Problem Determination -- table of contents

8: WebSphere Application Server Problem Determination

8.1: Problem Determination vs. Tuning

8.1: Applying E-fixes

8.2: Messages

How to View Messages

8.3: Logs

Log samples

8.4: Traces

Trace Samples

Enabling and Reading ORB Trace

ORB Request Trace

8.5: Identifying the Problem

Plug-in Problems

Servlet Redirector Problems

Workload Management, Remote Administration and Cloning Problems

Installation Problems

8.6: Diagnosing Configuration and Installation Problems

8.7: Using Application Level Facilities

ORB-related Minor Codes

8.8: Using Internal Tools

Using the Log Analyzer for Advanced Edition

8.9: WebSphere Application Server Threads

8.10: Applying E-fixes

8.11: Pointers to other resources

8.12: Various Problem Determination Topics

8.13: Problem Determination Hints and Tips

8.14: How to Report a Problem to IBM

Using the JRas Message L ogging and Trace Facility

Contents
Introduction
Overview of messages and trace

The WebSphere JRas programming model

Naming and managing loggers

Message and trace event types

Using JRas loggers

Creating resource bundles and message files

Creating manager and logger instances
Using loggers
Figures
Tables
Notices

Using the Performance Monitoring I nfrastructure Client Package

Contents

Introduction

PMI organization and implementation
PMI client interfaces

Data organization and hierarchy

PMI interfaces

Using the PMI client interfaces

Figures
Tables

8: Problem determination

This section provides information about resources and techniques to help you
identifyand respond to problems. Y ou can perform problem determination at different
levels within your system.Several resources are available for identifying problems:

o Logs
o Tracefiles
« Messages
o Tools

In order to identify a problem, it isimportant to understand both the topology of the
system and howyour application fitsinto this topology. See WebSphere Structure in
this section. Consider the following questions:

« Areall the components installed successfully?

« What isyour application attempting to do?

How is your application deployed?

« What technology is used to connect to back-end systems?
« Can you re-create the problem?

o What resources best identify the problem?

Next, choose the diagnostic tasks that can help you identifythe component within
WebSphere Application Server or within your application that iscausing the problem.
Diagnostic tasks include:

« Determining what tuning parameters to specify

« ldentifying error messages

« Locating logs and tracefiles

« Determining whether system and server classpath settings are set correctly
« ldentifying failing product components

« ldentifying appropriate tools for a problem

« Understanding how to invoke and use available tools

WebSphere Structure topology

There are anumber of configurable values which relate to the server launch. These
parametersare held in the path map, process definitions and the OLT configuration.
These parametersprovide important details regarding the server java process launch,
including debugging details.

The server information is contained within a server configuration file in the

serverconfiguration directory. There can be multiple configurations, one of which must
be selected bythe user when performing alaunch.

Y ou will see a couple of processes running. Instead of an administrative server, thereis
anadministration enterprise application which runs on top of the application server.
These are running inthe same process. The Web server is running in a separate process
with the exception of when theinternal Web server is chosen. However, the latter
option is not the common operating mode.

The supported application databases are:
« DB2
o Oracle
« instantDB

WebSphere provides the DataSource interface to connect and access these databases.
This providesflexibility and efficiency to the application developer because it does not
matter which underlying database you choose.

During installation, the Web server that will interact with the WebSphere Application
Server isidentified. Depending on which Web server isidentified, adifferent plug-in
codeisinstalled. The plug-in communicates viaHTTP to the internal HTTP server,
which thenroutes the requests to the servlet engine or web container.

The application server also contains two subcomponents, the servlet engine/web
container and EJB container. The servlet engine interfaces with the plug-in code to
service HTTP requests from a Web browser. The EJB container interfaces with the
servlet engine or EJB clients to support access to enterprise beans. Both the servlet
engine or container can access the customer application data.

Interfaces
e« RMI/IIOP

Thisinterface is provided by the CORBA component of the IBM-supplied Java 2
SDK which isinstalled with WebSphere Application Server. Thisinterface
allows an application to transparently access Java objects that are located either
locally or remotely. Thisinterface is also used for interactions between the
administrative server, the administrative client and the application server. The
SSL security layer is used when the user activates security.

e HTTP

Thisinterface is the externally defined interface used by Web browsers. The

Web server can either service the HTTP request or pass the request to the
application server viathe OSE interface.

e JDBC

Thisinterface is defined by Java and allows Java programs to access data within
the supported databases.

Logs

The primary WebSphere Application Server processes produce that can be invaluable
when doing problem determination. See a description of each log in the Logs section.

8.1: Problem determination vs. tuning

This section describes a summary of the difference between problem determination and
tuning. Problem determination and tuning are closely related topics, each having the
same outcome: a betterperforming product. Y ou might perceive tuning as a subset of
problem determination.

Understanding the difference between problem determination and tuning is important.
Knowing when to usetuning and when to use problem determination will save you
time.

Problem determination

Problem determination is the process of determining the source of a problem,; for
example, a program component,machine failure, telecommunication facilities, user or
contractor-installed programs or equipment,environmental failure such as a power loss,
Or user error.

Tuning

Tuning is the process of adjusting an application or a system to operate in amore
efficient manner in thework environment of a particular installation.

In other words, problem determination fixes functional problems, while tuning
alleviates slow processes.

The WebSphere Performance and Tuning Guidedescribes the parameters that should be
modified to create an optimum product environment.
e 9.1: WebSphere Application Server Tuning Guide

http://squidward/0901.html
http://squidward/0901.html

WAS 5E

8.10: Applying E-fixes

E-fixes areindividual fixesfor critical problems. They have been individually
tested,but not integration tested and should only be applied if you have a critical
problem without a valid workaround. They may be applied to both versions of
WebSphere, except where specifically noted. All e-fixes arerolled into the next
scheduled FixPack. Each fix has a readme file with installation instructions.

To learn about the fixes made available since the last FixPack, see the FixPacks and
E-fixes website.

‘. 8: Problem Determi natio!.

View the PDF file containing this article for easy printing =

http://www-4.ibm.com/software/webservers/appserv/efix.html
http://www-4.ibm.com/software/webservers/appserv/efix.html
http://squidward/PDguide.pdf
http://squidward/PDguide.pdf

8.2: Messages

When WebSphere Application Server is running, it might issue messages related to any
of the following components:

o Administrative GUI

o Administrative Repository

o Administrative Server

o Alarm*

« EJB Container

« Connection Manager*

» Database Manager

» Data Replication Service

« Cache Management

o Install

« J2EE Connector

« IBM JavaORB

« Security Association Server

» Java Server Pages

« Localizable Text

« Migration Tools

o JNDI - Name Services

« Web server Plug-ins and Native code
« Resource Anayzer

o Session and User Profiles

« WebSphere Systems Management Utilities
« Servlet Engine

» Tracing Component

« WebSphere Systems Management Commands
« Request Interceptors

« WebSphere Object Adapter

« WebSphere Persistence

o Client

o WSCP Command Line

« WebSphere Server Runtime

» WebSphere Transactions

« WebSphere Systems Management TASKS
« EJB Workload Management

« XML Configurations

« WebSphere Server Process Launch

« WebSphere Server Validation

To help you diagnose problems and minimize the need to enable trace in any of the
above components, view the messages table. Y ou can view the messagesin
alphabetical order by prefix--> or component-->. All messages are documented with

user/system action and explanation.

By Prefix

http://squidward/msgref/WSCP.html

By Component

8.2.1: How to view messages

All messages will show in the shell window from which the application server was
started. Y ou canalso have these messages routed to afile by updating the trace service
object for a particularapplication server definition. This can be done by using the
administrative client web interface.If you select to have these messages routed to afile,
the administration client allows you to viewthe contents of the file from the browser.

8.3: Logs

WebSphere Application Server provides many error logs to help you diagnoserun-time
problems. This section describes these error logs telling you where to find andhow to
format the files. The logs are:

o activity.log

« Stderr.log

« Stdout.log

e Plug-inlog

o NT wssetup.log

. WebSphere.instl

e Serious error log

The tools required to process some of these logs (as well as some of the trace logs) are
described in Using Internal Tools. Y ou can also refer to Problem determination hints
and tips for additional tips on the use and processing of some of these error logs. If you

need to report a problem to IBM, you might need to gather some of these error logs and
send them to IBM for diagnosis; for moreinformation, refer to How to report a problem

to IBM.

Activity log for problem determination

The activity log captures events that show a history of WebSphere Application Server's
activities. Some of the entriesin the log are informational, while others report on
systemexceptions, such as returned CORBA exceptions.

When you encounter WebSphere Application Server run-time errors, you will often
find it usefulto use Log Analyzer to read the activity log and try to diagnose the
problem yourself. When you need assistance from IBM to help you diagnose problems,
you will be asked to providethe formatted activity log output to IBM.

Location of the activity log

Thereisone activity log for each host machine. The activity.log file residesin the
logsdirectory of where the product isinstalled. All application servers, including the
administrativeserver, write error records to thisfile. The activity.log fileis abinary file
and cannotbe viewed with an ascii editor. Y ou can view the activity.log file in one of
two ways.

http://www-1.ibm.com/servlet/support/manager?rt=3&rs=0&navkey=1ByProduct&path=Product+Group%3DSoftware%00Product+Family%3DWeb+Application+Servers%00Product+Type%3DWebSphere+Application+Server%00category%3DHints+and+tips
http://www-1.ibm.com/servlet/support/manager?rt=3&rs=0&navkey=1ByProduct&path=Product+Group%3DSoftware%00Product+Family%3DWeb+Application+Servers%00Product+Type%3DWebSphere+Application+Server%00category%3DHints+and+tips

Log Analyzer
showlog

NOTE:The activity.log file should NOT be edited. If sections are deleted from this
filethe file will become corrupted.

How to view the activity.log file with Log Analyzer

1.

2.

Change the directory to:
product_installation root/bin

Run the waslogbr script file, which is called:
o waslogbr.bat on Windows NT
o waslogbr.sh on Unix systems

It needs to be run from the bin directory cited above.
Thiswill start the Log Analyzer graphical interface.

In the interface:
1. Select File>Open.
2. Navigate to the directory containing the activity.log file.
3. Select the activity.log file.
4. Select Open.

How to view the acitivity.log file on a remote machine using
showlog

If you plan to transfer the activity.log file to a remote machine, you must transer
the file usingatool such as FTP. The file MUST be transferred in binary mode,
otherwise the log file could corrupt and will not be readable.

The Log Analyzer cannot be used to view remote files.An alternate tool named
showlog can be used instead of Log Analyzer to format the activity.log file for
viewing when no GUI display capabilities are available.

showlog.bat or showlog.sh is a script/batch file that can be found in the bin
directoryof the WebSphere Application Server installation. Follow these
instructions to use showlog:

1. Change directory to:
product_installation root/bin

2. Run the showlog tool with no parameters to display the usage instructions:
= On Windows NT, run showlog.bat

= On Unix systems, run showlog.sh
Examples:
o Todirect the activity log contents to stdout, use the invocation:
showlog activity.log
o To dump the activity.log to atext file that can be viewed using a text
editor, use the invocation:
showlog activity.log textFileName

Changing activity.log file size

In the course of using Log Analyzer, you might have to set the maximum
activity.log file size.The activity.log file grows to a predetermined size and then
wraps. The default size is IMB. Followthese steps to change the log size:

1. Open the propertiesfilein atext editor:
product_installation_root/properties/logging.properties

2. For the com.ibm.ws.ras.ActivityL ogSize property, specify the value you
would like in Kilobytes (KB). If anindividual sizeis entered, the default
Sizeisused.

= Example: To change thelog size to 2MB, enter in the line:
com.ibm.ws.ras.ActivityLogSize=2048 (do not use spaces)

The size change will take effect at the next server startup.

When making changes to the acitivity log, remember that the activity log uses a
lockfile named activityL og.Ick, located in the same directory as the activity log,
to synchronize acces to the activity log. If you use either showlog or the Log
Analyzer, youmust have write access to the /logs/directory. These programs must
lock the activity log while making a copy of it. In order to do this, the
programsmust be able to create the lock file in this directory which requires
write access.

stderr and stdout logs for problem determination

The stderr and stdout logs capture events presented through two of the three
standard |/O streams, or:

o stdin - arguments entered with a command or program
o stdout - output displayed to the user
o stderr - errors thrown by the code

In WebSphere Application Server, the stdout and stderr logs are created for:

o Application servers
o Servlet redirectors

The application server stderr and stdout logs contain application server
communication.Output from System err. pri ntl n and

System out . pri nt| n statementsin the servlet code also appear in the
application server stdout and stderr logs.

Plug-in logs for problem determination

The native.log fileis created by the plug-in running inthe Web server process.
Thisfile are located in the ./logs directory of theWebSphere installation.
Different levels of information can be placed in thislog.This log contains error
and informational messages generated from the Web server plug-in.This
information reflects server startup and server status change requests
(start/stop/restart).

The default log file mask setting for the plug-inlog iserror.If thislog hasafile
length of zero, no error messages were generated during the server status change
requests.

NT wssetup log

Thislog is created during the install process. Review thislog to ensure the install
process was successful. The install process consists of:

o Verifying prerequisites
o Downloading files

0 Updating the configuration files for both WebSphere Application Server
and the Web server

WebSphere.instl

On AIX and Solaris, anative install of WebSphere Application Server generates
theWebSphere.instl log that islocated in the/ t np directory.

Information on the WebSphere Application Server install processon HPis
placed in the HP system log, swagent.log, that is located in
the/ opt / WebSpher e/ AppSer ver/ var/ adm swdirectory.

Serious error log

If afatal error occurs, the serious error log file may be produced. Thislog
contains the server nameand text that reads "fatal error."

8.3.1: Log samples

8.4: Traces
Traces arejust logs. Traces and logs differ in that you must turn traces on to see output in atrace file. Logs are always enabled and log entries are automatically generated.
Tracing occurs as a single process for the administrative and application servers.

Trace can be enabled for any "trace component" that has registered with the trace system. Typically, a trace component and a Java™ class have the same range, although itis not required. There are some trace components that do
not follow this such as the entireORB component. The ORB component consists of multiple java classes, but registers as a singletrace component. Determining the granularity of a trace component is left up to the descretionof the
developer or component. Review the WebSphere Application Server Java package names in the table underldentifying the Problem. This table includes some of the Java classes that can be traced.

The trace subsystem does not trace user code (such asservlets or EJB components) unless Syst em err. print| nor Syst em out. pri nt | n statements are added to the code. Output from the pr i nt | n statements appears
either in the application server stdout or stderr logs. A Trace/Log API called JRasis also availableto trace serviets and EJB components. User code instrumented with JRas will behave exactly like otherruntime trace.

See the stdout and stderr logs description for more information on stdout and stderr logs.

Beginning with WebSphere Application Server Version 3.0,an object level debugger is provided with the product to trace and debug user code.See the Object Level Tracing and Debugging (OLT and OL D) section for information
on object level tracing.

Enabling Trace
Trace for aserver can either be enabled before the server is started startup trace enablement or can beenabled while the server is up and running dynamic trace enablement.
Startup trace enablement

Enabling an administrative server is different from enabling an application server. For the administrativeserver, you need to edit the admin.config file to set the com.ibm.gjs.sm.adminServer.traceString property.For an application
server, you need to launch the administrative GUI and follow these steps:

1. Click on the server.

. On the righthand pane, select the Services tab.
. Select Trace Service.

. Select Edit Properties.

. Enter the desired trace specification.

. Select OK.

7. Select Apply.

o g s WwN

SeeViewing traces/collecting traces for more information on writing trace specifications.

Trace and log entry format

WebSphere Application Server supports multiple trace formats which are specifiable by the user. There are three formats:
« Basic
« Advanced
« Loganalyzer
Basic
Sincetraceisjust another log, both a WebSphere Application Server log entry anda trace entry will have the same format. The following example of alog entry illustratesthe basic format:
Log entry example: [00.07.11 22:47:12:191 EDT] 53ccc3c5 ActiveEIBCont W Could not create bean table xxx

The following table includes a description of each of part of the log entry:

[00.07.11 22:47:12:191 EDT] 53ccc3cs ActiveEJBCont W Could not create bean table XXX

LEVEL: Thelevel of the message or
trace. Possible levels are:

« > Entry to amethod (debug)

« < Exit amethod (debug)

TS: Thetimestampinfully [TID: Thethread ID o A Audit

qualified date (YYMMDD), or the hash codeof |COMPONENT: The short name of « W Wami . .)

Time (Millisecond precision), |the thread issuing component issuing this message. aming MESSAGE: Thetext of the message. ARGUMENTS: Optional message arguments,
and Time zone format. this message. + X Eror

« E Event (debug)

« D Debug (debug)

« TTerminate (exits process)
« F Fatal (exits process)

Advanced
The following is a sample of the advanced format:

[01.05.24 15:06:514 CDT] 1014419 | UOW=1-829: Default Server
sour ce=com.ibm.ws.runtime.utils.Resour ceBinder org=IBM prod=WebSphereW SVR00491: Binding SampleDataSour ce as jdbc/SampleDataSour ce

The following table includes a description of each of part of the log entry:

[01.05.24 _1.000- Binding
15:06:514 1014419 UOW—;E?\ZIZDefauIt | sour ce=com.ibm.ws.runtime.utils.Resour ceBinder org=IBM prod=WebSphere Comﬁg{\;rll; (see WSVR00491 SampleDataSour ce as
CDT] jdbc/SampleDataSour ce
LEVEL: The
level of the
message or trace.
Possible levels
are:
« >Entrytoa
method
. TID: (debug)
:i—r?{esx‘lz:\rr]r? in The - <Bdta
e PN lipread 1D method
el fied cate " (debug)
(vYmmpD), 1@ [CORRELATION « AAWt |SHURCE: The nameof the component or dlass |0 CANIZATION: |PRODUCT: COMPONENT: IMESSAGE: The|\ p = yvENTS: Optiond
. codeof |ID: Generated by P The organization who [Name of the Name of the text of the
Time - « W Warning fissuing the message.) message arguments.
L the the runtime. wrote this code. product. component. message.
(Mll]lgeoond thread « X Error
grr]zc!rsi'r?]rg’ issuing « E Event
zone format. this (debug)
" |message. « D Debug
(debug)
o TTerminate
(exits
process)
. FFata
(exits
process)

Note 1: Organization, product and component can be set on JRas loggers. For existingWebSphere runtime code, defaults are provided for the organization and product, and do not displaya component.

Loganalyzer

Theloganalyzer format is useful for combining and correlating traces from multiple server processes.Move al the trace files to a directory on a single system. The trace files MUST have been generated in loganalyzer format.
Launch the Log Analyzer and use File->Open to navigate to that directoryand open one of the trace files. Next, use the File->M erge with and select another trace file. This will merge the contents of the two filesin the Log
Analyzer display.

Useful information when using the advanced and loganalyzer formats

If the startup trace is not enabled, the stdout.log and stderr.log files are always generated in basic format.|f startup trace is enabled and sent to a user specified file, then the stdout.log and stderr.log files are generated in basic format
and the user-specified file is generated in the format specified by the user.

If startup trace is enabled and sent to stdout.log or stderr.log, then that file is generated in the formatspecified by the user. The ring buffer is always generated in the format specified by the user.

If apersistent fileis configured, then the datain the file is generated in the selected format and the messages sent to the shell are always in basic format. If a persistent fileis NOT configured, then the messagessent to the shell are
generated in the specified format.

Types of traces

The following are the traces you will find in WebSphere Application Server:
« Tracefile

. Nanny trace
« DrAdmin

View the following graphic for a description of the log and trace points in WebSphere Application Server:

Trace file
'Web Server Common | Outof process
Web Servar | Specific plug-in service client
ol DLL oLl +
j Out of APP
process Sarver
Out of Process logs | sglum JVRA
L
Out of Admin
process | Server — |
saner JYN DrAdmin
oL
STDOUT
L F—nNannytrace SIDERR
y
DrAdmin logs

Trace file

The trace file provides trace entries on the interaction of various WebSphere ApplicationServer components with the administrative server.Use the trace file to identify a problem and to review events preceding the error situation.
Note: Always review trace entries prior to the error. Trace entries recorded after the error has occurred represent program recovery and will nothelp with problem determination.
Review the Collecting traces section for additional tracedocumentation.

Tracefile samples

Nanny trace

On UNIX platforms, the nanny process starts the administrative server.The nanny.maxtries parameter in the admin.config file tells the nanny process how many timesit should attempt to restart the administrative server.
On Windows NT, the nannyservice is part of the IBM WebSphere Administrative Server service that is registered with the operating system.Starting the IBM WebSphere Administrative Server service invokes adminservice.exe. If
the service does not start, verify that:

« Theservicewasinstalled and isavailablefromStart > Settings > Control Panel > Services

« TheuserlD under which WebSphere Application Server was installed has service privileges
If the nanny process fails to start the administrative server on UNIX or if the IBM WebSphere Administrative Server service does not start on Windows NT, you can bypass the nanny function and just start the administrative server.
Follow these steps to start the administrative server:

1. Go to the <WAS root>bin/bin directory

2. Invoke adminserver.sh on UNIX or adminserver.bat on Windows NT

Note: Starting the administrative server without using the nanny function means that nothing is monitoring the administrative server. If it fails in thisstate, nothing will restart it.
A nanny traceisonly available on UNIX platforms.

On Windows NT, use the Event Viewer to view entries related to the WebSphere nanny service. Followthese steps to view the Event Viewer :
1. Select Start > Programs > Administrative Tools
2. Select Event Viewer
3. View eventsrelated to WebSphere Application Server

Nancy trace samples
DrAdmin trace function

The DrAdmin function generates thread dumps.

On UNIX platforms, the IBM JDK allows users to send signals to force javacore.txt filesto be created in the application server's working directory.The application server continues to run and a sequence of javacore files are created.
These filescan help in debugging “loop" or "system hang" problems.

To generate thread dumps similar to the javacore files, especially on a Windows NTplatform, use the DrAdmin function.
A unique DrAdmin port is generated each time an application server starts. To generate a thread dump for that port:

1. View the console messages area or the trace file for message SMTL0018! "DrAdmin available on port."

2. Enter the following command:
Dr Admi n -serverport <port nunber> -dunpThreads

3. Review the stderr log for the thread dump.

Note: A specific DrAdmin port may be configured. If the DrAdmin port is set to -1, which is adefault, this indicates thata specific port has not been set and a port will automatically be generated.

After installing and starting WebSphere Application Server, you will see DrAdmin entriesin the console messages area. These entries appear regardless of the options specified during installation, and have the following format:
DrAdmin available on port 1,055

DrAdmin entries are also recorded in the trace file.To locate the DrAdmin entry in the trace file:
1. Inthe <WAS_ROOT>logs directory, open the trace file.
2. Go to the bottom of the trace file and then scroll up until you locate the following entry:Dr Admi n avai | abl e on port xxxx

What is DrAdmin?

DrAdminisaservice, provided by each of the servers, to enable and disable tracing. Each time a server starts, DrAdmin registersitself on adifferent (next available) port number. There are no output messages associated with
DrAdmin. The DrAdmin entries in the console messages area are generated to tell users the port number where DrAdmin is listening.

When to use DrAdmin?

http://squidward/060619010104.html

Y ou should always use the administrative console trace facilities to debug a problem. DrAdmin provides useful lightweight access to several runtime functions, as well as provides access to a numberof different processes, including
nanny and administrative server processes. Opt to use DrAdmin when the followingsituations occur:

« When input to the administrative console is not accepted

« When the administrative server isin await state

« When the administrative server is not responding (e.g., in an infinite loop orhung state)

« When you have to dump the thread stacks in a server

« When the administrative client topology tree disappears

Note: DrAdminisan internal interface that is used to assist users with problem determination. As aninternal interface, it is subject to change at any time, and there is no national language support for it.
How to use DrAdmin?

The DrAdmin interface is the same on all platforms. Since DrAdmin is another way of turning on atrace, the tracing mechanism is the same as the one used by the administrative console trace facilities. Therefore, whether you are
looking at the trace file or a DrAdmin output file the trace entries will have the same format.
See the DrAdmin samples to learn how to invoke DrAdmin.

Use of the admin.config file for trace output does not apply to the single server product.Instead, server trace options are configured through the server configuration file:

INFO_USAGE_LINE_37=(Prepend the trace file with "!" to cause that file to

INFO_USAGE_LINE_38=be truncated when starting the server. Use the values
INFO_USAGE_LINE_39="stdout" or "stderr" to case trace output to be written,
INFO_USAGE_LINE_40=respectively, to standard output or to standard error.)

DrAdmin Help
DrAdmin has a help file available. Y ou can access the DrAdmin help by using typing on the command linethe "- help" option.
DrAdmin samples

For more information on traces, see file What are messages, logs and traces?
For aquick overview of available traces and tools, see the Problem/Tool/Trace/L og Matrix.

http://squidward/0019.html

8.4.1: Trace samples

Select one of the following traces to view sample output:
« Tracefile

. Nanny trace (available on UNIX platforms only)
« DrAdmin

Trace file

The following trace fragment is an example of atrace file.Use this trace to debug server startup or shutdown problems:
[00.07.17 15:59:57: 200 EDT] fOc45c4c Adnmi nServer A Initializing WbSphere

Admi ni stration server[00.07.17 15:59: 57: 230 EDT] a9d5dc4e Dr Admi nServer A Dr Admin
avail able on port 1,038[00.07.17 16:00: 22: 457 EDT] fO0c45c4c SASConfig A SAS
Property: com i bm CORBA. princi pal Name has been updat ed[00. 07. 17 16: 00: 25: 191 EDT]
fOc45c4c Initial Setupl A Creating Sanple Server Configuration[00.07.17 16:00: 29: 797
EDT] fOc45c4c JDBCDriverCon A Inporting JDBCDriver : Admin DB Driver[00.07.17

16: 00: 31: 209 EDT] fOc45c4c JDBCDriverCon A Installing JDBC Driver: Admin DB Driver on
node db[00.07.17 16: 00: 31: 530 EDT] fOc45c4c JDBCDriverCon X Failed to install JDBC
Driver Admin DB Driver on node db. OpException

comibm ejs.smexception.JDBCDriverAl readyl nstal | edException[00.07.17 16: 00: 31: 770
EDT] fOc45c4c DataSourceCon A |Inporting DataSource : Default DataSource[00.07.17

16: 00: 32: 451 EDT] fOc45c4c NodeConfig A Inporting Node : db[00.07.17 16: 00: 32: 962
EDT] fOc45c4c ApplicationSe A Inporting ApplicationServer : Default Server[00.07.17
16: 00: 33: 823 EDT] f0c45c4c Contai nerConf A Inporting Container : Default

Cont ai ner[00. 07. 17 16:00: 35: 746 EDT] fOc45c4c EJBConfig A lnporting EJB :

Hi t Count Bean[00. 07.17 16:00: 37: 859 EDT] fO0Oc45c4c EJBConfig A Inporting EJB :
BeenThere Bean[00.07.17 16:00: 39: 271 EDT] fO0c45c4c ServletEngine A |nporting

Servl et Engine : Default Servlet Engine[00.07.17 16:00: 40: 843 EDT] fOc45c4c
WebApplicatio A Importing WebApplication : defaul t_app[00.07.17 16: 00: 44: 088 EDT]
f0Oc45c4c ServletConfig A Inporting Servlet : snoop[00.07.17 16: 00: 44: 248 EDT]
f0Oc45c4c ServletConfig WUpdating Servlet : snoop, since it was already

created[00. 07. 17 16:00: 48: 604 EDT] fOc45c4c ServletConfig A Inporting Servlet

hel | o[00. 07. 17 16: 00: 48: 694 EDT] fOc45c4c ServletConfig WUpdating Servliet : hello,
since it was already created[00.07.17 16:00:51: 508 EDT] fOc45c4c ServletConfig A
Importing Servlet : ErrorReporter[00.07.17 16:00: 51: 609 EDT] f0Oc45c4c ServletConfig W
Updating Servlet : ErrorReporter, since it was already created[00.07.17 16:00: 53: 982
EDT] fOc45c4c ServletConfig A Inporting Servlet : invoker[00.07.17 16:00: 54: 182 EDT]
fOc45c4c ServletConfig WUpdating Servlet : invoker, since it was already

creat ed[00. 07. 17 16: 00: 56: 586 EDT] fOc45c4c ServletConfig A Inporting Servlet

j spl0[00.07.17 16:00: 56: 806 EDT] f0Oc45c4c ServletConfig WUpdating Servlet : jspl0,
since it was already created[00.07.17 16:01:02: 825 EDT] fOc45c4c WebApplicatio A

I mporting WebApplication : adm n[00.07.17 16:01: 05: 428 EDT] fOc45c4c ServletConfig A
Importing Servlet : install[00.07.17 16:01: 05: 539 EDT] fO0c45c4c ServletConfig W
Updating Servlet : install, since it was already created[00.07.17 16:01: 07: 982 EDT]
fOc45c4c ServletConfig A Inporting Servlet : jsplO[00.07.17 16:01: 08: 092 EDT]
fOc45c4c ServletConfig WUpdating Servlet : jsplO, since it was already

created[00. 07. 17 16:01: 14: 271 EDT] fOc45c4c ServletConfig A Inporting Servlet
file[00.07.17 16:01: 14: 361 EDT] fOc45c4c ServletConfig WUpdating Servlet : file,
since it was already created[00.07.17 16:01: 16: 865 EDT] fOc45c4c ServletConfig A
Importing Servlet : invoker[00.07.17 16:01: 16: 975 EDT] fOc45c4c ServletConfig W
Updating Servlet : invoker, since it was already created[00.07.17 16:01:19: 439 EDT]
fOc45c4c ServletConfig A Inporting Servlet : ErrorReporter[00.07.17 16:01:19: 529 EDT]
f0c45c4c ServletConfig WUpdating Servlet : ErrorReporter, since it was already
created

Nanny trace

The following trace fragment is an example of ananny trace.Use the nanny trace to monitor administrative server events:

[00.07.17 17:05:00: 032 EDT] 1fa4ccl6 Nanny > main

“adm n.config"[00.07.17 17:05:00: 032 EDT] 1fa4ccl6 Nanny > Initial admn
server startup..[00.07.17 17:05:06:231 EDT] 1fadccl6 Nanny < Initial

admi nserver startup successful..[00.07.17 17:05:06: 321 EDT] 1fa50b45 Nanny >
run : Admi nServer Monit or Thread[00. 07. 17 17: 05: 06: 321 EDT] 1f a50b45 Nanny E
Admi nSer ver Moni tor Thread: Waiting for process 1719 to ternminate.

DrAdmin

NT Toinvoke DrAdmin:
Go to the <WebSphere\A ppServer\bin\debug> directory.
2. Copy adminserver.bat to DrAdmin.bat

=

Note:On Unix platforms, the adminserver.bat file is adminserver.sh. Copy adminserver.sh to DrAdmin.sh.

Replace the following line in the DrAdmin.bat file:
%JAVA_HOME%\bin\java -mx128m com.ibm.ejs.sm.server. AdminServer -bootFile %6WAS_HOM E%\bin\admin.config %restart% %1 %2 %3 %4

w

with

%JAVA_HOME%\bin\java com.ibm.gjs.sm.util.debug.DrAdmin %1 %2 %3 %4 %5 %6 %7 %8 %9
Save and close the DrAdmin.bat file

From acommand prompt in the <WebSphere\AppServer\bin\debug> directory, type
DrAdmin [options|where options are:

o -help [shows the help message]

o -serverHost <Server host name> [Specify the host name of the server... defaults to local host]

0 -serverPort <Server port number> [Required... enter the port number where DrAdmin is listening]

0 -setTrace <Trace specification> [Specify any valid traceString, for example, "com.ibm.ejs.sm.*=al|=enabled"]
5

[u}

o A

-setRingBufferSize <Number of ring buffer entriesin k> [Specify the number of trace entries to store in the main memory buffer... the default is 8k]
-dumpRingBuffer <Name of file to dump the ring buffer> [Defaults to file name JIM ONDUMP.XXXXXXXXXXXX Where XXXXXXXXXXXX is a combination time of day and unique PID identifier extension]

NT Note: On Windows NT, if the administrative server is started as a service, the default DrAdmin dump file will be located in the <Winnt\system32> directory.
o -dumpState <dumpString> [Specify a unique identifier for this dump]
0 -stopServer [Stops the administrative server]
o -stopNode [Does not apply unless the node is connected to the administrative server]
o -dumpThreads [Dumps the threads in the server]
o -testConnection [Determines if the DrAdmin server is running]
o -retrieveServerNames [Shows names of the server associated with DrAdmin]
o -retrieveTrace [Retrieves the current trace specification]
o -retrieveComponents [Retrieves alist of the current active trace components]
o -dumpConfig [Dumps configuration information to the server standard output]
o -retrieveConfig [Dumps configuration information to the DrAdmin command line]
o -list [Listsinstalled web applications and modules]
o -long [Lists, in long format, installed web applications and modules]

Another example of implementing a DrAdmin trace:

NT On Windows NT:

1.

N

w

[

N

w

Create a DrAdminRun.bat file that contains the following information:set

CLASSPATH=C: / j dk1. 1. 7/ 1i b/ cl asses. zi p; C: / WebSpher e/ AppServer/lib/ujc.jar; C/WbSphere/ AppServer/lib/ejs.jar;C /WbSphere/ AppServer/|ib/admn.jarecho
YCLASSPATHYechoechoj ava -cl asspath %CLASSPATHY% com i bm ej s.smutil . debug. DrAdmin -serverPort % -setTrace %2=98=%

Invoke DrAdminRun.bat with the port number and the trace string. Use the port number from DrAdmin entry in the trace file, xxxx. Y our input from a command prompt will be: Dr Admi nRun xxxx comibmejs.* all
enabl ed

Start administrative client with the debug option by invoking adminclient.bat from the WAS _ROOT bin directory: adni ncl i ent debug

On UNIX platforms:

Create ashell script file DrAdminRun that contains the following information:# nodi fy cl asspath as appropriate for platform environnent# run as follows: sh DrAdmi nRun <server port>
<trace spec>export

CLASSPATH=/ usr/ j dk_base/ | i b/ cl asses. zi p: / usr/ WebSpher e/ AppServer/lib/ujc.jar:/usr/WbSphere/ AppServer/lib/ejs.jar:/usr/WbSphere/ AppServer/|ib/adm n.jarecho
$CLASSPATHechoechoj ava -cl asspath $CLASSPATH comibmejs.smutil.debug. DrAdmin -serverPort $1 -setTrace $2 Note: Verify the CLASSPATH is correct for your environment. The
script example was written for AIX. You must change the CLASSPATH for Solaris.

Invoke DrAdminRun with the port number and the trace string. Use the port number from DrAdmin entry in the trace file, xxxx. Y our input from a command prompt will be: sh Dr Admi nRun xxxx
com i bm ejs. *=al | =enabl ed

Start the administrative client with the debug option by invoking adminclient.sh from the WAS_ROOT bin directory: admi ncl i ent . sh debug

8.4.2. Enabling and reading ORB trace

In this section you will find information on how to read and enable ORB trace.

Reading ORB trace
In order to read ORB trace, you need to understand the ORB communications log.
ORB communications log

The ORB communications log, typically referred to as CommTrace, contains the sequence of
GIOP messages sent and received by the ORB during application execution. It might be necessary
to understand the low-level sequence of client-to-server or server-to-server interactions during
problem determination. This section uses trace entries from a sample log to explain the contents of
the log and help you understand the interaction sequence. It focuses only in the GIOP messages
and does not discuss in detail additional trace information which appears when intervening with
the GIOP-message boundaries.

The Sample Log Entry - GIOP Reguest and Sample Log Entry - GIOP Reply illustrate typical log
entries. The entries have been annotated with line numbers for easy reference.

Enabling CommTrace

The ORB property com.ibm.CORBA.CommTrace is used to enable/disable recording of trace
entries during execution. Trace entries are recorded when the property is set true. In addition, the
property com.ibm.CORBA .Debug must also be set true.

Identifying start of a GIOP messages

The start of a GIOP message is identified by aline which contains either "OUT GOING:" or "IN
COMING:" depending on whether the message is a request message or reply message.

Following the identifying line entry is a series of items, formatted for convenience, with
information extracted from the raw message that identify the endpointsin this particular message
interaction. See lines 3-12 in both figures. The formatted items include:

« GIOP messagetype, e.g. "Request Message', "Reply Message', inline 3
« Date and time message was recorded, inline 4

« Information useful in uniquely identifying the thread in execution when the message was
recorded, along with other thread-specific information, in line 5

« Thelocal and remote TCP/IP ports used for the interaction, in lines 6-9
« The GIOP version, byte order and message size, in lines 10-12

Service context information

Following the introductory message information, the service contexts in the message are a'so
formatted for convenience. Each GIOP message might contain a sequence of service contexts
sent/received by each endpoint. Service contexts, identified uniquely with an ID, contain data used

in the specific interaction, such as security, character codeset conversion and ORB version
information. The content of some of the service contexts is standardized and specified by the
OMG, while other service contexts are proprietary and specified by each vendor. IBM-specific
service contexts are identified with ID's which begin with 0x4942.

Lines 14-33 in Sample Log Entry - GIOP Request and Sample Log Entry - GIOP Reply illustrate
typical service context entries. There are three service contexts in both the request and reply
messages, as shown in line 14. The ID, length of data, and raw data for each service context is
printed next. Lines 15-17 show an IBM-proprietary context, as indicated by the ID 0x49424D12.
Lines 18-33 show two standard service contexts, identified by 1D 0x6 (line 18) and 0x1 (line 31).
Refer to the CORBA specification for the definition of the standardized service contexts.

Service context 0x1 (CORBA::IOP::CodeSets) is used to publish the character codesets supported
by the ORB in order to negotiate and determine the codeset used to transmit character data; service
context Ox6 (CORBA::10P::SendingContextRunTime) is used by RMI-110P to provide the
receiving endpoint with the IOR for the SendingContextRuntime object; and IBM service context
0x49424D12 is used to publish ORB PartnerVersion information in order to support

rel ease-to-release inter-operability between sending and receiving ORBs.

Request ID, response expected and reply status

Thereguest ID is an integer generated by the ORB. It is used to identify and associate each request
with its corresponding reply. Thisis necessary because the ORB can receive requests from
multiple clients and must be able to associate each reply with the corresponding originating
request.

Lines 34-35 in Sample Log Entry - GIOP Reguest show the request ID, followed by an indication

to the receiving endpoint that a response is expected (CORBA allows sending of one-way requests
for which aresponse is not expected.)

Lines 34-35 in Sample Log Entry - GIOP Reply show the request ID, followed by the reply status
received after completing the corresponding previously sent request. Line 35 shows the status of
"LOCATION_FORWARD", which indicates to the sending endpoint that the request needs to be
re-issued and forwarded to a different object. The message body contains the IOR for the new
object. The forwarding action is done automatically by the ORB and is transparent to the client
sending the request.

Object Key

Lines 36-42 in Sample Log Entry - GIOP Reguest show the object key, the internal representation

used by the ORB during execution to identify and locate the target object intended to receive the
request message. Object keys are not standardized.

Operation

Line 43 in Sample Log Entry - GIOP Request shows the name of the operation to be executed by

the target object in the receiving endpoint. In this sample the specific operation requested is named
"retrieve."

Principal identifier

Lines 44-46 in Sample Log Entry - GIOP Request show the length and contents of the CORBA

object known as "CORBA ::Principal" used by the CORBA Security Service to identify security
credential information of the sender.

Data offset

Line 47 in Sample Log Entry - GIOP Request and line 38 in Sample Log Entry - GIOP Reply
show the offset, relative to the beginning of the GIOP message, where the remainder body of the
request or reply message is located. This portion of the message is specific to each operation and
varies from operation to operation. Therefore, it is not formatted, as the specific contents are not
known by the ORB.

The offset is printed as an aid to quickly locating the operation-specific datain the raw GIOP
message dump, which follows the data offset.

Raw GIOP message dump

Starting at line 50 in Sample Log Entry - GIOP Request and line 41 in Sample Log Entry - GIOP
Reply araw dump of the entire GIOP message is printed in hexadecimal format. Request messages

contain the parameters required by the given operation and reply messages contain the return
values and content of output parameters as required by the given operation. Not all of the message
raw data has been included in the figures for brevity.

Sample ORB communications log entries

Sample Log Entry - GIOP Request

OUT GOING:

Request Message

Date: April 18, 2001 10:14:21 AM EDT

Thread Info: P=259545:0=0:CT

Local Port: 65454 (OXFFAE)

Local IP: njroslun1801.prudential.com/48.113.114.2
Remote Port: 9000 (0x2328)

Remote | P: njroslun1801.prudential.com/48.113.114.2
GIOP Version: 1.1

Byte order: big endian

Message size: 380 (0x17C)

Service Context: length = 3 (0x3)

Context ID: 1229081874 (0x49424D12)
Context data: length = 8 (0x8)

00000000 000C0001

Context ID: 6 (0x6)

Context data: length = 168 (OxAS8)
00000000 00000028 49444C3A 6F6D672E
6F72672F 53656E64 696E6743 6F6E7465
78742FA3 6F646542 6173653A 312E3000
00000001 00000000 0000006C 00010100
0000000D 34382E31 31332E31 31342E32
0000FFAF 0000002C 4A4D4249 00000010
42F65A47 33623030 30303030 30303030
30303030 00000024 00000008 00000000
00000000 00000001 00000001 00000018
00000000 00010001 00000001 00010020
00010100 00000000

Context ID: 1 (0x1)

Context data: length = 12 (0xC)

00000000 00010001 00010100

Request ID: 5 (0x5)

Response is expected? Yes.

Object Key: length = 87 (0x57)

4A4D4249 00000012 33C5F0DD 31303030
30303030 30303030 30303030 00000024
00000033 49454A50 01000D5F 5F61646D
696E5365 72766572 OF747261 6E4C6F67

53696D 70 6C654F41 0000000B 7472616E
4C6F6757 697265

Operation: retrieve

Principal: length = 32 (0x20)

49424D44 3A 000000 0000000D 34382E31
31332E31 31342E32 00000000 00000000
Data Offset: 17c

0000: 47494F50 01010000 0000017C 00000003 GIORP.......|....
0010: 49424D12 00000008 00000000 OO0CO001 IBM.............

0020: [remainder of message body deleted for brevity]

Sample Log Entry - GIOP Reply

IN COMING:

Reply Message
Date: April 18, 2001 10:14:21 AM EDT

Thread Info:
P=259545:0=0: StandardRT=0:L ocal Port=65454: RemoteHost=48.113.114.2: RemotePort=9000:

Local Port: 65454 (OXFFAE)

Local IP: njroslun1801.prudential.com/48.113.114.2
Remote Port: 9000 (0x2328)

Remote | P: njroslun1801.prudential.com/48.113.114.2
GIOP Version: 1.1

Byte order: big endian

Message size: 396 (0x18C)

Service Context: length = 3 (0x3)

Context 1D: 1229081874 (0x49424D12)

Context data: length = 8 (0x8)

00000000 000C0001

Context ID: 6 (0x6)

Context data: length = 168 (OxAS8)
00000000 00000028 49444C3A 6F6D672E
6F72672F 53656E64 696E6743 6F6E 7465
78742F43 6F646542 6173653A 312E3000
00000001 00000000 0000006C 00010100
0000000D 34382E31 31332E31 31342E32
0000FFAF 0000002C 4A4D4249 00000010
42F65A 47 33623030 30303030 30303030
30303030 00000024 00000008 00000000
(00000000 00000001 00000001 00000018
00000000 00010001 00000001 00010020
00010100 00000000

Context ID: 1 (0x1)

Context data: length = 12 (0xC)

00000000 00010001 00010100

Request ID: 5 (0x5)

Reply Status: LOCATION_FORWARD
Object Key: length = 1 (0x1)

00

Data Offset: f1

0000: 47494F50 01010001 0000018C 00000003 GIOP.
0010: 49424D12 00000008 00000000 000CO001 IBM
0020: [remainder of message body deleted for brevity]

Enabling ORB trace

Below, you will find instructions for enabling ORB trace in the WebSphere Administrative Server,
WebSphere Application Server, administrative client (console) on Windows NT, and the
administrative client (console) on Unix.

Tracing the WebSphere Administrative Server

Follow these steps:
1. Make sure the default server and administrative server are not running.
2. Make a backup copy of the admin.config file.
3. Add the following lines to the admin.config file:
o com.ibm.CORBA .Debug=true
0 com.ibm.CORBA.CommTrace=true
0 com.ibm.gjs.sm.adminServer.traceString="ORBRas=al|=enabled"
0

com.ibm.gjs.sm.adminServer.traceOutput=c\:/tracedirectory/adminserver.traceNOTE:
On Unix the directory path would look more like /opt/tracedirectory or
/usr/tracedirectory)

4. Start the administrative server.
5. Theresulting trace file is ==> c\:/tracedirectory/adminserver.trace.

Tracing the WebSphere Application Server (default server)

Follow these instructions;

There is a checkbox on the ORB configuration property sheet which is accessible from the
Services tab of the application server property sheet in the administrative console. When that
checkbox is enabled, ORB communication trace is configured for that application server.

If thereis already atraceOutput file defined for this application server, then the
communicationtrace output is directed to that file. If there is no output file defined, the
file"$WAS _HOME/logs/<server name>.trace” is defined to contain the communication trace
output.

Tracing the administrative client (console) on Windows NT

Follow these instructions:

1. Go to the WebSphere/AppServer/bin subdirectory and make a backup copy of
adminclient.bat file.

2. Edit the adminclient.bat file for the following:
Change

http://squidward/admcli

got o NODEBUG
- DEBUG
set DEBUGOPTS=-traceString "comibm *=al | =enabl ed"

to

got o NODEBUG

: DEBUG

set DEBUGOPTS=-traceString

"com i bm *=al | =enabl ed: ORBRas=al | =enabl ed"

3. Add the two trace parametersto the following "%JAVA_HOME%\bin\java" statement:
o -Dcom.ibm.CORBA .Debug=true
0 -Dcom.ibm.CORBA.CommTrace=true

The statement should be in one continuous line. Add "%DEBUGOPTS%" aso to the
statement if it does not already exist.

If "%DEBUGOPTS%"=="" does exist, go to START

% JAVA_HOME%\bin\java -Dcom.ibm.CORBA .Debug=true
-Dcom.ibm.CORBA.CommTrace=true -Xminf0.15 -Xmaxf0.25 -classpath %WAS CP%
%CLIENTSASY%

-Dcom.ibm.CORBA .principalName=%COM PUTERNAME%/AdminClient
-Dserver.root=0WAS_HOME% com.ibm.gs.sm.client.ui.EJSConsole %DEST%
%DESTPORT% % DEBUGOPT S% %QUALIFY NAMESY%

Goto END

4. After the administrative server has been started, using the statement "adminclient debug >
adminclientttrace" from WebSphere/AppServer/bin subdirectory.

5. The resulting trace file is adminclienttrace.
Tracing administrative client(console) from Unix

Follow these instructions:
1. Go to WebSphere/AppServer/bin subdirectory and make a backup copy of adminclient.sh.
2. Edit the adminclient.sh for the following:

Change

elif ["$1" = "debug"]

thenDEBUGOPTS="' -traceString "comibm *=al | =enabl ed" '
toelif ["$1" = "debug"]

thenDEBUGOPTS="' -t raceStri ng

"com i bm *=al | =enabl ed: ORBRas=al | =enabl ed"

Add the three trace parameters to the "$JAVA_HOME/bin/java' statement. If
"$DEBUGOPTS" is adready in the statment, then there is no need to add it again.
-Dcom.ibm.CORBA .Debug=true -Dcom.ibm.CORBA.CommTrace=true $DEBUGOPTS

3. After the administrative server has been started, using the statement "adminclient.sh debug
2>& 1 | tee adminclienttrace” from WebSphere/AppServer/bin subdirectory.

4. Theresulting trace file is adminclienttrace (in the bin directory).

8.4.2: ORB request trace

ORB request trace can be enabled on the server to display the target object type/class and the function
name. It isaquick way to let you view function call flow and understand how objects work with each
other. ORB communication tracing is most appropriate when you want detailed information such as input
and output parameters.

This section describes how to turn on the ORB request trace and interpret thetrace output:
« Setting the ORB request trace

« Sample: Formatted ORB request trace output

Setting the ORB request trace

To set the ORB request trace, perform these steps:
1. Display the system manager user interface, and set the view level to Control.
2. Expand your Host Images.
3. Expand the Server Images folder.

4. Left click on your server image to seeif it isrunning. The status bar at thebottom of the System
Manager user interface application displays the state (and health) of the selected server. Note: Y ou
do not have to stop theserver to set this trace.

5. Right-click on your server image and select Properties. This displays theProperties Editor for the
Server Image.

6. In the Properties Editor window, click the Component Trace tab.

7. Set the ORB request trace level attribute value to Advanced. Click Applyand then OK to enable the
trace.

This enables trace information to be collected over a period of time into filesin the subdirectory
service\serveServerName. Refer to showlog utility for more information on formatting trace logs. You
can use the Log Analyzer to view the output of showlog.

Sample: Formatted ORB request trace output

The formatted output file looks like the formatted activity log. Function callsare recorded in the activity
log. The function name can be seen in thefunctionName or PrimaryM essage fields. Here is an example of
the contentsof a formatted output file:

Conmponent | d: 393319
Processl d: 567
Threadl d: 534

Functi onNane:
CORBA: : BOA: : | ocal _object _to _object key(CORBA: : Obj ect ORBProxy_ptr)

Probel d: 2990
Sourceld: 1.66 src/orb/src/sond/ boa. cpp
Manuf acturer: |BM

Product: Conponent Broker

Version: 1.3

SOWPr ocessType: 5

Server Nanme: PersonServer

cl i ent Host Nane:

clientUserld:

Ti meSt anp: 10/ 6/ 98 9: 54: 14. 343609431

Uni t OF Wor k:
Severity: 3
Category: 3

For mat Warni ng: O

Pri maryMessage: The function

CORBA: : BQA: : | ocal _object _to _object key(CORBA: : Obj ect ORBProxy _ptr): 2990
reported data.

Ext endedMessage:

RawDat aLen: O

Conponent 1 d: 393319

Processld: 567

Threadl d: 534

Functi onNane: CORBA:: Request: :send_deferred()
Probel d: 1405

Sourceld: 1.57.1.2 src/orb/src/request/request.cpp
Manuf acturer: | BM

Product: Conponent Broker

Version: 1.3

SOWPr ocessType: 5

Server Nanme: PersonServer

cl i ent Host Nane:

clientUserld:

Ti meSt anp: 10/ 6/98 9:54: 14. 371803789

Uni t OF Wor k:
Severity: 3
Category: 3
For mat Warni ng: O

Pri maryMessage: The function CORBA: : Request::send_deferred(): 1405
reported data.

Ext endedMessage:
RawDat aLen: O

Conmponent | d: 393319

Processld: 567

Threadl d: 534

Functi onNane: CORBA:: Request: :invoke()
Probel d: 1338

Sourceld: 1.57.1.2 src/orb/src/request/request.cpp
Manuf acturer: | BM

Product: Conponent Broker

Version: 1.3

SOWPr ocessType: 5

Server Nanme: PersonServer

cl i ent Host Nane:

clientUserld:

Ti meStanp: 10/ 6/98 9:54: 16. 488164076

Uni t OF Wor k:
Severity: 3
Category: 3

For mat Warni ng: O

Pri maryMessage: The function CORBA:: Request::invoke(): 1338 reported
dat a.

Ext endedMessage:
RawDat aLen: 0

8.5: Identifying the problem

Available tools, traces and logs for specific problems

Problem/Tool/Trace/Log Matrix

Problem type Tool Trace/L og Description L ocation
NT wssetup.| Tracesingtall
Install failure —uug events and NT <WebSphere/AppServer/logs> See
WebSphere.ingt! | settings article Viewing logs fordirectory information
Testsjdk
Startup failure | jdbctest.java settings and Invoke jdbctest.java tool from command prompt
connectivity
Displays fatal
Adminisrati errors during
ministrative ;
server Events Viewer, | yrace file and Startup or
wtartup/shutdown shutdown <WebSphere/AppServer/logs>
riup ShowCfg servlet nenny trace | i iays
failures DYS
configuration
information
Displays fatal
L . errors during
Application Events Viewer, Startup
Server startup tracefile S— <WebSphere/AppServer/logs>
failure ShowCfg serviet Displays
configuration
information
sNech?/??)rrtcl)Jbﬁaﬂs Events Viewer | tracefile ;rrggle;snr]l;nti ME | «WebSphere/AppServer/logs>
Administrative I;:gmﬁ%\ﬂce
server not DrAdmin o durr')n threé <WebSphere/AppServer/bin/debug>
responding P
stacks
Displays and Invoke from
Runtime Log Analyzer logs/activity.log ?Sr?:iyrﬁzserrors <product_installation_root>/bin/wasl ogbr.bat|sh
jdbctest.java
tests database
connectivity : .
Database ,) Invoke jdbctest.javatool from command prompt
jdbctest.java NT wasdb2.log i
problems \éva??gt;iogllsts <WebSphere/AppServer/logs>
configuration
problems
; Object Level
Object Level
Sﬁ) ‘é'l‘;fs‘] BlJSP S Tracingand | Enable OLT through the OLT Controller

Debugging

http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://squidward/root.html
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp

| dentify

Distributed application
Debugger, problems using | Review the Debugger documentation for
Debugger implementation instructions.
Servlet/EIB/ISP LitCount stdout and stderr _99 _ p! _ _
problems Hitount Application Trace directory is
serviet, server stdout | <WebSphere/AppServer/logs>.
Snoop servlet and stderr logs,
and servlets
Describes
ORB
Communication | Javal™ Socket corrl;rlnunlcanon Invoke sock | f d
roblems Level Trace problems over | Invoke socktrace tool from command prompt
P _— heterogeneous
networksvia
1IOP
Displays
y elementsin
Jav N .
Name space sva~= Name Web_Sphgre Invoke jntb tool from command prompt
problems Tree Browser Application
Server name
space
Describes how
NT to monitor and
Performance R WebSphere tune Review the documentation for implementation
problems RESOUICE WebSphere instructions.
Analyzer Application

Server

http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://squidward/nav_ra.html
http://squidward/nav_ra.html
http://squidward/nav_ra.html
http://squidward/nav_ra.html

8.5.1: Plug-in problems

HTTP servers are legacy Web products, created at a time when theywere the only conduit between browsers and HTML or
CGil files. With the evolution of Web technology, users now require servers to handle servlets, JSP files and
EJBs.WebSphere Application Server supports this technology, but to provide these functions it mustintercept requests sent
tothe HTTP Server.

The plug-in component extends the function of the HTTP Server by interceptingrequests and passing them to either
WebSphere Application Server or the HTTP Server. The following three filesin the <WAS_r oot >t enp directory alow
the plug-in to determine the request's destination:

« <WAS root>/tenp/rul es. props

o Provides a snapshot of the existing topology and lists available Web resources and pathsto handle service
requests

« <WAS root>/tenp/vhosts. props

o Provides virtual hosting information that is transferred to the WebSphere ApplicationServer runtime
environment

« <WAS root >/tenp/ queues. props
o Provides names of linksto different servlet engines. The number of links listed inthisfile vary according to the
number of application servers, clones and other servlet engine resources that are defined in the product.
Thisisthe high level view of the plug-in process flow:
Browser --> WebSphere plugin --> HITP Server or WbSphere Application Server

Typical plug-in problems

Generally, plug-in failures are caused by missing files or an incorrectly configured HTTP Server.

To diagnose plug-in problems, verify the datain the files are consistent with both the HTTP request and the active
configuration in the servlet engine. The plug-in configuration files are generated periodically so a delay can occur
between the time a change is made in the system andthe time the change is reflected in the configuration files.
The following error descriptions are symptoms of plug-in problems:
1. Servlet requests are not fulfilled. Verify the following to determinethe cause of the problem:
= TheWeb server can serve HTML pages
= The administrative console can connect to the Web server
» The Default server is started

= Ensure the Web server hosthame and port number are identical to the ones definedin the virtual host's
aliastable.

= Ensurethe appropriate. DLL file for the Web server is present in the <WebSpher e- r oot >bi n
2. Pipe broken messages appear. Verify the following to determine the cause ofthe problem:

= TCP/IP connection exists between Web server and WebSphere Application Server.

= No process or thread failures occurred.

= No access violations occurred.

How to debug plug-in problems

Check for errorsin the following logs, and in the trace file:
o trace.log.<http server>.<date>
o <AppServer>_stderr.log
o <AppServer>_stdout.log
o <AppServer>_native.log.<date>
Seefiles 8.3: Logs and 8.4: Trace for more information on logs and trace file.

If there are no entriesin the logs or trace file, comment out the WebSphere ApplicationServer plugin in the httpd.conf
file Thiswill help you determine if the failure originates with WebSphere Application Server or the HTTP Server.

The WebSphere plugin property in the httpd.conf fileis:
Load Modul e i bm app_server _nodul e

Restart the HTTP Server. If the Web Server initializes and runs, then WebSphere Application Server has a problem.

8.5.2: Servlet redirector problems

Servlet redirectors are used to separate the HT TP server from the WebSphere
Application Server.There are different types of redirectors:

Thick - servlet redirector resides on the same machine as WebSphere
Administrative Server.

Thin - servlet redirector runs on a separate machine from the WebSphere
Administrative Server.

A thin servlet redirector is useful in network configurations wherethe HTTP
server isoutside afirewall but WebSphere Application Server isbehind a
firewall, or where WebSphere Application Server islocated inthe DMZ, a
machine located between twofirewalls.

Note: If the Web server, application server and the server handling
servlet requestsall reside on the same machine, use Open Servlet
Engine(OSE), instead of a servlet redirector

Seefile, Entry point to servlet redirector configuration, for information on
configuringservlet redirectors.

Key features

The key features of servlet redirectors are:

1.
2.

Use Internet Inter-Orb Protocol (110OP) for communication

Areinitialized by copying the queues.properties, rules.properties,and
vhosts.properties files from the WebSphere Application Server machine to the
servlet redirector machine.

Use the following portsto transfer the propertiesfiles:
o port 900 - bootstrap port
o port 9000 - name services port
o redirector listener port

Require the receiving RemoteSRP bean to be running on the WebSphere
Application Server

When servlet redirectors are running, beside the ports previoudly listed, they
alsorequire the following, additional ports:

o Application Server listener port
o Admin server nanny listener port
o Thick servlet redirectors also require repository database connection ports

Typical problems

Typical problems with servlet redirectors are:

1. Error 404 - URL not found appears on browser when accessing a servlet.
The trace log for the HHTP server contains entry:
Failure while locating a vhost for <server>
This error may occur if:

o The short (myserver) and fully qualified (myserver.mydomain.com) host
names of the HTTP server are not in the virtual host aliaslist.

o A port other than the standard port 80 is used and that port isnot in the
virtual host alias list.

2. CORBA.COMM _FAILURE appears when running the thin servlet redirector.
Thiserror may occur if:

o Syntax error existsin batch file

0 Host name/port number isnot in DNS or hosts.properties file on servlet
redirector machine

0 Hostname portis not in DNS or hosts.properties file on WebSphere
ApplicationServer machine

0 -ListenerPort parameter value is not unique
o Syntax error in -ListenerPort parameter

3. Unableto initialize threads. (null) error when running the batch/script fileto
configure the plug-in files.This error may occur if:

o Some JDK other than the IBM supported JDK isin the classpath ahead of
the supported JDK. To resolvethis problem, install the supported IBM
JDK, and change the path and classpath to point to it first.

o Path does not point to java.exe.

4. When starting servlet redirector with batch/script file, get error message "Error
locating Remote SRP Home - Attribute Not Set." This error occurs because:

o RemoteSRP bean was not added and started on WebSphere Application
Server

5. Do not use servlet redirectors if you must:
0 Enable security on your thin servlet redirector machine
o Provide the real Web browser on your thin servlet redirector machine

0 Usethe Network Address Trand ation feature of firewalls so that the
internal address of WebSphere Application Server is not available outside
the firewall

Reminder: Generally errors occur configuring the thin servlet redirector

function because required configuration files are missing. A thinservlet
redirector machine requires the following shell script files (on UNIX
platforms), or bat fileson Windows NT as well as the iiopredirector.xml
file to enable the servlet redirector function.

Adrin Server . "Thin®

Redirector
o pone s - Do it

Unix and NT: NT:
Wit ol o fot el rdincixrlonia baf
in ditectory: rachacirsia bt
<AppSatvar kot properties in irecksry:
SApSenmer rootAbimdaebug

Unix:
roecirlons .sh
redivcirtiamsh
in ikt
SAppSemer i hinkdebug

Unixand NT:
Nopradciamcforxrnl
in irecksry:
SAppSener k0 propetties

8.5.3: Workload management/cloning/remote
administration problems

Unlike WebSphere Application Server Advanced Edition, the Standard Edition does
not support the workload management function. WebSphere Application Server
Standard Edition is limited to asingle physical server. However, Standard Edition
provides multiple JVMsthat can be mappedto multiple virtual hostson asingle HTTP
Server. Therefore multiple Web sites can still be hosted using one Standard Edition
Application Server.

Remote administration

Y ou can remotely administer WebSphere Application Server using:
« Remote administrative console

e X Windows clients on UNIX machines
« Web based WebSphere administrative console

Remote administrative console

Use can run admin console remotely using the adminclient.bat file on Windows NT,
oradminclient.sh file on UNIX. See article Administrative models for more information

on implementing a remoteadministrative client.

Typical remote admin console problems are:

« The com.ibm.gjs.util.cache.FaultException error occursin the stack trace
becausethe JDK running on the client machine cannot communicate with the
JDK running on the administrative servermachine. The resolution is to upgrade
the backlevel JDK.

« The Network Address Trandation (NAT) function in firewalls cannot be used
with aremote administrative client. The internal address of the administrative
server is not recognized by the administrative client outside thefirewall. No
circumvention exists for this problem.

X Windows clients on UNIX machines

X windows client software can run on any platform but requiresa UNIX X Windows
server.(Currently the X Windows server isonly available on AIX and Solaris
platforms.)

Typical X Windows client problems are:
« You cannot run an administrative console remotely through the X Windows

client using anauthorized, non-root account with global security enabled. The
error message, FATAL Could not bind to the Administrative Server on {0} { 1},
appears onthe screen when the adminclient.sh or .bat file is executed. No
circumvention exists for this problem.

Web-based administrative console

See article Web administrative console overview for informationon configuring and
implementing a Web-based administrative console.

http://squidward/06060003.html

8.5.4: Installation problems

Succesful installation means that no errors occur during the install process and,more importantly, that the
product runs correctly the first time you start it.

Installation and start-up problems occur for one of the following reasons:
» Database is not configured properly

o Classpath isincorrect

o Administrative server fails to start

Install options

WebSphere Application Server provides a Java T™ Graphical User Interface (GUI)install that is available on all
platforms, and a native install that is available on the UNIX platforms (AlX, Solaris, HP).

Note: If you used the native install option to install WebSphere Application Server on a UNIX
platform, you must also uninstallusing the native uninstall option. In other words, you cannot do
anativeinstal and a Java GUI uninstall.

Follow the steps in one of the "platform specific” install guidesto install the product. These install guides are
available from the InfoCenter, in the Selecting installation steps section.

Database configuration problems

If the database is not configured properly, installationof WebSphere Application Server will fail. If specific
WebSphere components did install but the database is misconfigured, the product will not run properly.

Starting WebSphere Application Server with an improperly configured database will generate the following
error messages and exceptions:

Est abl i shing connection please wait ... FError - could not get attributes
comibmejs.util.cache. Faul t Exception at java.lang. Throwabl e<init>
comibmejs.smclient.dientException getAttributeFailure Attributes may be invol ved
comibmejs.smclient. RpositoryQoException could not get attributes

Classpath problems

The classpath provides the JavaT™ runtime environment for the following WebSphere Application Server
processes:

« Administrative service - the backend process for system management
« Administrative console - the Graphical User Interface (GUI) used for system management

« One or more application servers - each application server consists of multiple containers for
deployment of Enterprise Java Beans (EJBs) and one servlet engine for deployment of Web applications

« Nanny service (on UNIX platformsonly) - adaemon that monitorsthe administrative service. The
nanny service starts the administrative serviceinitialy and restartsit if it fails.

Each of these processes runsin its own Java Virtual Machine (JVM). The classpath for each processtells that
process where to search for classes. The classpath can be set:

« Inan administrative service startup script
 Inanadmin.configfile

« With application server command line arguments
« By Web applications

Classpath properties

http://squidward/022.html

Each process has an associated set of properties ("Java-speak” for environment variables). These properties are
defined in the admin.config file that is located in directory:

<WebSphere root> bin
The applicable properties in admin.config are:
« com.ibm.gjs.sm.util.process.Nanny.maxtries
« com.ibm.gjs.sm.adminserver.classpath
« com.ibm.gjs.sm.util.process.Nanny.path
« com.ibm.ws.jdk.path

The classpath settings in the admin.config file apply to the administrativeservice, and they are also inherited by
all other WebSphere Application Server processes.

For more information on these and other WebSphere Application Server properties, seefile,6: Administer
applications.

Classpath failures

Typical classpath failures are:
1. When aservlet classis missing from aWeb application classpath, the following errors occur:

o Inabrowser window, the browser displays error Error 500 with message,"Failed to load target
servlet [snoop]."

0 Browser stack trace and <AppServerName>_stderr.log show
javalang.ClassNotFoundException

0 <AppServerName>_stdout.log shows
javax.servlet.ServletException

2. When utility classes, such as dates.class or time.class, are in a Web application's classpath, the following
errors occur:

0 Browser shows error messagejava.lang.VerifyError

o Verbose VM output written to the <AppServerName>_stderr.log shows
javalang.VerifyError: com/bcg/jsftest/test

Note: A WebSphere Application Server problem exists onthe Windows NT platform
which prevents the stderr buffer from being flushed until the applicationserver is
stopped. No circumvention for this problem is available at this time.

3. When classes use Java Native Interface (INI), the following errors occur:

0 <AppServerName>_stdout.log shows
javalang.UnsatisfiedLinkError

To resolve the problem, do the following:

0 Ensure the shared libraries are available in the path statement on Windows NT. On UNIX, make
surethe LD_LIBRARY_PATH isdefined in file startupServer.sh.

0 Ensure that the property defined in com.ibm.gjs.sm.adminserver.classpath, in the admin.configfile,
includes classes that make NI callsinto shared libraries.

Administrative server problems

Successfully starting the administrative server not only indicates a successful install of WebSphere
ApplicationServer, but it also means the following tasks were compl eted:

« System management repository tables were created in the database.
« Nodes and host aliases were created in the repository tables with xml.

http://squidward/06.html
http://squidward/06.html

« Default repository tables were created with xml.

Therefore, when the administrative server failsto start, it also means the installation of WebSphere Application
Server isincomplete.

Administrative server start failures

The administrative server failsto start for the following reasons:
1. Theport isin use. See the port problems section for more information.

2. Another administrative server is running. The administrative server service in the Windows NT control
panel or the startupServer.sh script on UNIX, is the same service/process as the one started through
WebSphere\A ppserver\bin\debug\adminserver.bat file on Windows NT or adminserver.sh on UNIX.

3. The WebSphere Application Server database repository, (WAS on DB2 or ORCL on Oracle), is not
created. Thefirst time you start the administrative server process, it attempts to create the default
configuration in the WAS or ORCL database. Y ou will see a 2140 error message if the database is not
created.

4. Connection to DB2 or Oraclefails. This also shows up as a 2140 error message. Ensure DB2 is running.
Verify the connection to the WAS database is successful.
To test the DB2 connection, from a DB2 command window, type:

DB2 connect to was

If you cannot connect to DB2, verify the following:
o Ensuretheright level of codeisinstalled on the WebSphere Application Server machine

0 For aremote repository, ensure the DB2 client is configured properly to point to DB2 server for
the WAS database.

Perform the same tests for Oracle.
5. User ID does not have proper authority or access:

o To ensure proper authority, follow the database configuration steps in the install guides.

o Inthe UNIX environment, log on asroot to start AdminServer.

0 Inthe Windows NT environment, verify the following conditions are true:
» Userislogged in as an administrative user
= User namein security panel is correct
= User is part of the administrator's group.

= The Administrative server isregistered as aservice to NT. To manually add the
administrative server as a service, from a command prompt, enter:
<WebSphere\A ppServer>\bin\adminservice.exe install
<WebSphere\A ppServer>\bin\admin.config <HostName>\<User> <Password>

= User ID has proper rightsto start the administrative server. If using adomain ID, start the
administrative server with alocal 1D to seeif the domain is the problem. To check auser's
rights:

1. From Start > Programs > Administrative Tools > User Manager
2. Select Policies> User Rights
3. Check Show Advanced User Rights checkbox in lower |eft corner
4. Add the following rightsto the user 1D:

= Logonasaservice

= Act as part of the operating system

http://squidward/022.html

= If you change the Windows NT user |D/password but WebSphere Application Server is not
updated, then the administrative server startup will fail.
Update the user |D/password in the following aress:

= In Windows NT servicesfor the IBM WebSphere Administrative Server service:
1. From Start > Settings > Control Panel, double click Services
2. Select IBM WebSphere Administrative Server
3. Click Startup
4. Change the user |D/password under this account
= inadmin.config (if the DB2 userid/password also changed)

Port problems
WebSphere Application Server will fail to start if certain portsarein use. Typica port problem descriptions
follow:

1. When the bootstrap port isin use, you may see the following error when starting WebSphere:

009. 765. 6005c5b F Nanmeserver Failed to start the Bootstrap server
or g. ong. CORBA. | NTERNAL: mi nor code: 8 conpleted: No

Thiserror is similar to the Port 9000 in use error when starting WebSphere Application Server.

To fix the problem, change the bootstrap port (the default is 900) in file, admin.config, using property
name:

comibm ejs. smadm nServer. boot strapPort

If this property does not exist in file admin.config, add it.

2. Port 9000 is the default port of the Admin Server location service daemon. Port 9000 is also used by
many system resources including AlX X-windows manager. If you see error message,

Port 9000 in use-select another port

when executing the ./startupServer.sh command on Al X, the administrative server process cannot start
because port 9000 isin use. Y ou can change the port the location service daemon listens on by:

0 specifying -IsdPort option on the admin server command line

0 setting com.ibm.gjs.sm.adminServer.IsdPort property in the admin.config file located in directory
<WAS _ROOT>\bin on Windows NT and <WAS_ROOT>/bin on UNIX.

8.6: Diagnosing configuration and installation problems

WebSphere Application Server uses a database to store and share configuration
information across nodes. Problems configuring the database are described in the

installation problemssection.

Generdly, if the database is not configured properly, the WebSphere Application
Server installation process will fail. Configuration problems occur after the product is

installed.

The following table describes common configuration problems. Select an entry for

more information.

Problem description

Cause of problem

Cannot retrieve datafor a specific
session

Incorrect use of the database as a session store:
o Datasource incorrectly created or
configured

Servlet requests are not satisfied

Web server problems:
e Plug-infailure

o Virtua host configuration incorrect

Error 404 - URL not found occurs
when accessing a servlet

HTTP Server hostname or port problem

Error 500 - Failed to load target
servlet

Servlet missing from Web application classpath

FATAL - Could not bind to the
administrative server error

Remote administration failure

Nanny process fallsto start
administrative server

Verify al installation steps were successful

Administrative server fails to start

Generally an installation setup problem

8.7: Using application level facilities

WebSphere Application Server Standard Editiononly supports Web applications, not
enterprise beans. WebSphere Application ServerAdvanced Edition supports both Web
applications and enterprise beans.

For more information on enterprise beans and Web applications, see the file on
developing applications.

Tools that are specifically designed to debug application, servlet and EJB problems
include OL Tand Distributed Debugger.OLT provides an object level trace. The

Distributed Debugger allows you to set trace pointsin your code.

See the Problem/Tool/Trace/l.og Matrix for more information on appropriatetools and
traces.

Typical application and EJB problems are:
« Invoking a servlet from a browser window
» A modified servlet is not reloaded
« Incorrectly using of databases as a session store

Invoking a servlet by its URL

The following example describes what you should enter in a browser window to invoke
aservlet. Errors occur when you fail to include the webappdirectory in the path.

http://server _machine/webapp/examples/showCfg

The components of the URL are:

server_machine webapp] examples showCfg

http://squidward/04.html

Virtual

directory of

the Web

application |Application
loader. Web path
Do not create a|Thisis a
webapp default

directory. This |webSphere

directory is |sarvlet Wen | oSVIet URL, not the name of the

Name of the defined for |path.You can code.
application server |you by create a In this example, the actual Servlet
computer WebSphere |directory by |class name
Application |any nameas |isServletEngineConfigDumper.
Server. For long asitis
more defined in the

information on [\Webh

webapp, see |gpplication's
thefileonthe |category.
programming
model and
environment.

The URL illustrated above isthe URL for showCfg, one of the default servlets shipped
with WebSphereApplication Server.

Reloading servlets

In earlier versions of WebSphere Application Server, specific reload directoriesin the
reload process had to be defined. Currently, the only reload requirement isto store
servlet classes in the Web application category. That is, ensure all your servlets are
handled in the context of the Web application loader. After you update your servlets,
the Web application loader will automatically reload them for you.

If your servlet classes are installed in the context of the Web application loader, but are
not being reloaded, ensure the Auto Reload property is set to true.Follow these steps to
check the setting of the Auto Reload property:

1. From the WebSphere Administration Console, select your application (or
default_app if you stored your servletsin the default directory structure).

2. From the Web Application:default_app panel, select the Advanced tab.
3. Verify that the Auto Reload is set to true.

http://squidward/0401.html
http://squidward/0401.html
http://squidward/0401.html

Incorrect use of a database as a session store

WebSphere Application Server makes JDBC calls, using a predefined JDBC driver, to
communicatewith a database. Both the JDBC driver and datasources must be
configured using the administrative console.

The following errors occur if a datasource is misconfigured or does not exist:
« The browser window displays Error 500 with the message:
j ava. l ang. Nul | Poi nt er Excepti on
o The<App_ Server>.stderr.log displays the message:
j avax. nam ng. NaneNot FoundExcepti on: | dbc/ xxx

o The<App_Server>.stdout.log displaysthe message: Fai | ure whil e
creating connection COM i bm db2.jdbc. app. DB2Except i on:
[IBM [CLI Driver] SQ.1013NThe dat abase alias nane or
dat abase nane "SAMPLE" coul d not be found.
SQLSTATE=42705

Database connectivity problems cause persistence exceptions.
AnEJSPersistenceException error may indicate JDBC or connection problems:

1. Aninvalid JDBC driver will prevent accessto jar and classfiles

2. Review the SQLSTATE:COM i bm db2. j dbc. app. DB2Excepti on:
[IBM[CLI Driver] SQL1224N A dat abase agent coul d not
be started...SQLSTATE=55032. .. The SQLSTATE code of 55032
indicates the system is out of connections.

Note: Not using connection pooling causes most problems for
BMP type EJBs. Common symptoms include:

o Performance problems connecting to the database
0 Running out of connections

To resolve the problem:

1. Increase the number of connections permitted by DB2 or
Oracle.

2. On AlX, catalog the database asiif it were remote.

3. Ensure you close connections when programming exceptions
occur.

4. Verify that connections obtained in one method, are returned
to the pool via close().

5. Verify that your application does not try to access pre-empted
connections (idle connectionsthat are now used by other

resources).

3. A database init failure could indicate the database does not
exist.com i bm ej s. persi st ence. EJSPer si st enceExcepti on:
Dat abase init fail ure: Nested exception
iISSCOM i bm db2. j dbc. app. DB2Excepti on: [|BM [CLI
Driver] SQL1013N The dat abase alias nane or dat abase
name "YYY" could not be found...SQLSTATE=42705... The
SQLSTATE code of 42705 indicates the database does not exist or the server
cannotconnect to it.

e 8.5: Identifying the problem

8.7.1: ORB-related minor codes

This document provides explanations of the minor error codes used by the WebSphere
Application Server Advanced Edition Java ORB. These minor codes are not
CORBA-compliant. CORBA-compliant minor codes usually begin with an OM G-assigned
identification code, which consists of the vendor ID and digits that identify the minor code.
However, the Java ORB minor codes do not contain the vendor ID.

Minor codes are associated with CORBA exceptions and provide greater detail about the
errors that can occur. There is not a one-to-one mapping of exception names to minor codes.
Instead, a minor code can be associated with several exception names. A minor code message
can have different meanings depending on the exception that was thrown.

Minor codes are scoped to system exceptionsin the range 0 to 4095. A minor code ID must be
a unique number within the scope for each system exception, but there is no restriction that
minor codes be unique across all system exceptions.

The following table lists the system exceptions and the corresponding minor error codes,
where:

o Minor code: The minor error code

« Static variable: The name of the static variable for the minor error code

« Explanation: A description of the problem that caused the error

« User response: Actionsto resolve the problem

org.omg.CORBA.BAD_PARAM
« Minor code: 1
o Static variable: com.sun.rmi.util.MinorCodes.NULL _PARAM

« Explanation: A parameter with avalue of NULL was received. The parameter is not
valid.

« User response: Ensure that parameters are initialized correctly.
org.omg.CORBA.COMM _FAILURE

« Minor code: 1

o Static variable: com.sun.rmi.util.MinorCodes. CONNECT FAILURE

« Explanation: The ORB could not establish a connection to the server on the host and
port that was identified by the object reference.

« User response: Ensure that the server is running and listening on the designated host
and port.

« Minor code: 2
o Static variable: com.sun.rmi.util.MinorCodes. CONN_CLOSE _REBIND

« Explanation: A client request could not be processed, because the server had notified
the client to close the connection and a new connection could not be established.

« User response: Ensure that the server isrunning and try the request again.

Minor code: 3

Static variable: com.sun.rmi.util.MinorCodes WRITE_ERROR_SEND

Explanation: An error was encountered while writing the request to the output stream.
Minor code: 4

Static variable: com.sun.rmi.util.MinorCodes.GET_PROPERTIES ERROR

Explanation: An exception was encountered while reading the initial servicesfrom a
URL.

User response: Ensure that theinitial services URL isvalid.
Minor code: 6
Static variable: com.sun.rmi.util.MinorCodes.INVOKE_ERROR

Explanation: The ORB was unable to successfully connect to the server after severa
attempts.

User response: Ensure that the server is running.

org.omg.CORBA.DATA_CONVERSION

Minor code: 1
Static variable: com.sun.rmi.util.MinorCodes.BAD_HEX DIGIT

Explanation: The object reference in string format contains at |east one hexadecimal
character that is not valid.

User response; Obtain the original object reference and reformat it as a string using the
object_to_string method on the ORB.

Minor code: 2
Static variable: com.sun.rmi.util.MinorCodes.BAD_STRINGIFIED_IOR_LEN
Explanation: The length of the string-formatted object referenceis not valid.

User response: Obtain the original object reference and reformat it as a string using the
object_to_string method on the ORB.

Minor code: 3
Static variable: com.sun.rmi.util.MinorCodes.BAD_STRINGIFIED _IOR
Explanation: The string-formatted object referenceis not valid.

User response: Obtain the original object reference and reformat it as a string using the
object_to_string method on the ORB.

Minor code: 4
Static variable: com.sun.rmi.util.MinorCodes.BAD_MODIFIER

Explanation: The initial reference could not be resolved, because the host or the port is
not valid or was not specified.

User response: Specify the correct host and port.
Minor code: 5
Static variable: com.sun.rmi.util.MinorCodes.CODESET INCOMPATIBLE

Explanation: While processing the service context code sets for arequest, an
incompatible code set was encountered.

org.omg.CORBA.INTERNAL

Minor code: 8
Static variable: com.sun.rmi.util.MinorCodes.CREATE _LISTENER_FAILED

Explanation: The ORB could not establish a listener thread on the port identified by
the object reference. The port was already in use or there was an error in creating the
daemon thread.

Minor code: 9
Static variable: com.sun.rmi.util.MinorCodes.BAD_LOCATE REQUEST STATUS

Explanation: The locator performed a locate request for an object reference and
returned alocate reply with a status that is not valid.

Minor code: 10
Static variable: com.sun.rmi.util.MinorCodes.STRINGIFY_WRITE_ERROR

Explanation: An exception was encountered while attempting to create a
string-formatted object reference.

org.omg.CORBA.INV_OBJREF

Minor code: 1
Static variable: com.sun.rmi.util.MinorCodes.NO_PROFILE PRESENT
Explanation: The object reference does not contain a profile.

User response: The current object reference is not valid. Obtain avalid object
reference from the object supplier.

Minor code: 2
Static variable: com.sun.rmi.util.MinorCodes.BAD _CODE_SET

Explanation: An unsupported code set or a code set that is not valid was used to write
the data to the input stream.

User response: Use a Unicode or ASCII code set.

org.omg.CORBA.MARSHAL

Minor code: 4
Static variable: com.sun.rmi.util.MinorCodes.READ OBJECT_EXCEPTION

Explanation: An error was encountered while trying to read and convert a marshalled
object reference into an in-memory object.

User response: Ensure that the object (passed as a parameter) isin one of the locations
identified by the system CLASSPATH environment variable.

Minor code: 6
Static variable: com.sun.rmi.util.MinorCodes. CHARACTER_OUTOFRANGE

Explanation: While marshalling or unmarshalling an object, a character that is not
compliant with 1SO Latin-1 (8859.1) was encountered. The character is not in the

range O to 255.

org.omg.CORBA.NO_IMPLEMENT

Minor code; 2

Static variable:
com.sun.rmi.util.MinorCodes.GETINTERFACE_NOT_IMPLEMENTED

Explanation: The get_interface method is not implemented on the server.
Minor code: 3

Static variable:
com.sun.rmi.util.MinorCodes.SEND DEFERRED NOTIMPLEMENTED

Explanation: Deferred sends are not supported by the ORB.

org.omg.CORBA.OBJ ADAPTER

Minor code: 1
Static variable: com.sun.rmi.util.MinorCodes.NO _SERVER SC IN_DISPATCH

Explanation: The object reference could not be dispatached to the server, because an
object adapter that matches the object key could not be found.

User response: Ensure that the object server still services the requested object.
Minor code: 2
Static variable: com.sun.rmi.util.MinorCodes.NO_SERVER_SC IN_LOOKUP

Explanation: The requested object could not be located, because an object adapter that
matches the adapter that matches the object key could not be found.

User response: Ensure that the object server that processes the locate requests still
services the requested object.

Minor code: 3

Static variable:
com.sun.rmi.util.MinorCodes.NO SERVER SC IN CREATE DEFAULT_SERVER

Explanation: The ORB was unable to create the default object adapter for an object in
the server that processes the actual method call.

Minor code: 4
Static variable: com.sun.rmi.util.MinorCodes.ORB_ CONNECT ERROR

Explanation: An error was encountered while trying to connect to an object in the
server that processes the actual method call.

User response:

org.omg.CORBA.OBJECT _NOT_EXIST

Minor code: 1
Static variable: com.sun.rmi.util.MinorCodes.LOCATE_UNKNOWN_OBJECT

Explanation: A locate request was performed and the response indicated that the object
Is not known to the locator.

User response: Ensure that the locator that processes the |ocate requests still services
the requested object.

Minor code: 2
Static variable: com.sun.rmi.util.MinorCodes.BAD_SERVER ID

Explanation: The server ID of the server that received the request does not match the
server |D of the request object reference. The server that originally served the object is
no longer identified by that server ID.

User response: Obtain a new object reference for the object from the server that is now
servicing that object.

Minor code: 3
Static variable: com.sun.rmi.util.MinorCodes.BAD_IMPLID

Explanation: The implementation ID (identified by the object reference) does not
match any implementation on the server.

User response: Obtain anew object reference for the object from the server that is now
servicing that object.

Minor code: 4
Static variable: com.sun.rmi.util.MinorCodes.BAD_SKELETON

Explanation: A skeleton that matches the object reference (identified by the object
key) could not be found on the server.

User response:
Minor code: 5
Static variable: com.sun.rmi.util.MinorCodes.SERVANT _NOT_FOUND

Explanation: The object adapter identified by the object key within the object
reference could not locate the servant (an object on the server) to process the object
request.

User response: Ensure that the servant is known to the object adapter.

org.omg.CORBA.UNKNOWN

Minor code: 1
Static variable: com.sun.rmi.util.MinorCodes. UNKNOWN_CORBA_EXC
Explanation: The server threw an unknown user exception.

User response: Ensure that all user exceptions that can be thrown are declared on the
throws clause of the method.

Minor code: 3

Static variable: com.sun.rmi.util.MinorCodes. RUNTIMEEXCEPTION
Explanation: The server encountered an unknown application error.

Minor code: 4

Static variable: com.sun.rmi.util.MinorCodes. UNKNOWN_SERVER ERROR
Explanation: The server threw an unknown exception.

8.8: Using internal tools

Y ou can use WebSphere Application Server servlets and internal tools to help diagnose problems.

Servlets

View file samples.html for information on sample serlvetsshipped with the product. Most WebSphere Application Server
servlets are located in the examples directory:

BN Exploring - servlets _ |O) x]
File Edit ‘iew Tools Help
| &1l Folders | Contents of 'serviets'
-] classes || Hame Size | Type | Modifie
_] deployableE)Bs #]_StackLine class KB CLASS Fils 7A
|- deployedEBs] BeenT hereServiet.class T3KE CLASS File T
E- hosts #] EnorServiet.class KB CLASS File T
=] defaull_hast %] EnorServist java KB JANA Fils 710/
= admin] examples.webapp KB WEBAPP File 7A0/0
- !matgﬁ =] HelloPervasiveServiet class 1KB CLASS File 71
i :: A & HelloPervasiveServiet java KB JAMA File 700
= _I st ;i_!] HelloFersazveSerlat sardet 2kB SERVLET File A1
s _| default. app ilHitEu:uunt.u:Iass BEE CLASS File T
T =) ser:flets !‘Ei] HitCount.jawa fEE JaNa File A0/
] web [#] PingServlet class 2KBE CLASS File T
=3 examples !"3?_'] FingServlet java ZKB JAWA File FA0M
[securty] PluginT ester. class BKE CLASS File 7
= E‘I] FluginT ester java T0EE Java File 700
[] wab @ SimplelSPEean.clazs 1B CLASS File FEARF!
=l ‘Wasamples_app i.t‘__j SimplelSPBean java 1EE JAWA File TA0MA
-] serviets [#] Simpled SPS ervlet class 2B CLASS File 7
Bl WebSphereSampies] SimplelSPServlet java KB JAVA File 7I0
1 AccountandTranster |] S gurceCadeViewer. class KB CLASS File 7
=) ConnPlodl 5] SourceCodeviewer java KB JENA File 70N
j—i EE'“”:”] StackLine class KB CLASS File ARt
j:: EataHTa;‘iS " =] StackLine.java KB JaVA File 7A0/0
& i] StackTrace. class KB CLASS File ZRE
&l Forim i_'l—‘_j StackTracejava 7EBE JAMA File 70/
] HelloEJB El StockluoteBean class 4B CLASS File FEEARF
(] Increment T ng StockOuoteBean java R JANA File 0
] Pall |§| StockQuoteServiet clazs AkB CLASS File A1
] Quote !"3*_'] StockluoteServlet java BEE JavA File FA0M
[] Select =] StackOuateServet servigl B SERVLET File FEARTL
I_] Survey
1 UszerPofile
] YourCo
-] web
F- WSsampleziDE_app I;I
4] [+ Ll | 2]
|29 object(s] |94 BKB [Disk free space 10.2GB) 7

The following table describes servlets that can be used as debug tools:

http://squidward/samples.html

serviet |

location | description

Verifies correct

Hit Count <WebSphere\AppServer>\hosts\default _host\examples\ implementation of serviets,

JSPs, EJBs, and HTTP
Session.

Useful for examining
request parameters coming

Snoop servlet [<WebSphere\A ppServer>\hosts\default_host\default_app\servlets\Snoop.class|from the client and for

verifying the operation of
the servlet engine.

Useful for validating the

ShowCfg <WebSphere\AppServer>\hosts\default _host\examples\ configuration of the

system.

Useful for demonstrating

BeenThere |<WebSphere\AppServer>\hosts\default_host\examples\web\beenthere.ntml |and testing session

persistance.

Internal tools

The available internal tools apply to specific operations. For example, the jdbctest.java™ tool tests IDK T settings and

database access.

See theWebSphere Problem Determination Tools website for detailed information about these tools. Thewebsite a'so

offers you the opportunity to

For aquick overview of avai

add ideas about tools and add a new tool. Check the websiteperiodically for updates.
lable logs, traces and tools, see the Problem/Tool/Trace/log Matrix.

Jdbctest.java

Tests IDK ™ settings and database connectivity

Java™ Name Tree Browser

Displays elements in WebSphere Application Server name space

Java™ Socket Level Trace

Describes ORB communication problems over heterogeneous networks via llOP

DrAdmin trace function

Dumps the thread stacksin a server

OLT

Object leve trace

Distributed Debugger

Debugs application level problems

http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp
http://wsbeta030.austin.ibm.com/tools/toolsurvey/listTools.jsp

8.8.1: Using the Log Analyzer for Advanced Edition

The Log Analyzer takes one or more activity logs, mergesall of the data, and displays the entries. Based on its "symptomdatabase," it analyzes and interpretsthe
error conditionsin the log entries to help you debug problems. The Advanced Edition Log Analyzer has a special feature enabling itto download the latest
symptom database from the IBM Web site. See"About the Log Analyzer" for details.

« About the Log Analyzer
« About the activity log
« Using the Log Analyzer
« Related tasks:
o Set the maximum activity.log size

o Changing the port of the logging service

o View an activity.log on a remote machine

About the Log Analyzer

A Log Analyzer quite similar to the one available for use with IBMWebSphere Application Server is available with IBM Component Broker, partof the
Enterprise Edition of IBM WebSphere Application Server.

To learn about the Component Broker Log Analyzer, see the Component Brokerproblem determination guide (currently, Chapter 11). Y ou can view
thedocument on the IBM Web site without having to obtain Enterprise Edition:

ftp://ftp.software.i bm coni sof t war e/ webspher e/ i nf o/ appser v/ v35/ ee/ cbpr bdet . pdf

The main differences between the Log Analyzer available withWebSphere Application Server and the Component Broker Log Analyzerare the following:

« TheLog Analyzer for Advanced Edition is capable of downloading the latest symptom database (bin/symptomdb.xml) from the IBM support site. Use the
file -> Update Database -> Adv Symptom Database option in the Log Analyzer interface to take advantage of this feature.

« Thefunctionsfor ORB trace formatting, minor codes, message | Ds and GPF are not supported for Advanced Edition
« The script for starting the Log Analyzer isin adifferent location (see below for instructions)

« The default directory for opening logs for Advanced Edition is the logs directory. For Enterprise Edition, it is the service directory.
About the activity log

Recall, the Log Analyzer collects messages from various product componentsand places them in ashared file. Thefileisabinary file located at:
product _installation_root/logs/activity.Iog

The activity.log cannot be easily viewed using a texteditor. The Log Analyzer isthe tool for viewing thefile.
Using the Log Analyzer

To view the activity.log using the Log Analyzer:
1. Change directory to:
product _installation_root/bin
2. Run thewadogbr script file, which is called:
o waslogbr.bat on Windows NT
o waslogbr.sh on UNIX systems
It needs to be run from the bin directory cited above.

Thiswill start the Log Analyzer graphical interface.
3. Intheinterface:
1. Select File-> Open.
2. Navigate to the directory containing the activity.log file.
3. Select the activity.log file.
4. Select Open.

Related tasks
In the course of using the Log Analyzer, you might need to perform the following tasks.
Setting the maximum activity.log file size

The activity.log file grows to a predetermined size, then wraps. The default sizeis 1 Megabyte (MB).

To changethelog size:
1. Open the properties filein atext editor:
product installation_root/properties/|ogging.properties
2. For the com.ibm.ws.ras.ActivityL ogSize property, specify the value you would like, in Kilobytes (KB).

If aninvalid sizeis entered, the default size is used.
The size change will take effect at the next server startup.

Syntax example:

ftp://ftp.software.ibm.com/software/websphere/info/appserv/v35/ee/cbprbdet.pdf
http://squidward/root.html
http://squidward/root.html
http://squidward/root.html

« Tochangethelog sizeto 2MB, enter in theline:
comibmws.ras. ActivitylLogSi ze=2048
without any spacesinit.

Changing the port of the logging service

The logging service starts automatically at server startup. It requires theuse of a dedicated port. The default port is 1707.

To change the port value:
1. Stop all application servers and the WebSphere administrative server. (Ifyou do not stop a server, it will not pick up the property changeuntil it is stopped
and started again).
2. Open the propertiesfilein atext editor:
product installation_root/properties/|ogging.properties
3. For the SHARED_LOG_LOCK_PORT property, specify the value you would like.
4. Start the application and administrative servers that you stopped.

Syntax example:
« To change the port to 1708, specify:
SHARED LOG LOCK _PORT=1708

If the port isin use by another application, the logging service might not be able to start or might not function correctly. The activity.log file will not be created
or updated correctly. See article 1.2.8 forinformation about how to tell whether a port is currently allocated to anotherapplication.

To diagnose a port conflict, perform these heuristic checks:
« Check to seeif the activity.log file has been created, and check the timestamp of the file.
» Check thesefiles:
product _install ation_root/<server_nane>_stderr.|ogproduct_installation_root/| ogs/adm nserver_stderr.|og
Note: The above paths are the default locations of the files. The administratormight have configured different locations.

Look for a stack trace such as the following:

java. | ang. Exception: Unable to obtain Shared Log Lock on port1707 at
com i bm ej s. ras. SharedLogBase. acqui r eHost Lock(Shar edLogBase. j ava: 187) at
comibm ejs.ras. SharedLogWiter.<init>(SharedLogWiter.java: 130) at
comibm ejs.ras. SharedLogWiter.getlnstance(SharedLogWiter.java: 100) at

comibmejs.ras. Tr.initialize(Tr.java: 241) at
comibm ejs.smserver. ManagedSer ver. mai n(ManagedSer ver . j ava: 121)

Viewing an activity.log file in the absence of a GUI.

The Log Analyzer cannot be used to view remote files. If the operating system on which you are running WebSphere Application Server does not support the
use of agraphical interface, then transfer the file in binary to the systemon which you are running the WebSphere Java administrative console. Use the Log
Analyzer tool there.
In cases in which transferring the fileisimpractical or inconvenient, an alternate tool named "showlog" is provided for viewing the activity.log file:
1. Change directory to:
product installation_root/bin

2. Run the showlog tool with no parameters to display the usage instructions:
o On Windows NT, run showlog.bat
0 On UNIX systems, run showlog.sh

Syntax examples:
« Todirect the activity log contents to stdout, use the invocation:
showl og activity.log
« Todump the activity.log to atext file that can beviewed using atext editor, use the invocation:
showl og activity.log textFileNane

http://squidward/root.html
http://squidward/010208.html
http://squidward/root.html
http://squidward/root.html
http://squidward/root.html

8.9: Thread dumps

This section introduces the concept of thread dumps in WebSphere Application Server.

What is a thread dump?

A thread represents awork item or task, such as a servlet request. Java processes are usually multi-threaded. This means there can be many tasks occurring
simultaneously(i.e. multi-threading)within one VM (Java Virtual Machine) process. Therefore, understanding what is occurring within aJVM process means
obtaining information about all the different threads that are defined within the process.

There are two types of thread dumps that could appear when running Java programs:
« System thread dumps
« Javathread dumps

System thread dumps

System thread dumps provide a system view of afailing VM (Java Virtual Machine) process. On Unix systems, they usually appear as core files. On Window's
systems they appear as drwtsn32.1og files.

System dumps do not understand Java classes. Everything in a system dump is C library oriented. The system dump information provided for VM processes refers
to Java's C libraries and not the referenceclass files.

System dumps should only be interrogated when a Java thread dump is unavailable. Pertinent information can be obtained from system dumps. However, mapping
this information back into Java source code is very difficult. The following sections explain how to interrogate the core and drwtsn32.1og files. When theyare
generated by the system, they need to be interrogated.

Unix platforms
Core files

Core files on Unix systems can be interrogated by dbx and gdb. Dbx isatool that is part of the Al X install. On Sun, dbx can beinstalled for an additional expense.
The gdb (GNU debugger)is freeware that can be downloaded.

Corefiletips:
1. Ensure that the system core file size specification is unlimited.
2. Ensure that the file system containing the core file has enough space.

The following is a sample of how to use ulimit to verify and set the core dump size. If it istoo small, a unusable core file will be generated.
Ulimit sample:

[pwh501] :root> ulimt -a

time(seconds) unlinited

file(blocks) unlimted

dat a(kbytes) unlimted

stack(kbytes) unlimted

menor y(kbytes) unlimted

cor edunp(bl ocks) unlimted

nofil es(descriptors) 2000

The following commands will change the coredump (-c) and file (-f) to unlimited:
ulimt -f unlimted

ulimt -c unlimted

Thefollowing is an example of using the df command to verify that there isenough room in the file system for the core. The corefileis placed in the ./bin directory.
On AlX thisisinthe/usr filesystem. A core file can be 200MB.

Df sample:

[pwh501] : r oot > df

Fi | esystem 512- bl ocks Free %Jsed |used % used Munted on
/ dev/ hd4 131072 80416 39% 2480 8% /

/ dev/ hd2 8306688 2835096 66% 76320 8% / usr

/ dev/ hd9var 606208 55176 91% 390 1%/ var

/ dev/ hd3 475136 459808 4% 32 1% /tnp

http://www.gnu.org/directory/gdb.html

/dev/ hdl 1310720 426120 68% 12453 8% / hone
/dev/1v00 65536 47048 29% 96 2% /usr/ | pp/ net vi ewdm
/dev/1v0l 606208 296504 52% 915 2% / db2

/dev/1v02 4014080 2806320 31% 3328 1%/ Proj ects

Note: These samples were taken from the A1X 4.3.3 system.
DBX command

The purpose of the dbx command is to provide an environment to debug and run programs under the operating system. The dbx command provides a symbolic
debug program for C, C++, Pascal, andFortran programs, allowing you to carry out operations including:

« Examine object and core files

« Provide acontrolled environment for running a program

« Set breakpoints at selected statements or run the program one line at atime
« Debug using symbolic variables and display them in their correct format

DBX syntax

dbx [-a ProcessID] [-c CommandFile] [-d NestingDepth] [-1 Directory]
[-E DebugEnvironment] [-k] [-u] [-F] [-r][-x] [OnjectFile
[CoreFile]]

The ObjectFile parameter is an object (executable) file produced by a compiler. Use the -g (generate symbol table) flag when compiling your program to produce
the information the dbx command needs.

Note: The -g flag of the cc command should be used when the object file iscompiled. If the -g flag is not used or if symbol references are removedfrom the xcoff
file with the strip command, the symbolic capabilities of the dbx command are limited.

If the -c flag is not specified, the dbx command checks for a.dbxinit file inthe user's SHOME directory. It then checks for a.dbxinit file in the user'scurrent
directory. If a.dbxinit file existsin the current directory, that file overrides the .dbxinit file in the user's SHOME directory. If a.dbxinit file existsin the user's
$HOME directory or current directory, that file's subcommands run at the beginning of the debug session. Use an editor to create a .dbxinit file.

If ObjectFileis not specified, then dbx asks for the name of the object file to be examined. The default is a.out. If the core file exists in the current directory or a
core file parameter is specified, then dbx reports the location where the program failed. Variables, registers and memory held in the core image may be examined
until execution of ObjectFile begins. At that point the dbx debug program prompts for commands.

Note: The commands are referenced in the AIX Version 4.3 Commands Reference, Volume 2.

DBX tips

The common procedure of interrogating a core fileisto change the directory to where the corefile resides. Y ou can then issue the command with the binary
executable file as the parameter. It isimportant that the binary executable is used. Usually the java command is a shell script that calls the executable. If you enter
the shell script, java, as the parameter a " cannot find" error message is returned.

The following commands show you how to find the binary executable and invoke the dbx command. It also shows an illegal instruction was executed (i.e. Invalid
opcode):

[pwh501] : root > cd /usr/jdk_base

[pwh501] : root> find . -nanme java -print
./bin/aix/native_threads/java

.I'bin/java

[pwh501] : root > cd /usr/WebSpher e/ AppServer/bin

[pwh501] :root> Is -1 core

-rwr--r-- 1 root system 191495883 Aug 07 15:08 core

[pwh501] : root > dbx /usr/jdk_base/ bi n/ai x/ native_t hreads/java
Type 'help' for help.

Warning: The core file is truncated. You may need to increase the ulimtfor file and core dunp, or free some
space on the file system

Readi ng synbolic information ...Warning: no source conpiled with -g [using nmenory inmage in core]
Illegal instruction (reserved addressing fault) in . at OxO ($t29)0x00000000 00000001 Invalid opcode.

If you don't know where the java binary islocated, the following command will display the true java executable name of the core:

strings core | nore

After you enter dbx, the where command provides a stack trace of where the error occurred. The following example shows a:
« Stack trace

« Output of the help command

« How to exit dbx

Stack trace
(dbx) where

war ni ng: could not locate trace table fromstarting address 0x0

Execut eJava(??, ??) at 0xd2f9913c

do_execute_java_net hod_vararg(??, ??, ??, ??, ??, ??, ??, ??) at Oxd2fabd30

execut e_j ava_dynam c_net hod(0x20e355e0, 0x3002f db0, 0xd3016aa4, 0xd3016aa8, 0x0, 0x0, Ox0, O0x0) at Oxd2f abef4
Thr eadRTO(0x3002f db0) at 0xd300cd88

sysThread_shel | (??) at Oxd2f b50a8

pt hr ead. _pt hread_body(??) at 0xd010f 358
Output of the help command

(dbx) help

Commands:

alias assi gn attribute call case catch

cl ear cleari condition cont del ete det ach

di splay(/) down dunp edit file func

goto got oi hel p i gnore I'ist listi

map nove nmul t proc mut ex next next i

print pr onpt qui t registers rerun return
run rw ock screen search(/?) set sh

skip sour ce st at us step st epi stop

st opi t hread trace tracei unal i as unset
up use whatis where whereis whi ch

Topics:

startup execution br eakpoi nts files dat a

machi ne envi ronment t hr eads expr essi ons scope

set_vari abl es usage
Type "help" for help on a command or topic.
How to exit dbx

(dbx) quit

[pwh501] : r oot >

Another useful purpose of the dbx command is to monitor arunning process. The -a parameter allows the user to attach to a process. Thecat ch and r un
commands can be used to walk through the processing of the VM process and see all signals that are caught. Use of thehel p xxx command will provide
additional information on each of the above commands.

DBXTRACE.SH

There are shell scriptsthat call the dox command and format the thread information from the core file. The name of the script is usually dbxtrace.sh. Thereisan
AlX version and a Solaris version.

Here's a description on how to run the shell script:
[pwh501] : root > ./dbxtrace -a

Usage: Automate getting dbx trace information

For corefiles:
Usage: dbxtrace [executable] [core] or:dbxtrace -c corefile

Example: dbxtrace /usr/j dk_base/ bi n/ ai x/ nati ve_t hreads/java core

To attach to arunning or hung process:
Usage: dbxtrace -a PID

Example: dbxtrace -a 1234

The following information describes the beginning of the output when using dbxtrace on Al X:

[pwh501] : root > ./dbxtrace.sh | nore
khkkhkkkkhkkhhkhkkhkkhhkhkkhkhhkhkkhkhhkhkhhhkhkkhhkhkhkhhkhkk khhkhkkhkhkk*x*%

* Failure of this script or dbx may *

overwite your existing core file. *

It is reconmended that you renane your *

existing core file and use the -c flag *

m you WISh to Contlnue (y/ n) EE R R R R R R R R R
Creating subcomand file....

Runni ng dbx. ..

Type 'help' for help.

war ning: The core file is truncated. You nmay need to increasethe ulinmtfor file and coredunp, or free sone
space on the fil esystem

Readi ng synbolic information ...warning: no source conpiled with -g

*
*
*
*

Note: The the user is prompted for (y/n). Therefore, if the user redirects the output to afile[pwh501] : root > ./ dbxtrace.sh > nyfile 2>&l a
standalone "y" must be entered before the output is generated.
The output of the dbxtrace.sh provides information about each defined thread. The output has thefollowing sections:

« Error condition

« Oneline description of each thread

« Detail thread information

« Stack trace of each thread

Error condition:
Illegal instruction (reserved addressing fault) in . at 0x0 ($t29)
0x00000000 00000001 Invalid opcode.

Onelinedescription for each thread:

$t29 is the current thread

thread state-k wchan state-u k-tid mode held scope function
$t1 run blocked 37671 u no sys _pthread ksleep

$t2 run blocked 38197 u no sys _pthread ksleep

>$t29 run running 46443 k no sys

Detail thread information

thread state-k wchan state-u k-tid mode held scope function
>$t29 run running 46443 k no sys
general:

pthread addr = 0x20df04€0 size = 0x18c
vp addr = 0x20e376b4 size = 0x284
thread errno = 2

start pc = 0xf0545994

joinable = yes

pthread_t = 1c1d

scheduler:

kernel =

user = 1 (other)

event :

event = 0x0

cancel = enabled, deferred, not pending
stack storage:

base = 0x20df5738 size = 0x40000

limit = 0x20e35738

sp = 0x20e35040

Stack trace of each thread

thread state-k wchan state-u k-tid mode held scope function

*$t29 run running 46443 k no sys

warning: could not locate trace table from starting address 0x0

ExecuteJava(??, ?7?) at 0xd2f9913c

do_execute java method_vararg(??, ??, 2?2, 72, 72, ??, 7?2, 7?) at Oxd2fabd30
execute_java_dynamic_method(0x20e355e0, 0x3002fdb0, 0xd3016aa4, 0xd3016aa8, 0x0, 0x0, 0x0, 0x0) at Oxd2fabef4

ThreadRTO(0x3002fdb0) at 0xd300cd88
sysThread_shell(??) at Oxd2fb50a8
pthread._pthread body(??) at 0xd010f358

Windows platform

The drwtsn32.1og files are similar to core files on Unix. On Windows 2000, these files are found in the following directory: C:\Documents and Settings\All
Users\Documents\Dr\Watson.

After entering drwtsn32 ?, the "Dr. Watson for Windows 2000" box appears. The DrWatson log file overview option will display a screen which explains the format
of the drwtsn32.1og files. The output of the dbxtrace.sh provides information about each defined thread. The output has the samesection as a Unix platform:

« Error condition

« Oneline description of each thread
« Detail thread information

« Stack trace of each thread

Java thread dumps

Java thread dumps provide a Java view of afailing VM process. Depending on the platform, Java dumps can appear with different names and at different locations.

A Java dump provides information about the executing Java classes and allows the problem determinationprocess to reference the Java source code.
How to obtain a JAVA Thread Dump

There are two ways to obtain a Java thread dump:
« DrAdmin function
« Kill -3 command

DrAdmin works on all platforms. On Unix, the kill -3command serves the same function and is easier to use. Therefore, DrAdmin is discussed in the Windows
platform section and kill -3 is discussed in the Unix platforms section.

Unix platforms

Sometimes Java thread dumps will occur due to an error in the JVM. At other times, the user might need to understand what is occurring within aJVM that is
currently active. In either case, the Java thread dump is placed at the location described in the locations table. Information on how to manually obtain a thread dump
is available in the remainder of this section.

When a process hangs or isworking hard (i.e. looping), it might be helpful to understand what the individual threads of a JVM process are doing. Obtaining a stack
trace of the individual threads will provide thisinformation. Thekill -3 process ID command provides this stack trace information. This command should not impact
the running process.

Identifying process IDs

WebSphere supports four processes:
« Nanny - started with startupServer.sh
« Administrative server - started by the nanny process
« Administrative client - started with adminclient.sh
« Managed server - started by the administratiave server either automatically or manually viathe administration client console

These processes are usually started in the sequence that they are listed. Therefore, their process IDs increase in value. The ps -ef | grep java command will display
all the processes that are associated with java.

The process IDs are listed under the second column in the command's output. The user can not use the administration client interface if managed servers are
automatically started by the administrative server.

Unfortunately, the ps -ef | grep java command does not always allow the user to identify the different processes. The command string to start the processes can be
very long and the length of the command string saved by the system may not be adequate for the ps -ef | grep java command.

On Al X, the complete command line islisted in the above ps -&f | grep command output. The user can also enter the following commands to focus on an individual
process ID:

« ps-ef | grep Nanny

o ps-ef | grep AdminServer
o ps-ef | grep AdminClient
« ps-ef | grep ManagedServer

There could be multiple managed servers running simultaneously. The managed server process | D(s) are also displayed within the ./bin/tracefile with:
Starting Server: "Default Server" (pid "116032")

Default server isthe name of the managed server. On the administration client window, the General tab information for the managed server aso displays the
process ID.

Astheroot user, the kill -3 xxxx can now be entered where xxxx is the process ID of the WebSphere VM in which you need to see athread dump.
Location of thread dump

The location of the thread dump depends on the operating system.

Process AlX 433 Sun 0S5.7 HP-UX B.11.0.0

Administrative server Jbin/javacore....txt Appended to Appended to
Jlogd/tracefile Jlogs/tracefile

Managed server Jbin/javacore...txt J/Appended to stderr.file | Appended to stdout file
for managed server for managed server
(Note 1) (Note 1)

Administrative client Jbin/javacore...txt Prompted at window Window used to enter
used to enter adminclient.sh
adminclient.sh

Nanny [binfjavacore...txt Prompted at window Window used to enter
used to enter startupServer.sh
startupServer.sh

Note 1: The stderr and stdout files are defined within the managed server configuration. The configuration can be viewed with the administrative console. Click on
the managed server (for example default server). The standard output file and standard error file are defined within fields on the General Tab.

If the user starts a server in the background, the kill command may not dump the thread information. The workaround for this situation is to do the following:
startupServer.sh &

Ctrl-Z

fg

kill -3 xxxx

Windows platform

DrAdmin.bat file

The DrAdmin.bat fileis located in the WebSphere/AppServer/bin directory. The DrAdmin.bat file will execute the DrAdmin function. In Unix, the DrAdmin.bat
fileis DrAdmin.sh.

Find the port number of interest

The next step isto identify the port number for either the administratiave server or amanaged server. The port number is different for the administratiave server and
each of the managed server(s). The port number values are contained in the standard out files for each of these processes. Information on how to find these files and
the port number are described below.

After starting the administratiave server, you should obtain the DrAdmin port number within the \logs\tracefile file inside the message:
Dr Admi n avail abl e on port xxxx

After starting the managed server (for example, default server), you should obtain the DrAdmin port number provided in the standard output file for the managed
server. The location of the file can be found with the administrative console interface in the managed server configuration viathe General tab to standard output
field. The message within the file containing the port number is:

Dr Admi n avai |l abl e on port xxxx
Execute DrAdmin

The DrAdmin.bat file can now be executed providing the port number obtained above. The format of the command to useis:
Dr Admi n -serverPort xxxx -dunpThreads

where xxxx is the port number from the above message (without the comma).
Locate the thread dump

The administratiave server thread information is placed in .\logs\adminserver_stderr.log file. Because thisfileis not closed, it's length of 0 will not change. The
application server thread information is placed in the standard error file which can be found with the administrative console interface in the application server
configuration viathe General tab to standard error field. The thread information is dumped immediately into thisfile.

In order to view the thread information, copy the above files into a new file. Edit the new file with an HTML editor, which will display the thread information.
Some editors (i.e. emacs and vi) will alow you to view the thread information directly from the .\logs\adminserver_stderr.log file or the standard error file.

How to interrupt a Java thread dump

A thread dump can be forced or can occur when a Java process error occurs. When athread dump is not forced, it usually means that an error within a Java process
has occurred and it should to be investigated. A thread dump of a Java process needs to be forced when the process has a thread deadlock condition. A thread
deadlock condition is defined as:

Thread A currently owns Lock X.

Thread B owns Lock Y.

Thread A iswaiting for the release of Lock Y in order to continue processing.
Thread B iswaiting for the release of Lock X in order to continue processing.

Because of this stalemate condition, neither thread is able to complete its processing.

Note: The referenced Java thread dump information is taken from a sample AIX dump. Java thread dumps on other platforms have similar information, but they may
be formatted different.

Monitors

In order to have athread safe application, the application may have to ensure that two threads don't execute the same code simultaneously. This can be accomplished
with the use of a synchronized()statement or a synchronized modifier of a class method.

Each of the above threads in the thread deadlock condition will create a monitor/lock that will prevent other threads from executing the same code. It isimportant to
understand that threads can be holding multiple monitors/locks while processing arequest. Therefore two threads could find themselvesin a deadlock condition
defined by the following situation:

Thread A owns Lock X.
Thread B owns Lock Y.
Thread A iswaiting for the release of Lock Y.
Thread B iswaiting for the release of Lock X.

Because of this stalemate condition, neither thread is able to complete its processing.
Example of a deadlock condition

Y ou can recognize a deadlock when looking within the native stack information. For example, when lookingat the native stack information of Thread A you can
easily recognize that it is blocked by a monitor/lock held by Thread B. This information does not appear in the native stack information of the Thread B.Thread B is
currently deleting a connection, (deleteConn), from the ConnectionTable. The deleteConn()is a synchronized method which causes a monitor/lock to occur for the
ConnectionTable class. There is only one ConnectionTable instance. The monitor/lock held by Thread B is preventing the Thread A process from completing.

The above diagnosis requires an understanding of the involved source code (i.e. which methods are synchronized). However, the Java thread dump does provide the
pointers to do this additional investigation.

A summary of the object monitors will provide additional information that identifies Thread A is blocked by Thread B:
com i bm CORBA.iiop. || OPConnection@fe89740: owner: "Thread B""Thread A" (0x36951ba8) bl ocked

Unfortunately, this information does not appear in the summary for the monitor being held by Thread A.

Stack traces

Stack traces represent the current call path of athread. Call path information explains what functional calls were made to get to the thread's current location.
System dump stack trace

Note that the sysAcceptFD() call isthe last function called on the stack. It isa system call that was invoked by java_net_PlainSocketlmpl_socketAccept() call. The
call indicates that a Java thread did an accept operation on a socket. Question marks appear as parameters. This is because the Java process was not run in debug
mode. For Java 1.1 installations (i.e. before WebSphere 3.5), debug mode is started by using the java_g command. For Java 1.2 install ations(i.e. WebSphere 3.5),
the -Xdebug options should be used with the Java command. For either type of installation, the administration console screen for amanaged server configuration has
a Debug tab. Debug mode can be set within thistab. As stated above, no class file information appears in the stack trace. Only the functions with C libraries are
referenced.

Java dump stack trace

The reader is able to follow the sequence of calls from the run() method through the read() method of the SocketlnputSteam class. The package names of the classes
are also present. The "Compiled Code" characters appears as parameters in the call because the Java dump occurred for aJVM that was not running in debug mode.
When running in debug mode, the line number of the call within the source replaces the "Compiled Code" characters. For Java 1.1 installations (i.e. before
WebSphere 3.5), debug mode is started by using the java_g command. For Java 1.2 installations (i.e. WebSphere 3.5), the -X debug options should be used with the
javacommand. For either type of installation, the administration console screen for a managed server configuration has a Debug tab. Debug mode can be set with
this tab. Another way of obtaining the source line number isto turn off the JIT (Just In Time) compiler. This can be done by starting the VM with the
-Djava.compiler=NONE parameter. This parameter can al so be placed on the managed server command line. The command line information can be displayed with
the administration consol e interface on the General tab of the managed server configuration.

WebSphere Application Server thread information
Object Request Broker information

During startup of the different WebSphere Application Server processes, the processes are initialized and placed in a state to accept additional network activity. One
of thefirst stepsin initializing a processis to create an ORB instance. This step will create threads that will be used to complete the initialization step and later
accept network activity to be processed.
These activities are described within each of the two diagrams of the next two sections. The diagrams describe:

« Administratiave server startup and immediate administrative server takedown

« Managed server startup with servlet traffic

The administratiave server has two ORBs defined within it. For each ORB is at |east one ORB server listener thread that continually waits for input on a port. When
input is received, it is dispatched to an ORB server reader thread so the ORB server listener thread can again wait for input on the port. The ORB server reader
thread again dispatches the request to athird thread that completes the work activity. The reply to the work activity is sent from the third thread to an ORB client
reader thread that receives replies from the ORB reader thread. An ORB request has four steps/threads involved:

1. ORB server listener thread receives input on port X.

2. ORB server reader thread is given arequest.

3. Pooled/instantiated thread handles the request and sends areply.
4. ORB client reader thread handles the reply.

The managed server has one ORB defined within it. There are two ORB server listener threads and multiple ORB client threads. The servlet traffic does not use the
ORB for communications. It is done with the plug-in interface. This interface supports a pool of worker threads (Worker#) that complete the HTTP requests.

The following port numbers are preset:
« 9000 is used for obtaining naming services (i.e. data source names, EJB names)
« 900 isused by the administratiave server to listen for administrative client requests

Other port numbers are randomly chosen for ORB communications.
Thread names

ORB threads

The ORB instance creates reader and listener threads. The names of these threads get changed after they begin processing (i.e. during run() method processing). The
name is constructed with the following parameters separated by a colon (:):

« ORB information
o P=unique for this process and algorithmically constructed from atime stamp
o O =number of ORB'swithin this process
« Thread type
0 StandardRT = identifies which reader thread is within the ORB
o CT =client thread
o LT = listener thread
« Connection values
o LocalPort = Local port that thread is dealing with
o RemoteHost = Hostname for ORB server reader thread, or 1P address for ORB client reader thread
o RemotePort = Port number on the remote host for the connection

Worker#__ (SERVLET ENGINE THREADS)

These thread names begin with Worker# and process HT TP requests.

Thread-x

These thread names are the default thread name for Windows 2000 and AlX. Because no thread name is provided this name is used. X isincremented as each new
thread is created.

Pooled ORB request dispatch WorkerThread

These threads are created by the main thread (i.e. P=479481:0=0:CT)and handle the request/replies that are sent across |1 OP connections.

Web server plug-in configuration thread

Thread used for setting the Web server configuration.

Alarm manager

This thread manages the creation of alarm thread x's.

Alarm thread 1

The alarm thread 1 reclaims unused connections.

BackgroundLruEvictionStrategy

Thisthread sweeps a cache, reclaiming the least recently used objects.

Refresh

Thisthread insures that any changes to amodel get propagated to clones.
Thread stack traces

When athread is created, the start() method is used to invoke the run() method. The start() method is executed on one thread and the run() method is executed on the
newly created thread. Depending on when the stack trace is obtained, an activity (i.e. piece of work) could have different stack traces. Therefore, thread names have

two base method calls. The following text describes these base method calls for the common thread names used for both the administratiave server and the managed

server. Two stack trace examples of base method calls are also provided:

Base method calls
1. Main or P=xx:0=0:CT
0 run--->com.ibm.gjs.sm.server. AdminServer.main()

2. ORB server listener thread (Javal DL Listener or P=xx:0=0:L T=0:port=9000)
0 start ---> com.ibm.gjs.sm.server. AdminServer.main()
0 run---> com.ibm.CORBA..iiop.ListenerThread.run()
3. ORB server reader thread (Javal DL Reader for hostname:port# or P=xx:0=0:StandardRT=0:L ocal Port=port#: RemoteHost=hostname: RemotePort=port#:)
0 start ---> com.ibm.CORBA..iiop.ListenerThread.run()
o run--->com.ibm.CORBA..iiop.StandardReader Thread.run()
4. ORB client reader thread (Javal DL Reader for ipaddr:port# or P=xx:0=1:StandardRT=1:L ocal Port=port#: RemoteHost=i paddr: RemotePort=port#:)
o start ---> com.ibm.gjs.sm.server. AdminServer.main()
0 run---> com.ibm.CORBA..iiop.StandardReader Thread.run()
5. Pooled ORB request dispatch WorkerThread
0 start ---> com.ibm.CORBA..iiop.StandardReader Thread.run()
0 run ---> com.ibm.gjs.oa.pool. ThreadPool $Pooled Thread.run()
6. Worker#__
o start ---> com.ibm.gjs.sm.server. AdminServer.main()
0 run---> com.ibm.servlet.engine.oselistener.outof proc.OutOf ProcT hread$Ctl Runnabl e.run() java.lang.Thread.run()
7. Web server plug-in configuration thread
0 start ---> com.ibm.gjs.sm.server. AdminServer.main()
0 run ---> com.ibm.servlet.engine.oselistener.outof proc.OutOf ProcT hread$Ctl Runnabl e.run() java.lang. Thread.run()
8. Alarm manager
o start ---> com.ibm.gjs.sm.server. AdminServer.main() <--AdminServer
o com.ibm.gjs.oa.pool.ThreadPool $PooledThread.run() <--AppServer
o run--->com.ibm.gjs.util.am.AlarmManager Thread.run() java.lang.Thread.run()
9. Alarm thread 1
0 start ---> com.ibm.gjs.util.am.AlarmManager Thread.run() java.lang.Thread.run() <--AdminServer
o com.ibm.gjs.oa.pool. ThreadPool $PooledThread.run() <--AppServer
0 run ---> com.ibm.gjs.oa.pool. ThreadPool $Pooled Thread.run() <--AdminServer
o com.ibm.gjs.util.am.AlarmThread.run() <--AppServer
10. BackgroundLruEvictionStrategy
0 start ---> com.ibm.gjs.sm.server. AdminServer.main()
0 run---> com.ibm.gjs.util.cache.BackgroundL ruEvictionStrategy.run()
11. RefreshThread
0 start ---> com.ibm.gjs.sm.server. AdminServer.main()
0 run---> com.ibm.gjs.wim.server.config.ServerGroupRefresh$RefreshThread.run()

Examples
Thread dump of a standard reader thread:

"P=863240: O=1: St andar dRT=16: Local Port =10502: Renot eHost =gof ast : Renot ePort =2619: "
(TID: Ox1lccefO, sys_thread_t:0xcdd81d0, state:R native |D:0x128) prio=5

>at java. net. Socket | nput St ream socket Read(Nati ve Met hod)

at java. net. Socket | nput St ream r ead(Socket | nput St ream j ava(Conpi | ed Code))

at comibmrm.iiop. Message. readFul | y(Message. j ava(Conpi | ed Code))

at comibmrm.iiop. Message. creat eFrontt rean(Message. j ava: 173)

at comibm CORBA.iiop. || OPConnection. createl nput St rean(Unknown Sour ce)

at com i bm CORBA. i i op. St andar dReader Thr ead. r un(Unknown Sour ce)

The base method, com.ibm.CORBA .iiop.StandardReader Thread.run(), is identified as the run base method for Javal DL Reader for hostname:port# threads. Also,
the thread is waiting for input because it is in the java.net.Socketl nputStream.socketRead() method.

Thread dump of aworker thread:

"Wor ker #49" (Tl D: 0x10793660, sys_thread_t: Oxab25b0, state: R native |ID: 0x19a) prio=5

at comibm servl et. engi ne. osel i st ener. out of proc. Nati veSer ver Queuel np. nati veGet Sevi ceMessagel d()

at comibm servl et. engi ne. osel i st ener. out of proc. Nati veSer ver Queuel np. get Sevi ceMessagel d()

at

comibm servl et. engi ne. osel i stener. serverqueue. SQN apper Event Sour ce$Sel ect Runnabl e. get NewConnect i onFr omQueue()
at comibm servl et. engine. oselistener.serverqueue. SQN apper Event Sour ce$Sel ect Runnabl e. run()

at comibm servlet. engine. oselistener.outof proc. Qut O ProcThread$Ct | Runnabl e. run()

at java.lang. Thread. run()

The base method, java.lang.Thread.run(), isidentified as the run base method for Worker#__ threads. Also, the thread is waiting for input from the Web server
plug-in (native code) because it isin the com.ibm.servlet.engine.oselistener.outof proc. NativeServerQueuel mp.nativeGetSeviceM essagel d() method.

Administrative Server Startup with Immediate Takedown Diagram

The following diagram has highlighted request flows that start with a SendRegX XX where XXX is the port number of the send request. The stepsin the flow
changes between different threads. The sequence of the steps are identified with, for example, 1A,1B, 1C and 1D. It also shows how the port that the request is sent
to determines which thread the proccessing has completed.

Diagram Legend

In each diagram, every continuous line (-------) isathread. The name of the thread always appears between (...). The lettersin the diagram have the following
meanings:

C = Thread name changed to (.....)

S = Start method called on this thread

R = Run method called on this thread

W = Thread isin wait state waiting for notify

WM = Thread is waiting for message from plugin (Worker# threads only)
SendReq = Request sent to port number ()

SendReply = Reply sent to port number ()

For example:

C(P=479481:0=0:CT) = thread name is changed to P=479481:0=0:CT
R =thread is placed in arunning state

Diagram

ORB 0 Threads(i.e. O=0)

main

|

|

C(P=479481:0=0:CT)

|

|S(Javal DL Listener) R C(P=479481:0=0:L T=0:port=9000)

' > 1|
|

| S(Javal DL Reader for rbostick:1294)

[

[

IR

[

[

| C(P=479481:0=0: StandardRT=0:L ocal Port=9000:
| RemoteHost=rbostick:RemotePort=1294:)
[

| 1B

| IS(Thread-1) R

SendReg9000(1A) |-1C-----========mnmn=--- >
[

| 2B

| IS(Thread-2) R

SednReg9000(2A) |-2C-------=--=--=--=---- >
[

| 5B

[

[

[

|V

|

|S(Javal DL Reader for 9.27.63.245:9000) R C(P=479481:0=1:StandardRT=1:L ocal Port=1294:
| RemoteHost=9.27.63.245: RemotePort=9000:)
|------1D--2D--5D >

ORB 1 Threads (i.e. O=1)
|
|

|
|S(Javal DL Listener) R C(P=479481:0=1:LT=1:port=1295)

>

|[S(Javal DL Listener) R C(P=479481:0=1:L T=2:port=1296)
| >
|

I
| S(Javal DL Reader for rbostick:1299)

I

|R

I

| C(P=479481:0=1:StandardRT=>5:L ocal Port=1296:
| RemoteHost=rbostick:RemotePort=1299:)
I

| 6B

I

|V

|

|

|
|S(Javal DL Reader for 9.27.63.245:1299) R C(P=479481:0=1:StandardRT=4:L ocal Port=1299:

| RemoteHost=9.27.63.245: RemotePort=1296:)

|------6D >
|

|

|S(Javal DL Listener) R C(P=479481:0=1:L T=3:port=900)

: >
| S(Javal DL Reader for rbostick:1297)

I

IR

I

| C(P=479481:0=1:StandardRT=3:L ocal Port=900
| :RemoteHost=rbostick:RemotePort=1297:)

I

| 3B

I

| 4B

I

|V

|

|
|S(Javal DL Reader for 9.27.63.245:900) R C(P=479481:0=1:StandardRT=2:L ocal Port=1297:

| RemoteHost=9.27.63.245:RemotePort=900:)

SendReq900(3A)

|

SendReq900(4A)

|
SendReg9000(5A)

|
SendReq1296(6A)

|
SednReq1296(7A)

|
Other Threads
|
|
|
|

|
|S(Pooled ORB request dispatch WorkerThread) W R

|S(Pooled ORB request dispatch WorkerThread) W R | 4C--6C

|
|S(Alarm Manager) R
| >

| S(Alarm Thread 1)

I

IR

I

|V

|

|S(Thread-3) R

| >
|

|

|S(Thread-4) R

| >

[T

| S(Thread-8) S(Thread-9) S(Thread-10) S(Thread-11) S(Thread-12) |||]|
IRRRRR

[T

IVVVVV

|

|
[S(Worker#0) R S(Worker#0) R

|
| >

|

|

|S(WebServer-Plugin-Cfg-Thread) R

| >
|

|
|S(BackgroundL ruEvictionStrategy) R

|
| >

|
|S(RefreshThread) R
| >

\Y

Thread-1(2) (worker threads)
« start ---> com.ibm.CORBA..iiop.StandardReader Thread.run()run ---> com.ibm.CORBA .iiop.WorkerThread.run()
Thread-3 (transaction timeout)

o start ---> com.ibm.gjs.sm.server.AdminServer.main()
« run--->com.ibm.gjs.jts.tran.JavaClock.run()

Thread-4 (used for administrative server takedown)

« start ---> com.ibm.gjs.sm.server. AdminServer.main()
« run--->com.ibm.gjs.sm.server.ManagedServer$DiagonisticThread.run()

Thread-8,9,10,11,12 (threads for takedown process)

« start ---> com.ibm.gjs.sm.server.ManagedServer$DiagonisticThread.run()
o run---> com.ibm.gjs.sm.util.task.AsyncTaskEngine$WorkerThread.run()

Note: Thread-x are default names of threads. The above numbers may be different depending on the system that the administratiave server runs on.

Managed Server Startup with Servlet Traffic Diagram

The Worker#_threads are the threads on which servlet requests are processed. The threads start during the managed server startup and wait on input from the Web
server plug-in interface.

main

|

|
C(P=905990:0=0:CT)
|

|
IS(Thread-0) R

|
| >

|

|S(Pooled ORB request dispatch WorkerThread) W R

| >
|

LT
| S| S(Worker#0)S(Worker#1).......S(Wor ker #24) S(Thread-6) (BackgroundLruEvictionStrategy) | | | |

[[|RWM WM WM R

IR

| | S(AlarmManager) | S(Worker#0) | Servlet |
[11111 Request |

|11 S(pluginRegenScheduler) || ||

[|IR|WM |WM |

[IIVVVVV

1

1
|V |S(AlarmThreadl) R

I >

|S(Pooled ORB request dispatch WorkerThread) W R W | >
|

|S(Thread-1) R

| >

|
|

|
IS(Thread-3) R

|
ORB 0 Threads (i.e. 0=0)

|
|S(Javal DL Reader for 9.27.63.129:9000) R C(P=905990:0=0: StandardRT=0:L ocal Port=1480:

| RemoteHost=9.27.63.129: RemotePort=9000:

|S(Javal DL Listener) R C(P=905990:0=0:L T=0:port=1481)
| >
|

|
|S(Javal DL Reader for 9.27.63.129:1434) R C(P=905990:0=0: StandardRT=1:L ocal Port=1482:

| RemoteHost=9.27.63.129: RemotePort=1434:)

|S(Javal DL Reader for 9.27.63.129:900) R C(P=905990:0=0: StandardRT=2:L ocal Port=1483:
| RemoteHost=9.27.63.129: RemotePort=900:)

|
|
|
|
|
|S(Javal DL Reader for 9.27.63.129:1433) R C(P=905990:0=0: StandardRT=3:L ocal Port=1484:
| RemoteHost=9.27.63.129: RemotePort=1433:)

|S(Javal DL Listener) R C(P=905990:0=0:L T=1:port=1485)
| >
|

I
| S(Javal DL Reader for rbostick:1487)

I

IR

[

| C(P=905990:0=0: StandardRT=4:L ocal Port=1485:
| RemoteHost=rbostick:RemotePort=1487:)

I

[

|V

Y,

Thread-0 (transaction timeout)

o start ---> com.ibm.gjs.sm.server.ManagedServer.main()
« run--->com.ibm.gjsjts.tran.JavaClock.run()

Thread-1 (Used for logging messages)

o start ---> com.ibm.gjs.sm.server.ManagedServer.main()

« run--->com.ibm.gjs.sm.server.SeriousEventListener$Delivery Thread.run()
Thread-3

>
o Start ---> com.ibm.gjs.sm.server.ManagedServer.main()
e run--->com.ibm.gjs.sm.server.ManagedServer.main()

Thread-6 (administrative server ping)

« start ---> com.ibm.egjs.oa.pool. T hreadPool $Pooled T hread.run()
« run--->com.ibm.gjs.sm.server.ManagedServer$PingThread.run()

Note: Thread-x are default names of threads. The above numbers may be different depending on the system the managed server runs on.

Summary

In multi-processing and multi-thread environments, problem determination can require analysis of actively running threads. This thread information can be obtained
with system thread dumps and Java thread dumps. When doing problem determination in a WebSphere Application Server environment, Java thread dumps provide
much more information and are recommended. However, sometimes system thread dumps are the only information obtained and should be interrogated.

When dealing with thread deadlock problems, Java thread dumps can be forced using kill -3 on Unixplatforms and DrAdmin on all platforms.

The output of these commands provides thread information necessary to diagnose the problem.

8.10: Applying e-fixes

E-fixes areindividual fixesfor critical problems. They have been individually
tested,but not integration tested and should only be applied if you have a critical
problem without a valid workaround. They may be applied to both versions of
WebSphere, except where specifically noted. All e-fixes arerolled into the next
scheduled FixPack. Each fix has a readme file with installation instructions.

To learn about the fixes made available since the last FixPack, see the FixPacks and
E-fixes website.

http://www-4.ibm.com/software/webservers/appserv/efix.html
http://www-4.ibm.com/software/webservers/appserv/efix.html

8.11: Resource reference

Use these links to learn about other performance tools and techniques.

e 9.1: Tuning the product

http://squidward/0901.html

8.12: Various problem determination topics

This section will provide information about various problem determination topics.

8.13: Problem determination hints and tips

When you encounter an error or problem with WebSphere Application Server, you can
followthe Hints and Tips to help you quickly gather relevant data to diagnose the

problem.

The referenced link provides access to the WebSphere Application Server Standardand
Advanced technotes. To view version 3.5 specific technotes:

1. Go to the navigation frame located on the left.

2. Enter 3.5 in the search box.

3. Select Just this category from the pull-down menu.
4. Press Go.

5. The V3.5 technotes appear in the same window.

http://www-1.ibm.com/servlet/support/manager?rt=3&rs=0&navkey=1ByProduct&path=Product+Group%3DSoftware%00Product+Family%3DWeb+Application+Servers%00Product+Type%3DWebSphere+Application+Server%00category%3DHints+and+tips

8.14: How to report a problem to IBM

Use the information in this section to help you report a problem to IBM.

Before reporting problems to IBM, please review the known problemsin the Release
Notes,Hints and Tips, FAQ's, and other resources on the support website. If you find

that the problem is not a known defect, then report the problem to IBM.

There are avariety of ways to report your problem to IBM:
« Phone

. Fax
e Internet

If you need assistance with problems, you are required to purchase technical support.
Y ou can select the exact mix of servicesto fit your specific business needs. IBM
Software Support is delivered in a consistent manner for all IBM software products
based upon the way in which a product is charged (one time charge or monthly license
charge basis).

Y ou can report suspected defects viafax, mail or electronically until the product's
service expiration date. This free serviceis called Warranty/Defect Support. For
information on reporting suspected defects, call 1-800-237-5511 in theUnited States
and Puerto Rico. In Canada, call 1-800-465-9600. Telephone numbers for countries
outside North Americaare also available. The service expiration date is defined in your

License Information booklet under Program Services.

What to provide when reporting problems

Y ou will need the following information available when reporting a problem to IBM:
« The product name and version number
« Thekind of hardware and software you are using
« What happened and what you were doing when the problem occurred
« Whether you tried to solve the problem and how
« The exact wording of any messages displayed
After you have reported a problem to IBM support using any of the methods above,
especially by phone, you might want to provide relevant logs, traces or files. Y ou can

also send an ASCI| text description of the problem in your own words. Send logs and
text files together in a zip file for ease of transfer.

Follow these steps to send filesto IBM:

http://www-4.ibm.com/software/webservers/appserv/support.html
http://ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.html
http://ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.html

Note the problem record number assigned to you by IBM support.
FTP testcase.software.ibm.com

L ogin: anonymous

Password: [your email id]

Change directory: cd /ps/toibm/internet

Make adirectory: mkdir pmrnumber [use your problem number, for example,
pmr89401]
Put [filename]

Call IBM Support back and ask that it be noted in your problem record that files
are available on the testcase ftp server. Give the path to the files. Files will
remain available on the testcase ftp server for 72 hours and will then be deleted.

N S

o N

Technical support by phone

If you are alicensed customer in the U.S. or Puerto Rico who has a support contract
and youneed support, please call IBM Support at 1-800-237-5511. In Canada, call
1-800-1BM-SERV (1-800-426-7378). Telephonenumbers for countries outside North

Americaare also available.

If you are alicensed customer and wish to purchase support, you may contact IBM or
yourlBM authorized business partner.

If you have an IBM customer number, call 1-888-426-4343 Monday - Friday 8:00 am.
to 7:00 p.m. Eastern Standard Time.

In Canada, call 1-800-465-9600 Monday - Friday 8:00 am. to 5:00 p.m. Central
Standard Time.

If you do not have an IBM customer number, call 1-800-237-5511 Monday - Friday
8:00 am. to 5:00 p.m. Central Standard Time.

In Canada, call 1-800-465-9600 Monday - Friday 8:00 am. to 5:00 p.m. Central
Standard Time.

Technical support by fax

Contact us via the Faxback System: 1-800-426-4329.
Telephone numbers for countries outside North America are also available.

Technical support on the Internet

Online help is available through the IBM Support Line.Support Lineisthe service
offering through which IBM delivers electronic support for installation, usage,

http://ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.html
http://ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.html
http://ps.software.ibm.com/pbin-usa-ps/getobj.pl?/pdocs-usa/phonenos.html
http://service.software.ibm.com/supportline.html

andcode-related questions. Electronic support is also available through Passport

Advantage's online incident report page. Solution developers can also receive online
help through the PartnerWorld for Developers.

Information on IBM SupportLine and IBM Services is available on the Internet at the
URL listed above. For IBM Lotus Passport Advantage customers, support information
isalso available at this Internet site.

Note: Information may not apply to all products. Support information is subject to
change without notice.

http://www.developer.ibm.com/welcome/ebusiness/index.html

Contents

Figures
Tables

Using the JRas M essage L ogging and Trace Facility

« Introduction
o Overview of messages and trace

» TheWebSphere JRas programming model
o Naming and managing loggers
0 Message and trace event types

» Using JRasloqggers
o Creating resource bundles and message files
o Creating manager and logger instances
o Using loggers

http://squidward/atswpj05.html#Header_3

Introduction

The IBM(R) JRas toolkit is a set of Java(TM) packages that enablesdevel opers to
Incorporate message logging and trace facilities into Javaapplications. Although JRasis
a standalone product, it has beencustomized for use with the Standard, Advanced, and
Enterprise (ComponentBroker) Editions of WebSphere(TM) Application Server. The
WebSphereimplementation of JRas integrates with the WebSphere run-time
environment andsystem-management utilities (for instance, Advanced
Edition'sAdministrative Console and Component Broker's System Manager).This
document discusses the WebSphere implementation of JRas and using it towrite
WebSphere applications that |og and manage application-specific messagesand trace.
Use of the non-WebSphere implementation of JRas is notdiscussed in this document.

Note:

The non-WebSphere (base) implementation of JRas is not supported for use
withWebSphere Application Server. The use of JRas with WebSphere
issupported only with the WebSphere-specific JRas implementation and
programmingmodel discussed in this document.

Overview of messages and trace

Applications often need to provide information about their internal operations to users,
system administrators, programmers, and other interestedparties. Thisinformation is
typically provided as text that can besent to a console or terminal, written to alog file,
directed to a standardoutput or error device, or al three. The JRas toolkit
dividesinformational text into the following two categories:

« Messages, consisting of information about the application thatis brief, clear, and
meaningful to an end user. An example of amessageis a string indicating that the
application started successfully.Messages are generated by default; they are not
normallysuppressed. Messages can be localized; that is, the messagecatal ogs can
be trandated into various national language versions, andmessages can be
displayed in the user's preferred language.

« Trace, consisting of detailed technical information about thecurrent state of one
or more of the application's internal datastructures, including summaries of all
objects in those datastructures. Trace information is meant for use by developers
andsupport personnel when debugging applications; it is not generallyintended
for use by end users. An example of trace information is astring listing an error,
the time at which the error occurred, the thread inwhich the error occurred, the
method that was being executed when the erroroccurred, and a description of the
error. Trace information is notnormally generated by applications and is enabled
only to help resolvespecific problems, because the creation of trace information
consumes systemresources beyond the application's normal requirements. Trace
isnot localizable; that is, it cannot be trandlated into national languageversions.

The JRas packages implement objects called loggers,handlers, formatters, and
manager s to providemessaging and trace capabilities. These objects are described in
thefollowing list.

« Loggersare the primary objects with which the application codeinteracts.
« Handlersreceive datathat isto be logged from aogger.
« Formatters are objects invoked by handlers to formatdata.

« Managers provide methods to predefine and manage logger,handler, and
formatter configurations. These configurations can be keptin a persistent data
store. Using managers simplifies programming withJRas; when a manager is
used to obtain alogger, the manager retrievesthe logger's configuration data,
creates the logger and populates it withthe correct handlers, performs any other
needed tasks, and returns theconfigured logger to the caller. The Manager class
provided withWebSphere is WebSphere specific and cannot be used with generic
JRasimplementations. Using this class to create and manage WebSphere
JRasobjects ensures that all derived objects (loggers, handlers, and
formatters)conform to the requirements of the WebSphere JRas implementation.

To view message and trace text, you must read the appropriate logfiles. WebSphere
currently logs all messagesto single-level logfiles; that is, application messages and
run-time messages are written tothe same log file. It is recommended that you monitor
the size of thelog files and increase the allowable size of the files depending on the
numberof messages written to the log. WebSphere also logs all trace events,whether
application trace or run-time trace, to the same trace logfile. All editions of WebSphere
Application Server provide facilitiesto view message and trace logs; see the
documentation for your edition of\WebSphere for more information.

The WebSphere JRas programming model

This section discusses the supported model for programming with JRas inWebSphere
Application Server.

In WebSphere, you create and manage JRas loggers and managers by using
theManager class of the com.ibm.websphere.raspackage. The Manager class provides
mechanisms to obtain JRas messageand trace loggers that are integrated with
WebSphere; it also providesthe ability to group trace loggers into logical groups. The
basicprocess for creating JRas objects isto retrieve areference to the JRasmanager by
using the getManager method of thecom.ibm.websphere.ras.Manager class, then
toretrieve message and trace loggers by using methods on the returnedmanager. See
Creating manager and logger instances for sample code illustrating this process.

The retrieved loggers are implementations of the RASIM essagel.ogger

andRASI Tracelogger interfaces. Y ou then program to these interfaces, bothof which
are derived from the RASIL ogger interface. The loggers arestateful objects with their
states tied to an existing Java Virtual Machine(JV M) and run-time instance. These
interfaces are discussed in Using loggers.

Note:

Although loggers implement the Java java.io.Serializableinterface, they must not
be serialized.

Naming and managing loggers

This section discusses considerations for naming and managingloggers.

WebSphere JRas loggers have no predefined granularity or scope. Anapplication
consisting of many different classes can be instrumented by usinga single logger, can
be subdivided into several components with alogger foreach component, or can have a
logger for each class.

L oggers are named objects; the manager maintains a hierarchical namespace of
loggers, with separate name spaces for message loggers and traceloggers. For each
unique logger name, the logger instance is created onthe first request to the manager
and the same instance is returned onsubsequent calls. The following recommendations
apply to namingloggers:
« To prevent name-space conflicts, it is recommended that a dot-separated,fully
gualified class name be used to name each logger.

« Itisrecommended that the full logger name reflect the name of the classthat
retrieves the logger from the manager.

« Application developers are responsible for ensuring that the logger namesused
by an application do not conflict with names in use by the WebSphere runtime;
using full logger names based on retrieval class namesautomatically provides
this assurance.

« Because of potential name-space conflicts and limitations in the size ofthe name
space, it is recommended that any given class have no more than onemessage
logger or trace logger associated with it.

« Thename ORBRas isreserved for use by the WebSphere runtime. Do not use
this name in WebSphere applications that useJRas.

The WebSphere run time and system-management utilities enable you to enableand
disable trace at any level of the name-space hierarchy. Changingthe trace state at any
level of the hierarchy automatically makes the samestate change for all child levels. For
Instance, enabling trace at themiddle level of ahierarchy automatically enables trace
for al levels belowthe middie level.

Trace loggers can be combined into logical sets called groups totrack events across
various components of an application. For example,if an application contains three
different components, you can create a groupthat includes trace loggers from each
component, thereby providing away totrace the flow of a particular function across all
three components.Application devel opers must provide group names that are unique to
theapplication and that do not conflict with other group names in the name
space,including names used by the WebSphere run time.

JRas objects are managed by the WebSphere run time. When alogger iscreated, the
JRas manager queries the WebSphere system-management utility todetermine the
initial state for the logger's mask. The state ofthe mask is updated dynamically in
accordance with settings provided to thesystem-management utility. The default initial
states for the differenttypes of loggers are as follows:

» For message loggers, the default initial state is aways for logging to beenabled
to the logger's specified state. Thereis currently no wayto specify an initial state
of disabled. For alist of possible initialstates, see Table 1.

« For trace loggers, the default initial state isfor logging to bedisabled; however,
an initial state of enabled can be specified by usingthe appropriate WebSphere
system-management utility. The tracelogger's mask is set as specified in the
system-managementultility. For alist of possibleinitial states, see Table 2 and
Table 3. Some editions of WebSphereA pplication Server enable you to change
the state of the mask dynamically byenabling tracing for one or more trace
loggers; refer to thedocumentation for your WebSphere system-management
utility for moreinformation.

All enabling and disabling of trace must be performed through theappropriate
WebSphere system-management utility.

Message and trace event types

This section discusses the message and trace types that are availablethrough the
WebSphere implementation of JRas. Message types areprovided by the
RA SIMessageEvent interface, and trace types are provided bythe RASI TraceEvent

interface.

Message types and usage

Message types are provided by the RASIMessageEvent interface. Typesinclude the

following:

o TYPE_ | NFORMATI ONAL for informational messages. This typecan be
abbreviated as TYPE | NFO.

o TYPE_ WARNI NGfor warning messages. This type can beabbreviated as

TYPE_WARN.

o TYPE_ ERRORfor error messages. Thistype can beabbreviated as TYPE _ERR.

These types, which are provided by JRas, do not correspond exactly to themessage
types supported by the different editions of the WebSphere runtime. The following
table shows the mappings between the JRas messagetypes and their WebSphere
equivalents. Note that the Enterprise Editiontypes apply to Component Broker on

workstations.

Table 1. JRas message types and their WebSpher e equivalents

JRas message type Equivalent WebSphere |Equivalent WebSphere
Standar d/Advanced Enterprise Edition
Edition type (Component Broker

forworkstations) type

TYPE_| NFQ, Audi t | nf or mat i onal

TYPE_| NFORVATI ON

TYPE_VWARN, Wr ni ng V\r ni ng

TYPE_WARNI NG

TYPE_ERR, Error Error

TYPE _ERROR

Trace types and usage

Trace types are provided by the RASI TraceEvent interface. Thisinterface defines two
sets of JRas trace types. abasic set of leveledtypes for simple trace implementations
and amore complex set of nonlevel edtypes that can be logically combined to create
precise information about anygiven trace event. It is recommended that only one of

these sets beused in any given application.

The basic set of types consists of the TYPE _LEVEL1,TYPE LEVEL2, and
TYPE_LEVELS3 trace levels. Theselevels are hierarchical; enabling a higher level of
trace automaticallyenables all levels beneath it (for instance, enabling
TYPE_LEVEL2automatically enables TYPE _LEVEL1).

The complex set of types consists of the following trace values:
TYPE_API
TYPE_CALLBACK
TYPE_ENTRY_EXI T
TYPE_ERROR_EXC
TYPE_M SC_DATA
TYPE_OBJ CREATE
TYPE_OBJ_DELETE
TYPE_ PRI VATE
TYPE_PUBLI C
TYPE_STATI C
TYPE_SVC

These values can be combined logically (that is, by using operators suchas AND, OR,
and NOR) to provide detailed information about any given traceevent.

As with the message types, the JRas trace types do not correspond exactlyto the types
used by the WebSphere run time. The following tables showthe mappings between the
JRas trace types and their WebSphereequivalents. Note that the WebSphere equivalents
apply to StandardEdition, Advanced Edition, and, for Enterprise Edition, Component
Broker onworkstations.

Table 2. Leveled JRastrace types and their WebSpher e equivalents

JRas level event type WebSphere equivalent
TYPE_LEVEL1 Event

TYPE LEVEL2 Entry/ Exi t
TYPE_LEVEL3 Debug

Table 3. Nonleveled JRas trace types and their WebSpher e equivalents

JRas nonleveled event types

WebSphere equivalent

TYPE_ERROR_EXC,
TYPE_OBJ_CREATE,TYPE_OBJ DELETE,
TYPE_SVC

Event

TYPE_API,
TYPE_CALLBACK,TYPE_ENTRY_EXI T,
TYPE_PRI VATE,

TYPE_PUBLI C,TYPE_STATI C

Entry/ Exit

TYPE_M SC_DATA

Debug

Using JRas loggers

This section discusses how to use JRas loggers in WebSphereapplications. Creating
resource bundles and message files provides an overview of creating resourcebundles
to provide localized (translated) messages. Creating manager and logger instances

discusses how to obtain a JRas manager, and subsequently howto obtain message and
trace loggers. Using loggers describes the logger interfaces and shows how to usethem.

Creating resource bundles and message files

This section provides an overview of how to create resource bundles thatcan be translated to provide localized
messages in WebSphereapplications. The Java programming language provides thejava.util.ResourceBundle class
and its subclasses,java.util .ListResourceBundl e andjava.util .PropertyResourceBundl e, to enable national
languagesupport for applications. The ResourceBundle class is used inconjunction with the
javatext.MessageFormat class to providel ocalized (trand ated) text support. See the Java documentation for afull
discussion of the ResourceBundle and M essageFormat classes.

ResourceBundle is a class that encapsulates the retrieval of text.Entriesin aresource bundle consist of message keys
and their correspondingmessage text. When aresource bundle is trand ated, only the messagetext is trandated into
the national language. The translated resourcebundles are packaged together and shipped with the application to
providel ocalized messages.

This section discusses how to create resource bundles in the form of textproperties files that can be accessed by
PropertyResourceBundle. Y oucan aso create resource bundles by using a Java class that
extendsListResourceBundle. The class encapsulates the mapping of keys tovalues by using arrays. For information
on creating resource bundles byusing ListResourceBundle, see the Java documentation.

The simplest way to create aresource bundle isto create atext propertiesfile that lists message keys and the
corresponding messages. Theproperties file must have the following characteristics:

« Each property in the file is terminated with aline-terminationcharacter.

« If aline contains only white space, or if the first non-white spacecharacter of the line is the symbol # (pound
sign) or ! (exclamation mark), thelineisignored. The# and! characters can therefore be used to put
comments into thefile.

o Eachlineinthefile, unlessit isacomment or consists only of whitespace, denotes a single property. A
backdash (\) is treatedas the line-continuation character.

« Thesyntax for a property line consists of akey, a separator, and anelement. Valid separators include the equal
sign (=), colon(:), and white space ().

« Thekey consists of all characters on the line from the first non-whitespace character to the first separator.
Separator characters can beincluded in the key by escaping them with a backslash (\), butdoing thisis not
recommended, because escaping charactersis error prone andconfusing. It is instead recommended that you
use avalid separatorcharacter that does not appear in any keysin the propertiesfile.

« White space after the key and separator isignored until the firstnon-white space character is encountered. All
characters remainingbefore the line-termination character define the element.

See the Java documentation for the java.util.Propertiesclass for afull description of the syntax and construction of
propertiesfiles.

The following example shows a properties file namedDefaultM essages. properties.

Figure 1. Sampleresource bundle

Contents of DefaultMessages. properties fileMSG KEY_00=A nessage with no
substitution paraneters. MSG KEY 01=A nessage with one substitution paraneter:
par mLl={ 0} M5SG_KEY_02=A nmessage with two substitution paraneters: parnil={0},
par n2={ 1} MSG_KEY_03=A nmessage with three substitution paraneters: parnml={0},
par m2={1}, \parnB={2}

Thisfile can then be translated into localized versions of the file (forexample, DefaultMessages de.properties for
German andDefaultM essages _ja.properties for Japanese). When the trand atedresource bundles are available, they
are written to a system-managedpersistent storage medium. Resource bundles are then used to convertthe messages
into the requested national language and locale. When amessage logger is obtained from the JRas manager, it can be
configured with adefault resource bundle. At run time, the user's locale is used todetermine the properties file from
which to extract the message specified by amessage key, thus ensuring that the message is delivered in the

correctlanguage. If a default resource bundle is not specified, the msg methodof the RASIMessagelogger interface
can be used to specify aresource bundlename.

The application locates the resource bundle based on the file'slocation in the directory structure. For instance, if the
resourcebundle is located in thebaseDir/subDirl/subDir2/resources directory andbaseDir isin the classpath, the
namesubDirl.subDir2.resources.DefaultM essageis passed to the message logger to identify the resource bundle.

Creating manager and logger instances

This section provides sample code in which message loggers and tracel oggers are obtained in the main method of a standalone
application. Toobtain alogger, you first obtain a manager by calling the getManager methodon the
com.ibm.websphere.ras.Manager class.Y ou then obtain a message logger by calling createRA SIMessagelogger on thereturned
manager object, or atrace logger by calling createRASI Tracel ogger onthe returned manager object. Figure 2 demonstrates
these methods.

Figure 2. Example code: Obtaining a manager, a message logger, and a trace logger

/] Inmport the appropriate JRas and WebSphere packagesi mport comibmras.*;inport

comi bm websphere.ras.*;// Declare the |ogger attributes and a group nane for trace

| oggers. The storage// scope used here depends on the application.static

RASI TracelLogger trclLogger = null;static RASI MessagelLogger nsgLogger = null;// Define
some conveni ence stringsstatic String svOrg = "My organi zation nane";static String
svProd = "My product nane";static String svConponent = "My conponent nane";static
String svC assNane = "Fully qualified class nane";static java.lang. String groupNanme =
"MyProduct _soneG oup";...public static void main(String[] argv){// Get a reference to
t he Manager instance and create the |oggers.// Because "Manager" is a comopn term
fully qualify it to ensure we// get the right one.comibm websphere.ras. Manager ngr =
com i bm websphere. ras. Manager . get Manager () ; nsgLogger =

ngr . cr eat eRASI Messagelogger (svOrg, svProd, svConponent, svC assNane);trclLogger =

nyr. cr eat eRASI Tr aceLogger (svOrg, svProd, svConponent, svC assNane);// Configure the
nessage | ogger with the default resource

bundl enmsglLogger . set MessageFi | e("subDi r1. subbDir 2. resources. Def aul t Messages");// Add
the trace logger to a groupngr.addLogger ToG oup(trcLogger, groupNane);}

Using loggers

This section discusses the use of JRas loggers in WebSphereapplications. M essage and trace parameters discusses the message
and trace parameters usedwith JRas objects. The RASIL ogger interface discusses the RASILogger interface, The
RASIMessagel ogger interface discusses the RASIMessagel ogger interface,and The RASI Tracel ogger interface discusses the
RASITracel ogger interface. Figure 3 shows examples of using thesemethods.

Message and trace parameters

The JRas methods accept parameter types of Object, Object[], andException. The following isalist of parameter types and how
they arehandled by the WebSphere implementation of JRas.

« Primitives--Primitive data types such as int and long arenot recognized as subclasses of the Object class and cannot be
directly passedto JRas methods. A primitive value must be transformed to its propertype (for instance, Integer or Long)
before being passed as aparameter.

« Object--JRas methods accept members of the Objectclass; the toString method is called on the object and the
resultingString is returned. The toString method must therefore be implementedon Objects of traced classes.

« Object[]--JRas methods accept members of the Object[]class when two or more Object parameters need to be passed to
themethod. The toString method is called on each Object in thearray. Nested arrays (that is, arrays with elements that are
alsoarrays) are not supported.

« Throwable--JRas methods accept members of the Throwableclass, returning the stack trace of the Throwable object.

« Arraysof primitives--An array of primitives (for example,byte[] or int[]) is considered to be an Object by Java; however,
becauseof potentially inconsistent processing, it is recommended that members of thearray be converted to String and
then passed to the method. If suchconversion is not performed, the results are unpredictable.

The RASILogger interface

The RASILogger interface is the base interface for both theRA SIMessagel. ogger and RASI Tracel ogger classes. This section
discussestopics that are common to both of these classes, including the isL oggable,getName and setName, and isSynchronous
and setSynchronous methods. See Figure 3 for examples of the classes and methods being used incontext.

The RASILogger interface provides the isLoggable method to determinewhether alogger is currently enabled to log a particular
event type.The event type to be checked is passed to the method. The definition isas follows:

publ i c bool ean i sLoggabl e(l ong type);

wheretypeisavalid message or trace type. See Message and trace event types for a discussion of message and trace types.

The getName and setName methods provide access to logger names.Because all loggers are assigned an unchangeable name by
the manager when theyare created, the setName method resultsin a null operation if used.The getName method can be used at
any timeto retrieve alogger'sname. The definitions of these methods are as follows:

public String get Nane(); public void setNane (String nane);
where name is the logger's name.

The isSynchronous and setSynchronous methods enable applications toconfigure loggers to perform synchronous or
asynchronous logging, assumingthat the logger can accept the configuration. The configuration is setby the WebSphere run
time, so the setSynchronous method is currentlyimplemented as a null operation. The definitions of these methods areas follows:

publ i c bool ean i sSynchronous(); public void set Synchronous(bool ean fl ag);
where flag is a Boolean value indicating Tr ue (forsynchronous logging) or Fal se (for asynchronous logging).

The RASIMessagelLogger interface

The RASIMessagelogger interface provides methods that enable |ocalizablemessage logging. These methods include

getM essageFile andsetM essageFile, message, msg, and textM essage. When an instance of RASIM essagelogger is obtained from
the manager, you must provide nonnullstrings that specify the logger's organization name, product name, andcomponent
information. These strings are unchangeable for the lifetimeof the logger.

The logger interface includes support for an internal mask that identifieswhich categories of messages are to be logged and
which categories are to bedisregarded. The mask is set by the WebSphere run time when the loggeris created.

The getM essagelile method enables you to specify aresource bundle that thelogger uses to localize messages. If the name of
the resource bundle isnot specified, a default name is assumed. The setMessageFile enablesyou to configure the message logger

with a message file that is used by amessage logged by the message interface. There is no default value forthe messagefile; if
this value is not specified, using the messageinterface can have unpredictable results. See Creating resource bundles and
message files for information on resource bundles. The definitionsof the methods are as follows:

public String get MessageFile(); public void setMessageFile(String file);

wherefileis the name of the resource bundle.

The message method provides flexible access to message strings. Thedefinition of the method is as follows:
public void nessage(long type, Object obj, String methodName, String key, Object
par anet er) ;
where:
« typeisavalid message type. See Message and trace event types for a discussion of trace types.

« 0bj isaclass name to be passed to the logger. Y ou canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thet hi s object; in this case, the logger retrieves the class namefrom thet hi s reference by
calingthis.getClass().getName().

« methodName is avalid method name.

« key isthe message key of the localizable message. Theresource bundle that was specified by the setM essageFile method
is used toretrieve the message text.

« parameter represents an Object that isto be substitutedpositionally into the message text. More than one parametercan be
passed. See Message and trace parameters for more information.

The msg method also provides access to message strings; unlike themessage method, it enables you to specify the resource
bundle from whichmessage text is to be retrieved. The definition of the method is asfollows:

public void msg(long type, Object obj, String nethodNane, String key, String file,
hj ect parameter);
where:

« typeisavalid message type. See Message and trace event types for a discussion of message types.

« 0bj isaclass name to be passed to the logger. Y ou canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thet hi s object; in this case, the logger retrieves the class namefrom thet hi s reference by
calingthis.getClass().getName().

« methodName is avalid method name.
« key isthe message key of the localizable message.
« fileisthe resource bundle to use when retrieving the messagetext.

« parameter represents an Object that isto be substitutedpositionally into the message text. More than one parametercan be
passed. See Message and trace parameters for more information.

The textM essage method enabl es applications to send text messages that arenot accessed from a resource bundle. This method is
intended for use indevel opment environments or environments in which localization support is notrequired. This method is not
intended to be used in productioncode. The definition of the method is as follows:

public void text Message(long type, Object obj, String nethodNane, String text, hject
par aneter);
where:

« typeisavalid message type. See Message and trace event types for a discussion of message types.

« 0bj isaclass name to be passed to the logger. Y ou canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thet hi s object; in this case, the logger retrieves the class namefrom thet hi s reference by
calingthis.getClass().getName().

« methodName is avalid method name.

« text isthe message text. No resource bundle is accessedto provide the text, and the text cannot be localized.

« parameter represents an Object that isto be appended to themessage text. More than one parameter can be passed.See
Message and trace parameters for more information.

The RASITraceLogger interface

The RASITracel ogger interface provides methods that enable generic tracingmechanisms. These methods include entry, exit,
trace, andexception. When an instance of RASITracel ogger is obtained from themanager, you must provide nonnull strings that

specify the logger'sorganization name, product name, and component information. Thesestrings are unchangeable for the
lifetime of the logger.

The logger interface includes support for an internal mask that identifieswhich categories of trace events are to be logged and
which categories are tobe disregarded. The mask is set by the WebSphere run time when thelogger is created.
The entry method provides access to trace entry events. Thedefinition of the method is as follows:
public void entry(long type, Object obj, String nethodNane, Object paraneter);
where:
« typeisavalid trace type. See Message and trace event types for a discussion of trace types.

« 0bj isaclass nameto be passed to the logger. Y ou canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thet hi s object; in this case, the logger retrieves the class namefrom thet hi s reference by
calingthis.getClass().getName().

« methodName is avalid method name.
« parameter represents a parameter to be added to the tracetext. See Message and trace parameters for more information.

The exit method provides access to trace exit events. The definitionof the method is as follows:
public void exit(long type, oject obj, String nmethodNanme, Cbject retValue);
where:

« typeisavalid trace type. See Message and trace event types for a discussion of trace types.

« 0bj isaclass nameto be passed to the logger. Y ou canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thet hi s object; in this case, the logger retrieves the class namefrom thet hi s reference by
calingthis.getClass().getName().

« methodName is avalid method name.
o retVaueisareturn value for the event. See Message and trace parameters for more information.

The trace method provides away to write text strings as traceevents. The definition of the method is as follows:
public void trace(long type, Cbject obj, String nmethodNanme, String text, Object
par aneter);

where:
« typeisavalid trace type. See Message and trace event types for adiscussion of trace types.

« 0bj isaclass name to be passed to the logger. Y ou canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thet hi s object; in this case, the logger retrieves the class namefrom thet hi s reference by
callingthis.getClass().getName().

« methodName is avalid method name.
« textisatext string to be written to the trace eventrecord.
« parameter represents a parameter to be added to the tracetext. See Message and trace parameters for more information.

The exception method provides access to exceptions. The definitionof the method is as follows:
public void exception(long type, Object obj, String nethodNane, Exception exc);
where:

« typeisavalid trace type. See Message and trace event types for a discussion of trace types.

« 0bj isaclass nameto be passed to the logger. Y ou canpass the class name in the form of either a String or an
Object.Passing a String is more efficient and must be used in static methods.For convenience, you can also pass the class
name in the form of thet hi s object; in this case, the logger retrieves the class namefrom thet hi s reference by
calingthis.getClass().getName().

« methodName is avalid method name.

« excisan exception whose stack trace is to be written to thetrace event record.
Figure 3 shows an example of using a message logger and a tracelogger.

Figure 3. Example code: Using a message logger and a trace logger

private void nmethodX(int x, String y, Foo z){// Trace an entry point. Use the guard

to ensure tracing is enabled. Do this// checking before we waste cycl es gathering

paraneters to be traced.if (trcLogger.isLoggabl e(RASI TraceEvent. TYPE ENTRY_EXIT)) {//

Because we want to trace three paraneters, package theminto an Object[] Object[]

parnms = {new Integer(x), vy, z};trcLogger.entry(RASI TraceEvent. TYPE_ENTRY_EXI T, this,

"met hodX", parns);} // ...additional logic here... // A debug or verbose trace

pointif (trcLogger.isLoggabl e(RASI TraceEvent. TYPE M SC DATA))

{trcLogger.trace(RASI TraceEvent. TYPE_M SC DATA, this, "methodX', "reached here");} //
/1 Call nmethodY on Foo. Assune that Foo is provided by another vendor or user.//

This nmet hod throws no Exceptions, so any run-tinme exceptions such as a//

Nul | Poi nt er Exception coming out of it nust be |ogged as errors.// Although it is not

good practice to put stack traces into nmessage,// it is not explicitly prohibited.try

{z.methodY(...);}catch (Throwabl e t) {msgLogger. message(RASI MessageEvent. TYPE _ERR,

this, "methodX"', "MSG KEY_ 01", t);}// ... /Il Another classification of trace event.

An inportant state change was// detected, so a different trace type is used.if

(trcLogger.isLoggabl e(RASI TraceEvent . TYPE_SVC))

{trcLogger.trace(RASI TraceEvent. TYPE SVC, this, "nethodX"', "an inportant event");} //

. /]l Ready to exit nethod, trace. No return value to trace.if

(trcLogger.isLoggabl e(RASI TraceEvent. TYPE_ENTRY_EXI T))

{trcLogger. exit(RASI TraceEvent. TYPE ENTRY EXI T, this, "nethodX");} }

Figures

1. Sample resource bundle

2. Example code: Obtaining a manager, a message logger, and atrace logger
3. Example code: Using a message logger and a trace logger

Tables

1. JRas message types and their WebSphere equivalents
2. Leveled JRas trace types and their WebSphere equivalents
3. Nonleveled JRas trace types and their WebSphere equivalents

First Edition (March 2001)

This softcopy version is based on the printed edition of this book.Some formatting
amendments have been made to make this information moresuitable for softcopy.

Order publications through your IBM representative or through the IBMbranch office
serving your locality.

© Copyright International Business M achines Cor poration 2001. All rights
reserved.

Note to U.S. Government Users -- Documentation related to restricted rights -- Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
contract with IBM Corp.

Contents

Figures
Tables

Using the Performance Monitoring I nfrastructure Client Package

« Introduction

o PMI organization and implementation
o PMI client interfaces

o Data organization and hierarchy

o PMI interfaces
« Using the PMI client interfaces

http://squidward/atswpm05.html#Header_3

Introduction

The Performance Monitoring Infrastructure (PM1) is a set of packages andlibraries
designed to assist with gathering, delivering, processing, anddisplaying performance
datain WebSphere Application Server Advanced Editiondomains. This document
discusses the client packages of the PMIapplication programming interface (API) and
describes how to use them to writeWebSphere Application Server clients that collect
and display performance datafrom servers.

PMI organization and implementation

PMI follows a client/server architecture. In PMI terms, a server isany application that uses the
PMI API to collect performance data;servers can include application servers, HTTP servers, and
Javaapplications. WebSphere Application Server provides a server namedPerfServer that is
responsible for retrieving performance data from otherservers in the domain and making the data
available to interested clients, asshown in Figure 1. A client is an application that receives
performancedata from a server or servers and processes the data; clients can includegraphical
user interfaces (GUIs) that display performance datain real time,applications that monitor
performance data and trigger different eventsaccording to the current values of the data, or any
other application thatneeds to receive and process performance data

Figurel. Therole of PerfServer in collecting and distributing per for mance data

Application
Servar

/ Client

Client

HTTP

I FerfServer
server

Java
application

—®» = flow of performance data

Each piece of performance data has two components, a static component and adynamic
component. The static component consists of a name and an 1D toidentify the data, aswell as
other descriptive attributes that assist theclient in processing and displaying the data. The
dynamic componentconsists of information that changes over time, such as the current value of
acounter and the time stamp associated with that value.

Performance data is classified into the following four types:
« Numeric data, consisting of a single numeric value such as aninteger, along, or adouble.
It is used to represent data such ascounts and sizes.

« Satistical data on a sample space. It consists of thenumber of elements in the sample set,
the sum of the elements, and the sum of squares. These values can be used to obtain the
mean, the variance, andthe standard deviation of the mean. An example of statistical data

isthe response time for each invocation of an enterprise bean.

« Load data, which monitors a value as a function of time.Example usesinclude tracking the
number of threads or the number of servicerequestsin a queue. Load data tracks the
current value, the time thevalue was reached, and the integral over time of the value.
Thesevalues can be used to obtain the weighted average for the level over a periodof time.
An example of load data is the average size of a databaseconnection pool during a
specified time interval.

« Group data isacollection of performance data intended to beused by groups. It enables
servers to create sets of performance datathat can be retrieved by clients with asingle call.

Data is organized by modules; each module has a configuration file inextensible markup
language (XML) format that determines itsorganization. The configuration file lists a unique
identifier for eachpiece of performance data in the module. A client can use thedata's unique ID
to retrieve the data's static information; theserver then sends the dynamic information associated
with that datato theclient. A server can track many instances of each type of
performancedata--for example, a number of pieces of performance data tracking theaverage
response time of bean methods. In this case, each piece of performance data shares the same ID,
and the server sends additionalidentifying information (for example, the bean's home name)
along withthe performance data so that clients can distinguish among the differentinstances.

PMI interfaces with WebSphere administration utilities to enableadministrators to control the
amount and level of performance datacollected. Y ou can access the PMI administrative interface
by using theAdministrative Console.

PMI client interfaces

This section discusses PMI's client implementation, including theorganization of data
sent to clients and the interfaces clients use toretrieve and process performance data
from servers. Performance dataused by PMI's client implementation is referred to as
clientperformance data (CPD).

Data organization and hierarchy

PMI datais provided to clientsin ahierarchical structure. TheCpdSnapshot object is
the root of the hierarchy. Descending from theCpdSnapshot object are node
information, server information, moduleinformation, and PerfCollection and CpdData
objects. See Figure 2 for adiagram of the data hierarchy. Note that

thenode-information and server-information objects contain no performancedata.

Figure 2. Organization of PM| data

Organization
of PMI data

Each time a client retrieves performance data from a server, the dataisreturned in a
subset of this structure; the form of the subset depends onthe data that is retrieved. Y ou
can update the entire structure withnew data or update only part of the tree, as needed.

PMI interfaces

The PMI PerfServer exports the CpdCollection, CpdData, and CpdV alueinterfaces to provide performance data to interested
clients. The PMIAPI provides the PmiClient interface to enable clients to receive performancedata from servers. For details on
these interfaces, see The CpdCollection interface, The CpdData and CpdV alue objects, and The PmiClient class. In addition,
PMIprovides the CpdEventListener and CpdEvent interfaces to enable clients toregister as listeners, and thus to be informed
when new or changed data isavailable at the server; see The CpdEventListener and CpdEvent interfaces for details. Finally, PMI
provides the CpdFamilyclass to assist with displaying datain table form; see The CpdFamily class for details.

The CpdCollection interface

The CpdCaollection interface is the base interface to PMI. Itorganizes performance data in the hierarchy described in Data
organization and hierarchy. Each member of the hierarchy is an instance of CpdCollection that contains a number of data
members and a number of CpdCollection children.

The CpdCaollection interface extends two other PMI interfaces, CpdXML andCpdEventSender. These interfaces are defined as
follows:

Figure 3. Definitions of the CpdCollection, CpdXML, and CpdEventSender interfaces

public interface CpdCol | ection extends Serializable, CpdXM.,, CpdEvent Sender {

public PerfDescriptor getPerfDescriptor(); public String getDescription();

public int nunDataMenbers(); public CpdData[] dataMenbers(); public CpdData
getData(i nt index); public int nunBubcollection(); public CpdCollection[]
subcol | ections(); public CpdCol |l ecti on get Subcoll ection(int i); public

CpdCol |l ection findColl ection(PerfDescriptor pd); public void

addSubcol | ecti on(CpdCol | ection col); public CpdCollection getParent(); public
voi d updat e(CpdCol | ecti on ot her); public CpdCollection reset();} public interface
CpdXM { public String toXM(); public void fromXM_(String xm Str);} public

i nterface CpdEvent Sender extends C oneable { public void

addCpdEvent Li st ener (CpdEvent Li stener al); public void

removeCpdEvent Li st ener (CpdEvent Li stener al); public void notifyListeners(CpdEvent
evt); public void notifyListeners(int evt _type);}

The update method updates collections of data. To illustrate thefunctionality of this method, assume that
thecol | ecti onl. updat e(col | ecti on2) statement is used to updatea data collection named col | ect i onl with the
datain acollectionnamed col | ect i on2. Inthis case, the update method works asfollows:

o Ifcollectionlandcoll ecti on2 represent the samecollection (that is, if they are instances of the same
PerfDescriptor object,with col | ect i on2 representing a more recent version of thePerfDescriptor object than
col | ecti onl), the update method performsthe following tasks:

o If any member of col | ect i on2 does not have a correspondingmember in col | ect i onl, the update method
creates a child collectionof col | ect i on1 that contains the member fromcol | ect i on2.

o For each member of col | ect i on2 that has a corresponding memberin col | ect i on1, the update method
updates the member incol | ect i onl with the corresponding dataincol | ecti on2.

The update method then returnsavalue of t r ue to thecaller.

o Ifcollectionlandcoll ection2 do not represent thesame collection, the update method performs the following
tasks:

o For any member of col | ecti onl that has a corresponding memberin col | ect i on2, the update method
updates the member incol | ect i onl with the corresponding dataincol | ect i on2.

o If col I ection2isadescendant of col | ect i onl, theupdate method creates a child collection of
col | ecti onl and updateseach member of the child collection with the corresponding dataincol | ecti on2.

If neither of these conditions is met, the update method returns avalueof f al se.

The PerfDescriptor interface is used to specify the data that the client isinterested in. It includes methods that return node name,
server name,module name, collection name, and full name. Its definition is asfollows:

Figure 4. Definition of the PerfDescriptor interface

public interface PerfDescriptor extends Serializable { public int getType(); //
Types include node, server, nodul e, instance, /1 and data public String
get NodeNane() ; public String getServerNane(); public String get Modul eName();
public String getNanme(); // Returns node, server, nodul e, instance, /1 or
data nane, dependi ng on type public String getFull Name(); // Returns a name in
the followi ng form /'l node. server. nodul e. i nstance. data public String[]
get Pat h(); publ i ¢ bool ean equal s(PerfDescriptor pd); publ i ¢ bool ean

i sDescendi ngFrom(Per f Descri ptor pd); public int[] getDatalds(); // Returns all
data IDs (null, one, or multiple) /1 in the descriptor}

The PerfDescriptorList class is used to gather data from multiplePerfDescriptor instances. It includes methods to add, remove,
and getPerfDescriptor instances. Its definition is as follows:

Figure5. Definition of the PerfDescriptorList interface

public class PerfDescriptorlList { public bool ean addDescri pt or (Perf Descri ptor
pd); // If pdis not in the /1 list, add it and return true; otherw se,
return false public bool ean renoveDescriptor(PerfDescriptor pd); // If pdis in

t he /1 list, remove it and return true; otherw se, return false public

i nt nunmDescriptors(); // Return the number of PerfDescriptor /1 instances in
the Iist public PerfDescriptor[] getDescriptors(); // Return all PerfDescriptors
/]l in an array}

The CpdData and CpdValue objects

The CpdData object is the lowest level in the CPD hierarchy. EachCpdData instance contains all the static information for the
performance dataas well as a getVaue method to return the data's dynamic information inthe form of an instance of the
CpdVaue object. The CpdData interfaceprovides an update method to take a reference to a new version of a piece ofdata and
update the current object with the new value. The value isupdated only if the new data has the same name as the original
object. The CpdData interface also includes an addListener interface to enable dataobjects to register as event listeners; see The
CpdEventL istener and CpdEvent interfaces for details. The CpdData interface extends the CpdX M Land CpdEventSender

interfaces, which are shown in Figure 3.

The definition of CpdDatais as follows:
Figure 6. Definition of the CpdData interface

public interface CpdData extends Serializable, CpdXM., CpdEvent Sender ({ public
Per f Descri ptor getDescriptor(); public String getDescription(); public void
set Val ue(Cpdval ue val ue); public voi d update(CpdData other); public CpdVal ue
get Val ue(); public Cbject getParent(); public void setParent(oject parent);
public bool ean reset();}

A variety of datatypes extend the CpdVa ue interface. The interfaceprovides the getValue, getTime, delta, and rate methods to
work with datavalues. The definition of CpdVaueisasfollows:

Figure 7. Definition of the CpdValue interface

public inteface CpdVal ue extends Serializable, Coneable { public int getType();
public long getTinme(); publ i ¢ doubl e getVal ue(); public Cpdval ue

del ta(CpdVal ue prev); // return the difference publ i ¢ CpdVal ue rate(CpdVal ue
prev); // return the rate of the difference public void conbi ne(CpdVal ue ot her);
/] add another value to this val ue public Object clone();}

Each client value type extends the CpdValue interface. The specifictypes arelisted in Table 1.

Table 1. CpdValuetypes and associated methods

Type Method Description
Cpdint int intvVaue() Vaueasanint
CpdLong]Iong longValue() Vaueasalong
CpdDouble double doubleValue() Value asadouble
CpdStatData double mean() Mean of the sample set
int count() Element count
double sumsquares() Sum of squares of the
elements
]doubl e variance() Variance

]double standardDeviation() [Standard deviation

double confidence(int level) |Confidence interval of the
mean
CpdLoad double mean() Time-weighted average
value
double getCurrentVaue() |Last data point
long getWeight() Measured time period

The getValue method retrieves the value and, if possible, convertsit to adouble value. If it cannot make the conversion, it
returnsDoubl e. NaN. The values returned by getValue can beused for displaying and graphing data.

The getTime method returns the server time associated with the data.

The delta method takes the current value and a previous value of a piece ofdata, and returns an object that represents the change
between thevalues. The delta method also returns a deltaTime val ue, whichrepresents the time associated with the delta value
and the current value ofthe data. The delta method is defined for all objectslisted in Table 1. For CpdStatData, the delta between
two valuesprovides the statistics on al members of the current sample set, not onmembers of any previous set. The delta method
is also defined forgroups. For two groups, g1 and g2, the objectreturned by the statement g1. del t a(g2) isagroup
whosemembers include all members common to both g1 andg2. For each member mil of group glwith a corresponding value
of n2 in g2, thecorresponding deltavalue is represented bynil. del t a(nR2) .

The rate method returns the rate of change. This method is definedfor the Cpdint, CpdL ong, and CpdDoubl e types. If the rate
cannot becalculated (for instance, if the method is used with the CpdStatData orCpdL oad types), the original value is returned.

For the CpdLoad object, the mean method returns the time-weighted averageof the value being tracked. It is computed by
dividing the integralvalue by the deltatime. If the deltatime is O (zero), the differencebetween the object's current time and its
creation time is used.

The PmiClient class

The PmiClient classis used by clients to access performance data.lt looks up session beans and invokes remote APIs, thus
freeing the programmerfrom having to implement these tasks manually. A client can create aninstance of PmiClient and call all
subsequent methods on that object. The PmiClient object converts wire-level datato a client-side data collectionhierarchy and
exports methods for clients to create PerfDescriptor objects ifthe objects names are known. If you know the static names for
thenode, server, module, instance, or data, you can callpmiClient.createPerf Descriptor to obtain the PerfDescriptor.Otherwise,
you can get the names by issuing the listNodes, listServers, andlistM embers methods on PmiClient.

The definition of PmiClient is as follows:

Figure 8. Definition of the PmiClient class

public class Pnidient { /1 Constructor: Look up a PerfRetrieve session bean hone
and /1 create a bean object. Do all initialization (for exanple, /1 get
all configuration files). /1 Def ault hostNane is |ocal host; default port is
900 11 Default JNDI nane for perfRetrieveHone is "PerfRetrieveHone"
Pmidient(); Pmicient(String hostName); PmiCient(String hostName, String
port); PmiClient(String hostName, String port, String perfRetrieveHone); /1
The top-level collection of the data hierarchy. CpdCol | ecti on

creat eRoot Col | ection(); /1 The follow ng nethods serve as wappers for the

renot e /1 methods in PerfRetrieve so that users do not need to /1 deal with
renote APls or wire-|level data. /1 List all nodes in the domain, then call

/| PerfDescriptorlnstance. getNane() to get the node nanes. Per f Descri ptor[]

i st Nodes(); /] List all servers in a node; pd is the one returned from /1

i st Nodes. Call PerfDescriptorlnstance.getNane() to get /'l the server nanes.
PerfDescriptor[] listServers(String nodeNane); Perf Descri ptor[]

l'i st Servers(PerfDescriptor pd); /] List the nmenbers in a server. The returned
Per f Descri pt or /1 can be passed to the next listMenbers call until it /1
returns null (that is, when the | eaf node is reached). Per f Descri ptor|[]

i st Menbers(PerfDescriptor pd); /1l Get nodul e configuration, which contains all
the static /1 information for the data. Pmi Modul eConfig[] get Configs();

Pm Modul eConfig[] get Configs(String nodeNane); Pm Modul eConfi g get Config(String
nodul el D) ; /1l Retrieve performance data. The foll owi ng nodes are avail abl e:

/] - Single pd versus an array of pds /1 - Wth or without time interval Il -
Recur si ve versus nonrecursive (recursive retrieves data /1 for each subgroup

i nstead of aggregate data) CpdCol | ection get (PerfDescriptor pd, bool ean
recursive); CpdCol | ection get (PerfDescriptor pd, boolean recursive, int tine);
CpdCol I ection[] gets(PerfDescriptorList pds, bool ean recursive); CpdCol | ection[]
get s(PerfDescriptorLi st pds, bool ean recursive, int tine);

/'l Retrieve performance data in XM format String get XM_(PerfDescriptor pd,
bool ean recursive); String get XM.(PerfDescriptor pd, boolean recursive, int
tinme); String get XM_(PerfDescriptorlList pds, boolean recursive); String
get XM_(Per f Descri ptorLi st pds, bool ean recursive, int tine); /1 Convert
data I D and nane public static String getDataNane(String nodul el D, int datald);
public static int getDatald(String nodul el D, String nane); /1 Methods to create
a PerfDescriptor, used when you know /] static nanes public PerfDescriptor
creat ePerfDescriptor(){ public PerfDescriptor createPerfDescriptor(String[]
dat aPat h) ; public PerfDescriptor createPerfDescriptor(String[] dataPath,
int datald); public PerfDescriptor createPerfDescriptor(String[] dataPath,
int[] datalds); public PerfDescriptor createPerfDescriptor(PerfDescriptor parent,
String nane); public PerfDescriptor createPerfDescriptor(PerfDescriptor parent,
int datald); public PerfDescriptor createPerfDescriptor(PerfDescriptor parent,
int[] datalds); 1}

The CpdEventListener and CpdEvent interfaces

The PMI client package provides event and listener interfaces to informclients (for instance, a GUI display) when new or
changed dataisavailable. The CpdEventObject interface, which extendsgava.util.EventObject, is the parent to the PMI event
andlistener interfaces. The CpdEventListener interface, which extendsCpdEventObject, is the interface that objects need to
implement to receiveperformance data events. Objects can use the addListener method toregister as event listeners. The
definition of the method is asfollows:

voi d addLi st ener (CpdEvent Li st ener |istener);
The definitions of the CpdEventListener and CpdEvent interfaces are asfollows:

Figure 9. Definitions of the CpdEventL istener and CpdEvent interfaces

public interface CpdEventListener ({ public void CpdEvent Performed(CpdEvent evt);}
public class CpdEvent { final static int EVENT_NEW MEMBER = O; final static

i nt EVENT_NEW SUBCOLLECTI ON = 1; final static int EVENT_NEW DATA = 2;

private int type; private Object source = null; publ i c CpdEvent (Cbj ect
source, int type); public CpdEvent (int type); public Object getSource();
public int getType();}

The CpdFamily class

The PMI client provides the CpdFamily class to simplify displaying datainatable. When two data objects have the same
module identifier, theyare in the same family and can be displayed in the same table by using thisclass. The definition of
CpdFamily is asfollows:

Figure 10. Definition of the CpdFamily class

public class CpdFanily { static public bool ean i sSaneFani | y(CpdData d1, CpdData
d2); static public bool ean i sSaneRow CpdDat a d1, CpdData d2); static public

bool ean i sSaneCol unm(CpdDat a d1, CpdData d2);
get Rowm CpdDat a dl);
publ i c bool ean get Fani | yNane(CpdData dl);}

static public bool ean

static public bool ean get Col um(CpdData d1l);

static

Using the PMI client interfaces

This section discusses the use of the PMI client interfaces inapplications. The basic programming model is as follows:

1. A client uses the CpdCollection interface to retrieve an initial collection, or snapshat, of performance data from the server.
Thissnapshot, which iscalled Snapshot inthisexample, is provided inahierarchical structure as described in Data
organization and hierarchy, and contains the current values of all performance datacollected by the server. The snapshot
maintains the same structurethroughout the lifetime of the CpdCollection instance.

2. Theclient processes and displays the data asspecified. Processing and display objects (for example, filters andGUIs) can
register as CpdEvent listenersto data of interest; see The CpdEventListener and CpdEvent interfaces for details. When the
client receives updated data,all listeners are notified.

3. When the client collects new or changed data (forexample, data collections named S1, S2, and so on) fromthe server, the
client uses the update method to update Snapshot with the new data:

Snapshot . update(S1);// ...later...Snapshot. update(S2);

4. Step 2 and Step 3 are repeated through the lifetime of theclient.

Figure 11 lists a sample of PMI client code.

Figure 11. Example of PMI client code

i mport comibm websphere. pm . *;inmport comibm websphere. pni.server.*;inport

com i bm websphere.pm .client.*; public class Pm Test inplenents Pmi Constants { /1
A test driver [l |f arguments are provided: /1 args[0] = node name //
args[1] = port nunber /1 args[2] = The JNDI nane of PerfRetrieve /1 /1 Note:
This will not work unless an admin server and /'l perfServer are running /1
public static void main(String[] args) { String hostNane = null; String
port Nunmber = null; String homeNane = nul | ; if (args.length >= 1)

host Nane = args[0]; if (args.length >=2) port Nunmber = args[1]; if
(args.length >=3) homeName = args[2]; PmiClient pmidnt = new

Pm C i ent (host Nane, portNunber, honmeNane); /!l Root of PM data tree

CpdCol I ection rootCol = pmi C nt.createRoot Collection();

/1 Set performance descriptor (pd) Iist /1 pdList will include all
Per f Descriptors for data retrieval Per f Descri ptorLi st pdList = new
Per f DescriptorList(); try { /[l If you want to query PmiClient to find
t he Perf Descri ptor /1 you need, you can go through |istNodes, |istServers,
and /1 listMenbers to list all the PerfDescriptors and extract /1
t he one you want. PerfDescriptor[] nodePds = pniCnt.listNodes();
String nodeName = nodePds[0] . get Nane() ; Systemout.println("after
i st Nodes: " + nodeNane); PerfDescriptor[] serverPds = pniClnt.listServers(
nodePds[0] . get Nane()); Systemout.printin("after |istServers"); i f
(serverPds == null || serverPds.length == 0) { System out . println("NO
app server in node"); return; } /1l For a sinple test,
get fromthe first server Perf Descriptor[] nyPds =
pm C nt.listMenbers(serverPds[0]); /1 You can add all pds to
Per f Descri pt or Li st for (int i =0; i < nyPds.length; i++) { i f
(nmyPds[i].get Modul eNane() . equal s("com i bm webspher e. pmi . beanModul e")
| | nyPds[i].get Modul eName() . equal s(
"com i bm websphere. pni . connecti onPool Modul e")
nyPds[i]. get Modul eName. equal s("com i bm websphere. pni . webAppMdul e"))
pdLi st. addDescri ptor(nmyPds[i]); } /1 O, if you know the data path
you want, you can create your own String[] thisPath = new
String[]{"thi sNode", "thisServer",
"“com i bm websphere. pmi . transacti onhMbdul e"}; /1 Suppose you are interested
only in datalds 1, 2, and 3 Per f Descri ptor thiskPd =
pri Cl nt.createPerfDescriptor(thisPath, new int[]1{1, 2, 3});
pdLi st . addDescriptor(thisPd); } catch (Exception ex) {
System out. println("Exception calling CollectorAE");
ex. printStackTrack(); }

/!l Retrieve the data in pdList CpdCol I ection[] cpdCols = null; try {

for (int i =0; i < 10; i++) { j ava. | ang. Thr ead. sl eep(1000);

cpdCol s = pm d nt. gets(pdList, true); if (cpdCols == null ||

cpdCol s.l ength == 0) { System out . printl n(

"PM data return null--possible wong pds"); } for (int j
= 0; j < cpdCols.length; j=++) { r oot Col . updat e(cpdCol s[j]);
report(cpdCols[j]); } } } catch (Exception ex {
Systemout. println("Exception to call thread sleep"); } } /1 Sinple method
to make sure we are getting the correct CpdCollection private static void

report (CpdCol |l ection col) { Systemout. println("\n\n"); if (col ==

nul I) { Systemout.println("report: null CpdCollection");

return; } Systemout. println("report--CpdCollection ");

print PD(col . get Descriptor()); CpdDat a[] dat aMenbers = col . dat aMenbers();

i f (dataMenbers !'= null) { Systemout. println("report CpdColl ection:

dat aMenbers is " + dat aMenbers. | engt h) ; for (int i = 0;
i < dataMenbers.length; i++) { CpdDat a data = dataMenbers[i];

pri nt PD(dat a. get Descriptor()); } } CpdCol I ection[]

subCol | ections = col.subcoll ections(); if (subCollections = null) {

for (int i =0; i < subCollections.length; i++) {

report (subCol I ections[i]); } } } /[l Sinple nethod to wite

the full nane of a pd private static void printPD(PerfDescriptor pd) {
System out. printl n(pd. get Ful | Narre()) ; 11}

Figures

L

The role of PerfServer in collecting and distributing performance data
Organization of PMI data

Definitions of the CpdCollection, CpdXML , and CpdEventSender interfaces
Definition of the PerfDescriptor interface

Definition of the PerfDescriptorList interface

Definition of the CpdData interface

Definition of the CpdValue interface

Definition of the PmiClient class

© o N o gk~ WD

Definitions of the CpdEventL istener and CpdEvent interfaces

=
©

Definition of the CpdFamily class

=
=

. Example of PMI client code

Tables

1. CpdVaue types and associated methods

