned (whether contained due to inheritance or because they were defined within
the object).

limit_type

The limit_type identifies the interface types for which descriptions are returned. If
limit_type is set to CORBA::dk_all, objects of all interface types within the
CORBA::Container are returned. If limit_type is set to a specific interface, only objects
of that interface are returned.

Valid values for limit_type include CORBA::dk_all, CORBA::dk_Attribute,
CORBA::dk_Constant, CORBA::dk_Exception, CORBA::dk_Interface,
CORBA::dk_Module, CORBA::dk_Operation, CORBA::.dk_Typedef,
CORBA::dk_Union, CORBA::dk_Alias, CORBA::dk_Struct, and CORBA::dk_Enum.

max_returned_objs

The max_returned_objs parameter limits the number of objects that can be returned in
an invocation of the call to the number provided. Setting the parameter to -1 indicates
that all contained objects should be returned.

Return values
DescriptionSeq *

The returned value is a pointer to a sequence of descriptions of Interface Repository
objects. The memory is owned by the caller and can be removed using delete.

Example

/] C++
/| _assume that 'this_nmpdul e has already been initialized
CORBA: : Modul eDef * this_nodul e; . .
/] retrieve information about all objects contained
// _within the nodul e using 'describe_contents’ o
A: : Cont ai ner: ; Descri ptionSeq * returned_descriptions;

returned_descriptions =

thi s_nodul e-> describe_contents (CORBA: :dk_all, 1, -1);

Container::lookup

Overview The lookup operation locates a definition relative to this
container given a scoped name using OMG IDL's name
scoping rules.

Original interface “CORBA module: Container Interface” on page 85

Exceptions “CORBA::SystemException” on page

Intended Usage

The lookup operation locates a definition relative to this container given a scoped name
using OMG IDL's name scoping rules. An absolute scoped name (beginning with "::")
locates the definition relative to the enclosing Repository. If no object is found, a nil object
reference is returned.

IDL Syntax

Cont ai ned | ookup (in ScopedNanme sear ch_nane);

WebSphere Application Server CORBA support - Page 96

Container:

Input parameters
search_name

The search_name is the scoped name of the object using OMG IDL's hame scoping
rules. This name is used as the search criteria for locating the object within the
Interface Repository.

Return values
Contained_ptr

The return value is a pointer to a CORBA::Contained object resulting from the search.
If the search_name was not located within the Interface Repository, a nil object is
returned. If a non nil CORBA::Contained object pointer is returned, the memory
associated with the object is owned by the caller and can be released by invoking
CORBA:release.

Example

/] C++
// _assume that 'npdule_l1' has already been initialized
CORBA: : Mbdul eDef * nodul e_1; .
I/ _use the scoped name to | ookup an operation . . .
CORBA: : Cont ai ned * ret_contai ned; .
ret_contai ned = nodul e_1-> | ookup (" Mdul e2::Interface6:: Qperation7");;

:lookup_name

Overview

The lookup_name operation is used to locate an object
by name within a particular object or within the objects
contained by that object.

Original interface

“CORBA module: Container Interface” on page 85

Exceptions

“CORBA::SystemException” on page

Intended Usage

The lookup_name operation is used to locate an object by name within a particular object or
within the objects contained by that object. The parameters to the lookup_name operation
specify the name for the search, the number of levels to search, the type of objects to be
examined in the search, and whether containment by inheritance should be included.

IDL Syntax

Cont ai nedSeq | ookup_nane (in Identifier search_nane,
in long | evel s to_Search,
in DefinitionKind™limt_type
in bool ean excl ude_i nhefi t ed) ;

Input parameters
exclude_inherited

An object can be contained within another object because it is defined within the
containing object (for example, an interface is contained within a module). It may also
be defined as contained because it is inherited by the containing object (for example,
an operation may be contained by an interface because the interface inherits the
operation from another interface).

When exclude_inherited is TRUE, inherited objects, if present, are not returned. If
exclude_inherited is FALSE, all contained objects (whether contained due to
inheritance or because they were defined within the object) are returned.

limit_type

The limit_type parameter indicates which type of object should be examined while
performing the name search. The accepted values for limit_type are: CORBA::dk_all,
CORBA::dk_Attribute, CORBA::dk_Constant, CORBA::dk_Exception,
CORBA::dk_Interface, CORBA::dk_Module, CORBA::dk_Operation,
CORBA::dk_Typedef, CORBA::dk_Alias, CORBA::dk_Struct, CORBA::dk_Union, and
CORBA::dk_Enum. If the limit_type is CORBA::dk_all, objects of all interface types are

WebSphere Application Server CORBA support - Page 97

returned (for example, attributes, operations, and exceptions are all returned). If
limit_type is set to a specific interface, only objects of that interface are returned.

search_name
The search_name specifies the name for which the search is to be made.

levels_to_search

The levels_to_search parameter controls the the depth of the search. When
levels_to_search is set to -1 the current object is searched as well as all contained
objects. Setting levels_to_search to 1 will limit the search to the current object only.

Return values
ContainedSeq *

The returned value is a pointer to a ContainedSeq that is the list of Contained objects
retrieved from the Interface Repository based upon the input criteria. The memory
associated with the ContainedSeq is owned by the caller. The caller can invoke delete
on the ContainedSeq * to delete the memory when no longer needed.

Example

Il C++
/| _assume 'repository_ptr' is already initialized
CORBA: : Repository * repository_ptr;
I/ _search for a specific interface name
CORBA: : Cont ai nedSeq * cont_seq;
cont se% = reﬁ)05|tory_ptr-> | ookup_nare ("Interfacel", -1,
CORBA: : dk_I nterface, 0);

CORBA module: Context Class

Overview Contains a list of properties that represent information
about the client environment.

File name context.h

Supported methods “Context::_duplicate” on page 99

“Context::_nil” on page 99

“Context::context_name” on page 99

“Context::create_child” on page 100

“Context::delete_values” on page 100

“Context::get_values” on page 101

“Context::parent” on page 101

“Context::set_one_value” on page 102

“Context::set_values” on page 102

Intended Usage

The Context class is used to pass information from the client environment to the server
environment, specifically information that is inconvenient to pass as method parameters.

The information is specified as a list of properties. Each property consists of a name and a
string value associated with that name. An IDL operation specification may contain a clause

specifying context properties that should be passed to the server when the method is
invoked. The Context object associated with an operation is passed as a distinguished

parameter. The ORB::get_default_context method is called to get a reference to the default
process context. The Context class provides methods to add and delete properties, as well

as query information about a context.

Contexts may be "chained" together to achieve a particular default behavior. Property

WebSphere Application Server CORBA support - Page 98

searches on a child context recursively look in the parent context. Contexts may optionally
be named. A context name can be used to specify a starting search scope.

Context::_duplicate

Overview

Duplicates a Context object.

Original class

“CORBA::Context” on page 98

Context::

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to a Context object. Both the original and the duplicate reference should subsequently be
released using CORBA::release(Context_ptr).

IDL Syntax
static CORBA:: Context_ptr _duplicate (CORBA: :Context_ptr p);
Input parameters
p
The Context object to be duplicated. The reference can be nil, in which case the return
value will also be nil.

Return values
CORBA::Context_ptr

The new Context object reference. This value should subsequently be released using
CORBA::release(Context_ptr).

nil

Overview

Returns a nil CORBA::Context reference.

Original class

“CORBA::Context” on page 98

Context::c

Intended Usage

This method is intended to be used by client and server applications to create a nil Context
reference.

IDL Syntax

static CORBA:: Context_ptr _nil ();
Input parameters

None

Return values
CORBA::Context_ptr

A nil Context reference.
on text_n ame

Overview

Retrieves the name of a context.

Original class

“CORBA::Context” on page 98

Intended Usage

Context objects may optionally be named. A context name can be used to specify a starting
search scope. The context name method retrieves the name of a context.

IDL Syntax

const char * context_name() const;

Input parameters

WebSphere Application Server CORBA support - Page 99

None
Return values
const char *

A pointer to the name of the context, if any, or a null pointer. Ownership of the return
value is maintained by the Context; the return value must not be freed by the caller.

Context::create_child

Overview

Creates a child Context object.

Original class

“CORBA::Context” on page 98

Exceptions

“CORBA::SystemException” on page

Intended Usage

Context objects may be "chained" together to achieve a particular default behavior. Property
searches on a child context recursively look in the parent context. The create_child method
creates a new child Context object. The child context is chained to the parent context, which
is the target object.

IDL Syntax

CORBA: : Status create_chil d(const char *ctx_nane, .
CORBA: : Cont exf_ptr &child_ctx);

Input parameters
ctx_name

The name of the child context to be created, if any, or a null pointer. If specified, the
input context name should follow the rules for OMG IDL identifiers. The caller retains
ownership of the input name (the Context makes its own copy).

child_ctx

A pointer for a Context object, passed by reference, to be updated by the create_child
method to point to the newly created child context. Ownership of this parameter
transfers to the caller and must be freed by calling CORBA::release(Context_ptr).

Return values
CORBA::Status

A zero return code indicates the child Context object was successfully created.

Context::delete_values

Overview

Deletes one or more properties.

Original class

“CORBA::Context” on page 98

Exceptions

“CORBA::SystemException” on page

Intended Usage

The delete_values method deletes the specified properties from a Context object. If the
property name has a trailing wildcard character ("*"), then all property names that match are
deleted. Search scope is always limited to the specified context.

IDL Syntax

CORBA: : St at us del et e_val ues(const char *prop_nane);
Input parameters
prop_name
An identifier specifying the properties to be deleted. To specify multiple properties,
pass an identifier with a trailing wildcard character. If a null pointer is passed for this
parameter, a system exception is raised.

WebSphere Application Server CORBA support - Page 100

Return values
CORBA::Status

A zero return code indicates the properties were successfully deleted. If the input
property name is not found, a system exception is raised.

Context::get_values

Overview

Retrieves one or more property values.

Original class

“CORBA::Context” on page 98

Exceptions

“CORBA::SystemException” on page

Intended Usage

The get_values method retrieves the specified context property values. If the property name
has a trailing wildcard character ("*"), then all matching properties and their values are
returned. If a matching property is not found at the starting scope, the search optionally
continues up the context tree until a match is found or all contexts in the chain have been
exhausted.

IDL Syntax

CORBA: : St atus get_val ue(const char *start_scope
CORBA: : Fl ags op_T | ags

const char *prop_nanme

CORBA: : NVLi sP_pFr_ &val ues) ;
Input parameters
start_scope
An identifier specifying the name of the context at which the search should begin. If the
search scope is not specified, the search begins with the target Context object. If the
specified search scope is not found, a system exception is raised.

op_flags

CORBA::.CTX_RESTRICT_SCOPE may be used to indicate searching is limited to the
specified search scope. By default, the entire context tree is searched.

prop_name

An identifier specifying the name of the properties to return. To specify multiple
properties, pass an identifier with a trailing wildcard character.

values

The pointer for an NVList object, passed by reference, to be updated by the
get_values method to point to the resulting NVList. Ownership of the returned object
transfers to the caller. Memory should be freed by calling
CORBA::release(NVList_ptr).The pointer for an NVList object, passed by reference, to
be updated by the get_values method to point to the resulting NVList. Ownership of
the returned object transfers to the caller. Memory should be freed by calling
CORBA::release(NVList_ptr).

Return values
CORBA::Status

A zero return code indicates that one or more property values were successfully
returned. If no matching property name is found, -1 is returned.

Context::parent

Overview

Retrieves the parent context.

Original class

“CORBA::Context” on page 98

Intended Usage
Context objects may be "chained" together to achieve a particular defaulting behavior.

WebSphere Application Server CORBA support - Page 101

Property searches on a child ontext recursively look in the parent context. The parent
method retrieves the parent of the target Context object.

IDL Syntax
CORBA: : Cont ext _ptr parent() const;
Input parameters

None

Return values

Context_ptr

A pointer to the parent context, if any, or a null pointer. Ownership of the return value
is maintained by the Context; the return value must not be freed by the caller.

Context::set_one_value

Overview

Adds a single property.

Original class

“CORBA::Context” on page 98

Exceptions

“CORBA::SystemException” on page

Intended Usage

The set_one_value method adds a single property to a context. If the input property name is
not found in the property list, a new NamedValue (with the input property name and value) is
added. If the input property name is found, the associated NamedValue is removed, then a
new NamedValue (with the input property name and value) is added.

IDL Syntax

CORBA: : St at us set_one_val ue(const char *Rr ORﬁnarre,
const CORBA:: Any &val ue);

Input parameters

prop_name

The name of the property to be added. Context properties follow the rules for OMG
IDL identifiers. Property names should not end with an asterisk. If a null pointer is
passed for this parameter, a system exception is raised. The caller retains ownership
of the input string (the Context makes its own copy).

value

The address of the value of the property to be added. Currently, only strings are
supported as property values. It is legal to pass a null pointer. The caller retains
ownership of the input Any.

Return values
CORBA::Status

A zero return code indicates the property was successfully added.

Context::set_values

Overview

Adds one or more properties.

Original class

“CORBA::Context” on page 98

Exceptions

“CORBA::SystemException” on page

Intended Usage

The set_values method adds one or more properties to a context. If an input property
names is not found in the property list, a new NamedValue (wtih the input property name
and value) is added. If the input property name is found, the associated NamedValue is
removed, then a new NamedValue (wtih the input property name and value) is added.

WebSphere Application Server CORBA support - Page 102

IDL Syntax

CORBA: : St at us set _val ues(CORBA: : NVLi st _ptr val ues);
Input parameters
values
A pointer to an NVList containing the properties to be set. Context properties follow the
rules for OMG IDL identifiers. The property names should not end with an asterisk.
Property names must be non-null, or a system exception is raised. Currently, only
strings are supported as property values. It is legal to pass a null property value. In the
NVList, the flags field must be set to zero. The caller retains ownership of this
parameter.

Return values
CORBA::Status

A zero return code indicates the properties were successfully added.

CORBA module: ContextList Class

Overview Specifies the list of properties sent with a DIl request.
File name contextl.h
Supported methods “ContextList::_duplicate” on page 103

“ContextList::_nil” on page 104

“ContextList::add” on page 104

“ContextList::add_consume” on page 104

“ContextList::count” on page 105

“ContextList::item” on page 105

“ContextList::remove” on page 106

Intended Usage

When a client assembles a Dynamic Invocation Interface request, a ContextList is optionally
included. A ContextList specifies the list of properties sent with a request and is used to
improve performance. When invoking a request without a ContextList, the ORB looks up
context information in the Interface Repository. The ORB::create_context_list method is
called to create an empty context list. The ContextList class provides methods to add and
delete a property, as well as query information about a context list. Note that a context list
contains only property names, not property values. Associations between property names
and property values are maintained in a Context object. For additional information, see the
Context and Request class descriptions.

ContextList:: _duplicate

Overview

Duplicates a ContextList object.

Original class

“CORBA::ContextList” on page 103

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to a ContextList object. Both the original and the duplicate reference should subsequently
be released using CORBA::release(ContextList_ptr).

IDL Syntax

static CORBA:: ContextList_ptr _duplicate (CORBA: : ContextList_ptr p);

Input parameters
p

WebSphere Application Server CORBA support - Page 103

The ContextList object to be duplicated. The reference can be nil, in which case the
return value will also be nil.

Return values
CORBA::ContextList_ptr

The new ContextList object reference. This value should subsequently be released
using CORBA::release(ContextList_ptr).

ContextList::_nil

Overview

Returns a nil CORBA::ContextList reference.

Original class

“CORBA::ContextList” on page 103

Intended Usage

This method is intended to be used by client and server applications to create a nil
ContextList reference.

IDL Syntax

static CORBA::ContextList_ptr _nil ();
Input parameters

None

Return values
CORBA:ContextList_ptr

A nil ContextList reference.

ContextList::add

Overview

Adds a single property name to a context list.

Original class

“CORBA::ContextList” on page 103

Exceptions

“CORBA::SystemException” on page

Intended Usage

The add method is used by a client program to populate the ContextList associated with a
DIl request. The add method adds a single property name to a context list. The add and
add_consume methods perform the same task but differ in memory management. The add
method does not assume ownership of the input property name; the add_consume method
does.

IDL Syntax

voi d add(const char *ctxt);

Input parameters
ctxt

The name of the property to be added. Property names follow the rules for OMG IDL
identifiers and should not end with an asterisk. A system exception is raised if the input
property name is null.

Return values

None

ContextList::add _consume

Overview

Adds a single property name to a context list.

Original class

“CORBA::ContextList” on page 103

WebSphere Application Server CORBA support - Page 104

Exceptions “CORBA::SystemException” on page

Intended Usage

The add_consume method is used by a client program to populate the ContextList
associated with a DIl request. The add_consume method adds a single property hame to a
context list. The add and add_consume methods perform the same task but differ in
memory management. The add_consume method assumes ownership of the input property
name; the add method does not. The caller must not access the memory referred to by the
input parameter after it has been passed in.

IDL Syntax

voi d add_consunme(char *ctxt);

Input parameters
ctxt

The name of the property to be added. Property names follow the rules for OMG IDL
identifiers and should not end with an asterisk. The property name must be allocated
using the CORBA::string_alloc method. Ownership of this parameter transfers to the
ContextList. A system exception is raised if the input property name is null.

Return values

None
ContextList::count

Overview Retrieves the number of elements in a context list.

Original class “CORBA::ContextList” on page 103

Intended Usage

The count method is used by a client program when querying the ContextList associated
with a DIl request. The count method returns the number of elements in a context list.

IDL Syntax

CORBA: : ULong count () ;
Input parameters

None

Return values
CORBA::ULong

The number of elements in the context list.
ContextList::item

Overview Retrieves the property name associated with an input
index.

Original class “CORBA::ContextList” on page 103

Exceptions “CORBA::SystemException” on page

Intended Usage

The item method is used by a client program when querying the ContextList associated with
a DIl request. The item method returns the property name associated with an input index.

IDL Syntax
const char * iten(CORBA: : ULong i ndex)

Input parameters
index

WebSphere Application Server CORBA support - Page 105

The index of the desired property name, starting at zero. A system exception is raised
if the input index is greater than or equal to the number of elements in the context list.

Return values
const char *

The property name associated with the input index. Ownership of the return value is
maintained by the ContextList; the return value must not be freed by the caller.

ContextList::remove

Overview

Deletes the property name associated with an input
index.

Original class

“CORBA::ContextList” on page 103

Exceptions

“CORBA::SystemException” on page

Intended Usage

The remove method is used by a client program when deleting an element of the context list
associated with a DIl request. The remove method deletes the property name associated
with an input index. The remaining property names are re-indexed.

IDL Syntax
CORBA: : St atus renove(CORBA: : ULong i ndex) ;

Input parameters

index

The index of the property hame to be deleted, starting at zero. A system exception is
raised if the input index is greater than or equal to the number of elements in the
context list.

Return values
CORBA::Status

A zero return code indicates the property name was successfully deleted.

CORBA module: CORBA Class

Overview Encompasses the interfaces and classes that make up
the CORBA-compliant ORB, the TypeCode library, and
the Interface Repository Framework.

File name corba.h

Nested interfaces and classes “AliasDef Interface” on page 54

“Any Class” on page 55

“ArrayDef Interface” on page 61

“AttributeDef Interface” on page 64

“BOA Class” on page 67

“ConstantDef Interface” on page 76

“Contained Interface” on page 79

“Container Interface” on page 85

“Context Class” on page 98

“ContextList Class” on page 103

“Current Class” on page 115

“BOA::Dynamiclmplementation Class” on page 75

WebSphere Application Server CORBA support - Page 106

“EnumDef Interface” on page 116

“Environment Class” on page 118

“Exception Class” on page 120

“ExceptionDef Interface” on page 121

“ExceptionList Class” on page 123

“IDLType Interface” on page 127

“ImplementationDef Interface” on page 128

“ImplRepository Class” on page 130

“InterfaceDef Interface” on page 132

“IRObject Interface” on page 138

“ModuleDef Interface” on page 140

“NamedValue Class” on page 141

“NVList Class” on page 144

“Object Class” on page 150

“OperationDef Interface” on page 160

“ORB Class” on page 167

“Policy Interface” on page 189

“PrimitiveDef Interface” on page 190

“Principal Interface” on page 191

“Repository Interface” on page 191

“Request Class” on page 195

“RequestSeq Class” on page 206

“SequenceDef Interface” on page 208

“ServerRequest Class” on page 211

“StringDef Interface” on page 215

“StructDef Interface” on page 216

“SystemException Class” on page 218

“TypeCode Class” on page 221

“TypedefDef Interface” on page 228

“UnionDef Interface” on page 229

“UnknownUserException Class” on page 232

“UserException Class” on page 234

“WstringDef Interface” on page 235

Supported methods

“CORBA::_boa” on page 109

“CORBA::is_nil” on page 109

“CORBA::ORB_init" on page 110

“CORBA:release” on page 111

“CORBA::string_alloc” on page 112

“CORBA::string_dup” on page 113

“CORBA::string_free” on page 113

WebSphere Application Server CORBA support - Page 107

“CORBA::wstring_alloc” on page 114

“CORBA::wstring_dup” on page 114

“CORBA::wstring_free” on page 115

Intended Usage

The intended use of the CORBA class is the same as that of the CORBA module; see
“CORBA module in Object Request Broker” on page 52 .

Types

typedef unsigned char Bool ean;
ypedef "unsi gned char Char;

pedef wchar_t WChar;

pedef unsigned char Cctet;

pedef short Short;

pedef unsi gned short UShort;

pedef |ong Long;

pedef unsigned | ong ULong;

pedef fl oaf t:

pedef doubl e Doubi e;

pedef char* String; .

pedef WChar _t* WBiring;

pedef void Voi d;

pedef ULong Status;

pedef ULong FI ags;,

Envi ronment * Environnment _ptr;
pedef Request* Request_ptr;
pedef ServerRequest* Server Request_ptr;
pedef Cl&ect* j ect_ptr;

BQOA* Bl
ORB*

type

pedef OA ptr;

pedef ORB ptr;

pedef Context* Context_ptr;

pedef ContextList* ContextList_ptr;

pedef Exception* Exception_ptr;

pedef ExceptionList* ceptionlist_ptr;

pedef NanedVal ue* NanmedVal ue_ptr;

pedef NVList* NVList ptr; .

pedef |npl ementati onDef* | npl enentati onDef _ptr;
pedef | nPI Reposi tory* | npl Repository_ptr;

pedef InterfaceDef* I nterfaceDef_ptr;

pedef OperationDef* OperationDef _ptr;

pedef Principal* Principal _ptr;

pedef TypeCode* TypeCode pir;

pedef An(y_* Any_ptr;

type char* i d;

typedef UShort ServiceType;

typedef ULong ServiceOption;
type
stru

QO+ttt b ot b b b ok O e o b e
IKKKKKKKKKKKKKKKKK I KKK KKK K<<

def ULong ServiceDetail Type;
ct ServiceDetail {) .
Ser vi ceDet ai | T\ép:)e service_detail _type;
_I DL_SEQUENCE_Cctet service_detail;
voi d encodeQp (Request &r) const;
voi d decodeOp (Request &r);
voi d decodel nQut Op (Request &r);
; /1 struct ServiceDetail
struct rvicel nformation . .
| DL_SEQUENCE_CORBA _ULong_0 servi ce_opti ons;
SeqServi ceDetai | service_details;
void encodeQ (Request &r) const;
voi d decodeOp (Request ;
voi d decodel nQut Op (Request &r);
}; /1 struct Servicelnformation
enum Conpl eti onSt at us COVWPLETED YES, COWPLETED NO COVWPLETED MAYBE };
enum exception_type { NO EXCEPTI ON, USER EXCEPTION, SYSTEM EXCEPTI ON };
enum Pol i cyType_{ SecCl i ent | nvocat | onAccess, SecTarget | nvocati onAccess,
SecAppl i cati onAccess, SecClientlnvocationAudit, .
SecTar get | nvocat i onAudi t, SecA;lj_pI i cationAudit, SecDel egation,
Secd i ent Secur el nvocati on, SecTarget Securel nvocation,
SecNonRepudi ati on, SecConstruction
Pol i cyType_for ce_l ong=(| ong) Ox7fff teff };

Constants
static const int ARG IN

static const int ARG OUT;
static const int ARG | NOUT;
static const int | N COPY VALUE;
static const int DEPENDENT LI ST;
static const int ARG FLAGS;
static const int OBJECT_NL;
static const int OUT LIST MEMORY;
static const int | NV TERM ON ERR
static const int RESP_NO WAIT;
static const int | NV _NO RESPONSE;
static const int CIX_RESTRI CT_SCOPE;
static const int CTX_DELETE_DESCENDENTS;
const static TypeCode_ptr _tc_null;
const static TypeCode_ptr _tc_void;
const static TypeCode_ptr _tc_short;
const static TypeCode_ptr _tc_long;
const static TypeCode_ptr _tc_ushort;
const static TypeCode_ptr _tc_ulong;
const static TypeCode_ptr _tc_floaf;
const static TypeCode_ptr _tc_double
const static TypeCode_ptr _tc_bool ean;

WebSphere Application Server CORBA support - Page 108

const static TypeCode_ptr _tc_char;

const static TypeCode_ptr _tc_wchar;

const static TypeCode_ptr _tc_octet;

const static TypeCode_ptr _tc_any;

const static TypeCode_ptr _tc_TypeCode

const static TypeCode_ptr _tc_Princi pal

const static TypeCode_ptr _tc_Object;

const static TypeCode_ptr _tc_string;

const static TypeCode_ptr _tc_wstring;

const static TypeCode_ptr _tc_l ongl ong

const static TypeCode_ptr _tc_ul ongl ong

const static TypeCode_ptr _tc_CORBA NanedVal ue; o

const static TypeCode_ptr _tc_CORBA I nterfaceDescription;

const static TypeCode_ptr _tc_CORBA OperationDescription;

const static TypeCode_ptr _tc_CORBA_AttributeDescription;

const static TypeCode_ptr _tc_CORBA Par anet er Description;

const static TypeCode_ptr _tc_CORBA_Mddul eDescri ption;

const static TypeCode_ptr _tc_CORBA ConstantDescri ption;

const static TypeCode_ptr _t C_mBA_EXCEBEgl onDescri ption;

const static TypeCode_ptr _tc_CORBA_TypeDescription; =

const static TypeCode ptr “tc_CORBA_FulllnterfaceDescription;

static const ServiceType Security;

static const ServiceQption Securitylevel 1;

static const ServiceQOption SecuritylLevel 2;

static const ServiceQOption NonRepudi ation; .

static const ServiceQption SecurityORBServi ceReady;

static const ServiceQOption SecurityServiceReady;

static const ServiceQOption Repl aceORBServices;’

static const ServiceOption ReplaceSecurityServices; =

static const ServiceQOption StandardSecurelnteroperability;

static const ServiceQOption DCESecurelnteroperability;

static const ServiceDetail Type SecurityMechani snilype;

static const ServiceDetail Type SecurityAttribute;
CORBA:: _boa

Overview

Returns a pointer to the BOA object within a server.

Original class

“CORBA” on page 106

Intended Usage

Implementations of IDL interfaces, running in a server process, can use this method to
obtain a BOA_ptr to the BOA object residing in the server. In the IBM implementation,
_boa() is a static member function in the CORBA class, but CORBA specifies that , to be
ORB-portable, applications should not assume where _boa() is defined, only that it is
available within the implementation of the IDL interface. The return value should be released
using CORBA::release(BOA_ptr).

IDL Syntax
static BOA ptr _boa();
Input parameters

None

Return values
CORBA::BOA_ptr

A pointer to the BOA object residing in the server. The return value should be released
using CORBA::release(BOA_ptr).

Example

See the example for the “CORBA::is_nil” on page 10fethod.
CORBA::is_nil
Overview Indicates whether the input object pointer represents a

nil object.

Original class

“CORBA" on page 106

Intended Usage

This method is intended to be used by client and server applications to determine whether
an object pointer is nil. This test should be used to verify the validity of the object prior to
invoking any methods on it. This method has different signatures for different types of
objects.

WebSphere Application Server CORBA support - Page 109

IDL Syntax

static Bool ean is_nil(Any ptr p);

static Boolean iS_n BOA ptr p

static Boolean is_n Context LI st _ptr p);

static Bool ean is_n Cont ext _ptr p ;

static Boolean is_nil(Current_ptr ;

static Boolean is_n Envi ronrrent P r p);

static Bool ean is_n ExceptionLis ptr p)

static Boolean is_n Exception_ptr

static Bool ean is_n NanedVaI ue - ptr pj

static Bool ean is_n NV p

static Boolean is_n {J

static Boolean is_n Cb] ect r P

static Boolean is_n Princi p r p);

static Boolean is_n Reques {J

static Bool ean is_n Server Réques tr p);

static Boolean is_n TypeCode_ptr 5)
Input parameters

p
The object pointer to be tested. This pointer can be NULL.

Return values

CORBA::Boolean

Returns "0" or "1". If "0" is returned, the input object pointer is valid. If"1" is returned,
the input object pointer refers to a nil object.

Example

[* The following is a Ct+ exanple */
#i nclude "corba. h"

/* Retrieve the EOI nter in BOA object */

A: 1 BOA p
BOA = (IRBA oa(g
* Test if the pointer refers to a nil obj ect */
CCRBA Bool ean
boo CORBA:: i s nll(pBO‘-\)
if (bool == TRUE)

* pBOA refers to a nil object, return or generate exception */

}
el se

* proceed, using pBOA */

CORBA::ORB_init

Overview

Initializes the ORB, if necessary, and returns a pointer
to it.

Original class

“CORBA" on page 106

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by client or server applications to both initialize the ORB
and obtain a pointer to it. This method can be called multiple times without adverse effect.
The return value should be released using CORBA::release(ORB_ptr).

Initialization of data structures used for code-set translation between clients and servers is
not done until ORB _init() is called, so that the application has an opportunity to first initialize
its locale (for instance, using the XPG4 setlocale() function). Therefore, if a client or server
process is configured to communicate with another process using a different character code
set, or is configured to use ISO-Latin 1 as the transmission code set for remote messages,
the application should initialize its locale (for example, using setlocale()), then call
ORB_init(), prior to using the ORB or making remote method invocations.

Note: For workstation implementations, be sure to specify DSOMusing the parameter argv
or orb_identifier as described below.

IDL Syntax

typedef char* ORBi d;

WebSphere Application Server CORBA support - Page 110

static ORB_ptr ORB_init (int& argc, char** argv, ORBid orb_identifier);
Input parameters
argc
The number of strings in the argv array of strings. This is typically the argc parameter
passed in to the main() function of the application.

argv

An array of strings, whose size is indicated by the argc parameter. This is typically the
argv parameter passed in to the main() function of the application.

Note: For workstation impelmentation, if one of the strings in argv matches - ORBi d
" DSOM', then ORB initialization is performed, the matching string is consumed and
argc is decremented (the remaining strings in argv may be reordered as part of
consuming the - ORBi d " DSOM' string). If argv is NULL or contains no string that
matches - ORBi d " DSOM', then the ORB is initialized only if the orb_identifier
parameter is " DSOM' .

orb_identifier
A string that indicates which ORB to initialize.

Note: For workstation implementation, if no string in the argv parameter matches
-ORBi d " DSOM', the ORB is initialized only if the orb_identifier parameter is DSOM

Return values
CORBA::ORB_ptr

A pointer to the ORB object. The return result should be released using
CORBA::release(ORB_ptr).

Example

/* The following is a Ct+ exanple */
#i ncl ude "corba. h"

int mai n(int argc, char *argv[])

char * orbid . . o

[*tlnltlalolze orbid. For CB workstation initialize to "DSOM */
int rc = 0;

/* Initialize the ORB and obtain a pointer to it */
CORBA: : ORB_ptr p = CORBA:: ORB_init(argc, argv, orbid);

/* use p in the code */

return rc:

CORBA::release

Overview

Releases resources associated with an object or
pseudo-object reference.

Original class

“CORBA” on page 106

Intended Usage

This method is intended to be used by client and server applications to release resources
associated with object (or pseudo-object) references. CORBA::release() should be used
regardless of whether the object is local or remote. A release does not necessarily perform
a delete operation, and in general the delete operator should not be used for CORBA
objects and pseudo-objects

When CORBA::release() is performed on a proxy to a remote implementation, the release()
method only releases resources associated with the proxy; the remote implementation
object is neither affected nor notified. When all resources associated with the proxy object
are released, as determined by a reference count, the proxy object is automatically
destroyed (but the remote object is unaffected). Likewise, when all local references to a
local object are released, the object is automatically destroyed, regardless of how many
remote (proxy) references to the object exist.

WebSphere Application Server CORBA support - Page 111

Managed objects are not destroyed when all their local references are released; instead,
they are passivated and removed from memory when the Instance Manager determines the
in-memory copy of the managed object is no longer needed.

The CORBA::release() method has different signatures for different types of objects and
pseudo-objects.

See also the “CORBA::Object::_duplicate() method” on page 153which is used to increase
the reference count of an object reference. The _narrow() methods defined by the C++
bindings also do an implicit CORBA::Object::_duplicate().

IDL Syntax

static void rel ease(BOA F E
st at rel ease(Cont ext Li st _ptr p);

c d
static void rel ease(Context_ptr—p
static void rel ease(Current _ptr p);
static void rel ease(Environment_ptr p);
static void rel ease(ExceptionList_ptr p);
static void rel ease(Exception_ptr p);
static void rel ease(NamedVal ue _ptr p)
st at cvodreleaseNthr p
static void rel ease P
static void rel ease ij ect r P
static void rel ease(Princi Pal _ptr p);
static void rel ease(Reques
static vo g

c

rel ease ServerF@quesP S)tr p);

st at rel ease(TypeCode_ptr

Input parameters
p
The object reference to be released.

Return values
None.
Example

[* The following is a C++ exanple */
#i nclude "corba. h"
#i ncl ude <string. h>

i nt mai n(int argc, char *argv[])

CORBA: : Obj ect _ptr obj Ptr;

string str;

] Construct the string */

CORBA: ptr op; /* assume op is initialized */
/* Make strlng to object */

obj Ptr = op->String_to Obj ect(str);

/*" Proceed with objPtr

CORBA: : strlngfreegtstrlng),
CORBA: : rel ease(obj Ptr);

CORBA: strlng alloc

Overview

Allocates storage for a string.

Original class

“CORBA" on page 106

Intended Usage

This method is intended to be used by client and server applications to dynamically allocate
storage for data of type CORBA::String. The returned storage should subsequently be freed
using CORBA::string_free(). Strings can also be copied using CORBA::string_dup().

Strings to be passed on remote method invocations or whose ownership is to be transferred
by one library to another should be allocated using CORBA::string_alloc() (or
CORBA::string_dup()) rather than the C++ new[] operator. This insures that string memory
is deleted using the same C++ run time that originally allocated it.

IDL Syntax

static char* string_all oc(CORBA: : ULong | en);

WebSphere Application Server CORBA support - Page 112

Input parameters
len

The size of the string whose storage is to be allocated. An additional byte is also
allocated for the terminating NULL character.

Return values
char*

The uninitialized string storage. This storage should later be freed using
CORBA::string_free(). NULL is returned if the storage cannot be allocated.

Example

[* The following is a C++ exanple */
#i ncl ude "corba. h"

1* AIIocate 8 es for string buf */
char * COR% :string_al Poc(8)'
/* Strln copy buf */

char* buf_dup = CORBA: : strlng dup(buf);
/* Use buf and buf_dup *

/* free buf and buf_dup */
CORBA: : string_f reeEBuf
CORBA: : st ri ng_free(buf dup);

CORBA::string_dup

Overview

Copies a string.

Original class

“CORBA” on page 106

Intended Usage

This method is intended to be used by client and server applications to duplicate (copy) data
of type CORBA::String. The resulting string should be subsequently freed using
CORBA::string_free(). If the input value is NULL, the return value will be NULL.

Strings to be passed on remote method invocations or whose ownership is to be transferred
from one library to another should be allocated using CORBA::string_alloc() or
CORBA::string_dup() rather than the C++ new][] operator. This insures that string memory is
deleted using the same C++ run time that originally allocated it.

IDL Syntax

static char* string_dup(const char* str);

Input parameters
str

The NULL-terminated string to be copied.
Return values
char*

A copy of the input string. This storage should be subsequently freed using
CORBA::string_free() rather than the C++ delete[] operator. NULL is returned if the
storage cannot be allocated.

Example
See the example for the “CORBA::string_alloc” on page 112 method.

CORBA::string_free

Overview

Frees a string allocated by CORBA::string_alloc() or
CORBA::string_dup().

Original class

“CORBA” on page 106

Intended Usage
This method is intended to be used by client and server applications to release storage

WebSphere Application Server CORBA support - Page 113

originally allocated using CORBA::string_alloc() or CORBA::string_dup().
IDL Syntax

static void string_free(char* str);

Input parameters
str

The string to be freed. If this parameter is NULL, the method has no effect.
Return values

None.

Example

See the example for the “CORBA::string_alloc” on page 112 method.

CORBA::wstring_alloc

Overview

Allocates storage for a string.

Original class

“CORBA” on page 106

Intended Usage

This method is intended to be used by client and server applications to dynamically allocate
storage for data of type CORBA::String. The returned storage should subsequently be freed
using CORBA::wstring_free(). Strings can also be copied using CORBA::wstring_dup().

WStrings to be passed on remote method invocations or whose ownership is to be
transferred from one library to another should be allocated using this method (or
CORBA::wstring_dup()) rather than the C++ new][] operator. This insures that string
memory is deleted using the same C++ run time that originally allocated it.

IDL Syntax

static whar_t* wstring_alloc(CORBA: : ULong |en);

Input parameters
len

The size of the string whose storage is to be allocated.

Return values
wchar_t*

The uninitialized wstring storage. This storage should later be freed using
CORBA::wstring_free(). NULL is returned if the storage cannot be allocated.

Example

/* The following is a Ct+ exanple */
#i ncl ude "corba. h"

/* Alocate 8 wchars for string buf */
wchar _t* buf = CORBA :wstring_alloc(8);

/* String copy buf */ .

wchar _t* buf_duB = CORBA: : wstring_dup(buf);
/* Use buf and buf_dup */

/* Free buf and buf duP */
CORBA: : wstring_free(buf);
CORBA: : wstring_free(buf_dup);

CORBA::wstring_dup

Overview

Copies a WString.

Original class

“CORBA” on page 106

Intended Usage

This method is intended to be used by client and server applications to duplicate (copy) data

WebSphere Application Server CORBA support - Page 114

of type CORBA::WString. The resulting string should be subsequently freed using
CORBA::wstring_free(). If the input value is NULL, the return value is NULL.

WStrings to be passed on remote method invocations or whose ownership is to be
transferred from one library to another should be allocated using this method or
CORBA::wstring_alloc() rather than the C++ new[] operator. This ensures that string
memory is deleted using the same C++ run time that originally allocated it.

IDL Syntax

static wchar_t* * wstring_dup(const wchar_t* * str);

Input parameters
str

The NULL-terminated WString to be copied.
Return values
wchar_t*

A copy of the input WString. This storage should be subsequently freed using
CORBA::wstring_free() rather than the C++ delete[] operator. NULL is returned if the
storage cannot be allocated.

Example
See the example for the “CORBA::wstring_alloc” on page 114 method.

CORBA::wstring_free

Overview

Frees a WString allocated by CORBA::wstring_alloc()
or CORBA::wstring_dup().

Original class

“CORBA” on page 106

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by client and server applications to release storage
originally allocated using CORBA::wstring_alloc() or CORBA::wstring_dup().

IDL Syntax

static void wstring_free (wchar_t * str);

Input parameters
str

The WString to be freed. If this parameter is NULL, the method has no effect.
Return values

None.

Example

See the example for the “CORBA::wstring_alloc” on page 114 method.

CORBA module: Current Class

Overview Describes the current execution context.
File name principl.h
Supported methods “Current::_duplicate” on page 116

“Current::_nil” on page 116

Intended Usage

WebSphere Application Server CORBA support - Page 115

This abstract base class is intended to be subclassed by various object services, such as
the Security Service and the Object Transaction Service. Before a Current object can be

used, it must be narrowed to the appropriate subtype. Current objects are obtained using
the ORB::resolve_initial_references method.

Current objects should be released using the CORBA::release(Current_ptr) method rather
than the C++ delete operator.

Current::_duplicate

Overview

Duplicates a Current object.

Original class

“CORBA::Current Class” on page 115

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to a Current object. Both the original and the duplicate reference should subsequently be
released using CORBA::release(Current_ptr).

IDL Syntax
static CORBA: :Current_ptr _duplicate (CORBA: :Current_ptr p);
Input parameters
p
The Current object to be duplicated. The reference can be nil, in which case the return
value will also be nil.

Return values

CORBA::Current_ptr

The new Current object reference. This value should subsequently be released using
CORBA::release(Current_ptr).

Current::_nil

Overview

Returns a nil CORBA::Current reference.

Original class

“CORBA::Current Class” on page 115

Intended Usage

This method is intended to be used by client and server applications to create a nil Current
reference.

IDL Syntax
static CORBA::Current_ptr _nil ();
Input parameters
p
The Current object to be duplicated. The reference can be nil, in which case the return
value will also be nil.

Return values
CORBA::Current_ptr

A nil Current reference.

CORBA module: EnumDef Interface

Overview

| Used within the Interface Repository to represent an

WebSphere Application Server CORBA support - Page 116

OMG IDL enumeration definition.
File name somir.idl
Local-only True
Ancestor interfaces “TypedefDef Interface” on page 228
Exceptions “CORBA::SystemException” on page
Supported operations “EnumDef::members” on page 117
“IDLType::type” on page 127

EnumDef::

Intended Usage

An instance of an EnumDef object is used within the Interface Repository to represent an
OMG IDL enumeration definition. An instance of an EnumDef object can be created using
the create_enum operation of the Container interface.

IDL syntax
nmodul e CORBA

ty{)edef seguence Enum\enber Seq;
i nterface EnunDef: Typedef Def

attribute EnumVenber Seq nenbers;
Ik
members

Overview

The members read and write operations provide for the
access and update of the list of elements of an OMG
IDL enumeration definition (EnumDef) in the Interface
Repository.

Original interface

“CORBA module: EnumDef Interface” on page 116

Exceptions

“CORBA::SystemException” on page

Intended Usage

The members attribute contains a distinct name for each possible value of the enumeration.
The members read operation provides access to a copy of the contents of this enumeration
member list, and the members write operation provides the ability to update the members
attribute.

IDL Syntax
attri bute EnumMenber Seq nenbers;

Read operations
Input parameters

None

Return values
CORBA: : Enumivenber Seq *

The returned pointer references a sequence that is representative of the enumeration
members. The memory is owned by the caller and can be released by invoking delete.

Write operations
Input parameters

CORBA: : Enunmivenber Seq & nenbers

The members parameter provides the list of enumeration members with which to
update the EnumbDef.

Return values

WebSphere Application Server CORBA support - Page 117

None

Example

Il C++ .
[/ _assume that 'thi
CORBA: : EnunDef * th L
/| _establish and in alize 'seq_update'
CORBA: : EnunMerrberSeg seq_updat e;
seq_update. |l ength (3);
seq_update[0

s_enumt has already been initialized
!ts enum
it

A::string_dup ("enumerator_0");
seq_update[1 CORBA: : string_dup ("enunerator_1");
seq_updat e[2 CORBA: : string_dup ("enumerator_2"); .
/] change the 'menbers' information in the enuneration
this_enum > nenbers (seq_update); .

// _read the 'menbers” information fromthe enuneration
CORBA: : EnunmMenber Seq * returned_seq;

returned_seq = this_enum> nmenbers ();

CORBA module: Environment Class

Overview Holds an Exception.
File name environm.h
Supported methods “Environment::_duplicate” on page 118

“Environment::_nil” on page 118

“Environment::clear” on page 119

“Environment::exception” on page 119

Intended Usage

The Environment class holds a single Exception and is used for error handling in those
cases where catch/throw exception handling cannot be used. For example, Dynamic
Invocation Interface uses an Environment to report errors back to the client. The
ORB::create_environment method is called to create an empty Environment. The
Environment class provides methods to get and set an Exception, as well as clear an
Exception. For additional information, see the Exception and Request class descriptions.

Environment:: _duplicate

Overview Duplicates an Environment object.

Original class “CORBA::Environment” on page 118

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to an Environment object. Both the original and the duplicate reference should subsequently
be released using CORBA::release(Environment_ptr).

IDL Syntax

static CORBA: : Environnment_ptr _duplicate (CORBA: :Environnent_ptr p);
Input parameters
p

The Environment object to be duplicated. The reference can be nil, in which case the
return value will also be nil.

Return values
CORBA::Environment_ptr

The new Environment object reference. This value should subsequently be released
using CORBA::release(Environment_ptr).

Environment::_nil

WebSphere Application Server CORBA support - Page 118

Overview

Returns a nil CORBA::Environment reference.

Original class

“CORBA::Environment” on page 118

Intended Usage

This method is intended to be used by client and server applications to create a nil
Environment reference.

IDL Syntax

static CORBA::Environment_ptr _nil ();
Input parameters
None.

Return values
CORBA::Environment_ptr

A nil Environment reference.

Environment::clear

Overview

Deletes the Exception held by an Environment.

Original class

“CORBA::Environment” on page 118

Exceptions

“CORBA::SystemException” on page

Intended Usage
The clear method is used to delete the Exception, if any, held by an Environment.
IDL Syntax

void clear();

Input parameters
None.

Return values
None.

Environment::exception

Overview

Gets and sets an Exception.

Original class

“CORBA::Environment” on page 118

Intended Usage

The exception method is used to get and set the Exception held by an Environment. The
Exception returned by the get method continues to be owned by the Environment. Once the
Environment is destroyed, the Exception previously returned from the get method is invalid.
If the Environment does not hold an Exception, the get function returns a null pointer. The
set method assumes ownership of the input Exception.

IDL Syntax

voi d exception(CORBA: : Excepti on *new_exception);
CORBA: : Excepti on *exception() const;

Input parameters
new_exception

A pointer to the new Exception to be held in the Environment. It is valid to pass a null
pointer. Ownership of this parameter transfers to the Environment.

Return values

WebSphere Application Server CORBA support - Page 119

CORBA::Exception *

A pointer to the Exception currently held in the Environment, if any, or a null pointer.
Ownership of the return value is maintained by the Environment; the return value must
not be freed by the caller.

CORBA module: Exception Class

Overview Describes an exception condition that has occurred.
File name except.h
Supported methods “Exception::_duplicate” on page 120

“Exception::_nil” on page 120

“Exception::id” on page 121

Exception:

Intended Usage

This class is intended to be caught in the catch clause of a try/catch block that
encompasses remote method invocations or calls to ORB services. Typically Exception
instances will actually be instances of either the SystemException or UserException
subclass.

:_duplicate

Overview

Duplicates an Exception object.

Original class

“CORBA::Exception” on page 120

Exception:

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to an Exception object. Both the original and the duplicate reference should subsequently
be released using CORBA::release(Exception_ptr).

IDL Syntax
static CORBA: : Exception_ptr _duplicate (CORBA::Exception_ptr p);
Input parameters

p

The Exception object to be duplicated. The reference can be nil, in which case the
return value will also be nil.

Return values
CORBA::Exception_ptr

The new Exception object reference. This value should subsequently be released
using CORBA::release(Exception_ptr).

. nil

Overview

Returns a nil CORBA::Exception reference.

Original class

“CORBA::Exception” on page 120

Intended Usage

This method is intended to be used by client and server applications to create a nil
Exception reference.

IDL Syntax
static CORBA: : Exception_ptr _nil ();

WebSphere Application Server CORBA support - Page 120

Exception:

Input parameters
None.

Return values
CORBA::Exception_ptr

A nil Exception reference.

‘id

Overview

Indicates the runtime type of an Exception.

Original class

“CORBA::Exception” on page 120

Intended Usage

This method is intended to be used when an Exception is caught (in the catch clause of a
try/catch block), to determine the exact type of Exception that was thrown. For example, if a
CORBA::NO_MEMORY exception is thrown and caught as a generic CORBA::Exception,
the id() method can be invoked on the Exception, which will yield "CORBA::NO_MEMORY".

IDL Syntax

const char * id() const;

Input parameters
None.

Return values
const char *

The string name of the runtime type of the Exception object. The Exception object
retains ownership of this string and the caller should not attempt to free it.

CORBA module: ExceptionDef Interface

Overview Used by the Interface Repository to represent an
exception definition.

File name somir.idl

Local-only True

Ancestor interfaces “Contained Interface” on page 79

Exceptions “CORBA::SystemException” on page

Supported operations “ExceptionDef::describe” on page 122

“ExceptionDef::members” on page 122

“IDLType::type” on page 127

Intended Usage

The ExceptionDef object is used to represent an exception definition. An ExceptionDef
object may be created in the Interface Repository database and an associated memory
image of the object by calling the create_exception operation of the Container interface. The
create_exception parameters include the unique Repositoryld (CORBA::Repositoryld), the
name (CORBA::Identifier), the version (CORBA::VersionSpec), and a sequence indicating
the exception members (CORBA::StructMemberSeq). The sequence may have zero
elements to allow the ExceptionDef to have no members.

IDL syntax
nodul e CORBA
i{nt erface ExeptionDef: Cont ai ned

WebSphere Application Server CORBA support - Page 121

readonl %/attri but e I‘gpeCode type;
attribute Struct Menber Seq nenbvers;

{sfruct Excepti onDescri ption

| dentifier name;
Repositoryld id; .
Reposi toryld defined_in;
Ver si onSpec versi on;

} TypeCode type;

}
ExceptionDef::describe

Overview

Returns a structure containing information about a
CORBA::ExceptionDef Interface Repository object.

Original interface

“CORBA module: ExceptionDef Interface” on page 121

Exceptions

“CORBA::SystemException” on page

Intended Usage

The inherited describe operation returns a structure (CORBA::Contained::Description) that
contains information about a CORBA::ExceptionDef Interface Repository object. The
CORBA::Contained::Description structure has two fields: kind (CORBA::DefinitionKind data
type), and value (CORBA::Any data type).

The kind of definition described by the returned structure is provided using the kind field,
and the value field is a CORBA::Any that contains the description that is specific to the kind
of object described. When the describe operation is invoked on an exception
(CORBA::ExceptionDef) object, the kind field is equal to CORBA::dk_Exception and the
value field contains the CORBA::ExceptionDescription structure.

IDL Syntax
struct ExceptionDescription

| dentifier name;
Repositoryld id; .
Reposi toryld defined_in;
Ver si onSpec versi on;
TypeCode type;

struct Descri ption

DefinitionKind kind;
any val ue;

Description describe ();

Input parameters
None.

Return values
Description *

The returned value is a pointer to a CORBA::Contained::Description structure. The
memory is owned by the caller and can be removed by invoking delete.

Example

Il C++
// _assume that 'this_exception' has already been initialized
CORBA: : Excepti onDef ¥ this_exception;
I/ retrieve a description of the exception o
A: : ExceptionDef::Description * returned_description;
returned_description = this_exception-> descCribe (); .
Il retrieve the exception description fromthe returned description
I/ structure | o . .
CORBA: : Except i onDescription * exception_description;
exception_description = = o
(CORBA: ExceptionDescription *) returned_description val ue.value ();

ExceptionDef::members

Overview

The members read and write operations provide for the

WebSphere Application Server CORBA support - Page 122

Interface Repository.

access and update of the list of elements of an OMG
IDL exception definition (CORBA::ExceptionDef) in the

Original interface “CORBA module: ExceptionDef Interface” on page 121

Exceptions “CORBA::SystemException” on page

Intended Usage

The members attribute contains a description of each exception member. The members
read and write operations allow the access and update of the members attribute.

IDL Syntax

attribute Struct Menber Seq nenbers;

Read operations
Input parameters

None.
Return values
CORBA: : Struct Menber Seq

The returned pointer references a sequence that is representative of the exception
members. The memory is owned by the caller and can be released by invoking delete.

Write operations
Input parameters

CORBA: : Struct Menber Seq & nenbers

The members parameter provides the list of exception members with which to update
the ExceptionDef. Setting the members attribute also updates the type attribute.

Return values
None.

Example

Il C++
/[assume 'this_exception_def', 'struct_1', and 'struct_2'
// _have already been initiali zed
CORBA: : ExceptionDef * this_exception_def;
CORBA: : StructDef * struct_T,;
CORBA: : Struct Def * struct_2;
/1 _establish and initialize the StructMenberSeq .
CORBA: : Struct MenberSeq seq_updat e;
seq_updat e. | engt h (2);

seq_updat e 0 . hame CO?BA Stri n%]:dup (" st uct _1");
seq_updat e[0] . t ype_ def = upllcalte (struct_1);
seq_updat e[1] . nane™ = OCRBA strl nt[;j__dup (Struct_2");

1] . type_ def = Ilcate (struct_2);

seq_u date gz dup
/] 'Set the nembers™ attrlbute of the Excef ti onDe
this exce tion_def-> nenbers (seq_update

// read the nenbers attrlbute |nforn"at|on fromthe ExceptionDef
CORBA: : Struct Menber Seq * returned_nenbers

returned_nenbers = thi's_exception_def-> nenbers 0);

CORBA module: ExceptionList Class

Overview Specifies the list of user-defined exceptions that can be

raised when a DIl request is executed.

File name excp_lst.h

Supported methods “ExceptionList:;_duplicate” on page 124

“ExceptionList::_nil” on page 124

“ExceptionList::add” on page 125

“ExceptionList::add_consume” on page 125

“ExceptionList::count” on page 125

WebSphere Application Server CORBA support - Page 123

“ExceptionList::item” on page 126

“ExceptionList::remove” on page 126

Intended Usage

When a client assembles a Dynamic Invocation Interface request, an ExceptionList is
optionally included. An ExceptionList specifies the list of TypeCodes for all user-defined
exceptions that can be raised when a request is executed. The ExceptionList class is used
to improve performance. When invoking a request without an ExceptionList, the ORB looks
up user-defined exception information in the Interface Repository. The
ORB::create_exception_list method is called to create an empty exception list. The
ExceptionList class provides methods to add and delete an exception, as well as query
information about an exception list. For additional information, see the Exception,
UserException, and Request class descriptions.

ExceptionList:: _duplicate

Overview

Duplicates an ExceptionList object.

Original class

“CORBA::ExceptionList” on page 123

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to an ExceptionList object. Both the original and the duplicate reference should
subsequently be released using CORBA::release(ExceptionList_ptr).

IDL Syntax

static CORBA:: ExceptionList_ptr _duplicate (CORBA: : ExceptionList_ptr p);
Input parameters
p

The ExceptionList object to be duplicated. The reference can be nil, in which case the
return value will also be nil.

Return values
CORBA::ExceptionList_ptr

The new ExceptionList object reference. This value should subsequently be released
using CORBA::release(ExceptionList_ptr).

ExceptionList::_nil

Overview

Returns a nil CORBA::ExceptionList reference.

Original class

“CORBA::ExceptionList” on page 123

Intended Usage

This method is intended to be used by client and server applications to create a nil
ExceptionList reference.

IDL Syntax
stati c CORBA:: ExceptionList_ptr _nil ();
Input parameters

None.

Return values
CORBA::ExceptionList_ptr

A nil ExceptionList reference.

WebSphere Application Server CORBA support - Page 124

ExceptionList::add

Overview

Adds a single user-defined exception to an exception
list.

Original class

“CORBA::ExceptionList” on page 123

Exceptions

“CORBA::SystemException” on page

Intended Usage

The add method is used by a client program to populate the ExceptionList associated with a
DIl request. The add method adds a single user-defined exception to an exception list. The
add and add_consume methods perform the same task but differ in memory management.
The add method does not assume ownership of the input TypeCode; the add_consume
method does.

IDL Syntax
voi d add(CORBA: : TypeCode_ptr tc);

Input parameters
tc

A pointer to the TypeCode for the user-defined exception. A system exception is raised
if the input pointer is null.

Return values
None.

ExceptionList::add_consume

Overview

Adds a single user-defined exception to an exception
list.

Original class

“CORBA::ExceptionList” on page 123

Exceptions

“CORBA::SystemException” on page

Intended Usage

The add_consume method is used by a client program to populate the ExceptionList
associated with a DIl request. The add_consume method adds a single user-defined
exception to an exception list. The add and add_consume methods perform the same task
but differ in memory management. The add_consume method assumes ownership of the
input TypeCode; the add method does not. The caller must not access the object referred to
by the input parameter after it has been passed in.

IDL Syntax
voi d add_consunme(CORBA: : TypeCode_ptr tc);

Input parameters
tc

A pointer to the TypeCode for the user-defined exception. The input TypeCode must
either be retrieved from the Interface Repository or allocated using the
ORB::create_exception_tc method. Ownership of this parameter transfers to the
ExceptionList. A system exception is raised if the input pointer to the TypeCode is null.

Return values

None.

ExceptionList::count

Overview

Retrieves the number of elements in an exception list.

WebSphere Application Server CORBA support - Page 125

Original class

“CORBA::ExceptionList” on page 123

Intended Usage

The count method is used by a client program when querying the ExceptionList associated
with a DIl request. The count method returns the number of elements in an exception list.

IDL Syntax

CORBA: : ULong count () ;
Input parameters

None.

Return values
CORBA::ULong

The number of elements in the exception list.

ExceptionList::item

Overview

Retrieves the user-defined exception associated with
an input index.

Original class

“CORBA::ExceptionList” on page 123

Exceptions

“CORBA::SystemException” on page

Intended Usage

The item method is used by a client program when querying the ExceptionList associated
with a DIl request. The item method returns the user-defined exception associated with an
input index.

IDL Syntax
CORBA: : TypeCode_ptr item CORBA: : ULong i ndex)

Input parameters
index

The index of the desired user-defined exception, starting at zero. A system exception
is raised if the input index is greater than or equal to the number of elements in the
exception list.

Return values
CORBA::TypeCode_ptr

A pointer to the TypeCode for the user-defined exception. Ownership of the return
value is maintained by the ExceptionList; the return value must not be freed by the
caller.

ExceptionList::remove

Overview

Deletes the user-defined exception associated with an
input index.

Original class

“CORBA::ExceptionList” on page 123

Exceptions

“CORBA::SystemEXxception” on page

Intended Usage

The remove method is used by a client program when deleting an element of the
ExceptionList associated with a DIl request. The remove method deletes the user-defined
exception associated with an input index. The remaining exceptions are re-indexed.

IDL Syntax

WebSphere Application Server CORBA support - Page 126

CORBA: : St at us renpve(CORBA: : ULong i ndex) ;
Input parameters
index
The index of the user-defined exception to be deleted, starting at zero. A system
exception is raised if the input index is greater than or equal to the number of elements
in the exception list.
Return values
CORBA::Status
A zero return code indicates the user-defined exception was successfully deleted.

CORBA module: IDLType Interface

Overview An abstract interface inherited by all Interface
Repository objects that represent OMG IDL types. It
provides access to the TypeCode that describes the
type. The IDL Type is used in defining other interfaces
whenever definitions of IDL types must be referenced.

File name somir.idl

Local-only True

Ancestor interfaces “IRObject Interface” on page 138

Exceptions “CORBA::SystemException” on page

Supported operations “ IDLType::type” on page 127

Intended Usage

The IDLType interface is not itself instantiated as a means of accessing the Interface
Repository. As an ancestor to Interface Repository objects that represent OMG IDL types, it
provides a specific operation as noted below. Those Interface Repository objects that inherit
(directly or indirectly) the operation defined in IDLType include: StructDef, UnionDef,
EnumDef, AliasDef, PrimitiveDef, StringDef, WstringDef, SequenceDef, ArrayDef, and
InterfaceDef.

IDL syntax
nodul e CORBA
interface | DLType: | RObj ect
~ readonly attribute TypeCode type;

b

IDLType::type

Overview

The type operation retrieves a TypeCode pointer
representative of specific Interface Repository objects.

Original interface

“CORBA module: IDLType Interface” on page 127

Exceptions

“CORBA::SystemException” on page

Intended Usage

The type attribute (a TypeCode *) describes all objects derived from IDLType. The type read
operation retrieves a pointer to a copy of the type attribute. Object types that inherit from
IDLType and therefore support the type read operation are ArrayDef, SequenceDef,
StringDef, WstringDef, PrimitiveDef, UnionDef, StructDef, AliasDef, EnumDef, and
InterfaceDef.

There are other Interface Repository objects that do not inherit from IDLType that also have

WebSphere Application Server CORBA support - Page 127

a type method that returns a TypeCode * representative of the specific object. The Interface
Repository interfaces that have their own type method include: ConstantDef, ExceptionDef,
and AttributeDef.

IDL Syntax

readonly attribute TypeCode type;
Input parameters

None.

Return values
TypeCode_ptr

The return value is a pointer to a TypeCode that describes the object. The memory
associated with the returned TypeCode pointer is owned by the caller and can be
released by calling CORBA::release.

Example

Il C++
// _assume that 'union_1'" has already been initialized
CORBA: : Uni onDef * union_1; . . .
/] retrieve the TypeCode I nfornation which represents 'union_1' . . .
CORBA: : TypeCode * typecode_ptr;
typecode_ptr = union_1-> type();

CORBA module: ImplementationDef Interface

Overview Describes a logical server as registered in the
Implementation Repository.

File name impldef.h

Supported operations “ImplementationDef::get_alias” on page 129

“ImplementationDef::get_id” on page 129

Intended Usage

CORBA::ImplementationDef objects represent logical server applications. They are stored
persistently in the Implementation Repository, represented programmatically by the
CORBA::ImplRepository class. ImplementationDef objects are stored and updated in the
Implementation Repository as servers are registered, unregistered, or changed. Typically
this administration of the Implementation Repository is done using the product tools, but it
can also be done programmatically (using the ImplementationDef and ImplRepository
classes).

The CORBA::ImplementationDef class is used in the following ways:

» By the somorbd daemon, to find and activate servers;

e By server applications, to initialize themselves (the BOA::impl_is_ready and
BOA::deactivate_impl methods require an ImplementationDef parameter);

» By applications written to programmatically query or update the contents of the
Implementation Repository (typically this is done using the product tools);

» By client applications, to discover information about servers with which they are
communicating, using the CORBA::Object::_get_implementation method.

ImplementationDef objects contain the following data to describe registered servers:

« Server ID (a UUID that uniquely identifies the server throughout a network and is used
as a key into the Implementation Repository),

» Server alias (a user-friendly, administrator-defined name that uniquely identifies the

WebSphere Application Server CORBA support - Page 128

server on a given machine, but not necessarily throughout the network, and can be used
as a key into the Implementation Repository),

» Server program name (the executable that implements the logical server, which the
somorbd daemon starts to activate the server on demand; this need not be a
fully-qualified pathname, and needn't be unique to a particular server),

» The communication protocol(s) that the server supports (e.g., SOMD_TCPIP,
SOMD_IPC),

» The key to the server's configuration data, if different from the somorbd daemon's (set by
the somorbd daemon before starting the server),

» Flag bits, defined and used by the ORB.

In addition, applications can store arbitrary name/value pairs in ImplementationDef objects;
these values can be used by the application to control server behavior.

Types

¥pedef sequence<naneVal ue> seq_naneVal ue;
%/pedef sequence<str| ng> seq_sftring;

ruct naneVal ue {

string nane;

_string val ue;

ImplementatlonDef::get_alias

Overview

Retrieves the user-defined alias of the logical server
represented by an ImplementationDef.

Original interface

“CORBA:: ImplementationDef” on page 128

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by an application to retrieve the user-friendly,
administrator-assigned name (alias) of a logical server registered in the Implementation
Repository.

Note: This is an IBM-defined operation, which extends the CORBA 2.1 specifications
provided by the OMG.

IDL Syntax

string get_id();
Input parameters
None.
Return values
string

The alias of the logical server represented by the ImplementationDef. The caller
assumes ownership of the returned string, and should subsequently deallocate it using
the CORBA::string_free function.

ImplementationDef::get_id

Overview

Retrieves the ORB-assigned UUID of the logical server
represented by an ImplementationDef.

Original interface

“CORBA::ImplementationDef” on page 128

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by an application to retrieve the ORB-assigned UUID of

WebSphere Application Server CORBA support - Page 129

a logical server registered in the Implementation Repository. This id is unique throughout
the network and can be used as a key into the Implementation Repository.

Note: This is an IBM-defined operation, which extends the CORBA 2.1 specifications
provided by the OMG.

IDL Syntax

string get_id();
Input parameters
None.
Return values
string

The UUID (id) of the logical server represented by the ImplementationDef. The caller
assumes ownership of the returned string, and should subsequently deallocate it using
the CORBA::string_free function.

CORBA module: ImplRepository Class

Overview Represents a persistent data store of
ImplementationDef objects, each representing a logical
server that has been registered.

File name implrep

Supported methods “ImplRepository::find_impldef” on page 130

“ ImplRepository::find_impldef_by_alias” on page 131

Intended Usage

The ImplRepository class represents the Implementation Repository, a persistent data store
of ImplementationDef objects, each representing a logical server that has been registered.

The ImplRepository class is intended to be used by server applications, using the
find_impldef or find_impldef_by_alias method, to retrieve the ImplementationDef
representing that server application. Each server must retrieve its own ImplementationDef
object from the Implementation Repository (using the ImplRepository class), because the
ImplementationDef is a parameter required by the BOA::impl_is_ready method.

The other methods of the ImplRepository class are not typically used by client or server
applications, but can be used by an application to programmatically administer the
Implementation Repository. (Typically servers are registered and unregistered from the
Implementation Repository using the product tools, rather than programmatically by an
application.)

ImplRepository::find_impldef

Overview Retrieves an ImplementationDef from the
Implementation Repository, by server id.

Original class “CORBA::ImplRepository” on page 130

Exceptions “CORBA::SystemException” on page

Intended Usage

This method is used to retrieve an ImplementationDef object from the Implementation
Repository, using the server id as a key. This method (or the find_impldef_by alias method)

WebSphere Application Server CORBA support - Page 130

is intended to be used by a server application to retrieve its own ImplementationDef object
from the Implementation Repository; a server application then passes this
ImplementationDef object to the BOA::impl_is_ready and BOA::deactivate_impl methods.

A CORBA::SystemException is thrown if the Implementation Repository cannot be
accessed (for instance, due to a configuration error), if the input server id is NULL or is not
in the correct format, or if the specified server id cannot be found in the Implementation
Repository.

Note: This is an IBM-defined operation, which extends the CORBA 2.0 specifications
provided by the OMG.

IDL Syntax

CORBA: : | npl enent ati onDef * fi nd_i npl def (const char * Inplld);

Input parameters
Implid

The server id of the ImplementationDef to be retrieved. A CORBA::SystemException
will be thrown if this string is NULL or is not in the proper format of an Implementation
Repository UUID (as created by the ImplementationDef constructor).

Return values
CORBA::ImplementationDef*

The CORBA::ImplementationDef from the Implementation Repository whose id
matches the input. The caller assumes ownership of this object and must
subsequently delete it. (If passed to BOA::impl_is_ready, however, the
ImplementationDef object should not be deleted until after BOA::deactivate_impl has
subsequently been called and the server has quiesced, to insure that the BOA does
not subsequently refer to that object.) Each call to find_impldef returns a different
ImplementationDef object (although the different objects will be equivalent for
equivalent input to find_impldef).

ImplRepository::find_impldef_by alias

Overview

Retrieves an ImplementationDef from the
Implementation Repository, by server alias.

Original class

“CORBA::ImplRepository” on page 130

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is used to retrieve an ImplementationDef object from the Implementation
Repository, using the server alias as a key. This method (or the find_impldef method) is
intended to be used by a server application to retrieve its own ImplementationDef object
from the Implementation Repository; a server application then passes this
ImplementationDef object to the BOA::impl_is_ready and BOA::deactivate_impl methods.

A CORBA::SystemException is thrown if the Implementation Repository cannot be
accessed (for instance, due to a configuration error), if the input server alias is NULL, or if
the specified server alias cannot be found in the Implementation Repository.

Note: This is an IBM-defined operation, which extends the CORBA 2.1 specifications
provided by the OMG.

IDL Syntax

CORBA: : | npl enent ati onDef * find_i npl def (const char * Inpl Alias);

Input parameters
ImplAlias

WebSphere Application Server CORBA support - Page 131

The server alias of the ImplementationDef to be retrieved. A
CORBA.::SystemException will be thrown if this string is NULL.

Return values
CORBA::ImplementationDef*

The CORBA::ImplementationDef from the Implementation Repository whose alias
matches the input. The caller assumes ownership of this object and must
subsequently delete it. (If passed to BOA::impl_is_ready, however, the
ImplementationDef object should not be deleted until after BOA::deactivate_impl has
subsequently been called and the server has quiesced, to insure that the BOA does
not subsequently refer to that object.) Each call to find_impldef by alias returns a
different ImplementationDef object (although the different objects will be equivalent for
equivalent input to find_impldef_by_alias).

CORBA module: InterfaceDef Interface

Overview The InterfaceDef object represents an interface
definition in the Interface Repository.

File name somir.idl
Local-only True
Ancestor interfaces “Contained Interface” on page 79

“Container Interface” on page 85

“IDLType Interface” on page 127

Exceptions “CORBA::SystemException” on page

Supported operations “InterfaceDef::base_interfaces” on page 133

“InterfaceDef::create_attribute” on page 134

“InterfaceDef::create_operation” on page 135

“InterfaceDef::describe” on page 136

“InterfaceDef::describe_interface” on page 137

“InterfaceDef::is_a” on page 138

Intended Usage

The InterfaceDef object is used to represent an interface definition. An InterfaceDef object
may be created in the Interface Repository database and an associated memory image of
the object by calling the create_interface operation of the Container interface. The
create_interface parameters include the unique Repositoryld (CORBA::Repositoryld), the
name (CORBA::Identifier), the version (CORBA::VersionSpec), and a sequence indicating
the base interfaces from which the interface inherits.

IDL syntax
m)dul{e CORBA

interface InterfaceDef;

typedef sequence |nterfaceDefSeq;

typedef sequence ReBgS| toryl dSeq;

t ypedef sequence C? scripti o}nSeg‘;3

tyPedef sequence AttrDescription %0 .

I'n ?rface I'nt erfaceDef: Contai ner, nt ai ned, |DLType
/lread/wite interface .
attribute InterfaceDefSegbase_interfaces;
/lread interface .] .
bool ean is_a(in Repositoryld interface_id);

{struct Ful I I nfer f aceDescri ption

Identifier nane;
Repository Id id; .
Repositoryld defined_in;
Ver si onSpec ver si on;

WebSphere Application Server CORBA support - Page 132

q)Descrl pti onSegeoper ations;
AttrDescri Ftlon q attri but es;
Reposi t oryl dSeq base_i nt er f aces;
TypeCode type;

ul | ?nt erfaceDescription describe_interface();
/ write interface
AttributeDef create_attribute (in Repositoryld id,
in ldentifier nane,
in VerS| onSpec ver si on,
in |DLTy g X/g
. . in AttributeMbde node);
QOper ationDef create_operation (in Repo |toryld id,
n I dentifier name,
n VersionSpec version,
n
n
n
n
n

i
i
in |DLType result,

in Qperationhbde node,

I n ParDescri Bel onSeq par ans,

I n Excepti onDef Seq exceptl ons,
in ContextldSeq contexts);

} oo
struct InterfaceDescription

I dentifier name;
Repositoryld id;
Repositoryl D defl ned_i n;
Ver si onSpec ver si on;
) Reposi toryl d Segbase_i nt erf aces;

InterfaceDef::base_interfaces

Overview

The base_interface attribute is a list of all the interfaces
from which the current interface directly inherits. The
base_interface operations read/write the base_interface
attribute of the target interface.

Original interface

“InterfaceDef Interface” on page 132

Exceptions

“CORBA::SystemException” on page

Intended Usage
Both Read and Write methods are supported, with parameters given below.
IDL Syntax

attribute InterfaceDef Seq base_interfaces;

Read operations
Input parameters

None.
Return values
CORBA: : I nt er f aceDef Seq

A pointer is returned to a copy of the base_interfaces attribute. The memory
associated with the returned value is owned by the caller and may be released by
invoking CORBA::delete.

Write operations
Input parameters

CORBA: : I nt er f aceDef Seq

The sequence defines the new list of InterfaceDefs from which the target interface will
be changed to inherit.

Return values

None.
Example
/] C++ .
/[assume 'interface_1', jlnterface 99‘ and 'interface_100'
/1 _have already been initialized .
cInterfaceDef * interface_1;

CORBA: : | nt er f aceDef * interface_99;
CORBA: : I nterfaceDef * interface_100;
/1 _establish a new list for theTinterface 1 inheritance
CORBA: : | nt er f aceDef Seq new_base_i nterfaces;
new_ base interfaces.length™(2);~

WebSphere Application Server CORBA support - Page 133

new_base_interfaces[0] = CORBA::InterfaceDef:: _duplicate (interface_99);
new_base_interfaces[1] = CORBA:.:InterfaceDef:: _duplicate (interface_10 j ;
[/ change the base Interfaces for interface_1

interface_1-> base_interfaces (new_base_interfaces);

I/ retrieve the 'base interfaces' attribute

CORBA: : I nterfaceDef Seq * returned_base_interfaces;
returned_base_interfaces = interface_1-> base_interfaces ();

353

InterfaceDef::create_attribute

Overview

The create_attribute operation adds a new attribute
definition to an interface definition on which it is
invoked.

Original interface

“InterfaceDef Interface” on page 132

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_attribute operation adds a new CORBA::AttributeDef contained in the
CORBA::InterfaceDef on which it is invoked. A representation of the new
CORBA::AttributeDef object is created in the Interface Repository persistent database and a
pointer to the memory representation of the CORBA::AttributeDef object is returned to the
caller.

The id, name, version, typedef, and mode attributes are set as specified. The type attribute
is also set. The defined_in attribute is initialized to identify the containing
CORBA::InterfaceDef.

An error is returned if an object with the specified id already exists within this object's
CORBA::Repositoryld, or if an object with the specified name already exists within this
CORBA::InterfaceDef.

IDL Syntax

AttributeDef create_attribute (in Re,)osi toryld id,

n ldentifier name,
n VersionSpec version,
n | DLType
n

i
i
i e,

in Attri uteX/Bde node) ;

Input parameters
mode

Valid attribute mode values are CORBA::ATTR_NORMAL (read/write access) and
CORBA::ATTR_READONLY (read only access).

name

The name that will be associated with this CORBA::AttributeDef object in the Interface
Repository.

type_def

The type_def parameter is a CORBA::IDLType pointer that specifies the type of the
CORBA::AttributeDef.

id

The id represents the CORBA::Repositoryld that will uniquely identify this
CORBA::AttributeDef within the Interface Repository.

version

The version number that will be associated with this CORBA::AttributeDef object in the
Interface Repository.

Return values

AttributeDef *

The returned value is a pointer to the created CORBA::AttributeDef object. The
memory is owned by the caller and may be released using CORBA::release.

WebSphere Application Server CORBA support - Page 134

Example

/] C++

[/ assume 'this_interface' and ' pk long_ptr"’

/] have already been initialize

CORBA: : I nterfaceDef * this |nterface

CORBA: : PrimitiveDef * pk_long ptr;

Il establl h the 'create attribute’ paraneters .

CORBA: Repos toryld rep_id = CORBA: :stri ng duP " Uni queReposnoryld");

CORBA: : I dentifier name = CCRBA strln? up (hIS attrlb e");

CORBA: : Ver5| onSpec version = ri n%&

CORBA: : Attri but eMbde npde = CORBA;: ATTR Rl D(RIL

I create the new attribute definition contained in the interface

CORBA: : Attr |buteDef * this_attribute; .

this attrlbute = this_interface- >create attrlbute(rep |d name, version,
pK_ ong ptr node) ;

InterfaceDef::create_operation

Overview

The create_operation operation returns a new
operation definition (CORBA::OperationDef) contained
in the interface definition (CORBA::InterfaceDef) on
which it is invoked.

Original interface

“InterfaceDef Interface” on page 132

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_operation operation creates a new OperationDef in the Interface Repository and
returns a pointer to the memory representation of the CORBA::OperationDef object. The id,

name, version, result_def, mode, params, exceptions, and contexts attributes are set as
specified. The result attribute is also set based on result_def. The defined_in attribute is
initialized to identify the containing CORBA::InterfaceDef.

An error is returned if an object with the specified id already exists within the Interface
Repository or if an object with the specified name already exists within this
CORBA::InterfaceDef.

IDL Syntax

Qper ati onDef create_operation (in Re,)osmoryl did,
dentifier namne,
Ver si onSpec versi on,
DLType result,
Oper ati onMbde node,
Par Descr i Bel onSeq par ans,
Exception q exceptions,
Cont ext | dSeq cont exts);

in
in
in
in
In
I'n
in

Input parameters

id

The id represents the CORBA::Repositoryld that will uniquely identify this
CORBA::OperationDef within the Interface Repository.

name

The name that will be associated with this CORBA::OperationDef object in the
Interface Repository.

version

The version number that will be associated with this CORBA::OperationDef object in
the Interface Repository.

result_def

The result_def parameter is a CORBA::IDLType * that specifies the type of the return
value for the CORBA::OperationDef.

mode

Valid operation mode values include CORBA::OP_NORMAL (normal operation) and
CORBA::OP_ONEWAY (one way operation).

params

The sequence defines the list of parameters that are associated with the interface.

WebSphere Application Server CORBA support - Page 135

exceptions

The sequence defined the list of exceptions that are associated with the interface.
contexts

The sequence defines the list of contexts that are associated with the interface.

Return values
OperationDef *

The returned value is a pointer to the created CORBA::OperationDef object. The
memory is owned by the caller and can be released using CORBA::release.

Example
Il C++ .

[/ assume 'this_interface', 'this_struct', 'this_exception , and
/] assume 'this”interface', 'this_struct', 'this”exception', and
/11 " pk_l ong_Ptr" have al ready been defi ned
CORBA: TI ntertaceDef * this_interface;
CORBA: : Struct Def * this_struct;
CORBA: : Except i onDef * this_exce t| on,
CORBA: : Prim tiveDef * pk_|long_|
/1 _establish the 'creal e opera |0n par anmeters
CORBA: : Reposi toryld rep_| CORBA: ; string_| du " Uni queReposi toryld");

CORBA: : | dentifier nane CCRBA string_dup (Phl S ogeratlon);
CORBA: : Ver si onS ec version = CO?BA stri ng_| dup (
CORBA: : | DLType * result_def = this_struct:
CORBA: : Qper ati onMbde node = CORBA: TOP_NORIVA
CORBA: : Par Descrl tionSeq paramns;
parans. | ength f)
par ans[0 nane =" CORBA: : strlng dup ("paraneter_0");
paramso type = CORBA:: tc_long;
par ans .type_def = pk_] Ton tr;
ar ams O m)de = CORBA: - IN;
A Ptl onDef Seq exceptl ons;
exceptlons ength
except i ons{ 0] = th| s exceptl on;
CORBA: ext] dSeq cont exts;
cont ext s, Iength s
ontexts[ol BA: strlng dup (" CONTEXTS_O=val ue_0");
[create the operati
CORBA: : QJeratlonDef * '[hIS operatlon
this operatlon = this_intefface-> create_operation .
(rep_id, name, version, result_def, npde, parans, exceptions, contexts);

InterfaceDef::describe

Overview

The describe operation returns a structure containing
information about an InterfaceDef Interface Repository
object.

Original interface

“InterfaceDef Interface” on page 132

Exceptions

“CORBA::SystemException” on page

Intended Usage

The inherited describe operation returns a structure (CORBA::Contained::Description) that
contains information about a CORBA::InterfaceDef Interface Repository object. The
CORBA::Contained::Description structure has two fields: kind (CORBA::DefinitionKind data
type), and value (CORBA::Any data type).

The kind of definition described by the returned structure is provided by invoking the kind
field, and the value field is a CORBA::Any containing the description specific to the kind of
object described. When the describe operation is invoked on an interface
(CORBA::InterfaceDef) object, the kind field is equal to CORBA::dk_Interface and the value
field contains the CORBA::InterfaceDescription structure.

IDL Syntax

struct InterfaceDescription

I dentifier name;

Repositoryld id;

Repositoryld defl ned in;

Ver si onSpec ver si on

Reposi t oryl dSeq base_i nt er f aces;

struct Description

DefinitionKind kind;
any val ue;

WebSphere Application Server CORBA support - Page 136

DeSt}:fi ption describe ();

Input parameters
None.

Return values
Description *

The returned value is a pointer to a CORBA::Contained::Description structure. The
memory is owned by the caller and can be removed by invoking delete.

Example

/] C++
// _assume that 'this_interface' has already been initialized

A: I nterfaceDef * this_interface;
I/ retrieve a description of the interface .
CORBA: : Cont ai ned: ; Description * returned_descri

tion

ed. . { ription;
returned_description = this_interface-> describe ();
/] retrieve the interface description fromthe ret
/| structure o . o
A I nterfaceDescription * interface_descri pt{_o ;
P

o
) oo
urned description
n
ion *)

interface_description = (CORBA: :|nterfaceDescri
returned_description val ue.val ue ()

InterfaceDef::describe_interface

Overview

The describe_interface operation returns a
CORBA::InterfaceDef::FullinterfaceDescription
describing the interface (CORBA::InterfaceDef),
including its operations and attributes.

Original interface

“CORBA::InterfaceDef” on page 132

Exceptions

“CORBA::SystemException” on page

Intended Usage

The data fields of the CORBA::InterfaceDef::FullinterfaceDescription include: name (the
interface name), id (the unique CORBA::Repositoryld that identifies the interface),
defined_in (the unique CORBA::Repositoryld that identifies the defined_in attribute), version
(the version number), operations (a sequence listing the operations for this interface),
attributes (a sequence listing the attributes of this interface), base_interfaces (a sequence of
CORBA::Repositorylds that represent the base_interfaces attribute of the interface), and
type (the CORBA::TypeCode representation of the interface).

Note: The CORBA specification contains amibiguities with relation to the
describe_interface. This method returns the FullinterfaceDescription structure that contains
the interface's attributes and operations. It does not state whether that includes or excludes
the inherited attributes and operations. The IBM implementation excludes the inherited
attributes and operations.

IDL Syntax

struct FulllnterfaceDescription
| dentifier name;
Repositoryld id; .
Reposi toryld defined_in;
Ver si onSpec ver si on; .
q_)Descrl pti onSeq operati ons;
AttrDescri Ptlon q attributes;
Reposi t or

dSeq base_interfaces;
TypeCode type;

Ful ?I’nt erfaceDescription describe_interface();

Input parameters
None.

Return values
FullinterfaceDescription *

The returned value is owned by the caller and can be removed by involking delete.

WebSphere Application Server CORBA support - Page 137

Example

/] C++

[/ _assume that 'this_interface’ has already been initialized

CORBA: : I nterfaceDef * this_interface; |

I/ retrieve a full descripftion of the interface

CORBA: : I nterfaceDef::FulllnterfaceDescription *
returned full _interface_description; =

returned_ful'l _inferface_description = this_interface->
describe_interface ();

InterfaceDef::is_a

Overview The is_a operation is used to determine if the target
interface is identical to or inherits from another interface
referenced by its unigue CORBA::Repositoryld.

Original interface “CORBA::InterfaceDef” on page 132

Exceptions “CORBA::SystemException” on page

Intended Usage

The is_a operation returns TRUE if the interface on which it is invoked either is identical to
or inherits, directly or indirectly, from the interface identified by its interface_id parameter.
Otherwise it returns FALSE. The is_a read operation parameter and result description is
provided below.

IDL Syntax

bool ean is_a(in Repositoryld interface_id);

Input parameters
interface_id

The ID attribute that globally identifies a Contained object.

Return values
Boolean

The return value is the result of the evaluation of the target object and the referenced
object as in the Intended Usage section.

Example

[l C++
/] assume 'this_interface' and "other_interfaces_rep_id"
// _have already been initialized
CORBA: : I nterfaceDef * this_interface; .
CORBA: : Reposi t or%/I d other_interfaces_rep_id;
// _determne if the two objects are rel afed
CORBA: : Bool ean returned_bool ean; . . .
returned_boolean = this_interface-> is_a (other_interfaces_rep_id);

CORBA module: IRObject Interface

Overview The IRObject interface represents the most generic
interface from which all other Interface Repository
interfaces are derived, including the Repository itself.

File name somir.idl

Local-only True

Ancestor interfaces None

Exceptions “CORBA::SystemException” on page
Supported operations “IRObject::def_kind” on page 139

“IRObject::destroy” on page 139

Intended Usage
The IRObject is not itself instantiated as a means of accessing the Interface Repository. As

WebSphere Application Server CORBA support - Page 138

an ancestor of all Interface Repository objects, it defines the specific operations noted
above.

IDL syntax

nodul e CORBA { .

interface | RObject {

//read Interface

read only attribute DefinitionKind def_kind,
/wite interface

oid destroy ();

e~

Types

enum Def i ni ti onKi nd . .
{dk_none, dk_all, dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_l\/bdul e, dk_Operafion, dk Typedef, dk_AliIas, dk_Struct, dk”Union,
}dk_Enum dk_Primtive, dk_String, dk_Sequence, dk“Array, dk_Repository

IRObject::def_kind

Overview The def_kind operation returns the kind of the Interface
Repository definition.

Original interface “IRObject Interface” on page 138

Exceptions “CORBA::SystemException” on page

Intended Usage

The def_kind attribute identifies the kind of the Interface Repository definition. The def_kind
operation returns the value in this attribute that identifies the definition kind of the object.

IDL Syntax

readonly attribute DefinitionKind def_kind;
Input parameters

None.

Return values
DefinitionKind

The returned value indicates the definition kind of the Interface Repository object.
Valid values that are returned by the def_kind read operation include:
CORBA::dk_Attribute, CORBA::dk_Constant, CORBA::dk_Exception,
CORBA::dk_Interface, CORBA::dk_Module, CORBA::dk_Operation,
CORBA::dk_Alias, CORBA::dk_Struct, CORBA::dk_Union, CORBA::dk_Enum,
CORBA::dk_Primitive, CORBA::dk_String, CORBA::dk_Sequence, CORBA::dk_Array,
and CORBA::dk_Repository.

Example
Il Ct . . S
/| _assume 'ir_object_ptr' has already been initialized . . .
CORBA: : | RCbj ect * ir_object_ptr; . .
1l Euerﬁet_he_ object To determne the definition kind . . .
RBA: : DefinitionKind this_objects_kind;
this_objects_kind = ir_object_ptr-> def_kind();

IRODbject::destroy

Overview The destroy operation causes the object to cease to
exist within the Interface Repository database.

Original interface “IRObject Interface” on page 138

Exceptions “CORBA::SystemException” on page

Intended Usage

The destroy operation causes the object to cease to exist. If the object is a Container,
destroy is applied to all of its contents. If the object contains an IDLType attribute for an

WebSphere Application Server CORBA support - Page 139

anonymous type, that IDLType is destroyed. If the object is currently contained in some
other object, it is removed from that container object. Invoking destroy on a Repository
object or on a PrimitiveDef is an error.

The destroy operation causes the object to cease to exist. If the object is a Container,
destroy is applied to all of its contents. If the object contains an IDLType attribute for an
anonymous type, that IDLType is destroyed. If the object is currently contained in some
other object, it is removed from that container object. Invoking destroy on a Repository
object or on a PrimitiveDef is an error. CORBA 2.1 requires that the IR not be left in an
incoherent state. After a destroy there cannot be any dangling references. The IBM
implementation of destroy ensures this by deleting all objects that refer to the destroy target.
When destroying an interface this will include all of its children. Use caution.

IDL Syntax

voi d destroy ();
Input parameters

None.

Return values
Void
No value is returned.

Example

Il C++
[/ _assune that 'this _nodul e’ has already been initialized
CORBA: : Modul eDef * this_nodul e
//'destro?/ the nodule and all that it contains
thi s_nodul e-> destroy ();

CORBA module: ModuleDef Interface

Overview A ModuleDef can contain constants, typedefs,
exceptions, interfaces, and other module objects.

File name somir.idl
Local-only True
Ancestor interfaces “Contained Interface” on page 79

“Container Interface” on page 85

Exceptions “CORBA::SystemException” on page

Supported operations “ModuleDef::describe” on page 140

Intended Usage

The ModuleDef interface is used within the Interface Repository to represent an OMG IDL
module. A ModuleDef object can be created using the create_module operation defined for
the Container interface.

IDL syntax

nodul e CORBA { . .
int erface Mdul eDef: Cont ai ner, Cont ai ned {

struct Modul eDescrl ption {
I dentifier name
Repositoryld id:
Repositoryld defl ned_i n;
Ver si onSpec ver si on;

ModuleDef::describe

WebSphere Application Server CORBA support - Page 140

Overview The describe operation returns a structure containing
information about a CORBA::ModuleDef Interface

Repository object.
Original interface “ModuleDef Interface” on page 140
Exceptions “CORBA::SystemException” on page

Intended Usage

The inherited describe operation returns a structure (CORBA::Contained::Description) that
contains information about a CORBA::ModuleDef Interface Repository object. The
CORBA::Contained::Description structure has two fields: kind (CORBA::DefinitionKind data
type), and value (CORBA::Any data type).

The kind of definition described by the returned structure is provided using the kind field,
and the value field is a CORBA::Any that contains the description that is specific to the kind
of object described. When the describe operation is invoked on a module
(CORBA::ModuleDef) object, the kind field is equal to CORBA::dk_Module and the value
field contains the CORBA::ModuleDescription structure.

IDL Syntax

struct Mdul eDescription {
| dentifier name;
Repositoryld id; .
Reposi toryld defined_in;
Ver si onSpec versi on;

struct Description {
DefinitionKind kind,
any val ue;

escri ption describe ();
Input parameters

None.

Return values
Description *

The returned value is a pointer to a CORBA::Contained::Description structure. The
memory is owned by the caller and can be removed using delete.

Example

Il C++
/| _assume that 'this_npdul e has already been initialized
CORBA: : Modul eDef * this_nodul e;
/I retrieve a description of the nodul e o
CORBA: : Cont ai ned: ; Description * returned_description;
returned_description = this_nodul e-> describe (); o
[/ _retrieve the nodul e description fromthe returned description structure
CORBA: : Modul eDescri ption * nodul e_description; o
nodul e_descri ption = (CORBA: : Mbdul'eDescription *) returned_description
val ue. val ue ();

CORBA module: NamedValue Class

Overview Represents a request parameter, request return value,
or Context property.

File name nvlist.h

Supported methods “NamedValue::_duplicate” on page 142

“NamedValue::_nil” on page 142

“NamedValue::flags” on page 142

“NamedValue::name” on page 143

“NamedValue::value” on page 143

WebSphere Application Server CORBA support - Page 141

Intended Usage

A Dynamic Invocation Interface request is comprised of an object reference, an operation, a
list of arguments for the operation, and a return value. A NamedValue is used to represent
each element of the argument list and the return value. A NamedValue is also used to
represent each element of the property list associated with a Context. The
ORB::create_named_value method is used to create an empty NamedValue. The NVList
class provides methods to manage a list of named values. For additional information, see
the NVList, Request, Context, and ORB class descriptions.

NamedValue::_duplicate

Overview

Duplicates a NamedValue object.

Original class

“CORBA::NamedValue” on page 141

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to a NamedValue object. Both the original and the duplicate reference should subsequently
be released using CORBA::release(NamedValue_ptr).

IDL Syntax
stati c CORBA:: NanedVal ue_ptr _duplicate (CORBA::NanmedVal ue_ptr p);
Input parameters

p
The NamedValue object to be duplicated. The reference can be nil, in which case the
return value will also be nil.

Return values
CORBA::NamedValue_ptr

The new NamedValue object reference. This value should subsequently be released
using CORBA::release(NamedValue_ptr).

NamedValue:: nil

Overview

Returns a nil CORBA::NamedValue reference.

Original class

“CORBA::NamedValue” on page 141

Intended Usage

This method is intended to be used by client and server applications to create a nil
NamedValue reference.

IDL Syntax

static CORBA:: NanedVal ue_ptr _nil ();
Input parameters

None.

Return values
CORBA::NamedValue_ptr

A nil NamedValue reference.

NamedValue::flags

Overview

Returns a bitmask that identifies the argument passing
mode.

Original class

“CORBA::NamedValue” on page 141

WebSphere Application Server CORBA support - Page 142

Intended Usage

The flags method is used by a client program when querying a NamedValue representing a
parameter of a DIl request. The flags method returns a bitmask that identifies the argument
passing mode.

IDL Syntax
CORBA: : Fl ags flags() const;
Input parameters

None.

Return values
CORBA::Flags

The argument passing mode. If the flags method is called on a NamedValue which
does not represent a request parameter, an empty bitmask is returned. The following
flag values are defined:

CORBA::ARG_IN

The associated value is an input only argument.
CORBA::ARG_OUT
The associated value is an output only argument.

CORBA::ARG_INOUT
The associated value is an in/out argument.

NamedValue::name

Overview

Returns the argument name.

Original class

“CORBA::NamedValue” on page 141

Intended Usage

The name method is used by a client program when querying a NamedValue associated
with a DIl request. The name method returns the argument name, which is optional. The
argument name in a NamedValue, if present, matches the argument name specified in the
IDL definition of the operation.

IDL Syntax

const char *nane() const;

Input parameters
None.

Return values

const char *

The argument name, if any, or a null pointer. Ownership of the return value is
maintained by the NamedValue; the return value must not be freed by the caller.

NamedValue::value

Overview

Returns the argument value.

Original class

“ CORBA::NamedValue” on page 141

Intended Usage

The value method is used by a client program when querying a NamedValue associated
with a DIl request. The value method returns the argument value, which is accessed using
standard operations on the Any class.

IDL Syntax

WebSphere Application Server CORBA support - Page 143

CORBA: : Any *val ue() const;
Input parameters

None.

Return values
CORBA::Any *

A pointer to the argument value, if any, or a null pointer. Ownership of the return value
is maintained by the NamedValue; the return value must not be freed by the caller.

CORBA module: NVList Class

Overview Specifies a list of arguments: parameters associated
with a request or properties associated with a Context.

File name nvlist

Supported methods “NVList::_duplicate” on page 144

“NVList::_nil” on page 145

“NVList::add” on page 145

“NVList::add_item” on page 146

“NVList::add_item_consume” on page 146

“NVList::add_value” on page 147

“NVList::add_value_consume” on page 148

“NVList::count” on page 148

“NVList::get_item_index” on page 149

“NVList::item” on page 149

“NVList::remove” on page 150

Intended Usage

A Dynamic Invocation Interface request is comprised of an object reference, an operation, a
list of arguments for the operation, and a return value. An NVList is used to specify the list of
arguments for the operation. An NVList is also used to specify the list of properties
associated with a Context. The ORB::create_list method is called to create an empty named
value list. The ORB::create_operation_list method is called to create a named value list for a
specific operation. The NVList class provides methods to add and delete a named value, as
well as query information about a named value list. For additional information, see the
NamedValue, Request, Context, and ORB class descriptions.

NVList:: duplicate

Overview

Duplicates an NVList object.

Original class

“CORBA::NVList” on page 144

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to an NVList object. Both the original and the duplicate reference should subsequently be
released using CORBA::release(NVList_ptr).

IDL Syntax
static CORBA:: NVList_ptr _duplicate (CORBA: :NVList_ptr p);

Input parameters

WebSphere Application Server CORBA support - Page 144

p
The NVList object to be duplicated. The reference can be nil, in which case the return
value will also be nil.

Return values

CORBA::NVList_ptr

The new NVList object reference. This value should subsequently be released using
CORBA::release(NVList_ptr).

NVList::_nil

Overview

Returns a nil CORBA::NVList reference.

Original class

“CORBA::NVList” on page 144

Intended Usage

This method is intended to be used by client and server applications to create a nil NVList
reference.

IDL Syntax

static CORBA::NVList_ptr _nil ();
Input parameters

None.

Return values
CORBA::NVList_ptr

A nil NVList reference.

NVList::add

Overview

Adds an element to the end of a named value list.

Original class

“CORBA::NVList” on page 144

Intended Usage

The add method is used by a client program to populate the NVList associated with a DIl
request. The add method adds an element to the end of a named value list. The newly
created named value is empty, except for the flags. See also the add_item,
add_item_consume, add_value, and add_value_consume methods, which perform the
same task but differ in memory management and how the newly created named value is
initialized.

IDL Syntax

CORBA: : NanmedVal ue_ptr add(CORBA: : Fl ags fl ags);

Input parameters
flags
A bitmask describing the argument. The following standard flag values identify the

argument passing mode:
CORBA::ARG_IN

The associated value is an input-only argument.
CORBA::ARG_OUT

The associated value is an output-only argument.
CORBA::ARG_INOUT

The associated value is an in/out argument.

Return values
CORBA::NamedValue_ptr

WebSphere Application Server CORBA support - Page 145

A pointer to the newly created named value. Ownership of the return value is
maintained by the NVList; the return value must not be freed by the caller.

NVList::add_item

Overview

Adds an element to the end of a named value list.

Original class

“CORBA::NVList” on page 144

Intended Usage

The add_item method is used by a client program to populate the NVList associated with a
DIl request. The add_item method adds an element to the end of a named value list. The
newly created named value is initialized using the input argument name and flags. The
difference between the add_item and add_item_consume methods is that the former does
not assume ownership of the input argument name, while the latter does. See also the add,
add_value, and add_value_consume methods.

IDL Syntax
CORBA: : NanedVal ue_ptr add_item(const char *id, CORBA: :Flags flags);

Input parameters
flags

A bitmask describing the argument. The following standard flag values identify the
argument passing mode:
CORBA::ARG_IN

The associated value is an input-only argument.
CORBA::ARG_OUT

The associated value is an output-only argument.
CORBA::ARG_INOUT

The associated value is an in/out argument.

Return values
CORBA::NamedValue_ptr

A pointer to the newly created named value. Ownership of the return value is
maintained by the NVList; the return value must not be freed by the caller.

NVList::add_item_consume

Overview

Adds an element to the end of a named value list.

Original class

“CORBA::NVList” on page 144

Intended Usage

The add_item_consume method is used by a client program to populate the NVList object
associated with a DIl request. The add_item_consume method adds an element to the end
of a named value list. The newly created named value is initialized using the input argument
name and flags. The difference between the add_item and add_item_consume methods is
that the former does not assume ownership of the input argument name, while the latter
does. The caller may not access the memory referred to by the input parameter after it has
been passed in. See also the add, add_value, and add_value_consume methods.

IDL Syntax
CORBA: : NanedVal ue_ptr add_item consunme(char *id, CORBA::Flags flags);
Input parameters
id
The name of the argument to be added. It is legal to pass a null pointer. If specified,

WebSphere Application Server CORBA support - Page 146

the input name should match the argument name specified in the IDL definition for the
operation. The argument name must be allocated using the CORBA::string_alloc
method. Ownership of this parameter transfers to the NVList.

flags

A bitmask describing the argument. The following standard flag values identify the

argument passing mode:
CORBA::ARG_IN

The associated value is an input-only argument.
CORBA::ARG_OUT

The associated value is an output-only argument.
CORBA::ARG_INOUT

The associated value is an in/out argument.

Return values
CORBA::NamedValue_ptr

A pointer to the newly created named value. Ownership of the return value is
maintained by the NVList; the return value must not be freed by the caller.

NVList::add_value

Overview

Adds an element to the end of a named value list.

Original class

“CORBA::NVList” on page 144

Intended Usage

The add_value method is used by a client program to populate the NVList associated with a
DIl request. The add_value method adds an element to the end of a named value list. The
newly created named value is initialized using the input argument name, value, and flags.
The difference between the add_value and add_value_consume methods is that the former
does not assume ownership of the input argument name and value, while the latter does.

See also “NVList::add” on page 145, “NVList::add_item” on page 146 , and
“NVList::add_item_consume” on page 146 .

IDL Syntax

CORBA: : NanedVal ue_ptr add_val ue(const char *id,
const CORBA: : Any &any,
CORBA: : Fl ags fl ags);

Input parameters

id

The name of the argument to be added. It is legal to pass a null pointer. If specified,
the input name should match the argument name specified in the IDL definition for the
operation.

any

The address of the value of the argument. It is legal to pass a null pointer.

flags

A bitmask describing the argument. The following standard flag values identify the
argument passing mode:
CORBA::ARG_IN

The associated value is an input-only argument.

CORBA::ARG_OUT
The associated value is an output-only argument.

CORBA::ARG_INOUT

WebSphere Application Server CORBA support - Page 147

The associated value is an in/out argument.

Return values
CORBA::NamedValue_ptr

A pointer to the newly created named value. Ownership of the return value is
maintained by the NVList; the return value must not be freed by the caller.

NVList::add_value _consume

Overview Adds an element to the end of a named value list.

Original class “CORBA::NVList” on page 144

Intended Usage

The add_value_consume method is used by a client program to populate the NVList
associated with a DIl request. The add_value_consume method adds an element to the end
of a named value list. The newly created named value is initialized using the input argument
name, value, and flags. The difference between the add_value and add_value_consume
methods is that the former does not assume ownership of the input argument name and
value, while the latter does. The caller may not access the memory referred to by the input
parameters after they have been passed in.

See also “NVList::add” on page 145, “NVList::add_item” on page 146 , and “
NVList::add_item_consume” on page 146 .

IDL Syntax

CORBA: : NanmedVal ue_ptr add_val ue_consune(char *id,
CORBA: : Any_ptr any,
CORBA: : Fl ags fl ags);

Input parameters

id

The name of the argument to be added. It is legal to pass a null pointer. If specified,
the input name should match the argument name specified in the IDL definition for the
operation. Ownership of this parameter transfers to the NVList.

any

The address of the value of the argument. It is legal to pass a null pointer. Ownership
of this parameter transfers to the NVList.

flags

A bitmask describing the argument. The following standard flag values identify the
argument passing mode:
CORBA::ARG_IN

The associated value is an input-only argument.
CORBA::ARG_OUT

The associated value is an output-only argument.
CORBA::ARG_INOUT

The associated value is an in/out argument.

Return values
CORBA::NamedValue_ptr

A pointer to the newly created named value. Ownership of the return value is
maintained by the NVList; the return value must not be freed by the caller.

NVList::count

WebSphere Application Server CORBA support - Page 148

Overview

Returns the number of elements in a named value list.

Original class

“CORBA::NVList” on page 144

Intended Usage

The count method is used by a client program when querying the NVList associated with a
DIl request. The count method reports the number of elements in a named value list.

IDL Syntax

CORBA: : ULong count () const;
Input parameters

None.

Return values
CORBA::ULong

The number of elements in the named value list.

NVList::get_item_index

Overview

Returns the index of the specified named value.

Original class

“CORBA::NVList” on page 144

Exceptions “CORBA::SystemException” on page
Intended Usage
The get_item_index method is used by a client program when querying the NVList
associated with a DIl requst. The get_item_index method returns the index of the specified
named value. The argument name comparison is case insensitive. This method is an IBM
extension to the CORBA 2.1 specification.
IDL Syntax
CORBA: : Long get_item i ndex(const char *id);
Input parameters
id
The argument name of the desired named value. A system exception is raised if a null
pointer is passed for this parameter.
Return values
CORBA::Long
The index of the specified named value. If the named value list is empty or the input
argument name is not found, -1 is returned.
NVList::item
Overview Returns the named value associated with the input

index.

Original class

“CORBA::NVList” on page 144

Exceptions

“CORBA::SystemException” on page

Intended Usage

The item method is used by a client program when querying the NVList associated with a
DIl request. The item method returns the named value associated with the input index.

IDL Syntax

CORBA: : NanedVal ue_ptr iten CORBA: : ULong i ndex);
Input parameters

WebSphere Application Server CORBA support - Page 149

index

The index of the desired named value, starting at zero. A system exception is raised if
the input index is greater than or equal to the number of elements in the named value
list.

Return values
CORBA::NamedValue_ptr

A pointer to the named value associated with the input index. Ownership of the return
value is maintained by the NamedValue; the return value must not be freed by the
caller.

NVList::remove

Overview

Deletes the named value associated with the input
index.

Original class

“CORBA::NVList” on page 144

Exceptions

“CORBA::SystemException” on page

Intended Usage

The remove method is used by a client program when freeing an element of the NVList
associated with a DIl request. The remove method deletes the named value associated with
the input index. CORBA::release(NamedValue_ptr) is called on the named value element.
The remaining named value elements are re-indexed.

IDL Syntax
CORBA: : St atus renpve(CORBA: : U ong i ndex) ;

Input parameters
index

The index of the named value to be deleted, starting at zero. A system exception is
raised if the input index is greater than or equal to the number of elements in the
named value list.

Return values
CORBA::Status

A zero return code indicates the named value was successfully deleted.

CORBA module: Object Class

Overview Provides behavior common to all object references
(both local objects and proxies to remote objects).

File name object.h

Supported methods “Object::_create_request” on page 151

“Object::_duplicate” on page 153

“Object::_get_implementation” on page 153

“Object::_get_interface” on page 154

“Object::_hash” on page 155

“Object::_is_a” on page 155

“Object::_is_equivalent” on page 156

“Object::_narrow” on page 157

“Object::_nil” on page 157

“Object::_non_existent” on page 158

WebSphere Application Server CORBA support - Page 150

“Object::_request” on page 158

“Object::_this” on page 159

Intended Usage

The CORBA::Object class is the abstract base class for all object references. This includes
all proxy classes (objects, residing in client processes, that refer to remote objects residing
in a server) and all classes that implement IDL interfaces to be exported from a server. As

such, the CORBA::Object class provides methods that are meaningful to both local objects
and (references to) remote objects.

Constants

static const char* Object_CN

Object:: create_request

Overview

Creates a Request object suitable for invoking a
specific operation using the Dynamic Invocation
Interface (DII).

Original class

“CORBA::Object” on page 150

Exceptions

“CORBA::SystemException” on page

Intended Usage

The _create_request method (two forms) are used to create CORBA::Request objects
tailored to a specific IDL operation. The CORBA::Request object can then be used to invoke
requests using the DII. After invoking the method, an application can obtain the return result,
output parameter values, and exceptions using methods on CORBA::Request.

The target of CORBA::Object::_create_request() is typically a proxy object, rather than a
local object. When invoked on a proxy object, this method operates locally; the remote
object to which the proxy refers is unaffected until the DIl request that is created by
CORBA::Object::_create_request() is invoked.

The two forms of CORBA::Object::_create_request() differ in whether a
CORBA::ExceptionList_ptr and a CORBA::ContextList_ptr are provided as input. These
input parameters are not needed for operations that have no r ai ses or cont ext clause in
the IDL specification. For IDL operations that do have ar ai ses or cont ext clause, the
second form of CORBA::Object::_create_request() can be used to avoid (potentially
time-consuming) Interface Repository lookups by the ORB when the DIl request is invoked.

See also “Object::_request” on page 158which creates a CORBA::Request without
providing the parameters for the operation.

IDL Syntax

virtual CORBA: :Status _create_request (CORBA: :Context_ptr ctx,

const char* operation, .
CORBA: : NVLi st _ptr arg_list
CORBA: : NanedVal ue_ptr result,
CORBA: : Request _ptr &request,

. CORBA: : Fl ags reg_flags) = 0;

virtual CORBA::Status _create_request (CORBA: :Context_ptr ctx,

const char* operation,
CORBA: : NVLi st _ptr arg_list
CORBA: : NanedVal ue_ptr resuit,
CORBA: : ExceptionList_ptr exc_|ist,
CORBA: : Cont ext Li st_pfr ctx_|ist,
CORBA: : Request _ptr~ & equest,
CORBA: : Fl ags reg_flags) = 0;

Input parameters
ctx

A pointer to the CORBA::Context object to be passed when the DIl request is invoked.
For operations having no cont ext clause in their IDL specification, this can be NULL.
The CORBA::Request object assumes ownership of this parameter.

WebSphere Application Server CORBA support - Page 151

operation

The unscoped name of the IDL operation to be invoked using the Request. This must
be an operation that is implemented or inherited by the CORBA::Object on which
CORBA::Object::_create_request() is invoked. The caller retains ownership of this
parameter (the CORBA::Request object makes a copy).

arg_list
A pointer to a CORBA::NVList object that describes;

The types of all the operation parameters of the IDL.
The values of the i n and i nout parameters of the operation.

The variables in which the out parameter values will be stored after the DIl request
is invoked.

result

A pointer to a CORBA::NamedValue object that will hold the result of the DIl request
after it is invoked. The CORBA::Request object assumes ownership of this parameter.

request

A CORBA::Request_ptr variable, passed by reference, to be initialized by
CORBA::Object:;_create_request() to point to the newly-created CORBA::Request
object. The caller retains ownership of this parameter.

req_flags

A bit-vector describing how the DII request will be invoked. Oneway methods (methods
that do not require a response) should be created using a req_flags value of
CORBA: : | NV_NO RESPONSE. No other req_flags values are currently used.

exc_list

A pointer to a CORBA::ExceptionList object that describes the user-defined exceptions
that the DIl operation can throw (according to the operation declaration in the IDL
specification). This parameter is essentially a list of TypeCodes for UserException
subclasses. The CORBA::Request object assumes ownership of this parameter. This
parameter is optional and NULL can be passed (even for methods that raise
user-defined exceptions).

ctx_list

A pointer to a CORBA::ContextList object that lists the Context strings that must be
sent with the DIl operation (according to the operation declarations in the IDL
specification). This parameter differs from the ctx parameter in that this parameter
supplies only the context strings whose values are to be transmitted with the DII
request, while the ctx parameter is the object from which those context string values
are obtained. The CORBA::Request object assumes ownership of this parameter. This
parameter is optional and NULL can be passed (even for methods that pass Context
parameters).

Return values
CORBA::Status

A return value of zero indicates success.

Example

/* The follow ng IDL si?nature is used:
ec

interface testObj
_ string testMethod(in long input_value, out float outvalue);
* !
/* Get the OperationDef that describes testNethod */
CORBA: : ORB var nyorb = .

CORBA: : ORB_init(argc, argv, " DSO\A??e /* argc, argv: input arguments */
CORBA: : Reposi fory_var ny_| R"= CORBA: : Repository::_narrow(generic_IR);
CORBA: : Cont ai ned_var generic_opdef =

nx_l R-> 1| _ookupf("test oj ect::testMethod");

CORBA_: Oper ati onDef _var ny_opdef = .
CORBA: : Oper at i onDef: : _narrow(generic_opdef);

WebSphere Application Server CORBA support - Page 152

/* Create the NVList and NanedVal ue for the request */
CXPB{;\: :NVLi st _ptr parans :I NULI(_; def)
orb -> creafe_operation_|ist opdef, parans);
gyOQBA: : NanedVal ueEptr result = R‘{[Lp P
rryorb -> create_named_val ue(result);
/* Create the Request object */
CORBA: : Obj ect _var my_proxy = /* CGet a proxy sonehow */
ny_proxy -> _create_request(NULL, "testMethod", paranms, result,
ny_request, 0);

Object::_duplicate

Overview Duplicates an object reference.

Original class “CORBA::Object” on page 150

Intended Usage

This method is intended to be used by client and server applications, to duplicate object
references (both pointers to local implementation objects and proxies to remote objects).
For each duplication performed on an object reference, an equal number of alls to
CORBA::release must also be made for the reference to be deleted.

When an application passes an object reference (either a local object or a proxy) on a
method call, either as a parameter value or a return result, if the call transfers ownership of
the object reference and the application needs to retain ownership of the reference as well,
the application should first duplicate the reference before passing it. Each user of the
reference should subsequently CORBA::release the reference so that its resources can be
reclaimed.

When CORBA::Object::_duplicate is called on a proxy object, only the proxy is affected; no
remote invocation is made to the remote object to which the proxy refers. Hence,
CORBA::Object::_duplicate and CORBA::release are only used to manage the local
resources associated with object references.

IDL Syntax
static CORBA: : Obj ect_ptr _duplicate (CORBA: : Qbject_ptr obj);
Input parameters
obj
The object reference to be duplicated., If this parameter is a nil object referce (NULL),
no action is taken.

Return values
CORBA::Object_ptr

The duplicate of the input object reference. (Because CORBA::Object:: duplicate and

CORBA::release are implemented using reference couting, this will be the same as the
input value.) If the input value is a nil reference, the return value will likewis e be nil.

Example
/*The foll ow ng example is witten in Ct+*/
#i ncl ude "corba. h" . .
/* this function returns duplicate of an object ref */
;1 CORBA: : Cbj ect _ptr get Cbj (:: CORBA: : Cbj ect _ptr p)

return CORBA:: Object::_duplicate(p);

Object::_get_implementation

Overview Returns a reference to the CORBA::ImplementationDef
describing the server in which a remote object resides.

Original class “CORBA::Object” on page 150

Exceptions “CORBA::SystemException” on page

Intended Usage
This method is intended to be used to obtain the CORBA::ImplementationDef object

WebSphere Application Server CORBA support - Page 153

describing the server in which a remote object resides. When invoked on a proxy object, this
method is forwarded to the remote object, and a proxy to a remote
CORBA::ImplementatinDef object (residing in the same server as the remote object) is
returned. When invoked on a local object residing in a server, the local
CORBA::ImplementationDef object (the one originally passed to
CORBA::BOA::impl_is_ready) is returned. When invoked on a local object in a client (that is
not also a server), NULL is returned.

IDL Syntax

virtual CORBA::|nplenmentationDef_ptr _get_inplenentation () = 0;
Input parameters

None.

Return values
CORBA::ImplementationDef_ptr

A pointer to the ImplementationDef object that describes the server in which an object
(refererred to by an object reference) resides. The caller assumes ownership of this
object, and should subsequently CORBA::release (not delete) it.

Example

/* The following is a Ct+ exanple */

#i ncl ude "corba. h"

#i ncl ude <string.h>

/* Assume F is a proxy object pointer derived from CORBA: : Obj ect class
*/the following will get” the Inpl def and interface def on renpte objects

CO:{BA::In‘PI enent ati onDef _ptr inpl;
CORBA: : I nterfaceDef _ptr intf;
string str; o 7 tati on()

i = p->_get_i enentation();
iPFinpls) —9ettp

str = inpl->get_alias(); /* get inplenmentation alias */
I * ensupg itgs tThe ri(th impl and work \%n’th {Tﬁe impl */
%al se /* generate exception */ ...
intf = p->_get_interface();
if(ntfs)
{
S
/

=intf_—>id(g' . . /* get interface id */
ensure it's the right interface and work with the intf */

el ée /* generate exception */ ...
CORBA: : rel ease(p);

Object::_get_interface

Overview

Returns a reference to the CORBA::InterfaceDef
describing the most specific interface supported by the
target object.

Original class

“CORBA::Object” on page 150

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used to obtain the CORBA::InterfaceDef object describing the
most specific interface of the target object. When invoked on a proxy object, this method is
forwarded to the remote object, and a proxy to a remote CORBA::InterfaceDef object
(residing in the same server as the remote object) is returned. This InterfaceDef describes
the interface of the remote object, which may be more specific than the interface of the
proxy on which CORBA::_get_interface was invoked. (This can occur when the client does
not have bindings for the most specific interface supported by the remote object.)

When invoked on a local object, a local CORBA::InterfaceDef object is retrieved from the
local Interface Repository.

IDL Syntax

WebSphere Application Server CORBA support - Page 154

virtual CORBA::InterfaceDef_ptr _get_interface () = O;
Input parameters

None.

Return values
CORBA::InterfaceDef_ptr

A pointer to the InterfaceDef object that describes the most specific interface
supported by the target object . The caller assumes ownership of this object.

Example
See the CORBA::" Object::_get_implementation” on page 153 .

Object::_hash

Overview Maps object references into disjointed groups of
potentially equilvalent references.

Original class “CORBA::Object” on page 150

Intended Usage

This method is intended to be used by applications that manipulate large numbers of object
references, for mapping object references into disjoint groups of potentially equivalent
references. The hash value of an object reference does not change during the lifetime of the
reference. The hash value of an object reference is not necessarily unique (another
reference may have the same hash value). Different object references to the same remote
object do not necessarily hash to the same value.

When invoked on a proxy object, this method does not result in a remote request to the
server; all processing is done locally.

IDL Syntax

virtual CORBA::ULong _hash (CORBA::ULong nmaxi mum) = O;
Input parameters
maximum

The upper bound on the return value.

Return values
CORBA::ULong

A hash value with a lower bound of zero and an upper bound as indicated by the
maximum parameter.

Example

/*The fol | owi ng exanple is witten in C++*/
#i ncl ude "corba.
#def i ne HASH | I\/AX 10000
/* assune E s CORBA: ; bj ect p0| nter */
[0}

: CORBA: : ULong hash_ui o
hash ul ong = g»> ash(HAgH M-\X)
Object:: _is a
Overview Determines whether an object supports a given IDL
interface.
Original class “CORBA::Object” on page 150
Exceptions “CORBA::SystemException” on page

Intended Usage

This method is intended to be used by applications to determine whether an object
reference refers to an object that supports a given IDL interface (and hence whether the

WebSphere Application Server CORBA support - Page 155

reference can be successfully narrowed). When invoked on a proxy object, this call
sometimes results in a remote invocation (if it cannot be determined locally).

IDL Syntax

virtual CORBA::Boolean _is_a (const char* |ogical type_id) = 0;
Input parameters
logical_type_id
The Interface Repository type identifier of an IDL interface. This is not simply the
interface name. For programmer convenience, type identifers are provided by the C++
bindings, as static consts of the C++ class corresponding to the interface, using the
naming convention <interface-name>::<interface-name>_CN. If this parameter value is
NULL or not a valid Interface Repository type identifier, zero is returned.

Return values
CORBA::Boolean

A zero return value indicates that the object referenced by the object reference does
not support the specified IDL interface. A nonzero return value indicates that it does
support it. An object is considered to support the interface if it either implements it or
inherits it.

Example

/* Assurme the following idl interface: */
interface test(bject .
string testMethod (in |long input_value, out float out_val ue);

* Here is the cpp code: */
CORBA; : Ob ect_Ftr test_obj;
/* initialize test_obj somehow */

/* To find out if test_obj can be narrowed to testObject, use .
CORBA: : Object::_is_a and the Repository ID for the testObject interface
. defined Iin the"emtted bindings as testCbject::testCbhject_RID) */
if (test_obj->_is_a(testObject::testObject_RID)) .
test Obj ect _ptr new test_ob] = testCbject:: _narrow(test_obj);

Object: :_is_équivalent

Overview

Determines whether two object references refer to the
same object.

Original class

“CORBA::Object” on page 150

Intended Usage

This method is intended to be used by applications to determine whether two object
references refer to the same object, as far as the ORB can easily determine. In the case of
proxies, this method attempts to determine whether two proxies refer to the same remote
object. When invoked on proxy objects, this method operates locally and does not involve
the remote object to which the proxy refers. For this reason, it is possible for this method to
return zero, indicating that the two references do not appear to be equivalent, when in fact
they are equivalent (but it cannot be determined without communicating with the remote
server).

IDL Syntax

virtual CORBA::Bool ean _is_eq
CORBA: : Obj ect _ptr other_o

Input parameters
other_object

An object reference to be compared to the target object reference.

ui val ent (const
bject) = 0;

Return values
CORBA::Boolean

A zero return value indicates that the target object reference does not refer to the
same object as the given object reference, as far as the ORB can easily determine. (It

WebSphere Application Server CORBA support - Page 156

is still possible that the two object references are equivalent, however.) A non-zero
return value indicates that the target object reference and the given object reference
do refer to the same object.

Example

/*The foll ow ng example is witten in Ct+*/
#i ncl ude "corba. h"
CORBA: : Qbj ect _ptr pil;
CORBA: : Obj ect _ptr p2;
/*construct pI and p2 */

/* check to see if they are different objects */
A: : Bool ean retval = pl-> _is_equival ent(p2);

Object:: _narrow

Overview

Performs essentially the same function as
CORBA::Object::_duplicate().

Original class

“CORBA::Object” on page 150

Exceptions “CORBA::SystemException” on page
Intended Usage
This method is provided for consistency with the _narrow methods provided by the C++
bindings for subclasses of CORBA::Object, which narrow a generic CORBA::Object to a
more specific type. When narrowing from a CORBA::Object to a CORBA::Object, however,
the method degenerates to a simple duplication. Hence, this method is equivalent to
CORBA::Object::_duplicate.
IDL Syntax
static CORBA: : Object_ptr _narrow (CORBA:: Object _ptr obj);
Input parameters
obj
The CORBA::Object to be narrowed.The caller retains ownership of this object
reference.
Return values
CORBA::Object_ptr
The narrowed (and duplicated) object reference. The caller assumes ownership of this
object reference and should subsequently CORBA::release it.
Example
/* Assurme the following idl interface: */
interface testObject
string testMethod (in long input_value, out float out_value);
* Here is the cpp code: */
CORBA: : G){ ect_ptr optr;
/* instantiate optr sonehow */
t est Qbj ect _ptr test_obj = testObject::_narrowoptr);
Object::_nil
Overview Returns a nil CORBA::Object reference.

Original class

“CORBA::Object” on page 150

Intended Usage

This method is intended to be used by client and server applications to create a nil Object
reference. Since a nil value proxy object may be generated and returned by this call (versus
a NULL), nil references can and should be released when no longer required by the client
application. Due to this "variable" returned value, client and server applications should be
using the CORBA::is_nil() method for checking for nil references (instead of checking
against NULL).

WebSphere Application Server CORBA support - Page 157

IDL Syntax

static CORBA: : Ovject_ptr _nil ();
Input parameters
None.
Return values
CORBA::Object_ptr
A nil Object reference.
Example

/* Assume the following IDL interface */
interface testbject

string testMethod (in long input_value, out float out_value);
* Here is the cpp code */))
testObject_ptr test_obj = testCbject::_nil();

Object::_non'_existent

Overview Determines whether an object reference regers to a
valid object.
Original class “CORBA::Object” on page 150

Intended Usage

This method is intended to be used to determine whether an object reference (either a proxy
object or a local pointer) refers to a valid object. When invoked on a proxy object, this
results in a remote call to the server, which may activate the remote object to determine its
existence, but no method is invoked on the remote object itself (unless the server invokes

some method on the object as part of activation).
IDL Syntax

virtual Bool ean _non_existent () = O;

Input parameters
None.

Return values
CORBA::Boolean

A zero return value indicates that the target object reference refers to a valid object. A
nonzero return value indicates that the target object reference refers to a non-existent

object.
Example

/* Assume the following IDL interface */
interface testObject

string testMethod (in |long input_value, out float out_val ue);
* Here is the cpp code */
test Cbj ect _ptr test_obj; .
/* instantiate test_ob] and nake it a proxy sonehow */

CORBA: : Bool ean retval = test_obj-> non_existent();

Object::_req uest

Overview Creates a Request object suitable for invoking a
specific operation using the Dynamic Invocation
Interface (DII).

Original class “CORBA::Object” on page 150

Exceptions “CORBA::SystemException” on page

WebSphere Application Server CORBA support - Page 158

Intended Usage

The _request method is used to create a CORBA::Request object tailored to a specific IDL
operation. Arguments, the operation's return type, and context identifiers should be added
after construction via methods on CORBA::Request. The CORBA::Request object can then
be used to invoke requests using the Dynamic Invocation Interface (DII). After invoking the
method, an application can obtain the return results, output parameter values, and
exceptions via methods on CORBA::Request.

The target of the CORBA::Object::_request method is typically a proxy object, rather than a
local object. When invoked on a proxy object, this method operates locally; the remote
object to which the proxy refers is unaffected until the DIl Request that is created by
CORBA::Object::_request is invoked.

This mechanism for creating a CORBA::Request assumes that the operation to be invoked
via the DIl is not "oneway" (that a response is required).

See also CORBA::“Object::_create_request” on page 151 , which allows the
CORBA::Request to be created and fully initialized at once.

IDL Syntax

virtual CORBA::Request_ptr _request (const char* operation) = O;

Input parameters
operation

The unscoped name of the IDL operation to be invoked using the Request. This must
be an operation that is implemented or inherited by the CORBA.::Object on which
CORBA::Object::_create_request is invoked. The caller retains ownership of this
parameter (the CORBA::Request object makes a copy).

Return values
CORBA::Request_ptr

A pointer to the newly-created CORBA::Request object. The caller assumes ownership
of this object and should subsequently delete it.

Example

/* The follow ng C++ fragment creates a reguest obj ect assum ng
*/that p is a proxy object pointer already declared and defined

#i ncl ude "corba. h" . .

CORBA: : Request _ptr req = p->_r equestf"dl i _string_tst";
CORBA: : String str = BA: : string_al loc(12+1);

strcepy(str, "lnput String");

reg->add_in_arg() <<= str; .
reg->set_return_type(CORBA: : _tc_string);

reg- >i nvoke();

CORBA: : stri ng_free(str);
CORBA: : rel ease(req);

Object::_this

Overview

Returns a duplicated object reference for the object
implementation on which this operation was invoked.

Original class

“ CORBA::Object” on page 150

Intended Usage

This method is intended to be used within an implementation of an IDL interface, to obtain a
duplicate of the object on which an operation was invoked. Calling _this() within an IDL
operation implementation is not equivalent to calling _duplicate(this), because an object
reference is not necessarily the object itself. To be CORBA compliant, an implementation
should use _this() instead of _duplicate(this). In addition, even though _this() is
implemented today as a non-virtual method on CORBA::Object, and on all the C++ interface
classes generated for each interface, an implementation may not assume that it will always
be implemented in this way. It may only assume that "_this()" is available within the scope of

WebSphere Application Server CORBA support - Page 159

the implementation, and will always return the correct object reference for the interface that
corresponds to the implementation.

_this() may not be used by a client. A client who already holds an object reference may use
'InterfaceName’::_narrow(objref) to obtain an object reference to a more derived interface
whose name is 'InterfaceName’. It can also rely on automatic C++ conversion to obtain an
object reference to a parent interface.

IDL Syntax
CORBA: : Obj ect _ptr _this();
Input parameters

None.

Return values

CORBA::Object_ptr

A duplicate of the object reference on which CORBA::Object::_this was invoked. The
caller assumes ownership of this object reference and should subsequently either
CORBA::release it or transfer ownership of it to another party.

Example

/* Assume the following IDL interface */
interface testject

testObject testMethod ();

* Here is the cpp code that night appear in
*/an i npl ementati on of testObject::testMethod

test Obj ect _ptr Ml npl enentation::test Met hod()

return _this(); /* duplicates and returns self */

CORBA module: OperationDef Interface

Overview An OperationDef is used within the Interface Repository
to represent the information needed to define an
operation of an interface.

File name somir.idl

Local-only True

Ancestor interfaces “Contained Interface” on page 79

Exceptions “CORBA::SystemException” on page

Supported operations “OperationDef::contexts” on page 161

“OperationDef::describe” on page 162

“OperationDef::

exceptions” on page 163

“OperationDef::

mode” on page 163

“OperationDef::

params” on page 164

“OperationDef::

result” on page 165

“OperationDef::

result_def” on page 166

Intended Usage

The OperationDef object is used to represent the information that defines an operation of an
interface. An OperationDef may be created by calling the create_operation operation of the
InterfaceDef interface . The create_operation parameters include the unique Repositoryld

WebSphere Application Server CORBA support - Page 160

(CORBA::Repositoryld), the name (CORBA::Identifier), the version (CORBA::VersionSpec),
the result (CORBA::IDLType*) to indicate the type of the returned operation result, the mode
of the operation (CORBA::OP_NORMAL or CORBA::OP_ONEWAY), a sequence
(CORBA::ParDescriptionSeq) defining the parameters of the operation, a sequence
(CORBA::ExceptionDefSeq) defining the exceptions of the operation, and a sequence
(CORBA::ContextldSeq) defining the contexts of the operation.

IDL syntax

nodul e CORBA {
enum Qper ati onMbde {OP_NORVAL, EVAY} ;
enum Par anet er Mode { PARAM | N, PARAM QuT, PARAM 1 NOUT} ;
struct Paranmeter Description {
Identifier nane;
BEEOOde type;
pe_ def ;
Para de node;

ypedef sequence ParDescri ptionSeq;
ypedef identifier Contextldentifier;
pedef sequence context|dSeq;

pedef sequence ExceptionDef Seg
edef sequence ExcDescriptionSeq;
erface erati onDef: Contai ned {
adonl yattribute TypeCode resul t
ribute | DLType result_def;

i bute ParDescriptionSeq parans;

i bute Operationhbde node;

i But e Context | dSeq cont exts;

i

t
t
t
t
tt ut e Excepti onDef Seq except i ons;

r
r
r
r

() S

TOTCD OO O T e e

truct OperationDescription {
I dentifier name;
Rep05| toryld id;
Repositoryld defl ned_in;
Ver si onSpec ver si on;
TypeCode result;
Oper ati onMbde node;
Cont ext | dSeq cont exts;
Par Descri ptionSeq par anet ers;
ExcDescri ptionSeq exceptions;

OperationDef: .contexts

Overview

The context read and write operations allow the access
and update of the list of context identifiers that apply to
an operation (CORBA::OperationDef object) in the
Interface Repository.

Original interface

“ OperationDef Interface” on page 160

Exceptions

“CORBA::SystemException” on page

Intended Usage

The context attribute specifies the list of context identifiers that apply to an operation
definition. The context read and write operations are supported with parameter and result
definitions as described below.

IDL Syntax

attribute ContextldSeq contexts;

Read operations
Input parameters

None.
Return values
CORBA: : Cont ext | dSeq *

The returned value is a pointer to a copy of the contexts attribute of the operation
definition. The memory is owned by the caller and can be removed by invoking delete.

Write operations
Input parameters

Context1dSeq & contexts

WebSphere Application Server CORBA support - Page 161

The contexts parameter is the new list of contexts with which to update the operation
definition (the length of the sequence may be set to zero to indicate no contexts).

Return values
None.

Example

/] C++
// _assume that 'this_operation' has already been initialized
CORBA: : Oper ati onDef * this_operation;))
/[establish the sequence of contexts for updating the operation
[/ _definition
CORBA: : Cont ext | dSeq seq_updat e;
seq_update.length (2); .
seq_update[0] = BA: : string_dup ("CONTEXT O=val ue_0");
seq_updat e[1] = CORBA::string_dup ("CONTEXT_1= val ue_1");
/| ‘update the operation with The new contexfs |ist
thi s_operation-> contexts (seq_update); . o
[/ _retrieve the contexts |ist Tromthe operation definition
CORBA: : Cont ext1dSeq * returned_context_|ist;
is

returned_context_list = this_operation-> contexts ();

OperationDef::describe

Overview

The describe operation returns a structure containing
information about a CORBA::OperationDef Interface
Repository object.

Original interface

“ OperationDef Interface” on page 160

Exceptions

“CORBA::SystemException” on page

Intended Usage

The inherited describe operation returns a structure (CORBA::Contained::Description) that
contains information about a CORBA::OperationDef Interface Repository object. The
CORBA::Contained::Description structure has two fields: kind (CORBA::DefinitionKind data
type), and value (CORBA::Any data type).

The kind of definition described by the returned structure is provided using the kind field,
and the value field is a CORBA::Any that contains the description that is specific to the kind
of object described. When the describe operation is invoked on an operation
(CORBA::OperationDef) object, the kind field is equal to CORBA::dk_Operation and the
value field contains the CORBA::OperationDescription structure.

IDL Syntax

struct OperationDescription {
I dentifier nane;
Repositoryld id; .
Reposi toryld defined_in;
Ver si onSpec ver si on;
TypeCode result;
Qper ati onvbde node;
Cont ext | dSeq cont exts;
Par Descri ptionSeq paraneters;
ExcDescri ptionSeq exceptions;
struct Description {
DefinitionKind kind,
any val ue;

escr i ption describe ();

Input parameters
None.

Return values

Description *

The returned value is a pointer to a CORBA::Contained::Description structure. The
memory is owned by the caller and can be removed by invoking delete.

Example
Il C++

WebSphere Application Server CORBA support - Page 162

/] _assune that 'this_operation' has already been initialized

CORBA: : Oper ationDef * this_operation;

11 retrleve a description of the operation

CORBA: : Oper at i onDef : Descrlptlon * returned_descri tlon

ret ur ned descrlptlon = this_operation-> describe (

/[retrieve the operation description fromthe returned description

/] _structure

CORBA: ;: Oper ationDescription * oper at i on_description;

operation_description = (CORBA: : OperationDescription *)
returned_description val ue. val ue 0);

OperationDef::exceptions

Overview

The exceptions read and write operations allow access
and update of the list of exceptions associated with an
operation definition (CORBA::OperationDef) within the
Interface Repository.

Original interface

“ OperationDef Interface” on page 160

Exceptions

“CORBA::SystemException” on page

Intended Usage

The exceptions attribute specifies the list of exception types that can be raised by the
operation. The exceptions read and write operations are supported with parameter and
result descriptions as defined below.

IDL Syntax
attri bute Excepti onDef Seq excepti ons;

Read operations
Input parameters

None.

Return values
CORBA: : Except i onDef Seq

The returned value is a pointer to a copy of the exceptions attribute of the operation
definition. The memory is owned by the caller and can be removed by invoking delete.

Write operations
Input parameters

CORBA: : Except i onDef Seq & excepti ons

The exceptions parameter is the sequence of exceptions with which to update the
exceptions attribute of the operation definition (the sequence length may be set to zero
to indicate no exceptions for the operation).

Return values
None.

Example

Il C++
/[assume that 'this_operation' and 'this_exception'
/1 _have al ready been defined
CORBA: : Oper ationDef * this_operation;
CORBA: : Except i onDef * thi s”excepti on; .
11 establls the exception definition sequence to update the operation
: Excepti onDef Se (nﬁaw exceptions;
I
t
i

P
q /|
new exceptlons Ieng th (1);
new_excepti ons[0] this_exception;
this_operation-> exceP ions (nhew exceﬁtl ons);
I/ retrieve the exception list fromthe operatlon
CORBA: : Except i onDef Seq * retur ned_exception_|ist;
ret ur ned _exception_list = this_operation-> exceptl ons ();

OperationDef::mode

Overview

Access and update the mode attribute of an operation
definition (CORBA::OperationDef) within the Interface

WebSphere Application Server CORBA support - Page 163

Repository.

Original interface

“ OperationDef Interface” on page 160

Exceptions

“CORBA::SystemException” on page

Intended Usage

The mode read and write operations allow the access and update of the mode attribute of
an operation definition (CORBA::OperationDef) within the Interface Repository.

The operation's mode attribute can be one of two values. If no output is returned by the
operation, the operation is oneway (the mode attribute is CORBA::OP_ONEWAY),
otherwise the operation is normal (the mode attribute is CORBA::OP_NORMAL).

The mode attribute can only be set to CORBA::OP_ONEWAY if the result is void and all of
the operation parameters (the params attribute) are input only (have a mode of
CORBA::PARAM_IN).

IDL Syntax
Oper ati onMode node;

Read operations
Input parameters

None.

Return values
CORBA: : Oper at i onMode

The returned value is the current value of the mode attribute of the operation definition
(CORBA::OperationDef) object.

Write operations
Input parameters

node

The mode parameter is the new value to which the mode attribute of the
CORBA::OperationDef object will be set. Valid mode values include
CORBA::OP_ONEWAY and CORBA::OP_NORMAL.

Return values
None.

Example

Il C++
// _assume that 'this_operation' has already been initialized
CORBA: : Oper ationDef ¥ this_operation; L
I/ _set the new npde in the operation definition
CORBA: : Oper ati onMbde new_npde = CORBA: : OP_NORVAL;
thi s_operation-> node (new_node); . .
I/ retrieve the node fromthe operation definition
CORBA: : Oper at i onMbde r et ur ned_node;
returned_node = this_operation-> node ();

OperationDef::params

Overview

The params read and write operations allow the access
and update of the parameter descriptions of an
operation definition object (CORBA::OperationDef) in
the Interface Repository.

Original interface

“ OperationDef Interface” on page 160

Exceptions

“CORBA::SystemException” on page

WebSphere Application Server CORBA support - Page 164

Intended Usage
The params attribute describes the parameters of the operation.

The params attribute is a CORBA::ParDescriptionSeq data type, each element of which has
4 fields. The name (CORBA::Identifier) is the name of the parameter. The type field
references a CORBA::TypeCode that represents the parameter type. The type_def field
references a CORBA::IDLType that represents the parameter type definition. The mode field
defines the parameter as an input parameter, an output parameter, or as used for both input
and output (CORBA::PARAM_IN, CORBA::PARAM_OUT, and CORBA::PARAM_INOUT,
respectively). The order of the elements in the sequence is important and should reflect the
actual order of the parameters in the operation signature.

The params read and write operations are supported with the parameters and return values
as defined below.

IDL Syntax

attribute ParDescriptionSeq parans;

Read operations
Input parameters

None.

Return values
CORBA: : Par Descri pti onSeqg*

The returned sequence of CORBA::ParameterDescriptions is a copy of the params
attribute of the CORBA.::OperationDef object. The memory is owned by the caller and
can be removed by calling delete.

Write operations
Input parameters

CORBA: : Par Descri pti onSeq & par ans

The params parameter defines the new list of parameters that will comprise the
parameters for the operation.

Return values
None.

Example

[l C++
/] assume that 'this_operation' and 'pk_|long_ptr'
I/ _have already been’initialized
CORBA: : Oper ationDef * this_operation;
CORBA: : PrimtiveDef * pk_long_ptr; .
// _establish the CORBA::ParDescri Ptl onSeq
CORBA: : Par Descr i Rt i onSeq seq_updat e;
seq_update.length (1); .
seq_updat e[0] . name = CORBA: :string_dup ("paraneter_0");
seq_update[0] .type = CORBA:: tc_|ong; .
seq_updat e[0] . t ype_def = CORBA: Tl DL’\P/pe: :_duplicate (pk_long_ptr);
seq_updat e[0] . nbde = CORBA: : PARAM | N, .
/| ‘update the parans attribute in the OperationDef
thi s_operation-> paranms (seq_update); .
I/ retrieve the paranms attribute fromthe OperationDef
A: : Par Descri ptionSeq * returned_parmli st;
returned_parmlist = this_operation-> parans ();

OperationDef::result

Overview

The result read operation returns a type
(CORBA::TypeCode *) representative of the value
returned by the operation

Original interface

“ OperationDef Interface” on page 160

Exceptions

“CORBA::SystemException” on page

Intended Usage

WebSphere Application Server CORBA support - Page 165

The result attribute of a CORBA::OperationDef object references a CORBA::TypeCode *
that describes the type of the value returned by the operation. The result read operation can
be used to retrieve a pointer to a copy of the CORBA::TypeCode referenced by the result
attribute.

IDL Syntax

readonly attribute TypeCode result;
Input parameters

None.

Return values
TypeCode *

The returned value is a pointer to a copy of the CORBA::TypeCode referenced by the
result attribute. The memory is owned by the caller and can be returned using
CORBA::release.

Example

Il C++
// _assume that 'this_operation' has already been initialized
CORBA: : Oper ationDef * this_operation;
Il retrieve the TypeCode which represents the type of result
of the operation
CORBA: ; TypeCode * operations_result_tc;
operations_result_tc = this_operation-> result ();

OperationDef::result_def

Overview The result_def read and write operations allow the
access and update of the result type definition of an
operation definition (CORBA::OperationDef) in the
Interface Repository.

Original interface “ OperationDef Interface” on page 160

Exceptions “CORBA::SystemException” on page

Intended Usage

The type of the result of an operation definition is identified by the result_def attribute (a
reference to a CORBA::IDLType *). Read and write result_def operations are supported, the
parameter and return value definitions of which are defined below.

IDL Syntax

attribute | DL/ Type resul t_def;

Read operations
Input parameters

None.

Return values

CORBA: : | DLType *

The returned object is a pointer to a copy of the CORBA::IDLType referenced by the

result_def attribute of the CORBA::OperationDef object. The returned object is owned
by the caller and can be released by invoking CORBA::release.

Write operations
Input parameters

CORBA: : | DLType * result _def

The result_def parameter represents the new result definition for the
CORBA::OperationDef. Setting the result_def attribute also updates the result
attribute.

WebSphere Application Server CORBA support - Page 166

Return values
None.

Example
[l C++

/] assume that 'this_operation'

/] initialized

and 'this_struct' have al ready been

CORBA: : 8[)er ationDef * this_operation;
CORBA: :

ruct Def *

this_operation-> result

returned_r

this_struct;

/] change the operation ae?ult type defi
e

// read the operation's™r esuf i

;.| DLType * returned_result_def;

esult_def = this_operafion-> result_def ();

)nition to "this_struct’
1
n

this_struct .) .
ition from'this_operation'

t type def

CORBA module: ORB Class

Overview Provides basic Object Request Broker services.
File name orb.h
Nested classes RequestSeq

Supported methods

“ORB::_duplicate” on page 168

“ORB::_nil” on page 168

“ORB::BOA _init” on page 169

“ORB::create_alias_tc” on page 170

“ORB::create_array_tc” on page 171

“ORB::create_context_list” on page 171

“ORB::create_enum_tc” on page 172

“ORB::create_environment” on page 173

“ORB::create_exception_list” on page 173

“ORB::create_exception_tc” on page 174

“ORB::create_interface_tc” on page 175

“ORB::create_list” on page 175

“ORB::create_named_value” on page 176

“ORB::create_operation_list” on page 177

“ORB::create_recursive_sequence_tc” on page 177

“ORB::create_sequence_tc” on page 178

“ORB::create_string_tc” on page 179

“ORB::create_struct_tc” on page 180

“ORB::create_union_tc” on page 180

“ ORB::get_default_context” on page 181

“ORB::get_next_response” on page 182

“ORB::get_service_information” on page 183

“ORB::list_initial_services” on page 184

“ORB::0bject_to_string” on page 184

“ORB::poll_next_response” on page 185

“ORB::resolve_initial_references” on page 186

“ORB::resolve_initial_references_remote” on page 186

“ORB:

:send_multiple_requests_deferred” on page 188

WebSphere Application Server CORBA support - Page 167

“ORB::send_multiple_requests_oneway” on page 188

“ORB::string_to_object” on page 189

Intended Usage

The ORB class is intended to be used by client and server applications to access basic
Object Request Broker (ORB) services, as described by the CORBA specification. One
instance of the ORB class exists in each client or server process at all times. An application
typically accesses the ORB object using the CORBA::ORB _init function. The ORB provides
methods for converting between object references (e.g., proxies) and strings, methods used
to support the Dynamic Invocation Interface (DII), and initialization methods that list and
retrieve references to the Naming Service, the Interface Repository, and the Basic Object
Adapter (BOA).

Exceptions
class InvalidNanme : public UserException
c
ic const char* exception_id;
i
c

l'idName () : UserException (ex InvalldName) {}
I nval i dNane* _narrow (Excepfion *exception

Types
¥pedef char* CAl d;
ypedef char*
typedef _IDL SEdJENCE String ObjectldList;

Constants

static const char* ex_Invali dNaneg;

ORB::_duplicate

Overview

Duplicates an ORB object.

Original class

“CORBA::ORB” on page 167

ORB::

_nil

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to an ORB object. Both the original and the duplicate reference should subsequently be
released using CORBA::release(ORB_ptr).

IDL Syntax
static CORBA: : ORB_ptr _duplicate (CORBA : ORB ptr p);
Input parameters
p
The ORB object to be duplicated. The reference can be nil, in which case the return
value will also be nil.

Return values
CORBA::ORB_ptr

The new ORB object reference. This value should subsequently be released using
CORBA::release(ORB_ptr).

Example

/* For illustrative purposes, the follow ng program
duplicates the orb pointer */

#i ncl ude "corba. h"

int main(int argc, char* argv[])

int rc = 0;

CORBA: : CRB _ptr cop = CORBA: : ORB init(argc, argv, "DSOM');
COtQBA ptr dup_cop = CORBA: TORB: ! dupilcate(cop)
return rc;

WebSphere Application Server CORBA support - Page 168

Overview

Returns a nil CORBA::ORB reference

Original class

“CORBA::ORB” on page 167

Intended Usage

This method is intended to be used by client and server applications to create a nil ORB
reference.

IDL Syntax

static CORBA:: ORB_ptr _nil ();
Input parameters
None.

Return values
CORBA::ORB_ptr

A nil ORB reference.
Example
See the example in the “Object::_nil” on page 157 method.

ORB::BOA_init

Overview

Initializes and returns a pointer to the Basic Object
Adapter (BOA) in a server.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by all server applications to both initialize the BOA and
obtain a pointer to it. This method can be called multiple times without adverse effect (the
BOA is only initialized once, regardless of how many times BOA _init is called). The return
value should be released using CORBA::release(BOA_ptr).

IDL Syntax
CORBA: : BOA ptr BOA init (int& argc,
char** ar EV' . . .
const A: : ORB: : QAid boa_identifier);
Input parameters
argc
The number of strings in the argv array of strings. This is typically the argc parameter
passed in to the server's main() function.

argv

An array of strings, whose size is indicated by the argc parameter. This is typically the
argv parameter passed in to the server's main() function.

Note: For workstation Implementation, if one of the strings in argv matches - QAi d

" DSOM _BQA", then BOA initialization is performed, the matching string is consumed,
and argc is decremented. (The remaining strings in argv may be reordered as part of
consuming the - QAi d " DSOM BQA" string.) If argv is NULL or contains no string that
matches - QA d " DSOM BOA", then the BOA is initialized only if the boa_identifier
parameter is " DSOM BOA" .

boa_identifier

A string that indicates which BOA to initialize.

WebSphere Application Server CORBA support - Page 169

Note: For workstation Implementation, if no string in the argv parameter matches
-QAi d "DSOM BQA", then the BOA is initialized only if the boa_identifier parameter is
" DSOM _BOA".

Return values
CORBA::BOA_ptr

A pointer to the BOA object. The return result should be released using
CORBA::release(ORB_ptr).

Example

/* This is a mininmal, dummy server program It does not create any
object to export. It assumes that the server with the name
"dummyServer” is already registered in the inplenentation

*/reposmory

#i ncl ude #i nclude "corba. h"
void main(int argc, char* argv[])

try

)5 lazitilalizRg thetserveg s | IemantatlonDeEA OIRB,Isgd B,OtA i

CORBA: : ositor roi rep = new CORl ository;

CORBA: I%I engnt t|o¥Dgf gnpl i P Rep Y
i npl rep->find_i npl def allas 'g dummySer ver "

/* Assurnaoc\)j)-par smltlal’lzed or \Aorkstatlonlmtlallze
to "DSOM */

?ba;\s* op_gaPrm tial d. F kst at tial

sune arm|5|n||a|ze or workstation initialize

hto*lb _BF())A

char p rm

static CCREA::CRprtr op = CORBA: : ORB_init(argc, argv, op parn‘)

static CORBA: : BOA ptr bp = op- >Bm|n|t(argc argv, bp parm;

p- >inpl_is ready;’_ ;

/* To custom ze il 1n: create Obj ects to export, and so on */
cout << "server listening" ;

cout. flush

bp- >execut e request _| oop(CORBA: : BOA: : SOVD_VWAI T) ;

%:atch (CORBA: : Syst enExcepti on &sysex)

cout << " aught a system exception, termnating." << endl;
cout. flush();

}
}
ORB::create_alias_tc

Overview Creates a tk_alias TypeCode.
Original class “CORBA::ORB” on page 167
Exceptions “CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a TypeCode of kind tk_alias, representing an
IDL typedef.

IDL Syntax

CORBA: : TypeCode tr create alias tc
P CG£ ReposiToryl d’rep(id,
CORBA: : | denti fi er nane,
ORBA: : TypeCode ptr origi nal _type);

Input parameters
rep_id

The Interface Repository identifier for the alias. The caller retains ownership of this
string.

name
The simple name of the alias. The caller retains ownership of this string.
original_type

The non-NULL TypeCode of the type being aliased. The caller retains ownership of
this TypeCode.

Return values

WebSphere Application Server CORBA support - Page 170

CORBA::TypeCode_ptr

The newly-created TypeCode. The caller assumes ownership of this TypeCode, and
should subsequently release it using CORBA::release(TypeCode_ptr).

Example

/* Code to create a tk_alias TypeCode corresponding to this IDL
; definition: "typedef |ong ny_|ong;

/* assune op initialized

extern CORBA: : ORB _ptr op;
CORBA: : Reposi t or yTd rep_| id = CORBA: ;string dup(" Repo)smoryld 999");

CORBA: : | dentifier name = CORBA:: strln? dup("
CORBA: : TypeCode_ptr tc = op- >create alia tcn%lrep id, name, CORBA::_tc_long);

ORB::create_array_tc

Overview

Creates a tk_array TypeCode.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a TypeCode of kind tk_array, representing an
IDL array.

IDL Syntax
CORBA: : TypeCode_ptr create_array_tc (

A: : ULong |'engt h,
CORBA: : TypeCode_ptr el ement _type_code);

Input parameters
length

The length of the IDL array.

element_type_code

A non-NULL TypeCode representing the type of the elements of the array. The caller
retains ownership of this TypeCode.

Return values
CORBA::TypeCode_ptr

The newly-created TypeCode. The caller assumes ownership of this TypeCode, and
should subsequently release it using CORBA::release(TypeCode_ptr).

Example

/* Code to create a tk _array TypeCode correspondl ng to this IDL
*/deflnltlon "typedef string ny_string[1997];

/* assume op initialized */
extern CORBA : ORB ptr op; .
CORBA: : TypeCode ptr tc = op->create_array_tc(1997, CORBA: : _tc_string);

ORB::create_context_list

Overview

Creates a CORBA::ContextList object.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

The CORBA::ORB::create_context_list method is intended to be used by client applications
using the Dynamic Invocation Interface (DII), to create a CORBA::ContextList object to be
subsequently passed to the CORBA::Object::create_request method.

IDL Syntax

CORBA: : Status create_context_|ist (CORBA: :ContextList_ptr& cntxt_list);
Input parameters

WebSphere Application Server CORBA support - Page 171

cntxt_list

A pointer for a CORBA::ContextList object, passed by reference, to be initialized by
the CORBA::ORB::create_context_list method. The caller assumes ownership of the
new ContextList object, but if the caller passes the ContextList to the
CORBA::Object::create_request method, ownership of the ContextList is then
transferred to the Request object.

Return values
CORBA::Status

A zero return code indicates success.
Example

/* The follow ng programcreates a CORBA::context |ist
v obj ect and generates a system exception if appropriate

#i ncl ude "corba. h"
#i ncl ude
int main(int argc, char* argv[])

int rc = 0;

CORBA: : Cont ext Li s_t_r)tr CLgtr = CORBA: : ContextList::_nil();
/* assune op initialized */

extern CORBA:: ORB_ptr op;

try

{ :
CORBA: : Status st = orb->create_context_list(CLptr);

catch (CORBA: : Syst enExcepti on &se)

cout << "exception: " << se.id() << endl; rc="1;"
} return rc;

ORB::create_enum_tc

Overview

Creates a tk_enum TypeCode.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a TypeCode of kind tk_enum, representing an
IDL enum.

IDL Syntax
R e et oryd reprian ¢
CORBA: : I denti fier nane,
CORBA: : Enum\enber Seq & nmenbers) ;
Input parameters
rep_id
The non-NULL Interface Repository identifier of the IDL enum. The caller retains
ownership of this string.

name
The non-NULL simple name of the IDL enum. The caller retains ownership of this
string.

members

A CORBA::EnumMemberSeq object (essentially a sequence of strings) listing the
members of the IDL enum. The caller retains ownership of this object. The length of
this sequence cannot be zero, and the contained strings must not be NULL.

Return values
CORBA::TypeCode_ptr

The newly-created TypeCode. The caller assumes ownership of this TypeCode, and
should subsequently release it using CORBA::release(TypeCode_ptr).

Example

WebSphere Application Server CORBA support - Page 172

/* Code to create a tk_enum TypeCode corresponding to this
DL definition: enumcolor { red, green, blue};

/* assune op initialized */

extern CORBA:: ORB_ptr op;

CORBA: : I dent i fi er 1 dentenum = CORBA: : string_dup ("color");

CORBA: : EnunMenberSeq enum seq;

enum seq. | engt h(3) .

enum seq[0] .type = CORBA:: _tc_string;

enum seq| 0] . name = CORBA: :Stri ng_dup(red");

enum seq| 1] . type = CORBA:: _t c_strl ng;

enum seq| 1 .name = CORBA: :Stri n?_ up(green");

enum seq| 2] .type = CORBA:: _tc_s r| n

enum se 2.nane=OO?BA_::str|n up(bl ue");

CORBA: : Repositoryld rep_id = string dup ("Repositoryld_999");
(IPBA TypeCode_ptr tc= op- >create enumtc “(rep_id, identenum enum seq);

ORB::.create__ envwonment

Overview

Creates an Environment object.

Original class

“CORBA::ORB" on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage
This method is intended to be used to create an Environment object.
IDL Syntax

CORBA: : Status create_environment (CORBA: : Environnment_ptr& envptr);

Input parameters
envptr

A pointer for a CORBA::Environment object, passed by reference, to be initialized by
the CORBA::ORB::create_environment method. The caller assumes ownership of the
new Environment object.

Return values
CORBA::Status

A zero return value indicates success.

Example

#i ncl ude "corba. h"
int main(int argc, char* argv[])
/* assume cop initialized */
extern CORBA:: ORB _ptr cop;
CORBA: : Envi r onment _ptr envptr = CORBA: : Environnent:: _nil ();
CORBA: : Status status = cop->create_envi ronnent(envptr)
return status;

}

ORB::create_exception_list

Overview

Creates a CORBA::ExceptionList object.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

The CORBA::ORB::create_exception_list method is intended to be used by client
applications using the Dynamic Invocation Interface (DIl), to create a CORBA::ExceptionList
object to be subsequently passed to the CORBA::Object:.create_request method.

IDL Syntax
CORBA: : Status create_exception_|list (CORBA: :ExceptionList_ptr & excp_list);

Input parameters
excp_list

A pointer for a CORBA::ExceptionList object, passed by reference, to be initialized by
the CORBA::ORB::create_exception_list method. The caller assumes ownership of the
new ExceptionList object, but if the caller passed the ExceptionList to the

WebSphere Application Server CORBA support - Page 173

CORBA::Object:;create_request method, ownership of the ExceptionList is then
transferred to the Request object.

Return values
CORBA::Status

A zero return code indicates success.
Example

#i ncl ude "corba. h"
#i ncl ude
int main(int argc, char* argv[])

int rc = 0;
CORBA: : Exceptl onlist_ptr ELpt r = CORBA: : ExceptionList::_nil();
/* assume orb initiallzed */
;—:‘xtern CORBA: : ORB_ptr orb;
ry
{
CORBA: : Status st = orb->create_exception_list(ELptr);

cat ch(CORBA: : Syst enException &se)
cout << "exception: " << se.id() << endl; rc="1;"

return rc;

}

ORB::create_exception_tc

Overview

Creates a tk_except TypeCode.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a TypeCode of kind tk_except, representing an
IDL exception.

IDL Syntax
CORBA: : eCode_ptr create_exception_tc
O(R)ép Repogltoryld rep_i dp (

CORBA: : | dentifier nane
CORBA: : Struct ManberSeq & menbers) ;

Input parameters

rep_id

The non-NULL Interface Repository identifier of the IDL exception. The caller retains
ownership of this string.

name

The non-NULL simple name of the IDL exception. The caller retains ownership of this
string.

members

A CORBA::StructMemberSeq object (a sequence of structs of type
CORBA::StructMember) listing the members of the IDL exception. Each
CORBA::StructMember in the sequence specifies the name and type of the

corresponding exception member; only the type member is used, and the type_def
member should be set to NULL. The caller retains ownership of this object.

Return values

CORBA::TypeCode_ptr

The newly-created TypeCode. The caller assumes ownership of this TypeCode, and
should subsequently release it using CORBA::release(TypeCode_ptr).

Example

/* Code to create a tk_except TypeCode corresponding to this IDL definition:
exception ny_exception { string ny_string; }'

/* assume _op |n|t|a||zed */
extern CORBA:: ORB ptr op;

WebSphere Application Server CORBA support - Page 174

CORBA: : Reposi toryld rep_ id = CORBA: :string dup("Repositor Id_999");
entifier name = string_dup(" ny_exception"

CORBA: : | d f CORBA: d
ruct er Seq st_seq;

CORBA: : St Manb Se

st _seq. Ien th

st_seq[0 ype—OCRBA tc_string;

st seq .name = CORBA: : 1string_ duP 2; .
peOode ptr tc = op->Create excep c (rep_id, name, st_seq);

ORB ::create_lnterface_tc

Overview

Creates a tk_objref TypeCode.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a TypeCode of kind tk_objref, representing an
IDL interface.

IDL Syntax

CORBA: eCode_ptr create_interface_tc
CO-'gép ‘Re ors’ltoryld rep_id, el
CORBA: : Identlfler nane);

Input parameters

rep_id

The non-NULL Interface Repository identifier of the IDL interface. The caller retains
ownership of this string.

name

The non-NULL simple name of the IDL interface. The caller retains ownership of this
string.

Return values
CORBA::TypeCode_ptr

The newly-created TypeCode. The caller assumes ownership of this TypeCode, and
should subsequently release it using CORBA::release(TypeCode_ptr).

Example

I* Oode to create a tk_objref TypeCode corresponding to this
. IDL definition: inferface ny_interface;

/* assunme op initiali ed */

extern CORBA: : ORB ptr
CORBA: Reposnory]'d rep_ |d = CORBA: :string_dup("Re
CORBA: * | dentifier name = CORBA: : strlng_duP(ny_int
CORBA: : TypeCode_ptr tc = op->create_interface tc (

O
o

p03|tor Id 999");
erfac
rep |d, nane) ;

ORB::create_list

Overview

Creates a CORBA::NVList object.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a CORBA::NVList object, when using the
Dynamic Invocation Interface (Dll), to be passed to the CORBA::Object::create_request
method. The caller specifies the length of the NVLlIst to be created; upon return, the new
NVList contains the specified number of (uninitialized) items. The caller must initialize the
items in the NVList (or add new items) prior to passing it to the
CORBA::Object:;create_request method. Note, however, that since there is no mechanism
for updating the flags of a NamedValue already contained by an NVList, it is advisable to
create the list initially empty (that is, pass zero as the count), and then initialize the list by
adding (initialized) CORBA::NamedValue objects to it, using the method s on
CORBA::NVList.

WebSphere Application Server CORBA support - Page 175

See also “ORB::create_operation_list” on page 17@nd “Object::_request” on page 158 .
IDL Syntax

CORBA: : Status create_list (CORBA::Long count, .
CORBA: : NVLi st _ptr& nvlist);

Input parameters
count

The number of elements in the CORBA::NVList to be created. A zero value is valid.

nvlist

A pointer for a CORBA::NVList, passed by reference, to be initialized by the
CORBA::ORB::create_list method. The caller assumes ownership of the NVList object,
but if the same object is passed to the CORBA::Object::create_request method, the
Request object assumes ownership of the NVList.

Return values
CORBA::Status

A zero return value indicates success.
Example

/* The follow ng programcreates a CORBA: :create_|ist object and
*/generat es a system exception if appropriate

#i ncl ude "corba. h"
#include = CORBA::Long NUM TEMS = 3;
int main(int argc, char* argv[])

int rc = 0;

CORBA: : NVLi st_ptr NVLptr = CORBA: :NVList:: _nil();
/* assume orbTinitialized */

extern CORBA:: ORB_ptr orb;

try

! CORBA: : Status st = orb->create_|ist(NUM TEMS, NvVLptr);

catch (CORBA: : Syst enExcepti on &se)
cout << "exception: " << se.id() << endl; rc="1;"

return rc;

}

ORB::create_named value

Overview

Creates a CORBA::NamedValue object.

Original class

“CORBA::ORB" on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

The CORBA::ORB::create_named_value method is intended to be used by client
applications using the Dynamic Invocation Interface (Dll), to create a CORBA::NamedValue
object to be subsequently passed to the CORBA::Object::create_request method.

IDL Syntax

CORBA: : St at us create_nanmed_val ue (CORBA: : NanedVal ue_ptr& nv)
Input parameters
nv
A pointer for a CORBA::NamedValue object, passed by reference, to be initialized by
the CORBA::ORB::create_named_value method. The caller assumes ownership of the
new NamedValue object, but if the caller passes the NamedValue to the
CORBA::Object::create_request method, ownership of the NamedValue is then
transferred to the Request object.

Return values
CORBA::Status

A zero return code indicates success.

WebSphere Application Server CORBA support - Page 176

Example

/* The follow ng programcreates a CORBA:: NanedVal ue object and
*/generat es a system exception if appropriate

#i nclude "corba. h"
?I ncl ude int main(int argc, char* argv[])

int rc = 0;
CORBA: : NanedVal ue_ptr Nvptr = CORBA:: NanedVal ue::_nil();
/* assume orb inifialized */
?xt ern CORBA:: ORB_ptr orb;
ry
{
CORBA: : Status st = orb->create_named_val ue(Nvptr);

catch (CORBA: : SystenException &se)
cout << "exception: " << se.id() << endl; rc="1;"

return rc;

}

ORB::create_operation_list

Overview

Creates a CORBA::NVList for a particular IDL
operation.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

The CORBA::ORB::create_operation_list method is intended to be used by client
applications that are using the Dynamic Invocation Interface (DIl), to create a
CORBA::NVList object to be passed to the CORBA::Object::create_request method. The
new NVList contains an item describing the name, type, and mode of each parameter of the
IDL operation described by the input CORBA::OperationDef object. The application must
update the NVList with the values of any in and inout parameters before invoking the
corresponding DIl request.

See also “ORB::create_list” on page 175 .
IDL Syntax

CORBA: : Status create_operation_list (

CORBA: : (’\,)K@/e,ratl onDef _ptr operdf,
CORBA: : NVLi st _ptr& nvlist);

Input parameters

operdf

A non-NULL CORBA::OperationDef object, obtained from the Interface Repository,
that describes the operation that the new NVList will describe. The caller retains
ownership of this object.

nvlist

A pointer for a CORBA::NVList object, passed by reference, to be initialized by the
CORBA::ORB::create_operation_list method. The caller assumes ownership of the
new NVList object, but if the caller subsequently passes the NVList to the
CORBA::Object::create_request method, the Request object then assumes ownership
of the NVList.

Return values
CORBA::Status

A zero return value indicates success.
Example
See example in CORBA::"Object::_create_request” on page 151 .

ORB::create_recursive_sequence_tc

Overview

| Creates a tk_recursive_sequence TypeCode.

WebSphere Application Server CORBA support - Page 177

Original class “CORBA::ORB” on page 167

Exceptions “CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a TypeCode of kind tk_recursive_sequence,
representing a recursive IDL sequence. (A recursive sequence is one whose element type
matches a type in which the recursive sequence is nested. For example, if IDL struct A
contains a sequence of A, then the sequence is a recursive sequence.) The result of this
method is used to construct other TypeCodes.

See also the CORBA::“ORB::create_sequence_tc” on page 17ethod, for creating
TypeCodes describing non-recursive IDL sequences.

IDL Syntax
CORBA: : TypeCode_ptr create_recursive_sequence_tc
CCFQéE\::ULoﬁS bound, = - (

CORBA: : ULong of fset);

Input parameters
bound

The bound of the IDL sequence. Zero designates an unbounded sequence.

offset

Indicates which enclosing TypeCode describes the elements of the recursive
sequence. It is the level of nesting of the sequence in the type that matches the
sequence's elements. For example, the sequences in the following examples all have
an offset of one:

struct fool {

I ong val ue; .
sequence <fool> chain;

struct foo2
| ong val uel;
| ong val ue2;)
sequence <fo002> chai n;

struct foo3
struct foo #)
_sequence <fo004> chai n;

e
while the sequences in the following example has an offset of two:

struct foo4 {
struct foo5 1)
sequence <foo4> chain;

b

Return values
CORBA::TypeCode_ptr

The newly-created TypeCode. The caller assumes ownership of this TypeCode., and
should subsequently release it using CORBA::release(TypeCode_ptr).

Example

/* Code to create a tk_recursive_sequence TypeCode corresponding to
this IDL definition:
struct my_struct { |ong ny_| ong;
. sequence ny_seq; };
/* assune op initialized */
extern CORBA:: ORB _ptr op; X
CORBA: : TypeCode_pfr tc = op->create_recursive_sequence_tc (3, 1);

ORB::.create_sequence_tc

WebSphere Application Server CORBA support - Page 178

Overview

Creates a tk_sequence TypeCode.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a TypeCode of kind tk_sequence, representing
an IDL sequence.

See also the CORBA::"ORB::create_recursive_sequence_tc” on page 177 method, for
creating TypeCodes describing recursive IDL sequences.

IDL Syntax
CORBA: : TypeCode _ptr create sequence_tc
yp _p oo q _te (

A ULon%Obound,
CORBA: : TypeCode_ptr el ement _type);

Input parameters
bound

The bound of the IDL sequence. Zero designates an unbounded sequence.

element_type

A non-NULL CORBA::TypeCode describing the type of the sequence elements. The
caller retains ownership of this TypeCode.

Return values
CORBA::TypeCode_ptr

The newly-created TypeCode. The caller assumes ownership of this TypeCode, and
should subsequently release it using CORBA::release(TypeCode_ptr).

Example

/* Code to create a tk_sequence TypeCode corresponding to this
IDL definition:
y sequence ny_seq;
/* assune op initialized */
extern CORBA:: ORB ptr op;
CORBA: : TypeCode_ptr tc = op->create_sequence_tc (12, CORBA::_tc_short);

ORB::create_string_tc

Overview

Creates a tk_string TypeCode.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a TypeCode of kind tk_string, representing an
IDL string.

IDL Syntax
CORBA: : TypeCode_ptr create_string_tc (CORBA: :ULong bound);

Input parameters
bound

The bound of the IDL string. Zero designates an unbounded string.

Return values

CORBA::TypeCode_ptr

The newly-created TypeCode. The caller assumes ownership of this TypeCode, and
should subsequently release it using CORBA::release(TypeCode_ptr).

Example
/* Code to create a tk_string TypeCode corresponding to this

WebSphere Application Server CORBA support - Page 179

I DL definition:
. string <123> nmy_string; (this is a bounded string)
/* assune op initialized */
extern CORBA: : ORB ptr op;
CORBA: : TypeCode_ptr tc = op->create_string_tc (123);

ORB::.create_struct_tc

Overview

Creates a tk_struct TypeCode.

Original class

“CORBA::ORB" on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a TypeCode of kind tk_struct, representing an
IDL struct.

IDL Syntax

peOode ptr create_struct_tc (

CCR;éA Repositoryld rep_id,
:ldentifier nane,

O(PBA Struct ManberSeq & nmenbers) ;

Input parameters

rep_id

The non-NULL Interface Repository identifier of the IDL struct. The caller retains
ownership of this string.

name

The non-NULL simple name of the IDL struct. The caller retains ownership of this
string.

members

A CORBA::StructMemberSeq object (a sequence of structs of type
CORBA::StructMember) listing the members of the IDL struct. Each
CORBA::StructMember in the sequence specifies the name and type of the
corresponding struct member; only the type member is used, and the type_def
member should be set to NULL. The sequence must contain at least one
CORBA::StructMember, and each CORBA::StructMember in the sequence must have
a non-NULL TypeCode. The caller retains ownership of this object.

Return values
CORBA::TypeCode_ptr

The newly-created TypeCode. The caller assumes ownership of this TypeCode, and
should subsequently release it using CORBA::release(TypeCode_ptr).

Example

/* Code to create a tk_struct TypeCode corresponding to this
I DL definition:
struct ny_struct

| on I on
charg % charg

*/

/* assume _op |n|t|aI|zed =

extern CORBA:: E

CORBA: : _I DL SEQJ Struct Menber stm seq;
stm seq. | ength(2);

stmseq [0 type=CCRBA:: tclong

stmseq [0].name = CORBA: :Strin up(nmy_long");
stm seq 1 type:CO?BA:: tc_c

stmseq name = CORBA::Strin Edup "my_cha

Rep05|t0ryld rep_ id = strl ng dup()ReposMoryld 999");
CO?BA Identifier nane-CCRBA string P('rryst ")
CORBA: : TypeCode_ptr tc = op- >create struc tc (rep_ |d nane, stmseq);

ORB::create_union_tc

Overview

| Creates a tk_union TypeCode.

WebSphere Application Server CORBA support - Page 180

Original class

“CORBA::ORB" on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used to create a TypeCode of kind tk_union, representing an

IDL union.
IDL Syntax

CORBA: peCode ptr create_union_tc (
CO?)IIB :Repositoryld rep_id,
I dentifier name,
CO?BA TypeCode ptr di scri ninator_type,
hi onMenber Seq & nenbers);

Input parameters

rep_id

The non-NULL Interface Repository identifier of the IDL union. The caller retains
ownership of this string.

name

The non-NULL simple name of the IDL union. The caller retains ownership of this
string.

discriminator_type

A non-NULL CORBA::TypeCode describing the type of the union's discriminator. The
caller retains ownership of this TypeCode.

members

A CORBA::UnionMemberSeq object (a sequence of unions of type
CORBA::UnionMember) listing the members of the IDL union. Each
CORBA::UnionMember in the sequence specifies the name, type, and member label
of the corresponding union member. The type member is used, but the type_def
member should be set to NULL. A union-member label of the zero octet is used to
indicate the default union member. The sequence must contain at least one
CORBA::UnionMember, and the TypeCode of each CORBA::UnionMember in the
sequence must be non-NULL. The caller retains ownership of this object.

Return values
CORBA::TypeCode_ptr

The newly-created TypeCode. The caller assumes ownership of this TypeCode, and
should subsequently release it using CORBA::release(TypeCode_ptr).

Example

/* Code to create a tk_union TypeCode corresponding to this
IDL definition:
uni on ny_union switch (Ilong)

casel: ulong ny_ul ong;
~ case2: float ny_float;

*

/* assune _op |n|t|al|zed */

extern CORBA : ORB ptr op;

CORBA: : _| DL SEQJENCE Uni onMenber unm seq;

unm seq. | ength
/* Set the ne er t pecode and the rrenber nane for the first Uni onMenber */
pe :

unmseq [0] .ty A:: _tc_ulong

unm seq [0].name = IStrv n? dup(ul ong' %

/* Set the nenber pecode and he rrenber nane for the second Uni onMenber */
unm seq [1].type A | oat ;

unm seq [1].name = CORBA: : strl ng dup(ny_f1 oat

/* Create the Any that deflnet etwo nenber Ia els*/

unm seq [0] .| abel <<= (corba::|ong

unmseq [1]. | abel <<="(CORBA: :Long)' 2;

corba; rep05|tory| d rep_id=' "CORBAY X stri ng _dup(" rep05|tory| d_999");
" corba 1dentifier nane=" CORBA: : strlng gg my_uni on");

corba: : t ypecode_ptr di scrimnator type =" BA™: _t _long;"
corba::typecode_ptr tc="op-">creafe_union_tc (rep_id, nane,

di scrim nat or_type, unmseq);

ORB ::get_default_context

WebSphere Application Server CORBA support - Page 181

Overview Returns the default CORBA::Context object.

Original class “CORBA::ORB” on page 167

Exceptions “CORBA::SystemException” on page

Intended Usage

This method is intended to be used by client applications to obtain a default
CORBA::Context object, which can be passed to IDL operations that require a Context
parameter. The default CORBA::Context object contains a name/value pair for each
environment variable set in the calling process's environment.

IDL Syntax
CORBA: : Status get_defaul t _context (CORBA:: Context_ptr& ctx);
Input parameters
ctx
A pointer for a CORBA::Context object, passed by reference, to be initialized by the

CORBA::ORB::get_default_context method. The caller assumes ownership of the
CORBA::Context object.

Return values
CORBA::Status

A zero return value indicates success.
Example

/* The follow ng programcreates a CORBA:: Context object and generates
., System exceptioni f appropriate

#i nclude "corba. h"

?I nclude int nmain(int argc, char* argv[])
int rc = 0; .
CORBA: : Context__ptr Ctxtptr = CORBA: : Context::_nil();
/* assume orb Tnitialized */
{axtern CORBA: : ORB_ptr orb;
ry

{
} CORBA: : Status st = orb->get_defaul t _context(Ctxtptr);
catch (CORBA: : Syst enExcepti on &se)

cout << "exception: " << se.id() << endl; rc="1;"

return rc;

}
ORB::get_next_response

Overview Returns the next available response, after issuing
multiple deferred requests in parallel.

Original class “CORBA::ORB” on page 167

Exceptions “CORBA::SystemException” on page

Intended Usage

The CORBA::ORB::get_next_response method is intended to be used by client applications
that are using the Dynamic Invocation Interface (DIl), to obtain the next available response
after sending multiple deferred requests in parallel (for example, using
CORBA::ORB::send_multiple_requests_deferred or CORBA::Request::send_deferred). The
order in which responses are received does not necessarily match the order in which
requests were sent. If no response is currently available, this method will block until a
response is available. To avoid blocking, use the CORBA::ORB::poll_next_reponse method.

IDL Syntax

CORBA: : St at us get _next_response (CORBA: : Request _ptr& req);
Input parameters

WebSphere Application Server CORBA support - Page 182

req
A pointer for a CORBA::Request object, passed by reference, to be initialized by the
CORBA::ORB::get_next_response method to point to the CORBA::Request object
whose response was received. The CORBA::Request object is owned by the client
that originally issued the Request.

Return values
CORBA::Status

A zero return value indicates success.
Example

/* Assurme the following IDL interface:
interface testObject

string testMethod (in |ong input_val ue, out float out_val ue);

*

#i ncl ude "corba. h"

/* assume cop initialized */

extern CORBA:: ORB ptr cop;

/* Create the Request object */

CORBA: : Obj ect _var my_proxy = [*

CORBA: : Request_ptr req = ny_proxy->_r eguest ("testMet ho ;

req->add_i n_arg() <<= (corba::long) 12345; /* sets type and val ue */
corba:Tfloat out_float; req -> add_out_arg() <<= out_float; /* sets type */
req -> set_return_type (BA: : _tc_stri ng?;

3gt _a proxy sonmehow */

whi | e (! cop->pol | _next _response())

/* Vait */
; /* determine if a responlse to a
u

; deferred request is available */
cop- >get _next _response(req); return t

r he next avail abl e response */

ORB::get_service_information

Overview

Describes what services of a particular type are
available.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by client and server applications to determine what
services of a particular type (such as Security services) are available. The result of
CORBA::ORB::get_service_information does not vary during the lifetime of a single process.

IDL Syntax

CORBA: : Bool ean_get _servi ce_i nformati on (CORBA: ; Servi ceType service_type,
CORBA: : Servi cel nf ormati on& servi ce_i nf ormati on);

Input parameters

service_type

The identifier of the service for which information is needed. For example, use
CORBA::Security to obtain information about what security services are available in
the calling process.

service_information

A CORBA::Servicelnformation variable, passed by reference, to be initialized by the
CORBA::ORB::get_service_information method.

Return values

CORBA::Boolean

Zero indicates that the requested service is not available, and hence that the
service_information parameter has not been updated. A nonzero return value indicates
that the service_information parameter has been initialized.

Example

#i ncl ude "corba. h"
int main(int argc, char* argv[])

int rc = 0;

WebSphere Application Server CORBA support - Page 183

/* assune cop initialized */
extern CORBA:: ORB ptr cop;
CORBA: : Ser vi celnfornatlon si
[* request service information for CORBA:: Security */
CORBA: : Bool ean retval =

cop->get_servi ce_i nfor mati on(CORBA: : Security, si);
return rc;

}
ORB::list_initial_services

Overview

Lists the runtime objects available by calling the
CORBA::ORB::resolve_initial_references method.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

The CORBA::ORB::list_initial_services method is intended to be used by client and server
applications to determine what object references are available from the
CORBA::ORB::resolve_initial_references method.

IDL Syntax
CORBA: : Ooj ectldList* list_initial_services ();
Input parameters
None.
Return values
CORBA::ObjectldList *

A pointer to a sequence of strings, where each string is an identifier that can be
passed to CORBA::ORB::resolve_initial_references. The caller assumes ownership of
the returned result and should subsequently delete it.

Example

/* This pro%rQamllsts the runtine objects available into a
CORBA: : bj ect | dLi st obj

*/
#i ncl ude "corba. h"
#include int main(int argc, char* argv[])
int rc = 0;

CORBA: : CRB Obj ect I dLi st *idlist = NULL;
/* assume _orb initialized */

textern CORBA: : ORB_ptr orb;

ry

} idlist = orb->list_initial_services();
catch (CORBA: : Syst enExcepti on &se)

! cout << "exception : " << se.id() << endl; rc="1;"

|}f (idlist)

{ /* use |d||st such as idlist->length(), (*idlist)[i] where i is
index ... */

%eturn rc;

}
ORB::object_to_string

Overview

Converts an object reference to an external form that
can be stored outside the ORB or exchanged between
processes.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage
The CORBA::ORB::0object_to_string method is intended to be used by client or server

WebSphere Application Server CORBA support - Page 184

applications to convert object references (either proxy objects or local objects) to a string
form that has meaning outside the process. The CORBA::ORB::string_to_object can then
be used to reconstitute the object reference (either in the same process or a different
process). The output string is compliant with the CORBA 2.1 specification for Interoperable
Object References.

If the caller is a server (that it, the caller has already invoked CORBA::BOA::impl_is_ready),
and the input object reference is a local object, then the resulting string can be passed to
CORBA::ORB::string_to_object to construct a proxy in another process, or to obtain the
original object pointer in the same process.

If the caller is not a server and the input object reference is a local object (rather than a
proxy), then the result of CORBA::ORB::0bject_to_string is valid only within the calling
process for the lifetime of the process and as long as the input object resides in the process.

IDL Syntax
char * object_to_string (CORBA: : Qbject_ptr obj);
Input parameters
obj
The object reference to be converted to string form. Nil object references are valid.

Return values
char *

The string form of the input object reference (either a proxy object or a local object).
The caller assumes ownership of this string and should subsequently free it using
CORBA::string_free.

Example
/* convert |ocal object to string representation. Assune that is
a |l ocal object pointer already declared and defined of a class,
*/say Foo

#i ncl ude "corba. h"

#i ncl ude .

/* assune op initialized */

extern CORBA:: ORB_ptr op;

CORBA: : strln? str = ogt>object to_string(p L

CORBA: : Obj ect_ptr Obj r = oF >str|ng t o_obj ect str)

/* narrow down obj Ptt by calling Foo:r narrow(objPtr],
get back a | ocal obj same as p .

CCRBA stri free&tstr)
CORBA: :rel e

ORB::poII_next_response

Overview Determines whether a response to a deferred request
is available.

Original class “CORBA::ORB” on page 167

Exceptions “CORBA::SystemException” on page

Intended Usage

The CORBA::ORB::poll_next_response method is intended to be used by client applications
that are using the Dynamic Invocation Interface (DIl), to determine whether a response is
available, after sending one or more deferred requests (for example, using
CORBA::ORB::send_multiple_requests_deferred or CORBA::Request::send). This method
can be called prior to calling ORB::get_next_response, to avoid blocking.

IDL Syntax

CORBA: : Bool ean pol | _next_response ();
Input parameters

None.

WebSphere Application Server CORBA support - Page 185

Return values
CORBA::Boolean

A non-zero return value indicates that a response is available.
Example

See example in “ ORB::get_next_response” on page 182 .

ORB::resolve_initial _references

Overview

Obtains an object reference to a key service, such as
the Naming Service or the Interface Repository.

Original class

“CORBA::ORB” on page 167

Exceptions

If the input identifier is not valid, a
CORBA::ORB::InvalidName exception is thrown.

If another error occurs, a “CORBA::SystemException”
on page is thrown.

Intended Usage

The CORBA::ORB::resolve_initial_references method is intended to be used by client and
server applications to obtain initial object references for accessing key services, such as the
Interface Repository or the Naming Service. The caller specifies the identifier of the service
for which a reference is needed, then narrows the return result to the proper type. For
example, when the input is "InterfaceRepository"”, the return result should be narrowed to
CORBA::Repository. When the input is "NameService", the return result is the root name
context of the local naming tree., and should be narrowed to CosNaming::NamingContext
(or some class derived from it). Typically an application uses
CORBA::ORB::resolve_initial_references to obtain a reference to the root name context,
then invokes operations on that reference to obtain all other object references.

IDL Syntax
CORBA: : Ooj ect _ptr resolve_initial _references (const char* identifier);
Input parameters
identifier
The non-NULL identifier of the object reference to be obtained. Valid identifiers are

those returned by CORBA::ORB::list_initial_services. The caller retains ownership of
this string.

Return values
CORBA::Object_ptr

A reference to the requested services. The caller assumes ownership of the returned
object reference, and should subsequently release it using CORBA::release.
Example

#i ncl ude "corba. h"

/* assune op |n|t|aI|zed =

extern CORBA:: F op;)
CORBA: : ORB: : Obj ectldList *oil = op->list_initi I serw ces(); .
/* pass in the first el enent of ol |l as identifi to obtain object

reference */

CORBA: : Qbj ect_ptr optr ;

ogtr = op->resol ve_initial eferences((*ml)[o])
narrow optr apFropr ately ... */

(IJ?BA rel ease(op

ORB: resolve initial _references_remote

Overview

Obtains an object reference to the Naming Service.

Original class

“CORBA::ORB” on page 167

WebSphere Application Server CORBA support - Page 186

Exceptions

If the input identifier is not valid, a
CORBA::ORB::InvalidName exception is thrown.

If another error occurs, a “CORBA::SystemException”
on page is thrown.

Intended Usage

The CORBA::ORB::resolve_initial_references_remote method is intended to be used by
client and server applications to obtain a reference to a NameService object from an input
list of host names and associated port numbers.

The return result is the first root name context of a naming tree located from the input list of

hosts. The returned object should be narrowed to CosNaming::NamingContext (or some
class derived from it).

IDL Syntax

CORBA: : Qbj ect _ptr resolve_initial_references_renote
(const char * identifier, T .
const CORBA:: ORB::renpte_nodifier host_port_list);

Input parameters

identifier

The non-NULL identifier of the Naming Service object reference to be obtained. This
string must be "NameService".

host_port_list

This is a list of host names and associated port numbers on which the
resolve_initial_references_remote operation will attempt to locate a NameService
object. The operation will return the first NameService object located from the host and
port combinations provided in the list.

Each string representing a hostname and port combination must be of the following
syntax:

iiop://Host Nanme: Port Nunber

Return values
CORBA::Object_ptr

A reference to the requested Naming Service is returned. The caller assumes
ownership of the returned object reference, and should subsequently release it using
CORBA: release.

Example
#i ncl ude "corba. h"
2

/[- assume the ORB object pointer
I has already been initialized .

IR e T T T

extern CORBA:: ORB_ptr op;

CORBA: : Obj ect _ptr optr = NULL; . .
F/CRBA: :String_var nam ng_obj ectid = CORBA: :string_dup ("NaneService");

/[- create a host port |ist and,
/1 provide roomfor three entries

R TR T
CORBA: : ORB: : renpt e_nodi fier host _port_|ist;
H:)st_port_l ist.length (3);
/[- initialize the host port Iist
I with three host nane and port nunber
H conbi nations . .
host _port_list [0] = CORBA::string_dup ("iiop://hostNanel: 900");
host _port_list [1] = CORBA::string_dup ("iiop://hostNane2: 3003");
host _port_list [2] = CORBA: :string_dup ("iiop://hostNane3:900);
optr = op-> resol ve_initial _references_renote (nam ng_objectid,
host _port_list);
if (opfr !'="NULL
{ [lllcscccococococooocooocococooocooocooocooocooocoococoococooocooooooo
/[- narrow the ob{)_ect to the appropriate object type
H - release the object (_narrow performs a _duplicate)

WebSphere Application Server CORBA support - Page 187

optr = CORBA:: CosNam ng:: Nam ngContext:: narrow (optr);
O‘()RBA::relef:lse(optr);g g - (optr)

ORB: :send_rﬁuItiple_requests_d eferred

Overview

Issues multiple deferred requests in parallel.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

The CORBA::ORB::send_multiple_requests_deferred method is intended to be used by
client applications that are using the Dynamic Invocation Interface (DII), to issue multiple
deferred requests in parallel. The results of these requests can later be obtained using
CORBA::ORB::get_next_response. For each CORBA::Request in the input sequence,
CORBA::Request::send_deferred is invoked.

IDL Syntax

CORBA: : Status send_mul tiple requests_deferred (
const CORBA: : Request Seq& req_seq);

Input parameters
req_seq

A sequence of CORBA::Request_ptr objects to be invoked. An empty sequence is
valid. However, each CORBA::Request_ptr object in the sequence must be non-NULL.
The caller retains ownership of this sequence and of the CORBA::Request objects it
contains.

Return values
CORBA::Status

A zero return value indicates that all Requests were issued.
Example

#i ncl ude "corba. h"

/* assune op initialized */

extern CORBA:: CRB_Pt r op;

CORBA: : ORB: : Request Seq reqSeq = CORBA: : ORB: : Request Seq(1024) ;
... |* prepare each request in reqSeq */

/* issue multiple deferred requests */

CORBA: : Status rc = op->send_mul tipl e_requests_deferred(reqgSeq);

ORB: :send_rﬁuItipIe_requests_oneway

Overview

Issues multiple oneway requests in parallel.

Original class

“CORBA::ORB” on page 167

Exceptions

“CORBA::SystemException” on page

Intended Usage

The CORBA::ORB::send_multiple_requests_oneway method is intended to be used by
client applications that are using the Dynamic Invocation Interface (DIl), to issue multiple
oneway requests in parallel. For each CORBA::Request in the input sequence, CORBA::
Request::send_oneway is invoked.

IDL Syntax

CORBA: : Status send_mul tipl e_requests_oneway (
const CORBA: : Request Seq& req_seq);

Input parameters

req_seq

A sequence of CORBA::Request_ptr objects to be invoked. An empty sequence is
valid. However, each CORBA::Request_ptr object in the sequence must be non-NULL.

WebSphere Application Server CORBA support - Page 188

The caller retains ownership of this sequence and of the CORBA::Request objects it
contains.

Return values
CORBA::Status

A zero return value indicates that all Requests were issued.
Example

#i ncl ude "corba. h"

/* assume op |n|t|a||zed */

extern CORBA: : Ptr op

CORBA: : ORB: : Request Seq reqSeq = CORBA: : ORB: : Request Seq(1024) ;
/* prepare each request in regSeq *[

/* issue nulti ple _oneway requests */

CORBA: : Status rc = op->send_nul ti pl e_requests_oneway(reqSeq);

ORB::string__ to _object

Overview

Converts a string (produced by
CORBA::ORB::0object_to_string) into an object
reference.

Original class

“CORBA::ORB” on page 167

Exceptions

If the input string is not valid, or refers to a local object
that is no longer valid (insofar as the ORB can
determine), a “CORBA::SystemException” on page is
thrown.

Intended Usage

The CORBA::ORB::string_to_object method is intended to be used by client or server
applications to convert a string form of an object reference (originally generated using
CORBA::ORB::0object_to_string) back into an object reference. If the input string refers to a
local object residing in a server process (a process that has called
CORBA::BOA::impl_is_ready), then the result is the same local object originally passed to
CORBA::ORB::0bject_to_string. If the input string refers to a local object residing in a
non-server process, then the result is the same local object originally passed to
CORBA::ORB::0bject_to_string provided that both calls were made from the same process
instance. If the input string refers to an object in another process, then
CORBA::ORB::string_to_object always constructs a new proxy object. The validity of the
object/server to which the proxy refers is not checked until the application invokes an
application operation on the proxy.

IDL Syntax
CORBA: : Ohj ect _ptr string_to_object (const char* str);

Input parameters
str

A string form of an object reference. This string must have been originally generated
using CORBA::ORB::0bject_to_string (although not necessarily by the process). The
caller retains ownership of this string.

Return values
CORBA::Object_ptr

The object reference encoded by the input string. The caller assumes ownership of
this object reference and should subsequently release it using CORBA::release.

Example
See example in “ ORB::0bject_to_string” on page 184 .

CORBA module: Policy Interface

WebSphere Application Server CORBA support - Page 189

This interface is not part of the programming model and should not be directly invoked or
overridden.

CORBA module: PrimitiveDef Interface

Overview The PrimitiveDef interface is used by the Interface
Repository to represent one of the OMG IDL primitive
data types.

File name somir.idl

Local-only True

Ancestor interfaces “IDLType Interface” on page 127

Exceptions “CORBA::SystemException” on page

Supported operations “PrimitiveDef::kind” on page 190

“IDLType::type” on page 127

Intended Usage

An instance of a PrimitiveDef object is used by the Interface Repository to represent an
OMG IDL primitive data typez.

PrimitiveDef objects are not named Interface Repository objects, and as such do not reside
as named objects in the Interface Repository database. PrimitiveDef objects are used to
create other Interface Repository objects (both named and un-named). An instance of an
PrimitiveDef object can be created using the get_primitive operation of the Repository
interface.

IDL syntax
nodul e CORBA
{ enum PrimtiveKind
pk_nul |, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,

pk~fl oat, pk_doubl e, “pk_bool ean, pk_char, B.k_OCt et, pk_any,
pk_TypeCode, “pk_Princi pal, pk_string, pk_objref
p

k”l ongl ong, pk_ul ongl ong, /Isupported on Al X and W ndows NT
pk_wchar, g _wstring,
pk_l ongdoubl /I not supported

interface PrimtiveDef:|DLType
readonly attribute PrimtiveKind kind;

}

PrimitiveDef::ki’nd

Overview

The kind read operation retrieves the kind of a primitive
definition (CORBA::PrimitiveDef).

Original interface

“ PrimitiveDef Interface” on page 190

Exceptions

“CORBA::SystemException” on page

3 The OMG IDL RAHA

Intended Usage

The kind attribute indicates which primitive type is represented by a PrimitiveDef object. The
valid values for the kind attribute that may be retrieved using the kind operation include
CORBA::pk_short, CORBA::pk_long, CORBA::pk_ushort, CORBA::pk_ulong,
CORBA::pk_float, CORBA::pk_double, CORBA::pk_boolean, CORBA::pk_char,

CORBA::pk_wchar, and CORBA::pk octet, that represent the basic kinds implied by the
finalyyh data” types include CORBA:Null, CORBA:Void, CORBA:Short, CORBA:Long, CORBA:UShort,

CORBA::ULong, CORBA::Float, CORBA::Double, CORBA::Boolean, CORBA::Char, CORBA::Octet, CORBA::Any, CORBA::TypeCode,
CORBA::Principal, CORBA::String, CORBA::LongLong, CORBA::ULongLong,CORBA::Wstring, CORBA::Wchar, and CORBA::Objref.

WebSphere Application Server CORBA support - Page 190

Other kind values include: CORBA::pk_any (CORBA::Any data type),
CORBA::pk_TypeCode (CORBA::TypeCode data type), CORBA::pk_Principal
(CORBA::Principal data type) , CORBA::pk_string (an unbounded string),
CORBA::pk_wstring, and CORBA::pk_objref (CORBA::Object data type).

IDL Syntax

readonly attribute PrimtiveKind kind;

Input parameters
None.

Return values

PrimitiveKind

The returned value is the value of the kind attribute (CORBA::PrimitiveKind) of the
CORBA::PrimitiveDef.

Example

Il C++
// _assume that '"this_prinmitive has already been initialized
CORBA: : PrimitiveDef ¥ this primtive;
/1 retrieve the 'kind of the PrinitiveDef
CORBA: : PrlmtlveKl nd returned_kind;
returned_kind = this_primtive-> kind ();

CORBA module: Principal Interface

This interface is not part of the programming model and should not be directly invoked or
overridden.

CORBA module: Repository Interface

Overview The Repository interface provides global access to the
Interface Repository. As it inherits from Container, it
can be used to look up any definition either by the
name or by id (Repositoryld).

File name somir.idl

Local-only True

Ancestor interfaces “Container Interface” on page 85

Exceptions “CORBA::SystemException” on page

Supported operations “Repository::create_array” on page 192

“Repository::create_sequence” on page 192

“Repository::create_string” on page 193

“Repository::create_wstring” on page 194

“Repository::get_primitive” on page 194

“Repository::lookup_id” on page 195

Intended Usage

The Repository object is a single instance object used to access member objects of the
Interface Repository. The Repository object can directly contain constants (ConstantDef
objects), type definitions (TypedefDef objects, including StructDef objects, UnionDef objects,
EnumDef objects, and AliasDef objects), exceptions (ExceptionDef objects), interfaces
(InterfaceDef objects), and modules (ModuleDef objects).

Access to the Repository object is achieved by invoking the ORB operation

WebSphere Application Server CORBA support - Page 191

resolve_initial_references.

IDL syntax

nodul e CORBA { . .
interface Repository: Container {
// read interface, . . .
Cont ai ned | ookuP_l d (in Repositoryld search_id);
PrimtiveDef get_primtive (in PrimtiveKind kind);
/] write interface . .
StringDef create_string (in unsigned |ong bound);
Wstri ngDef create_wstring (in unsigned | ong bound);
SequenceDef create_sequence(
in unsigned | ong bound,
sn | DLType el enent _type
ArrayDef create_array %
in unsigned |ong |ength,
in | DLType el enent_type

Repository::create_array

Overview

The create_array operation is used to create a new
array definition (ArrayDef).

Original interface

“ Repository Interface” on page 191

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_array operation returns a new ArrayDef with the specified length and
element_type.

IDL Syntax

ArrayDef create_ array (
I n unsigned | ong | ength,
5[1 I DLType el enent _type

Input parameters
length

The length value specifies the length of the new ArrayDef.
element_type
The element_type is the IDLType representing each element of the ArrayDef.

Return values
ArrayDef ptr

The return value is a pointer to the newly created ArrayDef object. The memory
associated with the object is owned by the caller and can be released by invoking
CORBA:release.

Example

Il C++
/] create_array .
/[assume that 'repository_ptr' and 'struct_1'
/] _have already been initialized
A: : Repository * repository_ptr;
CORBA: : StructDef " * struct_1;)
/] create an array definifion with a bound of 409
// and array el enent type of 'struct_1"
CORBA: : ArrayDef * array_def _ptr;
CORBA: : ULon? array_|l ength =409;
array_def _ptr = reposifory_ptr-> create_array (array_length, struct_1);

Repository::create_sequence

Overview

The create_sequence operation is used to create a new
sequence definition (SequenceDef).

Original interface

“ Repository Interface” on page 191

WebSphere Application Server CORBA support - Page 192

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_sequence operation returns a new SequenceDef with the specified bound and
element_type.

IDL Syntax

SequenceDef create_sequence(
in unsigned | ong bound,
|)n I DLType el enent _type

Input parameters
bound

The bound value represents the bound of the sequence definition. The bound value
can be zero.

element_type
The element_type is the IDLType of the elements in the sequence.

Return values
SequenceDef_ptr

The return value is a pointer to the SequenceDef of the specified bound and
element_type.

Example

Il C++
/| assume that 'repository_ptr' and 'struct_1' have already been
[/ initialized .
CORBA: : Repository * repository_ptr;
CORBA: : Struct Def " * struct_1;
/| create a sequence of 45 'struct_1' elenents . . .
CORBA: : ULong bound_of _sequence = 45;
CORBA: : SequenceDef ™* Sequence_def _ptr;
sequence_def _ptr = repository_ptr-> create_sequence
(bound_of “sequence, struct_1);

Repository::create_string

Overview

The create_string operation is used to create a new
StringDef to represent a bounded string.

Original interface

“ Repository Interface” on page 191

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_string operation returns a new StringDef with the specified bound, that must be
non-zero.

Note: Unbounded strings are represented by using the “get_primitive” on page 19dperation
to create a PrimitiveDef with a kind of CORBA::pk_string.

IDL Syntax

StringDef create_string (in unsigned | ong bound);
Input parameters
bound

The bound parameter represents the bound (the maximum number of characters in
the string) of the bounded string. The value must be greater than zero.

Return values
StringDef_ptr

The returned value is a pointer to a CORBA::StringDef object with the specified bound.
The memory associated with the object is owned by the caller and can be released by
invoking CORBA::release.

WebSphere Application Server CORBA support - Page 193

Example

/] C++
/| assume that 'repository _ptr' has already been initialized
CORBA: : Reposi tory repository ptr:
/1 _create a bounded string with a bound of 51
CORBA: : ULong bound_of _string = 51,
CORBA: : StringDef *7string_def_ptr; . .
string_def_pftr = repository_pfr-> create_string (bound_of_string);

Repository:.create_wstring

Overview

The create_wstring operation is used to create a new
WstringDef to represent a bounded wide string.

Original interface

“ Repository Interface” on page 191

Exceptions

“CORBA::SystemException” on page

Intended Usage

The create_wstring operation returns a new WstringDef with the specified bound, that must

be non-zero.

Note: Unbounded wide strings are represented by using the “get_primitive” on page 194
operation to create a PrimitiveDef with a kind of CORBA::pk_wstring.

IDL Syntax

StringDef create_wstring (in unsigned |ong bound);

Input parameters
bound

The bound parameter represents the bound (the maximum number of wide characters
in the string) of the bounded wide string. The value must be greater than zero.

Return values
StringDef_ptr

The returned value is a pointer to a CORBA::WstringDef object with the specified
bound. The memory associated with the object is owned by the caller and can be
released by invoking CORBA::release.

Example

Il C++
/| _assume that 'repository _ptr' has already been initialized
CORBA: : Reposi tory repository_ptr;

I/ _create a bounded wide string with a bound of 51
CORBA: : ULong bound_of _wstri ng = 51;

CORBA: : Wt ri n?Def * wstring_def _ptr

wstring_def_p

r = repository_ptr-> creat e_wstring (bound_of _wstring);

Repository::get_primitive

Overview

The get_primitive operation is used to get a
PrimitiveDef object with the specified kind attribute.

Original interface

“ Repository Interface” on page 191

Exceptions

“CORBA::SystemException” on page

Intended Usage

The get_primitive operation returns a reference to a PrimitiveDef with the specified kind
attribute. All PrimitiveDefs are immutable and owned by the Repository.

IDL Syntax
PrimtiveDef get_primtive (in PrimtiveKind kind);

Input parameters
kind
The kind parameter indicates the kind of PrimitiveDef that is to be created. The valid

WebSphere Application Server CORBA support - Page 194

values for kind include CORBA::pk_null, CORBA::pk_void, CORBA::pk_short,
CORBA::pk_long, CORBA::pk_ushort, CORBA::pk_ulong, CORBA::pk_float,
CORBA::pk_double, CORBA::pk_longlong,
CORBA::pk_ulonglong,CORBA::pk_boolean, CORBA::pk_char, CORBA::pk_wchar,
CORBA::pk_octet, CORBA::pk_any, CORBA::pk_TypeCode, CORBA::pk_Principal,
CORBA::pk_string, CORBA::pk_wstring, and CORBA::pk_objref.

Return values
PrimitiveDef_ptr

The return value is a pointer to the new PrimitiveDef.

Example
Il C++
/] _assune Posnory ptr' has already been initialized
CORBA: : Re OSI ory repository_ptr

11 create a PrimtiveDef

tory_
neal, £ L) o] represent a CORBA: : Long data type
CORB, rimtive pk_l o
t

ng_def ;

i
|
pk_l ong_def = repository_ptr-> get primitive (CORBA: :pk_|long);

Repository::lookup_id

Overview

The lookup_id operation is used to look up an object in
a Repository given its Repositoryld.

Original interface

“ Repository Interface” on page 191

Exceptions

“CORBA::SystemException” on page

Intended Usage

The lookup_id operation is used to retrieve an object from the Interface Repository based
upon its unique CORBA::Repositoryld. If the Repository does not contain a definition for the

search CORBA::Repositoryld, a nil object reference is returned.
IDL Syntax

Cont ai ned | ookup_id (in Repositoryld search_id);

Input parameters
search_id

The search_id parameter is the unique CORBA::Repositoryld value of the Interface
Repository object that is sought.

Return values
Contained *

The returned value is a pointer to a CORBA::Contained object that was retrieved from
the Interface Repository. A nil object reference is returned if no object in the Interface
Repository has the specified CORBA::Repositoryld.

Example

Il C++
/'l assume that 'interface_1' and 'repository_ptr' have al ready
been initialized;
CORBA: : I nterfaceDef * interface_1;
CORBA: : Reposi t or ¥ * rep05|tory P
/1 _obtain the A: Rep05|torydfor interface_1'
CORBA: : Repositoryld rep_id;
;ep id=interface_1-> id();

/1 retrieve the Obj ect fromthe Interface Reposjtory database
/1l using the Posnoryld as the search key

CORBA: : Cont ai ned * cont ai ned

contai ned_ptr = repository_ ptr > | ookup_id (rep_id);

CORBA module: Request Class

Overview

Represents a DIl request.

File name

request.h

WebSphere Application Server CORBA support - Page 195

Supported methods “Request::_duplicate” on page 197

“Request::

_nil” on page 197

“Request::

add_in_arg” on page 198

“Request::

add_inout_arg” on page 198

“Request::

add_out_arg” on page 199

“Request::

arguments” on page 199

“Request::

contexts” on page 200

“Request::

ctx” on page 200

“Request::

env” on page 201

“Request::

exceptions” on page 201

“Request::

get_response” on page 202

“Request::

invoke” on page 202

“Request::

operation” on page 202

“Request::

poll_response” on page 203

“Request::

result” on page 203

“Request::

return_value” on page 204

“Request::

send_deferred” on page 204

“Request::

send_oneway” on page 204

“Request::

set_return_type” on page 205

“Request::

target” on page 205

Intended Usage

The Request class provides the primary support for the Dynamic Invocation Interface (DII),

which allows client applications to dynamically build and invoke requests on objects.

A Request object contains the following attributes:

target
A “CORBA::Object” on page 150 object that is the target of the request.

operation
The unscoped name of the IDL operation that is executed by the request.

arguments

A “CORBA::NVList” on page 144 object that describes the types of all the IDL
operation's parameters, the values of the operation's in and inout parameters, and
the variables in which the out parameter values are stored after the request is
invoked.

result
A “CORBA::NamedValue” on page 141 object that holds the result of the request
after it is invoked.

env

A “CORBA::Environment” on page 118 object that describes the client environment
associated with the request. If an exception is raised by the request, it is reported in
the client environment.

exceptions

WebSphere Application Server CORBA support - Page 196

Request::

An optional “CORBA::ExceptionList” on page 123 object that describes the
user-defined exceptions that the DIl operation can throw. This object is essentially a
list of TypeCodes for UserException subclasses.

contexts

An optional “CORBA::ContextList” on page 103 object that lists the context strings
that are sent with the DIl operation. A ContextList object differs from a “Context” on
page 98 object in that a ContextList supplies only the context strings whose values
are transmitted with the request, while Context is the object from which those
context string values are obtained.

ctx

A “CORBA::Context” on page 98 object that is passed when the request is invoked.
For operations having no "context" clause in their IDL specification, this attribute is
NULL.

The “CORBA::Object::_create_request” on page 151 and “CORBA::Object:;_request” on
page 158 methods can be used to create a Request object tailored to a specific IDL
operation. These methods are invoked on the target object of the DIl request. The
_create_request method allows the Request object to be created and fully initialized at
once. The _request method requires additional initialization after construction, using
methods provided by the Request class. The Request class provides methods to get and
set attributes, send a synchronous or asynchronous DIl request, and receive the result of an
asynchronous request. For additional information, see the CORBA::Object:: create_request
and CORBA::Object::_request method descriptions.

_duplicate

Overview

Duplicates a Request object.

Original class

“CORBA::Request”’ on page 195

Request::

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to a Request object. Both the original and the duplicate reference should subsequently be
released using CORBA::release(Request_ptr).

IDL Syntax

static CORBA: : Request_ptr _duplicate (CORBA: : Request_ptr p);
Input parameters
p

The Request object to be duplicated. The reference can be nil, in which case the
return value will also be nil.

Return values
CORBA::Request_ptr

The new Request object reference. This value should subsequently be released using
CORBA::release(Request_ptr).

_nil

Overview

Returns a nil CORBA::Request reference.

Original class

“CORBA::Request” on page 195

Intended Usage

This method is intended to be used by client and server applications to create a nil Request
reference.

IDL Syntax

WebSphere Application Server CORBA support - Page 197

stati c CORBA: : Request_ptr _nil();
Input parameters

None.

Return values
CORBA::Request_ptr

A nil Request reference.

Request::add _in_arg

Overview

Adds an input argument to the named value list for a
DIl request.

Original class

“CORBA::Request” on page 195

Intended Usage

The add_in_arg method is used by a client program to populate the named value list
associated with a CORBA::Request, which was created by calling
“CORBA::Object::_request” on page 158 . When called without a parameter, the add_in_arg
method adds an element to the end of a “CORBA::NVList” on page 144 by calling
“CORBA:NVList::add” on page 145 with argument passing mode CORBA::ARG_IN. When
passed a string, the add_in_arg method adds an element to the end of a CORBA::NVList by
calling “CORBA::NVList::add_item” on page 146 with the input argument name and
argument passing mode CORBA::ARG_IN.

IDL Syntax

CORBA: : Any &add_in_arg();
CORBA: y &add_in arg(const char *nane);

Input parameters
name

The name of the argument to be added. It is legal to pass a null pointer. If specified,
the input name should match the argument name specified in the IDL definition for the
operation.

Return values
CORBA::Any &

The value associated with the newly created named value, to be set by the caller with
the value of the input argument.

Request::add_inout_arg

Overview

Adds an in/out argument to the named value list of a DII
request.

Original class

“CORBA::Request” on page 195

Intended Usage

The add_inout_arg method is used by a client program to populate the named value list
associated with a CORBA::Request, which was created by calling
“CORBA::Object::_request’ on page 158 . When called without a parameter, the add_in_arg
method adds an element to the end of a “CORBA::NVList” on page 144 by calling
“CORBA::NVList::add” on page 145 with argument passing mode CORBA::ARG_INOUT.
When passed a string, the add_inout_arg method adds an element to the end of a
CORBA::NVList by calling “CORBA::NVList::add_item” on page 146 with the input argument
name and argument passing mode CORBA::ARG_INOUT.

IDL Syntax

CORBA: : Any &add_i nout _arg();

WebSphere Application Server CORBA support - Page 198

CORBA: : Any &add_i nout _arg(const char *nane);
Input parameters
name
The name of the argument to be added. It is legal to pass a null pointer. If specified,
the input name should match the argument name specified in the IDL definition for the
operation.
Return values
CORBA::Any &

The value associated with the newly created named value, to be set by the caller with
the value of the input/output argument.

Request::add_out_arg

Overview Adds an output argument to the named value list of a
DIl request.
Original class “CORBA::Request” on page 195

Intended Usage

The add_out_arg method is used by a client program to populate the named value list
associated with a CORBA::Request, which was created by calling
“CORBA::Object::_request” on page 158 . When called without a parameter, the
add_out_arg method adds an element to the end of a “CORBA::NVList” on page 144 by
calling “CORBA::NVList::add” on page 145 with argument passing mode
CORBA::ARG_OUT. When passed a string, the add _out_arg method adds an element to
the end of a CORBA::NVList by calling “CORBA::NVList::add_item” on page 146 with the
input argument name and argument passing mode CORBA::ARG_OUT.

IDL Syntax

w?BA Any &add_out _arg();
Any &add_out arg(const char *nane);

Input parameters
name

The name of the argument to be added. It is legal to pass a null pointer. If specified,
the input name should match the argument name specified in the IDL definition for the
operation.

Return values
CORBA::Any &

The value associated with the newly created named value, to be set by the caller with
the value of the output argument.

Request::arguments

Overview Retrieves the argument list of a DIl request.

Original class “CORBA::Request” on page 195

Intended Usage

The arguments method is used by a client program to access the argument list of a
Dynamic Invocation Interface (DIl) request. The argument list is specified using
a“CORBA::NVList” on page 144 object and describes the types of all the IDL operation's
parameters, the values of the operation's in and inout parameters, and the variables in
which the out parmeter values are stored after the DIl request is invoked. For additional
information, see the NVList class description. The argument list of a Request object is set by
the “CORBA::Object::_create_request method” on page 151 .

IDL Syntax

CORBA: : NVLi st _ptr argunents();

WebSphere Application Server CORBA support - Page 199

Input parameters
None.

Return values
CORBA::NVList_ptr

A pointer to the argument list of the DIl request, if any, or a null pointer. Ownership of
the return value is maintained by the Request object; the return value must not be
freed by the caller. If the DIl request raises an exception, the values of the operation's
out parameters are unpredictable.

Request::contexts

Overview

Accesses the list of context strings that is sent with a
DIl request.

Original class

“CORBA::Request”’ on page 195

Intended Usage

The contexts method is used by a client application to access the list of context strings that
are sent with a Dynamic Invocation Interface (DII) request, as optionally input to the
“CORBA::Object::_create_request” on page 151 method. The context list is specified using
a “CORBA::ContextList” on page 103 object and is used to improve performance. When
invoking a request without an associated ContextList object, the ORB looks up context
infomation in the Interface Repository. For additional information, see the ContextList class
description.

IDL Syntax
CORBA: : Cont ext Li st _ptr contexts();
Input parameters

None.

Return values
CORBA::ContextList_ptr

A pointer to the list of context strings that are sent with the DIl request, as input to
“CORBA::Object::_create_request” on page 151, or a null pointer. Ownership of the
return result is maintained by the Request object; the return value must not be freed by
the caller.

Request::ctx

Overview

Gets and sets the Context object associated with a DII
request.

Original class

“CORBA::Request” on page 195

Intended Usage

The ctx method is used by a client application to get and set the list of properties that are sent with a
Dynamic Invocation Interface (DIl) request. The list of properties is specified using a “CORBA::Context” on
page 98 object and is used to pass information from the client environment to the server environment. For
additional information, see the Context class description. The Context object associated with a DIl request
can also be set by the “CORBA::Object::_create_request” on page 151 method.

IDL Syntax
voi d ctx(CORBA: : Context _ptr p);
CORBA: : Cont ext _ptr ctx{) const;

Input parameters
new_context

A pointer to the new Context object to be associated with the DIl request. If a Context

WebSphere Application Server CORBA support - Page 200

object is already associated with the request, it is released. The caller retains
ownership of this parameter (the Request object makes a duplicate). It is valid to pass
a null pointer.

Return values
CORBA::Context_ptr

A pointer to the Context currently associated with the DIl request, if any, or a null
pointer. Ownership of the return value is maintained by the Request object; the return
value must not be freed by the caller.

Request::env

Overview

Retrieves the client environment associated with a DII
request.

Original class

“CORBA::Request” on page 195

Intended Usage

The env method is used by a client application to access an exception raised by a Dynamic
Invocation Interface (DIl) request. The exception is held in a “CORBA::Environment” on
page 118 object, which is used for error handling in those cases where catch/throw
exception handling cannot be used (such as DII). For additional information, see the
Environment class description. The Environment object is automatically created by the
“CORBA::Object:._create_request” on page 151 or “CORBA::Object::_request” on page 158
method used to construct the Request object.

IDL Syntax

CORBA: : Envi ronment _ptr env();
Input parameters
None.
Return values
CORBA::Environment_ptr

A pointer to the client environment associated with a DIl request. Ownership of the
return value is maintained by the Request object; the return value must not be freed by
the caller.

Request:.exceptions

Overview

Retrieves the list of user-defined exceptions that can be
thrown by a DII request.

Original class

“CORBA::Request” on page 195

Intended Usage

The exceptions method is used by a client application to access the list of user-defined
exceptions that can be thrown by a Dynamic Invocation Interface (DIl) request, as optionally
input to “CORBA::Object::_create_request’ on page 151 . The exception list is specified
using a “CORBA::ExceptionList” on page 123 object and is used to improve performance.
When invoking a request without an associated ExceptionList object, the ORB looks up
user-defined exception information in the Interface Repository. For additional information,
see the ExceptionList class description.

IDL Syntax

CORBA: : ExceptionLi st_ptr exceptions();
Input parameters

None.
Return values

WebSphere Application Server CORBA support - Page 201

CORBA::ExceptionList_ptr

A pointer to the list of user-defined exceptions that can be thrown by the DIl request,
as input to “CORBA::Object::_create_request” on page 151, or a null pointer.
Ownership of the return result is maintained by the Request object; the return value
must not be freed by the caller.

Request::get_response

Overview Get the response from the request that is expected
after a send_deferred has been issued.

Original class “CORBA::Request” on page 195

Exceptions “CORBA::SystemException” on page

Intended Usage

Use of the get_response method will result in a blocking call if the response hasn't been
received yet. For client DIl applications, use of the “ORB::get_next_response” on page 182
method is recommended.

IDL Syntax

CORBA: : St atus get_response();
Input parameters

None.

Return values
CORBA::Status

A zero return code indicates the response was successfuly received. A non-zero return
code indicates failure.

Request::invoke

Overview Sends a synchronous DIl request.

Original class “CORBA::Request” on page 195

Intended Usage

The invoke method is used by a client application that is using the Dynamic Invocation
Interface (DlII), to issue a request. The invoke method blocks until a response is received. A
Request object is constructed using the “CORBA::Object::_create_request” on page 151 or
“CORBA::Object::_request” on page 158 method.

IDL Syntax

CORBA: : Status invoke();
Input parameters

None.

Return values
CORBA::Status

A zero return code indicates the DIl request was successfully sent and the response
received. A non-zero return code indicates failure.

Request::operation

Overview Retrieves the unscoped operation name of a DIl
request.
Original class “CORBA::Request” on page 195

WebSphere Application Server CORBA support - Page 202

Intended Usage

The operation method is used by a client application to access the unscoped operation
name of a Dynamic Invocation Interface (DIl) request. The operation name of a Request
object is set by either the “CORBA::Object::_create_request” on page 151 or
“CORBA::Object::_request” on page 158 method.

IDL Syntax

const char * operation();

Input parameters
None.

Return values
const char *

The unscoped operation name of the DIl request. Ownership of the return value is
maintained by the Request object; the return value must not be freed by the caller.

Request::poll_response

Overview

Determines whether a response to an asynchronous
request is available.

Original class

“CORBA::Request” on page 195

Intended Usage

The poll_response method is used by a client application that is using the Dynamic
Invocation Interface (DII), to determine whether a response is available, after sending one or
more deferred requests (for example, using “CORBA::Request::send_deferred” on page 204
). This method can be called prior to calling “CORBA::Request::get_response” on page 202

, to avoid blocking.

IDL Syntax

CORBA: : Bool ean pol | _response();
Input parameters

None.

Return values
CORBA::Boolean

A zero return value indicates that a response is not available. A non-zero return value
indicates that a response has been received.

Request::result

Overview

Retrieves the return value of a DIl request.

Original class

“CORBA::Request” on page 195

Intended Usage

The result method is used by a client application to access the return value of a Dynamic
Invocation Interface (DII) request. The return value is specified using a
“CORBA::NamedValue” on page 141 object and must not be accessed until after the
request has been invoked. For additional information, see the NamedValue class
description. The return value of a Request object is set by the “CORBA::Request::invoke” on
page 202 or “CORBA::Request::get_response” on page 202 method, depending whether
the request is synchronous or asynchronous, respectively.

IDL Syntax

CORBA: : NanedVal ue_ptr result();
Input parameters

WebSphere Application Server CORBA support - Page 203

None.

Return values
CORBA::NamedValue_ptr

A pointer to the return value of the DIl request. Ownership of the return value is
maintained by the Request object; the return value must not be freed by the caller. If
the DIl request raises an exception, the return value is unpredictable.

Request::return_value

Overview

Retrurns the value of the return type of a DIl request.

Original class

“CORBA::Request” on page 195

Intended Usage

The return_value method is used by a client program to access the value of the return type
of a DIl request. Specifically, the return_value method returns the “CORBA::Any” on

page 55 contained in the “CORBA::NamedValue” on page 141 holding the return value of a
DIl request.

IDL Syntax
CORBA: : Any &return_val ue();

Input parameters
None.

Return values
CORBA::Any &

The value of the return type of the DIl request.

Request::send_deferred

Overview

Sends an asynchronous DIl request.

Original class

“CORBA::Request” on page 195

Intended Usage

The send_deferred method is used by a client application that is using the Dynamic
Invocation Interface (DII), to issue an asynchronous request. The results of an
asynchronous request are later obtained using “CORBA::Request::get_response” on

page 202 . The “CORBA:: Request::poll_response” on page 203 method is used to
determine whether a response is available. A Request object is constructed using the
“CORBA::Object::_create_request” on page 151 or “CORBA::Object::_request” on page 158
method.

IDL Syntax
CORBA: : Status send_deferred();
Input parameters

None.

Return values

CORBA::Status

A zero return code indicates the DIl request was successfully sent. A non-zero return
code indicates failure.

Request::send_oneway

WebSphere Application Server CORBA support - Page 204

Overview

Sends a oneway DIl request.

Original class

“CORBA::Request” on page 195

Intended Usage

The send_oneway method is used by a client application that is using the Dynamic
Invocation Interface (DII), to issue a oneway request. No response is sent back, so the client
application must not call “CORBA::Request::get_response” on page 202 . A Request object
is constructed using the “CORBA.::Object:;_create_request’ on page 151 or
“CORBA::Object::_request” on page 158 method.

IDL Syntax
CORBA: : St at us send_oneway() ;
Input parameters

None.

Return values
CORBA::Status

A zero return code indicates the DIl request was successfully sent. A non-zero return
code indicates failure.

Request::set_return_type

Overview

Sets the return type for a DIl request.

Original class

“CORBA::Request” on page 195

Intended Usage

The set_return_type method is used by a client program to set the return type for a
CORBA::Request, which was created by calling “CORBA::Object::_request” on page 158 .

IDL Syntax
CORBA: : Voi d set _return_type(CORBA: : TypeCode_ptr tc);

Input parameters
tc

A pointer to a “CORBA:: TypeCode” on page 22fepresenting the type of the operation
return value. The caller retains ownership of this parameter (the CORBA::Request
makes its own copy).

Return values
None.

Request::target

Overview

Retrieves a pointer to the target object of a DIl request.

Original class

“CORBA::Request”’ on page 195

Intended Usage

The target method is used by a client program to access the target object of a DIl request.
The target object of a Request object is automatically set by the
“CORBA::Object::_create_request” on page 151 or “CORBA::Object::_request” on page 158
method. These methods are invoked on the target object of the DIl request.

IDL Syntax

CORBA: : Obj ect _ptr target() const;
Input parameters

WebSphere Application Server CORBA support - Page 205

None.
Return values
CORBA::Object_ptr

A pointer to the target object of the request. Ownership of the return value is
maintained by the Request; the return value must not be freed by the caller.

CORBA module: RequestSeq Class

Overview Specifies a list of Requests.
File name orb.h
Supported methods “RequestSeq::allocbuf’ on page 206

“RequestSeq::freebuf’ on page 206

“RequestSeq::length” on page 207

“RequestSeq::maximum” on page 207

“RequestSeq::operator[]” on page 208

Intended Usage

Specifies a list of Requests to be sent in parallel using the Dynamic Invocation Interface.
RequestSeq is used to specify the collection of requests sent by the ORB methods
“send_multiple_requests_oneway” on page 188 and “send_multiple_requests_deferred” on
page 188 . For additional information, see the “Request” on page 195 and “ORB” on

page 167 class descriptions.

RequestSeq::allocbuf

Overview Allocates a sequence of pointers to Request elements.

Original class “CORBA::RequestSeq” on page 206

Intended Usage

The allocbuf method is used by a client program to allocate a sequence of pointers to
Request elements. The pointers are initialized to NULL. The newly allocated buffer can be
passed to the "CORBA::Request_ptr *' constructor. Memory allocated using the allocbuf
method must be freed using the freebuf method or by transferring ownership to a
RequestSeq object.

IDL Syntax

CORBA: : Request _ptr al | ocbuf (CORBA: : ULong nel ens) ;

Input parameters
nelems

The number of pointers to Request elements to be allocated. The requested number of
elements must be greater than zero.

Return values

CORBA::Request_ptr *

A pointer to the address of the newly allocated sequence of pointers to Request
elements. Ownership of the return value transfers to the caller. If the allocbuf method
fails, a null pointer is returned.

RequestSeq::freebuf

WebSphere Application Server CORBA support - Page 206

Overview

Frees a sequence of Request elements.

Original class

“CORBA::RequestSeq” on page 206

Intended Usage

The freebuf method is used by a client program to free a sequence of Request elements.
The release method is called on each Request element.

IDL Syntax
voi d freebuf (CORBA: : Request _ptr *data);

Input parameters
data

A pointer to the sequence of Request elements to be freed. The freebuf method
ignores null pointers passed to it.

Return values
None.

RequestSeq::length

Overview

Gets and sets the number of Request elements in a
sequence.

Original class

“CORBA::RequestSeq” on page 206

Intended Usage

The length method is used by a client program to get and set the number of Requests in a
collection of DIl requests. Increasing the number of Request elements causes the sequence
buffer to be reallocated. Decreasing the number of Request elements causes the orphaned
Requests to be released.

IDL Syntax

CORBA: ;: ULong | en th(b const;
voi d | engt h(A: : ULong | en);

Input parameters
len

The desired number of Request elements in the sequence.

Return values
CORBA::ULong

The current number of Request elements in the sequence.

RequestSeq::maximum

Overview

Retrieves the maximum number of Request elements in
a sequence.

Original class

“CORBA::RequestSeq” on page 206

Intended Usage

The maximum method is used by a client program when querying the RequestSeq object
associated with a collection of DIl requests. For an unbounded sequence, the maximum
method returns the number of Request elements currently allocated in a sequence. This
tells applications the total amount of buffer space available. The application can then
determine how many additional Request elements can be inserted before the buffer is
reallocated. For a bounded sequence, the maximum method returns the maximum number
of Request elements in a sequence as specified in the IDL type declaration. By definition,
the maximum number of Request elements in a bounded sequence cannot be changed.

WebSphere Application Server CORBA support - Page 207

IDL Syntax

CORBA: : ULong maxi mun() const;
Input parameters

None.

Return values
CORBA::ULong

The maximum number of Request elements in the sequence.
RequestSeq::operator] |

Overview Retrieves the Request element at the specified index.
Original class “CORBA::RequestSeq” on page 206
Exceptions “ CORBA::SystemException” on page

Intended Usage

The subscript operator is called by a client program when querying the RequestSeq object
associated with a collection of DIl requests. The subscript operator returns the Request
element at the specified index. Const and non-const versions of this operator are provided.

IDL Syntax

CORBA: : Request _SegEl em oper at or[l (CORBA: : ULong i ndex) ;
CORBA: : Request_SeqEl em operator]] (CORBA:: ULong i ndex} const ;

Input parameters
index

The index corresponding to the desired Request element, starting at zero. A system
exception is raised if the input index is greater than or equal to the number of elements
in the sequence.

Return values
CORBA::Request_SeqElem

The Request element at the specified index. Ownership of the return value does not
transfer to the caller. However, the sequence buffer may be owned by the caller prior
to the method invocation.

CORBA module: SequenceDef Interface

Overview A SequenceDef object represents an OMG IDL
sequence definition in the Interface Repository.

File name somir.idl

Local-only True

Ancestor interfaces “IDLType Interface” on page 127

Exceptions “CORBA::SystemException” on page

Supported operations “SequenceDef::bound” on page 209

“SequenceDef::element_type” on page 209

“SequenceDef::element_type_def” on page 210

“IDLType::type” on page 127

Intended Usage

An instance of a SequenceDef object is used by the Interface Repository to represent an
OMG IDL bounded sequence data type.

WebSphere Application Server CORBA support - Page 208

SequenceDef objects are not named Interface Repository objects, and as such do not
reside as named objects in the Interface Repository database (they are in a group of
interfaces known as Anonymous types). An instance of a SequenceDef object can be
created using the “create_sequence” on page 192 operation of the Repository interface.

IDL syntax

nodul e CORBA {
interface SequenceDef:|DLType {
attribute unsigned | on%gound'
readonl yattribute TypeCode el ement _type;
attribute I DLType el ement_type_def;

SequenceDef::bound

Overview

The bound read and write operations allow the access
and update of the bound attribute of a sequence
definition (CORBA::SequenceDef) within the Interface
Repository.

Original interface

“ SequenceDef Interface” on page 208

Exceptions

“CORBA::SystemException” on page

Intended Usage

The bound attribute specifies the maximum number of elements in the sequence. A bound
of zero indicates an unbounded sequence. Read and write bound operations are supported
with parameters as defined below.

IDL Syntax
attribute unsigned | ongbound;

Read operations
Input parameters

None.

Return values
CORBA: : ULong

The returned value is the current value of the bound attribute of the sequence
definition (CORBA::SequenceDef) object.

Write operations
Input parameters

CORBA: : ULong bound

The bound parameter is the new value to which the bound attribute of the
CORBA::SequenceDef object is set.

Return values
None.

Example

Il C++
/| _assume that 'this_sequence' has already been initialized
CORBA: : SequenceDef *7thi's_sequence; .
/1 _change the bound attribute of the sequence definition
CORBA: : ULong new_bound = 409;
thi s_sequence-> bound (new_bound); o
// _obtain the bound of a sequence definition
CORBA: : ULong returned_bound;
returned_bound = this_sequence-> bound ();

SequenceDef::element_type

Overview

The element_type operation returns a type

WebSphere Application Server CORBA support - Page 209

(CORBA::TypeCode *) representative of the sequence
element of a SequenceDef.

Original interface

“ SequenceDef Interface” on page 208

Exceptions

“CORBA::SystemException” on page

Intended Usage

The element_type attribute of a SequenceDef object references a CORBA::TypeCode * that
represents the type of the sequence element. The element_type read operation returns a
copy of the CORBA::TypeCode referenced by the element_type attribute.

IDL Syntax

readonl yattri bute TypeCode el ement _type;
Input parameters

None.

Return values
TypeCode *

The returned value is a pointer to a copy of the CORBA::TypeCode referenced by the
element_type attribute. The memory is owned by the caller and can be returned by
invoking CORBA::release.

Example

Il C++
// _assume that 'this_sequence' has al ready been initialized
CORBA: : SequenceDef *"thi's_sequence
/1 retrieve the TypeCode whi ch repr esents the type of the sequence
[/ el enents
CORBA: : TypeCode * sequence_el ement _type;
sequence_el enment _type = this_sequence- >' el ement _type

SequenceDef::element_type_def

Overview

The element_type_def read and write operation allow
the access and update of the element type definition of
a sequence definition (SequenceDef) in the Interface
Repository.

Original interface

“ SequenceDef Interface” on page 208

Exceptions

“CORBA::SystemException” on page

Intended Usage

The type of the elements within a sequence definition is identified by the element_type def
attribute (a reference to a CORBA::IDLType *). Setting the element_type_def attribute also
updates the element_type attribute as well as the inherited type attribute.

IDL Syntax

attribute I DL/ Type el ement _type_def;

Read operations
Input parameters

None.
Return values
CORBA: : | DLType_ptr

The returned object is a pointer to a copy of the IDLType referenced by the
element_type_def attribute of the SequenceDef object. The returned object is owned
by the caller and can be released using CORBA::release.

Write operations

WebSphere Application Server CORBA support - Page 210

Input parameters
CORBA: : | DLType_ptr el enent _type_def

The element_type_def parameter represents the new sequence element definition for
the SequenceDef.

Return values
None.

Example

[l C++
// assume that 'this_sequence' and 'this_union' have already been
[/ initialized .
BA: : SequenceDef * this_sequence;
CORBA: : Uni onDef * this_union;
/] change the sequence el ement type definition to 'this_union'
thi s_sequence-> el ement _type_def (this_union);
// read the el ement type definition from'this_sequence'
CORBA: : | DLType * returned_el ement _type_def;
returned_el enent _type_def "= thi s_Sequence-> el enent _type_def ();

CORBA module: ServerRequest Class

Overview Provides information about a request to be dispatched
by a BOA::Dynamiclmplementation.

File name request.h

Supported methods “ServerRequest::_duplicate” on page 211

“ServerRequest::_nil” on page 212

“ServerRequest::

ctx” on page 212

“ServerRequest::

exception” on page 213

“ServerRequest::

op_def” on page 213

“ServerRequest::

op_name” on page 213

“ServerRequest::

params” on page 214

“ServerRequest::

result” on page 215

Intended Usage

The ServerRequest class is intended to be used by an implementation of a subclass of
“CORBA::BOA::Dynamiclmplementation” on page 75 , within the “invoke” on page 75
method. The ServerRequest class is part of the DynamicSkeleton Interface (DSI), used
primarily to create inter-ORB bridges or gateway servers.

The ServerRequest object provides information to the
CORBA::BOA::Dynamiclmplementation ::invoke method about the operation to be invoked
and the in and inout parameter values. It also provides methods for recording the output and
return values after the operation has been dispatched, so that the response can be sent
back to the calling client.

ServerRequest::_duplicate

Overview

Duplicates a ServerRequest object.

Original class

“CORBA::ServerRequest” on page 211

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to a ServerRequest object. The duplicate reference should subsequently be released using
CORBA::release(ServerRequest_ptr).

WebSphere Application Server CORBA support - Page 211

IDL Syntax
stati c CORBA: : Server Request _ptr _duplicate (CORBA: : Server Request _ptr p);
Input parameters
p
The ServerRequest object to be duplicated. The reference can be nil, in which case
the return value will also be nil.

Return values
CORBA::ServerRequest_ptr

The new ServerRequest object reference. This value should subsequently be released
using CORBA::release(ServerRequest_ptr).

ServerRequest:: nil

Overview

Returns a nil CORBA::ServerRequest reference.

Original class

“CORBA::ServerRequest” on page 211

Intended Usage

This method is intended to be used by client and server applications to create a nil
ServerRequest reference.

IDL Syntax
static CORBA: : ServerRequest_ptr _nil ();

Input parameters
None.

Return values
CORBA::ServerRequest_ptr

A nil ServerRequest reference.

ServerRequest::ctx

Overview

Provides the Context of an operation being invoked on
a BOA::Dynamiclmplementation.

Original class

“CORBA::ServerRequest” on page 211

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by an implementation of
“CORBA::BOA::Dynamicimplementation ::invoke” on page 75 (in a subclass of
BOA::Dynamiclmplementation) to discover the Context of the request (if any). The IDL
specification (for the operation being dispatched by CORBA::BOA::Dynamiclmplementation
::invoke) indicates what Context identifiers are transmitted on each invocation of that
operation.

IDL Syntax

CORBA: : Context _ptr ctx() throw (CORBA: : Syst enExcepti on);
Input parameters

None.

Return values
CORBA::Context_ptr

The Context of the operation that an implementation of
CORBA::BOA::Dynamiclmplementation::invoke is dispatching. The ServerRequest

WebSphere Application Server CORBA support - Page 212

retains ownership of the Context and the caller must not modify or free it.

ServerRequest::exception

Overview

Stores an exception in a ServerRequest.

Original class

“CORBA::ServerRequest” on page 211

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be called from an implementation of
“CORBA::BOA::Dynamiclmplementation::invoke” on page 75 (in a subclass of
BOA::Dynamiclmplementation) when an exception has been thrown by the operation being
dispatched by the CORBA::BOA::Dynamicimplementation ::invoke method. This method
can be called at most once by an execution of
CORBA::BOA::Dynamiclmplementation::invoke, and only after
“CORBA::ServerRequest::params” on page 21has been called. ServerRequest::exception
may not be called if “CORBA::ServerRequest::result” on page 21Bas already been called.
The ServerRequest object assumes ownership of the input Any object.

IDL Syntax
voi d exception (CORBA: : Any *val ue)
throw (A Syst enException);
Input parameters
value

A CORBA::Any containing the exception to be stored in the ServerRequest. This
exception is sent back to the client that originated the request. The ServerRequest
assumes ownership of this Any.

Return values
None.

ServerRequest::op_def

Overview

Describes the signature of an operation being invoked
on a Dynamiclmplementation.

Original class

“CORBA::ServerRequest” on page 211

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by an implementation of
“CORBA::BOA::Dynamiclmplementation::invoke” on page 75 (in a subclass of
Dynamiclmplementation), to discover the signature of an operation being dispatched.

IDL Syntax

CORBA: : Oper ationDef ptr_ op_def()
throw (CORBA: : Syst'enException);

Input parameters
None.

Return values
CORBA::OperationDef_ptr

A pointer to the OperationDef object from the Interface Repository that describes the
operation being dispatched. The caller assumes ownership of this object.

ServerRequest::op_name

WebSphere Application Server CORBA support - Page 213

Overview

Indicates the name of an operation being invoked on a
Dynamiclmplementation.

Original class

“CORBA::ServerRequest” on page 211

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by an implementation of
“CORBA::BOA::Dynamicimplementation::invoke” on page 75 (in a subclass of
Dynamiclmplementation), to discover which operation needs to be dispatched.

IDL Syntax
CORBA: : I denti fi
t?\? olw I(%mﬁ%r:]%ggg)enEXcept ion);

Input parameters
None.

Return values
Identifier (char *)

The (unscoped) IDL name of the operation being dispatched by an implementation of
“CORBA::BOA::Dynamiclmplementation::invoke” on page 75 . The ServerRequest
retains ownership of this string and the caller must not modify it. For attribute accessor
methods, the operation names are _get_<attribute> and _set_<attribute>. For
operations introduced in CORBA::Object, the operation names are _interface,
_implementation, _is_a, and _non_existent.

ServerRequest::params

Overview

Retrieves the in and inout parameter values of a
ServerRequest.

Original class

“CORBA::ServerRequest” on page 211

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by an implementation of
“CORBA::BOA::Dynamiclmplementation::invoke” on page 75 (in a subclass of
Dynamiclmplementation), to discover the the in and inout parameter values for the operation
being dispatched. The caller supplies the types of the parameters via an NVList, and
receives the parameter values in the same NVList. An implementation of
CORBA::BOA::Dynamiclmplementation::invoke must invoke
CORBA::ServerRequest::params exactly once.

IDL Syntax
id CORBA: : NVLi
ol PR (RN Y S R GATE
Input parameters
parameters

An NVList containing the TypeCodes (but not the values) for the parameters of the
method being dispatched.

Return values
parameters

On output, the NVList additionally contains the values of any in and inout parameters
for that operation. This same NVList should subsequently be modified by the invoke()
method (after dispatching the target method) to record the output parameter values.

WebSphere Application Server CORBA support - Page 214

The ServerRequest assumes ownership of the NVList. If the operation has no
parameters, an empty NVList can be passed.

ServerRequest::result

Overview

Records the return value of an operation invoked on a
Dynamiclmplementation.

Original class

“CORBA::ServerRequest” on page 211

Exceptions

“CORBA::SystemException” on page

Intended Usage

This method is intended to be used by an implementation of
“CORBA::BOA::Dynamiclmplementation::invoke” on page 75 (in a subclass of
Dynamiclmplementation), to record the return result of an operation that was dispatched. If
there is no return value (the return type is void or an exception occurred),
CORBA::ServerRequest::result should not be called. The CORBA::ServerRequest::result
method can be called at most once by an execution of
CORBA::BOA::Dynamiclmplementation::invoke, and only after calling
“CORBA::ServerRequest::params” on page 214 .

IDL Syntax

void result ECO?BA: :Any *value) |
throw (CORBA: : Syst enExcepti on);

Input parameters
value

A CORBA::Any containing the return result of the operation invoked by an
implementation of “CORBA::BOA::Dynamicimplementation::invoke” on page 75 . The
ServerRequest assumes ownership of the Any.

Return values
None.

CORBA module: StringDef Interface

Overview The StringDef interface is used to represent an OMG
IDL bounded string type.

File name somir.idl

Local-only True

Ancestor interfaces “IDLType Interface” on page 127

Exceptions “CORBA::SystemException” on page

Supported operations “StringDef::bound” on page 217

Intended Usage

An instance of a StringDef object is used by the Interface Repository to represent an OMG
IDL bounded string data type.

The StringDef object is not a named Interface Repository object (it is in a group of interfaces
known as Anonymous types), and as such does not reside as a named object in the
Interface Repository database. An instance of a StringDef object can be created using the
“create_string” on page 193 operation of the Repository interface.

IDL syntax
m)dul{e CORBA

WebSphere Application Server CORBA support - Page 215

interface StringDef:|DLType
attribute unsigned | ongbound;
IE
StringDef::bound

Overview The bound read and write operations allow the access
and update of the bound attribute of a bounded string
definition (CORBA::StringDef) within the Interface

Repository.
Original interface “ StringDef Interface” on page 215
Exceptions “CORBA::SystemException” on page

Intended Usage

The bound attribute specifies the maximum number of characters in the string, and must not
be zero.

IDL Syntax
attribute unsigned | ongbound;

Read operations
Input parameters

None.

Return values
CORBA: : ULong

The returned value is the current value of the bound attribute of the string definition
(CORBA::StringDef) object.

Write operations
Input parameters

CORBA: : ULong bound

The bound parameter is the new value to which the bound attribute of the
CORBA::StringDef object is set.

Return values
None.

Example

Il C++

// assuma that "this_string' has already been initialized

:StringDef * this_string;
chaan;J the bound attTibute of the string definition

CIZRBA Long new_bound = 409;

this_stri n? > bound (new_| bound)

I/ _obtain the bound of a string definition

CORBA: : ULong ret urned_bound;

returned bound = this_ strlng > bound ();

CORBA module: StructDef Interface

Overview The StructDef interface is used to represent and OMG
IDL structure definition.

File name somir.idl
Local-only True
Ancestor interfaces “TypedefDef Interface” on page 228

WebSphere Application Server CORBA support - Page 216

Exceptions

“CORBA::SystemException” on page

Supported operations “StructDef::members” on page 217

“IDLType::type” on

page 127

StructDef::

Intended Usage

An instance of a StructDef object is used within the Interface Repository to represent an
OMG IDL structure definition. An instance of a StructDef can be created using the
“create_struct” on page 93 operation of the Container interface.

IDL syntax
nodul e CORBA
! struct Struct Mermber
Identifier nane;

 TEPSyRactyHE et ;

ipeder sequence st ructnenber seq
. Typedef Def

i attribute Struct Menber Seq nenbers;
I

members

Overview

The members read and write operations provide for the
access and update of the list of elements of an OMG
IDL structure definition in the Interface Repository.

Original interface

“ StructDef Interface” on page 216

Exceptions

“CORBA::SystemException” on page

Intended Usage

The members attribute contains a description of each structure member. The members read
and write operations allow the access and update of the members attribute.

IDL Syntax
attribute Struct Menber Seq nmenbers;

Read operations
Input parameters

None.
Return values
CORBA: : Struct Menber Seq *

The returned pointer references a sequence that is representative of the structure
members. The memory is owned by the caller and can be released by invoking delete.

Write operations
Input parameters

CORBA: : St ruct Menber Seq & nenbers

The members parameter provides the list of structure members with which to update
the StructDef.

Return values

None.
Example
Il C++
/[l assume "this_struct_def', 'pk_long_ptr', and 'pk_double_ptr’
/] _have already been initialized

CORBA: : Struct Def * this_struct_def;

WebSphere Application Server CORBA support - Page 217

CORBA: : PrimitiveDef * pk_| Iong

CORBA: : PrimitiveDef * pkZdoubl'e E%

11 establlsh and initialTze the StructMenberSeq . . .

CORBA: : Struct Menber Seq seq_updat e;

seq_update. [ength (2);

seq_updat e[0] . nane = CCRBA Stri n&:dup ("el ement _zero_| ong");
seq_updat e[0] . t ype_ def = Type: : duplicate (pk_ Iong ptr);
seq_updat e[1] . nane OCRBA::strl n%Edup ("el ement _one_doubl e ?‘
seq_update[1] . type_| def = CORBA: g{) dupllcate Tpk_ doub e_ptr);
// 'set the nenbersattribute of the ruc

this_struct_def-> nenbers (seq_update

// read the nmenbers attribute Tnfornma |on fromthe Struct Def
CORBA: : Struct Menber Seq * returned_nenbers

returned_nenbers = thi's_struct_def-> manbers 0);

CORBA module: SystemException Class

Overview Describes a system exception condition that has
occurred.

File name sys_excp.h

Supported methods “SystemException::_duplicate” on page 219

“SystemException::_nil” on page 219

“ystemException::completed” on page 220

“SystemException::minor” on page 220

Intended Usage

This class is intended to be caught in the catch clause of a try/catch block that
encompasses remote method invocations or calls to ORB services. Instances of
SystemException subclasses (see list below) can be thrown from implementations of IDL
interfaces, to indicate some exception condition not related to the application logic (for
example, unavailable memory). SystemExceptions can be thrown by any operation,
regardless of the interface specification (that is, its "raises"” clause in IDL).

Each SystemException contains a minor error code, to designate the subcategory of the
exception, and a completion status (COMPLETED_YES, COMPLETED_NO, or
COMPLETED_MAYBE) to indicate whether the object completed processing the request
prior to the exception being thrown. The SystemException class provides a non-default
constructor whose arguments are the minor code of the exception (of type CORBA::ULong)
and the completion status (of type CORBA::CompletionStatus). When the default
constructor is used, the completion status defaults to COMPLETED_NO and the minor code
defaults to zero.

The subclasses of SystemException, representing specific error conditions, are defined in
std_excp.h as follows:

« BAD_CONTEXT;
« BAD_INV_ORDER;

- BAD_OPERATION:

« BAD_PARAM;

- BAD_TYPECODE;

« COMM_FAILURE;

« DATA_CONVERSION;

* FREE_MEM,;
* IMP_LIMIT;
* INITIALIZE;
* INTERNAL;

WebSphere Application Server CORBA support - Page 218

* INTF_REPQS;
* INVALID_TRANSACTION;

* INV_FLAG;

* INV_IDENT;

* INV_OBJREF;
* MARSHAL,

* NO_IMPLEMENT;

+ NO_MEMORY;

* NO_PERMISSION;

* NO_RESOURCES;

* NO_RESPONSE;

+ OBJECT_NOT_EXIST,;

* OBJ_ADAPTER,;

* PERSIST_STORE;

* TRANSACTION_REQUIRED;

* TRANSACTION_ROLLEDBACK;
* TRANSIENT;

+ UNKNOWN;

Each subclass of SystemException has corresponding release, is_nil, _duplicate, and _nil

methods, and a non-default constructor that mirrors the SystemException non-default
constructor.

In the Java implementation, org.omg.CORBA.SystemException derives from
java.lang.RuntimeException.

SystemException::_duplicate

Overview

Duplicates a SystemException object.

Original class

“CORBA::SystemException” on page 218

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to a SystemException object. Both the original and the duplicate reference should
subsequently be released using CORBA::release(SystemException_ptr).

IDL Syntax

static CORBA: : Syst enExceg)t ion_ptr _duplicate
(CORBA: : Syst e ception_ptr p);

Input parameters
p

The SystemException object to be duplicated. The reference can be nil, in which case
the return value will also be nil.

Return values
CORBA::SystemException_ptr

The new SystemException object reference. This value should subsequently be
released using CORBA::release(SystemException_ptr).

SystemException::_nil

WebSphere Application Server CORBA support - Page 219

Overview

Returns a nil CORBA::SystemException reference.

Original class

“CORBA::SystemException” on page 218

Intended Usage

This method is intended to be used by client and server applications to create a nil
SystemException reference.

IDL Syntax

static CORBA:: SystenException_ptr _nil ();
Input parameters
None.
Return values
CORBA::SystemException_ptr
A nil SystemException reference.

SystemException::completed

Overview

Indicates whether an operation completed before an
exception was encountered.

Original class

“CORBA::SystemException” on page 218

Intended Usage

The first completed method is intended to be used by a client or server application after
catching a SystemException in a try/catch block, to determine whether the operation that
threw the SystemException completed before the exception was encountered.

The second completed method is used to set the completion status of a SystemException
before throwing it.

IDL Syntax

CORBA: : Conpl eti onSt at us _conpl et edg const;
voi d conpl et ed(CORBA: : Conpl eti onStatus status);

Input parameters

status

The completion status to store in the SystemException.
Return values

CORBA::CompletionStatus

A value indicating whether the operation that threw the SystemException completed
before the exception was encountered (CORBA::COMPLETED_YES,
CORBA::COMPLETED_NO, or CORBA::COMPLETED_MAYBE).

SystemException::minor

Overview

Indicates the minor error code of a SystemException.

Original class

“CORBA::SystemException” on page 218

Intended Usage

The first minor method is intended to be used by a client or server application after catching
a SystemException in a try/catch block, to determine the minor error code.

The second minor method is used to set the minor code of a SystemException before

WebSphere Application Server CORBA support - Page 220

throwing it.
IDL Syntax

CORBA: : ULong minor() const; .
voi d m nor (CORBA::ULong mn_id);

Input parameters
min_id
The minor code to store in the SystemException.

Return values
CORBA::ULong

A value indicating the minor error code contained in the SystemException.

CORBA module: TypeCode Class

Overview Represents an OMG IDL type.
File name typecode.h
Supported methods “TypeCode::_duplicate” on page 222

“TypeCode::_nil” on page 222

“TypeCode::content_type” on page 222

“TypeCode::default_index” on page 223

“TypeCode::discriminator_type” on page 223

“TypeCode::equal” on page 224

“TypeCode::id” on page 224

“TypeCode::kind” on page 225

“TypeCode::length” on page 225

“TypeCode::member_count” on page 225

“TypeCode::member_label” on page 226

“TypeCode::member_name” on page 226

“TypeCode::member_type” on page 227

“TypeCode::name” on page 227

Exceptions BadKind

An operation is not appropriate for the TypeCode
kind.

Bounds

The index parameter is greater than or equal to the
number of members constituting the type.

Intended Usage

A TypeCode represents an OMG IDL type. A TypeCode is an integral part of the any type
and is used to specify the type of the value. The Interface Repository also uses TypeCodes
to store information about types declared in IDL.

A TypeCode consists of a "kind" field and zero or more parameters to fully describe the
underlying data type. For example, the TypeCode describing IDL type char has kind tk_char
and no parameters. The TypeCode describing the IDL type array has kind tk_array and two
parameters, a TypeCode describing the type of elements in the array and a long indicating
the length of the array. “CORBA::ORB” on page 167 provides methods to create complex

WebSphere Application Server CORBA support - Page 221

TypeCode:

TypeCodes (TypeCodes which have parameters). The naming convention for these
methods is create_<type>_tc. For example, the method “create_array_tc” on page 171
creates a tk_array TypeCode.

Methods are provided to access the various parts of a TypeCode. Since the structure of a
TypeCode varies, most methods are only applicable to certain TypeCodes. The BadKind
exception is raised if a method is not applicable to the target TypeCode. Methods that deal
with indexing raise the Bounds exception if the input index is greater than or equal to the
number of members constituting the type.For additional information, see the “Any” on
page 55 and ORB class descriptions.

:_duplicate

Overview

Duplicates a TypeCode object.

Original class

“ CORBA::TypeCode” on page 221

TypeCode:

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to a TypeCode object. Both the original and the duplicate reference should subsequently be
released using CORBA::release(TypeCode_ptr).

IDL Syntax

stati c CORBA: : TypeCode_ptr _duplicate (CORBA: : TypeCode_ptr p);
Input parameters
p

The TypeCode object to be duplicated. The reference can be nil, in which case the
return value will also be nil.

Return values
CORBA::TypeCode_ptr

The new TypeCode object reference. This value should subsequently be released
using CORBA::release(TypeCode_ptr).

. nil

Overview

Returns a nil CORBA::TypeCode reference.

Original class

“ CORBA::TypeCode” on page 221

TypeCode:

Intended Usage

This method is intended to be used by client and server applications to create a nil
TypeCode reference.

IDL Syntax
static CORBA: : TypeCode_ptr _nil ();
Input parameters

None.

Return values
CORBA::TypeCode_ptr

A nil TypeCode reference.
:content_type

Overview

Returns the element type of a sequence or array, or the
original type of an alias.

WebSphere Application Server CORBA support - Page 222

Original class “CORBA::TypeCode” on page 221

Exceptions “CORBA::SystemException” on page

“CORBA::TypeCode::BadKind” on page 221

Intended Usage

The content_type method can be invoked on sequence, array, and alias TypeCodes. For
sequences and arrays, the content_type method returns the element type. For aliases, the
content_type method returns the original type.

IDL Syntax
CORBA: : TypeCode_ptr content_type() const;
Input parameters

None.

Return values
CORBA::TypeCode_ptr

A pointer to the element type of the sequence or array, or the original type of the alias.
Ownership of the return value transfers to the caller and must be freed by calling
CORBA::release(CORBA::TypeCode_ptr).

TypeCode::default_index

Overview Returns the index of the default union member.
Original class “CORBA::TypeCode” on page 221
Exceptions “CORBA::SystemException” on page
“CORBA::TypeCode::BadKind” on page 221

Intended Usage

The default_index method can only be invoked on union TypeCodes. The default_index
method returns the index of the default member, or -1 if there is no default member.

IDL Syntax

CORBA: : Long defaul t _i ndex() const;
Input parameters

None.

Return values
CORBA::Long

The index of the default union member.

TypeCode::discriminator_type

Overview Returns the discriminator TypeCode of a union.
Original class “CORBA::TypeCode” on page 221

Exceptions “CORBA::SystemException” on page
“CORBA::TypeCode::BadKind” on page 221

Intended Usage

The discriminator_type method can only be invoked on union TypeCodes. The
discriminator_type method returns the type of all non-default member labels.

IDL Syntax

CORBA: : TypeCode_ptr discrimnator_type() const;

WebSphere Application Server CORBA support - Page 223

TypeCode:

Input parameters
None.

Return values

CORBA::TypeCode_ptr

A pointer to the discriminator TypeCode of the union. Ownership of the return value
transfers to the caller and must be freed by calling
CORBA::release(CORBA::TypeCode_ptr).

equal

Overview

Compares two TypeCodes for equality.

Original class

“CORBA::TypeCode” on page 221

Exceptions “CORBA::SystemException” on page
Intended Usage
The equal method can be invoked on any TypeCode. The equal method is used to
determine whether two distinct TypeCodes describe the same underlying abstract data type.
Equivalent TypeCodes produce the same results when TypeCode methods are invoked on
them.
IDL Syntax
CORBA: : Bool ean equal (CORBA: : TypeCode_ptr tc) const;
Input parameters
tc
A pointer to the TypeCode to be compared against the target TypeCode.
Return values
CORBA::Boolean
A return value of one indicates that the input TypeCode and the target TypeCode are
equal. A return value of zero indicates the TypeCodes are not equal.
TypeCode::id
Overview Returns the Interface Repository identifier of an

interface, structure, union, enumeration, alias, or
exception.

Original class

“CORBA:: TypeCode” on page 221

Exceptions

“CORBA::SystemException” on page

“CORBA::TypeCode::BadKind” on page 221

Intended Usage

The id method can be invoked on interface, structure, union, enumeration, alias, and
exception TypeCodes. The id method returns the Repositoryld of a type.

IDL Syntax

const char * id() const;

Input parameters
None.

Return values
const char *

The Interface Repository identifier of the interface, structure, union, enumeration, alias,
or exception. Ownership of the return value is maintained by the TypeCode; the return

WebSphere Application Server CORBA support - Page 224

value must not be freed by the caller.

TypeCode::kind

Overview Categorizes the abstract data type described by a
TypeCode.

Original class “CORBA::TypeCode” on page 221

Exceptions “CORBA::SystemException” on page

Intended Usage

The kind method can be invoked on all TypeCodes. The kind method is used to classify a
TypeCode into one of the categories listed in the TCKind enumeration. Based on the "kind"
classification, a TypeCode may contain zero or more additional parameters to fully describe
the underlying data type. See the TypeCode class description for a list of legal TypeCode
kinds and parameters.

IDL Syntax

CORBA: : TCKi nd ki nd() const;
Input parameters
None.

Return values
CORBA::TCKind

TCKind enumeration value.

TypeCode::length

Overview Returns the bound of a string or sequence, or the
number of elements in an array.

Original class “CORBA::TypeCode” on page 221

Exceptions “CORBA::SystemException” on page

“CORBA:: TypeCode::BadKind” on page 221

Intended Usage

The length method can be invoked on string, sequence, and array TypeCodes. For strings
and sequences, the length method returns a bound, with zero indicating an unbounded
string or sequence. For arrays, the length method returns the number of elements in an
array.

IDL Syntax

CORBA: : ULong | ength() const;
Input parameters
None.

Return values
CORBA::ULong

The bound of the string or sequence, the number of elements in the array.
TypeCode::member_count

Overview Returns the number of members in a structure, union,
enumeration, or exception.

Original class “CORBA::TypeCode” on page 221

WebSphere Application Server CORBA support - Page 225

Exceptions

“CORBA::SystemException” on page

“CORBA::TypeCode::BadKind” on page 221

Intended Usage

The member_count method can be invoked on structure, union, enumeration, and exception
TypeCodes. The member_count method returns the number of members constituting the
type.
IDL Syntax

CORBA: : ULong nenber _count () const;
Input parameters

None.

Return values
CORBA::ULong

The number of members in the structure, union, enumeration, or exception.

TypeCode::member_label

Overview

Returns the label of a union member.

Original class

“CORBA::TypeCode” on page 221

Exceptions

“CORBA::SystemException” on page

“CORBA::TypeCode::BadKind” on page 221

“CORBA::TypeCode::Bounds” on page 221

Intended Usage

The member_label method can only be invoked on union TypeCodes. The member_label
method returns the label of the member identified by index. For the default member, the
label is the zero octet.

IDL Syntax
CORBA: : Any_ptr nenber _| abel (CORBA: : ULong i ndex) const

Input parameters
index

The index of the desired union member, starting at zero.
Return values
CORBA::Any_ptr

A pointer to the label of the union member. Ownership of the return value transfers to
the caller and must be freed by calling CORBA::release(CORBA::TypeCode_ptr).

TypeCode::member_name

Overview

Returns the simple name of a structure, union,
enumeration, or exception member.

Original class

“CORBA::TypeCode” on page 221

Exceptions

“CORBA::SystemException” on page

“CORBA:: TypeCode::BadKind” on page 221

“ CORBA:: TypeCode::Bounds” on page 221

Intended Usage

WebSphere Application Server CORBA support - Page 226

The member_name method can be invoked on structure, union, enumeration, and exception
TypeCodes. The member_name method returns the simple name of the member identified
by index.

IDL Syntax
const char * menber_name(CORBA: : ULong i ndex) const;
Input parameters
index
The index of the desired member, starting at zero.
Return values
const char *
The simple name of the structure, union, enumeration, or exception member.

Ownership of the return value is maintained by the TypeCode; the return value must
not be freed by the caller.

TypeCode::member_type

Overview

Returns the type of a structure, union, or exception
member.

Original class

“CORBA::TypeCode” on page 221

Exceptions

“CORBA::SystemException” on page

“CORBA::TypeCode::BadKind” on page 221

“CORBA:: TypeCode::Bounds” on page 221

Intended Usage

The member_type method can be invoked on structure, union, and exception TypeCodes.
The member_type method returns the TypeCode describing the type of the member
identified by index.

IDL Syntax
CORBA: : TypeCode_ptr nenber _t ype(CORBA: : ULong i ndex) const;
Input parameters
index
The index of the desired member, starting at zero.

Return values
CORBA::TypeCode_ptr

A pointer to the type of the structure, union, or exception member. Ownership of the
return value transfers to the caller and must be freed by calling
CORBA::release(CORBA::TypeCode_ptr).

TypeCode::name

Overview

Returns the simple name of an interface, structure,
union, enumeration, alias, or exception.

Original class

“CORBA::TypeCode” on page 221

Exceptions

“CORBA::SystemEXxception” on page

“CORBA::TypeCode::BadKind” on page 221

Intended Usage

The name method can be invoked on object reference, structure, union, enumeration, alias,
and exception TypeCodes. The name method returns the simple name identifying the type
within its enclosing scope.

WebSphere Application Server CORBA support - Page 227

IDL Syntax

const char * nane() const;
Input parameters
None.
Return values
const char *

The simple name of the interface, structure, union, enumeration, alias, or exception.
Ownership of the return value is maintained by the TypeCode; the return value must
not be freed by the caller.

CORBA module: TypedefDef Interface

Overview An abstract interface used by the Interface Repository
as a base interface to represent data types including
structures, unions, enumerations, and aliases.

File name somir.idl
Local-only True
Ancestor interfaces “Contained Interface” on page 79

“IDLType Interface” on page 127

Exceptions “CORBA::SystemException” on page

Supported operations “ TypedefDef::describe” on page 228

Intended Usage

The TypedefDef interface is not itself instantiated as a means of accessing the Interface
Repository. As an ancestor to Interface Repository objects that represent OMG IDL data
types, it provides a specific operation as noted below. Those Interface Repository objects
that inherit (directly or indirectly) the operation defined in TypedefDef include: StructDef,
UnionDef, EnumDef, and AliasDef.

IDL syntax
nodul e CORBA
i nterface Typedef Def: Contai ned, |DLType

{sf ruct TypeDescription

| dentifier name;
Repositoryld id; .
Repositoryld defined_in;
Ver si onSpec ver si on;

) TypeCode type;

}
TypedefDef::describe

Overview The describe operation returns a structure containing
information about a CORBA:: TypedefDef Interface
Repository object.

Original interface “ TypedefDef Interface” on page 228

Exceptions “CORBA::SystemException” on page

Intended Usage

The inherited describe operation returns a structure (CORBA::Contained::Description) that
contains information about a CORBA::TypedefDef Interface Repository object. The

WebSphere Application Server CORBA support - Page 228

CORBA::Contained::Description structure has two fields: kind (CORBA::DefinitionKind data
type), and value (CORBA::Any data type).

The kind of definition described by the returned structure is provided using the kind field,
and the value field is a CORBA::Any that contains the description that is specific to the kind
of object described. When the describe operation is invoked on a type definition

(CORBA:: TypedefDef) object, the kind field is representative of the specific type of
CORBA::TypedefDef (either CORBA::dk_Union, CORBA::dk_Struct, CORBA::dk_Alias, or
CORBA::dk_Enum). The value field contains the CORBA::TypeDescription structure.

IDL Syntax
strut{:t TypeDescri ption

I dentifier name;
Repositoryld id;

Reposi toryld defl ned_in;
Ver si onSpec ver si on;
TypeCode type;

1
struct Descri ption

DefinitionKind kind;
~any val ue;

escri ption describe ();
Input parameters

None.

Return values
Description *

The returned value is pointer in a CORBA::Contained::Description structure. The
memory is owned by the caller and can be removed by invoking delete.

Example

Il C++
// _assume that 'this_union' has already been initialized
CORBA: : Uni onDef * this_union;
/] retrieve a descrlptlon of the union
CORBA: : Uni onDef : Descrl tion * returned_description;
returned _description = this union-> describe ();
/[retrieve the type definition description fromthe returned
11 descrl ption structure
: TypeDescri ption * ty[i)_e descri ption;
type_ descrl ption = (OORIBA ylpeDescrl ption *) returned_description
val ue. val'ue ();

CORBA module: UnionDef Interface

Overview The UnionDef interface is used within the Interface
Repository to represent an OMG IDL union definition.

File name somir.idl

Local-only True

Ancestor interfaces “TypedefDef Interface” on page 228

Exceptions “CORBA::SystemException” on page

Supported operations “UnionDef::discriminator_type” on page 230

“UnionDef::discriminator_type_def” on page 230

“UnionDef::members” on page 231

“IDLType::type” on page 127

Intended Usage

An instance of a UnionDef object is used within the Interface Repository to represent an
OMG IDL union definition. An instance of a UnionDef object can be created using the
create_union operation of the Container interface.

WebSphere Application Server CORBA support - Page 229

IDL syntax
nodul e CORBA
struct Uni onMenber

Identifier nane;
anyl abel ;

Typecode type;
IEEType ty%g_def;

o

'y{)edef sequence Uni onMenber Seq;
nterface Uni onDef: Typedef Def

~——

readonl %/at tribute TypeCode discrim nator_type;
attribute | DLType discrimnator_type_def;
attribute Uni onMenber Seq nenbers;

IE
UnionDef::discriminator_type

Overview The discriminator_type operation returns TypeCode
information representative of the discriminator of an
Interface Repository UnionDef object.

Original interface “ UnionDef Interface” on page 229

Exceptions “CORBA::SystemException” on page

Intended Usage

The discriminator_type attribute describes and identifies the union's discriminator type. The
discriminator_type attribute can be accessed using the discriminator_type read operation.
The discriminator_type attribute can only be changed by updating the
discriminator_type_def attribute.

IDL Syntax

readonly attribute TypeCode discrim nator_type;
Input parameters

None.

Return values
TypeCode_ptr

The returned value is a pointer to a TypeCode that represents the type of the union
discriminator. The memory is owned by the caller and can be released by invoking
CORBA:release.

Example

[l C++
/| _assume that 'this_union' has already been initialized
CORBA: : Uni onDef * this_union; .
[l retrieve the TypeCode information that represents
[/ _the union discrimnator o
RBA: : TypeCode * unions_discrimnator_tc; =
uni ons_di scrimnator_tc = this_union->"discrimnator_type();

UnionDef::discriminator_type_def

Overview The discriminator_type_def read and write operations
allow access and update of the discriminator_type_def
attribute of an Interface Repository UnionDef object.

Original interface “ UnionDef Interface” on page 229

Exceptions “CORBA::SystemException” on page

Intended Usage

The discriminator_type_def attribute references an IDLType that is a type definition for the
discriminator of a union. Both read and write operations are supported with parameters as
defined above.

WebSphere Application Server CORBA support - Page 230

UnionDef::

IDL Syntax

attribute | DLType discrimnator_type_def;

Read operations
Input parameters

None.

Return values
CORBA: : | DLType_ptr

The returned value is a pointer to a copy of the IDLType that represents the
discriminator_type_def attribute. The memory is owned by the caller and can be
released by invoking CORBA::release.

Write operations
Input parameters

CORBA: : | DLType_ptr discrimnator_type_def

The discriminator_type_def must be of a subset of the simple types1 or an
enumeration definition (EnumDef). Setting the discriminator_type def also updates the
discriminator_type attribute.

Return values
None.

Example

/] C++
/[assume that 'this_union' and 'pk_long_ptr'
/] _have already been”initialized
A: : Uni onDef * this_union;
CORBA: : PrimtiveDef * pk_long_ptr;
/] set the discrimnator_t y[:)e_def to represent a CORBA::Long data type
thi s_uni on-> di scrim nator_type_def (Pk_l ong_ptr); .
H rg_trl ?ve the discrimnator_type_def Tnformation fromthe Uni onDef
obj ec
OG?B_A]: ;I DLType * ret_idltype_ptr; L
ret_idltype_ptr = this_union=> discrimnator_type_def ();

members

Overview

The members read and write operations provide for the
access and update of the list of elements of an OMG
IDL union definition in the Interface Repository.

Original interface

“ UnionDef Interface” on page 229

Exceptions

“CORBA::SystemException” on page

Intended Usage

The members attribute contains a description of each union member. The members read
and write operations allow the access and update of the members attribute.

IDL Syntax
attri bute Uni onMenber Seq nenbers;

Read operations
Input parameters

None.
Return values
CORBA: : Uni onMenber Seq *

The returned pointer references a sequence that is representative of the union
members. The memory is owned by the caller and can be released by invoking delete.

4 a PrimitiveDef ofWﬁ&t%&%r:ﬂlgﬂé CORBA::pk_ulong, CORBA::pk_short, CORBA::pk_ushort, CORBA::pk_boolean,

CORBA::pk_wchar,

bApORPANMBERTS

WebSphere Application Server CORBA support - Page 231

CORBA: : Uni onMenber Seq & nmenbers

The members parameter provides the list of union members with which to update the

UnionDef.

Return values
None.

Example

Il C++
[/ assume
/1 have alread
CORBA: : Uni onDef *
CORBA:

A: : Uni o
seq_update. | ngth ()
seq_update[0
seq_updat e[0 Iabel <<=

seq_update[0

seq_updat e . name” =

[

"this_union_def'

‘pk_long_ptr', and ' pk_double_ptr’

“been |n|t|al|ze'u’
t hi s_uni on_def;
cPrimtiveDef * pk_| Iong ptr:

CORBA: : Pri mitiveDef * pk”doubTe_ptr
/1 _establish and initialTze the"
nManberSeq seq_updat e;

i onMember Seq .

CORBA: : stri ng dup ("el enment_zero_|long");
(CORBA 1;
.type_def = CORBA: ;

IDL ype: dupllcate (pk_| Iong ptr);

CORBA:: st ring_du el enment _one_doubl e
CORBA: : g p (Kl

seq_updat e label <<= (
seq_update[1] . type_def = CORBA:: IDL e duplicate (pk_ double _ptr);
/] set the menbers attribute of the |onDef using 'seq_update

t hi s_uni on_def - > nenbers
// _read the nenbers attrl
returned_menb

CORBA: : Uni onMenber Seq

gseq updat e) ;
ute”infornation from the Uni onDef
ers;

returned_nenbers = this_union_def-> nenbers ();

CORBA module: UnknownUserException Class

Overview Describes a generic application-specific exception
condition that has occurred.

File name ukn_excp.h

Supported methods “UnknownUserException::_duplicate” on page 232

“UnknownUserException::_nil” on page 233

“UnknownUserException::exception” on page 233

on page 121)

UnknownUserException::id (inherited from “Exception”

Intended Usage

Request invocations made through the Dynamnic Invocation Interface (DIl) may result in
user-defined exceptions that cannot be represented in the client program (because the
exception type was not known at compile time). The CORBA::UnknownUserException class
is intended to be caught in the catch clause of a try/catch block that encompasses a DIl

invocation.

Applications should never explicitly thrown instances of CORBA::UnknownUserException.

UnknownUserException::

_duplicate

Overview

Duplicates an UnknownUserException object.

Original class

“CORBA::UnknownUserException” on page 232

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to an UnknownUserException object. Both the original and the duplicate reference should
subsequently be released using CORBA::release(UnknownUserException_ptr).

IDL Syntax

static CORBA:: UnknownUser Excepti on_ptr

_duplicate

WebSphere Application Server CORBA support - Page 232

(CORBA: : UnknownUser Exception_ptr p);
Input parameters
p

The UnknownUserException object to be duplicated. The reference can be nil, in
which case the return value will also be nil.

Return values
CORBA::UnknownUserException_ptr

The new UnknownUserException object reference. This value should subsequently be
released using CORBA::release(UnknownUserException_ptr).

UnknownUserException::_nil

Overview

Returns a nil CORBA::UnknownUserException
reference.

Original class

“CORBA::UnknownUserException” on page 232

Intended Usage
This method is intended to be used by client and server applications to create a nil
UnknownUserException reference.

IDL Syntax

static CORBA:: UnknownUser Exception_ptr _nil ();
Input parameters

None.

Return values
CORBA::UnknownUserException_ptr

A nil UnknownUserException reference.

UnknownUserException::exception

Overview

Specifies the UserException contained in a
CORBA::UnknownUserException.

Original class

“CORBA::UnknownUserException” on page 232

Intended Usage

This method is intended to be used by applications that catch a
CORBA::UnknownUserException when attempting to invoke a method dynamically using
the DII. The exception() method can be used to access the specific UserException that was
thrown by the remote request.

IDL Syntax
CORBA: : Any &exception();
Input parameters

None.

Return values

CORBA::Any &

An Any object whose type() indicates the type of the exception that was thrown (some
subclass of CORBA::UserException) and whose value() is the exception that was
thrown (an instance of some subclass of CORBA::UserException). The
UnknownUserException object retains ownership of the returned Any and its contents.

CORBA module: UserException Class

WebSphere Application Server CORBA support - Page 233

Overview Describes an application-specific exception condition
that has occurred.

File name usr_excp.h

Supported methods “UserException::_duplicate” on page 234

“UserException::_nil” on page 234

UserException::id (inherited from “Exception” on

page 121)

Intended Usage

This class is intended to be caught in the catch clause of a try/catch block that
encompasses operation invocations. Typically UserException instances will actually be
instances of some application-specific subclass of UserException, or
“CORBA::UnknownUserException” on page 232 . For each application-specific exception
defined in IDL, the C++ bindings define a corresponding subclass of
CORBA::UserException, which the interface implementation can throw.

In the Java implementation, org.omg.CORBA.UserException derives from
java.lang.Exception.

UserException::_duplicate

Overview

Duplicates a UserException object.

Original class

“CORBA::UserException” on page 234

Intended Usage

This method is intended to be used by client and server applications to duplicate a reference
to a UserException object. Both the original and the duplicate reference should
subsequently be released using CORBA::release(UserException_ptr).

IDL Syntax

static CORBA:.: User Exception_ptr _duplicate
(CORBA: : User Exception_ptT p);

Input parameters
p

The UserException object to be duplicated. The reference can be nil, in which case the
return value will also be nil.

Return values
CORBA::UserException_ptr

The new UserException object reference. This value should subsequently be released
using CORBA::release(UserException_ptr).

UserException::_nil

Overview

Returns a nil CORBA::UserException reference.

Original class

“CORBA::UserException” on page 234

Intended Usage

This method is intended to be used by client and server applications to create a nil
UserException reference.

IDL Syntax

static CORBA:: User Exception_ptr _nil ();

WebSphere Application Server CORBA support - Page 234

Input parameters
None.

Return values
CORBA::UserException_ptr

A nil UserException reference.

CORBA module: WstringDef Interface

Overview The WstringDef interface is used to represent an OMG
IDL bounded string of wide characters.

File name somir.idl

Local-only True

Ancestor interfaces “IDLType Interface” on page 127

Exceptions “CORBA::SystemException” on page

Supported operations “ WstringDef::bound” on page 235

Intended Usage

An instance of a WstringDef object is used by the Interface Repository to represent an OMG
IDL bounded wide string data type. The WstringDef object is not a named Interface
Repository object (it is in a group of interfaces known as Anonymous types), and as such
does not reside as a named object in the Interface Repository database. An instance of a
WstringDef object can be created using the “create_wstring” on page 194 operation of the
“Repository interface” on page 191 . The WstringDef is intended to represent a string of
wide characters whose kind is pk_wchar.

IDL syntax

m)dul e CORBA {M
erfa tringDef:|DLType {
i but e unsi gned Iong bound;

WstringDef::bdund

Overview The bound read and write operations allow the access
and update of the bound attribute of a bounded string
definition (CORBA::WstringDef) within the Interface

Repository.
Original interface “ WstringDef Interface” on page 235
Exceptions “CORBA::SystemException” on page

Intended Usage
The bound attribute specifies the maximum number of characters in the string, and must not
be zero.

IDL Syntax

attribute unsigned | ongbound;

Read operations
Input parameters

None.

Return values
CORBA: : ULong
The returned is the current value of the bound attribute of the string definition

WebSphere Application Server CORBA support - Page 235

(CORBA::WstringDef) object.

Write operations
Input parameters

CORBA: : ULong bound

The bound parameter is the new value to which the bound attribute of the
CORBA::WstringDef object is set.

Return values
None.

Example

Il C++
I/ _assume that 'this_string' has already been initialized
CORBA: : W&t ri ngDef * This_wstring; . .
/| _change the bound attribute of the string definition
CORBA: : ULong new_bound = 409;
this_string-> bound (new_bound); .
[/ _obtain the bound of a string definition
CORBA: : ULong ret urned_bound;
returned_bound = this_wstring-> bound ();

WebSphere Application Server CORBA support - Page 236

CosNaming in the Naming Service

The CosNaming module supports methods that allow the assigning of a name to an object
(that is, creating an object-name binding in a context), then finding the object using the
assigned name.

The files relating to the CosNaming module are listed in the table below.

Table: 1. Files for the CosNaming module

AIX Solaris Windows NT Visual
C++

module file name

CosNaming.idl

Java package file
name

org.omg.CosNaming

C++ Header file name CosNaming.hh

Linker files

libsomosal.a libsomosal.so somosalm.lib

Intended Usage

The key class in this module is the NamingContext class. Operations in this class can be
used to build and manipulate a naming space. A naming space is distributed and federated.
Objects in this naming space are managed objects.

Types

typedef string Istring;
g[’ruct Nanecgnponent g{
Istring id;
) I'string kind;
ypedef sequence <NameConponent> Nare;
enum Bi ndi ngType {nobject, ncontext};
struct Binding {
Nane_bi ndi ng_nane;
_Bi ndi ngType bi ndi ng_t ype;
typedef sequence <Bindi ng> Bi ndi ngLi st ;

Interfaces

For information on each of the interfaces within the CosNaming module, see the related
topics.

CosNaming::Bindinglterator Interface

Overview Provides support for the Object Management Group
(OMG) binding iteration.

File name CosNaming.idl

Exceptions “CORBA standard exceptions” on page

Supported operations “Bindinglterator::destroy” on page 238

“Bindinglterator::next_n" on page 241

“Bindinglterator::next_one” on page 242

Intended Usage

This class is instantiated and returned as an out parameter in the
CosNaming::NamingContext::list method if the targeted naming context contains more
name-object bindings than requested.

Types

WebSphere Application Server CORBA support - Page 237

typedef string Istring;
g?r uct Narreogrrponent g{
Istring id;
_Istrlng ki nd;

"

typedef sequence <NaneConponent> Nane;
enum Bi ndi ngType {nobject, ncontext};
struct Binding {

~Nane bi ndi ng_nane;
Bi ndi ngType bi ndi ng_type;

ypedef sequence <Bi ndi ng> Bi ndi ngLi st ;

Bindinglterator::destroy

Overview

Destroys the iterator and frees allocated memory.

Original interface

“ CosNaming::Bindinglterator Interface” on page 237

Exceptions

“CORBA standard exceptions” on page

Intended Usage
This operation is intended to be used by client applications. It is not typically overridden.
IDL Syntax

voi d destroy();
Examples

The following examples demonstrate the usage of the CosNaming Module.

C++ Example

/[A CosNam ng usage exanpl e. . . .
/| For simplicity, error and exception checking and cleanup are ommitted.
#i ncl ude <CosNami ng. hh>
#i ncl ude <stdlib.h>
#i ncl ude <fstream h>
#define filenamel "NMJTST1. OQUT"
#define filename2 "NMJTST1. OUT"
// Make the name "vehicles" .
CosNami ng_: :Nanme *vehi cl esBi ndi ngNa = new CosNami ng: : Nane;
vehi cl esBi ndi ngNane->length(1); . .
;*vehl cl esBi ndi ngNarTE; [OF. id CORBA: : string_dup("vehicles");

*vehi cl esBi ndi ngNare) [0] . ki nd CORBA: : stri n%adup ; . .
[Create a new nanming context vehiclesNam ngContext and bind it to the
// root rootNam ngConfext with the name "vehicles"”
CosNami ng: : Nam ngCont ext _ptr vehi cl esNam ngCont ext =
r oot Nani ngCont ext - >bi nd_new_cont ext (*vehi cl esBi ndi ngNane) ;
/1 Make the name "vehicles.|arge" . .
CosNam ng: : Nane *| argevehi cl esBi ndi ngNane = new CosNami ng: : Nane;

| 'ar gevehi cl esBi ndi ngNane- >l ength(1); . .
*| ar gevehi cl esBi ndi ngNane) [O] . i = CORBA: : string_dup("vehicles");
0] . kind = CORBA: : string_dup

*| ar gevehi cl esBi ndi ngNane X I " arge") ;
/ create a new nami ng context |argevehiclesNam ngContext and bi nd
[/ it to the nam ng context vehiclesNanm ngContext with the name
/1 "vehicles.|arge . .
CosNam ng: : Nam ngCont ext_Bt r | argevehicl esNam ngCont ext =
vehi cl esNani ngCont ext - >bi nd_new_cont ext (
*| ar gevehi cl esBi ndi ngNane) ;
// Make the name "vans™ .
CosNam ng: : Name *vansBi ndi ngName = new CosNami ng: : Nane;

vansBi ndi ngName- >l ength(1); .
*vansBi ndi ngNanme) [O].id = CORBA: :string_dup("vans");
*vansBi ndi ngNane) [0] . ki nd = CORBA: : stri n%adup ") . .
/ create a new nam ng context vansNam ngContext and bind it to the

// nami ng context vehiclesNam ngContext with the name "vans"
CosNami ng: : Nam ngCont ext_gt r vansNam ngContext =
vehi cl esNam ngCont ext - >bi nd_new_cont ext (*vansBi ndi ngNane) ;
// Make the name "trucks" .
CosNami ng: ; Name *trucksBi ndi ngNane = new CosNani ng: : Nane;
trucksBi ndi ngNane->l ength(1);)
*trucksBi ndingNane)[0].id = CORBA: :string_dup("trucks");
*trucksBi ndi ngNane) [0] . ki nd = CORBA: : string_dup(""); . .
create a new nam ng context trucksNam _n? ntext and bind it to the
// naming context vehiclesNam ngContext with the nanme "trucks"
CosNami ng: : Nanm ngCont ext_Bt r trucksNam ngContext =
vehi cl esNanmi ngCont ext - >bi nd_new_cont ext (*t r ucksBi ndi ngNane) ;
// Make the name "chrysler” .
CosNami ng_: :Name *avehi cl eBi ndi ngNanme = new CosNami ng: : Nang;
avehi cl eBi ndi ngNane->l ength(1); .
*avehi cl eBi ndi ngNare) [O] . i d = CORBA: :string_dup("chrysler");
7aveh| cl eBi ndi ngNane) [0] . ki nd = CORBA: : string_dup("");

’

Il Create an ob* ect avehi cl ebj ect
ifstreamstrnl(filenanmel);

char refStr[2048];

menset (refStr, 2048, '\0');

strml >> refStr;

CORBA: : GJLeCt ptr avehicl eCbject = orb_p->string_to ob{ ect(refStr);
/[Bind the object avehicleObject to the nam ng contex

/1 vansNami ngContext w th the name “chrysler” . .

vansNani ngCont ext - >bi nd(*avehi cl eBi ndi ngNane, avehi cl etbj ect);

/] Create another object anothervehicl elbject

i fstream strn2(fil enanme2);

WebSphere Application Server CORBA support - Page 238

menset (ref Str, 2048, '\0');
strn? >> refStr;
CORBA: ;: Obj ect _ptr anot hervehicl eCbj ect = or b_P- >string_to_object(refStr);
/] Rebind the object anothervehicleCbject to the nam ng
/1 context vansNanmi ngContext w th the name "chrysler" . .
vansNami nﬁCont ext ->rebi nd(*avehi cl eBi ndi ngNane, ~ anot her vehi cl eQbj ect) ;
/[Bind the context vansNam ngContext to the context
/1 vehicl esNam ngContext with the nane "vans" =
| ar gevehi cl esNam ngCont ext - >bi nd_cont ext (*vansBi ndi ngNane,
vansNani ngCont ext) ; o
// Make the name "vans.mini" .
CosNami ng: : Name *mi ni VansBi ndi ngNanme = new CosNami ng: : Nane;
m ni VansBi ndi ngNare->l ength(1); .
*m ni VansBi ndi ngNare) [O] . i d = CORBA: :string_dup("vans");
*m_ni VansBi ndi ngNare) [0] . ki nd = CORBA: : string_dup("mni"
/ Rebind the context vansNam ngContext to the context
/1 vehicl esNam ngCont ext with the nanme "vans.mni" o
I ar gevehi cl esNam ngCont ext - >r ebi nd_cont ext (*mi ni VansBi ndi ngNang,
vansNanmi ngCont ex g; . . .
/1 Unbind the object bound to vehicl esNanmi ngContext with the
/] nane "vans" . o
I ar %evehl cl esNam ngCont ext - >unbi nd(*vansBi ndi ngNane) ; .
// Unbind the object bound to vehicl esNam ngContext with the
/] nane "vans.mni" . L o
| ar gevehi cl esNam ngCont ext - >unbi nd(* m ni VansBi ndi ngNane) ;
I/ ke the name "vehicles/vans/crysler.mni"
CosNami ng: : Name *aM ni VansPat hName™ = new CosNani ng: : Nane;

’

aM ni VansPat hNanme- > ength(3); . .
*aM ni VansPat hNane) [O] . i d = CORBA: :string_dup("vehicles");
*aM ni VansPat hNanme) [0] . ki nd = CORBA: :string_dup("");
*aM ni VansPat hNane) [1] .i d = CORBA: :string_dup("vans");
*aM ni VansPat hNane) [1] . ki nd = CORBA: : string_dup(" 21
*aM ni VansPat hNane) [2] .i d = CORBA: :string_dup("chrysler");
*aM ni VansPat hNane) | 2] . ki nd = CORBA: ; string_dup("");

/ Resolve the nane fromthe root nam ng confex

root Nam ngCont ext avehi cl eCbj ect =
r oot Nam ngCont ext - >r esol ve(*aM ni VansPat hNameg ; .

// list only one binding in the nam ng root context rootNam ngContext
[/ The_ remaining bindings can be retrieved fromthe binding iterator bi.
CosNami ng: : Bi ndi ngLi st _var bl;
CosNami ng: : Bi ndi nglterator_var bi;
vehi cl esNam ngContext->list(1, bl, bi); .
/] Retrieve the next binding from the binding iterator
CosNami ng: : Bi ndi ng_var b;

@

bi - >next _one(b); o o .

// Retrieve the next 2 bindi ngs fromthe binding iterator
CosNami ng: : Bi ndi ngLi st _var bl I;

bi - >next _n(2, bl1); . .
[/ Destroy the nam ng context vehicl esNani ngCont ext
| ar gevehi cl esNami ngCont ext - >destroy() ;

I stroy the binding iterator bi

bi - >destroy();

Java Example

/'l Java exanpl e .
/'l make the nane "vehicl es"”) o
or g. ong. CosNani ng. l\la[reCoRgonent[] vehi cl esBi ndi ngNane =
new org_. ong. CosNani ng. NaneConponent [1] ;
vehi cl esBi ndi'ngNane[0] = new NameConponent () ;
vehi cl esBi ndi ngNane[0] . i ¢ "
vehi cl esBi ndi ngNane[0] . kind = ""; . . .
Create a new nani ng context vehiclesNanmi ngContext and bind it to the
root root Nam ngConftext with the name "vehicles"
?r g. ong. CosNam ng. Nam ngCont ext vehi cl esNam ngContext = null;
r

.id = "vehicles";

—_—
—_—

vehi cl esNam ngCont ext = . o
root Nam ngCont ext . bi nd_new_cont ext (vehi cl esBi ndi ngNane) ;

%:atch (Exception e)
/1 do error handling
I ke the nanme "vehicles. | arge”

or g. ong. CosNani_ng. NaneConponent [] | argevehi cl esBi ndi ngNane =
new or g. ong. CosNani ng. NanmeConponent ?1] ;

| ar gevehi cl eSBi ndi ngName[0] = new NaneConponent () ;
| ar gevehi cl esBi ndi ngNane[0] .id = "vehicl es";
| ar gevehi cl esBi ndi ngNane[0] . ki nd = "] arge";

create a new naming context |argevehiclesNam ngContext and bind
it to the naming context vehicl esNam ngContext with the name
"vehicles. | arge . . .
?r g. ong. CosNam ng. Nam ngCont ext | ar gevehi cl esNam ngCont ext = nul | ;
r
yI ar gevehi cl esNam ngCont ext = . L
vehi cl esNanm ngCont ext . bi nd_new_cont ext (| ar gevehi cl esBi ndi ngNane) ;

—~——
—_——

%:atch (Exception e)
/1 do error handling

I ke the nane "vans" o
or g. ong. CosNam ng. NameCor'Igonent[] vansBi ndi ngNane =

new or g. ong. CosNani ng. NaneConponent [1] ;
vansBi ndi ngNanme[0] = new NaneConponent () ;
vansBi ndi ngNarme[0] .id = "vans";
vansBi ndi ngName[0] . kind = ""; . . .
create a new nani ng context vansNam ngContext and bind it to the
nam ng context vehicl esNam ngContext with the name "vans"
?r g. ong. CosNami ng. Nam ngCont ext vansNam ngContext = null;

ry

—_—
—_—

vansNam ngCont ext = . o
vehi cl esNam ngCont ext . bi nd_new_cont ext (vansBi ndi ngNane) ;

%:atch (Exception e)
/1 do error handling

WebSphere Application Server CORBA support - Page 239

I k/hke the nane "trucks"

org. ong. CosNam ng. NaneCoRBonent[] t rucksBi ndi ngNane =

new org CosNam ng onent[1];

trucksBi nd| ngNarre = new Name nponen 0O;
trucksBi ndi ngNane[0 cks'
trucksBi ndi ngNane[0 ~kind =
create a new nami ng cont ext trucksNam ngContext and bind it to the
nam ng context vehicl esNam ngContext with the name "trucks"”
org. ?rrg CosNam ng. Nam ngCont ext trucksNam ngContext = null;
try

trucksNam ngCont ext =

vehi cl esNanm ngCont ext . bi nd_new_cont ext (trucksBi ndi ngNane) ;

—~
—~

catch (Exception e)
/1 do error handling

11 ke the nane "chr Ier

org. ong. CosNam ng. REonent[] avehi cl eBi ndi ngNanme =

new org CosNam ng. NameConponent [1];

avehi cl eBi ndi ngNare[0] = new, NarTECoeronent 0);

avehi cl eBi ndi ngNanme[0] .id = chrysl er

avehi cl eBi ndi ngNane[0] . ki nd =
/1 Create an object avehi cl eQbj ect

Buf f er edReader _strnl = nul I

String refStr = null;

try {

strml = new Buf f er edReader (
new | nput St rearrReader(neW Fi | el nput Strean(" NMJTST1. QUT")));

ref Str=strmnil. readLi ne();
strml. cl ose();

catch (Exception e)

/1 do error handling
org. onﬁ CORBA. Obj ect avehicl eCoject = orb.string_to_object(refStr);
Bi nd the object avehicleCbject to the nam ng context

/
/ vansNam ngContext with the nane "chrysler"
tr

—_——

yvginsNam ngCont ext . bi nd(avehi cl eBi ndi ngNanme, avehi cl eQbj ect);
} :

catch (Exception e)

/1 do error handling

11 eat e anot her object anothervehicl eQbj ect
tBuffer edReader strn2 = null;
r
ystrmz = new Buf f er edReader (
new | nput St r eanReader (new Fi | el nput St rean(" NMUTST2. QUT"))) ;
ref Str=strnR. readLi ne();
strnR. cl ose();

catch (Exception e)
/1 do error handling
CORBA. Cb{ ect anot hervehicl eOJ{ ect = orb.string_to_object(refStr);

I |nd the obj ect anot her vehi cl eCbject to the nani ng
11 cont ?xt vansNam ngContext with the nane "chrysler"
tr
) yvansNani ngCont ext . r ebi nd(avehi cl eBi ndi ngNanme, anot her vehi cl eQbj ect) ;
catch (Exception e)
/1 do error handling
[/ Bind the context vansNaningContext to the context
/'l vehicl esNam ngCont ext wi th the nane "vans"

tr
yI E’:lr gevehi cl esNam ngCont ext . bi nd_cont ext (vansBi ndi ngNaneg,
vansNam ngCont ext) ;

catch (Exception e)
/1 do error handling

I ke the nanme "vans. mni'
org. ong. CosNam ng. NameCoRgonent[] m ni VansBi ndi ngNane =
new org CosNam ng neConponent [1] ;
m ni VansBi ndi ngNanE 0 = new NamaOor’rponent 0);
m ni VansBj ndi ngName[0] . i d = "vans'
ni ni VansBi ndi ngNane[0] . kind = "mni "
/I Rebind the context vansNam ngCont ext "to the cont ext
I \t/ehl ({:| esNam ngContext with the nane "vans. m ni
r
yI ar gevehi cl esNam ngCont ext . r ebi nd_cont ext (m ni VansBi ndi ngNane,
vansNam ngCont ext) ;

%:atch (Exception e)

/1 do error handling

—_—

/- Unbind the object bound to vehicl esNam ngContext with the
/ narre 'vans

I{ar gevehi cl esNanmi ngCont ext . unbi nd(vansBi ndi ngNane) ;
catch (Exception e)
/1 do error handling
11 Lnbl nd the obj ect bound to vehicl esNam ngContext with the

WebSphere Application Server CORBA support - Page 240

/1 nane "vans. mni"
yI ar gevehi cl esNami ngCont ext . unbi nd(m ni VansBi ndi ngNane) ;
catch (Exception e)
/1 do error handling

I ke the nane "vehicl es/vans/chrysler.mni
or g. ong. CosNam ng. NarreCoRgonent[aM n| VansPathNarre =

new org. onﬁ CosNami ng onent
aM ni VansPat 0] = new Nane nPonen ()
aM ni VansPat hNarre .id 'vehic

aM ni VansPat hNane
aM ni VansPat hNane
aM ni VansPat hNane

0

0] . ki nd

= new
aM ni VansPat hNanme % “kind = "v

2

2

ro

_—dnew NameOor’rponent 0

aM ni VansPat hNane = new Nam'eOo onent () ;
aM ni VansPat hNarme[2] .id = chrys er'
aM ni VansPat hNane d =
/! Resol ve the nane om the root nani ng cont ext
r
yavehi cl eObj ect = root Nam ngCont ext . r esol ve(aM ni VansPat hNane) ;
catch (Exception e)
/1 do error handling

[list only one binding in the nam ng root context rootNam ngContext
/ The renaining bindings can be retrieved fromthe binding iferator bi.
or g. ong. CosNami ng. Bi ndi ngl terator bi;
or g. ong. CosNami ng. Bi ndi ngl t er at or Hol der bih = new Bindi ngl t er at or Hol der () ;
org ong CosNami ng. Bi nd |ng[] bl ; L .
ong. CosNam ng. Bi nd I ngt |(§t Hol derbbm = new Bi ndi ngLi st Hol der () ;
is

~—

gl cl esNam ngCont ext . , blh
bI = bl h. val ue;
bi = bi h. val ue;

/1 Retrieve the next binding
or g. ong. CosNani ng. Bi ndi ng
or g. ong. CosNani ng. Bi ndi ng
b| -next _one(bh);

bh. val ue;

I/ Retrlevethe next 2 bindings f omthe bi nding iterator
org. ong. CosNamn Bi ndi ng[iJ bl 1
bi . next n(2 ?

bl 1 brh. val ue

I Destroy the nam ng context vehicl esNani ngCont ext

m t he bi ndi ng iterator

from
b =n ewBinding);)
Hol der bh = new BI ndi ngHol der () ;

yI ar gevehi cl esNani ngCont ext . destroy();
catch (Exception e)
/1 do error handling
I %)sitioy the binding iterator bi
bi . destroy();

%:atch (Exception e)
} /'l do error handling

Bindinglterator::next_n

Overview Retrieves at most the specified number of name-object
bindings.

Original interface “ CosNaming::Bindinglterator Interface” on page 237

Exceptions “CORBA standard exceptions” on page

Intended Usage

This operation allows clients to iterate through the bindings in the iterator. It is intended to
be used by client applications. It is not typically overridden.

IDL Syntax

bool ean next _n(
in unsi nged Ion% how_many,
out CosNam ng i ndi ngLi st bli st);

Input parameters
how_many

The maximum number of bindings to be returned.

blist
The returned BindingList.

Return values
TRUE

WebSphere Application Server CORBA support - Page 241

Indicates that more bindings exist.

FALSE
Indicates to the client that there are no more bindings.

Example
See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .
Bindinglterator::next_one

Overview Retrieves the next name-object binding.
Original interface “ CosNaming::Bindinglterator Interface” on page 237
Exceptions “CORBA standard exceptions” on page

Intended Usage
This operation is intended to be used by client applications. It is not typically overridden.
IDL Syntax

bool ean next_one(out CosNanmi ng:: Bi ndi ng bi ndi ng);
Input parameters
binding
The returned Binding.

Return values
TRUE

Indicates that the next binding exists.

FALSE
Indicates that the next binding does not exist.

Example
See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .

CosNaming::NamingContext Interface

Overview Provides support for creating and manipulating a
system naming tree, binding a name to an object in a
naming context, retrieving an object from a naming
context using the object name, and listing the bindings
in a naming context.

File name CosNaming.idl

Exceptions “CORBA standard exceptions” on page and the
following user exceptions:
CosNaming::NamingContext::AlreadyBound

Raised to indicate that an object is already bound to
the name. Re-binding operations unbinds the name,
then rebinds the name without raising this
exception.

CosNaming::NamingContext::CannotProceed{NamingCoptext
ctx; Name rest_of_name;};

Raised to indicate that the implementation has given
up for some reason. The client may be able to

WebSphere Application Server CORBA support - Page 242

continue the operation using the returned naming
context.

CosNaming::NamingContext::InvalidName

Raised to indicate that the name is invalid. A name
with a length of zero is invalid. (This exception may
be raised upon further implementation restrictions.)

CosNaming::NamingContext::NotFound{NotFoundReasop
why; Name rest_of_name;};
Raised to indicate that the name does not identify a
binding. If a compound name is passed as an
argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of
the intermediate contexts cannot be resolved.

Supported operations “NamingContext::bind” on page 243

“NamingContext::bind_context” on page 244

“NamingContext::bind_new_context” on page 245

“NamingContext::destroy” on page 245

“NamingContext::list” on page 246

“NamingContext::rebind” on page 247

“NamingContext::rebind_context” on page 248

“NamingContext::resolve” on page 248

“NamingContext::unbind” on page 249

Intended Usage

This interface provides the operations necessary to create and manipulate a system naming
tree, to bind a name to an object in a naming context, to retrieve an object from a naming
context using the object name, and to list the bindings in a naming context.

Types

tyPedef string Istring;
struct NaneConponent ~{
Istring id;
Istring Kind;

ypedef sequence <NaneConponent> Nare;
enum Bi ndi ngType {nobject, ncontext};
struct Binding {
Nanme_ bi ndi ng_nane;
Bi ndi ngType bi ndi ng_t ype;

'ypedef sequence <Bi ndi ng> Bi ndi ngLi st ;

NamingContext::bind

Overview Creates a binding in a naming context.
Original interface “ CosNaming::NamingContext Interface” on page 242
Exceptions “CORBA standard exceptions” on page and the

following “ user exceptions” on page 242 :
* CosNaming::NamingContext::AlreadyBound
* CosNaming::NamingContext::CannotProceed

» CosNaming::NamingContext::InvalidName

» CosNaming::NamingContext::NotFound

Intended Usage

WebSphere Application Server CORBA support - Page 243

This operation is intended to be used by client applications. It is not typically overridden.

This operation creates a binding of a name to an object in a naming context. Binding a
name to an object in a naming context creates a name-object association relative to the
target naming context. Once an object is bound, it can be found through the resolve
operation. Naming contexts that are bound using bind do not participate in name resolution
when compound names are resolved - bind_context should be used to bind naming context
objects.

This operation runs resolve to traverse a compound name. An object can be bound to
multiple names in a context or across multiple contexts. Within a context, names of an
object must be unique. That is, only one object can be bound to a particular name in a
naming context.

IDL Syntax

voi d bindg\h_
in Cos mng_::Nane nane,
in Qoject obj);

Input parameters
name

The name for the binding.
obj

The object to be bound.
Return values

None.

Example

See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .

NamingContext::bind_context

Overview

Creates a haming context binding.

Original interface

“ CosNaming::NamingContext Interface” on page 242

Exceptions

“CORBA standard exceptions” on page and the
following “ user exceptions” on page 242 :

» CosNaming::NamingContext::AlreadyBound
e CosNaming::NamingContext::CannotProceed
e CosNaming::NamingContext::InvalidName

¢ CosNaming::NamingContext::NotFound

Intended Usage

This operation is intended to be used by client applications. It is not typically overridden.

This operation creates a naming context binding. Binding a name and a naming context
object into a naming context creates a name-object association relative to the target naming
context. Naming contexts that are bound using bind_context participate in name resolution
when compound names are resolved. This operation is used to extend the naming tree by
binding sub-contexts to contexts. Like an object, a naming context can be bound, using
bind_context, to multiple names in a context or across multiple contexts. Within a context,
the names bound to a context must be unique. That is, only one context can be bound to a
particular name in a naming context.

IDL Syntax

WebSphere Application Server CORBA support - Page 244

voi d bi nd_cont ext
in CosNani ng: : Namre nane, .
in CosNam ng: : Nam ngCont ext nam ng_cont ext);

Input parameters
name

The name for the binding.
Return values

None.

Example

See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .

NamingContext::bind _new _context

Overview

Creates a new naming context in the same server as
the target naming context on which the operation was
invoked and binds it to a supplied name.

Original interface

“ CosNaming::NamingContext Interface” on page 242

Exceptions

“CORBA standard exceptions” on page and the
following “ user exceptions” on page 242 :

e CosNaming::NamingContext::AlreadyBound
» CosNaming::NamingContext::CannotProceed
* CosNaming::NamingContext::InvalidName

¢ CosNaming::NamingContext::NotFound

Intended Usage

This operation is intended to be used by client applications. It is not typically overridden.

The naming context that is created has the same implementation as the target naming
context to which it is bound. This new context is created in the same process as that of the
target naming context. Note that the target naming context in which the new context is
bound is denoted by a hame that is equivalent to the name name excluding the last name
component of name.

IDL Syntax
CosNami ng: : Nam ngCont ext bi nd_new_cont ext (i n CosNami ng: : Nanme nane) ;

Input parameters
name

The name for the naming context object binding.

Return values
CosNaming::NamingContext

Example

See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .

NamingContext::destroy

Overview

Destroys a naming context.

Original interface

“ CosNaming::NamingContext Interface” on page 242

Exceptions

“CORBA standard exceptions” on page and the
following user exception:
CosNaming::NamingContext::NotEmpty

WebSphere Application Server CORBA support - Page 245

Raised if the naming context contains any bindings.

Intended Usage

This operation is intended to be used by client applications. It is not typically overridden.
This operation destroys the naming context if the context is empty. The naming context
cannot contain bindings for this operation to succeed. It is the responsibility of the client to
ensure that all bindings have been removed from the naming context before invoking this

operation. Use the unbind operation to remove any bindings in the naming context; for more
information, refer to the unbind Operation.

IDL Syntax

voi d destroy();
Input parameters

None.

Return values

None.

Example

See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .
NamingContext::list

Overview Retrieves bindings from a naming context.
Original interface “ CosNaming::NamingContext Interface” on page 242
Exceptions “CORBA standard exceptions” on page

Intended Usage

This operation is intended to be used by client applications. It is not typically overridden.

This operation retrieves bindings from a naming context. At most, the operation returns a
number of bindings equal to how_many in blist. If the naming context contains additional
bindings, a “Bindinglterator” on page 237 is returned, and the calling program can iterate
through the remaining bindings. If the naming context does not contain additional bindings,
the Bindinglterator is a NIL object reference.

The value of how_many should be less than or equal to a maximum of 1000.

The returned binding list is of type BindingList which contains a list of bindings. Each
element in the list is of type Binding. Binding consists of two fields: binding_name which is
the name part of the binding and binding_type which is the type of the object part of the
binding. A binding type is either an object (nobject) or a naming context (ncontext).

IDL Syntax

void list(
in unsigned Iong_ how_many, .
out CosNami ng: : Bi ndi ngLi st blist,
out CosNam ng::Bindinglterator biterator);

Input parameters
how_many

The maximum number of bindings to install into the BindingList.
blist
The returned BindingList.

WebSphere Application Server CORBA support - Page 246

biterator
The returned Bindinglterator.

Return values

None.

Example

See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .

NamingContext::new_context

This operation is not part of the programming model and should not be directly invoked or
overridden.

NamingContext::rebind

Overview

Recreates a name-object binding in a naming context
even if the name is already bound in the naming
context.

Original interface

“ CosNaming::NamingContext Interface” on page 242

Exceptions

“CORBA standard exceptions” on page and the
following “ user exceptions” on page 242 :

e CosNaming::NamingContext::CannotProceed
e CosNaming::NamingContext::InvalidName

¢ CosNaming::NamingContext::NotFound

Intended Usage
This operation is intended to be used by client applications. It is not typically overridden.

This operation recreates a name binding in a naming context, even if the name is already
bound in the naming context. Rebinding a name and object into a naming context recreates
a name-object association relative to the target naming context. Naming contexts that are
bound using rebind do not participate in name resolution process when compound names
are resolved.

If an object is already bound with the same name, the bound object is replaced by the
passed argument obj. If the name-object binding does not exist, the rebind method behaves
like the bind method.

As a developer, you can use the rebind method to replace an existing binding. You can use
the rebind operation in place of the unbind and bind methods.

IDL Syntax

voi d rebind(.
i n CosNami ng_: : Name name,
in Object obj);

Input parameters
name

The name to be re-bound.
obj

The Object to be re-bound.
Return values

None.

Example

WebSphere Application Server CORBA support - Page 247

See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .

NamingContext::rebind_context

Overview

Recreates a name-naming context binding in a target
naming context, even if the name is already bound in
the target naming context.

Original interface

“ CosNaming::NamingContext Interface” on page 242

Exceptions

“CORBA standard exceptions” on page and the
following “ user exceptions” on page 242 :

e CosNaming::NamingContext::CannotProceed

* CosNaming::NamingContext::InvalidName

* CosNaming::NamingContext::NotFound

Intended Usage

This operation is intended to be used by client applications. It is not typically overridden.

This operation recreates a binding to a naming context, even if the name is already bound in
the naming context. Re-binding a name and a haming context object into a naming context
recreates a name-object association relative to the target naming context. Naming contexts
that are bound using rebind_context participate in name resolution when compound names
are resolved.

The rebind_context operation is used to bind or replace a subcontext. If a context is already
bound in a context, the bind operation raises the AlreadyBound exception. However, the
rebind method replaces the bound object with the passed object.

IDL Syntax

voi d rebi nd_cont ext (
i n CosNami ng: : Nane nane, .
in CosNam ng: : Nam ngCont ext nam ng_cont ext);

Input parameters
name

The name to be re-bound.

naming_context

The NamingContext object to be re-bound to the name.
Return values

None.

Example

See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .

NamingContext::resolve

Overview

Retrieves an Object bound to a name.

Original interface

“ CosNaming::NamingContext Interface” on page 242

Exceptions

“CORBA standard exceptions” on page and the
following “ user exceptions” on page 242 :

» CosNaming::NamingContext::CannotProceed

* CosNaming::NamingContext::InvalidName

WebSphere Application Server CORBA support - Page 248

* CosNaming::NamingContext::NotFound

Intended Usage

This operation is intended to be used by client applications. It is not typically overridden.

This operation retrieves the object bound to name name in the target naming context. The
name name could be a simple name. In that case name should match exactly the name
bound to the object in the context. Or, the name name could be a compound name that
spans multiple contexts. In this case, name resolution traverses multiple contexts. At each
context traversed, the name bound to this context, in its super context, should match exactly
the name component corresponding to this traversed context. The last name component of
the compound name should match exactly the name bound to the object in the last
traversed naming context.

The type of the returned object is not provided. Clients are responsible for "narrowing" the
object to the appropriate type. Clients typically cast the returned object to a more
specialized interface.

IDL Syntax

bj ect resol ve(i n CosNami ng: : Name nane) ;

Input parameters
name

The name for the name-object binding.

Return values
Object

The name of the object bound to the supplied name.
Example

See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .

NamingContext::unbind

Overview

Removes a hame-object binding.

Original interface

“ CosNaming::NamingContext Interface” on page 242

Exceptions

“CORBA standard exceptions” on page and the
following “ user exceptions” on page 242 :

e CosNaming::NamingContext::CannotProceed

» CosNaming::NamingContext::InvalidName

» CosNaming::NamingContext::NotFound

Intended Usage

This operation is intended to be used by client applications. It is not typically overridden.

The unbind operation removes a binding from a context. It unbinds the name name from the
context. It is used to unregister the name name with the Naming Service.

This operation can also be used to unbind a naming context. If the naming context was
originally bound using “bind_context” on page 244 , “rebind_context” on page 248 , “bind” on
page 243, or “rebind” on page 247 , the operation will be allowed to proceed. However, if
this context was originally bound using “bind_new_context” on page 245 , then a
CORBA::PERSIST_STORE exception will be thrown since this request would result in an
orphaned name context (which is not supported). In the case of the
CORBA::PERSIST_STORE exception, the user is required to call the “destroy” on page 245

WebSphere Application Server CORBA support - Page 249

method to unbind the name context.
IDL Syntax

voi d unbi nd(i n CosNanmi ng: : Nane nane) ;

Input parameters
name

The name for the name-object binding.
Return values

None.

Example

See the CosNaming Usage example for “Bindinglterator::destroy” on page 238 .

WebSphere Application Server CORBA support - Page 250

CosTransactions in the Transaction Service
The CosTransactions Module is the only module in the Transaction Service.

Table: 1. Files for the CosTransactions module

AlIX Solaris Windows NT Visual
C++
module file name CosTransactions.idl
Java package file org.omg.CosTransactions
name
C++ Header file name CosTransactions.hh
Linker files libsomosal.a libsomosal.so somosalm.lib

Types
Status
This type enumerates the various states through which a transaction goes during its
lifetime. A special value is used to indicate that there is no transaction.

enum St at us

St at usAct i ve,

St at usMar kedRol | back,
St at usPr epar ed,
StatusConmitted

St at usRol | edBack,

St at usUnknown,

St at usNoTr ansact i on,
St at usPr epari ng,
StatusConm tting

St at usRol |'i ngBack

}
StatusActive
The transaction has begun, has not yet been committed or rolled back, and has not
been marked rollback-only.
StatusMarkedRolIBack
The transaction has begun, has not yet been committed or rolled back, and has
been marked rollback-only.
StatusPrepared

The transaction is "indoubt". This means the local CosTransactions::Coordinator
object is waiting for information from another object to decide the outcome of the
transaction. This status can be returned by a coordinator after it has prepared, or
inside a Resource object's commit, rollback or commit_one_phase operation.

StatusCommitted

The transaction has been committed. This status is returned by
RecoveryCoordinator::replay_completion. Note that it is not returned generally,
because the objects associated with a transaction are destroyed immediately after
the transaction has committed.

StatusRolledBack

The transaction has been rolled back. This status is returned in a Resource object's
rollback operation, or by RecoveryCoordinator::replay _completion.

StatusUnknown

The status of the transaction is not currently known. This occurs in a subordinate
server process during recovery, when the superior has not been contacted. This
status is returned only by RecoveryCoordinator::replay_completion.

WebSphere Application Server CORBA support - Page 251

StatusNoTransaction
There is no current transaction. This status is returned only by Current::get_status.

Vote

This type enumerates the votes available to a Resource for the Resource::prepare

operation.

enum Vot e
Vot eCommi t ,
Vot eRol | back,
Vot eReadOnl y

Exceptions

HeuristicRollback
HeuristicCommit
HeuristicMixed
HeuristicHazard
Inactive
InvalidControl
NotPrepared
NoTransaction
NotSubtransaction
SubtransactionsUnavailable
Unavailable
Interfaces

For information on each of the interfaces within the CosTransactions module, see the
related topics.

CosTransactions:: Control Interface

Overview ok

File stem CosTransactions

Local-only True

Exceptions “CORBA::SystemException” on page
Supported operations “on page 251

ok

Intended Usage
IDL syntax

Control::get_coordinator

Overview Returns an object that supports the “ Coordinator
Interface” on page 25#br the transaction represented by
the Control object.

Original interface “ CosTransactions::Control Interface” on page 252

Exceptions TransactionRolledBack

Unavailable

Intended Usage
The Coordinator object can be used to register resources for the transaction associated with

WebSphere Application Server CORBA support - Page 252

the Control. The Unavailable exception is raised if the Control cannot provide the requested
object. The TransactionRolledBack standard exception is raised if the Control object
represents a transaction that has rolled back.

IDL Syntax

Coor di nat or get _coordi nat or ()
rai ses (Unavail abl e);

Input parameters
None.

Return values
Coordinator

An object that supports the “ Coordinator Interface” on page 25#r the transaction
represented by the Control object. The caller should not free this object; the
Transaction Service retains ownership of it.

Examples

The following examples demonstrate the usage of
CosTransactions::Control::get_coordinator.

C++ Example
#include <CosTr ansacti ons. hh>

CosTransactions::Current_ptr my_current;
CosTransactions: : Control _ptr control;
CosTransacti ons: : Coordi nator _ptr coord;

[l _Access the CosTransactions:: Current object.
CORBA: : Obj ect _ptr orbCurrentPtr =]
CBSeri esd obal ::orb()->resolve_initial _references("TransactionCurrent");
my_current = CosTransactions:>Current:: narrow(orbCurrentPtr);
my_current->begin();
control = my_current->get_control ();
coord = control ->get _coordi nator();

}

Java Example
i nport org.ong. CosTransacti ons. *;

org. ong. CosTransacti ons. Current my_current;
or g. ong. CosTr ansact i ons. Control control;
or g. ong. CosTr ansact i ons. Coor di nat or coord;

/'l Access the org.ong. CosTransactions. Current object.
org. on%UtC.CRBA. Ooject orbCurrentPtr = L
comibm CBCUti|.CBSeri esd obal .orb().resolve_initial _references(
"TransactionCurrent");
ny_current =
or g. ong. CosTr ansact i ons. Curr ent Hel per. narrow(orbCurrentPtr);
my_current. begin();
control = ny_current.get_control ();
coord = control.get_coordinator();

}

Control::get_terminator

Overview

Returns an object that supports the “ Terminator
Interface” on page 27fbr the transaction represented by
the Control object.

Original interface

“ CosTransactions::Control Interface” on page 252

Exceptions

TransactionRolledBack

Unavailable

Intended Usage

WebSphere Application Server CORBA support - Page 253

The Terminator object can be used to rollback or commit the transaction associated with the
Control. The Unavailable exception is raised if the Control cannot provide the requested
object. The TransactionRolledBack standard exception is raised if the Control object
represents a transaction that has rolled back.

IDL Syntax

Term nator get term na
rai ses (Unavail ab

Input parameters

}g;;()

None.

Return values
Terminator

An object that supports the Terminator interface for the transaction represented by the
Control object. It can be used to commit or roll back the transaction. The caller should
not free the returned object; the Transaction Service retains ownership of it.

Examples

The following examples demonstrate the usage of
CosTransactions::Control::get_terminator.

C++ Example
#i ncl ude <CosTransacti ons. hh>

CosTransactions:: Current _ptr my_cur
CosTransactions:: Control _ptr contro
CosTransactions:: Term nator_ptr ter

I/l _Access the CosTransactions:: Current object.
CORBA: : bj ect _ptr orbCurrentPtr =)

CBSeri esd obal : : or b(% ->resolve_initial _references("TransactionCurrent");
my_current = CosTransactions::Current:: narrow(orbCurrentPtr);
my_current - >begi n() ;
control = ny_current->get_control ();
term = control ->get_terninator();

}
Java Example
i ?port org. ong. CosTransacti ons. *;

org. ong. CosTransacti ons. Current my_current;
or g. ong. CosTr ansacti ons. Control control;
or g. ong. CosTransacti ons. Term nator term

/'l Access the org.ong. CosTransactions. Current object.
org. ong. CORBA. Object orbCurrentPtr = S
comibm CBCUtI|.CBSeri esd obal .orb().resolve_initial _references(
"TransactionCurrent");
ny_current =
or g. ong. CosTr ansact i ons. Curr ent Hel per. narrow(orbCurrentPtr);
my_current. begin();
control = nmy_current.get_control ();
term= control.get_ternminator();

CosTransactions::Coordinator Interface

Overview Provides common operations for top-level transactions.
File stem CosTransactions
Exceptions Inactive

SubtransactionsUnavailable

Supported operations “Coordinator::get_parent_status” on page 255

“Coordinator::get_status” on page 256

WebSphere Application Server CORBA support - Page 254

“Coordinator::

get_top_level_status” on page 256

“Coordinator:

:get_transaction_name” on page 257

“Coordinator::

hash_top_level_transaction” on page 258

“Coordinator::

hash_transaction” on page 258

“Coordinator::

is_ancestor_transaction” on page 259

“Coordinator::

is_descendant_transaction” on page 260

“Coordinator:

:is_related_transaction” on page 260

“Coordinator::

is_same_transaction” on page 261

“Coordinator::

is_top_level_transaction” on page 262

“Coordinator::

rollback_only” on page 263

Intended Usage

The Coordinator interface provides common operations for top-level transactions.
Participants in a transaction are typically either recoverable objects, or agents of
recoverable objects, such as subordinate coordinators. An object supporting the Coordinator
interface is implicitly associated with one transaction only.

IDL syntax
interface Coordinator
Status get_status();

Status get _parent _status();
Status get _top_l evel _status()
I

bool ean”i s_sane_transacti on(i n Coordi nator coord);

bool ean is_rel ated _transaction(in Coordi nator coord);

bool ean i s_anscestor _transacti on(in Coordi nator coord);

bool ean i s_descendant transacti on(in Coordi nat or coordj;
bool ean i s"top | evel fransaction(); .)

unsi gned | ong hash_transaction(in unsi gned IonP maxi munj ;
unsi gned Iong_hash_top_!evel_tran(ln unsi gned ['ong maxi munj ;
Recover yCoor di nat or regi ster_resource(i n Resource res)

~ raises(lnactive); }) }]
voi d reglster_s¥nchron|zat|on (i n Synchronization sync)
~ raises(Inactive);))
voi d register_subtran_aware(in Subtransacti onal Awar eResour ce

res)
. raises(lnactive, SubtransactionsUnavail abl e);
voi d rol | back_onl y(
~rai ses(lnactive);
string get_transaction_nane();
Control create_subtransaction() . .
rai ses(Subfransacti onsUnavai |l abl e | nacti ve);
CosTSI nt er oper ati on; ;: Propagati onCont ext get _txcontext ()
s rai ses(Unavail abl e) ;
Coordinator::get_parent_status
Overview Returns to a caller the status of the parent transaction
of the transaction associated with the target object.
Original interface “ CosTransactions::Coordinator Interface” on page 254

Intended Usage

If the transaction associated with the target object is a top-level transaction, this operation is
equivalent to the “Coordinator::get_status” on page 25@peration.

If the transaction is not a top-level transaction, this operation returns the status of the parent
of the transaction associated with the target object.

IDL Syntax

Stat us get _parent _status();

WebSphere Application Server CORBA support - Page 255

Input parameters

None.

Return values

Status

The status of the parent transaction of the transaction associated with the target
object.

Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::get_parent_status.

C++ Example
CosTr ansacti ons: : Coordi nat or *coord;

CosTransacti ons: : St at us *st at us;
status = coord->get_parent_status();

Java Example

or g. ong. CosTr ansact i ons. Coor di nat or coord;
org. ong. CosTransacti ons. St at us st at us;
status = coord. get_parent _status();

Coordinator::get_status

Overview

Returns the status of the transaction.

Original interface

“ CosTransactions::Coordinator Interface” on page 254

Intended Usage

The operation returns to a caller the status of the transaction associated with the target
object.
IDL Syntax
Status get_status();
Input parameters
None.
Return values
Status
The status of the transaction associated with the target object.

Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::get_status.

C++ Example
CosTr ansacti ons: : Coor di nat or *coord;

CosTransacti ons: : St at us *st at us;
status = coord->get _status();

Java Example
or g. ong. CosTr ansact i ons. Coor di nat or coord;

org. ong. CosTransacti ons. St at us st at us;
status = coord. get_status();

Coordinator::get_top_level_status

Overview

Returns to a caller the status of the top-level ancestor
of the transaction associated with the target object.

WebSphere Application Server CORBA support - Page 256

Original interface “ CosTransactions::Coordinator Interface” on page 254

Intended Usage
If the transaction is a top-level transaction, this operation is equivalent to the “Coordinator::get_status” on
page 256 Operation. If it is not a top level transaction, this operation gets the status of the top-level ancestor.
IDL Syntax

Status get _top_level _status();
Input parameters

None.

Return values
Status

The status of the top-level ancestor of the transaction associated with the target object.
Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::get_top_level_status.

C++ Example

CosTransacti ons: : Coor di nat or *coord;
CosTransacti ons: : St at us *st at us;
status = coord->get _top_|l evel _status();

Java Example

or g. ong. CosTr ansact i ons. Coor di nat or coord;
org. ong. CosTransacti ons. St at us st at us;
status = coord. get_top_l evel _status();

Coordinator::get_transaction_name

Overview Supports debugging by returning a string describing the
transaction associated with the target object.

Original interface “ CosTransactions::Coordinator Interface” on page 254

Intended Usage

Returns a printable string describing the transaction. If there is no transaction associated
with the current thread, an empty string is returned.

IDL Syntax

string get_transaction_name();
Input parameters
None.

Return values
string

A string describing the transaction associated with the target object.
Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::get_transaction_name.
C++ Example
CosTransacti ons: : Coor di nat or *coor d;
string nane;

name = coord->get _transaction_nane();
cout << "Transaction nane is << nanme << endl;

Java Example

WebSphere Application Server CORBA support - Page 257

org. ong. CosTr ansact i ons. Coor di nat or coor d;

string nane;)

name = coord.get transacti on_nane();
Systemout.printTn ("Transaction nane is " + nane);

Coordinator::get_txcontext

This operation is not part of the programming model and should not be directly invoked or
overridden.

Coordinator::hash_top_level _transaction

Overview

Returns a hash value based on the top-level ancestor
of the transaction associated with the target object.

Original interface

“ CosTransactions::Coordinator Interface” on page 254

Intended Usage

Each transaction has a single hash value. Hash values for transactions should be uniformly
distributed. This operation is equivalent to the “Coordinator::hash_transaction” on page 258
Operation when the transaction associated with the target object is a top-level transaction.
IDL Syntax

unsi gned | ong hash_top_l evel _tran();
Input parameters
None.
Return values
unsigned long
A hash value based on the top-level ancestor of the transaction associated with the
target object.
Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::hash_top_level_transaction.

C++ Example
CosTransacti ons: : Coordi nat or *coord;

unsi gned | ong hashval ;
hashval = coord->hash _top |level tran();

Java Example

or g. ong. CosTr ansact i ons. Coor di nat or coord;
i nt hashval ;
hashval = coord. hash_top_Il evel _tran();

Coordinator::hash_transaction

Overview

Returns a hash value based on the transaction
associated with the target object.

Original interface

“ CosTransactions::Coordinator Interface” on page 254

Intended Usage

Each transaction has a single hash value although multiple transactions may share the
same value. Hash values for transactions should be uniformly distributed.

IDL Syntax
unsi gned | ong hash_transaction();

Input parameters

WebSphere Application Server CORBA support - Page 258

None.

Return values

unsigned long

A hash value based on the transaction associated with the target object.

Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::hash_transaction.

C++ Example
CosTransacti ons: : Coordi nat or *coord;

unsi gned | ong hashval ;)
hashval = coord->hash_transaction();

Java Example

org. omg. CosTransact i ons. Coor di nat or coor d;
i nt hashval ;)
hashval = coord. hash_transaction();

Coordinator::is_ancestor_transaction

Overview Determines whether the transaction associated with the
target object is an ancestor of the transaction
associated with the parameter object.

Original interface “ CosTransactions::Coordinator Interface” on page 254

Intended Usage

A transaction is an ancestor of another transaction if, and only if, the transactions are the
same, or the first is an ancestor of the parent of the second.
IDL Syntax

bool ean i s_ancestor_transaction(in Coordi nator tc);

Input parameters
tc

A pointer to the Coordinator object for a transaction.

Return values

TRUE

The transaction associated with the target object is an ancestor of the transaction
associated with the parameter object.

FALSE

The transaction associated with the target object is not an ancestor of the transaction
associated with the parameter object.

Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::is_ancestor_transaction.
C++ Example

CosTransacti ons: : Coordi nator *cl, *c2;
f(cl->is_ancestor_transaction(c2))

~——

) cout << "cl is an ancestor of c2" << endl;
?I se
) cout << "cl1 is not an ancestor of c¢2" << endl;

Java Example

WebSphere Application Server CORBA support - Page 259

or? . CosTransact i ons. Coor di nator cl1, c2;
.1 s_ancestor_transaction(c2)

Systemout.println ("cl is an ancestor of c2");
el se
Systemout.println ("cl is not an ancestor of c2");

}

Coordinator::is_descendant_transaction

Overview

Determines whether the transaction associated with the
target object is a descendant of the transaction
associated with the parameter object.

Original interface

“ CosTransactions::Coordinator Interface” on page 254

Intended Usage

A transaction is an descendant of another transaction if, and only if, the second transaction
is an ancestor of the first. For an definition of ancestors of transactions, see the
“Coordinator::is_ancestor_transaction” on page 259 Operation.
IDL Syntax

bool ean i s_descendant _transacti on(in Coordinator tc);

Input parameters
tc

A pointer to the Coordinator object for a transaction.

Return values

TRUE

The transaction associated with the target object is a descendant of the transaction
associated with the parameter object.

FALSE

The transaction associated with the target object is not a descendant of the transaction
associated with the parameter object.

Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::is_descendant_transaction.
C++ Example

CosTransacti ons:: Coordi nator *cl, *c2;
|{f(cl->i s_descendant transactlon(c2§)

) cout << "cl is a descendant of c2" << endl;
{el se
) cout << "cl is not a descendant of c2" << endl;

Java Example

org . CosTr ansact i ons. Coor di nator cl, c2;
.is_descendant transaction(c2))

Systemout.println ("cl is a descendant of c2");
el se
Systemout.println ("cl is not a descendant of c2");

}

Coordinator::is_related_transaction

WebSphere Application Server CORBA support - Page 260

Overview

Determines whether the transaction associated with the
target object is related to the transaction associated
with the parameter object.

Original interface

“ CosTransactions::Coordinator Interface” on page 254

Intended Usage
A transaction is related to another transaction if, and only if, they share a common ancestor
transaction.

IDL Syntax
bool ean is_rel ated_transacti on(in Coordi nator tc);

Input parameters

tc

A pointer to the Coordinator object for a transaction.

Return values

TRUE

The transaction associated with the target object is related to the transaction
associated with the parameter object.

FALSE

The transaction associated with the target object is not related to the transaction
associated with the parameter object.

Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::is_related_transaction.
C++ Example

OosTransactlons : Coordi nator *cl, *c
f(cl->is_rel at ed transactlon(CZ))

{

) cout << "cl is related to c2" << endl;

{el se

) cout << "cl is not related to c2" << endl;

Java Example

or? . CosTransact i ons. Coor di nator cl1, c2;
(cl.is related_transaction(c2))

Systemout.println ("cl is related to c2");
el se
Systemout.println ("cl is not related to c2");

}

Coordinator::is_same_transaction

Overview

Determines whether the target object and the
parameter object both refer to the same transaction.

Original interface

“ CosTransactions::Coordinator Interface” on page 254

Intended Usage

Determines whether the target object and the parameter object both refer to the same
transaction.

IDL Syntax

WebSphere Application Server CORBA support - Page 261

bool ean is_sane_transaction(in Coordinator tc);

Input parameters
tc

A pointer to the Coordinator object for a transaction.

Return values
TRUE

The target object and the parameter object both refer to the same transaction.

FALSE
The target object and the parameter object do not both refer to the same transaction.
Examples
The following examples demonstrate the usage of
CosTransactions::Coordinator::is_same_transaction.
C++ Example

[* C++ exanple */

CosTransactions: : Coordi nator *cl, *c2;
if(cl-> s_sane_transaction(c2))

cout << "cl represents the same transaction as c2" << endl;
| se

{
}
e
{

dl cout << "cl does not represent the sane transaction as c2" <<
end] ;
}

Java Example

or?.o . CosTransact i ons. Coor di nator cl1, c2;
% (cl.is_sane_transaction(c2)

Systemout.println ("cl represents the sane transaction as c2");
el se
.)Systenlout.println ("cl does not represent the sane transaction
as c2");
}

Coordinator::is_top_level transaction

Overview Determines whether the transaction associated with the
target object is a top-level transaction.

Original interface “ CosTransactions::Coordinator Interface” on page 254

Intended Usage

Determines whether the transaction associated with the target object is a top-level
transaction. A transaction is a top-level transaction if it has no parent.

IDL Syntax
bool ean is_top_| evel _transaction();

Input parameters
tc

A pointer to a Coordinator interface transaction.

Return values
TRUE

The transaction associated with the target object is a top-level transaction.
FALSE

WebSphere Application Server CORBA support - Page 262

The transaction associated with the target object is not a top-level transaction.
Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::is_top_level_transaction.

C++ Example

CosTransacti ons: : Coordi nat or *coord;
i f(coord->is_top_|level _transaction())

o cout << "Coordinator represents a top-level transaction" <<
end] ;

el se
cout << "Coordinator represents a subtransaction" << endl;

Java Example

o_r?. ong. CosTransacti ons. Coor di nat or coor d;
|{ (coord.is_top_level transaction()

Systemout.println ("Coordi nator represents a top-I|evel
transaction");

el se

Systemout. println ("Coordinator represents a subtransaction");

}

Coordinator::register_resource

This operation is not part of the programming model and should not be directly invoked or
overridden.

Coordinator::register_subtran_aware

This operation is not part of the programming model and should not be directly invoked or
overridden.

Coordinator::register_synchronization

This operation is not part of the programming model and should not be directly invoked or
overridden.

Coordinator::rollback_only

Overview

Modifies the transaction associated with the target
object so that it cannot be committed, but only rolled
back.

Original interface

“ CosTransactions::Coordinator Interface” on page 254

Exceptions

Inactive

Intended Usage

Modifies the transaction associated with the target object so that it cannot be committed, but
only rolled back. If the transaction is completing, the Inactive exception is raised.

IDL Syntax

voi d rol | back onl %/()
rai ses (Thactive);

Input parameters
None.

Return values
None.

WebSphere Application Server CORBA support - Page 263

Examples

The following examples demonstrate the usage of
CosTransactions::Coordinator::rollback_only.
C++ Example

CosTr ansact i ons; : Coord
coor d->rol | back_onl y(

i)pator *coord;
Java Example

or g. ong. CosTransacti o
coord. rol | back_onl y(

;1_5. Coor di nator coord;

Current::begin

Overview

Creates a new transaction.

Original interface

“ CosTransactions::Current Interface” on page

Exceptions

SubtransactionsUnavailable

“INITIALIZE standard exception” on page

Intended Usage

The transaction context of the current thread is modified so that the thread is associated
with the new transaction.

The SubtransactionsUnavailable exception is raised if the current thread already has an
associated transaction and the transaction framework does not support subtransactions, or
the current transaction is completing.

The INITIALIZE standard exception is raised if begin is being used for the first time and the
Transaction Service cannot be initialized.

IDL Syntax
voi d begi n() raises(Subtransacti onsUnavail abl e);
Input parameters
None.
Return values
None.
Examples
The following examples demonstrate the usage of CosTransactions::Current::begin.
C++ Example
#i ncl ude <CosTransacti ons. hh> // CosTransacti ons nodul e
/] Access the CosTransactions::Current object.
CORBA: : hj ect _ptr orbCurrentPtr = |)
CBSeri esd obal : : or b(% ->resolve_initial _references("Transacti onCurrent");
CosTransactions:: Current_ptr current =
CosTransactions::Current:: _narrow orbCurrentPtr);
/1 1nvoke the begin operation on the CosTransactions:: Current

obj ect . .
current - >begin() ;

Java Example
i mport org.ong. CosTransactions.*; // CosTransactions nodul e

/1 Access the org. ony. CosTransactions. Current object.
org. ong. CORBA. bj ect orbCurrentPtr =

WebSphere Application Server CORBA support - Page 264

com i bm CBCUti|.CBSeriesd obal .orb().resolve_initial _references(
"TransactionCurrent");
org. ong. CosTransacti ons. Current current =
or g. ong. CosTransact i ons. Current Hel per. narrow orbCurrentPtr);

o 77;I nvoke the begi n operation on the org.ony. CosTransactions. Current
obj ect . _
current. begi n();

Current::commit

Overview

Completes the current transaction.

Original interface

“ CosTransactions::Current Interface” on page

Exceptions

HeuristicHazard

HeuristicMixed

NoTransaction

“NO_PERMISSION standard exception” on page

Intended Usage

If there is no current transaction, the NoTransaction exception is raised. If the current thread
does not have permission to commit the transaction, the standard NO_PERMISSION
exception is raised. (The commit operation is restricted to the transaction originator in some
circumstances.)

The effect of this operation is equivalent to performing the “Terminator::commit” on page 278
Operation in the corresponding Terminator Interface.

The current thread transaction is modified as follows: If the transaction has been begun by a
thread (using begin) in the same execution environment, the thread's transaction context is
restored to its state prior to the begin request. Otherwise, the thread's transaction context is
set to NULL.

If transactions are rolling back for no apparent reason you may be trying to invoke the
commit operation on an object with an active exception.
IDL Syntax

void comit(in bool ean repo
n,

rt s
rai ses (NoTransacti on, Heu e?:i, Heuri sti cHazard);

Input parameters
report_heuristics
Flag indicating whether heuristic reporting is required.
Return values
None.
Examples
The following examples demonstrate the usage of CosTransactions::Current::commit.
C++ Example
#i ncl ude <CosTransacti ons. hh> /| CosTransacti ons nodul e
. CORBA: : Bool ean rol | back_required = FALSE;
/1 Access the CosTransactions::Current object.
C(RBA::Opject_Btr orbCurrentPtr =)
CBSeri esd obal : : or b(% ->resolve_initial _references("Transacti onCurrent");
CosTransactions:: Current_ptr current =
CosTransactions::Current::_narrow orbCurrentPtr);

. //tl nvoke the begi n operati on"on the CosTransacti ons:: Current
obj ect .

WebSphere Application Server CORBA support - Page 265

current - >begi n&)'))
TRU{E/_Ferform work” for the transaction and set roll back _required to
i
// an error is detected.

/1 Invoke commit or rollback dependi ng on whether rollback_required

is
[l set. This nmust be called within a try...catch structure as the
{/ transaction service may raise an exception if an error occurs.
ry
¢ if (rollback_required == TRUE)
current->rol | back();
else // commt required
current->commt(/* report_heuristics = */ TRUE);
}
catch (CORBA:: TRANSACTI ON_ROLLEDBACK &exc)
e /] The application called commt, but the transacti on service
rolle
/'l the transaction back because an error was detected.
Yoo : A
catch (CosTransactions:: HeuristicM xed &exc)
th /1 The transaction service has reported that sone or all of
e
h /'l resource objects have nmade a heuristic decision. This
as

/1 resulted in heuristic damage.

}cat ch (CosTransactions:: HeuristicHazard &exc)
[l The transaction service has reported that not all of the
.. I/l resource objects could participate properly in
determ ni ng the)) o
[/ outcone of the transaction. There is a possibility of
/] heuristic danage.
%:at ch (CORBA: : User Excepti on &exc)

/1 Another type of user exception has occurred.

%:at ch (CORBA: : Syst enExcepti on &exc)
/1 The application called commit, but the transaction

service .
/1 rolled the transaction back because an error was
det ect ed.
}
catch (...)
/1 A general exception has occurred.
) .
Java Example
i mport org. ong. CosTransacti ons. *; /| CosTransacti ons nodul e

or g. ony. CORBA. Bool ean rol | back_required = FALSE;

/] Access the 08%_. orr%;. CosTransacti ons. Current object.
org. ong, CORBA. bj ect orbCurrentPtr = L
comibm CBCU 1| .CBSeriesd obal .orb().resolve_initial_references(
"TransactionCurrent”);
org. ong. CosTransacti ons. Current current =
or g. ong. CosTr ansact i ons, Curr ent Hel per. narrow(orbCurrentPtr);
bi //tl nvoke t he begi n operation on the org. ong. CosTransacti ons. Current
obj ect . .
current. begi n();))
TRU/E/_Ferform work for the transaction and set rollback required to
i
/] an error is detected.

WebSphere Application Server CORBA support - Page 266

I/ Invoke commit or rollback dependi ng on whet her roll back_required
is
/[l set. This nust be called within a try...catch structure as the
{/ transaction service may raise an exception if an error occurs.
ry
{

if (rollback _required == TRUE)
current.roll back();
else // commt required
current.commt(/* report_heuristics = */ TRUE);

%atch (org. ong. CORBA. TRANSACTI ON_ROLLEDBACK exc)
e /1 The application called commt, but the transaction service
rolle
/1l the transaction back because an error was detected.
%atch (org. ong. CosTransacti ons. Heuri sti cM xed exc)

i /1 The transaction service has reported that sone or all of
e

h /] resource objects have made a heuristic decision. This
as

/1 resulted in heuristic danmage

%atch (org. ong. CosTransacti ons. Heuri sti cHazard exc)
[/ The transaction service has reported that not all of the
.. I/l resource objects could participate properly in
determ ni ng the)) o
[/ outcone of the transaction. There is a possibility of
/1 heuristic damage.
%atch (org. ong. CORBA. User Excepti on exc)

/] Anot her type of user exception has occurred.

%atch (org. ong. CORBA. Syst enExcepti on exc)
) /1 The application called commit, but the transaction
service
/] rolled the transacti on back because an error was
det ect ed.
} .
catch (Exception exc)

/1 A general exception has occurred

}
Current::get_control

Overview Returns an object representing the transaction context
currently associated with the current thread.

Original interface “ CosTransactions::Current Interface” on page

Intended Usage

If the current thread is not associated with a transaction, a NULL object reference is
returned.

The Control object returned can be given to the “Current;:resume” on page 27®peration to
reestablish this transaction context in the same thread or a different thread.

IDL Syntax
Control get_control ();

Input parameters

WebSphere Application Server CORBA support - Page 267

None.

Return values
Control

Represents the transaction context currently associated with the current thread. The
caller should not free the returned object; the Transaction Service retains ownership of

it.

Examples

The following examples demonstrate the usage of CosTransactions::Current::get_control.

C++ Example
#i ncl ude <CosTransacti ons. hh>

CosTransactions::Current_ptr my_cu
CosTransacti ons:: Control _ptr contr

/| _Access the CosTransactions::Current object.
CORBA: : Obj ect _ptr orbCurrentPtr =)

CBSeri esd obal ::orb()->resolve_initial _references("Transacti onCurrent");
my_current = CosTransactions::Current::_narrow orbCurrentPtr);
control = my_current->get_control ();

}

Java Example
i ?port org. ong. CosTransacti ons. *;

or g. ong. CosTransacti ons. Current my_current;
or g. ong. CosTr ansacti ons. Control control;

/'l Access the org.ong. CosTransactions. Current object.
org. ong. CORBA. Cbj ect orbCurrentPtr = L
comibm CBCUtil.CBSeriesd obal .orb().resolve_initial _references(
"TransactionCurrent");
my_current =
org. ong. CosTr ansact i ons. Cur r ent Hel ple
ro

.nharrow(orbCurrentPtr);
control = ny_current.get_cont

r
()
}

Current::get_status

Overview

Determines the status of the current transaction.

Original interface

“ CosTransactions::Current Interface” on page

Intended Usage

If there is no transaction associated with the current thread, the StatusNoTransaction value
is returned.

The effect of this request is equivalent to performing the “get_status” on page 256 Operation
in the corresponding “Coordinator” on page 254 Interface.
IDL Syntax
Status get_status();
Input parameters
None.

Return values
Status

The status of the current transaction.
Examples

WebSphere Application Server CORBA support - Page 268

The following examples demonstrate the usage of CosTransactions::Current::get_status.

C++ Example
#i ncl ude <CosTransacti ons. hh>

CosTransactions:: Current_ptr my_current;
CosTransactions:: Status_ptr status;

/| _Access the CosTransactions::Current object.
CORBA: : Obj ect _ptr orbCurrentPtr =)
CBSeri esd obal : :orb()->resolve_initial_references("Transacti onCurrent");
_current = CosTransactions::Current::_narrow(orbCurrentPtr);
status = nmy_current->get _status();

}
Java Example
i?port or g. ong. CosTransacti ons. *;

org. ong. CosTransactions. Current ny_current;
or g. ong. CosTr ansacti ons. St at us st atus;

/'l Access the org.ong. CosTransactions. Current object.
org. ong. CORBA. Object orbCurrentPtr = L
comibm CBCUtil.CBSeriesG obal .orb().resolve_initial _references(
"Transacti onCurrent");
my_current =
or g. ong. CosTransact i ons. Current Hel per. narrow orbCurrent Ptr);
status = ny_current.get_status?);

}

Current::get_transaction_name

Overview

Supports debugging by returning a string describing the
transaction.

Original interface

“ CosTransactions::Current Interface” on page

Intended Usage
If there is no transaction associated with the current thread, an empty string is returned.

The effect of this request is equivalent to performing the “get_transaction_name” on
page 257 Operation in the corresponding “Coordinator” on page 254 Interface.
IDL Syntax
string get_transaction_name();
Input parameters
None.
Return values
string
A printable string describing the transaction.

Examples

The following examples demonstrate the usage of
CosTransactions::Current::get_transaction_name.

C++ Example
#i ncl ude <CosTransacti ons. hh>

CosTransactions::Current_ptr my_current;
string naneg;

[l Access the CosTransactions:: Current object.
CORBA: : Obj ect _ptr orbCurrentPtr =

CBSeriesd obal ::orb()->resolve_initial _refere
my_current = CosTransactions:: Current::_narrow
name = my_current->get_transaction_nane();

ionCurrent");

o>

WebSphere Application Server CORBA support - Page 269

cout << "Current transaction nane is " << nane << endl ;

}
Java Example
i mport org.ong. CosTransacti ons. *;

or g. ong. CosTransacti ons. Current my_current;
String nane;

/'l Access the org.ong. CosTransactions. Current object.
org. ong. CORBA. Cbj ect orbCurrentPtr = L
comibm CBCUtil.CBSeriesd obal .orb().resolve_initial _references(
"TransactionCurrent");
ny_current =
or g. ong. CosTr ansact i ons. Current Hel per. narrow or bCurrentPtr);
nane = my_current.get _transacti on_name();)
Systemout. println ("Current transSaction nane is

+ nane);

}

Current::resume

Overview

Associates the current thread with the supplied
transaction context (in place on any previously
associated transaction context).

Original interface

“ CosTransactions::Current Interface” on page

Exceptions

InvalidControl

“INITIALIZE standard exception” on page

Intended Usage
If the parameter is not valid in the current execution context (that is, it is an object reference
with an invalid value), the current thread is associated with no transaction.

The INITIALIZE standard exception is raised if resume is being used for the first time and
the Transaction Service cannot be initialized.

IDL Syntax
voi d resune(in Control which)
rai ses(lnvalidControl);

Input parameters
which

The Control object representing the transaction context.
Return values
None.
Examples
The following examples demonstrate the usage of CosTransactions::Current::resume.
C++ Example
#i ncl ude <CosTransactions. hh> // CosTransacti ons nodul e
CosTransactions::Control _ptr control = control paraneter;
/1 Access the CosTransactions::Current object.
CORBA:. : Obj ect _ptr orbCurrentPtr =)
CBSeri esd obal : : or b(% ->resolve_initial _references("Transacti onCurrent");
CosTransactions::Current_ptr current =
CosTransactions::Current::_narrow orbCurrentPtr);

| Resume the association between the transaction and the thread.
ry

current->resune(control);

/
t
{
}

WebSphere Application Server CORBA support - Page 270

cat ch(CosTransactions: : I nval i dControl)

dl cout << "Error: control object passed to resunme was invalid" <<
end] ;
}

Java Example
i mport org.ong. CosTransacti ons. *; /1 CosTransactions nodul e

or g. ony. CosTransacti ons. Control control = control paraneter;

/'l Access the oag)_. on'fq. CosTr ansact i ons. Current object.
or g. ong, CORBA. Obj ect_orbCurrentPtr = L
comibm CBCUt1|.CBSeriesG obal .orb().resolve_initial _references(
"Transacti onCurrent");
org. ong. CosTransacti ons. Current current =
or g. ong. CosTransact i ons. Current Hel per. narrow orbCurrentPtr);

“;/Resume the association between the transaction and the thread.
{ :
current.resune(control);
%:at ch(org. ong. CosTransacti ons. | nval i dControl exc)
¢ System out . println (I rI?{rl[dlolrd;:ont rol object passed to resune was
}

Current::rollback

Overview

Rolls back the transaction associated with the current
thread.

Original interface

“ CosTransactions::Current Interface” on page

Exceptions

NoTransaction

“NO_PERMISSION standard exception” on page

Intended Usage

If there is no transaction associated with the current thread, the NoTransaction exception is
raised. If the current thread does not have permission to rollback the transaction, the
standard NO_PERMISSION exception is raised.

The effect of this request is equivalent to performing the “rollback” on page 27®peration in
the corresponding “Terminator” on page 27Ihterface.

The current thread transaction is modified as follows: If the transaction has been begun by a
thread (using begin) in the same execution environment, the thread's transaction context is
restored to its state prior to the begin request. Otherwise, the thread's transaction context is
set to NULL.

IDL Syntax

voi d rol |l back() raises(NoTransaction);
Input parameters

None.

Return values

Examples

The following examples demonstrate the usage of CosTransactions::Current::rollback.

C++ Example
#i ncl ude <CosTransacti ons. hh> /'l CosTransacti ons nodul e

: : CORBA: : Bool ean rol | back_required = FALSE;

WebSphere Application Server CORBA support - Page 271

/| Access the CosTransacti
CIRBA::iject_gtr or bCurr
CBSeriesd 0 aI':orb(%-
CosTr ansactions: : Current _
CosTransactions:: Curre
I/ I nvoke the begin opera
obj ect .
current->beg|n&)') .
TRUE/_ferforn1mor for the transaction and set rollback required to
i
[/l an error is detected

ons:: Current object.
entPtr = _

>resol ve_initial _references("Transacti onCurrent");
ptr current =

nt:: _narroworbCurrentPtr);

tion on the CosTransactions:: Current

/1 1nvoke commit or rollback dependi ng on whether rollback_required

is
[l set. This nmust be called within a try...catch structure as the
{/ transacti on service may raise an exception if an error occurs.
ry
¢ if (rollback_required == TRUE)
current->rol | back();
else // comit required
current->conmit(/* report_heuristics = */ TRUE)
}
catch (CORBA:: TRANSACTI ON_ROLLEDBACK &exc)
|l ed /1 The application called commt, but the transaction service
rolle
/'l the transaction back because an error was detected.
Yoo : A
catch (CosTransactions:: HeuristicM xed &exc)
th /1 The transaction service has reported that sone or all of
e

[l resourceobjects have made a heuristic decision. This has
/1 resulted in heuristic damage

%atch (CosTransactions: : Heuri sti cHazard &exc)
/1 The transaction service has reported that not all of the

Il resource objects could participate properly in
det erm ni ng t he)) o
out cone of the transaction. There is a possibility of

/'l heuristic danage

%atch (CORBA: : User Excepti on &exc)

/1 Another type of user exception has occurred.

%atch (CORBA: : Syst enExcepti on &exc)
/1 The application called commt, but the transaction

service)
/1 rolledthe transacti on back because an error was detected.
) .
catch (...)
/1l A general exception has occurred.
) c

Java Example
i mport org.ong. CosTransacti ons. *; /] CosTransacti ons nodul e
or g. ony. CORBA. Bool ean rol | back_required = FALSE

/| Access t he oeg,on?.CbsTransactlons.Chrrent obj ect .
org. ong, CORBA. Obj ect orbCurrentPtr = .
comibm CBCUt | .CBSeriesd obal.orb().resolve_initial _references(
"TransactionCurrent");
org. ong. CosTransacti ons. Current current =
org. ong. CosTransacti ons, Current Hel per. narrow orbCurrentPtr);
b_//tlnvoke the begi n operation on the org.ong. CosTransacti ons. Current
obj ect .

WebSphere Application Server CORBA support - Page 272

current. begi n(?(;))
Performwork for the transaction and set roll back required to

TRUE i f

I/ an error is detected.
/1 1nvoke comnit or rollback dependi ng on whether rollback_required

[l set. This nmust be called within a try...catch structure as the
/] transaction service nay rai se an exception if an error occurs.

try
¢ if (rollback_required == TRUE)
current.roll back();
else // commit required
current.commt(/* report_heuristics = */ TRUE);

%:at ch (org. ong. CORBA. TRANSACTI ON_ROLLEDBACK exc)
/1 The application called commit, but the transaction service

rol | ed

/1 the transaction back because an error was detected.

}cat ch (org. ong. CosTransacti ons. Heuri sticM xed exc)
/1 The transaction service has reported that sone or all of

t he

I/
det er mi ni ng/}he

/] resourceobjects have nade a heuristic decision. This has
/] resulted in heuristic damage.
%:atch (org. ong. CosTransacti ons. Heuri sti cHazard exc)

[l The transaction service has reported that not all of the
resource objects could participate properly in

outcome of the transaction. There is a possibility of
/1 heuristic danage.

%:at ch (org. ong. CORBA. User Excepti on exc)
/1l Another type of user exception has occurred.

%:at ch (org. ong. CORBA. Syst enExcepti on exc)
/1 The application called commt, but the transaction

service

/1 rolledthe transacti on back because an error was detected.

}catch (Exception exc)
/1 A general exception has occurred.

}

Current::rollback_only

Overview

Modifies the transaction such that it cannot be
committed, but can only be rolled back.

Original interface

“ CosTransactions::Current Interface” on page

Exceptions

NoTransaction

Intended Usage

If there is no transaction associated with the current thread, the NoTransaction exception is

raised.

The effect of this request is equivalent to performing the “rollback_only” on page 263
Operation in the corresponding “Coordinator” on page 254 Interface.

WebSphere Application Server CORBA support - Page 273

IDL Syntax

void rol |l back_only() rai ses(NoTransaction);
Input parameters
None.
Return values
None.
Examples
The following examples demonstrate the usage of CosTransactions::Current::rollback_only.

C++ Example
#i ncl ude <CosTransactions. hh> // CosTransacti ons nodul e

[/ Access the CosTransactions:: Current object.
CORBA: : Ohj ect _ptr orbCurrentPtr =]
CBSeri esd obal : : or b(% ->resolve_initial _references("Transacti onCurrent");
CosTransactions:: Current_ptr current =
CosTransactions:: Current:: _narrow orbCurrentPtr);
[l I nvoke the rollback_only operation on the
CosTransactions; ; Current 0Object.
current->rol | back_only();

Java Example
i mport org.ong. CosTransactions.*; // CosTransacti ons nodul e

/'l Access the orcg_. omf:;. CosTransacti ons. Current object.
org. ong, CORBA. Obj ect _orbCurrentPtr = L
comibm CBCUti|.CBSeri esd@ obal .orb().resolve_initial _references(
"TransactionCurrent");
org. ong. CosTransacti ons. Current current =
or g. ong. CosTr ansact i ons. Current Hel per. narrow orbCurrentPtr);
/'l I nvoke the rollback only operation on the
org. ong. CosTr ansacti ons. Current
/| object.
current.roll back_only();

Current::set_timeout

Overview

Sets the timeout value to be used for all subsequent
transactions.

Original interface

“ CosTransactions::Current Interface” on page

Exceptions

“INITIALIZE standard exception” on page

Intended Usage

Subsequent transactions created are subject to being rolled back if they do not complete
within the time limit specified on this parameter. The default value for the time limit is
platform dependent. If the parameter is zero, there is no application-specific time limit.

The INITIALIZE standard exception is raised if set_timeout is being used for the first time
and the Transaction Service cannot be initialized.

IDL Syntax
voi d set _tineout (in unsigned | ong seconds);

Input parameters
seconds

The value of the time limit in seconds.
Return values

WebSphere Application Server CORBA support - Page 274

None.
Examples
The following examples demonstrate the usage of CosTransactions::Current::set_timeout.

C++ Example
#i ncl ude <CosTransacti ons. hh> // CosTransacti ons nodul e

//Access the CosTransacti ons: : Current obj ect .
CORBA: : Ohj ect _ptr orbCurrentPt =)
CBSeri esd o al ::or b(% >reso| ve_initial_references("Transacti onCurrent");
CosTr ansact i ons: Curren ptr current =
CosTransactions:: Current:: _narrow orbCurrentPtr);
bi //tlnvoke the set_timeout opefation on the CosTransactions:: Current
obj ec
qurrent->set _tineout (60 /* seconds */);

/] Start a transaction

Java Example
i mport org.ong. CosTransactions.*; // CosTransacti ons nodul e

/1 Access the oac% n'%; CosTransactions. Current object.
org. ong, COR j ect_orbCurrentPtr
com i bm CBCUtl | . CBSeri esd obal . or b() resolve_initial _references(
"TransactionCurrent”);
org orrg CosTransactions. Cufrent current =
rg. ong. CosTransacti ons. Current Hel per. narrow(or bCurrentPtr);
I Invoke the set_timeout operation on t he
org/?ngbOos;I'r ansactions. Curren
0
curre]nt set _timeout (60 /* seconds */);

// Start a transaction

Current: suspend

Overview

Returns an object that represents the transaction
context currently associated with the current thread,
and disassociates the currently associated transaction
context from the current thread.

Original interface

“ CosTransactions::Current Interface” on page

Intended Usage

If there is no current transaction, a NULL reference is returned.

This object can be given to the “resume” on page 270 operation to reestablish this context in
the same, or a different, thread within the same server process.

IDL Syntax
Control suspend();

Input parameters
Control

Represents the transaction context currently associated with the current thread. The
ealler should not free the returned object; the Transaction Service retains ownership of
it.

Return values

None.

Examples

The following examples demonstrate the usage of CosTransactions::Current::suspend.

C++ Example

WebSphere Application Server CORBA support - Page 275

#i ncl ude <CosTransacti ons. hh> // CosTransacti ons nodul e
CosTransactions:: Control _ptr control = NULL;

I/ Access the CosTransactions:: Current object.
A. . Obj ect _ptr orbCurrentPtr =)
CBSeri esd obal : : or b(% ->resolve_initial_references("Transacti onCurrent”
CosTransactions:: Current_ptr current =
CosTransactions:: Current::_narrow orbCurrentPtr);

o HLI nvoke the begin operation on the CosTransactions:: Current
obj ect .
: current - >begi n() ;

/1 Suspend the association between the transaction and the thread.
control = current->suspend();
if (!lcontrol)

oh /'l There was no transaction associated with this thread prior to
e

/'l suspend. Perform appropriate action.

cout << "Error: No transaction prior to suspend" << endl;

Java Example
i mport org.ong. CosTransacti ons. *; /1 CosTransactions nodul e
or g. ony. CosTransacti ons. Control control = null;

[l Access the org. on%;. CosTransacti ons. Current object.
or g. ong, CORBA. Obj ect_orbCurrentPtr = L
com i bm CBCUt1|.CBSeriesd obal .orb().resolve_initial_references(
"TransactionCurrent");
org. ong. CosTransacti ons. Current current =
or g. ong. CosTr ansact i ons. Curr ent Hel per. narrow(or bCurrent Ptr);

. Hilnvoke the begin operation on the org.ong. CosTransactions. Current
obj ect .
current. begin();

—.

/1 Suspend the associati on between the transaction and the thread.
control = current. suspend();
if (control == null)

oh /'l There was no transaction associated with this thread prior to
e
[/ suspend. Perform aEpropriate action. .
Systemout.println ("Error: No transaction prior to suspend");

CosTransactions::RecoveryCoordinator Interface

This interface is not part of the programming model and should not be directly invoked or
overridden.

CosTransactions::Resource Interface

This interface is not part of the programming model and should not be directly invoked or
overridden.

CosTransactions::Synchronization Interface

This interface is not part of the programming model and should not be directly invoked or
overridden.

Synchronization::after_completion

Overview Informs the target object that the transaction that it
represents has been completed.

WebSphere Application Server CORBA support - Page 276

Original interface

“ CosTransactions::Synchronization Interface” on
page 276

Intended Usage

Called from within the Transaction Service. Informs the target object that the transaction that
it represents has been completed. The current status of the transaction (as determined by
the “register_synchronization” on page 263 operation of the “Coordinator” on page 254
Interface) is provided as input.

IDL Syntax

void after_conpletion(in Status status);

Input parameters
status

The current status of the transaction, as determined by the
“Coordinator::register_synchronization” on page 263 operation.

Return values
None.

Synchronization::before_completion

Overview

Informs the target object that the transaction that it
represents is about to be completed.

Original interface

“ CosTransactions::Synchronization Interface” on
page 276

Intended Usage

Called from within the Transaction Service. Informs the target object that the transaction that
it represents is about to be completed. The target object can perform transactional work
before it returns.

IDL Syntax
voi d before_conpl etion();
Input parameters

None.
Return values
None.

CosTransactions::Terminator Interface

Overview Defines operations to complete a transaction, either by
requesting commitment or demanding rollback.

File stem CosTransactions

Exceptions HeuristicHazard

HeuristicMixed

Supported operations “Terminator::commit” on page 278

“Terminator::rollback” on page 279

Intended Usage
Defines operations to complete a transaction, either by requesting commitment or

WebSphere Application Server CORBA support - Page 277

demanding rollback. Typically, these operations are used by the transaction originator. An
object that supports the Terminator interface is implicitly associated with one transaction
only.

IDL syntax
interface Term nat or

voi d comm t&en bool ean report heuri sti cs)
rai ses(HeuristicM
. HeuristicHazard);
voi d rol I back();

Terminator::commit

Overview

Requests that the transaction be committed.

Original interface

“ CosTransactions::Terminator Interface” on page 277

Exceptions

HeuristicHazard

HeuristicMixed

“ TransactionRolledBack standard exception” on page

Intended Usage

If the transaction has not been marked as rollback-only, and all the participants in the
transaction agree to commit, the transaction is committed, and the operation terminates
normally. Otherwise, the transaction is rolled back and the standard TransactionRolledBack
exception is raised.

If the report_heuristics parameter is true, the transaction framework reports inconsistent or
possibly-inconsistent outcomes using the HeuristicMixed or HeuristicHazard exceptions.

The commit operation can rollback the transaction if there are existing or potential activities
associated with the transaction that have not completed.

When a top-level transaction is committed, all changes to transactional objects made in the
scope of this transaction are made permanent and visible to other transactions or clients.

Note that the “suspend” on page 275 operation of the “CosTransactions::Current Interface”
on page must be used to suspend an active transaction before the commit operation of
the Terminator interface is used to commit the transaction.

IDL Syntax

void comit(in bool ean report heuristics)
rai ses(HeuristicM xed, HeuristicHazard);

Input parameters
report_heuristics

Flag indicating whether heuristic reporting is required.

Return values

None.

Examples

The following examples demonstrate the usage of CosTransactions::Terminator::commit.

C++ Example

{
t
I

WebSphere Application Server CORBA support - Page 278

CosTransactions:: Control var control;
CosTransacti ons: : Term nator_var term
control = current->suspe_nd(%;

term = control ->get_termninator();
term >commit (TRUE) ;

%:atch [

Java Example

t try

{ :
org. ong. CosTransacti ons. Control control;
or g. ong. CosTransacti ons. Term nator term
control = current. suspe_nd(% :
term= control.get_ternminator();
termcomit(true);

%:atch [

Terminator::rollback

Overview

Demands that the transaction be rolled back.

Original interface

“ CosTransactions::Terminator Interface” on page 277

Intended Usage

When a transaction is rolled back, all changes to transactional objects made in the scope of
this transaction (including changes made by descendant transactions) are rolled back. All
resources locked by the transaction are made available to other transactions as appropriate
to the degree of isolation enforced by the resources.

Note that the “suspend” on page 275 operation of the “CosTransactions::Current Interface”
on page must be used to suspend an active transaction before the rollback operation of
the Terminator interface is used to rollback the transaction.

IDL Syntax
voi d rol |l back();
Input parameters
None.
Return values
None.
Examples
The following examples demonstrate the usage of CosTransactions::Terminator::rollback.
C++ Example

t try

CosTransactions:: Control var control;
CosTransactions: : Term nator_var term

control = current->suspe_nd(%;
term = control ->get _termnator();
) term >rol | back();
catch (.........

Java Example

¢ try

WebSphere Application Server CORBA support - Page 279

or g. ong. CosTr ansacti ons. Control control;
or g. ong. CosTransacti ons. Term nator term

control = current. suspe,nd(% ;
term= control .get_termnator();
termrol | back();

catch (.........

CosTransactions::TransactionalObject Interface

Overview

Used by an object to indicate that it is transactional.

File stem

CosTransactions

Intended Usage

The TransactionalObject interface is used by an object to indicate that it is transactional. By
inheriting from the TransactionalObject interface, an object indicates that it wants the
transaction context associated with the client thread to be propagated on requests to the
object.

The TransactionalObject interface defines no operations. It is simply a marker.

IDL syntax
interface Transacti onal Cbject{};

CosTransactions::TransactionFactory Interface

This interface is not part of the programming model and should not be directly invoked or
overridden.

WebSphere Application Server CORBA support - Page 280

C++ value type library, methods implemented

The WebSphere valuetype library for C++ implements the methods listed below:

Javax::rmi::CORBA::ClassDesc

Java: Iang :Throwable

Wt ringVal ue* | ocal i zedMessage ()

. WBt ri ngVal ue* nessage ()

:: Voi d set Message (const ::CORBA:: WSt r

: WGt ri ngVal ue* “get M%sage 0 const ;
WBtringVal ue* toString ()

java::lang::Exception
java::io::IOException
java::io::OutputStream

virtual ::CORBA::Void clo
virtual ::CORBA::Void flu
/1A pure virtual nethod
V|rtual ::CORBA: : Void wite_ | ong CORBA: : L

:CORBA: :Void wite __org_ong_ boxegRM _seql_o

ar 0
gC)GRBA V0|d wrlte __org_ o%bo

xedRM _seql_oc
(::org::ongTT boxed

seql_octet* ar
ar g2)

java::io::FilterOutputStream

:: CORBA: : Voi d cl ose
:OO?BA::de flush
CORBA: : Void wite ong (::CORBA: :Long arg0
A::Void wite__org_ong_| boxedRM _seql_oc

. CORBA:
St

i ngVal ue& argo0);

ong ar O) =

ctet (: org :ong: : boxedRM : : seql_oct et *
tet__lon | on

g0," OO?%A_ Lo%g argl, ::CORBA::Long

%et (::org::ony::boxedRM ::seql_octet*

V0| d wrlte __org o boxedRM _seql_octet Iong&mB
2) :org::ong:: boxed :seql_octet®™ arg0, A: D Long argl, ::CORBA::Long
arg
. Java::lo::PrlntStream
CCRBA Bool ean checkError)
 CORBA: : d opr nt wchar (: : CORBA: : WChar ar g0)

;i CORBA: : Vo d print_double (: CCRBA Doubl e ar g0)

11 CORBA: : Void pr nt_float (::CCRBA. Fl oat ?

11 CORBA: : Void pr nt “long f : CORBA:_: Long ar Oi

11 CORBA: : Void pr “long_ ong &h CORBA: : Long ong argO)

;1 CORBA: : Void pr nt_| ava_| ang_Cbj ect (const java: Il ang: : Cbj ect & ar g0)
::CORBA: : Void pr CORBA ! V\Strln Val ue CORBA: : WBt r i ngVal ue* ar g0)

11 CORBA: : Void pr _bool ean A: Bool ean ar 0)

::CORBA: : Void print__org_ong_ boxedRM seql wchar :org::ong:: boxedRM : : seql_wchar *
ar goz

B ::Void println (21

11 CORBA: : Void println__wchar (:: CORBA: W:har ar g0)

1 CORBA: :Void println doubIe(::CCRB : Doubl e ar g0)

::CORBA::Void println__float (::CCRBA: Fl oat ?

::CORBA::Void println Iongf : CORBA: : Long argi

1 CORBA::Void println__|long_| ong E]a CORBA: : LongLong argO)

1 CORBA::Void println__java | ang_Object (const java: Il ang: : Cbj ect & ar g0)
::CORBA: : Void println__CORBA V\Strln Val ue CORBA: : V\StrlngVaI ue* argo0)

11 CORBA: : Vo c printl n__bool ean A: Bool ean argo0)

(::OCRBA::Vo ‘ JaRfT/I“ n_orlg otr:g PoxedR;Vl seql wchar

(iorg::o oxe ;i sSe ar* ar

::Cd(-]iBA:: oid setError ?) 90

e Java:io::Writer

virtual ::CORBA::Void close

virtual ::CORBA: : Voi d flush

::CORBA: : Void write on& :Long ar 0)

::CORBA: :Void wite V\StrlngVa ue CORBA: : V\Strln al ue* argo0)
':CCRBA::V0|d write” CORBA WStringVal ue _“fong__long ((:ERBA Wbt ri ngVal ue* argo,

CORBA: : Long argl, T: CORBA: : Long %NP 2)
A Void wite org onyg_| boxed _seql_wchar (::org::ong::boxedRM::seql_wchar*

3.
- Gohea” Bon

Void wite org_ orrg boxedRM _seql_wc
boxedRM:: se wchar* ar g0,
g argl, :: :Long arg2)

java::io::PrintWriter

har__long__long (

1 CORBA: : Bool ean checkError ()
1 CORBA: : Void print__wchar (::CORBA::WChar arg0)

:CORBA: : Void print__doubl e (::CCRBA Doubl e ar 0)
1 CORBA::Void print__float (: (IPBA Float ar ;J

::CORBA: :Void print__long F: : :Long ar goi

:CORBA::Void print__long_|long S:b CCRBA LongLong argO)

1 CORBA::Void print__java_ | ang_nj ect (const java: Il ang: : Cbj ect & ar g0)
1 CORBA: : Void print__CORBA WsiringValue (: “ CORBA: : WBL T ngVaI ue* ar g0)

WebSphere Appl

ication Server CORBA support - Page 281

::Void opri nt __bool ean (::CORBA: : Bool ean arg0)
::Void print__org_ong_ boxedRM seql wchar (::org::ong::boxedRM ::seql_wchar*
CORBA: : Voi d println_(z]
CORBA: : Void println__wchar (:: C(RBA: WChar ar g0)
::Void println_"double (: : CORBA: : Doubl e ar g0)
::Void println_float (: : CORBA: : Fl oat ar ?
::Void println__|ong f : CORBA. : Long ar goi
::Void println__|long_ ong E}) CORBA : Long ong argO)
::Void println__java | ang_QObj ect (const ::java: |l ang: : Obj ect & arg0)
::Void println__CORBA WSETI ngVaI ue (: - CORBA: : Wt r i ngVaI ue* argo0)
i ::Void println_"boolean (:: BA: : Booi ean ar g0)
: CORBA: : Voi d p&krl\llltl n orlg ng E)oxedR;\/I seql wchar
0 0 xe seql_wchar* arg0
:CO%BA n‘g/md setError ()~

javax::ejb::CreateException
javax::ejb::RemoveException
javax::ejb::FinderException
javax::ejb::ObjectNotFoundException
javax::ejb::DuplicateKeyException
javax::ejb::EJBMetaData

::javax::ejb:: EJBHone_ptr get EJBHone (?

filavax:iirii: : CORBA: : Tl assDesc* get Honel nterfaced ass ()
1] avax: r : CORBA: : O assDesc* get Renot el terfaceCl ass ()
D] avax: : : CORBA: : Cl assDesc* get Pri mar yKeyd ass ()

vol d setEJBHone (::javax::ejb:: E BHone_pt

0);
voi d set Honel nt erfaced ass (:]avax rm: CD?EA Cl assDesc* argo0);
voi d set Renot el nterfaced ass (1 avax “CORBA: : O assDesc* ar gO) ;
v0| d set Pr| mar yKeyd ass (::] avax::rm:: OCRBA Cl assDesc* ar g0)
: Bool ean i sSession ()

java::util::Vector

i CORBA: : Long get Capacity) const ;
: CORBA: : Voi d set Capacity(: : CORBA : Long. cap);
java utif Vector_|npl & o er at or =(const java util Vector Inpl & aVector);
const stdr: vector<java::lang:: Qo] ect >& get Vect or'nst ance(% t;
const std::vector< ava lang: : Obj ect>: : i terat or&&et 031 ec Iter at or() const;
std: vector<j ava: : | ang; : Obj ect >: |terator& reset Obj ect terator(
:: CORBA: : Voi d set Capaci tyl ncrement (: : CORBA: : Long i ncr enent Val ue
CORBA: : Long get Capaci tyl ncr enent)
CORBA: : Voi d addEl enent " (const ::java::lang:: Cbject& argo0);
: CORBA: : Long capacity ();
java:: Iang Obj ect* clone ();
]ava ut|| “Vector* cl oneVect or 0); .
Voi d copylnto (::org: rrg : boxedRl]ava Iang seql_Obj ect* arg0);
: i ang: : Cbj ect* el ement At : CORBA: : Long argo) ;

: :lang:: Qoj ect* getEl enents “
CORBA: ; Voi d ensureCapaci t A Long argO);
::lang:: Qoject* first Ienent . .
5 8 Long i nd%(d_j ava_l ang_! ij ect __long (const ::java::lang:: Objecté& argo,
::long arg .
:Void insertEl enent At (const ::java::lang::Object& arg0, ::CORBA::Long

: Bool ean i sEnpt y(z
Iang Obj ect* | astEl ement (); . .
Long | ast | ndexO‘J ava_l ang_Obj ect__long (const ::java::lang:: Qbject& argo0,

:Long argl);

:Voi d renpveAl | El enents 0); .

: Bool ean renpveEl enent (const ::java::lang:: Object& argo);

:Voi d renoveEl ement At (:: CORBA: : ong ar ggi

:Voi d setEl enent At (const :: java::lang: j ect & arg0, ::CORBA::Long argl);
:Void setSi ze (:: BA: : Long ar gO)

:Lon S|ze(r
:Voi d trinToSi ze 0);

java::lang::Number

virtual ::CORBA: :Long intVal ue();
virtual ::CORBA: : LongLong | ongVal ue() ;
virtual ::CORBA: :Fl oat fl oat Val ue();
virtual ::CORBA: : Doubl e doubl eVal ue(j
virtual ::CORBA: :Cctet byt eVal ue() ;
virtual ::CORBA :Short short Val ue() ;

java::lang::Boolean

:: CORBA: : Bool ean bool eanVal ue ;
: 1 CORBA: : Bool ean equal s (const ava: :lang:: Qbject& ar
: 1 CORBA: : Bool ean get Bool ean BA: : WSt I i ngVa ue* ar g

: CORBA: : Long hashCode
::_CCRBA'V\StrlngVaIue*toStrlng (? .

:java: : | ang: : Bool ean* ueOt (: CORBA: : Wat ri ngVal ue* argo);

java::lang::Byte

WebSphere Application Server CORBA support - Page 282

: 1 CORBA: : Cct et byteVal ue ();

1 CORBA: : Long conpar eTo (const cijava: | ang : oj ecté& ar %0%

: CORBA: : Long conpar eTo ava Iangv\s¥ (:7 ava: : | an e* arg0);

Sijava: ang i Byte* deco e_(J rin Val ue* arg0);

: . CORBA: : Bool ean equal S (const rjava::lang: j ect & argo0);

:: CORBA: : Long hashCode (); .

1 CORBA: : Cct et par seByt e CORBA WbtringVal ue (::CORBA:: Wbt ringVal ue* arg0);
: CORBA: : Cct et par seByt e CORBA_WBt ri ngVal ue__| i ong (::CORBA: : WBtrin Val ue*

i arg0, ::CORBA::Long
argl),

B A:: Wt ri ngVal ue* toString__
: CORBA: : WSt ri ngVal ue* toString__ octetv\gt CORBA: : Octet argo)
rijavar: i ang: : Byt e* val ued ringVal ue WL ri n Val ue* argo);
: :bava: | ang: : Byt e* val ueOf __CORBA_WSt ri ngVal ue__ I ong (:: CORBA: ri ngval ue*
ar go,
g ::Long argl);

e java:lang::Character

: 1 CORBA: : WChar charVal ue ();

1 CORBA: : Long conpar eTo (const ::java::lang::Cbject& argo);

: :S:)CRBA: : Long conpar eT0_| ava_| ang_ Char act er (:*java::lang:: Character*
argl);

i A : Lon F : CORBA: : Wehar ar g0, ::CORBA: :Long argl);

: 1 CORBA: : Bool ean equal's (const :ijava::lang: (1)] ect & ar gO)

:: CORBA: : WChar forDigit (::CORBA: : Long rgO 1 CORBA: ; Long argl);

11 CORBA: : Long get Nurrer i cVaI ue A Wohar arg)

:: CORBA: : Long ﬂet Type (: CO?BA WChar argO)

:: CORBA: : Long ashCode (),

: 1 CORBA: : Bool ean
:: CORBA: : Bool ean
: 1 CORBA: : Bool ean
: 1 CORBA: : Bool ean
. : CORBA: : Bool ean
: 1 CORBA: : Bool ean

Deflned (: CORBA: : WChar ar O)

gCo CORBA: W:har ar g0
SOControl (:: CORBA: ; W.Zhar argO)
dentifie gorable(:. Wchar arg
i
i

is
i sDi

isl

isl n

i sJaval dent erPart (::CORBA : W:har ar g0)
is e

i

i

i

i

i

i

i

i

i

|
5
i
Javal denti fi rStart(“ CORBA: : WChar ar g0);
er

: CORBA: : Bool ean sJavalett (: :WChar ar 0);
: 1 CORBA: : Bool ean sJavaletter Or Di gl t : CORBA: : ar arg0);
: CORBA: : Bool ean sLetter (::CORB har ar O)

:: CORBA: : Bool ean

: 1 CORBA: : Bool ean

: 1 CORBA: : Bool ean

;. CORBA: : Bool ean

: 1 CORBA: : Bool ean
: CORBA:

sLetter Or D| | t s : CORBA: : ar ar g0) ;
sLower Ca BA: : WChar argo);
sSpace (:' VChar ar go) ;
sSpaceChar (IP : WChar ar 90);

sTi tl eCase : CORBA: : \WChar 0

B : : Bool ean sUni codel dent i fier Par t (:: V‘Char argo) ;

: 1 CORBA: : Bool ean | sUni codel dent i i fi er Start (: (IJ?BA WChar ar gO)
: 1 CORBA: : Bool ean \LIprper Case (: CO?B :Wehar ar gO%)

: 1 CORBA: : Bool ean | t espace (OCRBA WChar arg

:: CORBA: : WChar toLowerCase (::CORBA: : Whar ar g0)

11 CORBA: : Wt ri ngVal ue* toStrin

: 1 CORBA: : WChar toTitleCase (::CORBA: :Wchar ar g0);

:: CORBA: : WChar t oUpper Case : CORBA: : WChar ar go0) ;

* java:lang::Double

11 CORBA: : Long conpar eTo (const ::java::lang:: Qbj ect& ar gO?DO
;1 CORBA: : Long onpareTo__java_l an Doubl e ;java::lang ubl e* arg0);
1 CORBA: : Lon Long doubl eToLongBiTs (: T CORBA: : Doubl e’ arg 0);
: 1 CORBA: : Doubl e doubl eVal ue ()',
;1 CORBA: : Bool ean equal s (const ::java::lang:: Qbject& arg0);
1 CORBA: : Lon hashCode ();
: 1 CORBA: : Bool ean infinite ();
: 1 CORBA: : Bool ean islnfinite (::CORBA: :Double arg0);
:: CORBA: : Bool ean naN ();
: 1 CORBA: : Bool ean i sNa (: CORBA: ; Doubl e ar %0)
:: CORBA: : Doubl e | ongBi t sToDoubI e LongLong argo);
: CORBA: : Doubl e par seDoubl e WSt ri ngVval ue* argo);

i CORBA: : WGt ringVal ue* toString
:: CORBA: : WSt ri ngVal ue* toStri ng doubl e (w?BA Doubl e ar g0);
::java::lang: : Doubl e* val uedr (: St ngVal ue* arg0);

e java:lang::Float

:: CORBA: : Long conpareTo (const ::java::lang:: Obj ecté& ar gO?
1 CORBA: : Lon conpareTo__java_|l ang_Fl oat (. ‘javar:| ang: "Fl oat* arg0);
:: CORBA: : Bool ean equal s (const ::java: l'ang bj ect & ar g0);
;1 CORBA: : Long float Tol ntBits (: : CORBA’ : Fl oat argo0) ;
1 CORBA: : Fl oat floatValue ();
11 CORBA: : Long hashCode (?:
:: CORBA: : Fl oat o int B| tsTo | oat (:: CORBA: : Long arg0);
: 1 CORBA: : Bool ean infinit
: 1 CORBA: : Bool ean i sl nf i n| te (: CORBA: : Fl oat arg0);
:: CORBA: : Bool ean naN F\F
: CORBA: : Bool ean i sNaN (:: CORBA: : FI oat ar gO

20 3)
:: CORBA: : Fl oat gtarseFl oat (: CORBA: T Bt r i ngVal ue* argo);

:: CORBA: : W&t ri ngVal ue* toStrin 0
i 1 CORBA: :V\Strln Val ue* toStrlng float ; : CORBA: ; Fl oat arg0);
::java::lang:: Float* val uetr (BA: V\StrlngVaI ue* argO)

. java::lang::lnteger

: CORBA: : Long conpareTo (const ::java::lang;: Cbject& argo);
: CORBA: : Long conpar eTo ava_| ang_I nt eger (::java::lang: i nt eger* arg0);
: :] ava: : i ang:: | nt eger* decode (::CORBA: : trl ngVal ue*” ar gO)
: (:(RBA' : Bool ean ual s fconst cijava::lang: T Object& ar%c}2
nt eger OCRBA V\St ri ng al ue (BA: : WGt r i ngVal ue*

bava al ang: : I nt eger* get
ar
g] ava: : | ang: : I nteger* get I nteger __ CORBA_ W8t ri ngVal ue__| ong

(: : CORBA: : WSET i ngVal ue*
arg0, ::CORBA: :Long argl);

WebSphere Application Server CORBA support - Page 283

::java::lang:: | nteger* getl(n; _eger CORBA Wt ringVal ue__java | ang_| nt eger

1 WBt ringVal ue* arg0, ::java::lang::|nteger*
ar ;
: :gOO?BA: :Long hashCode ;
: i nt Val ue ; .
parsel nt __CORBA Wbt ringVal ue (::CORBA:: W5t ringVal ue* arg0);
par sel nt —_CORBA WSt ri ngVal ue__ | ong (:: CORBA: : ri ngval ue*

11 CORBA: : Long

::WBt ri ngVal ue* toBinaryString CORBA: : Long ar g0

TWBtri ngVaI ue* toHexSt ¥| ng (: SJCRBA Long a?g)g)i
::WBtringVal ue* toCctal Strin (:Long argO);
::WBtringVal ue* toString__ (?;

“WBtringVal ue* toString__|ong (::CORBA :Long argo0);

::WBtringVal ue* toString__long__| Iong (: : OORBA: :Long argO, ::CORBA::Long
::lang::Integer* valued __CORBA WstringVal ue (::CORBA: : V\St ri ngval ue* argo);
::lang:: I nteger* val ueOf —_CORBA_WSt ri ngVal ue__ i ong (:: ringVal ue*

11 CORBA: : Long
java::lang::Long
1 CORBA: : Long onpareTo (const ::java::l ang : Obj ect & argo) ;
: _CO?BA: i Long conpar eTo ava | an%\sl_ong java::| ang: Long* argo);
I ang: : Long* decode (_] ri ngVaI ue* ar g0) ;
: Bool ean equal s (const java::lang: D Object& ar Oj
: : i ang: : Long* get Long__| A WGt ri ngVaI ue (:: WSt ri ngVal ue* argo0);
I ang: : Long* get Long__CORBA_W&t ri ngVal ue__| ong_| o g
WSt ri ngVal ue*
: CORBA: : LongLong argl);
::lang:: Long* get Long__CORBA Wt r | ngVal ue'_| ava_| ang Long
“(: : CORBA: | ngValue* arg0, ::java::lang::Long*
A: : Long hashCode ();

: : LongLong | ongVal ue ();

: : LongLong parselLong_~ CORBA WSt ringVal ue (::CORBA:: WSt ringVal ue* argo);

:: LongLong par seLong__CORBA WSt ri ngVal ue__| ong (: OO?BA ri ngval ue*

argo, . CORBA: : Long argl);
::WBtringVal ue* toBinaryStri ng £ CORBA: : LongLong ar gO)
::WBtringVal ue* toHexString (: A LongLong argo) ;
::WBtringVal ue* toCctal Strin (LongLong ar gO)
::WBtringVal ue* toString__ (?
:: WBtri ngVal ue* oStrl ng__long_long (: CO?BA Lon%Long ar g0)
::WBtringVval ue* toString__Iong_l ong__ i ong B LongLong arg
A: : Long

argl
g] ?ava :l ang: : Long* val ueO __CORBA Wbt ringVal ue (;:CORBA: :WstringVal ue* arg0);
bava :lang: : Long* val ueOf —_CORBA WSt ri ngVal ue__iong (:: CORBA: : ri ngval ue*
ar
g 11 CORBA: : Long
argl);

java::lang::Short
11 CORBA: : Lon conpareTo (const ::java: Ian : Obj ecté& ar
CORBA: 9 np (¢ j g: | g

;Lo conpar eTo ava | an Shor t j ava: : | ang: Szwrt * arg0);

3l ang : Short* decode (_' 3Btr| n(&/al ue* argo);

8 8 Eool ean equal s g_:)onst | ava ;I ang: j ect & argo0);
::Lon
58 Sho?t parseShort ' CORBA WG T ingVal ue (::CORBA: : WstringVal ue* argo);
: : Short parseShort__ CORBA_WBt ri ngVal ue___ i ong (:: CORBA: : t ri ngVval ue*

arg0, ::CORBA: :Long argl);

:: Short short Val ue ;
::WBtringVal ue* toString

:ZV\SIIII"I Val ue* toStrln ort CORBA: : Short ar g0
':]ava | ang: : Short* val ueO‘g V\gtrlngVaI ue CCREA) V\Strln Val ue* arg0);

bava :lang: : Short* val ueOf __CORBA_WSt ri ngVal ue__ I ong (:: CORBA: ri ngVal ue*
ar
g ;1 CORBA: : Long
argl);
java::lang::Throwable_init

virtual CORBA::Val ueBase *create for unmarshal ()

virtual java::lang::Throwabl e* Create__ . .

Vi (r)g ual Java::lang:: Throwabl e* create__ A WSt ri ngVal ue (:: CORBA: : WBtri ngVal ue*
arg
java::lang::Exception_init

virtual CORBA:: Val ueBase *create for_unmar shal ()

virtual java::lang::Exception* Creafe__ . .

Vi (r)§ ual Java::lang::Exception* create | A WSt ri ngVal ue (:: CORBA:: WSt ringVal ue*
arg
java::io::IOException_init

virtual CORBA:: Val ueBase *create_for _unmarshal ()

virtual java: 1| OCException* Creafe__ s E

Vi 6; ual]ava: ;1 OException* create A WSt ri ngVal ue (:: CORBA: : WSt ri ngVal ue*
arg

WebSphere Application Server CORBA support - Page 284

javax::ejb::CreateException_init

virtual CORBA:: Val ueBase *create for_unmarshal ()

virtual javax::ejb::CreateException® create__ s !

VI rt ual avax: \) b: : Creat eExcepti on* create A WSt ri ngVal ue
tringVval ue* ar g0)

javax::ejb::RemoveException_init

virtual CORBA:: Val ueBase *create for_unnmarshal ()

virtual javax::ejb::RenpveException¥ create__)

VI rt ual {Ag%/ax \) b: : RenoveExcepti on* create \ WBt ri ngVal ue
(:: CORBA: ri ngVal ue*ar go)

javax::ejb::FinderException_init

virtual CORBA: : VaI ueBase *create for_unmarshal ()

virtual javax::ejb::RenoveException¥ create__ .

virtual {/@/ax vy b: : RenoveException* create__ A WGt ri ngVal ue
(::CORBA: : ri ngVval ue*argO)

javax::ejb::ObjectNotFoundException_init

virtual CORBA:: Val ueBase *create for_unnar shal
virtual j avax e] b : RenmoveException* create__
virtual |ava : RenoveExcept i on*

Create_ A V\Strl ngVaI ue(: OOgBA W8t ri ngVal ue*ar g0)

javax::ejb::DuplicateKeyException_init
virtual CORBA: :Val ueBase *create for_unmarshal 8
virt

virtual javax::ejb::RenoveException* create .
javax:: ej RerrnveExceptl on* create_ CORBA V\St'rl ngVal ue(: CORBA: : Wat r i ngVal ue* ar g0)

java::util::Vector init

virtual ::CORBA :Val ueBase *create_for_unmarshal ()

vi rtual ava::util::Vector* create

Dljava:: ut! “Vector* creat e__long (:° A Long\ ar g0)

iijavai:util::Vector* create__long_Iong (: Long arg0, ::CORBA::Long argl)

com:ibm::ws::java_io_PrintStream_factory

vi rtual CO?BA Val ueBase *create_for_unmarshal ()

virtual tjava:: :PrintStreant create

V|rtuaI java:: PrlntStrean’f create__java_i o_Qutput Stream (

“ijavalio: OJtputStream aw% . .

wywal Djava:: :PrintWiter* create_ java_io Witer (::java::io::Witer *arg0)

: Create a new print streamover a file output stream

: @aram The name of_tpedfi | e output streamto which values and objects will be
rinted.

* @ic/sturn the pointer to the created PrintStream object.

Vi Bgual cijava::io:r:PrintStreant create__CORBA WstringVal ue (::CORBA: : WstringVal ue*

arg

com::ibm::ws::java_io_FilterOutputStream_factory

vi rtual CCRBA Val ueBase *create_for_unmarshal ()
vi rtual Djava: :FilterQutputStreant create__ ()

com::ibm::ws::java_io_PrintWriter_factory

virtual CORBA : VaI ueBase *create_for_unmarshal ()

virtual tjava:: :PrintWiter® create . .
vi rtual .: ava: PrintWiter* create__java_io_Witer (::java::io::Witer *arg0)
V|rtuaI java Prlnthter* create__java_i 0O QJtputStream(
]a\//a :Qut put Stream ar g0)
: Create a new print witer over a file output stream
: @aram The nane of_tPedfi | e output streamto which values and objects will be
rinted.
* @;?turn the pointer to the created PrintStream object.
vi(r)§ual cljava:iio::PrintWiter* create__ CORBA WStringVal ue (::CORBA:: WSt ringVal ue*
arg

com::ibm::ws::javax_rmi_CORBA_ClassDesc_factory

virtual CORBA: :Val ueBase *create for_unmarshal
virtual javax::rm::CORBA :C assDesc *create__

com::ibm::ws::javax_ejb_EJBMetaData_factory

WebSphere Application Server CORBA support - Page 285

virtual CORBA:: Val ueBase *create_for_unmarshal ()
virtual ::javax::ejb::EIJBMetabData *create__ ()

java::lang::Boolean_init

virtual CORBA: :Val ueBase *create for _unmarshal (); .
java::lang:: Bool ean* create__ CORBA Wbt ringVal uef: : CORBA: ; Wst ri ngVal ue* arg0);
J ava: : | ang: : Bool ean* create__bool ean(CORBA: : Bool ean arg0);

java::lang::Byte_init

virtual CORBA::Val ueBase *create_for_unmarshal ();
java::lang::Byte* create__ ();

Java::lang:: Byte* create__octet(:: CORBA: : Cctet argO); .
Java::lang::Byte* create__CORBA W5tringVal ue(:: BA: : Wt ri ngVal ue* argo0);

java::lang::Integer_init

virtual CORBA:: Val ueBase *create_for_unnarshal ();
java::lang::Integer* create__| on% (:TCORBA: : Long argoz; .
Java::lang::Integer* create__CORBA ringVal ue (:: BA: : Wt ri ngVal ue* argo0);

java::lang::Short_init
virtual CORBA::Val ueBase *create_ for_unnarshal ();

java::lang:: Short* create__CORBA_WBtTi ngVal ue(:: CORBA: : Wt ri ngVal ue* argo0);
Java::lang:: Short* create__short{:: CORBA: : Short arg0);

java::lang::Long_init
virtual CORBA::Val ueBase *create_for_unnarshal ();
java::lang::Long* create__| ong I ong(T: CORBA: : LongLong ar?O) ;
Java::lang::Long* create__ \ WSEringVal ue(:: BA:: W5t r | ngVal ue* argo0);

java::lang::Float_init
virtual CORBA::Val ueBase *java |ang_Fl oat_factory::create_for_unnarshal (L'
java::lang:: Float *java_|lang_Float_factory::create__double (:TCORBA: :Dou ie ar 0);
Java::lang:: Float *]|ava_|lang_Fl oat_factory::create__float (::CORBA: :Float ar go?;
Java::lang:: Float *java_|l ang_Fl oat_factory::create__CORBA WstringVal ue

(:: CORBA: : ri ngVal ue* ar go?;

java::lang::Double_init
virtual CORBA::Val ueBase *java_l anP_DoubI e_factory::create_for_unmarshal ();
java::|ang:: Doubl e *java_| ang_Doubl e factory::create_ double (T: CORBA: : Doubl e argo);
Java:: |l ang:: Doubl e *]ava_l ang_Doubl e_factory: : create_ CORBA ri n\cA;BVaI_ue
(:: CORBA: : W&t ri ngVal ue* arg0);

java::lang::Character_init
virtual CORBA::Val ueBase *create_for_unmarshal ();
i c :CCRBQ:V‘Char argo0) ;

virtual java::lang::Character* create (:

com::ibm::ws::VtlUtil
static const char* excepti onLogFi | eName;
static const char* debugLogFi | eNang;

* debugOn set to 1 is the debuggi ng node.
:/ debugOn set to 0 is the non-debuggi ng node.

/fiati c const int debugOn; /Il = 0;

* debugl nfoToStdQut set to 1, the debugging nessages will be printed to stdout.
:/ debugl nf oToSt dCut set to 0, the debuggi ng messages will not be printed to stdout.

st atic const ::CORBA: :Bool ean debuglnfoToStdCQut;

d*f' dgbugl nfoToFile set to 1, the debuggi ng nessages will be printed to the file
efine
* debu)éLo Fi | eNane.

:/ debugl nfoToFil e set to 0, the debuggi ng nessages will not be printed to a file.

s£z*iti c const ::CORBA: :Bool ean debuglnfoToFile; // = false;

t* Print the debuggi ng nessage string nsg to the designated nmedi a when debugOn is
rue.

* garam nsg the <code>char *</code> to be printed.
* eturn void

*

/f}‘ atic void debug(char *nsg);

_* Concatenate strings nmsgl and nsg2. Print the result string to the designated nedia
|f* debugOn is true.

WebSphere Application Server CORBA support - Page 286

prin .
* aram nsQg2 the <code>char *</code> to be prin .
*et urn void

*ftatic void debug(char *nsgl, char *nsg2);

* %aram nsgl the <code>char *</code> to be
*

* Print the debuggi ng message string str and the attributes of the exception e to
the designated nedia
* *If debugOn is true.

t ed.
* aram e the <code>java::lang:: Throwabl e* </code> to be printed.
* eturn voi d

*/

/f}‘ atic void debug(char nmsg, java::lang::Throwabl e* e);

* garam nsg the <code>char *</code> to be printe

* Print the attributes of the exception e to stderr and the designated log file
defined by the .
* gxceptl onLogFi | eNare.

(/at urn voi d
static void handl eException(java::|ang:: Throwabl e* e);
/**

: g;ar am e the <code> java::|ang:: Throwabl e*</code> to be printed.
*

* Print the attributes of the exception e and the nessage string nsg to stderr and
t he dgm gnated log file * defined by the exceptionLogFileNane.

* aram nsg the <code>char *</code> to be printed.

* eturn voi d
*/

* %ar am e the <code> java::|ang:: Throwabl e*</code> to be printed.

/§£ atic void handl eException(java::Ilang::Throwabl e* e, char *msg);
* Iransformthe string str to a Wetri ngVal ue object and return its pointer.

*

* 8}aram str the <code>char *</code> to be transforned.
eturn pointer to the transformed WstringVal ue obj ect

*

/fiatic :: CORBA: : Wat ri ngVal ue* toWstri ngVal ue(const char *str);

* Concatenate strings strl and str2, and transformthe result string to a
V\Btrl_n?VaI ue object and return
* i s pointer.

* aram str2 the <code>char *</code> to be transforned.

* %aram strl the <code>char *</code> to be transforned.
* (/et urn pointer to the transformed WstringVal ue object

*

- 2)st atic ::CORBA : WBtringVal ue* toWstringVal ue(const char *strl, const char
str2);
/**

* Concatenate strings strl, str2,and str3, and transformthe result string to a
W5t ri ngVal ue_obj ect an
* return its pointer.

aram str2 the <code>char *</code> to be transforned.

aram str3 the <code>char *</code> to be transforned.
*tlet urn pointer to the transformed WstringVal ue obj ect
static ::CORBA: : WBtri ngVal ue* toWstri ngVal ue(const char *strl, const char *str2,
const/ *ghar *str3);

*
*
*
*

%aram strl the <code>char *</code> to be transforned.

;‘ ~Transformthe WBtringVal ue object wsv to a string and return the pointer to the
string.

?turn pointer to the transformed string.
sigti c char* WBtringVal ueToString(:: CORBA: : Wt ri ngVal ue *wsv);

: garam wsv the pointer to <code>:: CORBA:: WtringVal ue </code> to be transforned.
*

/
/**
* Returns_the registered factory object for the valuetype that has the designated
repository id.
: If the factory object is not found, a NULL pointer will be returned.
a

* @aram the repository id of the factory to be retrieved as defined in the
* @eturn the pointer to the registered factory.
§£atic ;1 CORBA: : Val ueFact or yBase* getFactory(const char * rid);

* Each of the follow ng nethods returns the registered factory object for the
naned val uet ype.
* |f the factory object is not found, a NULL pointer will be returned.

*

td @?turn the pointer to the registered factory.

static java::lang::Bool ean_init* get Bool eanFact ory();
static Java::lang::Byte_init* get Byt eFactory();
static Java::lang::Character_init* get Char act er Factory() ;
static]ava::lang:: Double_init* get Doubl eFactory();
static Java::lang::Float_init* get Fl oat Factory();
static Java::lang::Integer_init* get | nt eger Factory();
static Java::lang::Long_init* get LongFactory();
static Java::lang::Shorf_init* get Short Fact or y() ;
static Java::lang:: Throwable_init* get Thr owabl eFactory();
static ;:lang init* get Except i onFact or%/)
static (lio init* et | OExcepti onFactory();
static piejb: ption_init * getCreateExceptionFactory();
static piel b XC Pt ion_init * getRRenoveExceptijonFactory();
static Java:;util::Vector_init* get Vect or Factory();
static com:ibm:ws::javax_rm _CORBA O assDesc_factory* get Cl assDescFactory();
static com:ibm:ws::)java_To_PrintStreamfactory*

get Print StreanfFactory(); . .
static com:ibm:ws::java_io_FilterCQutputStreamfactory*

WebSphere Application Server CORBA support - Page 287

getFil terQut put Streanfactory();

static com :ibm:ws::java_io_PrintWiter_factory*
getPr|ntW|terFactory()

static com:ibm: :javax_ej b_EJBMet aDat a_f act ory*
get EJBMet aDat aFact or y()

WebSphere Application Server CORBA support - Page 288

Runtime properties for CORBA clients and servers

This topic provides reference information about the properties that you can set to control the
runtime environment of C++ CORBA clients and servers. Each property is listed in the
following form:

property_name=value_type

[default_value] A description of the property, where
property_name

is the name of the property

value_type
is the type of value that the property can have.

[default value]

is the default value of the property (only shown if the property has a default
value).

Client and Server general ORB properties
You can specify the following general ORB properties for both clients and servers:

com.ibm.CORBA.nameServerHost=host_name
The name of the host on which the client's name server runs. This host name is
used with the com.ibm.CORBA.nameServerPort property to access the name
server.

com.ibm.CORBA.nameServerPort=port_number

[900] The number of the port that the name server uses to communicate with clients
and servers. This property is an integer port number, in the range 0 through 65536.
This port number is used with the com.ibm.CORBA.nameServerHost property to
access the name server.

com.ibm.CORBA.protocolVersion=iiop_version

[1.2] The default GIOP/IIOP protocol version that the ORB uses to export object
references. This property enables WebSphere Application Server ORBs to
interoperate with non-WebSphere ORBs that use the same format. This property
can be setto 1.0, 1.1, or 1.2 (for IOP 1.0, lIOP 1.1, or IIOP 1.2 respectively).

Note: The C++ ORB may downgrade the level depending on responses from a
remote server.

com.ibm.CORBA.requestTimeout=time_seconds

[30] The time, in seconds, that a request waits for a response before timing out and
issuing an error that indicates NO RESPONSE. If this property is set to O (zero),
requests wait indefinitely until a response is received.

This property is either 0 (zero, for an indefinite wait) or an integer number of
seconds in the range 1 through 300 seconds.

For tracing and debugging, this property must be set to 0 (zero).

com.ibm.CORBA.eMNumThreads=number_threads

[3] The initial size of the thread pool that is created to push events to consumers.
This property is an integer in the range 1 through 20.

com.ibm.CORBA.enableFilters=yes_or_no

[yes] Whether or not the client or server can use RAS request interceptors to help
you map runtime problems back to a specific client. This property has one of the

WebSphere Application Server CORBA support - Page 289

following values:
Yes

Log entries (and trace entries if you have turned trace on) have additional
'UnitOfWork' information that can help you debug runtime problems. But that
information comes with a performance penalty. When your application
environment is fully debugged and deployed, you should consider turning off this
option to disable RAS interceptor filters and thereby improve performance.

No

Log entries (and trace entries if you have turned trace on) do not have
'UnitOfWork' information.

By disabling the filters on a client, the server-side RAS trace and activity log
entries do not contain the data needed to map an event back to that specific
client. If you later decide that you need that information, enable the filters again in
the client properties file then restart the client.

By turning off the filters on the server side, no RAS trace and activity log entries
is mappable back to any specific client. If you later decide that you need that
information, enable the filters again in the server then restart the server.

You can disable RAS request Interceptors to improve the performance of your
WebSphere application environment, but should consider this only if you are
confident that the environment has been stable for some time and that you need
some extra performance. You can disable or enable RAS request interceptors in
any combination of servers and clients. For maximum performance improvement,
you should disable RAS request interceptors in both your clients and servers.

com.ibm.CORBA.maximumHops=number_of_location_forwards
[5] The maximum number of location forwards that the client or server should follow
before aborting object location.

This property is an integer in the range 0 through 65536. A value of 0 (zero),
indicates that the client or server should keep following location forwards
indefinitely until the object is located.

Server-specific ORB properties
You can specify the following ORB properties for servers only:

com.ibm.CORBA.hostName=host_name
The hostname string that should be included in object references (IORs) exported
by the server. The value is a TCP/IP hostname of up to 256 ASCII characters.

Normally, the C++ ORB uses the dotted-decimal form of the hostname, but this

property can be used to override the dotted-decimal form with an alternate name.
This might be useful in situations where the server is operating behind a firewall,
and you do not want the dotted-decimal hostname published outside the firewall.

com.ibm.CORBA.serverListenPort=port_number

[0] The port number on which the server listens for incoming requests from clients.
For example, this enables the server to support a static firewall scenario, in which
the firewall enables use of a set of "secure" ports.

If you leave this property to default to O (zero), the server is automatically
assigned a number for it's listening port.

com.ibm.CORBA . .threadPoolSize=number_threads

WebSphere Application Server CORBA support - Page 290

[5] The size of the ORB thread pool in which servant objects process method
invocations. This property is an integer in the range 0 through 1000.

When the ORB receives a request, it activates a thread from the appropriate pool
for the target object to service the request.

com.ibm.CORBA . .threadStackSize=number_bytes
[65536] The size, in bytes, of the thread stack used when creating new threads.
This property is an integer in the range 0 through 65536 bytes.
Client and server code page support properties
You can specify the following code page properties for clients and servers:

com.ibm.CORBA . .translationEnabled=yes_no
[no] Whether or not the client or server should perform code set translation for
character data received in remote messages. This property can have the following
values:
no
Code set translation is not performed the com.ibm.CORBA.native WCharSet
property is ignored.
yes
Code set translation is performed. Also, consider the following points:

» If you do not specify a value for the com.ibm.CORBA.nativeWCharSet property,
then the ORB assumes that the user does not want to use wchar (wide
character) data because a wchar code set was not specified.

* You should not use the default of LANG or LC_ALL, but should manually set an
appropriate value.

» Code set translation is not supported by the 11OP 1.0 protocol.

com.ibm.CORBA.isoLatinl=yes_no

[no] Whether or not the ORB uses ISO-Latinl as the default transmission code set
for character data in remote requests.

This property is ignored if you set com.ibm.CORBA .translationEnabled=yes. You
should only set this property if the ORB communicates with a remote process
that uses the 1IOP 1.0 protocol.

com.ibm.CORBA.nativeCharSet=codesetnum

[0] The number of the native OSF (Open Systems Foundation) code set used by
applications for single-byte char and string data.

This property is either 0 (zero) or a decimal code set number. If set to 0, the
number of the native OSF code set used is calculated by the ORB.

com.ibm.CORBA.nativeWCharSet=codesetnum

[0] The number of the native OSF (Open Systems Foundation) code set used by
applications for wchar (wide character) and wstring (wide string) data. This property
need be set only if both applications (on the server) and the ORB support wchar
and wstring types. If it is set, then the C++ ORB supports wchar translations; if it is
not set, then wchar data is copied without translation.

This property is either 0 (zero, if you do not want to use wchar data) or a decimal
code set number.

Note: If the code set property com.ibm.CORBA.nativeWCharSet does not match the current
system code set, a DATA_CONVERSION exception is logged in the ORB's activity log.

WebSphere Application Server CORBA support - Page 291

Client and server trace and activity log support properties
You can specify the following trace and activity log properties for clients and servers:

com.ibm.CORBA .activityLogMaxSize=

[100] The maximum size (in kilobytes) that the activity log can reach. If the activity
log reaches this size, it will wrap around, with the oldest messages in the log being
overwritten with any new messages. This property is an integer number of kilobytes
in the range 0 through infinity. When setting this property make sure that there is
enough room available for the activity log on the disk where this directory is located
(the directory of the activity log is set by the

com.ibm.CORBA .activityLogDirectory property).

com.ibm.CORBA .activityLogDirectory=

[] The name of the directory that is used to store the activity log for the related client
or server. If this value is left blank then the default directory is used,

wasee_i nstal |\ servi ces; where, wasee_install is the directory into which you
installed WebSphere Application Server enterprise services on the host. When
setting this property make sure that there is enough room available for the activity
log on the disk where this directory is located (the size of the activity log is set by
the com.ibm.CORBA .activityLogMaxSize property).

com.ibm.CORBA.orbCommunicationsTracelLevel=trace_level

[none] Controls the amount of trace data that is written to the trace log for
communications between the Object Request Broker (ORB) and servers and
clients. ORB communications trace provides hexadecimal representation of the
IIOP packets sent and received by processes. It is helpful in diagnosing problems
with ORB communications. Knowledge of the IIOP protocol is needed to interpret
the trace data.

This property has one of the following values. Each succeeding value increases
the amount of information that is captured.

None
Trace data is not recorded for this component.

Basic
The smallest amount of trace information, critical path trace data, is recorded.
This data is primarily used for the highest level data and performance
measurements.

Intermediate
For ORB communications trace, the data recorded is the same as for the Basic
setting.

Advanced

For ORB communications trace, the data recorded is the same as for the Basic
setting.

Trace is used by or for IBM Service personnel to assist in collecting data in
possible defect situations. This support should only be used under direction of
IBM Service personnel. Incorrectly setting trace properties for objects can result
in performance degradation for normal operation.

com.ibm.CORBA.orbIRTracelLevel=trace_level

[none] Controls the amount of trace data that is written to the trace log for interface
repository (IR) operations performed by the Object Request Broker (ORB).

This property has one of the following values. Each succeeding value increases
the amount of information that is captured.

WebSphere Application Server CORBA support - Page 292

None
Trace data is not recorded for this component.

Basic

The smallest amount of trace information, critical path trace data, is recorded.
This data is primarily used for the highest level data and performance
measurements.

Intermediate

Record trace messages and any throw instructions that are processed, in
addition to the information recorded for the basic trace level.

Advanced

Record all trace information, including process flow and detailed data, in addition
to the information recorded for the intermediate trace level. Further, messages
sent to the activity and error logs are also recorded in the trace log. This data is
primarily for extended problem determination. It controls the recording of extra
raw data, component extended messages, and indications that an exception
subclass was thrown.

Trace is used by or for IBM Service personnel to assist in collecting data in
possible defect situations. This support should only be used under direction of
IBM Service personnel. Incorrectly setting trace properties for objects can result
in performance degradation for normal operation.

com.ibm.CORBA.orbMutexTracelLevel=trace_level

[none] Controls the amount of trace data that is written to the trace log for mutex
operations performed by the Object Request Broker (ORB). The ORB mutex trace
records data at the base ORB level about threads claiming and releasing mutexes.
This can be valuable in debugging deadlock situations.

This property has one of the following values. Each succeeding value increases
the amount of information that is captured.

None
Trace data is not recorded for this component.

Basic

The smallest amount of trace information, critical path trace data, is recorded.
This data is primarily used for the highest level data and performance
measurements.

Intermediate

For ORB mutex trace, the data recorded is the same as for the Basic setting.
Advanced

For ORB mutex trace, the data recorded is the same as for the Basic setting.

Trace is used by or for IBM Service personnel to assist in collecting data in
possible defect situations. This support should only be used under direction of
IBM Service personnel. Incorrectly setting trace properties for objects can result
in performance degradation for normal operation.

com.ibm.CORBA.orbRequestTraceLevel=trace_level

[none] Controls the amount of trace data that is written to the trace log for request
operations performed by the Object Request Broker (ORB).

This property has one of the following values. Each succeeding value increases
the amount of information that is captured.

None

WebSphere Application Server CORBA support - Page 293

Trace data is not recorded for this component.
Basic

The smallest amount of trace information, critical path trace data, is recorded.
This data is primarily used for the highest level data and performance
measurements.

Intermediate

Record trace messages and any throw instructions that are processed, in
addition to the information recorded for the basic trace level.

Advanced

Record all trace information, including process flow and detailed data, in addition
to the information recorded for the intermediate trace level. Further, messages
sent to the activity and error logs are also recorded in the trace log. This data is
primarily for extended problem determination. It controls the recording of extra
raw data, component extended messages, and indications that an exception
subclass was thrown.

Trace is used by or for IBM Service personnel to assist in collecting data in
possible defect situations. This support should only be used under direction of
IBM Service personnel. Incorrectly setting trace properties for objects can result
in performance degradation for normal operation.

com.ibm.CORBA.traceLogMaxSize=

[100] The maximum size (in kilobytes) that the trace log can reach. If the trace log
reaches this size, it will wrap around, with the oldest messages in the log being
overwritten with any new messages. This property is an integer number of kilobytes
in the range 100 through infinity. When setting this property make sure that there is
enough room available for the trace log on the disk where this directory is located
(the directory of the trace log is set by the com.ibm.CORBA.traceLogDirectory

property).

Trace is used by or for IBM Service personnel to assist in collecting data in
possible defect situations. This support should only be used under direction of
IBM Service personnel. Incorrectly setting trace properties for objects can result
in performance degradation for normal operation.

com.ibm.CORBA.traceLogDirectory=

[] The name of the directory used to store the trace log for the related host. If this
value is left blank then the default directory is used. When setting this property
make sure that there is enough room available for the trace log on the disk where
this directory is located (the maximum size of the trace log is set by the
com.ibm.CORBA.traceLogMaxSize property).

Trace is used by or for IBM Service personnel to assist in collecting data in
possible defect situations. This support should only be used under direction of
IBM Service personnel. Incorrectly setting trace properties for objects can result
in performance degradation for normal operation.

com.ibm.CORBA.transactionTraceLevel=trace_level

[none] Controls the amount of trace data that is written to the trace log for
transaction object service operations for servers.

This property has one of the following values. Each succeeding value increases
the amount of information that is captured.

None
Trace data is not recorded for this component.

WebSphere Application Server CORBA support - Page 294

Basic

The smallest amount of trace information, critical path trace data, is recorded.
This data is primarily used for the highest level data and performance
measurements.

Intermediate

Record trace messages and any throw instructions that are processed, in
addition to the information recorded for the basic trace level.

Advanced

Record all trace information, including process flow and detailed data, in addition
to the information recorded for the intermediate trace level. Further, messages
sent to the activity and error logs are also recorded in the trace log. This data is
primarily for extended problem determination. It controls the recording of extra
raw data, component extended messages, and indications that an exception
subclass was thrown.

Trace is used by or for IBM Service personnel to assist in collecting data in
possible defect situations. This support should only be used under direction of
IBM Service personnel. Incorrectly setting trace properties for objects can result
in performance degradation for normal operation.

Client and server transaction support properties
You can specify the following transaction support properties for clients and servers:

com.ibm.CORBA.defaultTimeout=

[300] The default time, in seconds, after which a top-level transaction is rolled back
if it has not completed.

Because a transaction may hold locks on database records, it is important to
ensure that all transactions complete within a reasonable period of time. This is
especially important in a distributed environment where a transaction may be
originated by a non-recoverable client. If such a client dies without ending all the
transactions it started, then those transactions should have a period of time after
which they are automatically rolled back by the server on which they were
created.

This timeout value is the time from when the originator started the top-level
transaction to the time when the originator must request that the transaction be
committed or rolled back. It is an integer number of seconds greater than 0. If
you set this property to 0 (zero), the top-level transaction never times out in the
lifetime of the server on which the transaction was created.

If the application server's default transaction timeout is set to 0 (zero),
transactions started using the “CosTransactions::Current interface” on page do
not have a time limit set. An application program can set a time limit by calling
the set_timeout() operation on the CosTransactions::Current object, passing the
time limit required as a parameter.

com.ibm.CORBA.deferredBegin=deferbegin

[always] This property is used to control whether clients should attempt to defer the
begin of transactions until the first remote business method is called.

In general, it is desirable for clients to have a transaction created on the same
application server as at least one of the Enterprise JavaBean objects. The
transaction service provides the ability to defer the creation of a transaction until
the first remote business method is called, allowing the transaction service on the
remote application server to create the transaction during the processing of that
first business method. However, the transaction service on the remote

WebSphere Application Server CORBA support - Page 295

application server must be capable of supporting this function.

You determine whether clients should attempt to defer the creation of
transactions by setting the com.ibm.CORBA.deferredBegin property to one of the
following values:

always
Always defer the creation of a transaction. This setting can be used even if
WebSphere application servers are started with their default property settings.
WebSphere application servers handle deferred begins by default, but do not
indicate that they support this capability.

never
Never defer the creation of a transaction. When a client application requests that
a transaction be begun, a transaction factory is obtained using a factory finder.
The factory finder may be specified with the Factory finder property. If a value is
not specified for the factory finder property, an arbitrary application server is
chosen. This setting may be detrimental to performance when communicating
with application servers that can support deferred begin, because transactions
may be created on an application server that is not otherwise involved in the
transaction.

serverDependent
Defer the creation of a transaction depending on the capability of the remote
server.

The transaction's client code determines the capability of the remote transaction
service to support the deferred begin protocol. The client determines the
capability of the remote server from information contained in the target object's
proxy object, so no remote flows are required for this test.

WebSphere application servers that are started specifying the property
com.ibm.ejs.jts.jts.ControlSet.nativeOnly=false export this information in the
target object's proxy.

Note: This is not the default startup property for the application server.

com.ibm.CORBA . .transactionfactoryFinder=
[(A null value.)] The name to be used to find a transaction factory for transactional
clients.

The value is the fully-qualified name path from the local root, which can be used
in a resolve to get the factory desired. For example, one possible value to specify
is:

com i bm CORBA. t ransact i onf act or yFi nder =node/ ser ver s/ xyzSer ver

You can specify any transaction factory that is bound into the name space.
Through the use of this property, you can direct of the search for a particular
transaction factory. The above example finds a factory on the local node (host) in
server xyzServer. The format of the property value may be either of the following:

node/ server s/ server nane

or
domai n/ nodes/ nodenane/ server s/ server name

where nodename is the name of one of the nodes in the configured WebSphere
domain and servername is the name of a server. If a null value is supplied, a

WebSphere Application Server CORBA support - Page 296

search starts on the local bootstrap node and if no factory is found, the search
when proceeds throughout the domain searching all configured nodes and
servers for an available transaction factory. Thus a null default value on a large
configuration may incur a performance overhead.

Note: This property is only used if transactions are not deferring the start of a
transaction until the first business method.

com.ibm.CORBA.transactionEnabled=

[yes] Whether or not this client is enabled to use the transaction service. The
possible values for this property are yes or no.

Client and server OLT- and debug-specific properties
You can specify the following OLT- and debug-specific properties for clients and servers:

com.ibm.CORBA.debugEnabled=

[yes] Whether or not the OLT runtime is enabled for tracing and debugging. The
possible values for this property are yes or no.

com.ibm.CORBA.oltHosthname=host_name
The hostname of the machine where the OLT server is running.

com.ibm.CORBA.oltPort=port_number
[2102] The number of the port at which the OLT server listens.

For tracing and debugging, the property com i bm CORBA. r equest Ti meout =0 must be
set.

For more information about tracing and debugging, see “4.1.2.1: IBM Distributed Debugger
and Object Level Trace” in the WebSphere Application Server Advanced Edition infocenter.

WebSphere Application Server CORBA support - Page 297

Reference information for problem determination

The following topics provide reference information to help you resolve runtime problems with
WebSphere Application Server enterprise services:

* “Fields in a formatted activity log entry” on page 298
» “CORBA system exception minor codes” on page 301

Description of a formatted activity log entry

If you use the showlog utility to format an enterprise services' activity log to a file, the first
two lines of the output file show the following two fields:
SLANG

The language of the system where showlog command was run, taken from the
system's environment.

$CODESET

The codepage of the system where showlog command was run, obtained from the
function call "char * nl_langinfo(CODESET)".

You cannot change this information which is generated by showlog.

The remainder of the formatted output contains entries for events recorded in the activity
log.

Content of a formatted activity log entry
Each entry in the activity log has the following fields:
Componentld: number

A numeric value that identifies the component in WebSphere Application Server
enterprise services.

Processld: number

The process number under which the client or server is running; this is the identifier
by which the operating system knows the process.

Threadld: number

The thread identifier under which the object placed the event in the activity log. This
is the thread identifier by which the operating system knows the thread.

FunctionName: name

An internal name for the function that placed the information in the activity log. This
may not be very useful for you.

Probeld: number

This is typically the line number in the source file that has the function that placed
the entry in the event log. However, some components use this field as a probe
identifier and assign it some other value.

Sourceld: number filename

The number identifies the version of code that is running; the second value is the
location of the source code file in the library system from which the code was built.
This information may not be very useful to you.

Manufacturer: IBM
Product: WebSphere Application Server

Version: number

WebSphere Application Server CORBA support - Page 298

The version of the product.

SOMProcessType: number
he type of process that placed this event in the activity log:

A client process.

2
An ORB daemon.

5
A server process.

ServerName: name
If this is a server process, the name of the server.

ClientHostName: hostname

The host hame of the client associated with the event, if security is enabled for the
Server process.

ClientUserld: userid
The user ID of the client associated with the event, if security is enabled for the
server process.

TimeStamp: yyyy-mm-dd hh:mm:ss.nnnnnnnnn

The date and time when the event was placed in the activity log, in the format:
yyyy-mm-dd hh:mm:ss.nnnnnnnnn , where:
yyyy-mm-dd

The date of the event, as a numeric form of year, month, and day (ISO 8601
standard format); for example, 2001- 08- 15 for the 15th August 2001.

hh:mm:ss.nnnnnnnnn

The time of the event, as a numeric form of hour, minute, and second; for
example, 19: 45: 01. 149182980.

UnitOfWork: nnnnn:hhhhh

The unit-of-work identifier for the original request, in the format, nnnnn:hhhhh,
where:
nnnnn

A random number.

hhhhh
The name of the host where the original request originated.

If a request is forwarded to another server as part of the original request, the unit
of work from the original request is used. This enables clients to track the work
that is done as part of an original request.

Note: You may find the UnitOfWork information useful when you are trying to find
related entries in the activity log or when you are debugging problems across
multiple machines. For more information about how to view activity log entries in
UnitOfWork sequence, see “Reading the activity log” on page

Severity: number

The severity of the problem. The possible values are:
1

Error - Indicates there is a problem with the operation that caused the message,
and the operation has failed. In this case, see other messages in the log with the

WebSphere Application Server CORBA support - Page 299

same UnitOfWork for additional information.

2

Warning - Indicates there may be a problem with the operation that caused this
message. The operation continues and may or may not be successful. In this
case, see other messages in the log with the same UnitOfWork for additional
information.

3

Informational - The message is informational only. The operation that caused this
message continues. In this case, see other messages in the log with the same
UnitOfWork for additional information.

Category: number
The category of the failure.
For messages generated from C++, the possible values are:
1

Error - Indicates that a severe error has occurred. These messages are written to
the error log, activity log and the Windows platforms event log, which can be
viewed using Windows Event Viewer.

2

Activity - Indicates some general form of activity. These messages have one of
the three Severity settings and are written to the activity log.

3
Trace - Is used for component trace. These messages are written to trace logs.

4

Trace Data - Is used for additional data for component trace. These messages
are written to trace logs.

5

Performance - Is used for performance trace data. These messages are written
to trace logs.

For messages generated from C++, the possible values are:
AUDIT

An informational message, written to the activity log.
WARNING

A serious warning message, written to the activity log.
ERROR

A severe error, written to the error log, activity log, and the Windows platforms
event log, which can be viewed using Windows Event Viewer.

EVENT, ENTRY, EXIT, DEBUG
Trace messages, written to the trace log.

FormatWarning: number
A non-zero numeric value when an attempt to place the replacement text in the
Primary or Extended Message was not correct.

PrimaryMessage:

In the case that the entry was placed in the activity log as part of an exception, the
PrimaryMessage field contains the obj ect Nane: : net hodNane(par anet er

WebSphere Application Server CORBA support - Page 300

['ist):1ineNunber and the type of the exception (this should always be
CORBA::exception) and the specific exception that was raised.

This field contains essential information for problem determination and indicates
one of the following:
Throw of exception

The entry indicates that the listed function determined that an exception should
be thrown. Look at the ExtendedMessage information to help you identify the
cause of the problem. This is a category 1 (Error) entry.

Reraised exception

The entry indicates that an exception was received and reraised. This entry
allows you to trace related entries in the activity log. This is a category 1 (Error)
entry.

Mapping of exception
The entry shows the exception that was received and the new exception that was

raised. This is useful when tracking a specific exception through the activity log.
This is a category 1 (Error) entry.

Activity entry

An activity entry provides information. If the entry appears during an exception
path, it contains information to help determine the cause of the problem for which
the exception is being raised. If the entry is not on an exception path, the entry
provides information as to the state of the server. This is a category 2 (Activity)
entry.

Note: If you see a minor code of this format, 0x49420xxx, where xxx are
hexadecimal numbers, see “CORBA system exception minor codes” on page 30for
more information about the message.

ExtendedMessage:

The extended message often provides additional information to pinpoint the exact
cause of the failure.

RawDatalen:

When raw data is provided as part of this log entry, the length of the raw data is
shown in hexadecimal format. The raw data follows this entry and is shown in a
16-byte dump with the ASCII format of the data at the right of the dump.

If the ORB communications trace is turned on, the trace data from GIOP packets
is displayed in the RawData field.

CORBA system exception minor codes

In the CORBA model for exception handling, all exceptions can be associated with minor
codes. This topic provides details of these minor codes, in hexadecimal order.

Minor codes are used in several ways:

« They are returned in the minor code field of exception bodies (when appropriate).
» They are placed in the activity log as part of the PrimaryMessage.

« They can be written in diagnostic messages on a computer screen.

There is not a one-to-one mapping of system exceptions to minor codes. A single minor

code can be associated with several different exceptions, and the diagnostic message can
be different depending on which exception was thrown.

WebSphere Application Server CORBA support - Page 301

Each minor code is a three digit hexadecimal serial number. This number is prefixed with
0x49420, which is the OMG-assigned vendor identification code for the C++ ORB provided
with IBM Websphere Application Server Enterprise Services.

Note: In some cases, minor code numbers may be reported without the vendor ID. Minor
codes reported from Java are in decimal point and lack the vendor ID.

Minor code numbers are unique within the scope for each system exception, but there is no
restriction that minor code numbers be unique across all system exceptions.

In this topic, the description of each minor code consists of:
Minor Code number (prefixed with vendor ID) : Error Text (the text string that
identifies the minor code)
Explanation: A description of the problem that caused the error.

User Response: Actions needed to resolve the problem, if appropriate.

Minor code definitions
0x49420032 : SOMDERROR_CouldNotLoadLibrary

Explanation: Client initialization cannot load a required library.

User Response: Check the log for more information.

0x49420033 : SOMDERROR_NoMemory
Explanation: A memory allocation failed.

User Response: Verify that process does not have a memory leak. Increase
system resources.

0x49420034 : SOMDERROR_Notlmplemented

Explanation: The invoked operation is not supported in the product or is not valid
on the target object

User Response: Check that the operation being invoked and the target object
run-time type are compatible. Refer to the documentation for the operation for
information about restrictions.

0x49420035 : SOMDERROR_InvalidProtocolinformation

Explanation: The configuration of the communications protocol is incorrect.
Supported communication protocols are TCP/IP and IPC.

User Response: Ensure that at least one valid communications protocol image was
configured using system management (for either TCP/IP or IPC). Ensure that a host
image was configured using the correct host name. Ensure that for each
communications protocol configured, the csProfileTag and portNumber are set and
that the portNumber is not using another process on the system. (The portNumber
is the port on which the location service daemon listens for requests.) The
csProfileTag and portNumber settings must be unique for each communications
protocol. Ensure that for each server registered in the Implementation Repository,
the set of supported communication protocols intersects with the set of
communications protocol images configured using system management.

0x49420036 : SOMDERROR_SOMDDAIreadyRunning

Explanation: The location service daemon cannot begin listening because another
process is using the port number. Probably another instance of the process is
already running.

User Response: Do not attempt to start the location service daemon or terminate
the other instance. If no other location service daemon is running, try reconfiguring

WebSphere Application Server CORBA support - Page 302

the location service daemon to listen on a different port number. Each
communications protocol is configured with a separate port number using system
management.

0x49420037 : SOMDERROR_InvalidConfigSetting
Explanation: A configuration setting or environment variable was not properly set.

User Response: An error log entry indicates which configuration setting or
environment variable is not properly set. If the reported variable is HOSTNAME,
ensure that a host image was configured using system management. If the reported
variable is SOMCBASE, ensure that the product was properly installed
(SOMCBASE should be set to the directory where the product was installed.) If the
reported variable is SOMCBENYV, ensure that SOMCBENV has one of the following
forms: D:<image-name> S:<image-name> C:<image-name> A:<image-name>
where "D:" starts the location-service daemon, "S:" starts a server process, "C:"
starts a client process, and "A:" starts a systems management agent process. The
<image-name> is the name of a systems management image. For servers, the
image name is the same as the server alias. For non-managed clients, the
SOMCBENYV environment variable should be set to the name of a configuration file
that contains configuration settings for the process. The default configuration file
somcbenv.ini is in the "etc" subdirectory of the installed product directory.

0x49420038 : SOMDERROR_HostAddress
Explanation: Cannot map a host name on a different machine to a host address.

User Response: Ensure that the host with which this process is attempting to
communicate is known and can be reached via TCP/IP. Try to ping the remote host
by the host name.

0x49420039 : SOMDERROR_CouldNotStartProcess
Explanation: The location daemon cannot start a server process.

User Response: Check the log for more information.

0x4942003A : SOMDERROR_CouldNotStartThread
Explanation: Cannot start a thread.

User Response: Check the log for more information. Increase system resources.

0x4942003B : SOMDERROR_NoMessages

Explanation: No request messages were pending in a server process when the
server invoked CORBA::BOA::execute_next_request or
CORBA::BOA::execute_request_loop with the CORBA::BOA::SOMD_NO_WAIT
flag.

User Response: Wait for a request to become available, or use the
CORBA::BOA::SOMD_WAIT flag to call CORBA::BOA::execute_next_request or
CORBA::BOA::execute_request_loop.

0x4942003C : SOMDERROR_MarshalingError

Explanation: An error has occurred when trying to marshall or demarshall method
parameters or return results as part of a remote invocation. This can occur if the
process attempts to pass a IOM proxy as a method parameter or return result. Only
objects that inherit from CORBA::Object ORBProxy can be passed on
Cross-process invocations. It can also occur when demarshalling an inout sequence
if the length of the incoming sequence is greater than the original sequence
maximum. It can occur if methods are not invoked on the ServerRequest object in
the correct order when using the Dynamic Skeleton Interface (DSI).

User Response: Ensure that IOM proxies are not passed as method parameters or
return results. Ensure that inout sequences do not exceed the sequence maximum.
If using the DSI, ensure that operations are invoked in the correct order on the

WebSphere Application Server CORBA support - Page 303

ServerRequest object.

0x4942003D : SOMDERROR_CommTimeOut

Explanation: A process has timed out while waiting for a response from another
process. Typically a client receives this error when the server has terminated or is
hanging due to an application error.

User Response: Ensure that the other process is still active. To increase the
timeout period, change the request timeout setting using system management.

Note: Setting the request timeout setting to zero results in an infinite timeout.

0x4942003E : SOMDERROR_CannotConnect

Explanation: A client process cannot connect to a server process when attempting
to invoke a method on a proxy to an object residing in that server process.

User Response: Ensure that the location service daemon is running on the
machine on which the server resides. Ensure that the object reference is still valid.
Try to ping the remote machine to see that the two machines are connected.

0x4942003F : SOMDERROR_No_Server_Available

Explanation: A client has invoked a method on a proxy to an object residing in a
server group, but no server in the server group is currently available or the server
group cannot be reached. Either a method call was made on a server group aware
object, but the server group has no servers configured in it. Or a method call was
made on a server group aware object for which there is at least one server
configured, but none of the servers that are available were selected by the
configured bind policies. Can be the result of a permanent server failure or
communications failure.

User Response: Configure at least one server into the server group if the server
group has no configured servers. If the server group has at least one server
configured, then ensure that the configured bind policies are deselecting all the
available servers or the bind policy may have to be modified. Alternatively, there
may be a problem communicating with one or more of the servers. Ensure that the
servers in the server group are running and that there is communication between
the client or server and the servers in the server group. Shut down and restart the
client or server and reinitialize the application that caused the error. Alternatively,
catch the error and retry the method call until a server becomes available.

0x49420040 : SOMDERROR_BadObjref

Explanation: An invalid object reference was used. For example, if the server
receives a reference to an object that no longer exists or cannot be located in that
server, this error is sent from a server to a client. This error can occur in a client
process if an invalid string is passed to CORBA::ORB::string_to_object. This error
occurs in a server if CORBA::BOA::create is called with input ReferenceData that
doesn't map to any known exportable object residing in that server. The error
occurs if CORBA::BOA::get _id is invoked on a nil object reference or on an object
reference that has no associated ReferenceData in that server. Also, this error
occurs if a server attempts to export an object reference that has no associated
ReferenceData in that server, or if a non-server attempts to pass a local object as a
parameter on a remote method invocation. (A " non-server" is any process that has
not yet called CORBA::BOA::impl_is_ready.)

User Response: In a client process, ensure that the object which the object
reference refers to still exists. Ensure that strings passed to
CORBA::ORB::string_to_object have not been corrupted or truncated. There is no
maximum length for an object reference string; some are larger than others. Ensure
that servers do not attempt to export objects that are not handled by the application

WebSphere Application Server CORBA support - Page 304

adaptor of the server. IOM proxies cannot be exported from a server.

0x49420041 : SOMDERROR_Unknown
Explanation: An unexpected error occurred during an operation.

User Response: Report the occurrence to technical support.
0x49420042 : SOMDERROR_CommunicationsError
Explanation: A communications failure occurred. Possible reasons are:

» A process could have received an unknown or unexpected message type or
message content

» The process could have encountered a low-level communications failure in
attempting to send a message or binding to a socket

* An unexpected broken connection could have occurred.

User Response: Ensure that communications resources are functioning properly;
for example, when using TCP/IP, try to ping the remote host. Ensure that the
process has not failed due to an application error.

0x49420043 : SOMDERROR_ImplIReplO
Explanation: Cannot access the Implementation Repository database.

User Response: Ensure that the Implementation Repository was correctly created
and configured using system management. Each host machine must have its own
Implementation Repository.

0x49420044 : SOMDERROR_EntryNotFound

Explanation: Cannot find an entry in the Implementation Repository when
attempting to delete, update, or locate it.

User Response: Ensure that the specified server alias or UUID matches a server
that was previously registered in the Implementation Repository.

0x49420045 : SOMDERROR_ClassNotFound

Explanation: Cannot convert an IOR to an object. The class hame was unknown or
the proxy factory cannot be created.

User Response: Verify the class implementation and make sure that the bindings
exist.

0x49420046 : SOMDERROR_ServerAlreadyExists

Explanation: A server cannot register with the location service daemon during
CORBA::BOA:impl_is_ready. Another server may already be registered with the
location service daemon under the server UUID. Only one instance of a particular
server can be running on a given host.

User Response: Terminate the duplicate server process. If no duplicate server
process is running, restart the location service daemon.

0x49420047 : SOMDERROR_CtxNoPropFound
Explanation: Cannot find a specified CORBA::Context property. This error occurs if
an invalid property name was passed to CORBA::Context::delete_values.
User Response: Ensure that the specified property name exists in the context
object

0x49420048 : SOMDERROR_BadParm
Explanation: An application supplied an invalid parameter to an operation.
User Response: Check the error log for a message indicating which operation was

given the invalid parameter. Check the documentation for that operation and ensure
that the passed parameters are valid.

WebSphere Application Server CORBA support - Page 305

0x49420049 : SOMDERROR_AuthnFail

Explanation: An application attempted to manipulate an entry in the
Implementation Repository for a server that is either being managed or disabled by
system management. Only entries registered using the ImplRepository interface can
be updated or deleted using the ImplRepository interface. Such entries in the
Implementation Repository cannot be deleted or updated using the ImplRepository
programmatic interface. The error is also raised if
CORBA::ImplRepository::find_impldef is used to find a server that was disabled by
system management.

User Response: Manipulate the server using system management. Ensure that the
server was not disabled by system management. Ensure that all entries in the
Implementation Repository that are to be deleted or updated, were originally added
programmatically and not by using system management.

0x4942004A : SOMDERROR_DuplicateEntry

Explanation: The application attempted to add a duplicate entry to the
Implementation Repository, or attempted to update the server alias of an existing
entry using a name that is not unique. The server alias need not be unique
throughout the network but must be unique in each Implementation Repository.

User Response: Ensure that the server UUID and server alias of the
ImplementationDef to be added or updated in the Implementation Repository are
unique.

0x4942004B : SOMDERROR_Internal
Explanation: Unknown.

User Response: Report the occurrence to technical support.

0x4942004D : SOMDERROR_WrongRefType

Explanation: The wrong type of object reference was used. Probably, a client
invoked an operation on an object in a server and the object did not support the
invoked method. To support a given operation, a server must have been compiled
and linked with the server-side C++ bindings for the interface that introduces that
IDL operation. This error also occurs when a server application invokes
CORBA::BOA::get_id and passes in a proxy object rather than a local object.

User Response: Ensure that a server is compiled and linked with all the
server-side C++ bindings for the interfaces it exports. Ensure that a server does not
pass a proxy object to CORBA::BOA::get_id.

0x4942004E : SOMDERROR_SOMDDNOotRunning

Explanation: A server cannot register with the location service daemon (in
CORBA::BOA::impl_is_ready), because it cannot contact the daemon. Maybe the
daemon not running, or the daemon running on a port number that is different from
what the server expected.

User Response: Ensure that the location service daemon is running on the same
host as the server. Ensure that the port number configuration setting for each
communications protocol is the same for the systems management server image
and daemon image.

0x49420051 : SOMDERROR_DataConversion

Explanation: Cannot perform code set translation for character data. This results
from a failure of the XPG4 functions iconv() or nl_langinfo(). It can occur if the
process is using a non-standard XPG4 code set that does not map to an OSF code
set. It can occur if the native code set for the process (as reported by the XPG4
function nl_langinfo) does not match the nativeCharSet configuration data of the
process (which was configured using system management). It can occur if a server

WebSphere Application Server CORBA support - Page 306

does not have XPG4 code set converters for the transmission code set chosen by
the client process. It can occur if the char code sets configuration setting for the
server contains one or more code sets for which the process cannot open (using
iconv_open) XPG4 converters. It can occur if there is no common code set between
the client and the server.

User Response: When using the translationEnabled configuration setting, ensure
that the NLS-related configuration settings have been correctly set. Also ensure that
the correct XPG4 code set converters have been installed and that all environment
variables (such as LOCPATH) required by XPG4 have been properly set. Ensure
that both the client and the server are using standard code sets and that there is
some code set supported by both the client and the server.

0x49420052 : SOMDERROR_IRIncoherent
Explanation: An Interface Repository object references another named Interface
Repository object which no longer resides in the IR database.

User Response: Contact IBM Support and report the problem.

0x49420053 : SOMDERROR_IRInternal
Explanation: An internal programming or database error has occurred.

User Response: Contact IBM Support and report the problem.

0x49420054 : SOMDERROR_IRDuplicateEntry

Explanation: Attempted to create an Interface Repository object where one already
exists in the Interface Repository with either the same CORBA::Repositoryld or the
same name within that container.

User Response: Change the ID (CORBA::Repositoryld) parameter that is passed
to the 'create_xxxx' operation, or change the ID (CORBA::Repositoryld) value of the
object already in the IR which is causing the duplicate entry error via the 1D write
operation. Change the name of one of the two conflicting objects within that
container.

0x49420055 : SOMDERROR_IREntryNotFound
Explanation: One of the input parameters of a create_xxxx operation referenced an
Interface Repository object which is not in the database.

User Response: Specify a named object that exists in the Interface Repository
database.

0x49420056 : SOMDERROR_IRCannotConnect

Explanation: Cannot find or access the Interface Repository database. This occurs
during a call to resolve_initial_references (with an input string of
InterfaceRepository).

User Response: Ensure that the Interface Repository database exists and is
properly configured. Ensure that the directory or file permissions associated with the
Interface Repository database allow access by the user receiving the exception.

0x49420057 : SOMDERROR_IRInUse

Explanation: Another thread or process is updating that portion of the Interface
Repository database.

User Response: Retry the Interface Repository operation that generated the
exception at a later time.

WebSphere Application Server CORBA support - Page 307

Notices

This information was developed for products and services offered in the U.S.A. IBM may not
offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or service is not intended
to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle DriveArmonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing 2-31Roppongi 3-chome, Minato-ku Tokyo 106,
Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS DOCUMENT
"AS I1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the document. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been
exchanged, should contact:

IBM Corporation Department LZKS 11400 Burnet Road Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it

WebSphere Application Server CORBA support - Page 308

are provided by IBM under terms of the IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific
environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products
should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples may include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.
Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM Corporation in the
United States, other countries, or both:

WebSphere Application Server CORBA support - Page 309

Advanced Peer-to- Peer Networking Weri es

AFS 'S/ ESA

Al X Net Vi ew

APPN en d ass

AS/ 400 2

Cl Cs 0s/ 390

ClCS Os/2 Os/ 400

Cl CS/ 400 Paral | el Syspl ex

Cl CS/ 6000 Power PC

Cl CS/ ESA RACF

Cl CS/ WS RANVAO

Cl CS/ VSE RVF

Cl CSPI ex RI SC S%st em 6000
2 RS/ 600

m .
DB2 Uni ver sal Dat abase

S/ 390

DCE Enci na Lightweight dient SAA

DFS. SecureWy |

Enci na TeanmConnect i on

| BM . . . Transarc

| BM System Appl i cation Architecture TXSeri es

| M5 VSE/ ESA

| M5/ ESA VTAM

Language Environnent Vi sual Age
WebSpher e

Domino, Lotus, and LotusScript are trademarks or registered trademarks of Lotus
Development Corporation in the United States, other countries, or both.

Tivoli is a registered trademark of Tivoli Systems, Inc. in the United States, other countries,
or both.

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Windows, Windows NT, and the
Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Some of this documentation is based on material from Object Management Group bearing
the following copyright notices:

Copyright 1995, 1996 AT&T/NCR

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.

Copyright 1995, 1996 Groupe Bull

Copyright 1995, 1996 Expersoft Corporation

Copyright 1996 FUJITSU LIMITED

Copyright 1996 Genesis Development Corporation

Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation

Copyright 1995, 1996 ICL, plc

Copyright 1995, 1996 Ing. C. Olivetti &C.Sp

Copyright 1997 International Computers Limited

Copyright 1995, 1996 IONA Technologies, Ltd.

Copyright 1995, 1996 Itasca Systems, Inc.

Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited

Copyright 1995, 1996 Novell USG

Copyright 1995, 1996 02 Technolgies

WebSphere Application Server CORBA support - Page 310

Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.

Copyright 1995, 1996 Oracle Corporation

Copyright 1995, 1996 Persistence Software

Copyright 1995, 1996 Servio, Corp.

Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.

Copyright 1996 Sybase, Inc.

Copyright 1996 Taligent, Inc.

Copyright 1995, 1996 Tandem Computers, Inc.

Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.

Copyright 1995, 1996 Transarc Corporation

Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.

Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be deemed to
have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software
to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,
THE OBJECT MANAGEMENT GROUP, AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND WITH REGARDS TO THIS MATERIAL INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. The Object Management Group and the companies listed
above shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

This software contains RSA encryption code.

Other company, product, and service nhames may be trademarks or service marks of others.

WebSphere Application Server CORBA support - Page 311

	Contents
	CORBA support reference articles
	Interface Definition Language (IDL)
	IDL name scoping
	IDL interface declarations
	IDL constant declarations
	IDL type declarations
	IDL exception declarations
	IDL attribute declarations
	IDL operation declarations

	Multiple IDL interfaces
	IDL include directives
	IDL pragma directives
	The idlc command (IDL compiler)
	Options for the idlc command

	The IDL-to-Java compiler
	Options for the IDL-to-Java compiler

	Conventions used in documenting IDL syntax
	IDL lexical rules
	IDL reserved words
	Syntax for comments in IDL code

	The implementation registration utility (regimpl)
	CORBA programming
	CORBA C++ bindings
	CORBA C++ bindings for constants
	CORBA types and business objects
	CORBA C++ bindings for data types
	CORBA C++ binding restrictions
	CORBA programming: Name scoping and modules in the C++ bindings

	Commonly used CORBA interfaces
	CORBA class interfaces
	CORBA::object interfaces
	CORBA::ORB interfaces

	C++ bindings for CORBA interfaces
	Managing CORBA object references
	Widening CORBA object references
	Narrowing CORBA object references
	CORBA programming: narrowing to a C++ implementation

	CORBA programming: Storage management and _var types
	CORBA programming: Argument passing considerations for C++ bindings

	CORBA internationalization considerations
	CORBA internationalization: Initializing client programs
	CORBA internationalization: Character set restriction
	CORBA internationalization: Passing object references over multiple
platforms
	CORBA internationalization: Using the OMG char data type in IDL files

	The CORBA module
	CORBA module: Types
	CORBA module: AliasDef Interface
	AliasDef::original_type_def

	CORBA module: Any Class
	Any::_nil
	Any::operator<<
	Any::operator>>
	Any::replace
	Any::type

	CORBA module: ArrayDef Interface
	ArrayDef::element_type
	ArrayDef::element_type_def
	ArrayDef::length

	CORBA module: AttributeDef Interface
	AttributeDef::describe
	AttributeDef::mode
	AttributeDef::type_def

	CORBA module: BOA Class
	BOA::_duplicate
	BOA::_nil
	BOA::create
	BOA::deactivate_impl
	BOA::dispose
	BOA::execute_next_request
	BOA::execute_request_loop
	BOA::get_id
	BOA::get_principal
	BOA::impl_is_ready
	BOA::request_pending

	CORBA module: BOA::DynamicImplementation Class
	BOA::DynamicImplementation::invoke

	CORBA module: ConstantDef Interface
	ConstantDef::describe
	ConstantDef::type_def
	ConstantDef::value

	CORBA module: Contained Interface
	Contained::absolute_name
	Contained::containing_repository
	Contained::defined_in
	Contained::describe
	Contained::id
	Contained::name
	Contained::version

	CORBA module: Container Interface
	Container::contents
	Container::create_alias
	Container::create_constant
	Container::create_enum
	Container::create_exception
	Container::create_interface
	Container::create_module
	Container::create_struct
	Container::create_union
	Container::describe_contents
	Container::lookup
	Container::lookup_name

	CORBA module: Context Class
	Context::_duplicate
	Context::_nil
	Context::context_name
	Context::create_child
	Context::delete_values
	Context::get_values
	Context::parent
	Context::set_one_value
	Context::set_values

	CORBA module: ContextList Class
	ContextList::_duplicate
	ContextList::_nil
	ContextList::add
	ContextList::add_consume
	ContextList::count
	ContextList::item
	ContextList::remove

	CORBA module: CORBA Class
	CORBA::_boa
	CORBA::is_nil
	CORBA::ORB_init
	CORBA::release
	CORBA::string_alloc
	CORBA::string_dup
	CORBA::string_free
	CORBA::wstring_alloc
	CORBA::wstring_dup
	CORBA::wstring_free

	CORBA module: Current Class
	Current::_duplicate
	Current::_nil

	CORBA module: EnumDef Interface
	EnumDef::members

	CORBA module: Environment Class
	Environment::_duplicate
	Environment::_nil
	Environment::clear
	Environment::exception

	CORBA module: Exception Class
	Exception::_duplicate
	Exception::_nil
	Exception::id

	CORBA module: ExceptionDef Interface
	ExceptionDef::describe
	ExceptionDef::members

	CORBA module: ExceptionList Class
	ExceptionList::_duplicate
	ExceptionList::_nil
	ExceptionList::add
	ExceptionList::add_consume
	ExceptionList::count
	ExceptionList::item
	ExceptionList::remove

	CORBA module: IDLType Interface
	IDLType::type

	CORBA module: ImplementationDef Interface
	ImplementationDef::get_alias
	ImplementationDef::get_id

	CORBA module: ImplRepository Class
	ImplRepository::find_impldef
	ImplRepository::find_impldef_by_alias

	CORBA module: InterfaceDef Interface
	InterfaceDef::base_interfaces
	InterfaceDef::create_attribute
	InterfaceDef::create_operation
	InterfaceDef::describe
	InterfaceDef::describe_interface
	InterfaceDef::is_a

	CORBA module: IRObject Interface
	IRObject::def_kind
	IRObject::destroy

	CORBA module: ModuleDef Interface
	ModuleDef::describe

	CORBA module: NamedValue Class
	NamedValue::_duplicate
	NamedValue::_nil
	NamedValue::flags
	NamedValue::name
	NamedValue::value

	CORBA module: NVList Class
	NVList::_duplicate
	NVList::_nil
	NVList::add
	NVList::add_item
	NVList::add_item_consume
	NVList::add_value
	NVList::add_value_consume
	NVList::count
	NVList::get_item_index
	NVList::item
	NVList::remove

	CORBA module: Object Class
	Object::_create_request
	Object::_duplicate
	Object::_get_implementation
	Object::_get_interface
	Object::_hash
	Object::_is_a
	Object::_is_equivalent
	Object::_narrow
	Object::_nil
	Object::_non_existent
	Object::_request
	Object::_this

	CORBA module: OperationDef Interface
	OperationDef::contexts
	OperationDef::describe
	OperationDef::exceptions
	OperationDef::mode
	OperationDef::params
	OperationDef::result
	OperationDef::result_def

	CORBA module: ORB Class
	ORB::_duplicate
	ORB::_nil
	ORB::BOA_init
	ORB::create_alias_tc
	ORB::create_array_tc
	ORB::create_context_list
	ORB::create_enum_tc
	ORB::create_environment
	ORB::create_exception_list
	ORB::create_exception_tc
	ORB::create_interface_tc
	ORB::create_list
	ORB::create_named_value
	ORB::create_operation_list
	ORB::create_recursive_sequence_tc
	ORB::create_sequence_tc
	ORB::create_string_tc
	ORB::create_struct_tc
	ORB::create_union_tc
	ORB::get_default_context
	ORB::get_next_response
	ORB::get_service_information
	ORB::list_initial_services
	ORB::object_to_string
	ORB::poll_next_response
	ORB::resolve_initial_references
	ORB::resolve_initial_references_remote
	ORB::send_multiple_requests_deferred
	ORB::send_multiple_requests_oneway
	ORB::string_to_object

	CORBA module: Policy Interface
	CORBA module: PrimitiveDef Interface
	PrimitiveDef::kind

	CORBA module: Principal Interface
	CORBA module: Repository Interface
	Repository::create_array
	Repository::create_sequence
	Repository::create_string
	Repository::create_wstring
	Repository::get_primitive
	Repository::lookup_id

	CORBA module: Request Class
	Request::_duplicate
	Request::_nil
	Request::add_in_arg
	Request::add_inout_arg
	Request::add_out_arg
	Request::arguments
	Request::contexts
	Request::ctx
	Request::env
	Request::exceptions
	Request::get_response
	Request::invoke
	Request::operation
	Request::poll_response
	Request::result
	Request::return_value
	Request::send_deferred
	Request::send_oneway
	Request::set_return_type
	Request::target

	CORBA module: RequestSeq Class
	RequestSeq::allocbuf
	RequestSeq::freebuf
	RequestSeq::length
	RequestSeq::maximum
	RequestSeq::operator[]

	CORBA module: SequenceDef Interface
	SequenceDef::bound
	SequenceDef::element_type
	SequenceDef::element_type_def

	CORBA module: ServerRequest Class
	ServerRequest::_duplicate
	ServerRequest::_nil
	ServerRequest::ctx
	ServerRequest::exception
	ServerRequest::op_def
	ServerRequest::op_name
	ServerRequest::params
	ServerRequest::result

	CORBA module: StringDef Interface
	StringDef::bound

	CORBA module: StructDef Interface
	StructDef::members

	CORBA module: SystemException Class
	SystemException::_duplicate
	SystemException::_nil
	SystemException::completed
	SystemException::minor

	CORBA module: TypeCode Class
	TypeCode::_duplicate
	TypeCode::_nil
	TypeCode::content_type
	TypeCode::default_index
	TypeCode::discriminator_type
	TypeCode::equal
	TypeCode::id
	TypeCode::kind
	TypeCode::length
	TypeCode::member_count
	TypeCode::member_label
	TypeCode::member_name
	TypeCode::member_type
	TypeCode::name

	CORBA module: TypedefDef Interface
	TypedefDef::describe

	CORBA module: UnionDef Interface
	UnionDef::discriminator_type
	UnionDef::discriminator_type_def
	UnionDef::members

	CORBA module: UnknownUserException Class
	UnknownUserException::_duplicate
	UnknownUserException::_nil
	UnknownUserException::exception

	CORBA module: UserException Class
	UserException::_duplicate
	UserException::_nil

	CORBA module: WstringDef Interface
	WstringDef::bound

	CosNaming in the Naming Service
	CosNaming::BindingIterator Interface
	BindingIterator::destroy
	BindingIterator::next_n
	BindingIterator::next_one

	CosNaming::NamingContext Interface
	NamingContext::bind
	NamingContext::bind_context
	NamingContext::bind_new_context
	NamingContext::destroy
	NamingContext::list
	NamingContext::new_context
	NamingContext::rebind
	NamingContext::rebind_context
	NamingContext::resolve
	NamingContext::unbind

	CosTransactions in the Transaction Service
	CosTransactions:: Control Interface
	Control::get_coordinator
	Control::get_terminator

	CosTransactions::Coordinator Interface
	Coordinator::get_parent_status
	Coordinator::get_status
	Coordinator::get_top_level_status
	Coordinator::get_transaction_name
	Coordinator::get_txcontext
	Coordinator::hash_top_level_transaction
	Coordinator::hash_transaction
	Coordinator::is_ancestor_transaction
	Coordinator::is_descendant_transaction
	Coordinator::is_related_transaction
	Coordinator::is_same_transaction
	Coordinator::is_top_level_transaction
	Coordinator::register_resource
	Coordinator::register_subtran_aware
	Coordinator::register_synchronization
	Coordinator::rollback_only

	
	Current::begin
	Current::commit
	Current::get_control
	Current::get_status
	Current::get_transaction_name
	Current::resume
	Current::rollback
	Current::rollback_only
	Current::set_timeout
	Current::suspend

	CosTransactions::RecoveryCoordinator Interface
	CosTransactions::Resource Interface
	CosTransactions::Synchronization Interface
	Synchronization::after_completion
	Synchronization::before_completion

	CosTransactions::Terminator Interface
	Terminator::commit
	Terminator::rollback

	CosTransactions::TransactionalObject Interface
	CosTransactions::TransactionFactory Interface

	C++ value type library, methods implemented
	Runtime properties for CORBA clients and servers
	Reference information for problem determination
	Description of a formatted activity log entry
	CORBA system exception minor codes

