Development -- table of contents

4. Developing applications
4.1: Programming model and environment

4.1.1: Finding supported specifications
4.1.1.1: Supported programming languages
4.1.1.2: Supported XML/XSL APIs and specifications

4.1.2: Toolsfor developing Web applications
4.1.2.1: IBM Distributed Debugger and Object Level Trace
4.1.2.2: Tipsfor using VisualAge for Java
4.1.2.3: Tipsfor using IBM WebSphere Studio

4.2: Building Web applications

4.2.1: Developing servlets
4.2.1.1: Servlet lifecycle
4.2.1.2: Servlet support and environment in WebSphere
4.2.1.2.1a Features of Java Servliet APl 2.2
4.2.1.2.2: IBM extensionsto the Serviet API
4.2.1.2.3a Invoking sevlets by classname and serving files
4.2.1.2.3b: Security risk example of invoking servlets by class name
4.2.1.3: Servlet content, examples, and samples
4.2.1.3.1: Creating HTTP servlets
Overriding HttpServlet methods
4.2.1.3.2: Inter-servlet communication
Example: Servlet communication by forwarding
4.2.1.3.4: Filtering and chaining servlets
Servlet filtering with MIME types
Servlet filtering with servlet chains
4.2.1.3.5: Enhancing servlet error reporting
Public methods of the ServletErrorReport class
4.2.1.3.6: Serving servlets by classname
4.2.1.3.7: Serving al files from application servers

4.2.1.3.8: Obtaining the Web application classpath from within a servlet

4.2.1.3.9: Pagel istServlet support
Extending PagelL istServlet
Configuring page lists using the Application Assemby Tool
Configuring page lists using an XML servlet configuration file
Example of the XML servlet configuration file
PageListServlet client type configuration file
Example of aclient type configuration file

4.2.2: Developing JSP files

4.2.2.1: JavaServer Pages (JSP) lifecycle
4.2.2.1a JSP access models
4.2.2.2: ISP support and environment in WebSphere
4.2.2.2.2: JSP processors
4.2.2.2.3: Java Server Page attributes
4.2.2.2.4: Batch compiling JSP files
Compiling JSP 1.1 filesas abatch
4.2.2.3: Overview of JSP file content
4.2.2.3.2: JSP syntax: Class-wide variables and methods
4.2.2.3.3: JSP syntax: Inline Java code (scriptlets)
4.2.2.3.4: JSP syntax: Java expressions
4.2.2.3.5: JSP syntax: useBean tags
JSP syntax: <useBean> tag syntax
JSP syntax: Accessing bean properties
JSP syntax: Setting useBean properties
4.2.2.3.7: IBM extensions to JSP syntax
JSP syntax: Tags for variable data
JSP syntax: <tsx:getProperty> tag syntax and examples
JSP syntax: <tsx:repeat> tag Ssyntax
JSP syntax: The repeat tag results set and the associated bean
JSP syntax: Tags for database access
JSP syntax: <tsx:dbconnect> tag syntax
JSP syntax: <tsx:userid> and <tsx:passwd> tag syntax
JSP syntax: <tsx:dbquery> tag syntax
Example: JSP syntax: <tsx:dbquery> tag syntax
JSP syntax: <tsx:dbmodify> tag syntax
Example: JSP syntax: <tsx:dbmodify> tag syntax
Example: JSP syntax: <tsx:repeat> and <tsx:getProperty> tags
4.2.2.3a: JSP examples
4.2.2.3a01: JSP code example - login
4.2.2.3a02: JSP code example - view employee records
4.2.2.3803: JSP code example - EmployeeRepeatResults

4.2.3: Incorporating XML

4.2.3.2: Specifying XML document structure

4.2.3.3: Providing XML document content

4.2.3.4: Rendering XML documents

4.2.3.6: Using DOM to incorporate XML documents into applications
4.2.3.6.1: Quick referenceto DOM object interfaces

4.2.3.7: SiteOutliner sample

4.2.4. Accessing data

4.2.4.2: Obtaining and using database connections
4.2.4.2.1: Accessing data with the JIDBC 2.0 Optional Package APIs
Creating datasources with the WebSphere connection pooling API
Tips for using connection pooling
Handling data access exceptions
4.2.4.2.2: Accessing data with the JIDBC 2.0 Core AP

4.2.4.2.3: Accessing relational databases with the IBM data access beans
Example: Servlet using data access beans
4.2.4.2.4: Database access by servlets and JSP files
4.2.4.4.1: Providing Web clients away to invoke JSP files
Invoking servlets and JSP filesby URLSs
Invoking servlets and JSP files within HTML forms
Example: Invoking servlets within HTML forms
4.2.4.4.2: Providing Web clients access to servlets
Invoking servlets within JSP files

4.2.5: Using the Bean Scripting Framework
4.2.5.1: BSF examples and samples

4.3: Developing enterprise beans

Writing Enterprise Beans
About this book
An introduction to enterprise beans
An architectural overview of the EJB programming environment
WebSphere Programming Model Extensions
More-advanced programming concepts for enterprise beans
Enabling transactions and security in enterprise beans
Developing enterprise beans
Developing EJB clients
Developing servlets that use enterprise beans
Tools for developing and deploying enterprise beans in the EJB server (AE) environment
Appendix A. Changesfor version 1.1 of the EJB specification
Appendix B. Example code provided with WebSphere Application Server
Appendix D. Extensions to the EJB Specification

4.4: Personalizing applications

4.4.1: Tracking sessions
4.4.1.1: Session programming model and environment
4.4.1.1.1: Deciding between session tracking approaches
Using cookiesto track sessions
Using URL rewriting to track sessions
Using SSL information to track sessions
4.4.1.1.2: Controlling write operations to persistent store
4.4.1.1.3: Securing sessions
4.4.1.1.4: Deciding between single-row and multirow schemafor sessions
4.4.1.1.7: Tuning session support
Tuning session support: Session persistence
Tuning session support: Multirow schema
Tuning session support: Write frequency
Tuning session support: Base in-memory session pool size
Tuning session support: Write contents
Tuning session support: Scheduled invalidation
Tuning session support: Tablespace and page sizes

4.4.1.1.8: Best practices for session programming

4.4.2: Keeping user profiles
4.4.2.1: Datarepresented in the base user profile
4.4.2.2: Customizing the base user profile support
4.4.2.2.1: Extending data represented in user profiles
4.4.2.2.2: Adding columns to the base user profile implementation
4.4.2.2.3: Extending the User Profile enterprise bean and importing legacy databases
4.4.2.3: Accessing user profiles from a servlet

4.5: Dynamic fragment cache
4.5.0: Getting started with Dynamic fragment cache

4.5.1: Custom ID and MetaData generators

4.5.2: Externa caching

4.5.3: Dynamic fragment cache frequently asked questions
4.6: Java Technologies

4.6.1: Using JavaMail
4.6.1.1: Writing JavaMail applications
4.6.1.2: Configuring JavaMail
4.6.1.3: Debugging JavaMail
4.6.1.4: Running the JavaMail sample

4.6.2: INDI (Java Naming and Directory Interface) overview
4.6.2.1: INDI implementation in WebSphere Application Server
4.6.2.2: Using INDI
4.6.2.3: INDI caching
4.6.2.4: INDI helpers and utilities

4.6.2.4.1: INDI helper class
4.6.2.4.2: INDI Name Space Dump utility

4.6.3: Java Message Service (JMS) overview
4.6.3.1: Using the JM S poi nt-to-point messaging approach
4.6.3.2: Using the IM S publish/subscribe messaging approach
4.6.3.3: Support of Java Message Service resources
4.6.3.4: Support for the use of MQSeries Java M essage Service resources

4.7: Java Clients

4.7.1: Applet client programming model
4.7.1.1: Developing an Applet client

4.7.2: J2EE application client programming model
4.7.2.1: Resources referenced by a J2EE application client
4.7.2.2: Developing a J2EE application client

4.7.2.3: Troubleshooting guide for the J2EE application client
4.7.2.4: J2EE application client classloading overview

4.7.3: Javathin application client programming model
4.7.3.1: Developing a Java application thin client
4.7.3.2: Javathin application client code example

4.7.4: Quick reference to Java client functions
4.7.5: Quick reference to Java client topics
4.7.6: Packaging and distributing Java client applications
4.7.7: Tracing and logging for the Java clients
4.8: Web services

4.8.1: Web services components
4.8.1.1: UDDI4J Overview
4.8.1.1.1: UDDI4J samples
4.8.1.2: SOAP support
4.8.1.2.1: SOAP samples
4.8.1.2.2: Building a SOAP client
Accessing enterprise beans through SOAP
4.8.1.2.3: Deploying a programming artifact as a SOAP accessible Web service

4.8.2: Apache SOAP deployment descriptors
4.8.2.1: SOAP deployment descriptors

4.8.3: Quick reference of Web services resources

4.8.4: Securing SOAP services
4.8.4.1: Running the security samples
4.8.4.2: SOAP signature components
4.8.4.2.1: Keystore files for testing purposes
4.8.4.2.2: Envelope Editor
4.8.4.2.3: Signature Header Handler
4.8.4.2.4: Verification Header Handler

4.10: Developing custom services

Samples

4. Developing applications

For IBM WebSphere Application Server, applications are combinations of building blocks that work together to
perform a business logic function.Synonymous with enter prise applications, applications can contain enterprise
beans, butdo not have to. At most:

enterprise applications = enter prise beans + Web applications
Web applications are groups of one or more servlets, plus static content.

Web applications = servlets + JSP files+ XML files+ HTML files+ graphics
The J2EE (JavaTM2 Platform Enterprise Edition) model introduces a number of new programming concepts
including:

o Thinclients

« WARfiles

« EARfiles

Thin clients are remote clients that pass data for processing to an enterprisebean running on the application
server. See article Java clients for moreinformation.

The J2EE model packages enterprise and Web applications into the new categories of EAR files and WAR files.
« WAR files or Web Archive Resource files are combinations of servlets, JSP files HTML files, graphics,
and a Web deployment descriptor. The file extension for thesefilesis. war .

« EARfilesor Enterprise Archive Resource files can consist of Web modules (. war files), EJB modules
(. j ar files), client modules (. j ar files), and an application deployment descriptor. The file extension
for thesefilesis. ear

The Application Assembly Tool (AAT) creates the WAR, EAR, and JAR files, and assembles
application components into Web modules.

View the supported specification levels for servlet, JSP, and EJB APIs at theWebSphere Application Server
prerequisites Web site.

See article 4.1 to review the WebSphere application programming model and environment, including
information on various tools to help you develop and testyour application components.

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/003501.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0103.html

4.1: Programming model and environment

IBM WebSphere Application Server supports a three-tier programmingmodel in which the application server
and its contents -- your applications -- reside in the middie tier.

In this multi-tiered programmingmodel, tier O represents Applets which run in aWeb browser; tier 1, some
application resources such as JSP filesand servlets, which respond to HTTP requests; tier 2, the enterprise beans
that run on the EJB server; and tier 3, the databases that store thebusiness data.With version 4.0, WebSphere
Application Server provides tier O support byshipping a "thin" remote client. See article Java clientsfor more

information.

This documentation is geared towards the following layered approachto application development:

1

© o N Ok~ wbd

Determine what the application should do

Plan the application building blocks and their interactions

Create the Web application building blocks

Write the Web application deployment descriptor

Combine the Web application components and deployment descriptor into a Web module
Create the enterprise beans

Write the EJB deployment descriptor

Combine the enterprise beans and the deployment descriptor into an EJB module
Package the Web module and EJB module into a J2EE application.

A Web developer working in the J2EE environment is therefore responsible for the following tasks:

Writing, compiling, and testing the source code
Writing the JSP and HTML files
Specifying the deployment descriptor

Bundlingtheser vl et . cl ass, . j sp,. ht M and deployment descriptor files into a Web application
archive or WAR file

Bundling theej b. cl ass and deployment descriptor fileinto a JJAR file
Assembling the EJB JAR and WAR filesinto a J2EE application enterprise archive resource or EAR file

4.1.1: Finding supported APIs and specifications

Finding supported specification levels

See the WebSphere Application Server prerequisites Web page for the supported levels of specifications such as
the Java Servlet and JavaServer Pages (JSP) specifications from Sun Microsystems.

Refer to the Sun Microsystems Web site for additional information about Java specifications:
http://]ava. sun. coni products

Finding APl documentation (Javadoc) pertaining to IBM WebSphere
Application Server

Access the Javadoc index for the packages included with IBM WebSphere Application Server (though not
necessarily produced by IBM) from the fulllnfoCenter:

Index to APl documentation (Javadoc)

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0103.html
http://java.sun.com/products
http://localhost/0802_makepdf/apidocs/index.html

4.1.1.1: Supported programming languages

WebSphere Application Server is designed and tested to support applications and clients based on the Java
programming language and technol ogies.

4.1.1.2: Supported XML/XSL APIs and specifications

IBM WebSphere Application Server provides document parsers, document validators, and document generators
for server-side XML processing. The product supports the following XML -related recommendations:

« W3C Extensible Markup Language (XML) 1.0

o W3C Namespacesin XML (Recommendation January 14, 1999)

o W3C Level 1 Document Object Model Specification (DOM) 1.0 (Recommendation October 1, 1998)
o XSL TransformationsVersion 1.0

o XML Path Language Version 1.0

IBM WebSphere Application Server supports the following XML/XSL APIs:
« XML4JVersion 3.1 or XercesVersion 1.2.1
e LotusXSL Version 2.0 or Xalan Version 2.0.1

Distributions of XML4J and LotusXSL areshipped with Version 4.0 for immediate use.However, if you prefer
to use implementations other than those shipped,you can easily override the default parser, becausethe order of
class resolution has been reversed from that of previous versions of the product.Version 4.0 uses any parser
classes specified in amodule orapplicaton first;then the product uses the classes provided in the run-time
environment.

Note: Support is offered only for the parser implementations that areshipped with the product.

XML parsing and validation support

The components of XML for Java provide support for parsing, validating, and generating XML data. The
processor implements the base XML, namespace, and DOM W3C recommendations and SAX de facto
standard. For more information, see the product Javadoc.

xml4j.jarand its open-source version, xerces.jar,can be found in the product_installation_root\lib directory.

To obtain updates and source code for XML4J and other XML-related resources, visit the IBM alphawWorks site
athttp://al phaworks.ibm.com/.To obtain updates and source code for Xerces,visit the Apache site

athttp://xml.apache.org/.

XSL processing support

Thisincludes APIs for formatting and transforming XML documents at the server.

lotusxdl.jarand its open-source version, xalan.jar,can be found in the product_installation_root\lib directory.

To obtain updates and source code for LotusX SL, visit the IBM alphaWorks site at the URL provided
previously.To obtain updates and source code for Xalan,visit the Apache site at the URL provided previously.

10

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/WD-xslt
http://www.w3.org/TR/xpath
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://alphaworks.ibm.com/
http://xml.apache.org/
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.1.2: Tools for developing Web applications

When you install IBM WebSphere Application Server from the product CD, the installation program provides
optionsto install IBM Distributed Debugger (DD) andObject Level Trace (OLT).

In addition, the following products can help you develop components for Web applications:
« IBM VisualAge for Java, Enterprise Edition
« |IBM WebSphere Studio

These products are available separately.

11

4.1.2.1: IBM Distributed Debugger and Object Level
Trace

The IBM Distributed Debugger (DD) enables you to detect and diagnose errorsin your code.lts client/server
design enables you to debug programs over a network connection.Y ou can aso debug programs running on
your local workstation.

Object Level Trace (OLT), which works closely with the IBM Distributed Debugger, enables you to monitor
the flow of a distributed application and debug code from a single workstation.

Tips for using OLT/DD

In order to trace and debug the application server,you must install the debugger on the machine on which the
application server isrunning. For remote tracing and debugging, you must also install the debugger on the
machine from which you plan to run the OLT tool and the debugger. For example,only remote debugging is
supported on Solaris, soif your application server is running on Solaris, you must install the Solaris component
of the debugger on that same machine.In addition, you must install OLT and the debugger on the AIX or
Windows NT (or Windows 2000) machine from which you plan to run the tools remotely.

For the latest information about OLT/DD, see the IBM Distributed Debuggerand OL Tdocumentation.

12

http://localhost/0802_makepdf/aes_orig/olt/debugger/index.htm
http://localhost/0802_makepdf/aes_orig/olt/olt/index.htm

4.1.2.2: IBM VisualAge for Java

VisualAge for Java Enterprise Edition provides the following tools for developing Web application
components:

« EJB Development Environment - Enables you to design and package enterprise beansas well as database
schemas to support persistent features.

« JSP Execution Monitor - Enables you to monitor the execution of JSP source code, generated servlets,
and HTML source code asit is generated. Thistool isavailable for Windows NT systems.

« Servlet Launcher - Enables you to start a Web server, open your Web browser, and launch a servlet.
Thistool isavailable for AIX and Windows NT systems.

« WebSphere Test Environment - Enables you to test deployment of Web application components without
afull-fledgedWebSphere Application Server installation.Y ou can set breakpoints within serviet code,
dynamically update the servlet at breakpoints, and continue running the servlet with the changes
incorporated. These tasks can be performed without restarting the servlet.

For more information about this product, visit the following Web site:

http://ww. i bm conf sof t war e/ ad/ vaj ava/

More about the WebSphere Test Environment

IBM VisualAge for Java provides a subset of the WebSphere Application Serverrun-time environment in a
component called the WebSphere Test Environment (WTE). The WebSphere Test Environment offers the
following:

« A lightweight run-time environment with no dependency on WebSphere Application Server availability

« No dependency on an external database unlessentity bean support is required
As asubset of the WebSphere Application Server,the WTE does not offer certainfeatures that the application
server product does, as follows:

« Secure Socket Layer (SSL) and secure HTTP (HTTPS).

o HTTP-style user ID/password authentication challenge.

o Administrative server and services.

o The XMLConfig tool. Older XML grammar is used in the WTE configuration.

« Personalization APIs

« Security context and API for enterprise beans.

« Security APIsfor servlet sessions, or other security classestypically involved in sign-on, authentication,
or authorization.

« Support for running multiple Web applicationsin addition to the default Web application

Tips for using VisualAge for Java

When you are ready to move from the WTE to deployment on the WebSphere Application Server, verify that
application class paths are properly set in the new environment.

13

http://www.ibm.com/software/ad/vajava/

4.1.2.3: IBM WebSphere Studio

IBM WebSphere Studio Professional Edition offers the following features:
« Create Web applications for various devices, such as voice browsers and handheld devices.
« Select from two Web application models - Servlet or JSP.
« Closeintegration with IBM VisualAge for Java.
« Graphical display of the links between filesin a project.
« Automatic updating of links whenever your files are changed or moved.

« Wizardsthat jump-start creation of dynamic pages that use databases and Java beans.Use the wizard
output asis or tailor it to your needs.

« Animport feature to quickly transfer existing Web site content into a Studio project.
 Staging and publishing your project to different (and to multiple) servers.
« The ahility to archive aWeb site into a single compressed file.
« Full-function visual editing of HTML and JSP files.
« Companion tools:
o AnimatedGif Designer, for building GIF animations
o Applet Designer, avisua authoring tool for building Java applets
o WebArt Designer, for creating buttons, masthead images, and other graphics

For more information about this product, visit the following Web site:
http://ww. i bm conf sof t war e/ webser ver s/ st udi o/ i ndex. ht m

Tips for using WebSphere Studio

WebSphere Studio providesthe com.ibm.serviet.PagelistServlet classto call JSP files.Servlets generated by the
WebSphere Studio wizardsare subclasses of this class.Such a servlet must have an associated servlet
configuration file (.serviet)that specifies all JSP files that the servliet might call.For more information, seeServiet
and JSP Programming with IBM WebSphere Sudioand Visual Age for Java (SG24-5755),available from the

IBM Redbooks Web site.

14

http://www.ibm.com/software/webservers/studio/index.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

4.2: Building Web applications

Different types of Web applications exist, ranging from static document Web sitesto database-backed
systems.Some Web applications are front ends to traditional, non-Web applications.

See the What are enterprise applications? article for a description of applicationssupported by WebSphere
Application Server.

The J2EETM architecture organizes applications into reusable components, and provides underlying services (in
the form of containers) for different component types. The processof assembling the various pieces of a J2EE
application involves specifying such container settingsas security, Java Naming and Directory Interface
lookups, and remote connectivity.

J2EE applications also require deployment descriptors that are Exensible Markup Language (XML)text filesto
define the operating parameters and the components that comprise the application.

This section provides considerations, instructions, and tips forcreating the building blocks that comprise Web
applications.

View article 6.6.8: Administering Web modules (overview) for information on configuring such Web
application settings as:

o Classpaths

o Web paths

« Welcome pages

o Servlet filtering parameters

« Context attributes

View article 6.6: Tools and resources quick reference for the list of new tools to assemble, deploy, and launch
your J2EE Web applications.

15

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0001.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/060608.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606.html

4.2.1: Developing servlets

Servlets are Java programs that build dynamic client responses, such as Web pages.Servlets receive and respond to requests from Web clients,
usually acrossHTTP, the HyperText Transfer Protocol.

Because servlets are written in Java, they can be ported without modification to different operating systems.Servlets are more efficient than CGlI
programs because, unlike CGI programs, servlets are loaded into memory once, and each request is handled by a Java virtual machine thread, not an
operating system process.Moreover, servlets are scalable, providing support for a multi-application server configuration.Servlets also alow you to
cache data, access database information, and share data with other servlets, JSP files and (in some environments) enterprise beans.

Servlet coding fundamentals

In order to create an HTTP servlet, you should extend thej avax. servl et . Ht t pSer vl et class and override any methods that you wish to
implement in the servlet. For example, a servlet would override the doGet method to handle GET requests from clients.

For moreinformation onthe Ht t pSer vl et class and methods, review articles:
e 42.1.3.1: Creating HTTP Servlets

e 42.1.3.1.1: Overriding Ht t pSer vl et methods
o 4.2.1.3.2: Inter-servlet communication

ThedoGet and doPost methods take two arguments:

« HttpServletRequest

« HttpServletResponse
The Ht t pSer vl et Request represents aclient's requests. This object gives a servlet access to incoming information such as HTML form data,
HTTP request headers, and the like.

The Ht t pSer vl et Response represents the servlet's response. The servlet uses this object to return data to the client such as HTTP errors (200,
404, and others), response headers (Content-Type, Set-Cookie, and others), and output data by writing to the response's output stream or output
writer.

SincedoGet and doPost throw two exceptions (j avax. ser vl et. Servl et Excepti onandj ava. i 0. | OExcepti on), you must
include them in the declaration. Y ou must also import classes in the following packages:

Package names Functiong/Obj ects
java.io PrintWriter
|j avax. servl et Ht t pServl et
|j avax.servlet. http Ht t pSer vl et Request and Ht t pSer vl et Response

The beginning of your serviet might look like the following example:

import java.io.*;inport javax.servlet.*;inport javax.servlet.http.*;inport java.util.*;public class
MyServl et extends HttpServliet { public void doGet(HttpServletRequest request,
Ht t pSer vl et Response response) throws Servl et Exception, |OException {

After you create your servlet, you must:

1. Compileyour serviet using thej avac command, as for example:
javac MyServlet.java

2. Invoke your servlet using one of the methods described in article:
6.6.1.5.1: Creating an application

Y ou can also compile your servlet using the - cl asspat h option on thej avac compiler. To access the classes that were extended, reference
thg 2ee. j ar fileinthepr oduct _i nstal | ati on_root\ | i bdirectory. Using this method, you issue the following command to compile

your servlet:
javac -classpath product_installation_root\lib\j2ee.jar MServlet.java

Now that you successfully created, compiled, and tested your servlet on your local machine, you must install it in the WebSphere Application
Server runtime. View article 6: Administer applicationsfor this information.

Servlet lifecycle

The javax.servlet.http.HttpServlet class defines methods to:
o Initidize aserviet
« Servicerequests
« Remove aservlet from the server

These are known as life-cycle methods and are called in the following sequence:
16

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606010501.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServlet.html

The servlet is constructed

Itisinitialized with the init method

Calls from clients to the service method are handled
The servlet istaken out of service

It is destroyed with the destroy method

. The servlet isfinalized and the garbage is collected.
Review article 4.2.1.1 for more life cycle information.

© 0k~ wDdPE

17

4.2.1.1: Servlet lifecycle

(Initialization failed)

Available
for
Seryice

Linanailable
for
Service

(Unavailable
exception
throawn)

Servicing
requests

Instantiation and initialization

The Web container (the Application Server entity that processes servlets, JSP files, and other types of
server-side include coding) creates an instance of the serviet. The Web container creates the servlet
configuration object and uses it to pass the servlet initialization parameters to the init method. The servlet
configuration object persists until the servlet is destroyed and are applied to all invocations of that servlet until

the servlet is destroyed.

If the initialization is successful, the servlet is available for service. If the initialization fails, the Web container
unloads the servlet. The administrator can set an application and its servlets to be unavailable for service. In
such cases, the application and servlets remain unavailable until the administrator changes them to available.

18

Servicing requests

A client request arrives at the Application Server. The Web container creates a request object and a response
object. The Web container invokes the servlet service method, passing the request and response objects.

The service method gets information about the request from the request object, processes the request, and uses
methods of the response object to create the client response. The service method can invoke other methods to
process the request, such as doGet(), doPost(), or methods you write.

Termination

The Web container invokes theservlet's destroy() method when appropriate and unloads the servlet. The Java
Virtual Machine performs garbage collection after the destroy.

More on the initialization and termination phases

A Web container creates an instance of a servlet at the following times:
« Automatically at the application startup, if that option is configured for the servlet
« Atthefirst client request for the servlet after the application startup
o When the servlet isreloaded

The init method executes only one time during the lifetime of the servlet.It executes when the Web container
loads the servlet. The init method is not repeated regardless of how many clients access the servlet.

The destroy() method executes only one time during the lifetime of the servlet. That happens when the Web
container stopsthe servlet. Typicaly, serviets are stopped as part of the process of stopping the application.

19

4.2.1.2: Servlet support and environment in
WebSphere

IBM WebSphere Application Server supports the Java ServlietAPI from Sun Microsystems. The product builds
upon the specificationin two ways.

Article 4.2.1.2.2 describes several IBMextensions to the specification to make it easier to manage sessionstate,
create personalized Web pages, generate better servlet errorreports, and access databases.

See article 4.2.1.2.1afor a description of the Servlet API 2.2 specification.

20

4.2.1.2.1a: Features of Java Servlet APl 2.2

WebSphere Application Server supports Java Servlet APl 2.2 and JSP 1.1.

Java Servlet API 2.2 contains many enhancements intended to make servlets part of a complete application

framework

The Servlet 2.2 specification is available atjava.sun.com/products/servlet/index.html

No new classes were added to the Java Servlet API 2.2. specification.The following table provides more
information on 27 new methods, 2 new constants and 6 deprecated methods supported by WebSphere

Application Server:

|New methods

|Description

|getServIetN ame()

|Returns the servlet's registered name

|getNamedDispatcher(j ava.lang.String name)

|Returns adispatcher located by resource name

|get| nitParameter(java.lang.String name)

|Returns the value for the named context parameter

’getl nitParameterNames()

Returns an enumeration of all the context parameter
names

|removeAttri bute(java.lang.String name)

|Added for completeness

|getLocaI &)

|Gets the client's most preferred locale

getLocales()

Getsalist of the client's preferred locales as an
enumeration of locale objects

isSecure()

Returnst r ue if the request was made using a secure
channel

getRequestDispatcher(java.lang.String name)

GetsaRequest Di spat cher using what can be a
relative path

|setBufferSi ze(int size)

|Sets the minimum response buffer size

|getBufferSi ze() |Gets the current response buffer size

Empties the response buffer, clears the response
reset() headers
isCommitted() Returnstrueif part of the response has already been

sent

|f| ushBuffer()

|FI ushes and commits the response

setLocale(Localelocale)

Sets the response locale, including headers and
charset

|getLocaI &)

|Gets the current response locale

UnavailableException(String message)

Replaces Unavai | abl eExcepti on(Ser vl et
servlet, String nessage)

UnavailableException(String message, int sec)

Replaces Unavai | abl eException(i nt sec,
Servl et servlet, String nmessage)

getHeader(String message)

Returns all the values for a given header, asan
enumeration of strings

getContextPath()

|Returnsthe context path of this request

addHeader(String name, String value)

Adds to the response another value for this header
name

21

http://java.sun.com/products/servlet/index.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletConfig.html#getServletName()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html#getNamedDispatcher(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html#getInitParameter(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html#getInitParameterNames()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#removeAttribute(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#getLocale()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#getLocales()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#isSecure()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#getRequestDispatcher(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#setBufferSize(int)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#getBufferSize()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#reset()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#isCommitted()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#flushBuffer()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#setLocale(java.util.Locale)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#getLocale()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(java.lang.String, int)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html#getHeader(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html#getContextPath()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#addHeader(java.lang.String, java.lang.String)

addDateHeader(String name, long date)

Adds to the response another value for this header
name

addIntHeader(String name, int value)

Adds to the response another value for this header
name

getAttribute(String name)

bj ect Ht t pSessi on. get Val ue(String
name)

getAttributeNames()

Replaces St ri ng[]
Ht t pSessi on. get Val ueNanes()

setAttribute(String name, Object value)

Replacesvoi d
Ht t pSessi on. set Val ue(Stri ng nane,
bj ect val ue)

removeALttribute(String name)

Replacesvoi d
Ht t pSessi on. renoveVal ue(String
name)

|New constants

|Description

[SC_REQUESTED_RANGE_NOT_SATISFIABLE

|New mnemonic for status code 416

|SC_EX PECTATION_FAILED

|New mnemonic for status code 417

|Newly deprecated methods

|Description

UnavailableException(Servlet servlet, String message)

Replaced by
Unavai | abl eException(String
nessage)

UnavailableException(int sec, Servlet servlet, String
message)

Replaced by
Unavai | abl eException(string
nmessage, int sec)

getVaue(String name)

Replaced by Qbj ect
Ht t pSessi on. get Attri bute(String
nane)

getVaueNames()

Replaced by nuner at i on
Ht t pSessi on. get Attri but eNanmes()

putV alue(String message, Object value)

Replaced byvoi d
Ht t pSessi on. set Attri bute(String
nane, bject val ue)

removeV a ue(String message)

Replaced by voi d Ht t pSessi on
renoveAttri bute(String nane)

22

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#addDateHeader(java.lang.String, long)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#addIntHeader(java.lang.String, int)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getAttribute(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getAttributeNames()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#setAttribute(java.lang.String, java.lang.Object)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#removeAttribute(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#SC_REQUESTED_RANGE_NOT_SATISFIABLE
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#SC_EXPECTATION_FAILED
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(javax.servlet.Servlet, java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(int, javax.servlet.Servlet, java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(int, javax.servlet.Servlet, java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getValue(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getValueNames()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#putValue(java.lang.String, java.lang.Object)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#removeValue(java.lang.String)

4.2.1.2.2: IBM extensions to the Servlet API

The Application Server includes its own packages that extend and add to the Java Servlet API. Those extensions
and additions make it easier to manage session state, create personalized Web pages, generate better servlet
error reports, and access databases. The Javadoc for the Application Server APIsisinstalled in the product
product_installation_root\web\apidocs directory.

The Application Server APl packages and classes are:
« comibmservl et. personalization. sessiontracki ng package
This Application Server extension to the Java Servlet API records the referral page that led avisitor to

your Web site, tracks the visitor's position within the site, and associates user identification with the
session. IBM has aso added session clustering support to the API.

« comibm websphere. servl et. sessi on. | BMsessi on interface
Extends HttpSession for session support and increased Web administrators control in a session cluster
environment.

« comibmservlet.personalization. userprofil e package
Provides an interface for maintaining detailed information about your Web visitors and incorporate it in

your Web applications, so that you can provide a personalized user experience. Thisinformation is made
persistent by storing it in a database.

« com i bm websphere. user profil e package

User profile enhancements
« comibm websphere. servl et.error. Servl et Error Report class

A class that enables the application to provide more detailed and tailored messages to the client when
errors occur. See the enhanced servlet error reporting article, 4.2.1.3.5, for details.

« com i bm websphere. servl et. event package

Provides listener interfaces for notifications of application lifecycle events, servlet lifecycle events, and
servlet errors. The package also includes an interface for registering listeners. See the package Javadoc
for details.

« comibm websphere.servlet.filter package

Provides classes that support servlet chaining. The package includes the ChainerServlet, the
ServletChain object, and the ChainResponse object. See the servlet filtering article, 4.2.1.3.4, for more
details.

« com i bm websphere. servl et. request package

Provides an abstract class, HttpServletRequestProxy, for overloading the servlet engine's
HttpServletRequest object. The overloaded request object is forwarded to another servlet for processing.
The package also includes the ServletlnputStreamAdapter class for converting an InputStream into a
ServletlnputStream and proxying all method calls to the underlying InputStream. See the Javadoc for
details and examples.

« com i bm websphere. servl et.response package

Provides an abstract class, HttpServletResponseProxy, for overloading the servlet engine's
HttpServletResponse object. The overloaded response object is forwarded to another servlet for
processing. The package includes the ServletOutputStreamAdapter class for converting an
OutputStream into a ServletOutputStream and proxying al method calls to the underlying

23

24

OutputStream. The package also includes the StoredResponse object that is useful for caching a servlet
response that contains data that is not expected to change for a period of time, for example, a weather
forecast. See the Javadoc for details and examples.

4.2.1.2.3a: Invoking servlets by classname and
serving files

IBM Application Server provides some optional functions for your Web applications.

The tables below describe the function and how to use the WebSphere ApplicationServer tools to enable the
function in your Web application.

Invoke servlets by class name

|Obj ective |I nvoke servlets by class or code names (such as MyServletClass)
Use one of the following facilities:

« If using the Application Assembly Tool (AAT),click serve servlets by classname
How to enable the inthe IBM Extensions panel.

function o Inthei bm web- ext . xm file, change the
serveServletsByClassnameEnabled flag from false to true.

Thei bm web- ext . xm fileisinthe WEB-INF directory of theWeb module.

Serve files without specifically configuring them

Serve HTML, servlets, or other filesin the Web application document root
without extra configuration steps.

Objective For HTML files, you will not need to add a pass rule to the Web server. For
servlets, you will not need to explicitlyconfigure the servlets in the WebSphere
administrative domain.

Use one of the following facilities:

« |If using the Application Assembly Tool (AAT),click File Serving
Enabled in the IBM Extensions panel.

o Inthei bm web-ext . xm file, change the fileServingEnabled flag
from falseto true.

How to enable the
function

25

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0605.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0605.html

4.2.1.2.3b: Security risk example of invoking servlets
by class name

Anyone enabling the "serve files by class name" function in WebSphere Application Server, should take steps
to avoid potential security risks. The administrator should remain aware of each and every servlet classplaced in
the classpath of an application, even if the servlets are to be invoked by their classnames.

{™ A Web site may inadvertently include malicious HTML tags or scriptsin adynamically generated page
based on unvalidated input from untrustworthy sources.By accessing a malicious URL and then accessing an
application server, a usermay unknowingly execute script code on his machine that has full access to the data
and resources on that machine. The browser executes the script on the user machine without the knowledge of
the user.

The malicious tagsthat can be embedded in this way are <SCRIPT> and </SCRIPT>.

This problem can be prevented if the server generated pages are encoded to prevent thescripts from
executing.Devel opers generating responses containing client data, based on servlet or JSP requests, canencode
the response data using the following method:

com i bm websphere. servl et. response. ResponseUti| s. encodeDataStri ng(String)
Visit the Cert advisories Web sitefor more information.

Protecting servlets

See the article, Securing Applications, for information on securing servlets and Web resources.

26

http://www.cert.org/advisories/CA-2000-02.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/05.html

4.2.1.3: Servlet content, examples, and samples

Click the related topics to focus on particular aspects of servletdevelopment, including example and sample
code.

27

4.2.1.3.1: Creating HTTP servlets

To create an HTTP servlet, asillustrated in ServletSample.java:

1. Extend the HttpServlet abstract class.
2. Override the appropriate methods. The ServletSample overrides the doGet() method.
3. Get HTTP request information, if any.
Use the HttpServletRequest object to retrieve data submitted through HTML forms or as query strings

on aURL. The ServletSample example receives an optional parameter (myname) that can be passed to
the servlet as query parameters on the invoking URL. An exampleis:

http://your.server. nane/ applicati on_URI/ Servl et Sanpl e?mynane=Ann

The HttpServletRequest object has specific methods to retrieve information provided by the client:
o getParameterNames()
o getParameter(java.lang.String name)
o getParameterVaues(java.lang.String name)
4. Generate the HTTP response.
Use the HttpServletResponse object to generate the client response. Its methods allow you to set the
response headers and the response body. The HttpServletResponse object also has the getWriter()

method to obtain a PrintWriter object for sending data to the client. Use the print() and printIn() methods
of the PrintWriter object to write the servlet response back to the client.

28

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/ServletSample.java.html

4.2.1.3.1.1: Overriding HttpServlet methods

HTTP servlets are specialized servlets that can receive HTTP client requests and return aresponse. To create an
HTTP servlet, subclass the HttpServlet class. A servlet can be invoked by its URL, from a JavaServer Page
(JSP), or from another servlet.

Methods to override

Thej avax. servl et. http. Ht t pSer vl et classcontainsthe init, destroy, and service methods. The init
and destroy methods are inherited, while the service methodimplementation is specific to HttpServlet. The
method behaviors are described below; however, you might want to override methods in order to provide
specialized behavior in your servlet.

e init

The default init method is usually adequate but can be overridden with a custom init method, typically to
register application-wide resources. For example, you might write a custom init method to load GIF
images only one time, improving the performance of servlets that return GIF images and have multiple
client requests. Other examples are initializing a database connection and registering servlet context
attributes.

o destroy

The default destroy method is usually adequate, but can be overridden.Override the destroy method if
you need to perform actions during shutdown. For example, if a servlet accumulates statisticswhileit is
running, you might write a destroy() method that saves the statistics to afile when the servlet is
unloaded. Other examples are closing a database connection and freeing resources created during the
initialization.

When the server unloads a servlet, the destroy method is called after all service method calls complete or
after a specified timeinterval. Where threads have been spawned from within service method and the
threads have long-running operations, those threads may be outstanding when the destroy method is
called. Because thisis undesirable, make sure those threads are ended or compl eted when the destroy
method is called.

e SErvice

The service method is the heart of the servlet. Unlike the init and destroy methods, it isinvoked for each
client request. In the HttpServlet class, the service method already exists. The default service function
invokes the doX XX method corresponding to the method of the HTTP request. For example, if the
HTTP request method is GET, doGet method is called by default. Because the HttpServlet.service
method checks the HTTP request method and calls the appropriate handler method, it is usually not
desirable to override the service method. Rather, override the appropriate doX XX methods that the
servlet supports.

29

4.2.1.3.2: Inter-servlet communication

There are three types of servlet communication:
» Accessing data within a servlet's scope
» Forwarding arequest and including a response from another servlet using the RequestDispatcher
« Application-to-application communication viathe ServletContext

Sharing data within scope

JavaServerPages (JSPs) use this method to share data through beans. The ability of servietsto share data
depends on the scope of the bean. The possible scopes are request, session, and application.

Forwarding and including data

For session-scoped data and attributes, use the HttpSession.setAttribute and getAttribute methods to set and get
attributes in the HttpSession object. Session-scoped beans and objects bound to a session are examples of
session-scoped objects.

For application-scoped data, use the RequestDispatcher's forward and include methods to share data among
applications. The forward method sends the HT TP request from one servlet to a second servlet for additional
processing. The calling servlet adds the URL and request parametersin its HT TP request to the request object
passed to the target servlet. The forwarding servlet must not have committed any output to the client. The target
servlet generates the response and returnsit to the client.

The include method enables a receiving servlet to include another servlet's response data in its response. The
included servlet cannot set response headers. The receiving servlet can fully access the request object but can
only write data to the ServletOutputStream or PrintWriter of the response object. If the servlets use session
tracking, you must create the session outside of the included servlet. The RequestDispatcher.forward method is
similar in function to the HttpServiceResponse.call Page method previously supported for JSP devel opment.

Application-to-application communication

Web applications share data through the ServletContext. A Web application has a single servlet context. A
ServletContext object is accessible to any Web application associated with avirtual host. Servlet A in
application A can obtain the ServletContext for application B in the same virtual host. After Servlet A obtains
the servlet context for B, it can access the request dispatcher for servietsin application B and call the
getAttribute and setAttribute methods of the servlet context. An example of the coding in Servlet A is:

appBcont ext = appAcont ext. get Context ("/appB");
appBcont ext . get Request Di spat cher ("/servlet5");

30

4.2.1.3.2.2: Example: Servlet communication by forwarding

In this example, the forward method is used to send a message to a JSP file (a servlet) that prints the message. The forwarding servlet code
is.

import java.io.*;inport javax.servlet.*;inport javax.servlet.http.*;public class UpdateJSPTest
extends HttpServl et public void doGet (HttpServletRequest req, HtpServl et Response res)

throws Servl et Exception, | OException { String nessage = "This is a test";
req.setAttribute("message", message); Request Di spatcher rd =

get Ser vl et Cont ext (). get Request Di spat cher ("/ Update. j sp"); rd.forward(req, res); 1}
The JSPfileis:

<ht m ><head></ head><body><hl><servl et code=Updat eJSPTest ></ ser vl et ></ h1><% String nessage =
(String) request.getAttribute("nmessage"); out. print("nmessage: " + nessage +

"</ b>"); We<p><% for (int i =0; i <5; i++) { out.println ("" +1i);

} %</ ul ></ body></ ht i >

31

4.2.1.3.4: Filtering and chaining servlets

The Application Server supports two kinds of filtering:

o MIME-based filtering involves configuring the servlet engine to forward HT TP responses with the
specified MIME type to the designated servlet for further processing.

« Servlet chaining involves defining alist (a sequence) of two or more servlets such that the request object
and the ServletOutputStream of the first servlet is passed to the next servlet in the sequence. This
process is repeated at each servlet in the list until the last servlet returns the response to the client.

32

4.2.1.3.4.1: Servlet filtering with MIME types

To configure MIME filters, use an administrative client to configure recognized MIME types for virtualhosts
containing servlets.

33

4.2.1.3.4.2: Servlet filtering with servlet chains

To configure a servlet chain, you must use an IBM supplied servlet
namedcom i bm websphere. servlet.filter.ChainerServl et

1. Addthecom i bm websphere. servl et.filter. Chai nerServl et toyour Web application
during the application assembly stage and assign a servlet URL to the servlet instance.

2. Definethe following initialization parameter and value for the ChainerServlet:

|Parameter |Value
|chainer.pathlist |/first_serviet URL /next_serviet URL

The chainer.pathlist is a space-delimited list of servlet URLS. For example, if you want the sequence of
servlets to be three servlets that you added to the examples application (servietA, servletB, servletC),
specify:

|Parameter |Value

|chainer.pathlist |/servietA /servietB /servietC

3. Toinvoke aservlet chain, invoke the servlet URL of the ChainerServlet in your application.

34

4.2.1.3.5: Enhancing servlet error reporting

A servlet can report errors by:

« Calling the ServletResponse.sendError method

« Throwing an uncaught exception within its service method
The enhanced servlet error reporting function in IBM WebSphere Application Server provides an easier way to implement error reporting. The
error page (a JSP file or servlet) is configured for the application and used by al of the servletsin that application. The new mechanism handles
caught and uncaught errors.
To return the error page to the client, the servlet engine:

1. Getsthe ServletContext.RequestDispatcher for the URI configured for the application error path.

2. Creates an instance of the error bean (typecom i bm webspher e. servl et. error Servl et Er r or Repor t). The bean scopeis

request, so that the target servlet (the servlet that encountered the error) can access the detailed error information.

For the Application Server, the ServletResponse.sendError() method has been overriden to provide the functionality previously described. The
overriden method is shown below:

public void sendError(int statusCode, String nmessage){ Servl et Exception e = new
Servl et Error Report (st atusCode, nessage); request.set Attribute(Servl et ErrorReport. ATTRI BUTE_NAME,
e); servl et Cont ext . get Request Di spat cher (get ErrorPat h()). forward(request, response);}

35

4.2.1.3.5.1: Public methods of the ServletErrorReport class

To create an error JSP or servlet, you need to know the public methods of thecom i bm websphere. servl et. error. Servl et Err or Report

class (the error bean), which are:
public class ServletErrorReport extends Servl et Exception{ /1 CGet the stacktrace of the error as
a string public String getStackTrace() /1 Get the nessage associated with the error. /1 The
sanme nmessage is sent to the sendError() nethod. public String get Message() /1 CGet the error
code associated with the error. //he sane error code is sent to the sendError() method. //This wll
al so be the same as the status code of the response. public int getErrorCode() /1 Get
the nane of the servlet that reported the error public String getTarget Servl et Nane()}

36

4.2.1.3.6: Serving servlets by classname

To enable serving servlets by classname, you can either:

« Click serve servlets by classnamein the IBM Extensions panel of the Application Assembly Tool
(AAT), or

« Change the serveServletsByClassnameEnabled flag in thei bm web- ext . xm file fromfalse to
true.

il Thei bm web-ext.xmi fileislocated in the WEB-INF directory of the installed
Web module

See section 4.2.1.2.3afor details and instructions.

37

4.2.1.3.7: Serving all files from application servers

Files are served on a per-web module, not a per-appserver basis.To enable file serving, you can either:

« Click the File Serving Enabled checkbox in the IBM extensions panel of the Application Assembly
Tool (AAT), or

« ChangethefileServingEnabled flag fromfalseto trueinthei bm web- ext . xm file.

il Thei bm web-ext. xni fileislocated in the WEB-INF directory of theinstalled
Web module

See section 4.2.1.2.3a for details and instructions.

38

4.2.1.3.8: Obtaining the Web application classpath
from within a servlet

To have a servlet or JSP-generated servlet detect the classpathof the Web application to which it belongs, get
the

com i bm websphere. servl et. application. cl asspath
attribute from the ServletContext.

39

4.2.1.3.9: PageListServlet support

IBM WebSphere Application Server supplies the PagelListServlet to call a Java Server Page (JSP) by name. The
Pagel istServlet uses configuration information to map a JSP name to the URI, where the URI specifies a JSP
filein the WAR module. This support alows application developers to stop hard-coding URLs in their servlets.

These mappings, or page lists, are logically grouped according to the markup-language type (HTML, WML,
and others) the JSP file is going to return to the requesting client. This allows applications, through the use of
servlets that extend the PageListServlet class, to call a JSP file that returns the proper markup-language data
type of the calling client. For example, if arequest comes from a PDA, which requires WML data, and makes a
request to a servlet that extends the PageListServlet, then a Java Server Page that returns WML datais called.

PageL istServlet configuration information can be defined either in the IBM Web Extensionsfile or in an XML
servlet configuration file. The IBM Web Extensionsfile is created and stored in the WAR file by the IBM
WebSphere Application Assembly Tool. An XML servlet configuration file can be created using IBM
WebSphere Studio or manually.

The PageListServlet hasacal | Page() method that invokes a Java Server Pagein responseto an HTTP
request for apagein apagelist.
Thecal | Page() method can beinvoked asfollows:

1. cal | Page(String pageNane, HttpServl et Request request,
Ht t pSer vl et Response response)

o pageName - A page name defined in the PageListServlet configuration
0 request - The HttpServletRequest object
0 response - The HttpServletResponse object

[il For this method of invocation, the default markup-languageis HTML.

2. cal | Page(String m Nane, String pageNane, HttpServletRequest req,
Ht t pSer vl et Response resp)

o mIName - A markup-language type.

pageName - A page name defined in the PageL istServlet configuration
request - The HttpServletRequest object

response - The HttpServletResponse object

o o 0O

See the Javadoc for the PageListServlet for acomplete list of available APIs.

In addition to providing the page list mapping capability, the PageListServlet also has Client Type Detection
support. Using the configuration informationinthecl i ent _t ypes. xnl file, aservlet can determine the
markup-language type the calling client requires for the response. This support allows the user's servlet to call
an appropriate JSP, based on markup-language type. Use the second version of the cal | Page() method
(described above) for Client Type Detection support.

In structuring the serviet code, keep in mind that the PageLi st Ser vl et . cal | Page() method isnot an
exit. Any servlet code that follows this method call will be executed.

40

http://localhost/0802_makepdf/apidocs/index.html

4.2.1.3.9.1: Extending PageListServlet

TheHel | oPer vasi veSer vl et isan example of aserviet that extendsthe PageLi st Ser vl et class and attempts to determine the markup-language
typerequired by the client. The servlet then usesthecal | Page() method to callthe JSP with the page name of "Hello.page".

public class Hell oPervasi veServl et extends PageListServlet inplenments Serializable{ /* * doGet --

Process inconmi ng HITP GET requests */ public void doGet (HttpServl et Request request,

Htt pSer vl et Response response) throws | OException, ServletException { /1 This is the nane of the
page to be call ed. String pageNane = "Hel |l o. page"; /1l First check if the servlet was

i nvoked with a queryString /1 that contained a narkup-language val ue. For exanple, if this
I servlet was invoked like this: I http://1 ocal host/servl ets/Hell oPervasi ve?m name=VXM
String m Name = get MLNanmeFr onRequest (request); /1 1f no M. type was provided in the queryString,
then attenpt to /] determine the client type fromthe Request and use the M. nanme as I
configured in the client_types.xm file. if (m Name == null) { m Name =

get ML TypeFr onRequest (r equest) ; } try { /'l Serve the Request page.

cal | Page(m Nane, pageNane, request, response); } catch (Exception e) {

handl eError (m Name, request, response, e€); 1}

41

4.2.1.3.9.2: Configuring page lists using the
Application Assembly Tool

PagelistServlet configuration information can be defined in the IBM Web Extensionsfile or in an XML servlet
configuration file. The IBM Web Extensionsfileis created and stored in the WAR file by the IBM WebSphere

Application Assembly Tool (AAT). Inthe AAT, the page list information is configured under PageL ist
Extensions.

42

4.2.1.3.9.3: Configuring page lists using an XML
servlet configuration file

An alternative or legacy way of providing PageListServlet configuration information, isusing an XML file
known asthe XML Servlet Configuration file. Thisfile provides configuration information for page lists, and
additional servlet configuration information. Thefilehasa. ser vl et extension and resides in the same

directory asthe servlet classfile. The XML servlet configuration file must be created with one of the following
names.

1. servl et _cl ass_nane. servl et
2. servl et _nane. servl et

IBM WebSphere Studio provides wizards that generate servlets with accompanying XML servlet configuration
files.If you are not using IBM WebSphere Studio, you can manually create XML servlet configuration
files.Each XML configuration file must be awell-formed XML document. The files are not validated against a
Document Type Definition (DTD). Althoughthereisno DTD, it isrecommended that all elementsin thefile
appear in the same order as the elements described below:

XML Servlet configuration file elements

| Elements | Description

|servlet |The root element of an XML servlet configuration file.

code The class name of the servlet, that extends the PageListServlet, without the. cl ass
extension.

|description | The description of the servlet.

The attributes of this element specify the name-value pair to be used as an initialization
init-parameter [parameter on the servlet. A servlet can have multiple initialization parameters, each within
its own init-parameter element.

Contains <ml-name>, <ml-mime>, and <page-list> elements. (The root element <servlet>
can contain multiple <markup-language> elements.)

|m|-name |A markup-language type, as for example: HTML, or WML, or VXML, and so forth
A MIME type, asfor example: t ext . ht ml ,ort ext/ x-vxmi , or

markup-language

mi-mime t ext / vnd. wap. wl , and so forth
eligt Contains <default-page>, <error-page>, and <page>+ elements. (A <page-list> element
bag can contain multiple <page> elements.)
defaLlt-nage Contains a<uri> element. The URI specifies the JSP to be called if the requested page
bag does not exist or is not specified on the HTTP request.
rror-page Contains a <uri> element. The URI specifies the JSP to be called when the
bag handl eEr r or () PagelListServlet method is called.
Contains a <uri> and <page-name> element. The URI specifies the JSP file to be called
page when a PageListServlet method cal | Page() iscalled with the same value as
<page-name>.
|uri |A JSP file within the WAR Module.
page-name The name in which a servlet, extending the PageListServlet, will useinthecal | Page()

method to call a JSP.

43

4.2.1.3.9.4: Example of the XML servlet configuration file

<?xm version="1.0"?><servl et> <code>Hel | oPervasi veServl et</code> <description>Shows how to use
PagelLi st Servl et cl ass. <:/description> <init-paranmeter nane="nanmel" val ue="val ue2"/>

<mar kup- | anguage> <m - name>HTM.</ ml - nanme> <m -mne>text/htm </l -m me> <page-list>
<error-page> <uri >/ mywebapp/ Hel | oHTMLError. j sp</uri > </ error-page> <page>
<page- nane>Hel | 0. page</ page- nane> <uri >/ mywebapp/ Hel | oHTM.. j sp</ uri > </ page>
</ page-list> </ markup-|anguage> <nmarkup-|anguage> <m - name>VXM.</ m - nane>

<m -m me>t ext/ x-vxm </ m -ni ne> <page-list> <error-page>

<uri >/ mywebapp/ Hel | oVXMLError. j sp</uri > </ error-page> <page>

<page- name>Hel | 0. page</ page- nanme> <uri >/ mywebapp/ Hel | oVXM.. j sp</ uri > </ page>
</ page-list> </ markup-|anguage> <markup-I|anguage> <m - name>WWL</ m - nanme>

<m - m me>t ext/vnd. wap. wr </ m - mi me> <page-|ist> <error-page>

<uri >/ mywebapp/ Hel | oWMLError . j sp</uri > </ error-page> <page>

<page- nane>Hel | 0. page</ page- nane> <uri >/ mywebapp/ Hel | oWWL. j sp</ uri > </ page>

</ page-list> </ markup-I|anguage></servlet>

44

4.2.1.3.9.5: PagelListServlet client type configuration
file

In addition to providing the page list mapping capability, the PageListServlet also has Client Type Detection
support. Using the configuration informationinthecl i ent _t ypes. xnl file, aservlet can determine the
markup-language type the calling client requires for the response.

This support allows the servlet, extending PageL istServet, to call an appropriate JSP file,with the

cal | Page() method, based on the markup-language type of the request. The client type detection method,
get MLTypeFr onRequest (Ht t pSer vl et Request request), provided by the PageListServlet,
inspects the HttpServletRequest object's request headers, and searches for a match in the

client _types.xm file

The client type detection method does the following:

1. Using the input HttpServletRequest and thecl i ent _t ypes. xmi file, it checks for amatching HTTP
reguest name and value. If found, it returns the markup-language value configured for the
<client-type> element.

2. If multiple matches are found, it returns the markup-language for thefirst <cl i ent - t ype> (for which
amatch was found).

3. If no match was found, it returns the value of the markup-language for the default page defined in the
Pagel istServlet configuration.

Theclient types.xm fileislocated inthe pr oduct i nstall ati on_root/ properties
directory.

45

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.2.1.3.9.6: Example of a client type configuration file

<?xm version="1.0"?><! DOCTYPE clients [<! ELEMENT client-type

(descri ption, mar kup- | anguage, r equest - header +) ><! ELEMENT descri pti on (#PCDATA) ><! ELEMENT

mar kup- | anguage (#PCDATA) ><! ELEMENT r equest - header (namne, val ue)><! ELEMENT clients
(client-type+)><! ELEMENT nane (#PCDATA)><! ELEMENT val ue (#PCDATA)>] ><clients> <client-type>

<descri pti on>l BM Speech Client</description> <mar kup- | anguage>VXM.</ mar kup- | anguage>

<r equest - header > <nane>user - agent </ nane> <val ue>lI BM Voi ceXM. pre-rel ease version

000303</ val ue> </ request - header > <r equest - header > <nane>accept </ nane>

<val ue>t ext/ vxm </ val ue> </request-header> </client-type> <client-type> <descri pti on>W/L

Br owser </ descri pti on> <mar kup- | anguage>WWL</ mar kup- | anguage> <r equest - header >

<name>accept </ nane> <val ue>t ext/ x- wap. wn </ val ue> </ request - header > <r equest - header >
<name>accept </ nane> <val ue>t ext/vnd. wap. wrl </ val ue> </ request - header >

</client-type></clients>

46

4.2.2: Developing JSP files

If ISP files are fairly new to you, consider reading about their lifecycle and access model. When you are ready
to begin writing JSP files, see the article featuring JSP file content. Review the support and environment article
for topics such as JSP processors and API's, recommended development tools, and batch compiling.

47

4.2.2.1: JavaServer Pages (JSP) lifecycle

JSP files are compiled into servlets. After a JSP is compiled, its lifecycleis similar to the servlet lifecycle:

(Initialization failed)

Available
for
Seryice

Linanailable
for
Service

(Unavailable
exception
throawn)

Servicing
requests

Java source generation and compilation

When a Web container receives arequest for a JSP file, it passes the request to the JSP processor .

If thisisthe first time the JSP file has been requested or if the compiled copy of the JSP fileis not found, the
JSP compiler generates and compiles a Java source file for the JSP file. The JSP processor puts the Java source
and classfile in the JSP processor directory.

By default, the JSP syntax in a JSP file is converted to Java code that is added to the service() method of the
generated classfile. If you need to specify initialization parameters for the servlet or other initialization
information, add the method directive set to the valuei ni t .

Request processing

48

After the JSP processor places the servlet classfile in the JSP processor directory, the Web container creates an
instance of the servlet and calls the servlet service() method in response to the request. All subsequent requests
for the JSP are handled by that instance of the servlet.

When the Web container receives arequest for a JSP file, the engine checks to determine whether the JSP file
(jsp) has changed since it was loaded. If it has changed, the Web container reloads the updated JSP file (that is,
generates an updated Java source and class file for the JSP). The newly loaded servlet instance receives the
client request.

Termination

When the Web container no longer needs the servlet or a newinstance of the servlet is being reloaded, the Web
container invokes theservlet's destroy() method. The Web container can aso call the destroy() method if the
engine needs to conserve resources or a pending call to a servlet service() method exceeds the timeout. The Java
Virtual Machine performs garbage collection after the destroy.

49

4.2.2.1a;: JSP access models

JSP files can be accessed in two ways:

50

« The browser sends arequest for a JSP file.

The JSP file accesses beans or other components that generate dynamic content that is sent to the
browser,as shown:

Request for a JSP file

Database

Bircraser F OUSP |] * -
-I 1 Fike |4 .EW“.' !

When the Web server receives arequest for a JSP file, the server sends therequest to the application
server. The application server parses theJSP file and generates Java source, which is compiled and
executed as aservlet.

The request is sent to a servlet that generates dynamic content and calls a JSP file to send the content to
the browser, as shown:

Request for a servlet

Ciatahage
-

Pregyunas] '
| Serviet JoBC |

o
Aeoult Bean
h

Fesponss | ysp
File

This access model facilitates separating content generation from content display.

The application server supplies a set of methods in the HttpServiceRequest object and the
HttpServiceResponse object. These methods allow an invoked servlet to place an object (usually a bean)
into arequest object and pass that request to another page (usually a JSP file) for display. The invoked
page retrieves the beanfrom the request object and generates the client-side HTML.

4.2.2.2: JSP support and environment in WebSphere

IBM WebSphere Application Server supports the JSP 1.1 Specification from Sun Microsystems. If you are
going to develop new JSP files for use with IBMWebSphere Application Server, it is recommended you use JSP
1.1.

All APIs described in this section are supported at the JSP 1.1 level.

51

http://javasoft.com/products/jsp/index.html

4.2.2.2.2: ISP processors

When you install the Application Server product on a Web server, the Web server configuration is set to pass
HTTP requests for JSP files (files with the extension .jsp) to the Application Server product.

The JSP processor creates and compiles a servlet from each JSP file. The processor produces these files for each
JSPfile:

« .Jjavafile, which contains the Java language code for the servlet

« .Classfile, whichisthe compiled servlet

- .dat file, which contains the static part of the original jsp file

The JSP processor puts the .java, the .classfile, and the .dat file in the following path:
<product installation_root>\tenp\<hostnanme>\<server nane>\ <webnodul enane>

Like all servlets, a servlet generated from a JSP file extends javax.servlet.http.HttpServiet. The servlet Java
code contains import statements for the necessary classes and a package statement, if the servlet classis part of
a package.

If the JSP file contains JSP syntax (such as directives and scriptlets), the JSP processor converts the JSP syntax
to the equivalent Java code. If the JSP file contains HTML tags, the processor adds Java code so that the servlet
outputs the HTML character by character.

52

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.2.2.2.3: Java Server Page attributes

Use the WebSphere Application Assembly Tool (AAT) to set the following Java Server Page attributes. The JSP
attributes are storedin the IBM extensions document for Web module, i bm web- ext . xm .

JSP file attribute values

JSP file attribute names (Default valuesarein bold Purpose
text)
If true, the generated . j avafile will be kept. If the
keepgenerated true | false valueisfase, the. j ava fileisnot saved.
By default, JSP files using the "usebean™ tag
dosetattribute true | false withScope="session" do not always work properly

when session persistence is enabled.

scratchdir

product_installation_root\temp

Set scr at chdi r toavalid drive and directory
which the JSP enginewill use to store the generated
.class and. | ava files.

jSp.repeat Tag.ignoreException

true | false

In previous rel eases, the <tsx:repeat> tagwould
iterate until one of the following conditions was
met:

1. The end value was reached

2. An
Arrayl ndexQut of BoundsExcepti on
was thrown

Other types of exceptions were caught but not
thrown, which could result in numerous errors being
returned to the browser.

In version 4.0, the default behavior will now stop
therepeat tag iterations when any exception is
thrown.

To reinstate the old behavior, set this parameter's
valueto true.

defaultEncoding

Name of the desired character
Set.

The value of the system
propertyfile.encoding isthe
default.

Use this parameter to set the encoding for JSP
pages. If a JSP page containsacont ent Type
directive that defines an alternative character set,
that character set is used instead of the

def aul t Encodi ng parameter'svalue.

The order of precedenceis:

1. The JSP page'scont ent Typedirective's
charset.

Thedef aul t Encodi ng parameter's
value.

The System property fi | e. encodi ng
value

|SO-8859-1

53

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.2.2.2.4: Batch Compiling JSP files

Asan IBM enhancement to JSP support, IBM WebSphere Application Server provides a batch JSP compiler.
Use this function to batch compile your JSP files and thereby enable faster responsesto the initial client
requests for the JSP files on your production Web server.

It is best to batch compile all of the JSP files associated with an application. Batch compiling saves system
resources and provides security on the application server by specifying if and/or when the server isto check for
aclassfile or recompile a JSP file. The application server will monitor the compiled JSP file for changes, and
will automatically recompile and rel oad the JSP file whenever the application server detects that the JSP file has
changed. By modifying this process, you can eliminate time- and resource-consuming compilations and ensure
that you have control over the compilation of your JSPfiles. It is aso useful as afast way to resynchronize all

of the JSP files for an application.

54

4.2.2.2.4.2: Compiling JSP 1.1 files as a batch

To use the JSP batch compiler for JSP files, enter the following command on a single line at an operating system
command prompt:

JspBat chConpi | er -enterpri seApp<nane>-webMdul e<nanme>[-fil enane<j sp nanme>|
[- keepgener at ed<true| fal se>][-configFil e<configfile nane>]

Note: If the names specified for these arguments are comprised of two or more words separated by
spaces, you must add quotation marks around the names.

where:
0 enterpriseApp

The name of the Enterprise Application you want to compile.
o webModule

The name of the specific Web module that you want to compile.
o filename
The name of asingle JSP file that you want to compile. If thisargument is not set, al filesin the Web
module are compiled.
0 keepgenerated
If set to "yes' WebSphere Application Server will save the generated .java files used for compilation

on your server. By default, thisis set to "no" and the .java files are erased after the classfiles have
been compiled.

o configFile

Theconfi gFi | e parameter isvalid only on Advanced Single Server Edition for "Multiplatforms.”
Use it to specify an alternative sever configuration file (the default isser ver - cf g. xni).

55

4.2.2.3: Overview of JSP file content

JSP files have the extension .jsp. A JSP filecontains any combination of the following items. Click an item to
learn about its syntax. To learn how to put it all together, see the Related information for examples, samples,
and additional syntax references.

JSP syntax

Syntax format

Details

Directives

Use JSP directives (enclosed within <%@ and %>) to specify:
« Scripting language being used
« Interfaces a servlet implements
o Classes aserviet extends
« Packages a servlet imports
« MIME type of the generated response

[il See Sun'sJSP Syntax Referencefor JSP 1.1
syntax descriptions and examples.

Class-wide variable and method declarations

Use the <%! declaration(s) %> syntax to declareclass-wide
variables and class-wide methods for the servlet class.

Inline Java code (scriptlets), enclosed within
<% and %>

Y ou can embed any valid Javalanguage code inline withina
JSP file between the <% and %> tags. Suchembedded codeis
called ascriptlet. If you do not specify the method directive,
the generated code becomes the body of the service method.

An advantage of embedding Java coding inlinein JSPfilesis
that the servlet does not have to be compiled in advance, and
placed on the server. Thismakes it easier to quickly test servlet
coding.

Variable text, specified using IBM extensions
for variable data or Java expressions enclosed
within <%= and %>

The IBM extensions are the more user-friendly approach to
putting variable fields on your HTML pages.

A second method for adding variable dataisto specify a Java
language expression that is resolved when the JSPfileis
processed. Use the JSP expression tags <%= and %>. The
expression is evaluated, converted into a string, and displayed.
Primitive types, such asint and float, areautomatically
converted to string representation.

<jsp:useBean> tag

Use the <jsp:useBean> tag to create an instance of a bean that
will be accessed el sewhere within the JSP file. Then use JSP
tags to access the bean.

JSP tags for database access (JSP 1.1)

The IBM extensions make it easy for non-programmers to
create Web pages that access databases.

56

http://java.sun.com/products/jsp/tags/11/tags11.html

HTML tags

A JSPfile can contain any valid HTML tags. View article 0.70: What isHTML? for more informationon
HTML. Refer to your favorite HTMLreference for a description of HTML tags.

57

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0070.html

4.2.2.3.2: JSP syntax: Class-wide variables and methods

Use the <%! declaration(s) %> syntax to declareclass-wide variables and class-wide methods for the servlet class.

An example of specifying class-widevariables and methods:
<% int i=0; String foo = "Hello"; % <% private void foo() {// code for the nethod } %

58

4.2.2.3.3: JSP syntax: Inline Java code (scriptlets)

Y ou can embed any valid Java language code inlinebetween the <% and %> tags. Suchembedded code is called a scriptlet. If you do not specify the
method directive, the generated code becomes the body of the service method.

Be sure to use the braces characters, { }, to enclose if, while, and for statements even if the scope contains a single statement. Y ou can enclose the
entire statement with a single scriptlet tag. However, if you use multiple scriptlet tags with the statement, be sure to place the opening brace
character, {, in the same statement as the if, while, or for keyword. The following examplesiillustrate these points. The first exampleisthe easiest.

<%or (int i =0; i <1; i++) { out.println("<P>This is witten when " + i + " is < 1</P>");
... <% for (int i =0; i <1; i++) { %<%
out.println("<P>This is witten when " + i + " is < 1</P>"); %<%}

%...<%for (int i =0; i <1; i++) {

%><% out.println("<P>This is witten when " + i + " is < 1</P>"); %<% }

%>

59

4.2.2.3.4: JSP syntax: Java expressions

To specify a Javalanguage expression that is resolvedwhen the JSP file is processed, use the JSP expression
tags <%= and%>. The expression is evaluated, converted into a string,and displayed. Primitive types, such as
int and float, areautomatically converted to string representation. In this example, foois the class-wide variable
declared in the class-wide variables and methods example:

<p>Transl ate the greeting <% foo %.</p>

When the ISP fileis served, thetext reads. Tr ansl ate the greeting Hel | o.

60

4.2.2.3.5: JSP syntax: useBean tag

The<j sp: useBean> tag locates a Bean or creates an instance of a Bean if it does not exist.

JavaBeans can be class files, serializedbeans, or dynamically generated by a servlet.A JavaBean can even be a
servlet (that is, provide aservice). If aservlet generates dynamic content and stores it in a bean, the bean can
thenbe passed to a JSP file for use within the Web page defined by thefile.

See Sun's JSP Syntax Referencefor JSP 1.1 syntax descriptions and examples.

61

http://java.sun.com/products/jsp/tags/11/tags11.html

4.2.2.3.5.1: JSP syntax: <jsp:useBean> tag

Use the <jsp:useBean> tag to locate or instantiate a JavaBeans component. The syntax for the <jsp:useBean> tag
IS

<j sp: useBean
I d="beanSoneNane"
scope="page| request | sessi on| appl i cat on"
{ class="package_cl ass" |
type ="package_cl ass" |
cl ass="package_cl ass" type ="package_cl ass" |
beanName="{ package. cl ass| <% expression%}" type ="package_cl ass"

}

{ />
> ot her el enents
</j sp: useBean>

See Sun's JSP syntax referencefor a description of the <jsp:useBean> attributes and examples.

62

http://java.sun.com/products/jsp/tags/11/syntaxref1115.html

4.2.2.3.5.2: JSP syntax: Accessing bean properties

After specifying the <j sp: useBean> tag, you can access the bean at any pointwithin the JSP file using the
<j sp: get Property>tag.

For adescription of the <j sp: get Pr oper t y> tag attributesand for coding examples, see Sun's JSP Syntax
Reference

63

http://java.sun.com/products/jsp/tags/11/syntaxref11.fm10.html
http://java.sun.com/products/jsp/tags/11/syntaxref11.fm10.html

4.2.2.3.5.3: JSP syntax: Setting bean properties

Y ou can set bean properties by using the<j sp: set Property>tag. The<j sp: set Property>tag
specifiesalist of properties and the corresponding values. The properties areset after the the bean is instantiated
using the <j sp: useBean> tag.

Y ou must declare the bean with <j sp: useBean> before you can set a property value.

See the Sun's JSP syntax referencefor <j sp: set Pr oper t y> syntax details and examples.

64

http://java.sun.com/products/jsp/tags/11/syntaxref11.fm13.html

4.2.2.3.7: IBM extensions to JSP syntax

Refer to the Sun JSP Specification for the base JavaServer Pages (JSP) APIs. IBMWebSphere Application
Server Version 3.5 provided severa extensions to the base APIs.The backward compatibility of the JSP 1.1
specification to JSP 1.0 allows users to invoke these APIs without modification.

The extensions belong to these categories:

| Extension | Use

Put variable fields in JSP files and have servlets and JavaBeans
Syntax for variabledata |dynamicallyreplace the variables with values from a database when the JSP output
is returned tothe browser

Add a database connection to a Web page and then use that connection to query or
Syntax for database access|updatethe database. The user ID and password for the database connection can be
provided by theuser at request time, or can be hardcoded within the JSP file.

Scope of variables: Because the values specified by syntax apply onlyto the JSP file in which thesyntax is
embedded, identifiers and other tag data can be accessed only withinthe page.

See the Related information for syntax details.

65

4.2.2.3.7.1: JSP syntax: Tags for variable data

The variable data syntax enables you to put variable fields in your JSP file and have your servlets and
JavaBeansdynamically replace the variables with values from a database when the JSP output is returned to the

browser.

The table summarizes the tags. Click atag to link to its syntax description.

| Goal

Tag

Details

Get the value of abean to display in a JSP.

<tsx:getProperty>

ThisIBM extension of the Sun JSP
<jsp:getProperty> tag implements all of the
<jsp:getProperty> function and adds the
ability to introspect a database bean that was
created using the IBM extension
<tsx:dbquery> or <tsx:dbmodify>.

Note: You cannot assign the
value from this tag toa
variable. The value, generated
as output from thistag, is
displayed in the Browser
window.

Repeat a block of HTML tagging that
contains the <tsx:getProperty> syntax and
the HTML tags for formatting content.

<tsx:repeat>

Use the <tsx:repeat> syntax to iterate over a
database query results set. The <tsx:repeat>
syntax iterates from the start value to the end
value until one of the following conditionsis
met:

o Theend valueisreached.

« An exception isthrown.
The output of a <tsx:repeat> block is buffered
until the block completes. If an exception is

thrown before a block completes, no output is
written for that block.

66

4.2.2.3.7.1.1: JSP syntax: <tsx:getProperty> tag syntax and
examples

<t sx: get Property name="bean_nane" property="property_nane" />
where:
« nName

The name of the JavaBean declared by thei d attribute of a <tsx:dbquery> syntax within the JSP file. See <tsx:dbquery> for an
explanation. The value of this attribute is case-sensitive.

« property

The property of the bean to access for substitution. The value ofthe attribute is case-sensitive and is the local e-independent name
of theproperty.

Examples

<t sx: getProperty nane="userProfile" property="usernane" /><tsx:getProperty nane="request"
property=request . get Paranet er ("corporation") />

In most cases, the value of the property attribute will be just theproperty name. However, to access the request bean or access a property
of a property(sub-property), you specify the full form of the property attribute. The full form also gives you the option to specify an
index for indexedproperties. The optiona index can be a constant (such as 2) or anindex like the one described in <tsx:repeat>. Some

examples of using the full form of the property attribute:

<t sx: get Property name="staff Query" property=address(current Addressl ndex) /><tsx:getProperty
nane="shoppi ngCart" property=itens(4).price /><tsx:getProperty nanme="fooBean"
property=foo(2).bat(3).boo.far />

67

4.2.2.3.7.1.2: JSP syntax: <tsx:.repeat>tag syntax

<tsx:repeat index=nane start="starting_index" end="endi ng_i ndex"></tsx:repeat>
where:
o index

An optional name used to identify the index of this repeat block.The value is case-sensitive and its scopeis
the JSPfile.

o Start

An optional starting index value for this repeat block. The defaultis 0.
« end

An optiona ending index value for this repeat block. The maximumvaueis 2,147,483,647. If the value of
the end attribute is less thanthe value of the start attribute, the end attribute isignored.

68

4.2.2.3.7.1.2a: JSP syntax: The repeat tag results set and the associated bean

The <tsx:repeat> iterates over aresults set. The results set is contained within a JavaBean. The bean can be a static bean (for example, a bean created by using the IBM WebSphere Studio database wizard) or adynamically generated bean (for example, a bean generated by the <tsx:dbquery> syntax). The

following table is a graphic representation of the contents of a bean, myBean:

col3
countrymen
tomato
July

col2
Romans
lettuce
June

coll
friends
bacon
May

row0
rowl
row2

Some observations about the bean:

« The column names in the database table become the property names of the bean. The section <tsx:dbquery> describes a technique for mapping the column names to different property names.

« The bean properties are indexed. For example, myBean.get(Col 1(row2)) returns May .
« Thequery results arein the rows. The <tsx:repeat> iterates over the rows (beginning at the start row).

The following table compares using the <tsx:repeat> to iterate over static bean versus a dynamically generated bean:

Static Bean Example

<tsx:repeat> Bean Example

myBean.class

// Code to get a connection// Code to get the data Select * fromnyTable;// Code to close the conne
JSP file

<t sx:repeat index=abc> <tsx:getPropery nanme="nyBean" property="col 1(abc)" /></tsx:repeat>

il

The bean (myBean.class) is a static bean.
The method to access the bean properties is myBean.get(property(index)).

Y ou can omit the property index, in which case the index of the enclosing <tsx:repeat> is used. Y ou can also omit the index on the
<tsx:repeat>.
The <tsx:repeat> iterates over the bean properties row by row, beginning with the start row.

JSP file

Etisan dbconnect
><t sx: dbquery i d="dynam c" connection="conn" >
nane="dynam c"

[

i d="conn"userid="alice"passwd="test"url ="j dbc: db2: sanpl e"dri ver ="COM i bm db2. j dbc. app. DB2Dr
Sel ect * from nyTabl e; </t sx: dbquer y><t sx: repeat i ndex=abc>
property="col 1(abc)" /></tsx:repeat>

The bean (dynamic) is generated by the <tsx:dbquery> and does not exist until the syntax is executed.

The method to access the bean propertiesis
dynamic.getValue("property”, index).

Y ou can omit the property index, in which case the index of the enclosing <tsx:repeat> is used. Y ou can also omit the index on the <tsx:repeat>.
The <tsx:repeat> syntax iterates over the bean properties row by row, beginning with the start row.

Implicit and explicit indexing

Examples 1, 2, and 3 show how to use the <tsx:repeat>. Theexamples produce the same output if al indexed properties have 300 or fewerelements. If there are more than 300 elements, Examples 1 and 2 willdisplay all elements, while Example 3 will show only the first 300elements.

Example 1 shows implicit indexing with the default start and default endindex. The bean with the smallest number of indexed properties restricts the number of times the loop will repeat.
<tr><t d><t sx: get Property

<t abl e><t sx: r epeat >
name="servi ceLocati onsQuery" property="address" /></tr></td>
property="tel ephone" /></tr></td></tsx:repeat></tabl e>

Example 2 shows indexing, starting index, and ending index:

<t abl e><t sx: repeat index=nylndex start=0 end=2147483647>
property=city(nyl ndex) /></tr></td>

<tr><td><t sx: get Property name="servi ceLocati onsQuery" property="city" /></tr></td>
<tr><t d><t sx: get Property name="servi ceLocati onsQuery"

<tr><t d><tsx: get Property name="servi ceLocati onsQuery"
<tr><t d><t sx: get Property name="servi ceLocati onsQuery" property=address(nylndex) /></tr></td>

<tr><t d><tsx: get Property name="servi ceLocati onsQuery" property=tel ephone(nylndex) /></tr></td></tsx:repeat></table>

Example 3 shows explicit indexing and ending index with implicit startingindex. Although the index attribute is specified, the indexed propertycity can still be implicitly indexed because the (my| ndex) isnot required.

<t abl e><t sx: repeat index=nylndex end=299>
<tr><td><tsx: get Property name="servi ceLocati onsQuery" property="address(nylndex)" /></tr></td>
nane="servi ceLocati onsQuery" property="tel ephone(nyl ndex)" /></tr></td></tsx:repeat></tabl e>

Nesting <tsx:repeat> blocks

<tr><t d><t sx: get Property name="servi ceLocati onsQuery" property="city" /t></tr></td>
<tr><t d><t sx: get Property

Y ou can nest <tsx:repeat> blocks. Each block is separatelyindexed. This capability is useful for interleaving properties on twobeans, or properties that have sub-properties. In the example, two<tsx:repeat> blocks are nested to display the list of songs on each compactdisc in the user's shopping cart.

<tsx:repeat index=cdi ndex> <hl><tsx:getProperty name="shoppi ngCart" property=cds.title /></hl>
<tr><t d><t sx: get Property name="shoppi ngCart" property=cds(cdi ndex).playlist /> </td></tr>
</ tsx:repeat ></tsx: repeat>

<t abl e>
</ tabl e>

<t sx:repeat>

4.2.2.3.7.2: JSP syntax: Tags for database access

Beginning with IBM WebSphere Application Server Version 3.x, the JSP 1.0 supportwas extended to provide
syntaxfor database access. The syntax makes it simple to add a database connectionto a Web page and then use
that connection to query or update the database. The user ID and password for the database connection can be
provided by theuser at request-time or hard coded within the JSP file.

The table summarizes the tags. Click atag to link to its syntax description.

| Goal

| Tag

| Details and examples

Specify information needed to
make a connection to aJDBC or
an ODBC database.

<tsx:dbconnect>

The <tsx:dbconnect> syntax does not
establish the connection. Instead,the
<tsx:dbquery> and <tsx:domodify> syntax
are used to referencea <tsx:dbconnect> in
the same JSP file and establish the
connection.

When the JSP file is compiled into a
servlet, the Java processor addsthe Java
coding for the <tsx:dbconnect> syntax to
the servlet'sservice() method, which means
anew database connection is created for
eachrequest for the JSP file.

Avoid hard coding the user ID
and password in
the<tsx:dbconnect>.

<tsx:userid> and
<tsx:passwd>

Use the <tsx:userid> and <tsx:passwd> to
acceptuser input for the values and then
add that data to the request object. The
request objectcan be accessed by a JSP file
(such as the JISPEmployee.jsp example)
that requests the databaseconnection.

The <tsx:userid> and <tsx:passwd> must
be used within a<tsx:dbconnect> tag.

Establish a connection to a
database, submit database queries,
and return the results set.

70

<tsx:dbquery>

The <tsx:dbquery>:

1. References a <tsx:dbconnect>in
the same JSP file and uses the
information it provides to
determine the database URL and
driver. The user ID and password
are also obtained from the
<tsx:dbconnect> if those values are
provided in the <tsx:dbconnect>.

2. Establishes a new connection

3. Retrieves and caches datain the
results object

4. Closesthe connection (releases the
connection resource)

Establish a connection to a
database and then add records to a
database table.

<tsx:dbmodify>

The <tsx:dbmodify>:

1. References a<tsx:dbconnect>in
the same JSP file and uses the
information provided by that to
determine the database URL and
driver. The user ID and password
are also obtained from the
<tsx:dbconnect> if those values are
provided in the <tsx:dbconnect>.

2. Establishes a new connection

3. Updates atable in the database

4. Closesthe connection (releases the
connection resource)

Examples:
Basic example

Display query results.

<tsx:repeat> and
<tsx:getProperty>

The <tsx:repeat> loops through each of the
rowsin the query results.The
<tsx:getProperty> uses the query results
object (for the <tsx:dbquery>syntax whose
identifier is specified by the
<tsx:getProperty> bean attribute)and the
appropriate column name (specified by the
<tsx:getProperty> propertyattribute) to
retrieve the value.

Note: Y ou cannot assign
the value from the
<tsx:getProperty> tag toa
variable. The value,
generated as output from
thistag, isdisplayed in the
Browser window.

Examples:
Basic example

71

4.2.2.3.7.2.1: JSP syntax: <tsx:dbconnect> tag syntax

<t sx: dbconnect id="connection_id" useri d="db_user" passwd="user _password"
url ="j dbc: subprotocol : dat abase" driver ="dat abase_dri ver_namne"
j ndi name="JNDI _cont ext /| ogi cal _nane"></t sx: dbconnect >

where:
. id
A required identifier. The scopeisthe JSPfile. Thisidentifier is referenced by the connection attribute of a
<tsx:dbquery> tag.
o userid

An optional attribute that specifiesavalid user ID for the database to be accessed. If specified, this attribute
and its value are added to the request object.

Although the userid attribute is optional, the userid must be provided. See <tsx:userid> and <tsx:passwd> for
an alternative to hard coding thisinformation in the JSP file.
« passwd

An optional attribute that specifies the user password for the userid attribute. (This attribute is not optional if
the userid attribute is specified.) If specified, this attribute and its value are added to the request object.

Although the passwd attribute is optional, the password must be provided. See <tsx:userid> and <tsx:passwd>
for an aternative to hard coding this attribute in the JSP file.

o urlanddriver
To establish a database connection, the URL and driver must be provided.

The Application Server Version 3 supports connection to JDBC databases and ODBC databases.

JDBC database

For a JDBC database, the URL consists of the following colon-separated elements: jdbc, the sub-protocol
name, and the name of the database to be accessed. An example for a connection to the Sample database
included with IBM DB2is:

url ="j dbc: db2: sanpl e"dri ver="COM i bm db2. j dbc. app. DB2Dri ver"

ODBC database

Use the Sun JDBC-to-ODBC bridge driver included in the Java Development Kit (JDK) oranother vendor's
ODBC driver.

The url attribute specifies the location of the database. The driver attribute specifies the name of the driver to
be used to establish the database connection.

If the database is an ODBC database, you can use an ODBC driver or the Sun JDBC-to-ODBC bridge
included with the JDK. If you want to use an ODBC driver, refer to the driver documentation for instructions
on specifying the database location (the url attribute) and the driver name.
In the case of the bridge, the url syntax is jdbc:odbc:database. An exampleis:
url ="j dbc: odbc: aut os"dri ver="sun. j dbc. odbc. JdbcCOdbcDri ver"
[il To enablethe Application Server to access the ODBC database, use the ODBC Data Source
Administrator to add the ODBC data source to the System DSN configuration. To access the

72

ODBC Administrator, click the ODBC icon on the Windows NT Control Panel.
« jndiname

An optional attribute that identifies avalid context in the Application Server JNDI naming context and the

logical name of the data source in that context. The context is configured by the Web administrator using an
administrative client such as the WebSphere Administrative Console.

If the jndiname is specified, the JSP processor ignores the driver and url attributes on the <tsx:dbconnect> tag.

An empty element (such as <url></url>) isvalid.

73

4.2.2.3.7.2.2: JSP syntax: <tsx:userid> and <tsx:passwd> tag syntax

<t sx: dbconnect id="connection_id" <useri d><t sx: get Property
nane="request" property=request.getParaneter("userid") /></userid> <f ont
col or ="red" ><passwd></f ont ><t sx: get Property name="request" property=request. get Paraneter ("passwd")
/></passwd> url ="protocol : dat abase_nane: dat abase_t abl e"

driver="JDBC driver_nane"> </tsx:dbconnect >

where:
o <tsx:getProperty>
This syntax is a mechanism for embedding variable data. See JSP syntax for variable data.
o userid

Thisis areference to the request parameter that contains the userid. The parameter must have already been added to the request object that
was passed to this JSP file. The attribute and its value can be set in the request object using an HTML form or a URL query string to pass
the user-specified request parameters.

« passwd

Thisis areference to the request parameter that contains the password. The parameter must have already been added to the request object
that was passed to this JSP. The attribute and its value can be set in the request object using an HTML form or a URL query string to pass
user-specified values.

74

4.2.

2.3.7.2.3: JSP syntax: <tsx:dbquery> tag syntax

<% - SELECT conmmands and (optional) JSP syntax can be placed within the tsx:dbquery. --%<%- Any
ot her syntax, including HTM. comments, are not valid. --%-<tsx:dbquery id="query_id"
connection="connection_id" |imt="val ue" ></tsx:dbquery>

where:

id
Theidentifier of this query. The scopeisthe JSPfile. Thisidentifier is used to reference the query, for example, from the
<tsx:getProperty> to display query results.

The id becomes the name of a bean that contains the results set. The bean properties are dynamic and the property names are the names
of the columnsin the results set. If you want different column names, use the SQL keyword for specifying an alias on the SELECT
command. In the following example, the database table contains columns named FNAME and LNAME, but the SELECT statement uses
the AS keyword to map those column names to FirstName and LastName in the results set:

Sel ect FNAME, LNAME AS First Nane, LastNarme from Enpl oyee where FNAME=' Ji ni

connection

Theidentifier of a <tsx:dbconnect> in this JSP file. That <tsx:dbconnect> provides the database URL, driver name, and (optionally) the
user |D and password for the connection.

limit

An optional attribute that constrains the maximum number of records returned by a query. If the attribute is not specified, no limitis
used. In such a case, the effective limit is determined by the number of records and the system caching capability.

SELECT command and JSP syntax

The only valid SQL command is SELECT because the <tsx:dbquery> must return a results set. Refer to your database documentation for

information about the SELECT command. See other sections of this document for a description of JSP syntax for variable data and inline
Java code.

75

4.2.2.3.7.2.3a: Example: JSP syntax: <tsx:dbquery> tag syntax

In the following example, a database is queried for data about employees in a specified department. The department is specified using the
<tsx:getProperty> to embed a variable data field. The value of the field is based on user input.

<t sx: dbquery id="enpgs" connection="conn" >sel ect * from Enpl oyee where WORKDEPT=' <t sx: get Property
name="request" property=request. getParaneter (" WRKDEPT") />'</tsx: dbquery>

76

4.2.2.3.7.2.4: JSP syntax: <tsx:dbmodify> tag syntax

<% - Any valid database update conmands can be placed within the DBMODI FY tag. --><%- Any ot her

syntax, including HTML coments, are not valid. --><tsx:dbnodify
connecti on="connection_i d"></tsx: dbnodi fy>
where;

« connection

Theidentifier of a<DBCONNECT> tag in this JSP file. The <DBCONNECT> tag provides the database URL, driver name, and
(optionally) the user ID and password for the connection.

« Database commands

Valid database commands. Refer to your database documentation for details

77

4.2.2.3.7.2.4a: Example: JSP syntax: <tsx:dbmodify> tag syntax

In the following example, a new employee record is added to a database. The values of the fields are based on user input from this
JSP and referenced in the database commands using <tsx:getProperty>.

<t sx: dbnodi fy connection="conn" >insert into EMPLOYEE
(EMPNO, FI RSTNVE, M DI NI T, LASTNAME, WORKDEPT, EDLEVEL) val ues(' <t sx: get Property nanme="request"

property=request
property=request

property=request

78

.get Parameter ("EMPNO') />','<tsx:getProperty nanme="request"
property=request.

get Paraneter ("FI RSTNME") />','<tsx:getProperty name="request"

.getParameter ("M DINIT") />','<tsx:getProperty name="request"
property=request.

get Paranet er ("LASTNAME") />','<tsx:getProperty name="request"

. get Par anmet er (" WORKDEPT") />', <tsx:getProperty name="request"
property=request.

get Par anmet er ("EDLEVEL") />)</tsx: dbnodi fy>

4.2.2.3.7.2.5a: Example: JSP syntax: <tsx:repeat> and
<tsx:getProperty> tags

<t sx:repeat ><tr> <t d><t sx: get Property nanme="enpqgs" property="EMPNO' /> <t sx: getProperty
nane="enpqgs" property="FI RSTNMVE" /> <t sx: getProperty name="enpqgs" property="WORKDEPT" />
<t sx: getProperty nane="enpqgs" property="EDLEVEL" /> </td></tr></tsx:repeat>

79

4.2.2.3a: JSP examples

The example JSP application accesses the Sampl e database that you can install with IBM DB2. The example
application includes:

’JSPLogi nJsp |An interface for logging in to the application

’JSPEmpI oyee.jsp |A dialog for querying and updating database records
’JSPEmpI oyeeRepeatResults.jsp |A dialog for displaying update confirmations and query results

80

JSP code example - alogin

<HTML><HEAD><T| TLE>JSP: Login into the Enpl oyee Records

Cent er </ Tl TLE></ HEAD><BODY><H1><CENTER>Logi n i nto t he Enpl oyee Records Cent er </ CENTER></ HL><FORM
NAME="Logi nFor ni' ACTI ON="j spl0enpl oyee. j sp" METHOD="post"

ENCODE="appl i cat i on/ x- www f or m ur | encoded" ><P>To login to the Enpl oyee Records Center, submt a

val i duserid and password to access the Sanpl e database installed under |BM DB2. </ P><TABLE><TR

VALI GNETOP ALI GNELEFT><TD><I >Useri d: </ | ></ B></ TD><TD><| NPUT TYPE="t ext" NAME="USERI D"
VALUE="user i d" >
</ TD></ TR><TR VALI GN=TOP ALI G\N=LEFT><TD><I| >Passwor d: </ | ></ B></ TD><TD><| NPUT
TYPE="passwor d" NAME="PASSWD' VALUE="passwor d"></ TD></ TR></ TABLE><I| NPUT TYPE="submi t" NAME="Submnit"
VALUE="LOG N' ></ FORM><HR></ BODY></ HTM_>

81

JSP code example - view employee records

<HTM_L><HEAD><TI TLE>JSP: Add and Vi ew Enpl oyee Recor ds</ Tl TLE></ HEAD><BODY><H1><CENTER>Add and Vi ew
Enpl oyee Records</ CENTER></ H1><% - Get a connection to the Sanpl e DB2 dat abase using paraneters from
Logi n.jsp --%-<tsx:dbconnect id="conn" url="jdbc:db2: sanpl e"

driver="COM i bm db2. j dbc. app. DB2Dr i ver " ><useri d><t sx: get Property nane="request" property="USERI D'

| ></ useri d><passwd><t sx: get Property nane="request" property="PASSWD"

| ></ passwd></t sx: dbconnect ><FORM NAME=" Enpl oyeeFor nf ACTI ON="enpl oyeeRepeat Resul ts. j sp"

METHOD="post " ENCODE="appl i cati on/ x- ww«+ f or m ur | encoded" ><h2>Add Enpl oyee Record</h2><P>To add a new
enpl oyee record to the database, subnmit the foll owi ng data: </ P><TABLE><TR VALI G\="TOP"

ALl G\=" LEFT" ><TD><I| >Enpl oyee Nunber:
(1 to 6 characters)</|></ TD><TD> <| NPUT TYPE="t ext"
NAME=" EMPNO' > </ TD></ TR><TR VALI| G\N="TOP" ALI G\N=" LEFT" ><TD><I| >Fij r st nane: </ | ></ B></ TD><TD><| NPUT
TYPE="t ext" NAME="FI RSTNVE" VALUE="First Nanme">
</TD></ TR><TR VALI G\="TOP"

ALl G\N=" LEFT" ><TD><I>M ddl e I ni ti al : </ | ></ B></ TD><TD><| NPUT TYPE="text" NAME="M DI NI T"

VALUE=" M' >
</ TD></ TR><TR VALI G\="TOP" AL| GN="LEFT" ><TD><| >Last Nane: </|></TD><TD><| NPUT
TYPE="t ext" NAME="LASTNAME" VALUE="Last Nane">
</TD></ TR><TR VALI G\="TOP" ALI G\="LEFT" ><TD><% -
Query the database to get the list of departments --%<tsx:dbquery id="gs" connection="conn" >

sel ect * from DEPARTMENT </t sx: dbquery><| >Depart ment: </ | ></ B></ TD><TD><SELECT NAME="WORKDEPT"
><t sx:repeat> <OPTI ON VALUE= "<tsx:getProperty name="qgs" property="DEPTNO' />" ><tsx:getProperty
nane="qs" property="DEPTNAME" /></tsx:repeat></SELECT></ TD></ TR><TR VALI G\="TOP"

ALl GN=" LEFT" ><TD><I| >Educat i on: </ | ></ B></ TD><TD><SELECT NAME="EDLEVEL" ><OPT| ON VALUE="1"
SELECTED>BS<OPTI ON VALUE="2">M5<OPTI ON VALUE=" 3" >PhD</ SELECT></ TD></ TR></ TABLE><I NPUT TYPE="subni t"
NAMVE=" Submi t" VALUE="Updat e" ><| NPUT TYPE="hi dden" NAME="USERI D' VALUE="<tsx: getProperty
nane="request" property="USERI D' />"><| NPUT TYPE="hi dden" NAME="PASSWD' VALUE="<tsx: getProperty
nane="r equest" property="PASSW' />"></ FORM><HR><FORM NAME=" Enpl oyeeFor nf

ACTI ON="j sp10enpl oyeeRepeat Resul ts. j sp" METHOD="post "

ENCODE="appl i cat i on/ x- ww« f or m ur | encoded" ><h2>Vi ew Enpl oyees by Depart ment </ h2><P>To vi ew recor ds
for enpl oyees by departnment, select the departnmentand subnmit the query: </ P><TABLE><TR VALI G\N=" TOP"
ALl G\=" LEFT" ><TD><I| >Depar t nent : </ | ></ B></ TD><TD><% - Use the bean generated by earlier QUERY tag
- - %<SELECT NAME="WORKDEPT" ><tsx:repeat> <OPTI ON VALUE= "<tsx:getProperty nane="gs"
property="DEPTNO' />" ><tsx:getProperty name="qs" property="DEPTNAME"

[></ t sx: r epeat ></ SELECT></ TD></ TR></ TABLE><I NPUT TYPE="submi t" NAME="Subm t" VALUE="Query" ><| NPUT
TYPE="hi dden" NAME="USERI D' VALUE="<tsx: get Property name="request" property="USERI D' />"><I NPUT
TYPE="hi dden" NAME="PASSWD' VALUE="<tsx: getProperty name="request" property="PASSWD"

[>" ></ FORM><HR></ BODY></ HTM_>

82

JSP code example - EmployeeRepeatResults

<HTML><HEAD><TI| TLE>JSP Enpl oyee Resul t s</ Tl TLE></ HEAD><H1><CENTER>EMPLOYEE RESULTS</ CENTER></ H1><BODY><t sx: dbconnect i d="conn"

url ="j dbc: db2: sanpl e" driver="COM i bm db2. j dbc. app. DB2Dri ver " ><useri d><t sx: get Property nanme="request"

property=request.get Paraneter ("USERI D') /></useri d><passwd><t sx: get Property name="request"

property=request.get Paranet er (" PASSWD') /></passwd></tsx: dbconnect><%if ((request.getParanmeter("Submt")).equal s("Update"))
{ %-<tsx:dbnodi fy connection="conn" > |INSERT INTO EMPLOYEE (EVMPNO, FI RSTNMVE, M DI NI T, LASTNAME, WORKDEPT, EDLEVEL) VALUES (
' <tsx: getProperty name="request" property=request.getParaneter("EMPNO') />', ' <tsx:get Property nane="request"
property=request.get Paraneter ("FI RSTNVE") />', ' <tsx:getProperty name="request" property=request.getParanmeter("MDINT") />,
' <tsx:getProperty name="request" property=request.getParaneter ("LASTNAME") />', ' <t sx:getProperty nane="request"
property=request . get Par anet er (" WORKDEPT") />', <tsx: get Property name="request" property=request.getParameter("EDLEVEL") />)
</t sx: dbrodi f y> UPDATE SUCCESSFUL</ UL></ B>

<t sx: dbquery i d="gs" connecti on="conn" > sel ect * from Enpl oyee
where WORKDEPT= ' <tsx:getProperty name="request" property=request.getParanet er (" WORKDEPT")

/>' </ t sx: dbquer y><CENTER><U>EMPLOYEE LI ST</ U></ CENTER></ B>

<HR><TABLE><TR

VALI GN=BOT TOM><TD>EMPL OYEE
<U>NUMBER</ U></ B></ TD><TD><U>NAME</ U></ B></ TD><TD><U>DEPARTMENT</ U></ B></ TD>
<TD><U>EDUCATI ON</ U></ B></ TD></ TR><t sx: r epeat ><TR><TD><| ><t sx: get Property nane="qs" property="EVMPNO'

| ></ | ></ B></ TD><TD><| ><t sx: get Property name="qs" property="FI RSTNVE" /></|></ TD><TD><| ><t sx: get Property nane="gs"
property="WORKDEPT" /></|></ TD><TD><| ><t sx: get Property name="qs" property="EDLEVEL" /></|></TD></ TR></t sx: r epeat >

</ TABLE><HR>
<% } %<%if ((request.getParanmeter("Submt")).equal s("Qery")) { %-<tsx:dbquery id="gs2" connection="conn" >
select * from Enpl oyee where WORKDEPT= '<tsx:getProperty nane="request" property=request.get Paraneter (" WORKDEPT")

[>' </ t sx: dbquer y><CENTER><U>EMPLOYEE LI ST</ U></ CENTER></ B>

<HR><TABLE><TR><TR

VALI GN=BOTTOM><TD>EMPL OYEE
<U>NUMBER</ U></ B></ TD><TD><U>NAME</ U></ B></ TD><TD><U>DEPARTMENT</ U></ B></ TD><TD><U>EDUCATI ON</ U></ B></ TD></ TR><t sx: r epeat ><TR><TD><| ><t sx: get Property
nane="qs2" property="EWPNO' /></|></ TD><TD><| ><t sx: get Property name="qs2" property="Fl RSTNMVE"

1 ></ | ></ B></ TD><TD><| ><t sx: get Property name="qs2" property="WORKDEPT" /></|></ B></ TD><TD><| ><t sx: get Property name="qs2"
property="EDLEVEL" /></|></TD></ TR></t sx: repeat > </ TABLE><HR>
<% } %</ BODY></ HTM_>

4.2.3: Incorporating XML

IBM WebSphere Application Server provides XML Document Structure Services, which consist of a document
parser, a document validator, and a document generator for server-side XML processing.

See article4.1.1.2 for all of the details about XML supportin the product.If you are just becoming familiar with
XML, start with article 0.33, aprimer on XML concepts, vocabulary, and uses.
Other related information provides guidance on the following topics:

« Structure -- defining and obeying the syntax for an XML tag set

« Content -- determining the mechanism for filling XML tags with data

« Presentation -- determining the mechanism for formatting and displaying XML content

In addition, some special topics are covered, including DOM objects andmanipulation of Channel Definition
Format (CDF) files asillustrated bythe SiteOutliner example.

When you install IBM WebSphere Application Server, the core XML APIs are automatically added to the
appropriate class path, enabling you to serve static XML documents as soon as the product is installed.

To serve XML documents that are dynamically generated, use the core APIsto develop servlets or Web
applications that generate XML documents (for example, the applications might read the document content
from a database) and then deploy those components on your application server.

84

4.2.3.2: Specifying XML document structure

The structure of an XML document is governed by syntax rules for its tag set. Those tags are defined formally
in an XML-based grammar, such as a Document Type Definition (DTD). At the time of this publication, DTD
isthe most widely-implemented grammar. Therefore, this article discusses options for using DTDs.

Options for XML document structure include:

Do not usea DTD. Not using aDTD enables maximum flexibility in evolving XML document structure, but
this flexibility limits the ability to share the documents among users and applications. An XML document can
be parsed without aDTD. If the parser does not find aninline DTD or areference to an external DTD, the
parser proceeds using the actual structure of the tags within the document as an implied DTD. The processor
evaluates the document to determine whether it meets the rules for well-formedness.

Use a public DTD. Various industry and other interest groups are developing DTDs for categories of
documents, such as chemical data and archival documents. Many of these DTDs are in the public domain and
are available over the Internet. Using an industry standard DTD maximizes sharing documents among
applications that act on the grammar. If the standard DTD does not accomodate the schema the applications
need, flexibility is limited.

Several industry and interest groups have developed and proposed DTD grammars for the types of documents
they produce and exchange. To make it easier for you to use those grammars, local copies are installed with the
product. Use the grammars as examples in developing your own grammars as well as for creating and validating
XML documents of those types. The library islocated atproduct_installation_root\web\xmi\grammar\

Develop a DTD. If none of the public DTDs meet an enterprise's needs and enforcing document validity isa
requirement, the XML implementers can develop aDTD. Developing a DTD requires careful analysis of the
information (data) that the documents will contain.

For DTD updates,visit the XML Industry Portal.For details about the DTD specifications and sample DTDs,
refer tolBM's devel operWorkssite for education and other DTD resources.

85

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.2.3.3: Providing XML document content

The content of an XML document is the actual data that appears within the document tags. XML implementers
must determine the source and the mechanism for putting the data into the document tags. The options include:

Static content. XML document content is created and stored on the Web server as static files. The XML
document author composes the document to include valid XML tags and datain a manner similar to how
HTML authors compose static HTML files. This approach works well for datathat is not expected to change or
that will change infrequently. Examples are journal articles, glossaries, and literature.

Dynamically generated content. XML document content can be dynamically generated from a database and
user input. In this scenario, XML-capable servlets, Java beans, and even inline Java code within a JavaServer
Page (JSP) file can be used to generate the XML document content.

A hybrid of static and dynamically generated content. This scenario involves a prudent combination of static
and dynamically generated content.

You can aso use XSL to add to or remove information from existing XML content.For details, see the Related
information.

86

4.2.3.4: Rendering XML documents

Options for presenting XML documents include:

Present the XML document in an XML -enabled browser. An XML-enabled browser can parse a document,
apply its XSL stylesheet, and present the document to the user. Searching and enabling users to modify an XML
document are other possible functions of XML-enabled browsers.

Present the XML document to a browser that converts XML to HTML. Until XML-enabled browsers are
readily available, presenting XML documentsto users will involve converting the XML document to HTML.
That conversion can be handled by conversion-capable browsers. Another option isto use JavaScript or
ActiveX controls embedded within the XML document. Microsoft Internet Explorer Version 5 isan
XML-to-HTML converter. HTML is not the only format to which XML documents can be converted. It's just
the easiest to implement given the commerically available browsers and user agents.

Send an HTML fileto the browser. If the users do not have XML -capable browsers, the XML document must
be converted at the server before being transmitted to the browser. The server-side XML application that
handles the conversion could also determine the capability of the browser before converting the document to
HTML, to avoid unnecessary processing if the browser is XML -capable. The XSL processor included with this
product supports such server-side functions.

Using XSL to convert XML documents to other formats

IBM WebSphere Application Server includes the Lotus X SL processor and its open-sourceversion, Xalan, for
formatting and converting XML documents. Processing can be done at the server or at the browser, to HTML or
to other XML-compliant markup languages.For sample code, see the Xalan documentation.

Converting XML documents at the server

One option for presenting an XML document is for the server to convert the XML document to HTML and
return the HTML document to the client. On the server side, this typically requires the creation of a servletto
handle the processing of one data stream (the XML document)with another (the XSL document).The output of
that processis then forwarded back to the browser.

Server-side processing often requires the passing in of parameters through theX SL processor to customize the
output.For an example, see the Xaan documentation.

87

4.2.3.6: Using DOM to incorporate XML documents
Into applications

The Document Object Model (DOM) isan API for representing XML and HTML documentsas objects that can
be accessed by object-oriented programs, such as business logic, for the purposes of creating, navigating,
mani pul ating, and modifying the documents.

Article 0.33.3 introduces DOM concepts and vocabulary. Article 4.1.1.2 tells youwhere to find the DOM
specification and org.w3c.dom package.

Article 4.2.3.6.1 providesa quick reference so that you can jump right into DOM development, referring to
thepackage and specification as needed.

88

4.2.3.6.1: Quick reference to DOM object interfaces

This section highlights afew of the object interfaces. Refer to theDOM Specification for details (see article

41.1.2).

Node methods

Node methods include:

|Method | Description

| hasChildNodes | Returns a boolean to indicate whether a node has children

appendNode Appends a new child node to the end of the list of children for a
parent node

|insertBefore | Inserts a child node before the existing child node

removeChild Removes the specified child node from the node list and returns
the node

replaceChild Replaces the specified child node with the specified new node and
returns the new node

Document methods

The Document object represents the entire XML document. Document methods include:

|Method | Description

createElement Creates and returns an Element (tag) of the type specified. If the
document will be validated against aDTD, that DTD must contain
an Element declaration for the created element.

’ createTextNode ’ Creates a Text node that contains the specified string

createComment Creates a Comment node with the specified content (enclosed

within<! - - and - - > tags)

createAttribute

Creates an Attribute node of the specified name. Use the
setAttribute method of Element to set the value of the Attribute. If
the document will be validated against aDTD, that DTD must
contain an Attribute declaration for the created attribute.

createProcessingl nstruction

Creates a Processing I nstruction with the specified name and data
(enclosed within <? and ?> tags). A processing instruction isan
instruction to the application (such as an XML document formatter)

that receives the XML document.

Element methods

Element node methods include:

|Method | Description
’ getAttribute | Returns the value of the specified attribute or empty string
| setAttribute |Adds anew attribute-value pair to the element

| removeAttribute | Removes the specified attribute from the element

getElementsByTagName Returns alist of the element descendants that have the specified
tag name

A Text node can be achild of an Element or Attribute node and contains the textual content (character data) for
the parent node. If the content does not include markup, all of the content is placed within asingle Text node. If

the content includes markup, that markup is placed in one or more Text nodes that are siblings of the Text node
that contains the non-markup content.

The Text node extends the CharacterData interface, which has methods for setting, getting, replacing, inserting,
and making other modifications to a Text node. In addition to those methods, the Text node adds a method:

|Method | Description
| splitText Splits the Text node at the specified offset. Returns a new Text node, which contains

the original content starting at the offset. The original Text node contains the content
from the beginning to the offset.

90

4.2.3.7: SiteOutliner sample

The SiteOutliner servlet illustrates how to use the XML Document Structure Services to generate and view a
Channel Definition Format (CDF) file for atarget directory on the servlet's Web server. Use Lotus Notes 5 (the
Headlines page), Microsoft Internet Explorer 4 Channel Bar, PointCast, Netscape Navigator 4.06, orother
CDF-capable viewers to view and manipulate the CDF file.

SiteOutliner is part of the WebSphere Samples Gallery. When you open the gallery,follow the links to
SiteOutliner to run it on your local machine.

91

4.2.4. Accessing data

This section discusses data access programming:the JDBC 2.0 specification,WebSphere-specific
enhancements,best practices, error handling,and tips for specific databases.

92

4.2.4.2: Obtaining and using database connections

IBM WebSphere Application Server Version 4.0 provides two options for accessing database connections:
« Programming directly to the connection pooling model through the JDBC 2.0 Optional Package API
« Useof the IBM data access beans, which aso use connection pooling but give you additional ability to
manipul ate result sets

WebSphere Application Server versions earlier than 4.0 also supported the connection manager model, which
was based on JDBC 1.0. If your Web applications used the connection manager model, you must migrate these
in Version 4.0 to use connection pooling.

IBM WebSphere Application Server also provides data access beans, which offer arich set of features for
working with relational database queries and result sets.

For a comprehensive treatment of WebSphere connection pooling and data access,be sure to read the IBM
whitepaper to be published on the Webduring the summer of 2001.

Considerations for DB2/390

Speak with your DB2/390 administrator about setting the RRUL OCK parameter to YES.This ensures that
SELECT ... FOR UPDATE statements get an update lock rather than a sharable lock.If your database is
using sharable locksand you attempt to commit updates later,the database can become deadl ocked.

93

http://www.ibm.com/software/webservers/appserv/whitepapers.html

4.2.4.2.1: Accessing data with the JDBC 2.0 Optional Package APlIs

In JDBC 1.0 and the IDBC 2.0 Core API, the DriverManager classis used exclusively for obtaining a connection to a database. The database URL,
user |D, and password are used in the getConnection() call. In the JDBC 2.0 Optional Package API, the DataSource object provides a means for
obtaining connections to a database. The benefit of using datasourcesis that the creation and management of the connection factory is centralized.
Applications do not need to have specific information like the database name, user ID, or password in order to obtain a connection to the database.

The steps for obtaining and using a connection with the JIDBC 2.0 Optional Package API differ sightly from those in the JDBC 2.0 Core AP
example. Using the extensions, you access arelational database as follows:

1. Retrieve a DataSource object from the INDI naming service

2. Obtain a Connection object from the datasource

3. Send SQL queries or updates to the database management system

4. Processtheresults
The connection obtained from the datasource is a pooled connection. This means that the Connection object is obtained from apool of connections

managed by IBM WebSphere Application Server.The following code fragment shows how to obtain and use a connection with the JDBC 2.0
Optional Package API:

try {// Retrieve a DataSource through the JNDI Naming Service java.util.Properties parns = new
java.util.Properties(); par ms. set Property(Context. | N TI AL_CONTEXT_FACTORY,

"com i bm webspher e. nanmi ng. Wnl ni ti al Cont ext Factory"); /] Create the Initial Nam ng Context

j avax. nam ng. Cont ext ctx = new javax. nam ng. | niti al Context (parns); /'l Lookup through the naming
service to retrieve a DataSource object j avax. sql . Dat aSource ds =

(j avax. sql . Dat aSour ce) ct x. | ookup("j ava: conp/ env/j dbc/ Sanpl eDB") ; /1 Cbtain a Connection fromthe
Dat aSource java.sql.Connection conn = ds. get Connection(); // query the database

java.sql . Statement stm = conn.createStatenment(); java.sqgl.ResultSet rs =

st . execut eQuery(" SELECT EMPNO, FI RSTNVE, LASTNAME FROM SAMPLE"); // process the results whil e
(rs.next()) { String enpno = rs.getString("EMPNO'); String firstnme =

rs.getString("Fl RSTNME") ; String lastnanme = rs.getString("LASTNAMVE") ; /1 work with results

}} catch (java.sql.SQ.Exception sqgle) {// handl e SQLException} finally { try { if (rs !=
null) rs.close(); } catch (java.sql.SQ.Exception sqgle) { /1 can ignore } try { i f
(stmt !'= null) stnt.close(); } catch (java.sql.SQ.Exception sqle) { // can ignore } try {
if (conn !'= null) conn.close(); } catch (SQ.Exception sqgle) { /1 can ignore 1} /1 end
finally

In the previous example, the first action isto retrieve a DataSource object from the INDI namespace. Thisis done by creating a Properties object of
parameters used to set up an Initial Context object. After a context is obtained, alookup on the context is performed to find the specific datasource
necessary, in this case, SampleDB.

(In thisexample, it is assumed the datasource has aready been created and bound into INDI by the WebSphere administrator. For information about
doing thisin application code, see the Related information.)

After a DataSource object is obtained, the application code calls getConnection()on the datasource to get a Connection object. After the connectionis
acquired, the querying and processing steps are the same as for theJDBC 2.0 Core APl example.

94

4.2.4.2.1.1: Creating datasources with the WebSphere connection
pooling API

IBM WebSphere Application Serverprovides a public API to enable you to configure a WebSphere datasource in application code.This is necessary
only when the application must create a datasource on demand.Otherwise, the datasource is configured by the administrator in the administrative
console.

The complete API specification can be found in javadoc for the class com.ibm.websphere.advanced.cm.factory.DataSourceFactory. See the Related
information.

To create a datasource on demand in an application, the application must do the following:
1. Create a Properties object with datasource properties
2. Obtain adatasource from the factory
3. Bind the datasource into JNDI

The following code fragment shows how an application would create a datasource and bind it into JINDI:

i mport comibm websphere. advanced. cm fact ory. Dat aSour ceFactory;...try { /1l Create a properties
file for the DataSource java.util.Properties prop = new java.util.Properties();

prop. put (Dat aSour ceFact ory. NAME, " Sanpl eDB") ; pr op. put (Dat aSour ceFact ory. DATASOURCE_CLASS_NAME,
"COM i bm db2. j dbc. DB2Connect i onPool Dat aSour ce") ; pr op. put (Dat aSour ceFact ory. DESCRI PTI ON, "My

sanpl e dat asource"); prop. put (" dat abaseNane", "sanple");// Cbtain a DataSource fron
the factory Dat aSour ce ds = Dat aSour ceFactory. get Dat aSource(prop);// Bind the DataSource into JNDI
Dat aSour ceFact ory. bi ndDat aSour ce(ds);} catch (C assNot FoundException cnfe) {// check the class path
for all necessary classes} catch (CMractoryException cnfe) {// Exanple of exception: incorrect
properties} catch (Nanm ngException ne) {// Exanple of exception: datasource by this nanme nay

al ready exist}

To create a datasource for binding into JNDI, the application must firstcreate a Properties object to hold the DataSource configuration properties.The
only properties required for the datasource from a WebSphere perspective are:

« NAME -The name of the datasource. Thisis used to identify the datasource when it is bound into JNDI.

« DATASOURCE_CLASS NAME - The complete name of the DataSource class that can be found in the JDBC resource archive file(often
referred to as the JDBC provider package). This DataSource class will be used to create connections to the database. The class specified here
must implement javax.sgl.ConnectionPool DataSource or javax.sgl.X ADataSource.

However, depending on the DataSource class specified in the DATASOURCE_CLASS NAME property, there may be other vendor-specific
properties required. In this example, the databaseName property is also required,because DB2ConnectionPool DataSource is being used. For more
information on these vendor-specific properties, see the vendor's documentation for the complete list of properties supported for a datasource.

After aproperties object is created, the application can create a new DataSource object by calling getDataSource() on the factory, passing in the
Properties object as a parameter. This creates an object of type DataSource, but it is not yet bound into JNDI. To bind a datasource into JNDI,call
bindDataSource() on the factory.At this point, other applications can share the datasource by retrieving it from JNDI with the name property
specified on creation.

All other APIs specific to connection pooling are not public APIs. Applications that use a WebSphere datasource should followthe JDBC 2.0 Core
and JDBC 2.0 Optional Package APIs.

95

4.2.4.2.1.2: Tips for using connection pooling

Most best practices have been documented elsewhere in Related information.The following are additional items
that have not been explicitly called out:

Obtain and close connection in the same method.An application should obtain and close its connection in the
method that requires the connection. This keeps the application from holding resources not being used and
leaves more available connections in the pool for other applications. In addition, this practice removes the
temptation to use the same connection in multiple transactions, which, by default, is not allowed. This practice
does not cost the application much in performance,because the Connection object is from a pool of connections,
where the overhead for establishing the connection has already been incurred.Lastly, make sure to declare the
Connection object in the same method as the getConnection() call in a servlet;otherwise, the Connection object
works asif it is astatic variable(see "Worst Practices’ later in this article for problems with this).

If you opened it, closeit.All IDBC resources that have been obtained by an application should be explicitly
closed by that application. The product tries to clean up JDBC resources on a connection after the connection
has been closed. However, this behavior should not be relied upon, especially if the application might be
migrated to another platform in the future.

For servlets, obtain DataSourcein theinit() method.For performance reasons, it is usually a good ideato put
the INDI lookup for the datasource into the init() method of the serviet. Because the datasource issimply a
factory for connections that does not typically change,retrieving it in this method ensures that the lookup
happens only once.

Worst practices

The following are some very common problems with applications that should be avoided, because they most
often result in unexpected failures:

Do not close connectionsin a finalize() method.If an application waits to close a connection or other JDBC
resource until the finalize() method, the connection is not closed until the object that obtained it is
garbage-collected. Thisleadsto problems if the application is not very thorough about closing its JIDBC
resources, such as ResultSet objects. Databases can quickly run out of the memory required to store the
information about all of the JDBC resources it currently has open. In addition, the pool can quickly run out of
connections to service other requests.

Do not declar e connections as static objects.It is never recommended that connections be declared as static
objects. If aconnection is declared as static, the same connection might get used on different threads at the same
time. This causes a great deal of difficulty, within both the product and the database.

In servlets, do not declare Connection objects asinstance variables.In aservlet, al variables declared as
instance variables act asif they are class variables. For example, in aservlet with an instance variable
Connection conn = nul | ;

thisvariable acts asif it were static. In this case, all instances of the servlet use the same Connection object.
Thisis because asingle servlet instance can be used to serve multiple Web requests in different threads.

In CMP beans, do not manage data access.If a Container Managed Persistence (CMP) bean is writtenso that
it manages its own data access, this data access may be part of a global transaction. Generally, if specialized
data accessis required,use a BMP session bean.

96

4.2.4.2.1.3: Handling data access exceptions

For data access, the standard Java exception class to catch is java.sgl.SQL Exception.|BM WebSphere Application Servermonitors for specific SQL
exceptions thrown from the database. Several of these exceptions are mapped to WebSphere-specific exceptions. The product provides
WebSphere-specific exceptions to ease development by not requiring you to know all of the database-specific SQL exceptions that could be thrown
intypical situations. In addition, monitoring SQL exceptions enables the product and application to recover from common problems like
intermittent network or database outages.

ConnectionWaitTimeoutException

This exception (com.ibm.gjs.cm.pool.ConnectionWaitTimeoutException) indicates that the application has waited for the connectionTimeout
(CONN_TIMEOUT) number of seconds and has not been returned a connection. This can occur when the pool is at its maximum size and al of the
connections are in use by other applications for the duration of the wait. In addition, there are no connections currently in use that the application
can share, because either the user |D and password are differentor it isin a different transaction.The following code fragment shows how to use this
exception:

j ava. sqgl . Connection conn = null;javax.sql.DataSource ds = null;...try {// Retrieve a DataSource

t hrough the JNDI Nami ng Service java.util.Properties parnms = new java.util.Properties();

set Property. put (Context. | N Tl AL_CONTEXT_FACTORY,

"com i bm webspher e. nam ng. Wenl ni ti al Cont ext Factory"); /1l Create the Initial Nami ng Context

j avax. nam ng. Context ctx = new j avax. nam ng. I ni ti al Cont ext (par ns) ; /'l Lookup through the
nam ng service to retrieve a DataSource object javax. sql . Dat aSource ds =

(j avax. sql . Dat aSour ce) ct x. | ookup("j ava: conp/ env/j dbc/ Sanpl eDB") ; conn = ds. get Connection();

/1 work on connection} catch (comibmejs.cm pool.ConnectionWitTi neout Exception cw) {// notify the
user that the systemcould not provide a // connection to the database} catch
(java. sql . SQLException sqle) {// deal w th exception}

In all casesin which the ConnectionWaitTimeoutException is caught, thereis very little to do in terms of recovery. It usually doesn't make senseto
retry the getConnection() method, because if alonger wait time is required, the connectionTimeout datasource property should be set higher.
Therefore, if this exception is caught by the application, the administrator should review the expected usage of the application and tune the
connection pool and the database accordingly.

StaleConnectionException

This exception (com.ibm.websphere.ce.cm.StaleConnectionException) indicates that the connection currently being held is no longer valid. This
can occur for numerous reasons, including:

« The application fails to get a connectionbecause of a problem such as the database not being started.

« A connection is no longer usable because of a database failure. When an application tries to use a connection it previously obtained, the
connection is no longer valid. In this case, al connections currently in use by the application may prompt this exception.

« The application using the connection has already called close() and then tries to use the connection again.

« The connection has been orphaned, andthe application tries to use the orphaned connection.

« Theapplication tries to use a JDBC resource, such as Statement, obtained on a now-stale connection.
When application code catches StaleConnectionException, it should take explicit steps to handle the exception. StaleConnectionException extends
SQLException, so it can be thrown from any method that is declared to throw SQL Exception. The most common occasion for a
StaleConnectionException to be thrown is the first time a connection is used, just after it has been retrieved. Because connections are pooled, a
database failure is not detected until the operation immediately following itsretrieval from the pool, which is the first time communication with the
database is attempted. It is only when afailure is detected thatthe connection is marked stale. StaleConnectionException occurs less often if each

method that accesses the database gets a new connection from the pool. Typically, this occurs because all connections currently allocatedto an
application are marked stale; the more connections the application has, the more connections can be stale.

Generally,when a StaleConnectionException is caught, the transaction in which the connection was involvedneeds to be rolled back and a new
transaction begun with a new connection.

For more information and detailed code samples,be sure to read the IBM whitepaper to be published on the Webduring the summer of 2001.

97

http://www.ibm.com/software/webservers/appserv/whitepapers.html

4.2.4.2.2: Accessing data with the JDBC 2.0 Core API

WebSphere applications can access arelational database directly through a JDBC provider that uses the JDBC 2.0 Core API.Y ou access a relational
database in this manner as follows:

1. Establish a connection through the DriverManager class
2. Send SQL queries or updates to the database management system
3. Process the results
Only asingle connection is obtained. This connection does not belong to a pool of connections and is not managed by IBM WebSphere Application
Server.lt is the responsibility of the application to manage the use of this connection.
The following code fragment shows a simple example of obtaining and using a connection directly through a JDBC provider:
try {// establish a connection through the Driver Manager

Cl ass. forName("COM i bm db2. j dbc. app. DB2Dri ver"); String url = "jdbc: db2: sanpl e"; String usernane
= "dbuser"; String password = "passwd"; j ava. sqgl . Connecti on conn =

java. sql . Dri ver Manager . get Connection(url, username, password);// query the database

java.sql . Statenment stm = conn.createStatenment(); java.sqgl.ResultSet rs =

st . execut eQuery(" SELECT EMPNO, FI RSTNVE, LASTNAME FROM SAMPLE"); /'l process the results whil e
(rs.next()) { String enpno = rs.getString("EMPNO'); String firstnme =

rs.getString("Fl RSTNVE") ; String lastname = rs.getString("LASTNAME") ; /1 work with results

}} catch (java.sqgl.SQException sgle) {// handle the SQException} finally { try { if(rs !=
null) rs.close(); } catch (SQ.Exception sqgle) { /1 can ignore } try { if(stm I=
null) stnt.close(); } catch (SQ.Exception sqgle) { /1 can ignore } try { if(conn I=
null) conn.cl ose(); } catch (SQ.Exception sqgle) { /1 can ignore 1}

In the previous example, the first action isto establish a connection to the database. Thisis done by |oading and registering the JDBC driver and then
reguesting a connection from DriverManager.DriverManager, a JDBC 1.0 class, is the basic service for managing a set of JIDBC drivers. Itis
necessary to load the driver class before the call to getConnection(), because DriverManager can establish a connection only to adriver that has
registered with it. Loading the driver class also registers it with DriverManager.

After aconnection has been obtained, the database is queried by creating a statement and executing a query on that statement. The query results are
put into a ResultSet object.

Lastly, the results are processed by stepping through the result set and pulling the data from each record retrieved.
According to the JDBC 2.0 Core API specification, the DriverManager class has been deprecated. Therefore, any application using this class should

be rewritten to use WebSphere connection pooling, which uses the datasource method described in the JIDBC 2.0 Optional Package API to obtain
connections to the database. For more information, see the JDBC 2.0 Core API specification.

98

4.2.4.2.3: Accessing relational databases with the IBM
data access beans

Java programs that access JDBC-compliant relational databases typically use the classes and methods in the
java.sgl package to access data. Instead of using the java.sgl package, you can use the classes and methodsin
the package com.ibm.db, the IBM data access beans. This gives you additional features for data access beyond
those available in the java.sgl package.

The Related information discusses what the data access beans are, their advantages, and how to use them. A
data access bean uses a connection that you provide to it, such as a connection from a connection pool that you
get through a DataSource object.

99

4.2.4.2.3.1: Example: Servlet using data access beans

The sample servlet uses the data access beans and is based on the sample servlet discussed in Article 4.2.4.2.1.1.
The connection pooling sample servlet uses classes such as Connection, Statement, and ResultSet from the
java.sgl package to interact with the database. In contrast, this sample servlet uses the data access beans, instead
of the classesin the java.sgl package, to interact with the database. For convenience, call this sample servlet the
DA (for data access beans) and call the sample servlet on which it is based the CP (for connection pooling).

The CP and DA sample servlets benefit from the performance and resource management enhancements made
possible by connection pooling. The programmer coding the DA sample serviet benefits from the additional
features and functions provided by the data access beans.

The DA sample servlet differs slightly from the CP sample servlet. This discussion covers only the changes. See
Article 4.2.4.2.1.1 for the discussion of the CP sample servlet. The DA sample servlet shows the basics of
connection pooling and the data access beans, but keeps other code to a minimum. Therefore, the servlet is not
entirely realistic. You are expected to be familiar with basic servlet and JDBC coding.

The changes

This section describes how the DA sample servlet differs from the CP sample servlet. To view the coding in one
or both of the samples while you read this section, click these links:

o DA sample
o CPsample

Steps 1 through 6 of the CP sample servlet are mostly unchanged in the DA sample servilet. The main changes
to the DA sample servlet are:

« New package

The com.ibm.db package (containing the data access beans classes) must be imported. The classesarein
the databeans.jar file, found in the lib directory under the Application Server root install directory. You
will need thisjar filein your CLASSPATH in order to compile a servlet using the data access beans.

o The metaDatavariable

Thisvariable is declared in the Variables section at the start of the code, outside of all methods. This
allows a singleinstance to be used by all incoming user requests. The full specification of the variableis
completed in the init() method.

« Theinit() method

New code has been appended to the init() method to do a one-time initialization on the metaData object
when the servlet isfirst loaded. The new code begins by creating the base query object sglQuery asa
String object. Note the two "?" parameter placeholders. The sglQuery object specifies the base query
within the metaData object. Finally, the metaData object is provided higher levels of data (metadata), in
addition to the base query, that will help with running the query and working with the results. The code
sample shows:

o The addParameter() method notes that when running the query, the parameter idParm is supplied
as aJava Integer datatype, for the convenience of the servlet, but that idParm should be
converted (through the metaData object) to do a query on the SMALLINT relational datatype of
the underlying relational data when running the query.

A similar use of the addParameter() method for the deptParm parameter notes that for the same
underlying SMALLINT relational datatype, the second parameter will exist as adifferent Java

100

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/IBMDataAccessTest.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/ConnPoolTest.java.html

datatype within the servlet - as a String rather than as an Integer. Thus parameters can be Java
datatypes convenient for the Java application and can automatically be converted by the
metaData object to be consistent with the required relational datatype when the query is run.

Note that the "?" parameter placeholders in the sglQuery object and the addParameter() methods
arerelated. The first addParameter() attaches idParm to the first "?', and so on. Later, a
setParameter() will use idParm as an argument to replace the first "?" in the sglQuery object with
an actua value.

o The addColumn() method performs a function somewhat similar to the addParameter() method.
For each column of datato be retrieved from the relational table, the addColumn() method maps
arelational datatype to the Java datatype most convenient for use within the Java application.
The mapping is used when reading data out of the result cache and when making changes to the
cache (and then to the underlying relational table).

o The addTable() method explicitly specifies the underlying relational table. Thisinformationis
needed if changes to the result cache are to be propagated to the underlying relational table.

e Steps

Step 5 has been rewritten to use the data access beans to do the SQL query instead of the classesin the
java.sgl package. The query is run using the selectStatement object, which is a SelectStatement data
access bean.

Step 5 is part of the process of responding to the user request. When steps 1 through 4 have run, the
conn Connection object from the connection pool is available for use. The code shows:

1. The dataAccessConn object (a DatabaseConnection bean) is created to establish the link between
the data access beans and the database connection - the conn object.

2. The selectStatement object (a SelectStatement bean) is created, pointing to the database
connection through the dataA ccessConn object, and pointing to the query through the metaData
object.

3. Thequery is"completed" by specifying the parameters using the setParameter() method. The"?"
placeholdersin the sglQuery string are replaced with the parameter val ues specified.

4. The query is executed using the execute() method.

5. The result object (a SelectResult bean) is a cache containing the results of the query, created
using the getResult() method.

6. The data access beans offer arich set of features for working with the result cache - at this point
the code shows how the first row of the result cache (and the underlying relational table) can be
updated using standard Java coding, without the need for SQL syntax.

7. The close() method on the result cache breaks the link between the result cache and the
underlying relational table, but the data in the result cacheis still available for local access within
the servlet. After the close(), the database connection is unnecessary. Step 6 (which is unchanged
from the CP sample servlet) closes the database connection (in reality, the connection remains
open but is returned to the connection pool for use by another servlet request).

. Step 7
Step 7 has been entirely rewritten (with respect to the CP sample servlet) to use the query result cache

retrieved in Step 5 to prepare a response to the user. The query result cache is a SelectResult data access
bean.

Although the result cache is no longer linked to the underlying relational table, the cache can still be
accessed for local processing. In this step, the response is prepared and sent back to the user. The code
shows the following:

o The nextRow() and previousRow() methods are used to navigate through the result cache.
101

Additional navigation methods are available.

o The getColumnVaue() method is used to retrieve data from the result cache. Because of
properties set earlier in creating the metaData object, the data can be easily cast to formats
convenient for the needs of the servlet.

A possible simplification

If you do not need to updatethe relational table, you can simplify the sample servlet:

« Attheend of theinit() method, you can drop the lines with the addColumn() and addTable() methods,
since the metaData object does not need to know as much if there are no relational table updates.

« You will aso need to drop the lines with the setColumnV alue() and updateRow() methods at the end of
step 5, because you are no longer updating the relational table.

« Finally, you can remove most of the type casts associated with the getColumnValue() methodsin step 7.
Y ou will, however, need to change the type cast to (Short) for the "ID" and "DEPT" use of the
getColumnValue() method.

102

4.2.4.2.4: Database access by servlets and JSP files

Servlets using getConnection() to access a data source

When used without parameters, getConnection() assumes the default user 1D and password for a data source.
The WebSphere administrative clients do not offer away to configure a default user 1D and password for a data
source to be used by a servlet.

Therefore, servlets using getConnection() to access a data source should specify auser ID and password:
get Connecti on(useri d, password) ;

103

4.2.4.4.1: Providing Web clients access to JSP files

Suppose an application contains one or more JSP files -- how does the applicationdevel oper alow auser at a
Web client (browser) to invoke the JSP files? The tablesummarizes the avail able approaches. Click an approach
for details.

| Programming appr oach |

How user accesses JSP file
Provide the JSP file URL to users for direct access, or include | Type the JSP URL in abrowser, or follow a
an HREFIink to the JSP file on the Web site link to it
Call JSPfilefroman HTML form

Fill out an HTML form and submit it to the
JSP file for processing

104

4.2.4.4.1.1: Invoking servlets and JSP files by URLSs

Users can invoke a servlet or JSP file by its URL, using a browser to open:
http://your.server. nane/ application_Wb_path/servlet_or_JSP_Wb_ path

Users must be provided with the URL to use in order to invoke the servlet.See the Related information to learn
how to determine the URL.

{™ Appending / $/ f 0o to the URL allows you to access the servlet URL, butthe URL is then misunderstood by
the runtime environment.This type of URL may create a security exposure.The best practice for securing
servletsisto follow the Java security specifications documented in the Securing applications section.

Note that in order for servlets to be invoked by their class names,the administrator must have manually enabled
the option while configuring theWeb application to which the servlet belongs.

105

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/05.html

4.2.4.4.1.2: Invoking servlets and JSP files within HTML forms

A Web page can be designed so that users can invoke a servlet or JSP file from an HTML form. An HTML form enables a user to enter dataon
aWeb page (from abrowser) and submit the datato a servlet, or aservlet generated by a JSP file.

The HTML FORM tag has attributes for specifying how to invoke the servlet or JSPfile:

FORM attribute Description
METHOD Indicates how user information is to be submitted.
ACTION |Indicates the URL used to invoke the serviet or JSP file

If the information entered by the user isto be submitted to aserviet by a GET or POST method, the servliet must override the doGet() method
or doPost() method. For JSP files, the override is notnecessary. The same service method that is called whether the form is submitted using
GET or POST.

Examples

Using GET:

<FORM METHOD="GET" ACTI ON="/applicati on_Web path/servlet_Wb_path"><!-- HTM. tags for text entry
areas, buttons, and other pronpts go here --></FORW

Using POST:

<FORM METHOD=" POST" ACTI ON="appl i cati on_Web_pat h/ servl et _Web_path"><!-- HTM. tags for text entry
areas, buttons, and other pronpts go here --></FORW

106

4.2.4.4.1.2.1: Example: Invoking servlets within HTML
forms

Suppose the application programmer uses an HTML form toprovide users access to a servlet. Assuming the
METHOD attributeon the FORM tag is"GET," the flow is asfollows:

1. Theuser viewsthe form in abrowser. The user providesinformation requested by the form and specifies
to submit theform (usually by clicking a Submit button or other button visibleon the form).

2. The form encodes the user-supplied information into a URL-encodedquery string. It appends the query
string to the servlet URL andsubmits the entire URL.

3. The servlet processes the information. The getParameterNames(), getParameter(),
andgetParameterV alues() methods of the HttpServletRequest object provide accessto the form parameter
names and values in the client request. The extraction process also decodes the names and values.

4. Often, thefinal action of the servlet isto dynamically create an HTMLresponse (based on parameter
input from the form) and passit back to the userthrough the server. Methods of the HttpServletResponse
object are usedto send the response, which is sent back to the client as a complete HTML page.

107

4.2.4.4.2: Providing Web clients access to servlets

Suppose an application contains one or more servlets -- how doesthe application developer allow a user at a

Web client (browser) toinvoke the servlets? The table summarizes the available approaches. Clickan approach
for details.

| Programming appr oach | How user accesses servlet
Provide the servlet URL to users for direct access,or include an |Type the servlet URL in a browser, or follow
HREF link to the servlet URL on the Web site alink to it

Call servlet from an HTML form Fill out an HTML _form and submit it to the
servlet for processing

Open a JSP page that invokes the servlet

Call servlet from aJSP file

108

4.2.4.4.2.2: Invoking servlets within JSP files

Users can invoke servlets from within JavaServer Page (JSP)files. Application developers should consult the
JavaServer Pages (JSP)reference for a complete description of the JSP syntax.

Toinvoke aJSPfile, auser can either:
« UseaWeb browser to open the JSPfile
e UseaWeb browser to invoke a servlet that invokes the JSP file

109

4.2.5: Using the Bean Scripting Framework

Most Web developers are familiar with using scripting languages to generateuser-cued HTML pages or to
create new browser windows.

The Bean Scripting Framework (BSF) enables devel opers to usescripting language functionsin their Java,
server-side applications. It also extends scripting languages so that existing Java classes and Java beanscan now
be invoked from that language.

With BSF, scripts can now create, manipulate and access values from Java objects and, conversely, Java
programs can nhow evaluate and accessresults from scripts.

BSF components:

WebSphere Application Server provides the Bean Scripting Framework (BSF),which consists of a BSF
Manager and a BSF Engine, and a scripting engine which is the Rhino version 1.5 environment from Netscape.

JavaScript from Netscape is the only language supported by WebSphere Application Server's implementation
of BSF.

The relationship of the BSF componentsisillustrated in the following graphic:

Application
Server

B=F
hManager

BSF

g Metzcape Rhino
= JELTE Errvironmerit

[=cripting Engine)

WiehSphere Application Server runtime enviranment

Features of BSF:

The BSF Manager is a bean that provides scripting services for the applicationand support services for the
scripting engine to enable it to interact with the VM.

110

The BSF Engineis an interface that allows a specific scripting language,in this case Netscape's JavaScript, to
become part of the bean scripting framework.

Visit the BSF project Web sitefor news on the latest updates to BSF functionality.

See article "BSF examples and samples’ when you are ready to delve into programming examples.

111

http://oss.software.ibm.com/developerworks/projects/BSF

4.2.5.1: BSF examples and samples

There are no WebSphere Application Server implementation restrictions on using BSF.Invoke BSF as you would any other Web application, using the
instructionsin thearticle Installing application files to administer your application.

To test these code samples, from a Browser window,copy the code samples and paste them into your own file. Y ou can use any file name, but thefile
extension must be .jsp. To see the results, the file must be servedfrom a server with a JSP engine, such as WebSphere Application Server.
The following steps and code samples describe how to implement BSF:

1. CreateaJSPfile

2. Change the Java code to JavaScript

3. Add therequired BSF tag asillustrated in the View 2 sample

4. Add thefile to the Web application document root directory

5. Invoke the code.

See the file JSP access models for more JSP information.
1. Create aJSPfile that looks like this next example:

<htm > <head> <title> Tenperature Table using Java >/title> </head> <body> <hl>Tenperature
Tabl e usi ng Java</hl> <p>Anerican tourists visiting Canada can use this handy tenperature table
whi ch converts from Fahrenheit to Cel sius:

 <table BORDER COLS=2 W DTH="20% > <tr
BGCOLOR="#FFFF00" > <t h>Fahrenheit</th> <th>Celsius</th> </tr> <% for (int i=0; i<101; i+=10) {
out.println ("<tr ALI G\N=RI GHT BGCOLOR=\"#CCCCCQ\ " >"); out.println ("<td>" + i + "</td>");
out.println ("<td>" + ((i - 32)*5/9) + "</td>"); out.println ("</tr>"); } % </table> <p><i>
<% new java.util.Date () % </i></p> </body> </htm >

2. Change the Java code in the previous file to JavaScriptso the file now looks like the following example:

<%@ page | anguage="j avascript" %

<htm > <head> <title> Tenperature Tabl e using JavaScript >/title> </head> <body>
<h1>Tenperature Tabl e using JavaScri pt</hl> <p>Anerican tourists visiting Canada can use this handy
tenperature table which converts from Fahrenheit to Cel sius:

 <table BORDER COLS=2

W DTH="20% > <tr BGCOLOR="#FFFF00"> <th>Fahrenheit</th> <th>Celsius</th> </tr> <% for (var

i =0; i<101; i+=10) { out.println ("<tr ALI G\N=RI GHT BGCOLOR=\"#CCCCCCQ\ " >"); out.println
("<td>" + i + "</td>"); out.println ("<td>" + Math.round((i - 32)*5/9) + "</td>");
out.println ("</tr>"); } % </table> <p><i> <% new java.util.Date () % </i></p> </body>
</htm >

3. Theonly BSF-specific tag that is required in your fileis
<%@ page | anguage="j avascript" %
Thistag identifies the language to BSF. View 2 illustrates where thistag islocated in thefile.

112

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0604.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/060302.html

4.3. Developing enterprise beans

Enterprise applications are applications that typically use enterprise beans. To develop enterprise applications,
you must:

1. Develop any session or entity beans your application will use
2. Create the deployment descriptor and the EJB JAR file.
3. Deploy the enterprise beans.

Enterprise applications support both transactions and security.
Wkiting Enterprise Beansis a programming guide for devel oping, packaging, anddepl oying enterprise beans in

IBM WebSphere Application Server. It discussesboth the Advanced Edition and Enterprise Edition of the
product.

Format
PDF

HTML

:

113

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/pdf/atswpg00.pdf

About this book

This document focuses on the development of enterprise beans written to the Sun Microsystems Enterprise
JavaBeans(TM) specification in the WebSphere(TM) Application Server programming environment. It also
discusses development of EJB clients that can access enterprise beans.

Who should read this book

This document is written for devel opers and system architects who want an introduction to programming
enterprise beans and EJB clientsin WebSphere Application Server. It is assumed that programmers are familiar
with the concepts of object-oriented programming, distributed programming, and Web-based programming.
Knowledge of the Sun Microsystems Java(TM) programming language is also assumed.

Document organization

This document is organized as follows:

An architectural overview of the EJB programming environment provides a high-level introduction to
the EJB server environment in WebSphere Application Server.

An introduction to enterprise beans explains the main concepts associated with enterprise beans.

Tools for developing and deploying enterprise beans explains how to set up and use the tools used in
developing and deploying enterprise beans.

Developing enterprise beans explains how to develop entity beans with container-managed persistence
(CMP) and session beans. It also provides information on how to package enterprise beans for later
deployment.

Enabling transactions and security in enterprise beans explains how to enable transactions in enterprise
beans by using the appropriate deployment descriptor attributes.

Developing EJB clients explains the basic code required by an EJB client to use an enterprise bean. This
chapter covers generic issues relevant to enterprise beans, Java applications, and Java servlets that use
enterprise beans.

Developing servlets that use enterprise beans discusses the basic code required in a servlet that accesses
an enterprise bean.

More-advanced programming concepts for enterprise beans explains how to develop a simple entity
bean with bean-managed persistence and discusses the basic code required of an enterprise bean that
manages its own transactions.

Appendix A, Changes for version 1.1 of the EJB specification describes features that are new or have
changed in version 1.1 of the EJB specification and discusses migration issues for enterprise beans
written to version 1.0 of the EJB specification.

Appendix B, Example code provided with WebSphere Application Server describes the major example
used throughout this book and the additional examples that are delivered with the various editions of
WebSphere Application Server.

Appendix C, Extensions to the EJB Specification describes the extensions to the EJB Specification that

are specific to WebSphere Application Server. Use of these extensionsis supported in VisualAge for
Javaonly.

114

Related information

For further information on the topics discussed in this manual, see the following documents:
« Getting Started with WebSphere Application Server
« Building Business Solutions with WebSphere

How to send your comments

Y our feedback isimportant in helping to provide the most accurate and highest quality information. If you have
any comments about this book, send your comments by e-mail to wasdoc@us.ibm.com. Be sure to include the
name of the book, the document number of the book, the edition and version of WebSphere Application Server,
and, if applicable, the specific location of the information you are commenting on (for example, a page number
or table number).

115

An introduction to enterprise beans

This chapter looks at the characteristics and purpose of enterprise beans. It describes the two basic types of
enterprise beans and their life cycles, and it provides an example of how enterprise beans can be combined to
create distributed, three-tiered applications.

Bean basics

An enterprise bean is a Java component that can be combined with other enterprise beans and other Java
components to create a distributed, three-tiered application. There are two types of enterprise beans:

An entity bean encapsul ates permanent data, which is stored in a data source such as a database or afile
system, and associated methods to manipulate that data. In most cases, an entity bean must be accessed
in some transactional manner. Instances of an entity bean are unique and they can be accessed by
multiple users.

For example, the information about a bank account can be encapsulated in an entity bean. An account
entity bean might contain an account ID, an account type (checking or savings), and a balance variable
and methods to manipul ate these variables.

A session bean encapsul ates ephemeral (nonpermanent) data associated with a particular EJB client.
Unlike the data in an entity bean, the datain a session bean is not stored in a permanent data source, and
no harmis caused if thisdatais lost. However, a session bean can update data in an underlying database,
usually by accessing an entity bean. A session bean can also participate in a transaction.

When created, instances of a session bean are identical, though some session beans can store
semipermanent data that makes them unique at certain points in their life cycle. A session bean is always
associated with asingle client; attempts to make concurrent calls result in an exception being thrown.

For example, the task associated with transferring funds between two bank accounts can be encapsul ated
in asession bean. Such atransfer session bean can find two instances of an account entity bean (by using
the account 1Ds), and then subtract a specified amount from one account and add the same amount to the
other account.

Entity beans

This section discusses the basics of entity beans.

Basic components of an entity bean

Every entity bean must have the following components, which are illustrated in Figure 3:

116

Bean class--This class encapsul ates the data for the entity bean and contains the devel oper-implemented
business methods that access the data. It aso contains the methods used by the container to manage the
life cycle of an entity bean instance. EJB clients (whether they are other enterprise beans or user
components such as servlets) never access objects of this class directly; instead, they use the

contai ner-generated classes associated with the home and remote interfaces to manipulate the entity
bean instance.

Home interface--This interface defines the methods used by the client to create, find, and remove
instances of the entity bean. This interface isimplemented by the container during deployment in a class
known generically as the EJB home class; instances are referred to as EJB home objects.

Remote interface--Once the client has used the home interface to gain access to an entity bean, it uses
this interface to invoke indirectly the business methods implemented in the bean class. Thisinterfaceis

implemented by the container during deployment in a class known generically as the EJB object class;
instances are referred to as EJB objects.

« Primary key -- One or more variables that uniquely identify a specific entity bean instance. A primary
key that consists of asingle variable of a primitive Java data type can be specified at deployment. A
primary key classis used to encapsulate primary keys that consist of multiple variables or more complex
Java datatypes. The primary key class also contains methods to create primary key objects and
mani pul ate those objects.

Figure 3. The components of an entity bean

mote

Data persistence

Entity beans encapsulate and manipulate persistent (or permanent) business data. For example, at a bank, entity
beans can be used to model customer profiles, checking and savings accounts, car loans, mortgages, and
customer transaction histories.

To ensure that thisimportant data is not lost, the entity bean stores its data in a data source such as a database.
When the data in an enterprise bean instance is changed, the data in the data source is synchronized with the
bean data. Of course, this synchronization takes place within the context of the appropriate type of transaction,
so that if arouter goes down or a server fails, permanent changes are not lost. When you design an entity bean,
you must decide whether you want the enterprise bean to handle this data synchronization or whether you want
the container to handle it. An enterprise bean that handles its own data synchronization is said to implement
bean-managed persistence (BMP), while an enterprise bean whose data synchronization is handled by the
container is said to implement contai ner-managed persistence (CMP).

Unless you have a good reason for implementing BMP, it is recommended that you design your entity beans to
117

use CMP. The code for an enterprise bean with CMP is easier to write and does not depend on any particular
data storage product, making it more portable between EJB servers. However, you must use entity beans with
BMP if you want to use a data source that is not supported by the EJB server.

Session beans

This section discusses the basics of session beans.

Basic components of a session bean

Every session bean must have the following components, which are illustrated in Figure 4:

« Bean class--This class encapsul ates the data associated with the session bean and contains the

devel oper-implemented business methods that access this data. It also contains the methods used by the
container to manage the life cycle of an session bean instance. EJB clients (whether they are other
enterprise beans or user applications) never access objects of this class directly; instead, they use the
container-generated classes associated with the home and remote interfaces to manipulate the session
bean.

Home interface--This interface defines the methods used by the client to create and remove instances of
the session bean. Thisinterface isimplemented by the container during deployment in a class known
generically as the EJB home class; instances are referred to as EJB home object.

Remote interface--After the client has used the home interface to gain access to an session bean, it uses
this interface to invoke indirectly the business methods implemented in the bean class. Thisinterfaceis
implemented by the container during deployment in a class known generically as the EJB object class;
instances are referred to as EJB objects.

Unlike an entity bean, a session bean does not have a primary key class. A session bean does not require a
primary key class because you do not need to search for specific instances of session beans.

Figure 4. The components of a session bean

118

Stateless versus stateful session beans

Session beans encapsul ate data and methods associated with a user session, task, or ephemeral object. By
definition, the data in a session bean instance is ephemerd; if it islost, no real harm is done. For example, at a
bank, session beans can represent a funds transfer, the creation of a customer profile or new account, and a
withdrawal or deposit. If information about a fund transfer is already typed (but not yet committed), and a
server fails, the balances of the bank accounts remains the same. Only the transfer datais lost, which can always
be retyped.

The manner in which a session bean is designed determines whether its data is shorter lived or longer lived:

« If asession bean needs to maintain specific data across methods, it is referred to as a stateful session
bean. When a session bean maintains data across methods, it is said to have a conversational state. A
Web-based shopping cart is aclassic use of a stateful session bean. As the shopping cart user adds items
to and subtracts items from the shopping cart, the underlying session bean instance must maintain a
record of the contents of the cart. After a particular EJB client begins using an instance of a stateful
session bean, the client must continue to use that instance as long as the specific state of that instanceis
required. If the session bean instance is lost before the contents of the shopping cart are committed to an
order, the shopper must load a new shopping cart.

« If asession bean does not need to maintain specific data across methods, it is referred to as a stateless
session bean. The example Transfer session bean developed in Devel oping session beans provides an

example of a stateless session bean. For stateless session beans, a client can use any instance to invoke
any of the session bean's methods because al instances are the same.

Creating an EJB module
119

The last step in the development of an enterprise bean is the creation of an EJB module. An EJB module
consists of the following:

« One or more deployable enterprise beans.

« A deployment descriptor, stored in an Extensible Markup Language (XML) file. Thisfile contains
information about the structure and external dependencies of the beans in the module, and application
assembly information describing how the beans are to be used in an application.

The EJB module can be created by using the tools within an integrated development environment (IDE) like
IBM's VisualAge for Java Enterprise Edition or by using the tools contained in WebSphere. For more
information, see Tools for developing and deploying enterprise beans.

The EJB module

The EJB module is used to assemble enterprise beans into a single deployable unit; this file uses the standard
Java archive file format. The EJB module can contain individual enterprise beans or multiple enterprise beans.
For more information, see Creating an EJB module and deployment descriptor.

The deployment descriptor

The EJB module contains one or more deployable enterprise beans and one deployment descriptor. The
deployment descriptor contains attribute and environment settings for each bean in the module, and it defines
how the container invokes functionality for all beansin the module. The deployment descriptor attributes can be
set for the entire enterprise bean or for the individual methods in the bean. The container uses the definition of
the bean-level attribute unless a method-level attribute is defined, in which case the latter isused. The
deployment descriptor contains the following information about entity and session beans. These attributes can
be set on the bean only; they cannot be set on a specific method of the bean.

« The bean's name, class, home interfaces, remote interfaces, and bean type (entity or session).

« Primary key class attribute--Identifies the primary key class for the bean. For more information, see
Writing the primary key class (entity with CMP) or Writing or selecting the primary key class (entity
with BMP).

« Persistence management. Specifies whether persistence management is performed by the enterprise
bean or by the container.

« Container-managed fields attribute--Lists those persistent variables in the bean class that the container
must synchronize with fields in a corresponding data source to ensure that this datais persistent and
consistent. For more information, see Defining variables.

« Reentrant attribute--Specifies whether an enterprise bean can invoke methods on itself or call another
bean that invokes a method on the calling bean. Only entity beans can be reentrant. For more
information, see Using threads and reentrancy in enterprise beans.

« State management attribute--Defines the conversational state of the session bean. This attribute must be
set to either STATEFUL or STATELESS. For more information on the meaning of these conversational
states, see Stateless versus stateful session beans.

« Timeout attribute--Defines the idle timeout value in seconds associated with this session bean. (This
attribute is an extension to the standard deployment descriptor.)

« Referencesto external resources, such as resource connection factories, to the homes of other enterprise
beans, and to security roles.
The deployment descriptor contains the following application assembly information:
« A display name and icons for identifying the module.

« Thelocation of class files needed for a client program to access the beans in the module.
120

« Security roles—- Define alogical grouping of principals. Access to operations (such as EJB methods) is
controlled by granting accessto arole.

« Method permissions--Define a mapping between one or more security roles and one or more methods
that amember of the role can invoke. Thisvalueis set per method.

« Transaction attributes--Define the transactional manner in which the container invokes a method for
enterprise beans that require container-managed transaction demarcation. This value is set per method.
The values for this attribute are described in Enabling transactions and security in enterprise beans.

« Transaction isolation level attribute--Defines the degree to which transactions are isolated from each
other by the container. Thisvalueis set per method. The values for this attribute are described in
Enabling transactions and security in enterprise beans. (This attribute is an extension to the standard

deployment descriptor.)
« RunAsMode and RunAsl dentity attributes--The RunAsMode attribute defines the identity used to invoke

the method. If a specific identity is required, the RunAsldentity attribute is used to specify that identity.
Thisvalueis set per bean. The values for the RunAsMode attribute are described in Enabling

transactions and security in enterprise beans. (This attribute is an extension to the standard deployment
descriptor.)

The following binding attribute is stored in the repository (it is not part of the deployment descriptor):

« JNDI home name attribute--Defines the Java Naming and Directory Interface (JNDI) home name that is
used to locate instances of an EJB home object. Thisvalueis set per bean. The values for this repository
attribute are described in Creating and getting a reference to a bean's EJB object.

Deploying an EJB module

When you deploy an EJB module, the deployment tool creates or incorporates the following elements:

« The container-implemented EJBObject and EJBHome classes (hereafter referred to as the EJB object
and EJB home classes) from the enterprise bean's home and remote interfaces (and the persistor and
finder classes for entity beans with CMP).

« The stub and skeleton files required for remote method invocation (RMI).

Figure 5 shows a simplified version of a deployed entity bean.

Figure 5. Themajor components of a deployed entity bean

121

Y ou can deploy an EJB module with avariety of different tools. For more information, see Tools for developing
and deploying enterprise beans.

Developing EJB applications

To create EJB applications, create the enterprise beans and EJB clients that encapsulate your business data and
functionality and then combine them appropriately. Figure 6 provides a conceptua illustration of how EJB
applications are created by combining one or more session beans, one or more entity beans, or both. Although
individual entity beans and session beans can be used directly in an EJB client, session beans are designed to be
associated with clients and entity beans are designed to store persistent data, so most EJB applications contain
session beans that, in turn, access entity beans.

Figure 6. Conceptual view of EJB applications

122

Container

f Entity bean

5 Session bean

V4

This section provides an example of the ways in which enterprise beans can be combined to create EJB
applications.

An example: enterprise beans for a bank

If you develop EJB applications for the banking industry, you can develop the following entity beansto
encapsulate your business data and associated methods:

« Account bean--An entity bean that contains information about customer checking and savings accounts.
« CarLoan bean--An entity bean that contains information about an automobile loan.

« Customer bean--An entity bean that contains information about a customer, including information on
accounts held and loans taken out by the customer.

« CustomerHistory bean--An entity bean that contains arecord of customer transactions for specified
accounts.

« Mortgage bean--An entity bean that contains information about a home or commercial mortgage.

An EJB client can directly access entity beans or session beans; however, the EJB Specification suggests that
EJB clients use session beansto in turn access entity beans, especially in more complex applications. Therefore,
as an EJB developer for the banking industry, you can create the following session beans to represent client
tasks:

« LoanApprover bean--A session bean that allows aloan to be approved by using instances of the
CarL oan bean, the Mortgage bean, or both.

« CarLoanCreator bean--A session bean that creates a new instance of a CarL oan bean.
« MortgageCreator bean--A session bean that creates a new instance of a Mortgage bean.
» Deposit bean--A session bean that credits a specified amount to an existing instance of an Account bean.

» StatementGenerator bean--A session bean that generates a statement summarizing the activities
associated with a customer's accounts by using the appropriate instances of the Customer and
CustomerHistory entity beans.

« Payment bean--A session bean that credits a payment to a customer's loan by using instances of the
CarL oan bean, the Mortgage bean, or both.

« NewAccount bean--A session bean that creates a new instance of an Account bean.
123

o NewCustomer bean--A session bean that creates a new instance of a Customer bean.

« LoanReviewer bean--A session bean that accesses information about a customer's outstanding loans
(instances of the CarL oan bean, the Mortgage bean, or both).

« Transfer bean--A session bean that transfers a specified amount between two existing instances of an
Account bean.

« Withdraw bean--A session bean that debits a specified amount from an existing instance of an Account
bean.

This exampleis simplified by necessity. Nevertheless, by using this set of enterprise beans, you can create a
variety of EJB applications for different types of users by combining the appropriate beans within that
application. One or more EJB clients can then be built to access the application.

Using the banking beans to develop EJB banking applications

When using beans built to the Sun Microsystems JavaBeans(T™) Specification (as opposed to the EJB
Specification), you combine predefined components such as buttons and text fields to create GUI applications.
When using enterprise beans, you combine predefined components such as the banking beans to create
three-tiered applications.

For example, you can use the banking enterprise beans to create the following EJB applications:

« Home Banking application--An Internet application that allows a customer to transfer funds between
accounts (with the Transfer bean), to make payments on aloan by using funds in an existing account
(with the Payment bean), to apply for a car loan or home mortgage (with the CarL oanCreator bean or the
MortgageCreator bean).

« Téeller application--An intranet application that allows ateller to create new customer accounts (with the
NewCustomer bean and the NewA ccount bean), transfer funds between accounts (with the Transfer
bean), and record customer deposits and withdrawals (with the Withdraw bean and the Deposit bean).

« Loan Officer application--An intranet application that allows aloan officer to create and approve car
loans and home mortgages (with the CarL oanCreator, MortgageCreator, LoanReviewer, and
LoanApprover beans).

« Statement Generator application--A batch application that prints monthly customer statements related to
account activity (with the StatementGenerator bean).

These examples represent only a subset of the possible EJB applications that can be created with the banking
beans.

Life cycles of enterprise bean instances

After an enterprise bean is deployed into a container, clients can create and use instances of that bean as
required. Within the container, instances of an enterprise bean go through a defined life cycle. The eventsin an
enterprise bean's life cycle are derived from actions initiated by either the EJB client or the container in the EJB
server. You must understand this life cycle because for some enterprise beans, you must write some of the code
to handle the different events in the enterprise bean's life cycle.

The methods mentioned in this section are discussed in greater detail in Developing enterprise beans.

Session bean life cycle

This section describes the life cycle of a session bean instance. Differences between stateful and statel ess
session beans are noted.

124

Creation state

A session bean's life cycle begins when a client invokes a create method defined in the bean's home interface. In
response to this method invocation, the container does the following:

1. Creates anew memory object for the session bean instance.

2. Invokes the session bean's setSessionContext method. (This method passes the session bean instance a
reference to a session context interface that can be used by the instance to obtain container services and
get information about the caller of a client-invoked method.)

3. Invokes the session bean's g bCreate method corresponding to the create method called by the EJB
client.

Ready state

After a session bean instance is created, it movesto the ready state of itslife cycle. In this state, EJB clients can
invoke the bean's business methods defined in the remote interface. The actions of the container at this state are
determined by whether a method is invoked transactionally or nontransactionally:

« Transactional method invocations--When a client invokes a transactional business method, the session
bean instance is associated with a transaction. After a bean instance is associated with atransaction, it
remains associated until that transaction completes. (Furthermore, an error resultsif an EJB client
attempts to invoke another method on the same bean instance if invoking that method causes the
container to associate the bean instance with another transaction or with no transaction.)

The container then invokes the following methods:
1. The afterBegin method, if that method isimplemented by the bean class.

2. The business method in the bean class that corresponds to the business method defined in the
bean's remote interface and called by the EJB client.

3. The bean instance's beforeCompletion method, if that method isimplemented by the bean class
and if acommit is requested prior to the container's attempt to commit the transaction.

The transaction service then attempts to commit the transaction, resulting either in a commit or aroll
back. When the transaction completes, the container invokes the bean's afterCompletion method, passing
the compl etion status of the transaction (either commit or rollback).

If arollback occurs, a stateful session bean can roll back its conversational state to the values contained
in the bean instance prior to beginning the transaction. Statel ess session beans do not maintain a
conversational state, so they do not need to be concerned about rollbacks.

« Nontransactional method invocations--When a client invokes a nontransactional business method, the
container simply invokes the corresponding method in the bean class.

Pooled state

The container has a sophisticated algorithm for managing which enterprise bean instances are retained in
memory. When a container determines that a stateful session bean instance is no longer required in memory, it
invokes the bean instance's g/ bPassivate method and moves the bean instance into areserve pool. A stateful
session bean instance cannot be passivated when it is associated with a transaction.

If aclient invokes a method on a passivated instance of a stateful session bean, the container activates the
instance by restoring the instance's state and then invoking the bean instance's g/ bA ctivate method. When this
method returns, the bean instance is again in the ready state.

Because every statel ess session bean instance of a particular type is the same as every other instance of that
125

type, stateless session bean instances are not passivated or activated. These instances exist in aready state at all
times until their removal.

Removal state

A session bean's life cycle ends when an EJB client or the container invokes a remove method defined in the
bean's home interface and remote interface. In response to this method invocation, the container calls the bean
instance's g bRemove method.

If you attempt to remove a bean instance while it is associated with a transaction, the
javax.ejb.RemoveException is thrown. After a bean instance is removed, any attempt to invoke a method on
that instance causes the java.rmi.NoSuchObjectException to be thrown.

A container can implicitly call aremove method on an instance after the lifetime of the EJB object has expired.
The lifetime of a session EJB object is set in the deployment descriptor with the timeout attribute.

For more information on the remove methods, see Removing a bean's EJB object.

Entity bean life cycle

This section describes the life cycle of entity bean instances. Differences between entity beans with CMP and
BMP are noted.

Creation State

An entity bean instance's life cycle begins when the container creates that instance. After creating a new entity
bean instance, the container invokes the instance's setEntityContext method. This method passes the bean
instance areference to an entity context interface that can be used by the instance to obtain container services
and get information about the caller of a client-invoked method.

Pooled State

After an entity bean instance s created, it is placed in apool of available instances of the specified entity bean
class. While the instanceisin this poal, it is not associated with a specific EJB object. Every instance of the
same enterprise bean class in this pool isidentical. While an instance isin this pooled state, the container can
useit to invoke any of the bean's finder methods.

Ready State

When a client needs to work with a specific entity bean instance, the container picks an instance from the pool
and associates it with the EJB object initialized by the client. An entity bean instance is moved from the pooled
to the ready state if there are no available instances in the ready state.

There are two events that cause an entity bean instance to be moved from the pooled state to the ready state:

« When aclient invokes the create method in the bean's home interface to create a new and unique entity
of the entity bean class (and a new record in the data source). As aresult of this method invocation, the
container calls the bean instance's gjbCreate and gjbPostCreate methods, and the new EJB object is
associated with the bean instance.

« When aclient invokes afinder method to manipulate an existing instance of the entity bean class
(associated with an existing record in the data source). In this case, the container calls the bean instance's
gjbActivate method to associate the bean instance with the existing EJB object.

When an entity bean instance is in the ready state, the container can invoke the instance's gjbL oad and gjbStore
126

methods to synchronize the data in the instance with the corresponding data in the data source. In addition, the
client can invoke the bean instance's business methods when the instance isin this state. All interactions
required to handle an entity bean instance's business methods in the appropriate transactional (or
nontransactional) manner are handled by the container.

When a container determines that an entity bean instance in the ready state is no longer required, it moves the
instance to the pooled state. This transition to the pooled state results from either of the following events:
« When the container invokes the g/bPassivate method.

« When the EJB client invokes aremove method on the EJB object or on the EJB home object. When one
of these methods is called, the underlying entity is removed permanently from the data source.

Removal State

An entity bean instance's life cycle ends when the container invokes the unsetEntityContext method on an entity
bean instance in the pooled state. Do not confuse the removal of an entity bean instance with the removal of the
underlying entity whose data is stored in the data source. The former simply removes an uninitialized object; the
latter removes data from the data source.

For more information on the remove methods, see Removing a bean's EJB object.

127

An architectural overview of the EJB programming
environment

The World Wide Web (the Web) has transformed the way in which businesses work with their customers. At
first, it was good enough just to have a Web home page. Then, businesses began to deploy active Web sites that
allowed customers to order products and services. Today, businesses not only need to use the Web in all of
these ways, they need to integrate their Web-based systems with their other business systems. The IBM(R)
WebSphere Application Server, and specifically the support for enterprise beans, provides the model and the
tools to accomplish this integration.

Components of the EJB environment

IBM's implementation of the Sun Microsystems Enterprise JavaBeans (EJB) Specification enables users of the
WebSphere Application Server to integrate their Web-based systems with their other business systems. A major
part of thisimplementation is the WebSphere EJB server and its associated components, which areillustrated in
Figure 1.

Figure 1. The components of the EJB environment

Admnistration
Irterface

| |

]
[
—erviet
HTT P-hased ar JSP
cliert EMIHOF
Q HTTF YiyED
SErver _
) Java - pr%tdhuegts
application
Fire =
MU IOF
il !|_&;.f-" EJB server B

Data source

The WebSphere EJB server environment contains the following components, which are discussed in more detall
in the specified sections:

« EJB server--A WebSphere EJB server contains and runs one or more enterprise beans, which
encapsulate the business logic and data used and shared by EJB clients. The enterprise beansinstalled in
an EJB server do not communicate directly with the server; instead, an EJB container provides an
interface between the enterprise beans and the EJB server, providing many low-level services such as
threading, support for transactions, and management of data storage and retrieval. For more information,

128

see The EJB server.

» Data source--There are two types of enterprise beans. session beans, which encapsulate short-lived,
client-specific tasks and objects, and entity beans, which encapsulate permanent or persistent data. The
EJB server stores and retrieves this persistent data in a data source, which can be a database, another
application, or even afile. For more information, see The data source.

« EJB clients-There are two general types of EJB clients:

o HTTP-based clients that interact with the EJB server by using either Java servlets or JavaServer
Pages(TM) (JSP) by way of the Hypertext Transfer Protocol (HTTP).

o Java applications that interact directly with the EJB server by using Java remote method
invocation over the Internet Inter-ORB Protocol (RMI1/110P).

For more information, see The EJB clients.

« The administration interface--The administrative interface allows you to manage the EJB server
environment. For more information, see The administration interface.

The EJB server

The EJB server isthe application server tier of WebSphere Application Server's three-tier architecture. The EJB
server has three components. the EJB server runtime, the EJB containers, and the enterprise beans. EJB
containers insul ate the enterprise beans from the underlying EJB server and provide a standard application
programming interface (API) between the beans and the container. The EJB Specification defines this API.
Together, the EJB server and container components provide or give access to the following services for the
enterprise beans that are deployed into it:

« A tool that deploys enterprise beans. When a bean is deployed, the deployment tool creates several
classes that implement the interfaces that make up the predeployed bean. In addition, the deployment
tool generates Java ORB, stub, and skeleton classes that enable remote method invocation. For entity
beans, the tool also generates persistor and finder classes to handle interaction between the bean and the
data source that stores the bean's persistent data. Before an enterprise bean can be deployed, the
developer must create an EJB module and associated deployment descriptor. The deployment descriptor
provides information about each enterprise bean in the module and instructions for the container on how
to handle the beans. For more information on deployment, see Deploying an EJB module.

« A security service that handles authentication and authorization for principals that need to access
resources in an EJB server environment. For more information, see The security service.

« A workload management service that ensures that resources are used efficiently. For more information,
see The workload management service.

« A persistence service that handles interaction between an entity bean and its data source to ensure that
persistent datais properly managed. For more information, see The persistence service.

« A naming service that exports a bean's name, as defined in the deployment descriptor, into the name
space. The EJB server uses the Java Naming and Directory Interface(TM) (JNDI) to implement a naming
service. For more information, see The naming service.

« A transaction service that implements the transactional attributesin a bean's deployment descriptor. For
more information, see The transaction service.

The security service

When enterprise computing was handled solely by afew powerful mainframes located at a centralized site,
ensuring that only authorized users obtained access to computing services and information was afairly

129

straightforward task. In distributed computing systems where users, application servers, and resource managers
can be spread out across the world, securing computing resources has become a much more complicated task.
Nevertheless, the underlying issues are basically the same.

Authentication and authorization

A good security service provides two main functions: authentication and authorization.

Authentication takes place when a principal (auser or acomputer process) initialy attempts to gain accessto a
computing resource. At that point, the security service challenges the principal to prove that the principal iswho
it claimsto be. Human userstypically prove who they are by entering a user 1D and password; a process
normally presents an encrypted key. If the password or key isvalid, the security service gives the user atoken or
ticket that identifies the principal and indicates that the principa has been authenticated. After aprincipa is
authenticated, it can then attempt to use any of the resources within the boundaries of the computing system
protected by the security service; however, aprincipa can use a particular computing resource only if it has
been authorized to do so. Authorization takes place when an authenticated principal requests the use of a
resource and the security service determinesif the user has been granted permission to use that resource.
Typically, authorization is handled by associating access control lists (ACLS) with resources that define which
principal (or groups of principals) are authorized to use the resource. If the principal is authorized, it gains
access to the resource.

In adistributed computing environment, principals and resources must be mutually suspicious of each other's
identity until both have proven that they are who they say they are. Thisis necessary because principals can
attempt to falsify an identity to get access to aresource, and a resource can be atrojan horse, attempting to get
valuable information from the principal. To solve this problem, the security service contains a security server
that acts as atrusted third party, authenticating principals and resources so that these entities can prove their
identities to each other. This security protocol is known as mutual authentication.

Using the security server

The security service does not use the access control and run-as identity security attributes defined in the
deployment descriptor. However, it does use the run-as mode attribute as the basis for mapping a user identity
to auser security context. For more information on this attribute, see The deployment descriptor.

The main component of the security serviceis an EJB server that contains security enterprise beans. When
system administrators administer the security service, they manipulate the security beans in the security EJB
Server.

Once an EJB client is authenticated, it can attempt to invoke methods on the enterprise beans that it
manipulates. A method is successfully invoked if the principal associated with the method invocation has the
required permissions to invoke the method. These permissions can be set at the application level (an
administrator-defined set of Web and object resources) and at the method group level (an administrator-defined
set of Javainterface/method pairs). An application can contain multiple method groups.

In general, the principal under which amethod isinvoked is associated with that invocation across multiple
Web servers and EJB servers (this association is known as delegation). Delegating the method invocationsin
this way ensures that the user of an EJB client needs to authenticate only once. HTTP cookies are used to
propagate a user's authentication information across multiple Web servers. These cookies have a lifetime equal
to the life of the browser session, and alogout method is provided to destroy these cookies when the user is
finished.

For information on administering security, see the WebSphere InfoCenter and the online help available with the
WebSphere Administrative Console.

The workload management service
130

The workload management service improves the scalability of the EJB server environment by grouping multiple
EJB serversinto server groups. Clients then access these server groups asif they are asingle EJB server, and
the workload management service ensures that the workload is evenly distributed across the EJB serversin the
server groups. An EJB server can belong to only one server group. The creation of server groupsis an
administrative task that is handled from within the WebSphere Administrative Console. For more information
on workload management, consult the WebSphere InfoCenter and the online help for the appropriate
administrative interface.

The persistence service

There are two types of enterprise beans. session beans and entity beans. Session beans encapsul ate temporary
data associated with a particular client. Entity beans encapsulate permanent data that is stored in a data source.
For more information, see An introduction to enterprise beans.

The persistence service ensures that the data associated with entity beansis properly synchronized with their
corresponding data in the data source. To accomplish thistask, the persistence service works with the
transaction service to insert, update, extract, and remove data from the data source at the appropriate times.

There are two types of entity beans: those with container-managed persistence (CMP) and those with
bean-managed persistence (BMP). In entity beans with CM P, the persistence service handles nearly all of the
tasks required to manage persistent data. In entity beans with BMP, the bean itself handles most of the tasks
required to manage persistent data.

The persistence service uses the following components to accomplish its task:

« The Java Database Connectivity (JDBC(TM)) API, which gives entity beans a common interface to
relational databases.

« Javatransaction support, which is discussed in Using transactions in the EJB server environment. The
EJB server ensures that persistent data is always handled within the appropriate transactional context.

The naming service

In an object-oriented distributed computing environment, clients must have a mechanism to locate and identify
objects so that the clients, objects, and resources appear to be on the same machine. A naming service provides
this mechanism. In the EJB server environment, JNDI is used to mask the actual naming service and provide a
common interface to the naming service.

JNDI provides naming and directory functionality to Java applications, but the APl is independent of any
specific implementation of a naming and directory service. This implementation independence ensures that
different naming and directory services can be used by accessing them by way of the INDI API. Therefore, Java
applications can use many existing naming and directory services such as the Lightweight Directory Access
Protocol (LDAP), the Domain Name Service (DNS), or the DCE Cell Directory Service (CDS).

JNDI was designed for Java applications by using Java's object model. Using JNDI, Java applications can store
and retrieve named objects of any Java object type. INDI also provides methods for executing standard
directory operations, such as associating attributes with objects and searching for objects by using their
attributes.

In the EJB server environment, the deployment descriptor is used to specify the INDI name for an enterprise
bean. When an EJB server is started, it registers these names with JNDI.

The transaction service

A transaction is a set of operations that transforms data from one consistent state to another. This set of

131

operationsis an indivisible unit of work, and in some contexts, atransaction is referred to asalogical unit of
work (LUW). A transaction isatool for distributed systems programming that simplifies failure scenarios.
Transactions provide the ACID properties:

« Atomicity: A transaction's changes are atomic: either all operations that are part of the transaction
happen or none happen.

« Consistency: A transaction moves data between consistent states.

« Isolation: Even though transactions can run (or be executed) concurrently, no transaction sees another's
work in progress. The transactions appear to run serially.

« Durability: After atransaction completes successfully, its changes survive subsequent failures.

As an example, consider a transaction that transfers money from one account to another. Such atransfer
involves money being deducted from one account and deposited in the other. Withdrawing the money from one
account and depositing it in the other account are two parts of an atomic transaction: if both cannot be
completed, neither must happen. If multiple requests are processed against an account at the same time, they
must be isolated so that only a single transaction can affect the account at one time. If the bank's central
computer failsjust after the transfer, the correct balance must still be shown when the system becomes available
again: the change must be durable. Note that consistency is afunction of the application; if money isto be
transferred from one account to another, the application must subtract the same amount of money from one
account that it adds to the other account. Transactions can be completed in one of two ways: they can commit or
roll back. A successful transaction is said to commit. An unsuccessful transaction is said to roll back. Any data
modifications made by arolled back transaction must be completely undone. In the money-transfer example, if
money is withdrawn from one account but a failure prevents the money from being deposited in the other
account, any changes made to the first account must be completely undone. The next time any source queries
the account balance, the correct balance must be shown.

Distributed transactions and the two-phase commit process

A distributed transaction is one that runs in multiple processes, often on several machines. Each process
participates in the transaction. Thisisillustrated in Figure 2, where each oval indicates work being done on a

different machine, and each arrow indicates a remote method invocation (RMI).

Figure 2. Example of a distributed transaction

Wiarking an
the receyed

transaction

otarts a

R equestswark
transadion o

for tke transaction

Requestsfurther

working on witk for the transa dion
the rece ed

trarsa ctW

Distributed transactions, like local transactions, must adhere to the ACID properties. However, maintaining
these propertiesis greatly complicated for distributed transactions because a failure can occur in any process,
and in the event of such afailure, each process must undo any work already done on behalf of the transaction.

Working on \'.
the received
trarsaction

A distributed transaction processing system maintains the ACID propertiesin distributed transactions by using
two features:

132

« Recoverable processes: Recoverable processes are those that can restore earlier statesif afailure occurs.

« A commit protocol: A commit protocol enables multiple processes to coordinate the committing or
rolling back (aborting) of atransaction. The most common commit protocol, and the one used by the
EJB server, is the two-phase commit protocol.

Transaction state information must be stored by all recoverable processes. However, only processes that manage
application data (such as resource managers) must store descriptions of changes to data. Not all processes
involved in a distributed transaction need to be recoverable. In general, clients are not recoverable because they
do not interact directly with a resource manager. Processes that are not recoverable are referred to as ephemeral
processes. The two-phase commit protocol, as the name implies, involves two phases: a prepare phase and a
resolution phase. In each transaction, one process acts as the coordinator. The coordinator oversees the
activities of the other participants in the transaction to ensure a consistent outcome. In the prepare phase, the
coordinator sends a message to each process in the transaction, asking each process to prepare to commit. When
a process prepares, it guarantees that it can commit the transaction and makes a permanent record of its work.
After guaranteeing that it can commit, it can no longer unilaterally decide to roll back the transaction. If a
process cannot prepare (that is, if it cannot guarantee that it can commit the transaction), it must roll back the
transaction. In the resolution phase, the coordinator tallies the responses. If all participants are prepared to
commit, the transaction commits; otherwise, the transaction is rolled back. In either case, the coordinator
informs all participants of the result. In the case of a commit, the participants acknowledge that they have
committed.

Using transactions in the EJB server environment

The enterprise bean transaction model corresponds in most respects to the OMG OTS version 1.1. An enterprise
bean instance that is transaction enabled corresponds to an object of the OTS Transactional Object interface.
However, the enterprise bean transaction model does not support transaction nesting.

In the EJB server environment, transactions are handled by three main components of the transaction service:

« A transaction manager interface that enables the EJB server to control transaction boundaries within its
enterprise beans based on the transactional attributes specified for the beans.

« Aninterface (UserTransaction) that allows an enterprise bean or an EJB client to manage transactions.
The container makes this interface available to enterprise beans and EJB clients by way of the name
service.

« Coordination by way of the X/Open XA interface that enables a transactional resource manager (such as
adatabase) to participate in atransaction controlled by an external transaction manager.

For most purposes, the enterprise bean devel opers can delegate the tasks involved in managing a transaction to
the container. The developer performs this delegation by setting the deployment descriptor attributes for
transactions. These attributes and their values are described in Setting transactional attributes in the deployment

descriptor.

In other cases, the enterprise bean devel oper will want or need to manage the transactions at the bean level or
involve the EJB client in the management of transactions. For more information on this approach, see Using

bean-managed transactions.

The data source

Entity beans contain persistent data that must be permanently stored in a recoverable data source. Although the
EJB Specification often refers to databases as the place to store persistent data associated with an entity bean, it
leaves open the possibility of using other data sources, including operating system files and other applications.
If you want to let the container handle the interaction between an entity bean and a data source, you must use
the data sources supported by that container.

133

If you write the additional code required to handle the interaction between a BMP entity bean and the data
source, you can use any data source that meets your needs and is compatible with the persistence service. For
more information, see Developing entity beans with BMP.

The EJB clients

An EJB client can take one of the following forms: it can be a Java application, a Java servlet, a Java
applet-servliet combination, or a JSP file. The EJB client code required to access and manipul ate enterprise
beansisvery similar across the different Java EJB clients. EJB client developers must consider the following
iSsues:

« Naming and communications--A Java EJB client must use either HTTP or RMI to communicate with
enterprise beans. Fortunately, there is very little difference in the coding required to enable
communications between the EJB client and the enterprise bean, because INDI masks the interaction
between the EJB client and the name service.

o Java applications communicate with enterprise beans by using RMI1/I10P.

o Javaservlets and JSP files communicate with enterprise beans by using HTTP. To use servlets
with an EJB server, a Web server must be installed and configured on a machine in the EJB
server environment. For more information, see The Web server.

« Threading--Java clients can be either single-threaded or multithreaded depending on the tasks that the
client needs to perform. Each client thread that uses a service provided by a session bean must create or
find a separate instance of that bean and maintain a reference to that bean until the thread completes;
multiple client threads can access the same entity bean.

o Security - EJB clients that access an EJB server over HTTP (for example, servlets and JSP files)
encounter the following two layers of security:

1. Universal Resource Locator (URL) security enforced by the WebSphere Application Server
Security Plug-in attached to the Web server in collaboration with the security service.

2. Enterprise bean security enforced at the server working with the security service.

When the user of an HTTP-based EJB client attempts to access an enterprise bean, the Web server
(using the WebSphere Server plug-in) authenticates the user. This authentication can take the form of a
request for auser 1D and password or it can happen transparently in the form of a certificate exchange
followed by the establishment of a Secure Sockets Layer (SSL) session.

The authentication policy is governed by an additional option: secure channel constraint. If the secure
channel constraint is required, an SSL session must be established as the final phase of authentication;
otherwise, SSL is optional.

« Transactions--Both types of Java clients can use the transaction service by way of the JTA interfaces to
manage transactions. The code required for transaction management is identical in the two types of
clients. For general information on transactions and the Java transaction service, see The transaction
service. For information on managing transactions in a Java EJB client, see Managing transactionsin an
EJB client.

The Web server

To access the functionality in the EJB server, Java servlets and JSP files must have access to a Web server. The
Web server enables communication between aWeb client and the EJB server. The EJB server, Web server, and
Java servlet can each reside on different machines.

134

For information on the Web servers supported by the EJB servers, see the Advanced Application Server Getting
Sarted document.

The administration interface

The EJB server uses the WebSphere Administrative Console. For more information on this interface, consult
the WebSphere InfoCenter and the online help available with the WebSphere Administrative Console. Y ou can
also administer the EJB server using the wscp command-line tool. For more information, see the Advanced
Edition Information Center.

135

WebSphere Programming Model Extensions

This section discusses facilities that are provided as part of the Programming Model Extensionsin WebSphere Application
Server:

« The exception-chaining package, which can be used by distributed applications to capture a sequence of exceptions.
For more information, see The distributed-exception package.

« The command package, which can be used by distributed applications to reduce the number of remote invocations
they must make. For more information, see The command package.

« Thelocalizable-text package, which can be used by distributed applications spanning locales to deliver output in a
user-specified language. For more information, see The localizable-text package.

The exception-chaining and command packages are available as part of WebSphere Application Server Advanced Edition
and Enterprise Edition; the localizable-text package is available as part of WebSphere Application Server Advanced
Edition. All three packages are general-purpose utilities, designed to provide common functions in areusable way.
Although these facilities are described in the context of enterprise beans, they are available to any WebSphere Application
Server Java application. They are not restricted to use with enterprise beans.

The distributed-exception package

Distributed applications require a strategy for exception handling. As applications become more complex and are used by
more participants, handling exceptions becomes problematic. To capture the information contained in every exception,
methods have to rethrow every exception they catch. If every method adopts this approach, the number of exceptions can
become unmanageable, and the code itself becomes less maintainable. Furthermore, if a new method introduces a new
exception, al existing methods that call the new method have to be modified to handle the new exception. Trying to
explicitly manage every possible exception in a complex application quickly becomes intractable.

In order to keep the number of exceptions manageable, some programmers adopt a strategy in which methods catch all
exceptions in a single clause and throw one exception in response. This reduces the number of exceptions each method must
recognize, but it also means that the information about the originating exception islost. Thisloss of information can be
desirable, for example, when you wish to hide implementation details from end users. However, this strategy can make
applications much more difficult to debug.

The distributed-exception package provides afacility that allows you to build chains of exceptions. An exception chain
encapsulates the stack of previous exceptions. With an exception chain, you can throw one exception in response to another
without discarding the previous exceptions, so you can manage the number of exceptions without losing the information
they carry. Exceptions that support chaining are called distributed exceptions.

Distributed exceptions are packaged in the rasjar file, which must be included in the application's CLASSPATH variable.
Overview

Support for chaining distributed exceptions is provided by the com.ibm.websphere.exception Java package. The following
classes and interfaces make up this package:

« DistributedException--This class provides access to the methods on the DistributedExceptionlnfo object. It acts as
the root class for exceptionsin adistributed application. For more information, see The DistributedException class.

« DidtributedExceptionEnabled--This interface allows exceptions that cannot inherit from the DistributedException
class to be used in exception chains, so that exceptions based on predefined exceptions can be captured. For more
information, see The DistributedExceptionEnabled interface.

« DistributedExceptionlnfo--This class encapsul ates the work necessary for distributed exceptions. An exception class
that extends the DistributedException class automatically gets access to this class. A class that implements the
DistributedExceptionEnabled interface must explicitly declare a DistributedExceptionlnfo attribute. For more
information, see The DistributedExceptioninfo class.

« Exceptionl nstantiationException--This class defines the exception that is thrown if an exception chain cannot be
created. This exception isinstantiated internally, but you can catch and re-throw it.

136

This section provides a general description of the interfaces and classes in the exception-chaining package.
The DistributedException class

The DistributedException class provides the root exception for exception hierarchies defined by applications. With this
class, you build chains of exceptions by saving a caught exception and bundling it into the new exception to be thrown. This
way, the information about the old exception is forwarded along with the new exception. The class declares six

constructors; Figure 55 shows the signatures for these constructors. When your exception is a subclass of the

DistributedException class, you must provide corresponding constructorsin your exception class.

Figure 55. Code example: Constructorsfor the DistributedException class

publ ic class DistributedException extends Exception
i mpl ements DistributedExcepti onEnabl ed

{
/1l Constructors
public DistributedException() {...}
public DistributedException(String nessage) {...}
public DistributedException(Throwabl e exception) {...}
public DistributedException(String nessage, Throwabl e exception) {...}
public DistributedException(String resourceBundl eNane,
String resourcekKey,
oj ect[] formatArgunents,
String default Text)
.
public DistributedException(String resourceBundl eNamne,
String resourcekKey,
oj ect[] formatArgunents,
String default Text,
Thr owabl e excepti on)
{...}
/1 O her methods
}

The class also provides methods for extracting exceptions from the chain and querying the chain. These methods include:
« getMessage--This method returns the message string associated with the current exception.

« getPreviousException--This method returns the preceding exception in a chain as a Throwable abject. If there are no
previous exceptions, it returns null.

« getOriginal Exception--This method returns the original exception in a chain as a Throwable object. If thereis no
prior exception, it returns null.

« getException--This method returns the most recent instance of the named exception from the chain as a Throwable
object. If there are no instances present, it returns null.

« getExceptioninfo--This method returns the DistributedExceptioninfo object for the exception.

« printStack Trace--These methods print the stack trace for the current exception, which includes the stack traces of all
previous exceptionsin the chain.

Localization support

Support for localized messages is provided by two of the constructors for distributed exceptions. These constructors take
arguments representing a resource bundle, a resource key, a default message, and the set of replacement strings for variables
in the message. A resource bundle is a collection of resources or resource names representing information associated with a
specific locale. Resource bundles are provided as either a subclass of the ResourceBundle class or in a propertiesfile. The
resource key indicates which resource in the bundle to retrieve. The default message is returned if either the name of the
resource bundle or the key isnull or invalid.

The DistributedExceptionEnabled interface
137

Use the DistributedExceptionEnabled interface to create distributed exceptions when your exception cannot extend the
DistributedException class. Because Java does not permit multiple inheritance, you cannot extend multiple exception
classes. If you are extending an existing exception class, for example, javax.ejb.CreateException, you cannot also extend
the DistributedException class. To alow your new exception class to chain other exceptions, you must implement the
DistributedExceptionEnabled interface instead. The DistributedExceptionEnabled interface declares eight methods you
must implement in your exception class:

« getMessage--This method returns the message string associated with the current exception.

« getPreviousException--This method returns the preceding exception in a chain as a Throwabl e abject. If there are no
previous exceptions, it returns null.

« getOriginal Exception--This method returns the original exception in achain as a Throwable object. If thereisno
prior exception, it returns null.

« getException--This method returns the most recent instance of the named exception from the chain as a Throwable
object. If there are no instances present, it returns null.

« getExceptioninfo--This method returns the DistributedExceptionlnfo object for the exception.

« printStackTrace--These methods print the stack trace for the current exception, which includes the stack traces of all
previous exceptionsin the chain.

« printSuperStackTrace--This method is used by a DistributedExceptioninfo object to retrieve and save the current
stack trace.

When implementing the DistributedExceptionEnabled interface, you must declare a DistributedExceptionlnfo attribute.
This attribute provides implementations for most of these methods, so implementing them in your exception class consists
of calling the corresponding methods on the DistributedExceptionlnfo object. For more information, see Implementing the
methods from the DistributedExceptionEnabled interface.

The DistributedExceptioninfo class

The DistributedExceptionlnfo class provides the functionality required for distributed exceptions. It must be used by any
exception that implements the DistributedExceptionEnabled interface (which includes the DistributedException class). A
DistributedExceptionlnfo object contains the exception itself, and it provides constructors for creating exception chains and
methods for retrieving the information within those chains. It aso provides the underlying methods for managing chained
exceptions.

Extending the DistributedException class

The DistributedException class provides the root exception for exception hierarchies defined by applications. The class also
provides methods for extracting exceptions from the chain and querying the chain. Y ou must provide constructors
corresponding to the constructors in the DistributedException class (see Figure 55). The constructors can simply pass

arguments to the constructor in the DistributedException class by using super methods, asillustrated in Figure 56.

Figure 56. Code example: Constructorsin an exception classthat extendsthe DistributedException class

i ﬁbort com i bm webspher e. exception. *;
public class MDistributedException extends DistributedException
{
/] Constructors
public MyDi stributedException() {
super () ;

public MyDi stributedException(String nessage) {
super (message) ;

public MyDi stributedExcepti on(Throwabl e exception) {
super (exception);

public MyDi stributedException(String nessage, Throwabl e exception) {
super (nmessage, exception);
138

}

public MyDi stributedException(String resourceBundl eNane,
String resourceKey, Cbject[] formatArgunents,
String default Text)

super (resour ceBundl eNane, resourceKey, formatArgunents, defaultText);

public MyDi stributedException(String resourceBundl eNane,
String resourceKey, oject[] formatArgunents,
String default Text, Throwabl e exception)

super (resour ceBundl eNane, resourceKey, formatArgunents, defaultText,
exception);

}
Implementing the DistributedExceptionEnabled interface

Use the DistributedExceptionEnabled interface to create distributed exceptions when your exception cannot extend the
DistributedException class. To alow your new exception class to be chained, you must implement the
DistributedExceptionEnabled interface instead. Figure 57 shows the structure of an exception class that extends the existing
javax.gjb.CreateException class and implements the DistributedExceptionEnabled interface. The class also declares the
required DistributedExceptionlnfo object.

Figure 57. Code example: The structure of an exception classthat implementsthe DistributedExceptionEnabled
interface

i mport javax.ejb.*;

i mport com i bm websphere. exception. *;

public class Account Creat eException extends CreateException
i mpl ements Di stri but edExcepti onEnabl ed

Di stri but edExceptionl nfo exceptionlnfo = null;
// Constructors

// Met hods from the DistributedExcepti onEnabl ed interface
}
Implementing the constructors for the exception class

The exception-chaining package supports six different ways of creating instances of exception classes (see Figure 55).
When you write an exception class by implementing the DistributedExceptionEnabled interface, you must implement these
constructors. In each one, you must use the DistributedExceptionlnfo object to capture the information for chaining the
exception. Figure 58 shows standard implementations for the six constructors.

Figure 58. Code example: Constructorsfor an exception class that implementsthe DistributedExceptionEnabled
interface

publ i c class Account Creat eException extends CreateException
i npl enents Di stri but edExcepti onEnabl ed
{
Di stribut edeExceptionlnfo exceptionlnfo = null;
/] Constructors
Account Creat eException() {
super ();
exceptionlnfo = new Di stributedExceptionl nfo(this);
}
Account Creat eException(String nmsg) {
139

}

super (nsg);
exceptionlnfo = new Distribut edExceptionlnfo(this);

}
Account Cr eat eExcepti on(Throwabl e e) {

super ();

exceptionlnfo = new DistributedExceptionlnfo(this, e);
}

Account Creat eException(String nmsg, Throwable e) {
super (nsQ);
exceptionlnfo = new DistributedExceptionlnfo(this, e);
}
Account Creat eException(String resourceBundl eNanme, String resourcekKey,
oj ect[] formatArgunents, String default Text)

super ();
exceptionlnfo = new Di stribut edExcepti onl nfo(resourceBundl eNane,
resour ceKey, formatArgunents, defaultText, this);

Account Cr eat eExcepti on(String resourceBundl eNane, String resourcekKey,
oj ect[] format Argunents, String defaultText,
Thr owabl e excepti on)

super ();
exceptionlnfo = new Di stribut edExcepti onl nfo(resourceBundl eNane,
resour ceKey, formatArgunments, defaultText, this, exception);

}
/1 Methods fromthe DistributedExcepti onEnabl ed interface

Implementing the methods from the DistributedExceptionEnabled interface

The DistributedExceptionlnfo object provides implementations for most of the methods in the DistributedExceptionEnabled
interface, so you can implement the required methods in your exception class by calling the corresponding methods on the
DistributedExceptioninfo object. Figure 59 illustrates this technique. The only two methods that do not involve calling a
corresponding method on the DistributedExceptioninfo object are the getExceptioninfo method, which returns the object,
and the printSuperStackTrace method, which calls the super.printStack Trace method.

Figure 59. Code example: Implementations of the methodsin the DistributedExceptionEnabled interface

public class Account Creat eExcepti on extends CreateException
i npl enents Di stribut edExcepti onEnabl ed

{

Di stribut edExceptionlnfo exceptionlnfo = null;
/1 Constructors

/1 Methods fromthe DistributedExcepti onEnabl ed interface
String get Message() {
if (exceptionlnfo !'= null)
return exceptionl nfo. get Message();
el se return null;

Thr owabl e get Previ ousException() {
if (exceptioninfo !'= null)
return exceptionl nfo. getPrevi ousException();
else return null;
}
Thr owabl e get Ori gi nal Exception() {
if (exceptionlinfo !'= null)
return exceptionlnfo.getOiginal Exception();
140

else return null;

Thr owabl e get Exception(String excepti onCl assNane) {
if (exceptionlinfo !'= null)
return exceptionl nfo.get Exception(excepti onCl assNane) ;
el se return null;

}
Di stri but edExceptionl nfo get Exceptionlnfo() {
if (exceptionlnfo !'= null)
return exceptionl nfo;
el se return null;
}
voi d printStackTrace() ({
if (exceptionlinfo !'= null)
return exceptionlnfo.printStackTrace();
el se return null;
}
void printStackTrace(PrintWiter pw) {
if (exceptionlnfo !'= null)
return exceptionlnfo.printStackTrace(pw);
el se return null;
}
voi d printSuperStackTrace(PrintWiter pw)
if (exceptionlinfo !'= null)
return super.printStackTrace(pw);
else return null;
}

}
Using distributed exceptions

Defining a distributed exception gives you the ability to chain exceptions together. The DistributedExceptioninfo class
provides methods for adding information to an exception chain and for extracting information from the chain. This section
illustrates the use of distributed exceptions.

Catching distributed exceptions

Y ou can catch exceptions that extend the DistributedException class or implement the DistributedExceptionEnabled
interface separately. You can aso test a caught exception to seeif it hasimplemented the DistributedExceptionEnabled
interface. If it has, you can treat it as any other distributed exception. Figure 60 shows the use of the instanceof method to

test for exception chaining.
Figure 60. Code example: Testing for an exception that implementsthe DistributedExceptionEnabled interface
try {
sonmeMet hod() ;
}
catch (Exception e) {

i f (e instanceof DistributedExceptionEnabl ed) {

}

Adding an exception to a chain

To add an exception to achain, you must call one of the constructors for your distributed-exception class. This captures the
previous exception information and packages it with the new exception. Figure 61 shows the use of the

MyDistributedException(Throwable) constructor.
141

Figure 61. Code example: Adding an exception to a chain

voi d soneMet hod() throws MyDistributedException {

try {
sonmeQt her Met hod() ;

}

catch (DistributedExcepti onEnabl ed e) {
t hrow new MyDi stri but edException(e);

}

b
Retrieving information from a chain

Chained exceptions allow you to retrieve information about prior exceptionsin the chain. For example, the
getPreviousException, getOriginal Exception, and getException(String) methods allow you to retrieve specific exceptions
from the chain. Y ou can retrieve the message associated with the current exception by calling the getM essage method. Y ou
can also get information about the entire chain by calling one of the printStackTrace methods. Figure 62 illustrates calling

the getPreviousException and getOriginal Exception methods.

Figure 62. Code example: Extracting exceptions from a chain

try {
someMet hod() ;

}
catch (DistributedExcepti onEnabl ed e) {

try {
Throwabl e prev = e. get Previ ousException();

catch (Exceptionlnstantiati onException eie) {
Di stri but edexceptionlnfo prevExlnfo = e. getPrevi ousExcepti onl nfo();
if (prevExinfo !'= null) {
String prevExNane = prevExl nfo. get C assNane();
String prevExMsg = prevExl nfo. get Cl assMessage();

}
}

try {
Throwabl e orig = e.get Ori gi nal Exception();

catch (Exceptionlnstantiati onException eie) {
Di stributedExceptionlnfo origExInfo = null;
Di stri but edexceptionlnfo prevExlnfo = e. getPrevi ousExceptionl nfo();
while (prevExinfo !'= null) {
ori gkxl nfo = prevExl nfo;
prevExl nfo = prevExl nfo. get Previ ousExcepti onl nfo();

}

if (origExinfo !'= null) {
String ori gexName = ori gExl nfo. getd assNane();
String ori gexMsg = ori gExl nfo. get d assMessage();

The command package

142

Distributed applications are defined by the ability to utilize remote resources asif they were local, but this remote work
affects the performance of distributed applications. Distributed applications can improve performance by using remote calls
sparingly. For example, if a server does several tasks for a client, the application can run more quickly if the client bundles
requests together, reducing the number of individual remote calls. The command package provides a mechanism for
collecting sets of requests to be submitted as a unit.

In addition to giving you away to reduce the number of remote invocations a client makes, the command package provides
ageneric way of making requests. A client instantiates the command, setsitsinput data, and tellsit to run. The command
infrastructure determines the target server and passes a copy of the command to it. The server runs the command, sets any
output data, and copiesit back to the client. The package provides a common way to issue a command, locally or remotely,
and independently of the server'simplementation. Any server (an enterprise bean, a Java Database Connectivity (JDBC)
server, aservlet, and so on) can be atarget of acommand if the server supports Java access to its resources and provides a
way to copy the command between the client's Java Virtual Machine (JVM) and its own JVM.

Overview

The command facility isimplemented in the com.ibm.websphere.command Java package. The classes and interfacesin the
command package fall into four general categories:

« Interfacesfor creating commands. For more information, see Facilities for creating commands.

« Classes and interfaces for implementing commands. For more information, see Facilities for implementing
commands.

« Classes and interfaces for determining where the command is run. For more information, see Facilities for setting
and determining targets.

« Classes defining package-specific exceptions. For more information, see Exceptionsin the command package.

This section provides a general description of the interfaces and classes in the command package.

Facilities for creating commands

The Command interface specifies the most basic aspects of acommand. This interface is extended by both the
TargetableCommand interface and the CompensableCommand interface, which offer additional features. To create
commands for applications, you must:

« Define an interface that extends one or more of interfaces in the command package.
« Provide an implementation class for your interface.

In practice, most commands implement the TargetableCommand interface, which allows the command to be executed
remotely. Figure 63 shows the structure of a command interface for a targetable command.

Figure 63. Code example: The structure of an interface for atargetable command

i ﬁbort com i bm webspher e. command. *;

public interface MySi npl eCommand ext ends Target abl eCommand {
/1 Declare application nmethods here

}

The CompensableCommand interface allows the association of one command with another that can undo the work of the
first. Compensable commands also typically implement the TargetableCommand interface. Figure 64 shows the structure of

acommand interface for atargetable, compensable command.

Figure 64. Code example: The structure of an interface for atargetable, compensable command

i ﬁbort com i bm webspher e. command. *;

public interface MyComand ext ends Target abl eCormand, Conpensabl eCommand {
/1 Declare application nmethods here

}

143

Facilities for implementing commands

Commands are implemented by extending the class TargetableCommandimpl, which implements the TargetableCommand
interface. The TargetableCommandimpl classis an abstract class that provides some implementations for some of the
methods in the TargetableCommand interface (for example, setting return values) and declares additional methods that the
application itself must implement (for example, how to execute the command).

Y ou implement your command interface by writing a class that extends the TargetableCommandimpl class and implements
your command interface. This class contains the code for the methods in your interface, the methods inherited from
extended interfaces (the TargetableCommand and CompensableCommand interfaces), and the required (abstract) methods
in the TargetableCommandImpl class. Y ou can aso override the default implementations of other methods provided in the
TargetableCommandimpl class. Figure 65 shows the structure of an implementation class for the interface in Figure 64.

Figure 65. Code example: The structure of an implementation classfor a command interface

i mport java.lang.reflect.*;
i nport com i bm websphere. conmand. *;
public class MyComrandl npl extends Tar get abl eCormandl npl
i npl enents MyConmand {
/1l Set instance variables here

// | mpl enent met hods in the MyComrand interface
// | mpl enent et hods in the Conpensabl eConmand interface

// | mpl enent abstract methods in the Targetabl eCommandl npl cl ass

}
Facilities for setting and determining targets

The object that isthe target of a TargetableCommand must implement the CommandTarget interface. This object can be an
actual server-side object, like an entity bean, or it can be a client-side adapter for a server. The implementor of the
CommandTarget interface is responsible for ensuring the proper execution of acommand in the desired target server
environment. This typically requires the following steps:

1. Copying the command to the target server by using a server-specific protocol.
2. Running the command in the server.
3. Copying the executed command from the target server to the client by using a server-specific protocol.

Common ways to implement the CommandTarget interface include:
» A local target, which runsin the client's VM.

« A client-side adapter for aserver. For an example that implements the target as a client-side adapter, see Writing a
command target (client-side adapter).

« An enterprise bean (either a session bean or an entity bean). Figure 66 shows the structure of the remote interface
and enterprise bean class for an entity bean that implements the CommandTarget interface. An enterprise bean is
provided with WebSphere that can be deployed and used as a CommandTarget. See Using the WebSphere
EJBCommandTarget bean as a command target.

Figure 66. Code example: The structure of a command-tar get entity bean

i mport java.rni.Renot eExcepti on;

i mport java.util.Properties;

i mport javax.ejb.*;

i mport com i bm webspher e. command. *;

/'l Renote interface for the MyBean enterprise bean (also a command target)
public interface MyBean extends EJBOhject, CommandTarget {

144// Decl are nethods for the renpte interface

}

/1l Entity bean class for the MyBean enterprise bean (al so a conmand target)
public class MyBeand ass inplenents EntityBean, ComrandTarget ({
/1 Set instance variables here

)/-Irrpl enent nethods in the renote interface
))-Irrpl enent nethods in the EntityBean interface

// | mpl enment the nethod in the CoormandTarget interface

}

Since targetable commands can be run remotely in another VM, the command package provides mechanisms for
determining where to run the command. A target policy associates a command with atarget and is specified through the
TargetPolicy interface. Y ou can design customized target policies by implementing this interface, or you can use the
provided TargetPolicyDefault class. For more information, see Targets and target policies.

Exceptions in the command package

The command package defines a set of exception classes. The CommandException class extends the DistributedException
class and acts as the base class for the additional command-related exceptions. UnauthorizedA ccessException,

Unsetl nputPropertiesException, and UnavailableCompensableCommandException. Applications can extend the
CommandException class to define additional exceptions, aswell.

Although the CommandException class extends the DistributedException class, you do not have to import the
distributed-exception package, com.ibm.websphere.exception, unless you need to use the features of the
DistributedException classin your application. For more information on distributed exceptions, see The

distributed-exception package.
Writing command interfaces

To write acommand interface, you extend one or more of the three interfaces included in the command package. The base
interface for all commands is the Command interface. This interface provides only the client-side interface for generic
commands and declares three basic methods:

« isReadyToCallExecute--This method is called on the client side before the command is passed to the server for
execution.

« execute--This method passes the command to the target and returns any data.
« reset--This method reverts any output properties to the values they had before the execute method was called so that
the object can be reused.

The implementation class for your interface must contain implementations for the isReady ToCall Execute and reset
methods. The execute method isimplemented for you elsewhere; for more information, see Implementing command

interfaces. Most commands do not extend the Command interface directly but use one of the provided extensions: the
TargetableCommand interface and the CompensableCommand interface.

The TargetableCommand interface

The TargetableCommand interface extends the Command interface and provides for remote execution of commands. Most
commands will be targetable commands. The TargetableCommand interface declares several additional methods:

« setCommandTarget--This method allows you to specify the target object to a command.

« setCommandTargetName--This method allows you to specify the target by name to a command.

« getCommandTarget--This method returns the target object of the command.

« getCommandTargetName--This method returns the name of the target object of the command.

« hasOutputProperties--This method indicates whether or not the command has output that must be copied back to the
145

client. (The implementation class a so provides a method, setHasOutputProperties, for setting the output of this
method. By default, hasOutputProperties returns true.)

« setOutputProperties--This method saves output values from the command for return to the client.

« performExecute-- This method encapsul ates the application-specific work. It is called for you by the execute method
declared in the Command interface.

With the exception of the performExecute method, which you must implement, all of these methods are implemented in the
TargetableCommandimpl class. This class aso implements the execute method declared in the Command interface.

The CompensableCommand interface

The CompensableCommand interface also extends the Command interface. A compensable command is one that has
another command (a compensator) associated with it, so that the work of the first can be undone by the compensator. For
example, acommand that attempts to make an airline reservation followed by a hotel reservation can offer a compensating
command that allows the user to cancel the airline reservation if the hotel reservation cannot be made.

The CompensableCommand interface declares one method:

« getCompensatingCommand--This methods returns the command that can be used to undo the effects of the origina
command.

To create a compensable command, you write an interface that extends the CompensableCommand interface. Such
interfaces typically extend the TargetableCommand interface as well. Y ou must implement the getCompensatingCommand
method in the implementation class for your interface. Y ou must also implement the compensating command.

The example application

The exampl e used throughout the remainder of this discussion uses an entity bean with container-managed persistence
(CMP) called CheckingAccountBean, which allows a client to deposit money, withdraw money, set abalance, get a
balance, and retrieve the name on the account. This entity bean a so accepts commands from the client. The code examples
illustrate the command-related programming. For a servlet-based example, see Writing acommand target (client-side

adapter).

Figure 67 shows the interface for the ModifyCheckingAccountCmd command. This command is both targetable and
compensable, so the interface extends both TargetableCommand and CompensableCommand interfaces.

Figure 67. Code example: The ModifyCheckingAccountCmd interface

i mport com i bm websphere. excepti on. *;
i nport com i bm webspher e. conmand. *;
public interface MdifyChecki ngAccount Cnd
ext ends Tar get abl eConmand, Conpensabl eComrand {
fl oat get Amount () ;
fl oat getBal ance();
fl oat getd dBal ance(); /1 Used for conpensating
float setBal ance(fl oat anount);
fl oat setBal ance(int anount);
Checki ngAccount get Checki ngAccount () ;
voi d set Checki ngAccount (Checki ngAccount newChecki ngAccount);
Target Pol i cy get ChdTarget Policy();

}
Implementing command interfaces

The command package provides a class, TargetableCommandimpl, that implements all of the methodsin the
TargetableCommand interface except the performExecute method. It also implements the execute method from the
Command interface. To implement an application's command interface, you must write a class that extends the
TargetableCommandimpl class and implements your command interface. Figure 68 shows the structure of the

146

M odifyCheckingAccountCmdimpl class.

Figure 68. Code example: The structure of the M odifyCheckingAccountCmdlmpl class

pubI i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl emrent s Modi f yChecki ngAccount Cnd

[/ Vari abl es

))'Methods
}

The class must declare any variables and implement these methods:
« Any methods you defined in your command interface.
» TheisReadyToCallExecute and reset methods from the Command interface.
« The performExecute method from the TargetableCommand interface.

» The getCompensatingCommand method from the CompensableCommand interface, if your command is
compensable. Y ou must aso implement the compensating command.

Y ou can aso override the nonfinal implementations provided in the TargetableCommandimpl class. The most likely
candidate for reimplementation is the setOutputProperties method, since the default implementation does not save final,
transient, or static fields.

Defining instance and class variables

The ModifyCheckingAccountCmdImpl class declares the variables used by the methodsin the class, including the remote
interface of the CheckingAccount entity bean; the variables used to capture operations on the checking account (balances
and amounts); and a compensating command. Figure 69 shows the variables used by the ModifyCheckingAccountCmd

command.

Figure 69. Code example: Thevariablesin the M odifyCheckingAccountCmdlmpl class

publ i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl ements Modi f yChecki ngAccount Cnd

{

/'l Variables

public float bal ance;

public float anount;

public float ol dBal ance;

publ i ¢ Checki ngAccount checki ngAccount;

publ i c Modi f yChecki ngAccount Conpensat or Cnd

nmodi f yChecki ngAccount Conpensat or Cnd;

}

Implementing command-specific methods

The ModifyCheckingAccountCmd interface defines several command-specific methods in addition to extending other
interfaces in the command package. These command-specific methods are implemented in the
M odifyCheckingAccountCmdIimpl class.

Y ou must provide away to instantiate the command. The command package does not specify the mechanism, so you can
choose the technique most appropriate for your application. The fastest and most efficient technique is to use constructors.
The most flexible technique isto use afactory. Also, since commands are implemented internally as JavaBeans
components, you can use the standard Beans.instantiate method. The M odifyCheckingAccountCmd command uses
constructors.

Figure 70 shows the two constructors for the command. The difference between them isthat the first uses the default target
147

policy for determining the target of the command and the second allows you to specify a custom policy. (For more
information on targets and target policies, see Targets and target policies.)

Both constructors take a CommandTarget object as an argument and cast it to the CheckingAccount type. The
CheckingAccount interface extends both the CommandTarget interface and the EJBObject (see Figure 80). The resulting

checkingAccount object routes the command to the desired server by using the bean's remote interface. (For more
information on CommandTarget objects, see Writing acommand target (server).)

Figure 70. Code example: Constructorsin the ModifyCheckingAccountCmdImpl class

pubI i ¢ class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl ement s Modi f yChecki ngAccount Cnd

{
[l Variabl es
))'CDnstructors
/1 First constructor: relies on the default target policy
publ i c Modi f yChecki ngAccount Cndl npl (CommandTar get t ar get,
fl oat newAnount)
{
anount = newAnount;
checki ngAccount = (Checki ngAccount)target;
set CommandTar get (t arget) ;
/1 Second constructor: allows you to specify a customtarget policy
publ i ¢ Modi f yChecki ngAccount Cndl npl (CommandTar get t ar get,
fl oat newAnount,
Target Policy targetPolicy)
{
set Target Pol i cy(targetPolicy);
anount = newAnpunt ;
checki ngAccount = (Checki ngAccount)target;
set CommandTar get (t ar get) ;
}
}

Figure 71 shows the implementation of the command-specific methods:
« setBalance--This method sets the balance of the account.
» getAmount--This method returns the amount of a deposit or withdrawal .
« getOldBalance, getBal ance--These methods capture the balance before and after an operation.
» getCmdTargetPolicy--This method retrieves the current target policy.
« setCheckingAccount, getCheckingA ccount--These methods set and retrieve the current checking account.

Figure 71. Code example: Command-specific methods in the M odifyCheckingAccountCmdI mpl class

pubI i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl enent s Modi f yChecki ngAccount Crd

/1 Variabl es

H'Constructors

// Met hods in ModifyChecki ngAccountCnd interface
public float getAnmount() {

return anount,;

public float getBal ance() {
148

return bal ance;

}
public float getd dBal ance() {
return ol dBal ance;

public float setBal ance(fl oat anount) ({
bal ance = bal ance + anpunt;
return bal ance;

public float setBal ance(int anount) ({
bal ance += anount ;
return bal ance;

}
public TargetPolicy getCndTarget Policy() {
return get Target Policy();

public void set Checki ngAccount (Checki ngAccount newChecki ngAccount) {
i f (checkingAccount == null) {
checki ngAccount = newChecki ngAccount ;
}

el se
Systemout. println("lncorrect Checking Account (" +
newChecki ngAccount + ") specified");

publ i c Checki ngAccount get Checki ngAccount () {
return checki ngAccount;

}
_——

The ModifyCheckingAccountCmd command operates on a checking account. Because commands are implemented as
JavaBeans components, you manage input and output properties of commands using the standard JavaBeans techniques. For
example, initialize input properties with set methods (like setCheckingAccount) and retrieve output properties with get
methods (like getCheckingAccount). The get methods do not work until after the command's execute method has been
caled.

Implementing methods from the Command interface

The Command interface declares two methods, isReadyToCall Execute and reset, that must be implemented by the
application programmer. Figure 72 shows the implementations for the ModifyCheckingAccountCmd command. The
implementation of the isReadyToCallExecute method ensures that the checkingAccount variableis set. The reset method
sets all of the variables back to starting values.

Figure 72. Code example: Methods from the Command interface in the M odifyCheckingAccountCmdI mpl class

publ i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl ements Modi f yChecki ngAccount Cnd

{

/1 Methods fromthe Command interface
public bool ean i sReadyToCal | Execut e() {
i f (checkingAccount != null)
return true;
el se
return fal se;

public void reset() {
amount = O;
bal ance = O;
ol dBal ance = 0;

149

checki ngAccount = null;
target Policy = new TargetPolicyDefault();

}
Implementing methods from the TargetableCommand interface

The TargetableCommand interface declares one method, performExecute, that must be implemented by the application
programmer. Figure 73 shows the implementation for the M odifyCheckingA ccountCmd command. The implementation of

the performExecute method does the following:
« Savesthe current balance (so the command can be undone by a compensator command)
« Cadculates the new balance
« Setsthe current balance to the new balance
« Ensures that the hasOutputProperties method returns true so that the values are returned to the client

In addition, the ModifyCheckingAccountCmdIimpl class overrides the default implementation of the setOutputProperties
method.

Figure 73. Code example: Methods from the TargetableCommand interfacein the
M odifyCheckingAccountCmdl mpl class

pubI i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl emrent s Modi f yChecki ngAccount Cnd

{
)}.thhod fromthe Targetabl eCommand interface
public void perfornExecute() throws Exception {
Checki ngAccount checki ngAccount = get Checki ngAccount ();
ol dBal ance = checki ngAccount. get Bal ance();
bal ance = ol dBal ance+anount ;
checki ngAccount . set Bal ance(bal ance) ;
set HasQut put Properties(true);
public void set Qutput Properties(Targetabl eConmand fronConmmand) {
try {
if (fromConmand !'= null) {
Modi f yChecki ngAccount Cnd nodi f yChecki ngAccount Cd =
(Modi f yChecki ngAccount Crd) f r omCommand,;
thi s. ol dBal ance = nodi f yChecki ngAccount Cnd. get A dBal ance();
t hi s. bal ance = nodi f yChecki ngAccount Crd. get Bal ance() ;
t hi s. checki ngAccount =
nodi f yChecki ngAccount Cnd. get Checki ngAccount () ;
thi s. amount = nodi f yChecki ngAccount Cnd. get Anmount () ;
}
catch (Exception ex) {
Systemout.printin("Error in setCQutputProperties.");
}
}
}

Implementing the CompensableCommand interface

The CompensableCommand interface declares one method, getCompensatingCommand, that must be implemented by the
application programmer. Figure 74 shows the implementation for the M odifyCheckingAccountCmd command. The

implementation simply returns an instance of the M odifyCheckingA ccountCompensatorCmd command associated with the
150

current command.

Figure 74. Code example: Method from the CompensableCommand interfacein the
M odifyCheckingAccountCmdImpl class

publ i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl ement s Modi f yChecki ngAccount Cnd

{
// Met hod from Conpensabl eCommrand i nterface
publ i c Command get Conpensati ngCommand() throws ConmmandException {
nmodi f yChecki ngAccount Conpensat or Cnd =
new Modi f yChecki ngAccount Conpensat or Cnd(t hi s) ;
return (Command) nodi f yChecki hgAccount Conpensat or Cnd;
}
}

Writing the compensating command

An application that uses a compensable command requires two separate commands:. the primary command (declared as a
CompensableCommand) and the compensating command. 1n the example application, the primary command is declared in
the ModifyCheckingAccountCmd interface and implemented in the M odifyCheckingAccountCmdimpl class. Because this
command is also a compensable command, there is a second command associated with it that is designed to undo its work.
When you create a compensable command, you also have to write the compensating command.

Writing a compensating command can require exactly the same steps as writing the original command: writing the interface
and providing an implementation class. In some cases, it may be simpler. For example, the command to compensate for the
ModifyCheckingAccountCmd does not require any methods beyond those defined for the original command, so it does not
need an interface. The compensating command, called ModifyCheckingA ccountCompensatorCmd, simply needs to be
implemented in a class that extends the TargetableCommandimpl class. This class must:

« Provide away to instantiate the command; the example uses a constructor

» Implement the three required methods:
o isReadyToCallExecute and reset--both from the Command interface
o performExecute--from the TargetableCommand interface

Figure 75 shows the structure of the implementation class, its variables (references to the original command and to the

relevant checking account), and the constructor. The constructor simply instantiates the references to the primary command
and account.

Figure 75. Code example: Variables and constructor in the M odifyCheckingAccountCompensator Cmd class

publ i c class ModifyChecki ngAccount Conpensat or Cnd ext ends Tar get abl eCommand| npl

{
publ i c Modi f yChecki ngAccount Cndl npl nodi f yChecki ngAccount Crdl npl ;
publ i c Checki ngAccount checki ngAccount;

publ i c Modi f yChecki ngAccount Conpensat or Cnd(
Modi f yChecki ngAccount Cndl npl ori gi nal Cnd)

{
I/ CGet an instance of the original commuand
nodi f yChecki ngAccount Cndl npl = ori gi nal Cnd;
I/ Cet the rel evant account
checki ngAccount = ori gi nal Crd. get Checki ngAccount () ;
}

/1 Methods fromthe Command and Tar getabl e Command interfaces

151

Figure 76 shows the implementation of the inherited methods. The implementation of the isReadyToCallExecute method
ensures that the checkingAccount variable has been instantiated.

The performExecute method verifies that the actual checking-account balance is consistent with what the original command
returns. If so, it replaces the current balance with the previously stored balance by using the ModifyCheckingA ccountCmd
command. Finally, it saves the most-recent balances in case the compensating command needs to be undone. The reset
method has no work to do.

Figure 76. Code example: Methodsin M odifyCheckingAccountCompensator Cmd class

pubI i ¢ class ModifyChecki ngAccount Conrpensat or Cnd ext ends Tar get abl eCommand| npl
/'l Variables and constructor

/1 Methods fromthe Conmand and Tar get abl eConmand i nterfaces
publi ¢ bool ean i sReadyToCal | Execute() {
i f (checkingAccount != null)
return true;
el se
return fal se;

public void perfornkExecute() throws CommandExcepti on

{

try {
Modi f yChecki ngAccount Cndl npl ori gi nal Cnd =

nodi f yChecki ngAccount Cndl npl ;
/'l Retrieve the checking account nodified by the original conmand
Checki ngAccount checki ngAccount = ori gi nal Cnd. get Checki ngAccount () ;
i f (nodifyChecki ngAccount Cndl npl . bal ance ==
checki ngAccount . get Bal ance()) {

/'l Reset the values on the original command

checki ngAccount . set Bal ance(ori gi nal Cnd. ol dBal ance) ;

float tenp = nodifyChecki ngAccount Cdl npl . bal ance;

ori gi nal Cnd. bal ance = ori gi nal Cnd. ol dBal ance;

ori gi nal Cd. ol dBal ance = tenp;

el se {
/1 Bal ances are inconsistent, so we cannot conpensate
t hrow new CommandExcepti on(
"Qbj ect nodified since this conmand ran.");

}

}
catch (Exception e) {

System out. println(e. get Message());
}

public void reset() {}
}

Using a command

To use acommand, the client creates an instance of the command and calls the command's execute method. Depending on
the command, calling other methods can be necessary. The specifics will vary with the application.

In the example application, the server is the CheckingAccountBean, an entity enterprise bean. In order to use this enterprise
bean, the client gets a reference to the bean's home interface. The client then uses the reference to the home interface and
one of the bean's finder methods to obtain areference to the bean's remote interface. If there is no appropriate bean, the
client can create one using a create method on the home interface. All of thiswork is standard enterprise bean programming
covered elsewhere in this document.

152

Figure 77 illustrates the use of the ModifyCheckingAccountCmd command. This work takes place after an appropriate

CheckingAccount bean has been found or created. The code instantiates a command, setting the input values by using one
of the constructors defined for the command. The null argument indicates that the command should look up the server using
the default target policy, and 1000 is the amount the command attempts to add to the balance of the checking account. (For
more information on how the command package uses defaults to determine the target of a command, see The default target

policy.) After the command is instantiated, the code calls the setCheckingAccount method to identify the account to be
modified. Finally, the execute method on the command is called.

Figure 77. Code example: Using the M odifyCheckingAccountCmd command

{
dﬁécki ngAccount checki ngAccount
try {
Modi f yChecki ngAccount Cnd cnd =
new Modi f yChecki ngAccount Crdl npl (nul |, 1000);
cnd. set Checki ngAccount (checki ngAccount) ;
cnd. execute();
}
catch (Exception e) {
Systemout. println(e.get Message());
}
}

Using a compensating command

To use a compensating command, you must retrieve the compensator associated with the primary command and call its
execute method. Figure 78 shows the code used to run the original command and to give the user the option of undoing the

work by running the compensating command.

Figure 78. Code example: Using the M odifyCheckingAccountCompensator command

{

d\écki ngAccount checki ngAccount
try {
Modi f yChecki ngAccount Cnd cnd =
new Modi f yChecki ngAccount Cndl npl (nul I, 1000);

cnd. set Checki ngAccount (checki ngAccount) ;
cnd. execute();

.SS/:stem out.println("Wuld you like to undo this work? Enter Y or N');

try {
/!l Retrieve and validate user's response

}

i f (answer . equal sl gnoreCase(Y)) {
Command conpensati ngCommand = cnd. get Conpensat i ngComand() ;
conmpensat i ngComrmand. execut e() ;

}

catch (Exception e) {
Systemout. println(e. get Message());

}

153

Using the WebSphere EJBCommandTarget bean as a command target

WebSphere ships a CommandTarget enterprise bean to allow administrators to execute a command in a designated server
without providing their own implementation of CommandTarget. The EJBCommandTarget class, along with the
EJBCommandTarget bean (CommandServerSessionBean), are located in the EJBCommandTarget.jar filein thelib
directory under the WebSphere installation directory. Thisis adeployed jar file. You can use this JAR filein a new
application or add it into an existing application.

The EJBCommandTarget class serves as awrapper for a CommandTarget bean. CommandServerSessionBean is the
WebSphere implementation of this CommandTarget bean. A command developer can set this EJBCommandTarget object
into the Command. Figure 79 shows an example.

Figure 79. Code example: Using an EJBCommandTar get bean
EJBCommandTar get target = new EJBComrandTar get () ;

MyComrand cnd = new MyComrandl npl (Argunents...);
cnd. set CommandTar get (t arget) ;
cnd. execute();

In this example, the client creates a MyCommand object. It is then executed in the application server. When the execute
method is performed, the target (EJBCommandTarget) |ooks up the CommandServerSessionHome from the Initial Context
and executes the executeCommand method on the CommandServerSessionBean. The EJBCommandTarget object ensures
that there is only one CommandServerSessionBean per object to avoid extra naming lookup.

An EJBCommandTarget object can be created using four different constructors:

o EIJBCommandTarget("MyNamingServerName", "PortNumber”, "JNDIName")

o EJBCommandTarget(Initial Context," INDIName")

« EJBCommandTarget("JNDIName")

o EJBCommandTarget()
The first constructor allows the application to specify the naming server name and the port. The INDI name of the
CommandServerSessionBean can a so be specified. The EIBCommandTarget constructs a provider URL of
"iiop://MyNamingServerName: PortNumber" and |ooks up the CommandServer SessionBean with the given JINDI name. If

null values are passed in for any of the parameters the WebSphere defaults for server and port and a default INDI name of
CommandServerSession are used.

The second constructor allows the application to specify its own initial context. The EJBCommandTarget object then uses
thisinitial context to look up the CommandServerSession bean with the specified INDI name.

The third constructor allows the application to set up the naming server (the provider URL) in property files.

The default constructor uses the default values for the provider URL and default INDI name for the
CommandServerSession bean (CommandServerSession).

Y ou do not need to use the EJBCommandTarget class. Y ou can instead create your own custom target policy that usesthe
EJBCommandTarget bean (CommandServer SessionBean). The EJBCommandTarget object is a convenience class and
attempts to address most usage scenarios

Writing a command target (server)

In order to accept commands, a server must implement the CommandTarget interface and its single method,
executeCommand.

The exampl e application implements the CommandTarget interface in an enterprise bean. (For a servlet-based example, see
Writing a command target (client-side adapter).) The target enterprise bean can be a session bean or an entity bean. You can
write atarget enterprise bean that forwards commands to a specific server, such as another entity bean. In this case, all
commands directed at a specific target go through the target enterprise bean. Y ou can also write atarget enterprise bean that
does the work of the command locally.

154

Make an enterprise bean the target of a command by:

» Extending the CommandTarget interface when you define the bean's remote interface, which must also extend the
EJBObject interface

« Implementing the CommandTarget interface when you implement the bean class, which must also implement either
the SessionBean or EntityBean interface

The target of the example application is an enterprise bean called CheckingAccountBean. This bean's remote interface,
CheckingAccount, extends the CommandTarget interface in addition to the EJBODbject interface. The methods declared in
the remote interface are independent of those used by the command. The executeCommand is declared in neither the bean's
home nor remote interfaces. Figure 80 shows the CheckingAccount interface.

Figure 80. Code example: Theremoteinterface for the CheckingAccount entity bean, also a command tar get

i mport com i bm webspher e. command. *;
i nport javax.ejb. EJBObj ect;
i mport java.rni.Renot eException;
public interface Checki ngAccount extends CommandTar get, EJBObject {
float deposit (float anpunt) throws RenoteException;
float deposit (int armount) throws RenoteException;
String get Account Nane() throws RenoteException;
fl oat getBal ance() throws RenpteException;
fl oat setBal ance(float amount) throws RenoteException;
float withdrawal (float amount) throws RenoteException, Exception;
float withdrawal (int anmount) throws RenoteException, Exception;

}

The enterprise bean class, CheckingAccountBean, implements the EntityBean interface as well asthe CommandTarget
interface. The class contains the business logic for the methods in the remote interface, the necessary life-cycle methods
(gjbActivate, gjbStore, and so on), and the executeCommand declared by the CommandTarget interface. The
executeCommand method is the only command-specific code in the enterprise bean class. It attempts to run the
performExecute method on the command and throws a CommandException if an error occurs. If the performExecute
method runs successfully, the executeCommand method uses the hasOutputProperties method to determine if there are
output properties that must be returned. If the command has output properties, the method returns the command object to
the client. Figure 81 shows the relevant parts of the CheckingAccountBean class.

Figure 81. Code example: The bean classfor the CheckingAccount entity bean, also a command tar get

publ i c class Checki ngAccount Bean i npl ements EntityBean, CommandTarget {
/| Bean vari abl es

// Busi ness nmethods fromrenote interface
)}.Life—cycle net hods for CWP entity beans
// Met hod from the ConmandTarget interface

public Tar get abl eCommand execut eCommand(Tar get abl eComand commrand)
t hrows Renot eException, CommandExcepti on

try {
conmand. per f or nExecut e() ;

catch (Exception ex) {
if (ex instanceof RenoteException) {
RenoveExcepti on renot eExcepti on = (Renot eExcepti on)ex;
if (renoteException.detail !'= null) {
t hr ow new CommandExcepti on(renot eException. detail);
}

t hrow new CommandExcepti on(ex);

155

i f (conmand. hasQut put Properties()) {
return conmand;

return null;

}
Targets and target policies

A targetable command extends the TargetableCommand interface, which allows the client to direct acommand to a
particular server. The TargetableCommand interface (and the TargetableCommandimpl class) provide two ways for a client
to specify atarget: the sstCommandTarget and setCommandTargetName methods. (These methods were introduced in The

TargetableCommand interface.) The setCommandTarget methods allows the client to set the target object directly on the

command. The setCommandTargetName method allows the client to refer to the server by name; this approach is useful
when the client is not directly aware of server objects. A targetable command also has corresponding getCommandTarget
and getCommandTargetName methods.

The command package needs to be able to identify the target of a command. Because there is more than one way to specify
the target and because different applications can have different requirements, the command package does not specify a
selection algorithm. Instead, it provides a TargetPolicy interface with one method, getCommandTarget, and a default
implementation. This allows applications to devise custom algorithms for determining the target of a command when

appropriate.
The default target policy

The command package provides a default implementation of the TargetPolicy interface in the TargetPolicyDefault class. If
you use this default implementation, the command determines the target by looking through an ordered sequence of four
options:

1. The CommandTarget value

2. The CommandTargetName value

3. A registered mapping of atarget for a specific command

4. A defined default target
If it finds no target, it returns null. The TargetPolicyDefault class provides methods for managing the assignment of
commands with targets (registerCommand, unregisterCommand, and listMappings), and a method for setting a default name

for the target (setDefaultTargetName). The default target name is com.ibm.websphere.command.Local Target, where
LocalTarget is a class that runs the command's performExecute method locally. Figure 82 shows the relevant variables and

the methods in the TargetPolicyDefault class.

Figure 82. Code example: The TargetPolicyDefault class

publ ic class TargetPolicyDefault inplenents TargetPolicy, Serializable

{

.p.r.ot ected String defaultTarget Nane = "com i bm websphere. conmand. Local Target";
publ i ¢ CommandTar get get CommandTar get (Tar get abl eConmmand command) {

publ | c Dictionary |istMppings() {
publ | c voi d regi sterCommand(String commandName, String targetName) {
publ | c voi d unregi ster Command(Stri ng commandNane) {

publ | c voi d seDef aul t Tar get Name(Stri ng defaul t Target Nane) {

}
}

Se}t5i6ng the command target

The ModifyCheckingAccountlmpl class provides two command constructors (see Figure 70). One of them takes a

command target as an argument and implicitly uses the default target policy to locate the target. The constructor used in
Figure 77 passes anull target, so that the default target policy traversesits choices and eventually finds the default target

name, Local Target.

The example in Figure 83 uses the same constructor to set the target explicitly. This example differs from Figure 77 as
follows:

« Thecommand target is set to the checking account rather than null. The default target policy startsto traverse its
choices and finds the target in the first place it looks.

« It does not haveto call the setCheckingAccount method to indicate the account on which the command should
operate; the constructor uses the target variable as both the target and the account.

Figure 83. Code example: Identifying a target with CommandT ar get
{

Checki ngAccount checki ngAccount

try {
Modi f yChecki ngAccount Cnd cnd =
new Modi f yChecki ngAccount Cndl npl (checki ngAccount, 1000);
cnd. execute();

}
catch (Exception e) {
Systemout. println(e.get Message());

}
}
Setting the command target name

If aclient needsto set the target of the command by name, it can use the command's setCommandTargetName method.
Figure 84 illustrates this technique. This example compares with Figure 77 as follows:

« Both explicitly set the command target in the constructor to null.

« Both use the setCheckingAccount method to indicate the account on which the command should operate.

« Thisexample setsthe target name explicitly by using the setCommandTargetName method. When the default target
policy traverses its choices, it finds a null for the first choice and a name for the second.

Figure 84. Code example: dentifying a tar get with CommandTar getName

{
d’]éCki ngAccount checki ngAccount
try {
Modi f yChecki ngAccount Cnd cnd =
new Modi f yChecki ngAccount Cndl npl (nul I, 1000);
cnd. set Checki ngAccount (checki ngAccount) ;
cnd. set CormandTar get Nanme("com i bm sfc. cnd. t est. Checki ngAccount Bean") ;
cnd. execute();
}
catch (Exception e) {
Systemout. println(e. get Message());
}
}

Mapping the command to a target name
157

The default target policy also permits commands to be registered with targets. Mapping a command to atarget is an
administrative task that most appropriately done through a configuration tool. The WebSphere Application Server
administrative console does not yet support the configuration of mappings between commands and targets. Applications
that require support for the registration of commands with targets must supply the tools to manage the mappings. These
tools can be visua interfaces or command-line tools.

Figure 85 shows the registration of acommand with atarget. The names of the command class and the target are explicit in

the code, but in practice, these values would come from fieldsin a user interface or arguments to a command-line tool. If a
program creates a command as shown in Figure 77, with anull for the target, when the default target policy traversesits

choices, it finds anull for the first and second choices and a mapping for the third.

Figure 85. Code example: Mapping a command to a target in an exter nal application

{
t.a.r.get Pol i cy. regi st er Command(
"com i bm sfc.cnd. test. Mdi fyChecki ngAccount | nmpl ",
"comibm sfc.cnd. test. Checki hgAccount Bean");
}

Customizing target policies

Y ou can define custom target policies by implementing the TargetPolicy interface and providing a getCommandTarget
method appropriate for your application. The TargetableCommandimpl class provides setTargetPolicy and getTargetPolicy
methods for managing custom target policies.

So far, the target of all the commands has been a checking-account entity bean. Suppose that someone introduces a session
enterprise bean (MySessionBean) that can also act as a command target. Figure 86 shows a simple custom policy that sets

the target of every command to MySessionBean.

Figure 86. Code example: Creating a custom tar get policy

i mport java.io.*;
i nport java.util.*;
i mport java. beans. *;
i nport com i bm webspher e. conmmand. *;
public class Custonilarget Policy inplenents TargetPolicy, Serializable {
publ i ¢ Custonirarget Policy {
super () ;

publ i c CommandTar get get CommandTar get (Tar get abl eComand command) {
CommandTarget = nul | ;

try {
target = (ComrandTarget)Beans.instantiate(null,
"comibm sfc.cnd. test. MySessi onBean") ;

}

catch (Exception e) {
e.printStackTrace();

}

}

Since commands are implemented as JavaBeans components, using custom target policies requires importing the java.beans
package and writing some elementary JavaBeans code. Also, your custom target-policy class must also implement the
javaio.Serializable interface.

Using a custom target policy

158

The ModifyCheckingAccountlmpl class provides two command constructors (see Figure 70). One of them implicitly uses
the default target policy; the other takes atarget policy object as an argument, which allows you to use a custom target
policy. The examplein Figure 87 uses the second constructor, passing a null target and a custom target policy, so that the

custom policy is used to determine the target. After the command is executed, the code uses the reset method to return the
target policy to the default.

Figure 87. Code example: Using a custom tar get policy

{

Checki ngAccount checki ngAccount

try {
Cust onirar get Pol i cy cust onPol i cy = new Cust onlar get Pol i cy();
Modi f yChecki ngAccount Cnd cnd =
new Modi f yChecki ngAccount Crdl npl (nul I, 1000, customnPolicy);
cd. set Checki ngAccount (checki ngAccount) ;
cnd. execute();
cnd. reset();

}
catch (Exception e) {

System out . println(e. get Message());
}

}
Writing a command target (client-side adapter)

Commands can be used with any Java application, but the means of sending the command from the client to the server
varies. The application described in The example application used enterprise beans. The example in this section shows how
you can send a command to a servlet over the HTTP protocol.

In this example, the client implements the CommandTarget interface locally. Figure 88 shows the structure of the client-side
class; it implements the CommandTarget interface by implementing the executeCommand method.

Figure 88. Code example: Thestructure of a client-side adapter for atarget

i mport java.io.*;

i nport java.rm.?*;

i mport com i bm webspher e. command. *;

public class Servl et ConmandTar get i npl enents CommandTarget, Serializable

{

protected String host Name = "l ocal host";
public static void main(String args[]) throws Exception
{

public Target abl eCommand execut eCommand(Tar get abl eCommand command)
t hrows ConmandExcepti on
{

public static final byte[] serialize(Serializable serializable)
t hrows | OException {

.}
public String getHost Nanme() {

publ | c voi d set Host Nane(String host Nanme) {

...}
private static void showHel p() {

}
159

}

The main method in the client-side adapter constructs and intializes the CommandTarget object, as shown in Figure 89.

Figure 89. Code example: I nstantiating the client-side adapter

publ i
{

String host Nane
String fil eName

/
/

c static void main(String args[]) throws Exception

| net Addr ess. get Local Host (). get Host Nane() ;
"MySer vl et ConmandTar get . ser”;
/ Parse the command |ine

/| Create and initialize the client-side ConmmandTar get adapt er

Servl et CommandTar get servl et ConmandTar get = new Ser vl et ConrandTar get () ;
servl et CommandTar get . set Host Nanme(host Nane) ;

/
}

/ Flush and cl ose output streans

Implementing a client-side adapter

The CommandTarget interface declares one method, executeCommand, which the client implements. The
executeCommand method takes a TargetableCommand object asinput; it also returns a TargetableCommand. Figure 90

shows the implementation of the method used in the client-side adapter. This implementation does the following:

Serializes the command it receives

Creates an HTTP connection to the servlet

Creates input and output streams, to handle the command as it is sent to the server and returned
Places the command on the output stream

Sends the command to the server

Retrieves the returned command from the input stream

Returns the returned command to the caller of the executeCommand method

Figure 90. Code example: A client-side implementation of the executeCommand method

publ i

{
t

160

¢ Tar get abl eCommand execut eComand(Tar get abl eCommand conmmrand)
t hrows ConmandExcepti on

ry {
/1l Serialize the command
byte[] array = serialize(command);
/'l Create a connection to the servlet
URL url = new URL
("http://" + hostName +
"/servlet/comibmwebsphere. conmand. servl et. ConmandServl et");
Ht t pURLConnecti on httpURLConnection =
(Htt pURLConnection) url.openConnection();
/1 Set the properties of the connection

/1 Put the serialized command on the output stream
Cut put St ream out put St ream = htt pURLConnect i on. get Qut put Strean() ;
output Streamwite(array);
/1l Create a return stream
| nput Stream i nput Stream = htt pURLConnecti on. get | nput Stream() ;
/1 Send the conmand to the servlet
ht t pURLConnecti on. connect () ;
oj ect | nput St ream obj ect | nput St ream =
new Obj ect | nput Strean(i nput Stream ;
/'l Retrieve the command returned fromthe servlet

hj ect object = objectlnputStreamreadOhject();
if (object instanceof ConmandException) {
t hr ow ((CommandExcepti on) object);

/'l Pass the returned conmand back to the calling method
return (Targetabl eConmand) object;

/1 Handl e exceptions

}
Running the command in the servlet

The servlet that runs the command is shown in Figure 91. The service method retrieves the command from the input stream

and runs the performExecute method on the command. The resulting object, with any output properties that must be
returned to the client, is placed on the output stream and sent back to the client.

Figure 91. Code example: Running the command in the servlet

i mport java.io.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport com i bm websphere. conmand. *;

public class ConmandServl et extends HtpServlet {

pubI ic void service(HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CException
{
try {

/1 Create input and output streans
I nput St ream i nput St ream = request. getl nput Strean();
Qut put St r eam out put Stream = response. get Qut put Streamn() ;
/'l Retrieve the command fromthe input stream
bj ect | nput St ream obj ect | nput St ream =
new Qbj ect | nput St rean(i nput Stream ;
Tar get abl eConmmand command = (Tar get abl eConmrand)
obj ect | nput Stream readoj ect () ;
/]l Create the conmmand for the return stream
bj ect returnOoj ect = command;

[/ Try to run the conmand's perfornExecute met hod

try {
command. per f or mExecut e() ;

/1 Handl e exceptions fromthe perfornkExecute method

/1l Return the command with any out put properties
hj ect Qut put St ream obj ect Qut put St ream =
new Cbj ect Qut put St ream(out put Strean) ;
obj ect Qut put Stream wri t ebj ect (returnQbj ect);
/1 Flush and cl ose out put streans

}

catch (Exception ex) {
ex. printStackTrace();

}

161

}

In this example, the target invokes the performExecute method on the command, but thisis not always necessary. In some
applications, it can be preferable to implement the work of the command locally. For example, the command can be used
only to send input data, so that the target retrieves the data from the command and runs alocal database procedure based on
the input. Y ou must decide the appropriate way to use commands in your application.

The localizable-text package

Overview

Users of distributed applications can come from widely varying areas; they can speak different languages, represent dates
and timesin regionally specific ways, and use different currencies. An application intended to be used by such an audience
must either force them al to use the same interface (for example, an English-based interface), or it can be written in such a
way that it can be configured to the linguistic conventions of the users, so English-speaking users can use the English
interface but French-speaking users can interact with the application through a French interface.

An application that can present information to users in formats that abide by the users' linguistic conventionsis said to be
localizable: the application can be configured to interact with users from different localities in linguistically appropriate
ways. In alocalized application, a user in one region sees error messages, output, and interface elements (like menu options)
in the requested language. Additionally, other elements that are not strictly linguistic, like date and time formats and
currencies, are presented in the appropriate style for users in the specified region. A user in another region sees output in the
conventional language or format for that region.

Historically, the creation of localizable applications has been restricted to large corporations writing complex systems. The
strategies for writing localizable code, collectively called internationalization techniques, have traditionally been expensive
and difficult to implement, so they have been applied only to major development efforts. However, given therisein
distributed computing and in use of the World Wide Web, application developers have been pressured to make a much
wider variety of applications localizable. This requires making internationalization--the techniques for writing localizable
programs--much more accessible to application developers. The WebSphere localizable-text package is a set of Java classes
and interfaces that can be used by WebSphere application devel opers to localize distributed WebSphere applications easily.
Language catalogs for distributed WebSphere applications can be stored centrally, so the catalogs can be maintained and
administered efficiently.

Writing localizable programs

In anonlocalizable application, parts of the application that a user sees are unalterably coded into the application. For
example, aroutine that prints an error message simply prints a string, probably in English, to afile or the console. A
localizable program adds a layer of abstraction into the design. Instead of going simply from error condition to output
string, alocalizable program represents error messages with some language-neutral information; in the simplest case, each
error condition corresponds to akey. In order to print a usable error string for the user, the application looks up the key in
the configured message catalog. A message catalog is alist of keyswith corresponding strings. Different message catalogs
provide the strings in different languages. The application looks up the key in the appropriate catal og, retrieves the
corresponding error message in the desired language, and prints this string for the user.

The technique of localization can be used for far more than tranglating error messages. For example, by using keysto
represent each element--button, label, menu item, and so forth--in agraphical user interface and by providing a message
catalog containing translations of the button names, labels, and menu items, the graphical interface can be automatically
tranglated into multiple languages. In addition, extending support to additional languages requires providing message
catalogs for those languages; the application itself requires no modification.

Localization of an application is driven by two variables, the time zone and the locale. The time zone variable indicates how
to compute the local time as an offset from a standard time like Greenwich Mean Time. The locale is a collection of
information that indicates a geographic, political, or cultural region. It provides information on language, currency, and the
conventions for presenting information like dates, and in alocalizable program, the locale al so indicates the message
catalog from which an application retrieves messages. A time zone can cover many locales, and a single locale can span
time zones. With both time zone and locale, the date, time, currency, and language for usersin a specific region can be
determined.

162

Identifying localizable text

To write alocalizable application, an application developer must determine which aspects of the application need to be
tranglatable. These are typically the parts of an application a user must read and understand. Application devel opers must
consider the parts of an application with which all users directly interact, like the application's interface, and the parts
serving more specialized purposes, like messagesin log files. Good candidates for localization include:

» Elementsin graphical user interfaces
o Title barsfor windows
o Menu names, and the items on the menus (for example, "select File > Open™)
o Labels on buttons (for example, "click the OK button')
o Instructions directing usersto fill in fields (for example, "enter the account number")
o Any other elements that users must read
o Promptsin command-line interfaces
« Output from the program
o Responses to user input
o Error messages
o Text returned when exceptions are thrown
o Other status messages (warnings, audit messages, and others)
After identifying each element of the application to be localized, application devel opers must assign a unique key to each
element and provide a message catal og for each language to be supported. Each message catalog consists of keys and the
corresponding language-specific strings. The key, therefore, is the link between the program and the message catal og; the
program internally refers to localizable elements by key and uses the message catal og to generate the output seen by the
user. Trandated strings are generated by calling the format method on a L ocalizableTextFormatter object, which represents

akey and aresource bundle (a set of message catalogs). The locale setting of the program determines the message catal og
in which to search for the key.

Creating message catalogs

After identifying each element to be localized, message catalogs must be created for each language to be supported. These
catalogs, which are implemented as Java resource bundles, can be created in two ways, either as subclasses of the
ResourceBundle class or as Java properties files. Resource bundles have a variety of usesin Java; for message catal ogs, the
properties-file approach is more common. If properties files are used, support for languages to be added or removed without
modifying the application code, and catalogs can be prepared by people without programming expertise.

A message catalog implemented in a properties file consists of aline for each key, where akey identifies alocalizable
element. Each linein the file has the following structure:

key = String corresponding to the key

For example, agrapical user interface for a banking system can have a pull-down menu to be used for selecting a type of

account, like savings or checking. The label for the pull-down menu and the account types on the menu are good choices for
localization. There are three elements that require keys: the label for the account menu and the two items on the menu. If the
keys are accountString, savingsString, and checkingString, the English properties file associates each with an English string.

Figure 92. Three elementsin an English message catalog

account String Account s
savingsString Savi ngs
checkingString = Checking

In the German properties files, each key is given a corresponding German val ue.

Figure 93. Three elementsin a Ger man message catalog

account Stri ng Kont en
savi ngsString Spar kont o

163

checkingString = G rokonto

Properties files can be added for any other needed languages, as well.
Naming the properties files

To enable resolution to a specific properties file, Java specifies naming conventions for the properties filesin aresource
bundle: r esour ceBundl eName_| ocal el D. properties

Each filetakes afixed extension, . pr operti es. The set of files making up the resource bundle is given a collective
name; for a simple banking application, an obvious name, like BankingResources, suffices for the resource bundle. Each
fileis given the name of the resource bundle with alocale identifier; the specific value of the locale ID varies with the
locale. These are used internally by the Java.util.ResourceBundle class to match files in a resource bundle to combinations
of locale and time-zone settings. The details of the algorithm vary with the release of the JDK; see your Java documentation
for information specific to your installation.

In the banking application, typical filesin the BankingResources resource bundle include BankingResources en.properties
for the English message catalog and BankingResources_de.properties for the German catalog. Additionally, a default
catalog, BankingResources.properties, is provided for use when the requested catalog cannot be found. The default catalog
is often the English-language catal og.

Resource bundles containing message catalogs for use with localizable text need to be installed only on the systems where
the formatting of strings is actually performed. The resource bundles are typically placed in an application's JAR file. See
WebSphere support for more information.

Localization support in WebSphere and Java

The Java package com.ibm.websphere.i18n.localizabletext contains the classes and interfaces constituting the
localizable-text package. This package makes extensive use of the internationalization and localization features of the Java
language; programmers using the WebSphere localizable-text package must understand the underlying Java support, which
are not documented in any detail here.

Java support

The WebSphere localizable-text package relies primarily on the following Java components:
o javautil.Locale
o java.util.TimeZone
« java.util.ResourceBundle
« javatext.MessageFormat

Thislist is not exhaustive. WebSphere and these Java classes can also use related Java classes, but the related classes--for
example, java.util.Calendar--are typically special-purposes classes. This section briefly describes only the primary classes.

Locale

A Locale object in Java encapsul ates a language and a geographic region, for example, the java.util.Locale.US object
contains locale information for the United States. An application that specifies alocale can then take advantage of the
locale-sensitive formatters built into the Java language. These formatters, in the java.text package, handle the presentation
of numbers, currency values, dates, and times.

TimeZone

A TimeZone object in Java encapsul ates a representation of the time and provides methods for tasks like reporting the time
and accommodating seasonal time shifts. Applications use the time zone to determine the local date and time.

ResourceBundle

164

A resource bundle is anamed collection of resources--information used by the application, for example, strings, fonts, and
images--used by a specific locale. The ResourceBundle class allows an application to retrieve the named resource bundle
appropriate to the locale. Resource bundles are used to hold the messages catalogs, as described in Writing localizable
programs. Resource bundles can be implemented in two ways, either as subclasses of the ResourceBundle class or as Java
propertiesfiles.

MessageFormat

The MessageFormat class can be used to construct strings based on parameters. As a simple example, suppose alocalized
application represents a particular error condition with a numeric key. When the application reports the error condition, it
uses a message formatter to convert the numeric key into a meaningful string. The message formatter constructs the output
string by looking up the code (the parameter) in an appropriate resource bundle and retrieving the corresponding string from
the message catalog. Additional parameters--for example, another key representing the program module--can al so be used
in assembling the output message.

WebSphere support

The WebSphere localizable-text package wraps the Java support and extends it for efficient and simple use in a distributed
environment. The primary class used by application programmers is the LocalizableTextFormatter class. Objects of this
class are created, typically in server programs, but clients can also create them. LocalizableTextFormatter objects are
created for specific resource-bundle names and keys. Client programs that receive LocalizableTextFormatter objects call the
object's format method. This method uses the locale of the client application to retrieve the appropriate resource bundle and
assembl e the local e-specific message based on the key.

For example, suppose that a WebSphere client-server application supports both French and English locales; the server is
using an English locale and the client, a French locale. The server creates two resource bundles, one for English and one for
French. When the client makes arequest that triggers a message, the server creates a L ocalizableTextFormatter object
containing the name of the resource bundle and the key for the message, and passes the object back to the client.

When the client receives the LocalizableTextFormatter object, it calls the abject's format method, which returns the
message corresponding to the key from the French resource bundle. The format method retrieves the client's locale and,
using the locale and name of the resource bundle, determines the resource bundle corresponding to the locale. (If the client
has set an English locale, calling the format method resultsin the retrieval of an English message.) The formatting of the
message is transparent to the client. In this simple client-server example, the resource bundles reside centrally with the
server. The client machine does not have to install them. Part of what the WebSphere |ocalizable-text package providesis
the infrastructure to support centralized catalogs. WebSphere uses an enterprise bean, a statel ess session bean provided with
the localizable-text package, to access the message catalogs. When the client calls the format method on the
LocalizableTextFormatter object, the following events occur internally:

1. The client application sets the time zone and locale values in the LocalizableTextFormatter object, either by passing
them explicitly or through defaults.

2. A call, LocalizableTextFormatterEJBFinder, is made to retrieve a reference to the formatting enterprise bean.

3. Information from the L ocalizableTextFormatter object, including the client's time zone and locale, is sent to the
formatting bean.

4. The formatting bean uses the name of the resource bundle, the message key, the time zone, and the locale to
assembl e the language-specific message.

5. The enterprise bean returns the formatted message to the client.

6. The formatted message isinserted into the LocalizableTextFormatter object and returned by the format method.

A call to a LocalizableTextFormatter.format method requires at most one remote invocation, to contact the formatting
enterprise bean. However, the LocalizableTextFormatter object can optionally cache formatted messages, eliminating the
formatting call for subsequent uses. It also allows the application to set a fallback string; this means the application can till
return areadable string even if it cannot access a message catal og to retrieve the language-specific string. Additionally, the
resource bundles can be stored locally. The localizable-text package provides a static variable that indicates whether the
bundles are stored locally (L ocalizableConfiguration.LOCAL) or remotely (LocalizableConfiguration.REMOTE), but the
setting of this variable applies to all applications running within a Java Virtua Machine (JVM).

The LocalizableTextFormatter class

165

The LocalizableTextFormatter class, found in the package com.ibm.websphere.i18n.localizabletext, is the primary
programming interface for using the localizable-text package. Objects of this class contain the information needed to create
language-specific strings from keys and resource bundles.

Location of message catalogs and the ApplicationName value

Applications written with the WebSphere |ocalizabl e-text package can store message catalogs locally or remotely. Ina
distributed environment, the use of remote, centrally stored catalogsis appropriate. All applications can use the same
catalogs, and administration and maintenance of the catalogs are simplified; each component does not need to store and
maintain copies of the message catalogs. Local formatting is useful in test situations and appropriate under some
circumstances. In order to support both local and remote formatting, a L ocalizableTextFormatter object must indicate the
name of the formatting application. For example, when an application formats a message by using remote, centrally stored
catalogs, the message is actually formatted by a simple enterprise bean (see WebSphere support for more information).
Although the localizable-text package contains the code to automate looking up the enterprise bean and issuing acall to it,
the application needs to know the name of the formatting enterprise bean. Several methods in the LocalizableTextFormatter
class use avalue described as application name; this refers to the name of the formatting application, which is not
necessarily the name of the application in which the value is set.

Caching messages

The LocalizableTextFomatter object can optionally cache formatted messages so that they do not have to be reformatted
when needed again. By default, caching is not used, but the L ocalizabl eTextFormatter.setCacheSetting method can be used
to enable caching. When caching is enabled and the LocalizableTextFormatter.format method is called, the method
determines whether the message has already been formatted. If so, the cached message is returned. If the message is not
found in the cache, the message is formatted and returned to the caller, and a copy of the message is cached for future use.

If caching is disabled after messages have been cached, those messages remain in the cache until the cacheis cleared by a
call to the LocalizableTextFormatter.clearCache method. The cache can be cleared at any time. The cache within a
LocalizableTextFormatter object is automatically cleared when any of the following methods are called on the object:

« setResourceBundleName(String resourceBundleName)
« setPatternKey(String patternKey)

o setArguments(Object[] args)

« SetApplicationName(String appName)

Fallback information

Under some circumstances, it can be impossible to format a message. The localizable-text package implements a fallback
strategy, making it possible to get some information even if a message cannot be correctly formatted into the desired
language. The LocalizableTextFomatter object can optionally store afallback value for a message string, the time zone, and
the locale. These can be ignored unless the LocalizableTextFormatter object throws an exception.

Application-specific variables

The localizable-text package provides native support for localization based on time zone and locale, but application
developers can construct messages on the basis of other values as well. The localizable-text package provides an illustrative
class, LocalizableTextDateTimeArgument, which reports the date and time. The date and time information is localized by
using the locale and time-zone val ues, but the class also uses additional variables to determine how the output is presented.
The date and time information can be requested in avariety of styles, from the fully detailed to the terse. In this example,
the construction of message strings is driven by three variables: the locale, the time zone, and the style. Applications can use
any number of variablesin addition to locale and time zone for constructing messages. See Using optiona arguments for

more information.
Writing a localizable application

To develop a WebSphere application that uses localizable text, application developers must do the following:
« Determine the parts of the application to be localized.

o ldentify the application elements to be localized and assign each a key.
166

o Create message catalogs for each language by associating a string with each key.

These tasks were described previously. See Identifying localizable text and Creating message catalogs for more
information.

« Assemble language-specific strings from keys, resource bundles, and other arguments.
o Create alLocalizableTextFormatter object.

o Set the values within the object for the key, the name of the resource bundle, the name of the remote
formatting application, and any optiona arguments.

o Cal the format method on the LocalizableTextObject, which returns the assembled string.

This section describes these tasks.
Creating a LocalizableTextFormatter object

Server programs typically create LocalizableTextFormatter objects, which are sent to clients as the result of some operation;
clients format the objects at the appropriate time. Less typically, clients can create L ocalizableTextFormatter objects
locally. To create a LocalizableTextFormatter object, applications use one of the constructorsin the
LocalizableTextFormatter class:

« LocalizableTextFormatter()

« LocalizableTextFormatter(String resourceBundleName, String patternKey, String appName)

« LocalizableTextFormatter(String resourceBundleName, String patternK ey, String appName, Object[] args)
The LocalizableTextFormatter object must have values set for the name of the resource bundle, the key, the name of the
formatting application, and for any optional values so the object can be formatted. The L ocalizableTextFormatter object can
be created and the values set in one step by using the constructor that takes the necessary arguments, or the object can be

created and the values set in separate steps. Vaues are set by using methods on the LocalizableTextFormatter object; for
setting the values manually, rather than by using a constructor, use these methods:

« setResourceBundleName(String resourceBundleName)
« setPatternKey(String patternKey)
« SetApplicationName(String appName)
o setArguments(Object[] args)
Note:

When valuesin the array of optional arguments are set within a L ocalizableTextFormatter object, they are copied
into the object, not referenced. If an array variable holding avalueis changed after the value has been copied into
the LocalizableTextFormatter object, the value in the LocalizableTextFormatter object will not reflect the change
unlessit is also reset.

A LocalizableTextFormatter object also has methods that can be used to set values that cannot be set when the object is
created, for example:

» Totoggle the cache setting for the L ocalizableTextFormatter object, use the setCacheSetting(bool ean setting)
method (See Caching messages for more information.)

« To clear the cache, use the clearL ocalizableTextFormatter method
o To set falback values, use these methods:

o setFalBackString

o setFallBackLocae

o setFalBackTimeZone

(See Fallback information for more information.)
Each of these set methods also has a corresponding get method for retrieving the value. The clearL ocalizableTextFormatter

method unsets all values, returning the LocalizableTextFormatter object to a blank state. After clearing the object, reuse the
object by setting new values and calling the format method again.

167

Figure 94 creates a L ocalizableT extFormatter object by using the default constructor and uses methods on the new object to
set values for the key, name of the resource bundle, name of the formatting application, and fallback string on the object.

Figure 94. Code example: Creating a L ocalizableT extFor matter object and setting values on it

i mport com i bm websphere.i18n.1 ocali zabl et ext. Local i zabl eExcepti on;

i mport com i bm websphere.i18n.|ocalizabl etext.Localizabl eText Formatter;
i mport java.util.Local e;

public void drawAccount Nunber GUI (String account Type) {

Local i zabl eText Formatter [tf = new Localizabl eText Formatter();
[tf.setPatternKey("account Nunmber");

| tf.set Resour ceBundl eNane(" Banki ngSanpl e. Banki ngResour ces");

I tf.setApplicati onNane(" Banki ngSanpl e") ;
Itf.setFallBackString("Enter account nunber: ");

}
Setting localization values

The application requesting a localized message can specify the locale and time zone for which the message is to be
formatted, or the application can use the default values set for the VM. For example, a graphical user interface can allow
users to select the language in which to display the menus. A default value must be set, either in the environment or
programmeatically, so the menus can be generated when the application first starts, but users can then change the menu
language to suit their needs. Figure 95 illustrates how to change the locale used by the application based on the selection of

amenu item.

Figure 95. Code example: Setting the locale programmatically

i mport java.awt.event. ActionLi st ener;
i mport java.awt .event.Acti onEvent;

i mport java.util.Local e;
public void actionPerforned(Acti onEvent event) {
String action = event. get Acti onCommand();

' |f (action.equal s("en_us")) {
applicationLocal e = new Local e("en", "US");

else if (action.equal s("de_de")) {
applicationLocal e = new Local e("de", "DE");

else if (action.equals("fr_fr"))
applicationLocal e = new Locale("fr", "FR');

}

When an application calls aformat method, it can specify no arguments, which causes the message to be formatted using
the JVM's default values for locale and time zone, or a combination of locale and time zone can be specified to override the
JVM's defaults. (See Generating the localized text for more information on the arguments to the format methods.)

Generating the localized text

After the LocalizableTextFormatter object has been created and the appropriate values set, the object can be formatted to
generate the string appropriate to the locale and time zone. The format methods in the L ocalizableT extFormatter class
perform the work necessary to generate a string from a set of message keys and resource bundles, based on locale and time
zone. The LocalizableTextFormatter class provides four format methods. Each format method returns the formatted

168

message string. The methods take a combination of java.util.Locale and java.util. TimeZone objects and throw
L ocalizableException objects:

« String format();

« String format(locale);

« String format(timeZone);

« String format(locale, timeZone);

The format method with no arguments uses the locale and time-zone values set as defaults for the VM. The other format
methods can be used to override either or both of these values.

Figure 96 shows the creation of alocalized string for the LocalizableTextFormatter object created in Figure 94; formatting
isbased on the locale set in Figure 95. If the formatting fails, the application retrieves and uses the fallback string instead of
the localized string.

Figure 96. Code example: Formatting a L ocalizableT extFor matter object

i mport com i bm websphere.i 18n. 1 ocali zabl et ext. Local i zabl eExcepti on;

i nport com i bm websphere.i 18n.1 ocalizabl et ext. Local i zabl eText Formatter;
i mport java.util.Local e;

public void drawAccount Nunmber GUI (Stri ng account Type) {

Local i zabl eText Formatter |Itf = new Localizabl eText Formatter();
Itf.setPatternKey("account Nunber");

| tf.set Resour ceBundl eNare(" Banki ngSanpl e. Banki ngResources") ;
Itf.setApplicati onNane(" Banki ngSanpl e");

Itf.setFall BackString("Enter account nunber: ");

try {
nmsg = new Label (Itf.format(this.applicationLocale) , Label.CENTER);

catch (Local i zabl eException le) {
msg = new Label (1tf.getFallBackString(), Label.CENTER);
}

}
Using optional arguments

The localizable-text package allows users to specify an array of optional argumentsin a LocalizableTextFormatter object.
These optional arguments can greatly enhance the kinds of localization done in WebSphere applications. This section
describes two ways in which applications can use the optional arguments:

» Toassemble and format complex strings with variable substrings
« To customize the formatting of strings, taking variables other than locale and time zone into account

Assembling complex strings

All of the keys discussed so far have represented flat strings; during localization, a string in the appropriate language is
substituted for the key. The localizable-text package also supports substitution into the strings, which can include variables
as placeholders. For example, an application that needs to report that an operation on a specified account was successful
must provide a string like "The operation on account number was successful; the variable number isto be replaced by the
actual account number. Without support for creating strings with variable pieces, each possible string would need its own
key, or the strings would have to be built phrase by phrase.

Both of these approaches quickly become intractable if a variable can take many values or if astring has severa variable
components. Instead, the localizable text package supports substitution of variablesin strings with optional arguments. A
string in a message catalog uses integers in braces--for example, { 0} or { 1} --to represent variable components. Figure 97
shows an example from an English message catalog for a string with a single variable substitution. (The samekey in
message catalogs for other languages has a trand ation of this string with the variable in the appropriate location for the
language.)

169

Figure 97. A message-catalog entry with a variable substring
successful Transacti on = The operation on account {0} was successful.

The values that are substituted into the string come from an array of optional arguments. One of the constructors for
LocalizableTextFormatter objects takes an array of objects as an argument, and such an array of objects can be set within
any LocalizableTextFormatter object. The array is used to hold values for variable parts of a string. When aformat method
is called on the object, the array is passed to the format method, which takes an element of the array and substitutesit into a
placeholder with the matching index in the string. The value at index O in the array replacesthe {0} variablein the string,
thevalue at index 1 replaces {1}, and so forth.

Figure 98 shows the creation of a single-element argument array and the creation and use of a LocalizableTextFormatter.
The element in the argument array is the account number entered by the user. The LocalizableTextFormatter is created by
using a constructor that takes the array of optional arguments; this can also be set directly by using the setArguments
method on the L ocalizableTextFormatter object. Later in the code, the application calls the format method. The format
method automatically substitutes values from the array of argumentsinto the string returned from the appropriate message
catalog.

Figure 98. Code example: Formatting a message with a variable substring
public void updateAccount (String transactionType) {

OOJ ect[] arg = { new String(this.accountNunber)};

Local i zabl eText Formatter successLTF =
new Local i zabl eText For nat t er (" Banki ngResour ces",
"successful Transacti on",
" Banki ngSanpl e",
arg);

successLTF. f or mat (this.applicationLocal e);
}
Nesting LocalizableTextFormatter objects

The ahility to substitute variables into the strings in message catalogs adds alevel of flexibility to the localizable-text
package, but the additional flexibility islimited, at least in an international environment, unless the substituted arguments
themselves can be localized. For example, if an application needs to report that an operation on a specific account was
successful, astring like "The operation on account number was successful"--where the only variable is an account
number--can be translated and used in message catal ogs for multiple languages. A string in which avariable is also a string,
for example, "The type operation on account number was successful"--where the new type variabl e takes values like
"deposit" and "withdrawal"--cannot be as easily translated. The values assumed by the type variable also need to be
localized.

Figure 99 shows a message string in an English catalog with two variables, one of which will be localized, and the keys for

two possible values. (The second variable in the string, the account number, is simply a number that must be substituted
into the string; it does not need to be localized.)

Figure 99. A message-catalog entry with two variable substrings

sucessful Transaction = The {0} operation on account {1} was successful.
deposit QpString = deposit
W t hdrawQpString = wit hdr awal

To support localization of substrings, the localizable-text package allows the nesting of LocalizableTextFormatter objects.
Thisis done simply by inserting a L ocalizableT extFormatter object into the array of arguments for another
LocalizableTextFormatter. When the format method does the variable substitution, it formats any L ocalizableTextFormatter
objects as it substitutes array elements for variables. This alows substrings to be formatted independently of the string in
which they are embedded.

Figure 100 modifies the example in Figure 98 to format a message with alocalizable substring. First, a
Locla% iozabl eTextFormatter object for the localizable substring (referring to a deposit operation) is created. This object is

inserted, along with the account-number information, into the array of arguments. The array of argumentsisthen usedin
constructing the LocalizableTextFormatter object for the complete string; when the format method is called, the embedded
LocalizableTextFormatter object is formatted to replace the first variable, and the account number is substituted for the
second variable.

Figure 100. Code example: Formatting a message with alocalizable variable substring
public void updateAccount (String transacti onType) {

/'l Successful Deposit.
Local i zabl eText Fornatter opLTF =
new Local i zabl eText For matt er (" Banki ngResour ces,
"deposit OpString", "BankingSanple");
bj ect[] args = {opLTF, new String(this.accountNunber)};
Local i zabl eText Formatter successLTF =
new Local i zabl eText For matt er (" Banki ngResour ces”,
"successful Transaction",
" Banki ngSanpl e",
args);

.siJE:cessLTF. format (this.applicationLocal e);

}
Customizing the behavior of a format method

The array of optional arguments can contain simple values, like an account number to be substituted into aformatted string,
and other LocalizableTextFormatter objects, representing localizable substrings to be substituted into alarger formatted
string. These techniques are described in Assembling complex strings. In addition, the optional-argument array can contain

objects of user-defined classes.

User-defined classes used as optional arguments provide application-specific format methods, which programmers can use
to perform localization on the basis of any number of values, not just locale and time zone. These user-defined classes need
to be available only on the systems where they are constructed and inserted into LocalizableTextFormatter objects and
where the actual formatting is done; client applications do not need to install these classes.

The localizable-text package provides an example of such a user-defined classin the LocalizableTextDateTimeArgument
class. This class alows date and time information to be selectively formatted according to the style values defined in the
java.text.DateFormat class and according to the constants defined by the L ocalizableTextDateTimeArgument class.

The DateFormat styles determine how information is reported about a date. For example, when the DateFormat.FULL style
is chosen, the twenty-second day of February in 2000 is represented in English as Tuesday, February 22, 2000. When the
DateFormat. SHORT style is used, the same date is represented as 2/22/00. The valid values are:

« DateFormat.FULL

« DateFormat.LONG

« DateFormat. MEDIUM

« DateFormat.SHORT

« DateFormat.DEFAULT
The LocalizableTextDateTimeArgument class defines constants that can be used to request only date or time information,
or both, either in date-time order or in time-date order. The defined values are:

» LocalizableTextDateTimeArgument. TIME

o LocalizableTextDateTimeArgument.DATE

o LocdizableTextDateTimeArgument. TIMEANDDATE

» LocalizableTextDateTimeArgument. DATEANDTIME

An object of a user-defined class like the LocalizableTextDateTimeArgument class can be set in the optional-argument
array of aLocalizableTextFormatter object, and when the L ocalizableT extFormatter object attempts to format the

171

user-defined object, it calls the format method on that object. That format method, written by the application devel oper, can
do whatever is appropriate with the application-specific values. In the case of the LocalizableTextDateTimeArgument class,
the format method determinesiif date, time, or both are required, formats them according to the DateFormat value, and
assembles them in the order requested in the LocalizableTextDateTimeArgument style. The date and time information are
aso affected by the locale and time-zone values, but the refinements in the formatting are accomplished by the DateFormat
class and the user-defined values.

The string assembled from a user-defined class like the LocalizableTextDateTimeArgument class can then be substituted
into alarger string, just as the return values of nested L ocalizableTextFormatter objects can be. When writing such
user-defined classes, it is helpful to think of them as specialized versions of the generic LocalizableTextFormatter class, and
the way in which the LocalizableTextFormatter class is written provides a model for writing user-defined classes.

Structure of the LocalizableTextFormatter class

The LocalizableTextFormatter classis a general-purpose class for localizable text. It extends the java.lang.Object class and
implements the java.io.Serializable interface and four |ocalizable-text interfaces:

o LocalizableTextLTZ
o LocalizableTextL

o LocalizableTextTZ
o LocalizableText

Each of the localizable-text interfaces implemented by the L ocalizableTextFormatter classimplements the Localizable
interface (which simply extends the Serializable interface) and defines a single format method:

o The LocalizableTextL TZ interface defines format(locale, timezone).
« TheLocalizableTextL definesformat(locale).

o The LocalizableTextTZ defines format(timezone).

» TheLocalizableText defines format().

Because the LocalizableTextFormatter classimplements all four of these interfaces, it must provide an implementation for
each of these format methods.

Writing a user-defined class

A user-defined class must implement at least one of the localizable-text interfaces and its corresponding format method, as
well asthe Serializable interface. If the class implements more than one of the localizable-text interfaces and format
methods, the order of evaluation of the interfacesis:

1. LocalizableTextLTZ
2. LocalizableTextL
3. LocdizableTextTZ
4. LocalizableText

For example, the LocalizableTextDateTimeArgument class implements only the LocalizableTextL TZ interface, as shown in
Figure 101.

Figure 101. Code example: The structure of the L ocalizableT extDateTimeArgument class

package com i bm websphere.i 18n. | ocal i zabl et ext;

i mport java.util.Local e;

i nport java.util.Date;

i mport java.text. Dat eFornmat;

i nport java.util.Ti meZone;

i mport java.io.Serializable;

public class Localizabl eText Dat eTi neArgunent i npl ements Local i zabl eText LTZ,
Serializable

{

}
172

A user-defined class must contain a constructor and an implementation of the format methods as defined in the
localizable-text interfaces that the class implements. It can also contain other methods as needed. The
LocalizableTextDateTimeArgument class contains a constructor, a single format method, an equality method, a hash-code
generator, and a string-conversion method.

Figure 102. Code example: The methodsin the L ocalizableT extDateTimeArgument class

pubI ic class Localizabl eText Dat eTi meArgunment i npl enents Local i zabl eText LTZ,
Serializable

{
public final static int DATE = 1;
public final static int TIME = 2;
public final static int DATEANDTI ME = 3;
public final static int TlI MEANDDATE = 4;
private Date date = null;
private dateTi meStyl e = Local i zabl eText Dat eTi meAr gunent . DATE;
private int dateFormatStyle = DateFornmat. FULL;
publ i c Local i zabl eText Dat eTi neArgunent (Date date, int dateTi neStyl e,
i nt dat eFornat Styl e)
{ ...}
publ i ¢ bool ean equal s(Qbj ect param
pubi | ¢ format (Local e | ocal e, TineZone tineZone)
throws |11 egal Argunment Excepti on
{ ...}
public int hashCode()
{ ...}
public String toString()
{ ...}
}

Each format method in the user-defined class can do whatever is appropriate for the application. In the
LocalizableTextDateTimeArgument class, the format method (see Figure 103 for the implementation) examines the setting
of the date-time style set within the object, for example, DATEANDTIME. It then assembles the requested information in
the requested order, according to the date-format value.

Figure 103. Code example: Theformat method in the L ocalizableT extDateTimeArgument class

public format (Locale |ocale, TineZone tineZone)
throws |11 egal Argunent Excepti on
{

String returnString = null;

swi tch(dateTi meStyle) {
case Local i zabl eText Dat eTi meAr gunent . DATE :
{
returnString = Dat eFornat. get Dat el nst ance(dat eFor mat St yl e,
| ocal e).fornat (date);
br eak;

}
case Local i zabl eText Dat eTi meAr gunent . Tl ME :

df = Dat eFormat. get Ti mel nstance(dat eFornat Style, |ocale);
df . set Ti neZone(ti neZone) ;

returnString = df.format(date);

br eak;

}
case Local i zabl eText Dat eTi meAr gurrent . DATEANDTI MVE :
173

dat eStri ng = Dat eFor mat . get Dat el nst ance(dat eFor mat Styl e,
| ocal e).fornat (date);
df = DateFormat. getTi nel nstance(dateFornat Style, |ocale);
df . set Ti neZone(ti neZone);
timeString = df.format (date);
returnString = dateString + " " + tineString;
br eak;

}
case Local i zabl eText Dat eTi neAr gunent . TI MEANDDATE :

{
dat eStri ng = Dat eFor mat . get Dat el nst ance(dat eFor mat Styl e,
| ocal e).format (date);
df = DateFormat. getTi nel nstance(dateFornat Style, |ocale);
df . set Ti neZone(ti neZone);
returnString = tinmeString + " " + dateString;
br eak;
def aul t
t hrow new ||| egal Argunment Exception();
}

}

return returnStri ng;

}

An application can create a LocalizableTextDateTimeArgument object (or an object of any other user-defined class) and
place it in the optional -argument array of a L ocalizableTextFormatter object. When the LocalizableTextFormatter object
reaches the user-defined object, it will attempt to format it by calling the object's format method. The returned string is then
substituted for a variable as the L ocalizableT extFormatter processes each element in the array of optional arguments.

Deploying the formatter enterprise bean

The L ocalizableT extEJBDeploy toal is used by the application deployer to create a deployed LocalizableText JAR file for
the LocalizableText service. Y ou must deploy the enterprise bean for each server per application where the serviceisto be
run. There may be servers for which the LocalizableText service does not need to be installed. The same deployed JAR file
can beincluded in several application Enterprise Archive (EAR) files, but additional steps are required when the EAR fileis
deployed. The application deployer must also make sure that the application resource bundles are added to the application
EAR file asfiles. The server's CLASSPATH variable must be adjusted to include the deployed location of the EAR file.
Thisis so that the resource bundles can be located on the host and server.

Setting up the tool

Before the L ocalizableT extEJBDeploy tool can be used, the following conditions must be met:
« A JARfilecaled Itext.jar must exist in the lib directory under the WebSphere installation directory.
« A working directory hasto exist for the tool to use. The location is passed to the tool.

Using the LocalizableTextEJBDeploy Tool

After the prerequisites for the tool have been met, the tool can be used to deploy formatting session beans. The tool requires
values for five arguments:

Local i zabl eText EJBDepl oy -a <appNane>
-h <host Nane>
-i <installationD r>
-s <server Nane>
-w <wor ki ngDi r >

The required arguments, which can be specified in any order, follow:
174

appName: The name of the formatting session bean. This nameis used in LocalizableTextFormatter objectsto
specify where the actual formatting takes place. If a LocalizableTextFormatter object specifies a name that cannot be
resolved, an exception is thrown by the format method.

hostName: The name of the machine on which the formatting session bean is deployed. This value specified hereis
case sensitive on al platforms.

installationDir: The location at which WebSphere Application Server isinstalled on the machine.

serverName: The name of the WebSphere Application Server. If this argument is not specified, the value Def aul t
Ser ver isused.

workingDir: The name of the working directory for the tool to use.

After thetool isrun, adeployed JAR fileislocated in the working directory specified to the tool. This JAR file can be
included in the application EAR or WAR file.

Special considerations when deploying a LocalizableText enterprise bean

When the application is being deployed onto a host and server, during the deployment process you will be asked if you want
to regenerate the deployment code for the LocalizableText enterprise bean. Do not redeploy the bean. If the bean is
redeployed, the INDI name will be wrong.

If more than one LocalizableText enterprise bean is deployed with an application, there are two ways to handle the
situation.

Run the L ocalizableT extEIBDeploy tool for each host/server combination. The tool generates a unique INDI name
for each enterprise bean. Otherwise, even though the bean has been deployed on multiple hosts and servers, the
JNDI nameis not changed, and there is only one entry in the naming service.

During the deployment of the application, change the INDI name for the localizable-text bean should begin with
con i bml websphere/i 18n/1 ocal i zabl et ext / hones/ . This should be followed by the application and
host names, the server name, and by the string Local i zabl eText EJBHorme, all separated by two underscores,
asfollows:

<AppNane>/ <Host Name>__<Server Name> __ Local i zabl eText EJBHore

175

More-advanced programming concepts for enterprise beans

This chapter discusses some of the more advanced programming concepts associated with devel oping and using enterprise
beans. It includes information on devel oping entity beans with bean-managed persistence (BMP), writing the code required by
a BMP bean to interact with a database, and devel oping session beans that directly participate in transactions.

Developing entity beans with BMP

In an entity bean with container-managed persistence (CMP), the container handles the interactions between the enterprise
bean and the data source. In an entity bean with bean-managed persistence (BMP), the enterprise bean must contain al of the
code required for the interactions between the enterprise bean and the data source. For this reason, developing an entity bean
with CMP issimpler than developing an entity bean with BMP. However, you must use BMP if any of the following istrue
about an entity bean:

« The bean's persistent data is stored in more than one data source.
» Thebean's persistent datais stored in a data source that is not supported by the EJB server that you are using.

This section examines the devel opment of entity beans with BMP. For information on the tasks required to develop an entity
bean with CMP, see Developing entity beans with CMP.

Every entity bean must contain the following basic parts:
» The enterprise bean class. For more information, see Writing the enterprise bean class (entity with BMP).

» Theenterprise bean's home interface. For more information, see Writing the home interface (entity with BMP).
» The enterprise bean's remote interface. For more information, see Writing the remote interface (entity with BMP).

In an entity bean with BMP, you can create your own primary key class or use an existing class for the primary key. For more
information, see Writing or selecting the primary key class (entity with BMP).

Writing the enterprise bean class (entity with BMP)

In an entity bean with BMP, the bean class defines and implements the business methods of the enterprise bean, defines and
implements the methods used to create instances of the enterprise bean, and implements the methods invoked by the container
to move the bean through different stagesin the bean's life cycle.

By convention, the enterprise bean class is named NameBean, where Name is the name you assign to the enterprise bean. The
enterprise bean class for the example AccountBM enterprise bean is named AccountBM Bean. Every entity bean class with
BMP must meet the following requirements:

« It must be public, it must not be abstract, and it must implement the javax.gjb.EntityBean interface. For more
information, see Implementing the EntityBean interface.

« It must define instance variables that correspond to persistent data associated with the enterprise bean. For more
information, see Defining instance variables.

« It must implement the business methods used to access and manipulate the data associated with the enterprise bean. For
more information, see Implementing the business methods.

« It must contain code for getting connections to, interacting with, and releasing connections to the data source (or
sources) used to store the persistent data. For more information, see Using a database with a BMP entity bean.

« It must define and implement an gjbCreate method for each way in which the enterprise bean can be instantiated. It can,
but is not required to, define and implement a corresponding ejbPostCreate method for each ejbCreate method. For
more information, see Implementing the gjbCreate and ejbPostCreate methods.

« It must implement the g/ bFindByPrimaryK ey method that takes a primary key and determinesif it isvalid and unique.
It can also define and implement additional finder methods as required. For more information, see |mplementing the

g bFindByPrimaryKey and other g/bFind methods.

Note:

The enterprise bean class can implement the enterprise bean's remote interface, but thisis not recommended. If the
enterprise bean class implements the remote interface, it is possible to inadvertently pass the this variable as a method

176

argument.

Figure 42 shows the import statements and class declaration for the example AccountBM enterprise bean.

Figure 42. Code example: The AccountBM Bean class

i mport java.rm . Renot eException;

i mport java.util.?*;

i mport javax.ejb.*;

i mport java.lang.*;

i mport java.sql.*;

i mport comibmejs.doc.account. | nsufficientFundsExcepti on;
public class Account BMBean i npl ements EntityBean {

}
Defining instance variables

An entity bean class can contain both persistent and nonpersistent instance variables; however, static variables are not
supported in enterprise beans unless they are aso fina (that is, they are constants). Persistent variables are stored in a database.
Unlike the persistent variablesin a CMP entity bean class, the persistent variables in a BMP entity bean class can be private.

Nonpersistent variables are not stored in a database and are temporary. Nonpersistent variables must be used with caution and
must not be used to maintain the state of an EJB client between method invocations. This restriction is necessary because
nonpersistent variables cannot be relied on to remain the same between method invocations outside of a transaction because
other EJB clients can change these variables or they can be lost when the entity bean is passivated.

The AccountBMBean class contains three instance variables that represent persistent data associated with the AccountBM
enterprise bean:;

« accountld, which identifies the account |D associated with an account

« type, which identifies the account type as either savings (1) or checking (2)

« balance, which identifies the current balance of the account

The AccountBMBean class contains several nonpersistent instance variables including the following:

« entityContext, which identifies the entity context of each instance of an AccountBM enterprise bean. The entity context
can be used to get areference to the EJB object currently associated with the bean instance and to get the primary key
object associated with that EJB object.

« jdbcUrl, which encapsulates the database universal resource locator (URL) used to connect to the data source. This
variable must have the following format: dbAPI:databaseType:databaseName. For example, to specify a database
named samplein an IBM DB2 database with the Java Database Connectivity (JDBC) API, the argument is
j dbc: db2: sanpl e.

« driverName, which encapsulates the database driver class required to connect to the database.

» DBLogin, which identifies the database user 1D required to connect to the database.

» DBPassword, which identifies password for the specified user ID (DBLogin) required to connect to the database.

« tableName, which identifies the database table name in which the bean's persistent data is stored.

« jdbcConn, which encapsulates a Java Database Connectivity (JDBC) connection to a data source within a
java.sgl.Connection object.

Figure 43. Code example: Theinstance variables of the AccountBM Bean class

public class Account BMBean i npl enments EntityBean {
private EntityContext entityContext = null;

b'rivate static final String DBRULProp = "DBURL";

private static final String DriverNanmeProp = "Driver Nane";
private static final String DBLogi nProp = "DBLogin";
private static final String DBPasswordProp = "DBPassword";

private static final String Tabl eNaneProp = "Tabl eNane";
177

private String jdbcUrl, driverName, DBLogin, DBPassword, tableNane;
private long accountld = 0O;

private int type = 1;

private fl oat bal ance = 0. 0f;

private Connection jdbcConn = null;

}

To make the AccountBM bean more portable between databases and database drivers, the database-specific variables (jdbcUrl,
driverName, DBLogin, DBPassword, and tableName) are set by retrieving corresponding environment variables contained in
the enterprise bean. The values of these variables are retrieved by the getEnvProps method, which isimplemented in the
AccountBMBean class and invoked when the setEntityContext method is called. For more information, see Managing database

connections in the EJB server environment.

Although Figure 43 shows database access compatible with version 1.0 of the JIDBC specification, you can also perform
database accesses that are compatible with version 2.0 of the JDBC specification. An administrator binds a
javax.sqgl.DataSource reference (which encapsul ates the information that was formerly stored in the jdbcURL and driverName
variables) into the INDI namespace. The entity bean with BMP does the following to get ajava.sgl.Connection:

Dat aSource ds = (dataSource)initial Context.|ookup("java: conp/env/jdbc/ MyDataSource");
Connection con = ds. get Connection();

where MyDataSour ce is the name the administrator assigned to the datasource.

Implementing the business methods

The business methods of an entity bean class define the ways in which the data encapsulated in the class can be manipulated.
The business methods implemented in the enterprise bean class cannot be directly invoked by an EJB client. Instead, the EJB
client invokes the corresponding methods defined in the enterprise bean's remote interface by using an EJB object associated
with an instance of the enterprise bean, and the container invokes the corresponding methods in the instance of the enterprise
bean.

Therefore, for every business method implemented in the enterprise bean class, a corresponding method must be defined in the
enterprise bean's remote interface. The enterprise bean's remote interface is implemented by the container in the EJB object
class when the enterprise bean is deployed.

There is no difference between the business methods defined in the AccountBM Bean bean class and those defined in the CMP
bean class AccountBean shown in Figure 10.

Implementing the ejbCreate and ejbPostCreate methods

Y ou must define and implement an bCreate method for each way in which you want a new instance of an enterprise bean to
be created. For each ejbCreate method, you can a so define a corresponding ejbPostCreate method. Each ejbCreate method
must correspond to a create method in the EJB home interface.

Like the business methods of the bean class, the ejbCreate and ejbPostCreate methods cannot be invoked directly by the client.
Instead, the client invokes the create method of the enterprise bean's home interface by using the EJB home object, and the
container invokes the gfbCreate method followed by the g/bPostCreate method.

Unlike the method in an entity bean with CMP, the gjbCreate method in an entity bean with BMP must contain all of the code
required to insert the bean's persistent data into the data source. This requirement means that the ejbCreate method must get a
connection to the data source (if oneis not already available to the bean instance) and insert the values of the bean's variables
into the appropriate fields in the data source.
Each g/bCreate method in an entity bean with BMP must meet the following requirements:

« It must be public and return the bean's primary key class.

« Itsarguments and return type must be valid for Java remote method invocation (RMI).

« It must contain the code required to insert the values of the persistent variables into the data source. For more
information, see Using a database with a BMP entity bean.

Eac%%j bPostCreate method must be public, return void, and have the same arguments as the matching g/bCreate method. If

necessary, both the g/bCreate method and the gjbPostCreate method can throw the java.rmi.RemoteException exception, the
javax.ejb.CreateException exception, the javax.ejb.DuplicateK ey Exception exception, and any user-defined exceptions.

Figure 44 shows the two e/ bCreate methods required by the example AccountBM Bean bean class. No g/bPostCreate methods
arerequired.

Asin the AccountBean class, the first ejbCreate method calls the second gjbCreate method; the latter handles all of the
interaction with the data source. The second method initializes the bean's instance variables and then ensures that it has avalid
connection to the data source by invoking the checkConnection method. The method then creates, prepares, and executes an
SQL INSERT call on the data source. If the INSERT call is executed correctly, and only one row isinserted into the data
source, the method returns an object of the bean's primary key class.

Figure 44. Code example: The g/ bCreate methods of the AccountBM Bean class

publ i c Account BMKey ej bCreat e(Account BMKey key) throws Creat eException,
Renot eException {
return ej bCreate(key, 1, 0.0f);

}

publ i ¢ Account BMKey ej bCreat e(Account BMKey key, int type, float bal ance)
throws CreateException, RenpteException
{

accountld = key.accountl d;
this.type type;

thi s. bal ance = bal ance;
checkConnection();

/1 I NSERT i nto database

try {

String sql String = "INSERT INTO " + tableNanme +
" (bal ance, type, accountid) VALUES (?,?,?)";
Prepar edSt at enent sql Statenment = j dbcConn. prepareSt at enent (sql String);
sql St at enent . set Fl oat (1, bal ance);
sqgl Statenent.setlnt(2, type);
sqgl St at enent . set Long(3, accountld);
/] Execute query
i nt updateResults = sqgl Statenent. executeUpdate();

catch (Exception e) { // Error occurred during insert

}

return key;

}
Implementing the ejbFindByPrimaryKey and other ejbFind methods

At aminimum, each entity bean with BMP must define and implement the jbFindByPrimaryK ey method that takes a primary
key and determinesif it is valid and unique for an instance of an enterprise bean; if the primary key isvalid and unique, it
returns the primary key. An entity bean can a so define and implement other finder methods to find enterprise bean instances.
All finder methods can throw the javax.gjb.FinderException exception to indicate an application-level error. Finder methods
designed to find a single bean can also throw the javax.egjb.ObjectNotFoundException exception, a subclass of the
FinderException class. Finder methods designed to return multiple beans should not use the ObjectNotFoundException to
indicate that no suitable beans were found; instead, such methods should return empty return values. Throwing the
java.rmi.RemoteException exception is deprecated; see Standard application exceptions for entity beans for more information.

Like the business methods of the bean class, the gjbFind methods cannot be invoked directly by the client. Instead, the client
invokes a finder method on the enterprise bean's home interface by using the EJB home object, and the container invokes the
corresponding € bFind method. The container invokes an gjbFind method by using a generic instance of that entity bean in the
pooled state.

Because the container uses an instance of an entity bean in the pooled state to invoke an ejbFind method, the method must do
the following:

179

1. Get a connection to the data source (or sources).
2. Query the data source for records that match specifications of the finder method.
3. Drop the connection to the data source (or sources).

For more information on these data source tasks, see Using a database with a BMP entity bean. Figure 45 showsthe
€jbFindByPrimaryKey method of the example AccountBMBean class. The gbFindByPrimaryKey method gets a connection to
its data source by calling the makeConnection method shown in Figure 45. It then creates and invokes an SQL SELECT
statement on the data source by using the specified primary key.

If one and only one record is found, the method returns the primary key passed to it in the argument. If no records are found or
multiple records are found, the method throws the FinderException. Before determining whether to return the primary key or
throw the FinderException, the method drops its connection to the data source by calling the dropConnection method described
in Using a database with a BMP entity bean.

Figure 45. Code example: The g bFindByPrimaryKey method of the AccountBM Bean class

publ i c Account BMKey ej bFi ndByPri mar yKey (Account BMKey key)
throws Fi nder Exception {

bool ean wasFound = fal se;

bool ean foundMul tiples = fal se;

makeConnecti on();

try {
/1 SELECT from dat abase
String sql String = "SELECT bal ance, type, accountid FROM" + tabl eNane

+ " WHERE accountid = ?";

Prepar edSt at enent sqgl Statenment = j dbcConn. prepareSt at enent (sql String);
| ong keyVal ue = key. accountld;
sql St at enent . set Long(1, keyVal ue);

/'l Execute query
Resul t Set sql Results = sql Statenent. executeQuery();

/1 Advance cursor (there should be only one item
/'l wasFound will be true if there is one
wasFound = sql Resul ts. next ();

/1 foundMultiples will be true if nore than one is found.
foundMul ti pl es = sqgl Results. next();

}
catch (Exception e) { // DB error

}
dropConnection();
f (wasFound && !foundMilti ples)

[

{
return key;

}

{ . .

/'l Report finding no key or multiple keys

'.[I-q'row(new Fi nder Excepti on(foundStatus));

}

Figure 46 shows the g/ bFindL argeAccounts method of the example AccountBMBean class. The g bFindLargeAccounts
method also gets a connection to its data source by calling the makeConnection method and drops the connection by using the
dropConnection method. The SQL SELECT statement is also very similar to that used by the ejbFindByPrimaryK ey method.
(For more information on these data source tasks and methods, see Using a database with a BMP entity bean.)

While the gjbFindByPrimaryKey method needs to return only one primary key, the gjbFindLargeAccounts method can be
expected to return zero or more primary keysin an Enumeration object. To return an enumeration of primary keys, the
180

g/ bFindL argeA ccounts method does the following:
1. It usesawhileloop to examine the result set (sglResults) returned by the executeQuery method.

2. Itinserts each primary key in the result set into a hash table named resultTable by wrapping the returned account ID in
aLong object and then in an AccountBMKey object. (The Long object, memberld, is used as the hash tabl€e's index.)

3. It invokes the elements method on the hash table to obtain the enumeration of primary keys, which it then returns.

Figure 46. Code example: The gjbFindL argeAccounts method of the AccountBM Bean class

public Enureration ej bFi ndLargeAccounts(fl oat anpbunt) throws FinderException {
makeConnecti on();
Enuneration result;

try

/1 SELECT from dat abase
String sqgl String = "SELECT accountid FROM " + tabl eNane
+ " VWHERE bal ance >= ?";
Prepar edSt at ement sqgl St at enent = | dbcConn. prepareSt at enent (sqgl Stri ng);
sql St at enent . set Fl oat (1, anount);
/1 Execute query
Resul t Set sql Results = sql Statenent. executeQuery();
/1 Set up Hashtable to contain list of primary keys
Hasht abl e resul t Tabl e = new Hasht abl e();
/1 Loop through result set until there are no nore entries
/1 Insert each primary key into the resultTable
whil e(sql Results.next() == true) {
I ong acctld = sql Results. getlLong(1);
Long nenberld = new Long(acctld);
Account BMKey key = new Account BMKey(acctl d);
resul t Tabl e. put (nmenber | d, key);
}
/1 Return the resultTable as an Enuneration
result = resultTable.elements();
return result;

} catch (Exception e) {

y finally {

}
}

dropConnection();

Implementing the EntityBean interface

Each entity bean class must implement the methods inherited from the javax.ejb.EntityBean interface. The container invokes
these methods to move the bean through different stages in the bean'slife cycle. Unlike an entity bean with CMP, in an entity
bean with BMP, these methods must contain al of the code for the required interaction with the data source (or sources) used
by the bean to store its persistent data.

» gbActivate--This method isinvoked by the container when the container selects an entity bean instance from the
instance pool and assigns that instance to a specific existing EJB object. This method must contain the code required to
activate the enterprise bean instance by getting a connection to the data source and using the bean's
javax.gjb.EntityContext class to obtain the primary key in the corresponding EJB object.

In the example AccountBM Bean class, the g/bActivate method obtains the bean instance's account ID, sets the value of
the accountld variable, and invokes the checkConnection method to ensure that it has a valid connection to the data

source.

» ¢gjbLoad--This method isinvoked by the container to synchronize an entity bean's persistent variables with the
corresponding data in the data source. (That is, the values of the fields in the data source are loaded into the persistent
variables in the corresponding enterprise bean instance.) This method must contain the code required to load the values
from the data source and assign those values to the bean's instance variabl es.

In the example AccountBM Bean class, the gjbL oad method obtains the bean instance's account ID, sets the value of the
accountld variable, invokes the checkConnection method to ensure that it has avalid connection to the data source,
constructs and executes an SQL SELECT statement, and sets the values of the type and balance variables to match the

181

values retrieved from the data source.

» gbPassivate--This method isinvoked by the container to disassociate an entity bean instance from its EJB object and
place the enterprise bean instance in the instance pool. This method must contain the code required to "passivate" or
deactivate an enterprise bean instance. Usually, this passivation simply means dropping the connection to the data
source.

In the example AccountBM Bean class, the g/bPassivate method invokes the dropConnection method to drop the
connection to the data source.

» gbRemove--This method is invoked by the container when a client invokes the remove method inherited by the
enterprise bean's home interface (from the javax.eb.EJBHome interface) or remote interface (from the
javax.ejb.EJBObject interface). This method must contain the code required to remove an enterprise bean's persistent
data from the data source. This method can throw the javax.ejb.RemoveException exception if removal of an enterprise
bean instance is not permitted. Usually, removal involves deleting the bean instance's data from the data source and
then dropping the bean instance's connection to the data source.

In the example AccountBM Bean class, the gjbRemove method invokes the checkConnection method to ensure that it
has a valid connection to the data source, constructs and executes an SQL DELETE statement, and invokes the
dropConnection method to drop the connection to the data source.

« setEntityContext--This method isinvoked by the container to pass a reference to the javax.egjb.EntityContext interface
to an enterprise bean instance. This method must contain any code required to store areference to a context.

In the example AccountBM Bean class, the setEntityContext method sets the value of the entityContext variable to the
value passed to it by the container.

« gbStore--This method isinvoked by the container when the container needs to synchronize the data in the data source
with the values of the persistent variables in an enterprise bean instance. (That is, the values of the variablesin the
enterprise bean instance are copied to the data source, overwriting the previous values.) This method must contain the
code required to overwrite the data in the data source with the corresponding values in the enterprise bean instance.

In the example AccountBM Bean class, the gjbStore method invokes the checkConnection method to ensure that it has a
valid connection to the data source and constructs and executes an SQL UPDATE statement.

« unsetEntityContext--This method is invoked by the container, before an enterprise bean instance is removed, to free up
any resources associated with the enterprise bean instance. Thisisthe last method called prior to removing an
enterprise bean instance.

In the example AccountBM Bean class, the unsetEntityContext method sets the value of the entityContext variable to
null.

Writing the home interface (entity with BMP)

An entity bean's home interface defines the methods used by EJB clientsto create new instances of the bean, find and remove
existing instances, and obtain metadata about an instance. The home interface is defined by the enterprise bean devel oper and
implemented in the EJB home class created by the container during enterprise bean deployment. The container makes the
home interface accessible to clients through the Java Naming and Directory Interface (JNDI).

By convention, the home interface is named NameHome, where Name is the name you assign to the enterprise bean. For
example, the AccountBM enterprise bean's home interface is named AccountBMHome. Every home interface for an entity
bean with BMP must meet the following requirements:

« It must extend the javax.ejb.EJBHome interface. The home interface inherits several methods from the
javax.eb.EJBHome interface. See The javax.ejb.EJBHome interface for information on these methods.

» Each method in the interface must be either a create method, which corresponds to an ejbCreate method (and possibly
an gjbPostCreate method) in the enterprise bean class, or afinder method, which corresponds to an ejbFind method in
the enterprise bean class. For more information, see Defining create methods and Defining finder methods.

» The parameters and return value of each method defined in the home interface must be valid for Java RMI. For more
information, see The java.io.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause must

include the java.rmi.RemoteException exception class.

Figure 47 shows the relevant parts of the definition of the home interface (AccountBMHome) for the example AccountBM
bean. This interface defines two abstract create methods: the first creates an AccountBM object by using an associated
AccountBMK ey object, the second creates an AccountBM object by using an associated AccountBMKey object and

182

specifying an account type and an initial balance. The interface defines the required findByPrimaryK ey method and the
findLargeA ccounts method.

Figure 47. Code example: The AccountBMHome home interface

import java.rm.*;
i mport javax.ejb.*;
i mport java.util.?*;
public interface AccountBVHone extends EJBHone ({

Account BM cr eat e(Account BMKey key) throws CreateException,
Renot eExcepti on;

Account BM cr eat e(Account BMKey key, int type, float anount)
throws Creat eException, RenoteException;

A'c.count BM fi ndByPri mar yKey(Account BMKey key)
throws Fi nder Excepti on, RenpteException;

Enuner ati on findLargeAccounts(fl oat anount)
throws Fi nder Exception, RenpteException;

}
Defining create methods

A create method is used by aclient to create an enterprise bean instance and insert the data associated with that instance into
the data source. Each create method must be named create and it must have the same number and types of argumentsasa
corresponding €bCreate method in the enterprise bean class. (The gjbCreate method can itself have a corresponding
€jbPostCreate method.) The return types of the create method and its corresponding ejbCreate method are always different.

Each create method must meet the following requirements:

o |t must be named create.

« It must return the type of the enterprise bean's remote interface. For example, the return type for the create methodsin
the AccountBMHome interface is AccountBM (as shown in Figure 13).

« It must have athrows clause that includes the java.rmi.RemoteException exception, the javax.ejb.CreateException
exception, and all of the exceptions defined in the throws clause of the corresponding e/ bCreate and € bPostCreate
methods.

Defining finder methods

A finder method is used to find one or more existing entity EJB objects. Each finder method must be named findName, where
Name further describes the finder method's purpose.

At aminimum, each home interface must define the findByPrimaryK ey method that enables a client to locate an EJB object by
using the primary key only. The findByPrimaryKey method has one argument, an object of the bean's primary key class, and
returns the type of the bean's remote interface.

Every other finder method must meet the following requirements:

« It must return the type of the enterprise bean's remote interface, the java.util.Enumeration interface, or the
java.util.Collection interface (when afinder method can return more than one EJB object or an EJB collection).

« It must have athrows clause that includes the java.rmi.RemoteException and javax.ejb.FinderException exception
classes.

Although every entity bean must contain only the default finder method, you can write additional ones if needed. For example,
the AccountBM bean's home interface defines the findL argeA ccounts method to find objects that encapsul ate accounts with
bal ances of more than a specified dollar amount, as shown in Figure 47. Because this finder method can be expected to return a

reference to more than one EJB object, its return type is java.util.Enumeration.

Unlike the implementation in an entity bean with CMP, in an entity bean with BMP, the bean developer must fully implement
the g/bFindByPrimaryKey method that corresponds to the findByPrimaryKey method. In addition, the bean devel opelrsrgust

write each additional ejbFind method corresponding to the finder methods defined in the home interface. The implementation
of the gjbFind methods in the AccountBM Bean class is discussed in Implementing the ejbFindByPrimaryK ey and other

€jbFind methods.

Writing the remote interface (entity with BMP)

An entity bean's remote interface provides access to the business methods available in the bean class. It also provides methods
to remove an EJB object associated with a bean instance and to obtain the bean instance's home interface, object handle, and
primary key. The remote interface is defined by the EJB devel oper and implemented in the EJB object class created by the
container during enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name you assign to the enterprise bean. For example,
the AccountBM enterprise bean's remote interface is named AccountBM. Every remote interface must meet the following
reguirements:

« It must extend the javax.ejb.EJBObject interface. The remote interface inherits several methods from the
javax.ejb.EJBObject interface. See Methods inherited from javax.ejb.EJBObject for information on these methods.

« It must define a corresponding business method for every business method implemented in the enterprise bean class.

« The parameters and return value of each method defined in the interface must be valid for Java RMI. For more
information, see The java.io.Serializable and java.rmi.Remote interfaces.

» Each method's throws clause must include the java.rmi.RemoteException exception class.

Figure 48 shows the relevant parts of the definition of the remote interface (AccountBM) for the example AccountBM

enterprise bean. Thisinterface defines four methods for displaying and manipulating the account balance that exactly match
the business methods implemented in the AccountBM Bean class. All of the business methods throw the
java.rmi.RemoteException exception class. In addition, the subtract method must throw the user-defined exception
com.ibm.egjs.doc.account.| nsufficientFundsException because the corresponding method in the bean class throws this
exception. Furthermore, any client that calls this method must either handle the exception or passit on by throwing it.

Figure 48. Code example: The AccountBM remoteinterface

i mport java.rm.*;

i mport javax.ejb.*;

i mport comibmejs.doc.account. | nsufficientFundsExcepti on;
public interface Account BM ext ends EJBObj ect {

float add(float ampunt) throws RenoteException;
fl oat getBal ance() throws RenoteException;
voi d setBal ance(fl oat anount) throws RenoteException;

fI 6at subtract (fl oat armount) throws InsufficientFundsExcepti on,
Renot eExcepti on;

}
Writing or selecting the primary key class (entity with BMP)

Every entity EJB object has a unique identity within a container that is defined by a combination of the object's home interface
name and its primary key, the latter of which is assigned to the abject at creation. If two EJB objects have the same identity,
they are considered identical.

The primary key classis used to encapsulate an EJB object's primary key. In an entity bean (with BMP or CMP), you can write
adistinct primary key class or you can use an existing class as the primary key class, aslong asthat classis serializable. For
more information, see The java.io.Serializable and javarmi.Remote interfaces.

The example AccountBM bean uses a primary key classthat isidentical to the AccountKey class contained in the Account
bean shown in Figure 16, with the exception that the key class is named AccountBMKey.
Note:

184

The primary key class of an entity bean with BMP must implement the hashCode and equals method. In addition, the
variables that make up the primary key must be public.

The javalang.Long classis also a good candidate for a primary key class for the AccountBM bean.

Using a database with a BMP entity bean

In an entity bean with BMP, each ejbFind method and all of the life cycle methods (egjbActivate, gbCreate, gjblLoad,
gjbPassivate, and gjbStore) must interact with the data source (or sources) used by the bean to maintain its persistent data. To
interact with a supported database, the BMP entity bean must contain the code to manage database connections and to
manipulate the data in the database. The EJB server uses a set of specialized beans to encapsulate information about databases
and an IBM-specific interface to JDBC to alow entity bean interaction with a connection manager. For more information, see
Managing database connectionsin the EJB server environment

In general, there are three approaches to getting and rel easing connections to databases:

» The bean can get a database connection in the setEntityContext method and release it in the unsetEntityContext
method. This approach is the easiest for the enterprise bean devel oper to implement. However, without a connection
manager, this approach is not viable because under it bean instances hold onto database connections even when they
are not in use (that is, when the bean instance is passivated). Even with a connection manager, this approach does not
scale well.

» The bean can get a database connection in the gjbActivate and gjbCreate methods, get and release a database
connection in each g bFind method, and release the database connection in the gjbPassivate and g bRemove methods.
This approach is somewhat more difficult to implement, but it ensures that only those bean instances that are activated
have connections to the database.

» The bean can get and release a database connection in each method that requires a connection: ejbActivate, gbCreate,
gjbFind, ejbLoad, and ejbStore. This approach is more difficult to implement than the first approach, but is no more
difficult than the second approach. This approach is the most efficient in terms of connection use and also the most
scalable.

The example AccountBM bean, uses the second approach described in the preceding text. The AccountBMBean class contains
two methods for making a connection to the DB2 database, checkConnection and makeConnection, and one method to drop
connections: dropConnection.The code required to make the AccountBM bean work with the connection manager is shown in
Managing database connections in the EJB server environment

The code required to manipul ate data in a database is described in Manipulating data in a database.

Managing database connections in the EJB server environment

In the EJB server environment, the administrator creates a specialized set of entity beans that encapsulate information about
the database and the database driver. These specialized entity beans are created by using the WebSphere Administrative
Console.

An entity bean that requires access to a database must use JNDI to create a reference to an EJB object associated with the right
database bean instance. The entity bean can then use the IBM-specific interface (named
com.ibm.db2.jdbc.app.stdext.javax.sgl.DataSource) to get and rel ease connections to the database.

The DataSource interface enables the entity bean to transparently interact with the connection manager of the EJB server. The
connection manager creates a pool of database connections, which are allocated and deall ocated to individual entity beans as
needed.

Getting an EJB object reference to a data source bean instance

Before a BMP entity bean can get a connection to a database, the entity bean must perform a JNDI lookup on the data source
entity bean associated with the database used to store the BMP entity bean's persistent data. Figure 49 shows the code required
to create an Initial Context object and then get an EJB object reference to a database bean instance. The JINDI name of the
database bean is defined by the administrator; it is recommended that the JNDI naming convention be followed when defining
this name. The value of the required database-specific variables are obtained by the getEnvProps method, which accesses the
corresponding environment variables from the deployed enterprise bean.

Because the connection manager creates and drops the actual database connections and simply allocates and deal Ioca{(gs5 these

connections as required, there is no need for the BMP entity bean to load and register the database driver. Therefore, thereis
no need to define the driverName and jdbcUr| variables discussed in Defining instance variables.

Figure 49. Code example: Getting an EJB object referenceto a data sour ce bean instance in the setEntityContext
method (rewritten to use DataSour ce)

#. | nport comibm db2.j dbc. app. stdext.javax. sql . Dat aSour ce;
inport javax.nam ng.*;

ihitial Cont ext initContext = null;
Dat aSource ds = nul | ;

public void setEntityContext(EntityContext ctx)
t hrows EJBException {
entityContext = ctx;
try {
get EnvProps();
ds = initContext.|ookup("jdbc/sanple");
} catch (Nam ngException e) {

}

Allocating and deallocating a connection to a database

After creating an EJB object reference for the appropriate database bean instance, that object reference is used to get and
release connections to the corresponding database. Unlike when using the DriverManager interface, when using the
DataSource interface, the BMP entity bean does not really create and close data connections; instead, the connection manager
allocates and deall ocates connections as required by the entity bean. Nevertheless, aBMP entity bean must still contain code to
send allocation and deall ocation requests to the connection manager.

In the AccountBM Bean class, the checkConnection method is called within other bean class methods that require a database
connection, but for which it can be assumed that a connection already exists. This method checks to make sure that the
connection is still available by checking if the jdbcConn variableis set to null. If the variable is null, the makeConnection
method isinvoked to get the connection (that is a connection allocation request is sent to the connection manager).

The makeConnection method is invoked when a database connection is reguired. It invokes the getConnection method on the
data source object. The getConnection method is overloaded: it can take either auser 1D and password or no arguments, in
which case the user ID and password are implicitly set to null (thisversion is used in Figure 50).

Figure 50. Code example: The checkConnection and makeConnection methods of the AccountBM Bean class (rewritten
to use DataSour ce)

private void checkConnection() throws EJBeException {
if (jdbcConn == null) {
makeConnecti on() ;
}

return;

}

|.o'ri'vate voi d makeConnection() throws EJBeException {
try {
/1 Open dat abase connection

j dbcConn = ds. get Connection();
} catch(Exception e) { // Could not get database connection

}
}

Entity beans with BMP must also rel ease database connections when a particular bean instance no longer requiresit (that is,

they must send a deallocation request to the connection manager). The AccountBM Bean class contains a dropConnection
186

method to handle this task. To release the database connection, the dropConnection method does the following (as shown in
Figure 51):

1. Invokesthe close method on the connection object to tell the connection manager that the connection is no longer
needed.

2. Setsthe connection object reference to null.

Putting the close method inside a try/catch/finally block ensures that the connection object reference is always set to null even
if the close method fails for some reason. Nothing is done in the catch block because the connection manager must clean up
idle connections; thisis not the job of the enterprise bean code.

Figure 51. Code example: The dropConnection method of the AccountBM Bean class (rewritten to use DataSour ce)

private void dropConnection() {
try {
/1 C ose the connection
j dbcConn. cl ose();
catch (SQ.Exception ex) {
/1 Do not hing

} finally {
j dbcConn = nul | ;

}
Manipulating data in a database

After an instance of a BMP entity bean obtains a connection to its database, it can read and write data. The AccountBMBean
class communicates with the DB2 database by constructing and executing Java Structured Query Language (JSQL) calls by
using the java.sgl.PreparedStatement interface.

Asshown in Figure 52, the SQL call is created as a String (sqlSring). The String variable is passed to the

java.sgl.Connection.prepareStatement method; and the values of each variablein the SQL call are set by using the various
setter methods of the PreparedStatement class. (The variables are substituted for the question marks in the sglString variable.)
Invoking the PreparedStatement.executeUpdate method executes the SQL call.

Figure 52. Code example: Constructing and executing an SQL update call in an g/ bCreate method

private void ej bCreat e(Account BWKey key, int type, float initial Balance)
throws CreateException, EJBException {
/1 Initialize persistent variables and check for good DB connection

// | NSERT i nt o dat abase

try {
String sqglString = "INSERT I NTO " + tabl eNane +
" (bal ance, type, accountid) VALUES (?,?,?)";
Pr epar edSt at enent sql Statemrent = j dbcConn. prepareSt at enent (sql String);

sql St at enent . set Fl oat (1, bal ance);

sqgl Statenent.setlnt(2, type);

sql St at enent . set Long(3, accountld);

/1 Execute query

i nt updateResults = sqgl Statenent. execut eUpdate();

catch (Exception e) { // Error occurred during insert

}

}

The executeUpdate method is called to insert or update data in a database; the executeQuery method is called to get datafrom
adatabase. When datais retrieved from a database, the executeQuery method returns a java.sgl.ResultSet object, which must
be examined and manipulated using the methods of that class.

Note:
187

To improve scalability and performance, you do not need to call PreparedStatement for each database update. Instead,
you can cache the results of the first PreparedStatement call.

Figure 53 provides an example of how the datain a ResultSet is manipulated in the gjbLoad method of the AccountBMBean
class.

Figure 53. Code example: Manipulating a ResultSet object in the gfbL oad method

public void ejbLoad () throws EJBeException {
/1l Get data from dat abase

try {
/] SELECT from dat abase

/1 Execute query
Resul t Set sql Results = sql St atenent. execut eQuery();
/1 Advance cursor (there should be only one item
sqgl Resul ts. next ();
/{1 Pull out results
bal ance = sql Results.getFloat(1);
type = sgl Results.getlnt(2);
} catch (Exception e) {
/1 Sonet hi ng happened whil e | oadi ng dat a.

Using bean-managed transactions

In most situations, an enterprise bean can depend on the container to manage transactions within the bean. In these situations,
all you need to do is set the appropriate transactional propertiesin the deployment descriptor as described in Enabling
transactions and security in enterprise beans.

Under certain circumstances, however, it can be necessary to have an enterprise bean participate directly in transactions. By
setting the transaction attribute in an enterprise bean's deployment descriptor to BeanManaged, you indicate to the container
that the bean is an active participant in transactions.

Note:

The value BeanManaged is not avalid value for the transaction deployment descriptor attribute in entity beans. In
other words, entity beans cannot manage transactions.

When writing the code required by an enterprise bean to manage its own transactions, remember the following basic rules:

« Aninstance of a stateless session bean cannot reuse the same transaction context across multiple methods called by an
EJB client. Therefore, it is recommended that the transaction context be alocal variable to each method that requires a
transaction context.

« Aninstance of a stateful session bean can reuse the same transaction context across multiple methods called by an EJB
client. Therefore, make the transaction context an instance variable or alocal method variable at your discretion. (When
atransaction spans multiple methods, you can use the javax.gjb.SessionSynchronization interface to synchronize the
conversational state with the transaction.)

Figure 54 shows the standard code required to obtain an object encapsul ating the transaction context. There are three basics
steps involved:

1. The enterprise bean class must set the value of the javax.ejb.SessionContext object reference in the setSessionContext
method.

2. A javax.transaction.UserTransaction object is created by calling the getUser Transaction method on the SessionContext
object reference.

3. The UserTransaction object is used to participate in the transaction by calling transaction methods such as begin and
commit as needed. If a enterprise bean begins a transaction, it must also complete that transaction either by invoking
the commit method or the rollback method.

Note:

In both EJB servers, the getUser Transaction method of the javax.ejb.EJBContext interface (which isinherited
188

by the SessionContext interface) returns an object of type javax.transaction.User Transaction rather than type
javax.jts.UserTransaction. While thisis a deviation from the 1.0 version of the EJB Specification, the 1.1
version of the EJB Specification requires that the getUser Transaction method return an object of type
javax.transaction.UserTransaction and drops the requirement to return objects of type javax.jts.UserTransaction.

Figure 54. Code example: Getting an object that encapsulates a transaction context

i mport javax.transaction.*;

public class M/Statel essSessi onBean i npl enments Sessi onBean {
private SessionContext mnmySessionCtx = null;

publ ic void setSessi onCont ext (. Sessi onContext ctx) throws EJBException {
nmySessi onCt x = ctx;
}

pubI ic float doSonething(long argl) throws Finder Exception, EJBException {
User Transacti on user Tran = nySessi onCt x. get User Tr ansacti on();

/1 User userTran object to call transaction nethods
user Tran. begi n();
/1 Do transactional work

user Tran. conmit ();

}

The following methods are available with the UserTransaction interface:
« begin--Begins atransaction. This method takes no arguments and returns void.

« commit--Attempts to commit a transaction; assuming that nothing causes the transaction to be rolled back, successful
completion of this method commits the transaction. This method takes no arguments and returns void.

 getStatus--Returns the status of the referenced transaction. This method takes no arguments and returnsint; if no
transaction is associated with the reference, STATUS NO_TRANSACTION isreturned. The following are the valid
return values for this method:

o STATUS_ACTIVE--Indicates that transaction processing is still in progress.

o STATUS COMMITTED--Indicates that atransaction has been committed and the effects of the transaction
have been made permanent.

o STATUS COMMITTING--Indicates that atransaction is in the process of committing (that is, the transaction
has started committing but has not completed the process).

o STATUS MARKED_ ROLLBACK--Indicatesthat atransaction is marked to be rolled back.
o STATUS NO_TRANSACTION--Indicates that a transaction does hot exist in the current transaction context.
o STATUS PREPARED--Indicates that a transaction has been prepared but not compl eted.

o STATUS PREPARING--Indicates that atransaction isin the process of preparing (that is, the transaction has
started preparing but has not completed the process).

o STATUS _ROLLEDBACK--Indicates that atransaction has been rolled back.

o STATUS ROLLING_BACK--Indicatesthat atransaction isin the process of rolling back (that is, the
transaction has started rolling back but has not completed the process).

o STATUS_UNKNOWN--Indicates that the status of a transaction is unknown.
« rollback--Rolls back the referenced transaction. This method takes no arguments and returns void.

« setRollbackOnly--Specifies that the only possible outcome of the transaction is rollback. This method takes no
arguments and returns void.

« setTransactionTimeout--Sets the timeout (in seconds) associated with the transaction. If some transaction participant
has not specifically set this value, a default timeout is used. This method takes a number of seconds (as typeint) and
returns void.

189

Enabling transactions and security in enterprise
beans

This chapter examines how to enable transactions and security in enterprise beans by setting the appropriate
deployment descriptor attributes:

« For transactions, a session bean can either use contai ner-managed transactions or implement
bean-managed transactions; entity beans must use container-managed transactions. To enable
contai ner-managed transactions, you must set the transaction attribute to any value except BeanManged
and set the transaction isolation level attribute. To enable bean-managed transactions, you must set the
transaction attribute to BeanManaged and set the transaction isolation level attribute. For more
information, see Setting transactional attributes in the deployment descriptor.

If you want a session bean to manage its own transactions, you must write the code that explicitly
demarcates the boundaries of a transaction as described in Using bean-managed transactions.

If you want an EJB client to manage its own transactions, you must explicitly code that client to do so as
described in Managing transactionsin an EJB client.

« For security, the run-as mode attribute is used by the EJB server environments. For information on the
valid values of this attribute, see Setting the security attribute in the deployment descriptor.

These attributes, like the other deployment descriptor attributes, are set by using one of the tools available. For
more information, see Tools for developing and deploying enterprise beans.

Setting transactional attributes in the deployment descriptor

The EJB Specification describes the creation of applications that enforce transactional consistency on the data
manipulated by the enterprise beans. However, unlike other specifications that support distributed transactions,
the EJB specification does not require enterprise bean and EJB client developers to write any special code to use
transactions. Instead, the container manages transactions based on two deployment descriptor attributes
associated with the EJB module, and the enterprise bean and EJB application developers are freed to deal with
the business logic of their applications.

Enterprise bean developers can specifically design enterprise beans and EJB applications that explicitly manage
transactions. For more information, see Using bean-managed transactions.

Under most conditions, transaction management can be handled within the enterprise beans, freeing the EJB
client developer of thistask. However, EJB clients can participate in transactions if required or desired. For
more information, see Managing transactionsin an EJB client.

Two attributes determine the way in which an enterprise bean is managed from a transactional perspective:

« Thetransaction attribute defines the transactional manner in which the container invokes a method. This
attribute is part of the standard deployment descriptor. Setting the transaction attribute defines the valid

values of this attribute and explains their meanings.

« Thetransaction isolation level attribute defines the manner in which transactions are isolated from each
other by the container. This attribute is an extension to the standard deployment descriptor. Setting the

transaction isolation level attribute defines the valid values of this attribute and explains their meanings.

Setting the transaction attribute

190

The transaction attribute defines the transactional manner in which the container invokes enterprise bean
methods. This attribute is set for individual methods in abean. The following are valid values for this attribute
in decreasing order of transactional strictness:

BeanM anaged

Notifies the container that the bean class directly handles transaction demarcation. This attribute value
can be specified only for session beans and it cannot be specified for individual bean methods. For more
information on designing session beans to implement this attribute value, see Using bean-managed

transactions.

Mandatory

Directs the container to always invoke the bean method within the transaction context associated with
the client. If the client attempts to invoke the bean method without a transaction context, the container
throws the javax.jts. TransactionRequiredException exception to the client. The transaction context is

passed to any EJB object or resource accessed by an enterprise bean method.

EJB clients that access these entity beans must do so within an existing transaction. For other enterprise
beans, the enterprise bean or bean method must implement the BeanManaged value or use the Required
or RequiresNew value. For non-enterprise bean EJB clients, the client must invoke a transaction by
using the javax.transaction.User Transaction interface, as described in Managing transactionsin an EJB

client.
Required

Directs the container to invoke the bean method within atransaction context. If a client invokes a bean
method from within a transaction context, the container invokes the bean method within the client
transaction context. If aclient invokes a bean method outside of a transaction context, the container
creates a new transaction context and invokes the bean method from within that context. The transaction
context is passed to any enterprise bean objects or resources that are used by this bean method.

RequiresNew

Directs the container to always invoke the bean method within a new transaction context, regardless of
whether the client invokes the method within or outside of a transaction context. The transaction context
is passed to any enterprise bean objects or resources that are used by this bean method.

Supports

Directs the container to invoke the bean method within a transaction context if the client invokes the
bean method within atransaction. If the client invokes the bean method without a transaction context,
the container invokes the bean method without a transaction context. The transaction context is passed to
any enterprise bean objects or resources that are used by this bean method.

NotSupported

Directs the container to invoke bean methods without a transaction context. If a client invokes a bean
method from within a transaction context, the container suspends the association between the transaction
and the current thread before invoking the method on the enterprise bean instance. The container then
resumes the suspended association when the method invocation returns. The suspended transaction
context is not passed to any enterprise bean objects or resources that are used by this bean method.

Never
Directs the container to invoke bean methods without a transaction context.

o If the client invokes a bean method from within a transaction context, the container throws the
java.rmi.RemoteException exception.

o If the client invokes a bean method from outside a transaction context, the container behavesin
the same way as if the NotSupported transaction attribute was set. The client must call the
method without a transaction context.

191

Table 1. Effect of the enter prise bean'stransaction attribute on the transaction context

|Transaction attribute Client transaction context |Bean transaction context
Mandatory INo transaction INot allowed
|Client transaction |Client transaction
RequiresNew INo transaction INew transaction
|Client transaction INew transaction
Required INo transaction INew transaction
|Client transaction |Client transaction
Supports INo transaction INo transaction
|Client transaction |Client transaction
NotSupported INo transaction INo transaction
|Client transaction INo transaction
Never INo transaction INo transaction
INo transaction INo transaction

When setting the deployment descriptor for an entity bean, you can mark getter methods as "Read-Only"
methods to improve performance. If atransaction unit of work includes no methods other than "Read-Only"
designated methods, then the entity bean state synchronization does not invoke store.

Setting the transaction isolation level attribute

The transaction isolation level determines how strongly one transaction isisolated from another. This attribute
is set for individual methods in a bean. However, within a transactional context, the isolation level associated
with the first method invocation becomes the required isolation level for all other methods invoked within that
transaction. If amethod isinvoked with adifferent isolation level from that of the first method, the
java.rmi.RemoteException exception is thrown.

The following are valid values for this attribute, in decreasing order of isolation:
Serializable

Thislevel prohibits al of the following types of reads:

o Dirty reads, where a transaction reads a database row containing uncommitted changes from a
second transaction.

o Nonrepeatable reads, where one transaction reads arow, a second transaction changes the same
row, and the first transaction rereads the row and gets a different value.

o Phantom reads, where one transaction reads all rows that satisfy an SQL WHERE condition, a
second transaction inserts a row that also satisfies the WHERE condition, and the first
transaction applies the same WHERE condition and gets the row inserted by the second
transaction.

RepeatableRead

Thislevel prohibits dirty reads and nonrepeatable reads, but it allows phantom reads.
ReadCommitted

Thislevel prohibits dirty reads, but allows nonrepeatable reads and phantom reads.
ReadUncommitted

Thislevel alows dirty reads, nonrepeatable reads, and phantom reads.

These isolation levels correspond to the isolation levels defined in the Java Database Connectivity (JDBC)
192

java.sgl.Connection interface.

The container uses the transaction isolation level attribute as follows:

« Session beans and entity beans with bean-managed persistence (BMP)--For each database connection
used by the bean, the container sets the transaction isolation level at the start of each transaction.

« Entity beans with container-managed persistence (CMP)--The container generates database access code
that implements the specified isolation level.

None of these values permits two transactions to update the same data concurrently; one transaction must end
before another can update the same data. These values determine only how locks are managed for reading data.
However, risks to consistency can arise from read operations when a transaction does further work based on the
values read. For example, if one transaction is updating a piece of data and a second transaction is permitted to
read that data after it has been changed but before the updating transaction ends, the reading transaction can
make a decision based on a change that is eventually rolled back. The second transaction risks making a
decision on transient data.

Deciding which isolation level to use depends on several factors:
« The acceptable level of risk to data consistency
« The acceptable levels of concurrency and performance
« Theisolation levels supported by the underlying database

The first two factors, risk to consistency and level of concurrency, are related. Decreasing the risk to
consistency requires you to decrease concurrency because reducing the risk to consistency requires holding
locks longer. The longer alock is held on a piece of data, the longer concurrently running transactions must
wait to access that data. The Serializable value protects data by eliminating concurrent accessto it. Conversely,
the ReadUncommitted value allows the highest degree of concurrency but entails the greatest risk to
consistency. Y ou need to balance these two factors appropriately for your application.

By default, most devel opers deploy enterprise beans with the transaction isolation level set to Serializable. This
isthe default value in IBM VisualAge for Java Enterprise Edition and other deployment tools. It is also the most
restrictive and protected transaction isolation level incurring the most overhead. Some workloads do not require
the isolation level and protection afforded by Serializable. A given application might never update the
underlying data or be run with other applications that also make concurrent updates. In that case, the application
would not have to be concerned with dirty, non-repeatable, or phantom reads. The ReadUncommitted isolation
level would probably be sufficient.

Because the transaction isolation level is set in the EJB module€'s deployment descriptor, the same enterprise
bean could be reused in different applications with different transaction isolation levels. The isolation level
requirements should be reviewed and adjusted appropriately to increase performance.

The third factor, isolation levels supported in the database, means that although the EJB specification allows
you to request one of the four levels of transaction isolation, it is possible that the database being used in the
application does not support all of the levels. Also, vendors of database products implement isolation levels
differently, so the precise behavior of an application can vary from database to database. Y ou need to consider
the database and the isolation levelsit supports when deciding on the value for the transaction isolation attribute
in deployment descriptors. Consult your database documentation for more information on supported isolation
levels.

Setting the security attribute in the deployment descriptor

When an EJB client invokes a method on an enterprise bean, the user context of the client principal is
encapsulated in a CORBA Current object, which contains credentia properties for the principal. The Current
object is passed among the participants in the method invocation as required to complete the method.

193

The security service uses the credential information to determine the permissions that a principal has on various
resources. At appropriate points, the security service determines if the principal is authorized to use a particular
resource based on the principal's permissions.

If the method invocation is authorized, the security service does the following with the principal’s credential
properties based on the value of the run-as mode attribute of the enterprise bean. If a specific identity is
required, the RunAsl dentity attribute is used to specify that identity.

| dentity of Caller
The security service makes no changes to the principal's credential properties.
| dentity of EJB Server

The security service atersthe principal’s credential properties to match the credential properties
associated with the EJB server.

| dentity Assigned to Specified Role

A security principal that has been assigned to the specified roleis used for the execution of the bean's
methods. This association is part of the application binding where the role is associated with a user ID
and password of a user who is granted that role.

194

Developing enterprise beans

This chapter explains the basic tasks required to develop and package the most common types of enterprise beans. Specifically, this
chapter focuses on creating statel ess session beans and entity beans that use contai ner-managed persistence (CMP); in the discussion of
statel ess session beans, important information about stateful beansis also provided. For information on developing entity beans that use
bean-managed persistence (BMP), see Developing entity beans with BMP.

The information in this chapter is not exhaustive; however, it includes the information you need to develop basic enterprise beans. For
information on developing more complicated enterprise beans, consult acommercially available book on enterprise bean development.
The example enterprise beans discussed in this chapter and the example Java applications and servlets that use them are described in
Information about the examples described in the documentation.

This chapter describes the requirements for building each of the major components of an enterprise bean. If you do not intend to use one
of the commercially available integrated development environments (IDE), such as IBM's VisualAge for Java, you must build each of
these components manually (by using tools in the Java Development Kit and WebSphere). Manually devel oping enterprise beans is much
more difficult and error-prone than developing them in an IDE. Therefore, it is strongly recommended that you choose an IDE with
which you are comfortable.

Developing entity beans with CMP

In an entity bean with CMP, the container handl es the interactions between the entity bean and the data source. In an entity bean with
BMP, the entity bean must contain al of the code required for the interactions between the entity bean and the data source. For this
reason, developing an entity bean with CMP is simpler than developing an entity bean with BMP.

This section examines the development of entity beans with CMP. While much of the information in this section also appliesto entity
beans with BMP, there are some major differences between the two types. For information on the tasks required to develop an entity bean
with BMP, see Developing entity beans with BMP.

Every entity bean must contain the following basic parts:
« The enterprise bean class. For more information, see Writing the enterprise bean class (entity with CMP).

« Theenterprise bean's home interface. For more information, see Writing the home interface (entity with CMP).
« The enterprise bean's remote interface. For more information, see Writing the remote interface (entity with CMP).
« Theenterprise bean's primary key class. For more information, see Writing the primary key class (entity with CMP).

Writing the enterprise bean class (entity with CMP)

In a CMP entity bean, the bean class defines and implements the business methods of the enterprise bean, defines and implements the
methods used to create instances of the enterprise bean, and implements the methods used by the container to inform the instances of the
enterprise bean of significant eventsin the instance's life cycle. Enterprise bean clients never access the bean class directly; instead, the
classes that implement the home and remote interfaces are used to indirectly invoke the methods defined in the bean class.

By convention, the enterprise bean class is named NameBean, where Name is the name you assign to the enterprise bean. The enterprise
bean class for the example Account enterprise bean is named AccountBean. Every entity bean class with CMP must meet the following
requirements:
« It must be public, it must not be abstract, and it must implement the javax.ejb.EntityBean interface. For more information, see
Implementing the EntityBean interface.

« |t must define instance variables that correspond to persistent data associated with the enterprise bean. For more information, see
Defining variables.

« It must implement the business methods used to access and manipulate the data associated with the enterprise bean. For more
information, see Implementing the business methods.

« |t must define and implement an gjbCreate method for each way in which the enterprise bean can be instantiated. A corresponding
ejbPostCreate method must be defined for each ejbCreate method. For more information, see Implementing the g/bCreate and

€jbPostCreate methods.
Note:

The enterprise bean class can implement the enterprise bean's remote interface, but thisis not recommended. If the enterprise bean
class implements the remote interface, it is possible to inadvertently pass the this variable as a method argument.

An enterprise bean class cannot implement two different interfaces if the methods in the interfaces have the same name, even if
the methods have different signatures, due to the Java-1DL mapping specification. Errors can occur when the enterprise bean is

195

deployed.

Figure 8 shows the main parts of the enterprise bean class for the example Account enterprise bean. (Emphasized codeisin bold type.)
The sections that follow discuss these partsin greater detail.

Figure 8. Code example: The AccountBean class

i mport java.util.Properties;

i mport javax.ejb.*;

i mport java.lang.*;

public class AccountBean inplenments EntityBean {
/1 Set instance variables here

// . | npl enent et hods here

}
Defining variables

An entity bean class can contain both persistent and nonpersistent instance variables; however, static variables are not supported in
enterprise beans unless they are also final (that is, they are constants). Static variables are not supported because there is no way to
guarantee that they remain consistent across enterprise bean instances.

Container-managed fields (which are persistent variables) are stored in a database. Container-managed fields must be public.

Nonpersistent variables are not stored in a database and are temporary. Nonpersistent variables must be used with caution and must not
be used to maintain the state of an EJB client between method invocations. Thisrestriction is necessary because nonpersistent variables
cannot be relied on to remain the same between method invocations outside of a transaction because other EJB clients can change these
variables, or they can be lost when the entity bean is passivated.

The AccountBean class contains three container-managed fields (shown in Figure 9):

« accountld, which identifies the account ID associated with an account
« type, which identifies the account type as either savings (1) or checking (2)
« balance, which identifies the current balance of the account

Figure 9. Code example: The variables of the AccountBean class

public class AccountBean inplenments EntityBean {
private EntityContext entityContext = null;
private ListResourceBundle bundle =
Resour ceBundl e. get Bundl e(
"“comibm ejs. doc. account . Account Resour ceBundl e") ;
public long accountld = 0O;
public int type = 1;
public float bal ance = 0. 0f;

}

The deployment descriptor is used to identify container-managed fields in entity beans with CMP. In an entity bean with CMP, each
container-managed field must beinitialized by each jbCreate method (see Implementing the ejbCreate and ejbPostCreate methods).

A subset of the container-managed fields is used to define the primary key class associated with each instance of an enterprise bean. Asis
shown in Writing the primary key class (entity with CMP), the accountld variable defines the primary key for the Account enterprise

bean. The AccountBean class contains two nonpersistent variables:
« entityContext, which identifies the entity context of each instance of an Account enterprise bean. The entity context can be used to

get areference to the EJB object currently associated with the bean instance and to get the primary key object associated with that
EJB object.

« bundle, which encapsulates a resource bundle class (com.ibm.gjs.doc.account.AccountResourceBundle) that contains
locale-specific objects used by the Account bean.

Implementing the business methods

The business methods of an entity bean class define the ways in which the data encapsul ated in the class can be manipulated. The
business methods implemented in the enterprise bean class cannot be directly invoked by an EJB client. Instead, the EJB client invokes
196

the corresponding methods defined in the enterprise bean's remote interface, by using an EJB object associated with an instance of the
enterprise bean, and the container invokes the corresponding methods in the instance of the enterprise bean.

Therefore, for every business method implemented in the enterprise bean class, a corresponding method must be defined in the enterprise
bean's remote interface. The enterprise bean's remote interface isimplemented by the container in the EJB object class when the
enterprise bean is deployed.

Figure 10 shows the business methods for the AccountBean class. These methods are used to add a specified amount to an account
balance and return the new balance (add), to return the current balance of an account (getBalance), to set the balance of an account
(setBalance), and to subtract a specified amount from an account balance and return the new balance (subtract). The subtract method
throws the user-defined exception com.ibm.gjs.doc.account.InsufficientFundsException if a client attempts to subtract more money from
an account than is contained in the account balance. The subtract method in the Account bean's remote interface must also throw this
exception as shown in Figure 15. User-defined exception classes for enterprise beans are created as are any other user-defined exception
class. The message content for the I nsufficientFundsException exception is obtained from the AccountResourceBundle class file by
invoking the getM essage method on the bundle object.

Note:

If an enterprise bean container catches a system exception from the business method of an enterprise bean, and the method is
running within a container-managed transaction, the container rolls back the transaction before passing the exception on to the
client. However, if the business method is throwing an application exception, then the transaction is not rolled back (it is
committed), unless the application has called setRollbackOnly function. In this case, the transaction is rolled back before the
exception isre-thrown.

Figure 10. Code example: The business methods of the AccountBean class

public class AccountBean inplenments EntityBean {

publ ic long accountld = O;
public int type = 1;
public float bal ance = 0. Of;

public float add(float anpunt) {
bal ance += anpunt;
return bal ance;

}

publ ic float getBal ance() {
return bal ance;
}

public void setBal ance(fl oat amount) {
bal ance = anount;
}

public float subtract(float ampunt) throws |nsufficientFundsException {
i f(bal ance < anpunt) {
t hrow new | nsuffici ent FundsExcepti on(
bundl e. get Message("i nsuf fi ci ent Funds"));

}

bal ance -= anpunt;
return bal ance;

}
Standard application exceptions for entity beans

Version 1.1 of the EJB specification defines severa standard application exceptions for use by enterprise beans. All of these exceptions
are subclasses of the javax.ejb.EJBException class. For entity beans with both container- and bean-managed persistence, the EJB
specification defines the following application exceptions:

« javax.ejb.CreateException

« javax.gb.DuplicateKeyException
« javax.ejb.RemoveException

« javax.gb.FinderException

« javax.gb.ObjectNotFoundException 197

Application programmers can use the generic EJBEXxception class or one of the provided subclassed exceptions, or programmers can
define their own exceptions by subclassing any of this family of exceptions. All of these exceptions inherit from the
javax.gjb.RuntimeException class and do not have to be explicitly declared in throws clauses.

Each exception is discussed in more detail within the relevant section; for more information on:

« CreateException and DuplicateK eyException (a subclass of the CreateException class), see Implementing the ejbCreate and
€jbPostCreate methods.

« javax.ejb.RemoveException, see Implementing the EntityBean interface.
« FinderException and ObjectNotFoundException (a subclass of the FinderException class), see Defining finder methods.
Note:

Version 1.0 of the EJB specification used the java.rmi.RemoteException class to capture application-specific exceptions; the
EJBEXxception class and its subclasses are new in the 1.1 version of the specification. Therefore, using the RemoteException class
is now deprecated in favor of the more precise exception classes. Older applications that use the RemoteException class can till
run, but enterprise beans compliant with version 1.1 of the specification must use the new exception classes.

Implementing the ejbCreate and ejbPostCreate methods

Y ou must define and implement an ejbCreate method for each way in which you want a new instance of an enterprise bean to be created.
For each gjbCreate method, you must also define a corresponding ejbPostCreate method. Each ejbCreate and jbPostCreate method must
correspond to a create method in the home interface.

Like the business methods of the bean class, the jbCreate and ejbPostCreate methods cannot be invoked directly by the client. Instead,
the client invokes the create method of the enterprise bean's home interface by using the EJB home object, and the container invokes the
€jbCreate method followed by the ejbPostCreate method. If the gjbCreate and ejbPostCreate methods are executed successfully, an EJB
object is created and the persistent data associated with that object isinserted into the data source.

For an entity bean with CMP, the container handles the required interaction between the entity bean instance and the data source between
calls to the g/bCreate and gjbPostCreate methods. For an entity bean with BMP, the gjbCreate method must contain the code to directly
handle this interaction. For more information on entity beans with BMP, see Devel oping entity beans with BMP.

Each ejbCreate method in an entity bean with CMP must meet the following requirements:
« It must be public and return the same type as the primary key. The actual return value must be null.

« Itsarguments must be valid for Java remote method invocation (RMI). For more information, see The java.io.Serializable and
java.rmi.Remote interfaces.

« It must initialize the container-managed fields of the enterprise bean instance. The container extracts the values of these variables
and writes them to the data source after the gjbCreate method returns.

Each gjbPostCreate method must be public, return void, and have the same arguments as the matching ejbCreate method. If necessary,
both the ejbCreate method and the gjbPostCreate method can throw the javax.ejb.EJBException exception or one of the creation-related
subclasses, the CreateException or the DuplicateK eyException exceptions. The DuplicateK eyException classis a subclass of the
CreateException class. Throwing the java.rmi.RemoteException exception is deprecated; see Standard application exceptions for entity

beans for more information.

Figure 11 shows two sets of ejbCreate and ejbPostCreate methods required for the example AccountBean class. Thefirst set of gjbCreate

and gjbPostCreate methods are wrappers that call the second set of methods and set the type variable to 1 (corresponding to a savings
account) and the balance variable to O (zero dollars).

Figure 11. Code example: The g/ bCreate and g bPostCreate methods of the AccountBean class

public class AccountBean inplenments EntityBean {

publ ic long accountld = O;
public int type = 1;
public float bal ance = 0. 0f;

publ ic Integer ejbCreate(AccountKey key) {
ej bCreat e(key, 1, 0.0f);
}

public Integer ejbCreate(AccountKey key, int type, float initial Balance)
t hrows EJBException {
accountld = key.accountld;
198

type = type;
bal ance = initi al Bal ance;

}

publ i c void ej bPost Creat e(Account Key key)
t hrows EJBException {

ej bPost Creat e(key, 1, 0);
}

publ ic void ejbPostCreate(Account Key key, int type, float initialBalance) { }
}
Implementing the EntityBean interface

Each entity bean class must implement the methods inherited from the javax.gjb.EntityBean interface. The container invokes these
methods to inform the bean instance of significant eventsin the instance's life cycle. (For more information, see Entity bean life cycle.)
All of these methods must be public and return void; they can throw the javax.ejb.EJBEXception exception or, in the case of the
ejbRemove method, the javax.ejb.RemoveException exception. Throwing the java.rmi.RemoteException exception is deprecated; see
Standard application exceptions for entity beans for more information.

« gbActivate--This method isinvoked by the container when the container selects an entity bean instance from the instance pool
and assigns that instance to a specific existing EJB object. This method must contain any code that you want to execute when the
enterprise bean instance is activated.

« gjbLoad--This method isinvoked by the container to synchronize an entity bean's container-managed fields with the
corresponding data in the data source. (That is, the values of the fields in the data source are loaded into the contai ner-managed
fieldsin the corresponding enterprise bean instance.) This method must contain any code that you want to execute when the
enterprise bean instance is synchronized with associated data in the data source.

« gbPassivate--This method is invoked by the container when the container disassociates an entity bean instance from its EJB
object and places the enterprise bean instance in the instance pool. This method must contain any code that you want to execute
when the enterprise bean instance is "passivated” or deactivated.

« gbRemove--This method isinvoked by the container when a client invokes the remove method inherited by the enterprise bean's
home interface from the javax.ejb.EJBHome interface. This method must contain any code that you want to execute before an
enterprise bean instance is removed from the container (and the associated data is removed from the data source). This method
can throw the javax.ejb.RemoveException exception if removal of an enterprise bean instance is not permitted.

« setEntityContext--This method is invoked by the container to pass a reference to the javax.ejb.EntityContext interface to an
enterprise bean instance. If an enterprise bean instance needs to use this context at any time during its life cycle, the enterprise
bean class must contain an instance variable to store this value. This method must contain any code required to store areference
to a context.

« gjbStore--This method isinvoked by the container when the container needs to synchronize the datain the data source with the
values of the container-managed fields in an enterprise bean instance. (That is, the values of the variables in the enterprise bean
instance are copied to the data source, overwriting the previous values.) This method must contain any code that you want to
execute when the data in the data source is overwritten with the corresponding values in the enterprise bean instance.

« unsetEntityContext--This method isinvoked by the container, before an enterprise bean instance is removed, to free up any
resources associated with the enterprise bean instance. Thisisthe last method called prior to removing an enterprise bean
instance.

In entity beans with CMP, the container handles the required data source interaction for these methods. In entity beans with BMP, these
methods must directly handle the required data source interaction. For more information on entity beans with BMP, see More-advanced

programming concepts for enterprise beans.

These methods have several possible uses, including the following:
« They can contain audit or debugging code.

« They can contain code for allocating and deallocating additional resources used by the bean instance (for example, an SNA
connection to a mainframe).
Asshown in Figure 12, except for the setEntityContext and unsetEntityContext methods, all of these methods are empty in the

AccountBean class because no additional action is required by the bean for the particular life cycle states associated with the these
methods. The setEntityContext and unsetEntityContext methods are used in a conventional way to set the value of the entityContext
variable.

Figure 12. Code example: Implementing the EntityBean interface in the AccountBean class

publ i c class AccountBean inplenents EntityBean {
199

private EntityContext entityContext = null;

publ ic void ejbActivate() throws EJBException { }
publ ic void ejbLoad () throws EJBException { }
publ ic void ejbPassivate() throws EJBException { }
publ ic void ej bRenove() throws EJBException { }
publ ic void ejbStore () throws EJBException { }

publ ic void setEntityContext(EntityContext ctx) throws EJBException {
entityContext = ctx;
}

publ ic void unsetEntityContext() throws EJBException {
entityContext = null;
}

}
Writing the home interface (entity with CMP)

An entity bean's home interface defines the methods used by clients to create new instances of the bean, find and remove existing
instances, and obtain metadata about an instance. The home interface is defined by the enterprise bean developer and implemented in the
EJB home class created by the container during enterprise bean deployment.

The container makes the home interface accessible to enterprise bean clients through the Java Naming and Directory Interface (JNDI).
JNDI isindependent of any specific naming and directory service and alows Java-based applications to access any naming and directory
service in a standard way.

By convention, the home interface is named NameHome, where Name is the name you assign to the enterprise bean. For example, the
Account enterprise bean's home interface is named AccountHome. Every home interface must meet the following requirements:

« It must extend the javax.ejb.EJBHome interface. The home interface inherits several methods from the javax.ejb.EJBHome
interface. See The javax.gjb.EJBHome interface for information on these methods.

« Each method in the interface must be either a create method that corresponds to a set of ejbCreate and ejbPostCreate methods in
the EJB object class, or afinder method. For more information, see Defining create methods and Defining finder methods.

« The parameters and return value of each method defined in the home interface must be valid for Java RMI. For more information,
see Thejavaio.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause must include the

java.rmi.RemoteException exception class.

Figure 13 shows the relevant parts of the definition of the home interface (AccountHome) for the example Account bean. Thisinterface
defines two abstract create methods: the first creates an Account object by using an associated AccountKey object, the second creates an
Account object by using an associated AccountKey object and specifying an account type and an initial balance. The interface defines the
required findByPrimaryK ey method and a findL argeAccounts method, which returns a collection of accounts containing balances greater
than a specified amount.

Figure 13. Code example: The AccountHome homeinterface
i”n”iaort java.rm.*;
import java.util.*;

i mport javax.ejb.*;
public interface AccountHone extends EJBHonme {

Account create (AccountKey id) throws CreateException, RenoteException;

Account create(AccountKey id, int type, float initialBalance)
t hrows CreateException, RenoteException;

Ai:i:ount findByPri maryKey (AccountKey id)
Renot eExcepti on, Fi nder Excepti on;

Elnﬁmarati on findLargeAccounts(float anount)
t hrows Renot eExcepti on, Fi nder Excepti on;

200

Defining create methods

A create method is used by a client to create an enterprise bean instance and insert the data associated with that instance into the data
source. Each create method must be named create and it must have the same number and types of arguments as a corresponding
€jbCreate method in the enterprise bean class. (The gjbCreate method must itself have a corresponding €/bPostCreate method.)
Each create method must meet the following requirements:

« |t must be named cregte.

« It must return the type of the enterprise bean's remote interface. For example, the return type for the create methods in the
AccountHome interface is Account (as shown in Figure 13).

« It must have athrows clause that includes the java.rmi.RemoteException exception, the javax.ejb.CreateException exception, and
all of the application exceptions defined in the throws clause of the corresponding ejbCreate and ejbPostCreate methods.

Defining finder methods

A finder method is used to find one or more existing entity EJB objects. Each finder method must be named findName, where Name
further describes the finder method's purpose.

At minimum, each home interface must define the findByPrimaryKey method that enables a client to locate an EJB object by using the
primary key only. The findByPrimaryK ey method has one argument, an object of the bean's primary key class, and returns the type of the
bean's remote interface.

Every other finder method must meet the following requirements:

« It must return the type of the enterprise bean's remote interface, the java.util.Enumeration interface, or the java.util.Collection
interface (when afinder method can return more than one EJB object or an EJB collection).

« |t must have athrows clause that includes the java.rmi.RemoteException and javax.ejb.FinderException exception classes.
While every entity bean must contain the default finder method, you can write additional finder methods if needed. For example, the

Account bean's home interface defines the findL argeA ccounts method to find objects that encapsulate accounts with balances of more
than a specified amount, as shown in Figure 14. Because this finder method can be expected to return a reference to more than one EJB

object, its return type is Enumeration.

Figure 14. Code example: ThefindL argeAccounts method
Enumer ati on findLargeAccounts(fl oat anount)
t hrows Renot eExcepti on, Fi nder Excepti on;

Every EJB server can implement the findByPrimaryKey method. During enterprise bean deployment, the container generates the code
required to search the database for the appropriate enterprise bean instance.

However, for each additional finder method that you define in the home interface, the enterprise bean deployer must associate finder
logic with that finder method. Thislogic is used by the EJB server during deployment to generate the code required to implement the
finder method.

The EJB Specification does not define the format of the finder logic, so the format can vary according to the EJB server you are using.
For more information on creating finder logic, see Creating finder logic in the EJB server.

Writing the remote interface (entity with CMP)

An entity bean's remote interface provides access to the business methods available in the bean class. It also provides methods to remove
an EJB object associated with a bean instance and to obtain the bean instance's home interface, object handle, and primary key. The
remote interface is defined by the enterprise bean developer and implemented in the EJB object class created by the container during
enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name you assign to the enterprise bean. For example, the
Account enterprise bean's remote interface is named Account. Every remote interface must meet the following requirements:

« |t must extend the javax.ejb.EJBObject interface. The enterprise bean's remote interface inherits several methods from the
javax.ejb.EJBObject interface. See Methods inherited from javax.ejb.EJBObject for information on these methods.

« You must define a corresponding business method for every business method implemented in the enterprise bean class.

« The parameters and return value of each method defined in the interface must be valid for Java RMI. For more information, see
The java.io.Serializable and java.rmi.Remote interfaces.

« Each method's throws clause must include the java.rmi.RemoteException exception class.

201

Figure 15 shows the relevant parts of the definition of the remote interface (Account) for the example Account enterprise bean. This
interface defines four methods for displaying and manipulating the account balance that exactly match the business methods implemented
in the AccountBean class. All of the business methods in the remote interface throw the java.rmi.RemoteException exception class. In
addition, the subtract method must throw the user-defined exception com.ibm.egjs.doc.account.| nsufficientFundsException because the
corresponding method in the bean class throws this exception. Furthermore, any client that calls this method must either handle the
exception or passit on by throwing it.

Figure 15. Code example: The Account remoteinterface
iﬁ'bort java.rm.*;

i mport javax.ejb.*;
public interface Account extends EJBObject

{

fI 6at add(fl oat amount) throws RenoteException;

fI 6at get Bal ance() throws RenoteException;

v0| d setBal ance(fl oat anpbunt) throws RenoteException;

fI 6at subtract (fl oat anpbunt) throws InsufficientFundsExcepti on,
} Renot eExcepti on;

Writing the primary key class (entity with CMP)

Within a container, every entity EJB object has a unique identity that is defined by using a combination of the object's homeinterface
name and its primary key, the latter of which is assigned to the object at creation. If two EJB objects have the same identity, they are
considered identical.

Primary keys are specified in two ways:

« Simple primary keys, which map to asingle field in the entity bean class and are comprised of primitive Java data types (such as
integer or long), are specified in the deployment descriptor.

« Composite primary keys, which map to multiple fieldsin the entity bean class (or to data structures built from the primitive Java
data types), must be encapsulated in aprimary key class. More complicated enterprise beans are likely to have composite primary
keys, with multiple instance variabl es representing the primary key.

The primary key class is used to manage an EJB object's primary key. By convention, the primary key class is named NameKey, where
Name is the name of the enterprise bean. For example, the Account enterprise bean's primary key classis named AccountKey. The
primary key class must meet the following requirements:

o It must be public and it must be serializable. For more information, see The java.io.Serializable and java.rmi.Remote interfaces.

« Itsinstance variables must be public, and the variable names must match a subset of the container-managed field names defined in
the enterprise bean class.

« It must have a public default constructor, at a minimum.
Note:

The primary key class of a CMP entity bean must override the equals method and the hashCode method inherited from the
javalang.Object class.

Figure 16 shows a composite primary key class for an example enterprise bean, Item. In effect, this class acts as awrapper around the
string variables productld and vendorId. The hashCode method for the ItemKey class invokes the corresponding hashCode method in the
javalang.String class after creating atemporary string object by using the value of the productld variable. In addition to the default
constructor, the ItemKey class also defines a constructor that sets the value of the primary key variables to the specified strings.

Figure 16. Code example: TheltemKey primary key class

i”rr’bort java.io.*;
/1 Conposite primary key cl ass
public class ItenKey inplenents java.io.Serializable {

public String productld;
public String vendorld;
/1 Constructors
public ItenKey() { };
Zof“bl ic ItenmKey(String productld, String vendorld) {

this. productld = productld;
this.vendorld = vendorld,;

}

public String getProductld() {
return productld;

}
public String getVendorld() {
return vendorld;
}

/1 EJB server-specific nethod
public bool ean equal s((bj ect other) {
if (other instanceof ItenKey) {
return (productld. equal s(((ItenKey)
ot her) . product | d)
&& vendor | d. equal s(((ItenKey)
ot her).vendorld));
}

el se
return fal se;

}

// . EJB server-specific nmethod
public int hashCode() {
return (new productl!d. hashCode());
}

}

A primary key class can also be used to encapsulate a primary key that is not known ahead of time -- for instance, if the entity bean is
intended to work with several persistent data stores, each of which requires a different primary key structure. The entity bean's primary

key typeis derived from the primary key type used by the underlying database that stores the entity objects; it does not necessarily have
to be known to the enterprise bean developer.

To specify an unknown primary key, do the following:
« Declare the argument of the findByPrimaryKey class as java.lang.Object.
« Declare thereturn value of the gjbCreate method as java.lang.Object
« Inthe deployment descriptor, specify the primary key class as being of the type javalang.Object.
When the primary key selection is deferred to deployment, client applications cannot use methods that rely on knowledge of the primary

key type. In addition, applications cannot always depend on methods that return the type of the primary key (such asthe
EntityContext.getPrimaryK ey method) because the return type is determined at deployment.

Interacting with databases

This section contains general information and tips on enterprise beans and database access.

« Although it is not necessary, it is good practice to specify the user ID and password for a data source either in the enterprise bean
to be using the data source, or in the container of the bean.

« The container supports Option A and Option C caching. When Option A caching isin use, the application server hosting the
enterprise bean container must be the only updater of the data in the persistent store. As such, Option A caching isincompatible
with the following:

o Workload managed servers (such as a cluster of clones)
o Databases with data being shared among multiple applications

The default caching option is C (multiple entity bean instances, possibly in different servers, can update bean statein the
database). The default caching option can be changed from Option C to Option A by selecting "exclusive persistent store" in the
administrative console when creating the entity bean.

Shared database access corresponds to Option C caching. Option A and Option C caching are also known as commit option A and
commit option C, respectively.

Developing session beans

In their basic makeup, session beans are similar to entity beans. However, their purposes are very different. 203

From a component perspective, one of the biggest differences between the two types of enterprise beans is that session beans do not have
aprimary key class and the session bean's home interface does not define finder methods. Session enterprise beans do not require primary
keys and finder methods because on EJB objects are created, associated with a specific client, and then removed as needed, whereas
entity EJB objects represent permanent data in a data source and can be uniquely identified with a primary key. Because the data for
session beansis never permanently stored, the session bean class does not have methods for storing data to and loading data from a data
source.

Every session bean must contain the following basic parts:
« The enterprise bean class. For more information, see Writing the enterprise bean class (session).
« The enterprise bean's home interface. For more information, see Writing the home interface (session).

« The enterprise bean's remote interface. For more information, see Writing the remote interface (session).

Writing the enterprise bean class (session)

A session bean class defines and implements the business methods of the enterprise bean, implements the methods used by the container
during the creation of enterprise bean instances, and implements the methods used by the container to inform the enterprise bean instance
of significant eventsin the instance's life cycle. By convention, the enterprise bean class is named NameBean, where Name is the name
you assign to the enterprise bean. The enterprise bean class for the example Transfer enterprise bean is named TransferBean. Every
session bean class must meet the following requirements:

« It must define and implement the business methods that execute the tasks associated with the enterprise bean. For more
information, see Implementing the business methods.

« It must define and implement an gjbCreate method for each way in which you want it to be able to instantiate the enterprise bean
class. For more information, see Implementing the ejbCreate methods.

o It must be public, it must not be abstract, and it must implement the javax.ejb.SessionBean interface. For more information, see
Implementing the SessionBean interface.

Note:

Version 1.0 of the EJB specification allowed the methods in the session bean class to throw the java.rmi.RemoteException
exception to indicate a non-application exception. This practice is deprecated in version 1.1 of the specification. A session bean
compliant with version 1.1 of the specification should throw the javax.ejb.EJBException exception (a subclass of the
java.lang.RuntimeException class) or another RuntimeException exception instead. Because the javax.ejb.EJBEXxception classis a
subclass of the javalang.RuntimeException, EJBException exceptions do not need to be explicitly listed in the throws clause of
methods.

A session bean can be either stateful or stateless. In a stateless session bean, none of the methods depend on the values of variables set by
any other method, except for the gjbCreate method, which setstheinitial (identical) state of each bean instance. In a stateful enterprise
bean, one or more methods depend on the values of variables set by some other method. Asin entity beans, static variables are not
supported in session beans unless they are also final. Stateful session beans possibly need to synchronize their conversational state with
the transactional context in which they operate. For example, a stateful session bean possibly needs to reset the value of some of its
variablesif atransactionisrolled back or it possibly needs to change these variables if a transaction successfully completes.

If a bean needs to synchronize its conversational state with the transactional context, the bean class must implement the
javax.gjb.SessionSynchronization interface. This interface contains methods to notify the session bean when a transaction begins, when it
is about to complete, and when it has completed. The enterprise bean developer can use these methods to synchronize the state of the
session enterprise bean instance with ongoing transactions.

The enterprise bean class can implement the enterprise bean's remote interface, but thisis not recommended. If the enterprise bean class
implements the remote interface, it is possible to inadvertently pass the this variable as a method argument.

Figure 17 shows the main parts of the enterprise bean class for the example Transfer bean. The sections that follow discuss these partsin
greater detail.

The Transfer bean is stateless. If the Transfer bean's transferFunds method were dependent on the value of the balance variable returned
by the getBalance method, the TransferBean would be stateful.

Figure 17. Code example: The Transfer Bean class

i mport java.rm . Renot eExcepti on;
i mport java.util.Properties;
i mport java.util.ResurceBundle;
i mport java.util.ListResourceBundl e;
i mport javax.ejb.*;
i mport java.lang.*;
i nport javax. naning. *;
204

i mport comibm ejs.doc. account. *;
public class TransferBean inplenments Sessi onBean {

private SessionContext nySessionCx = null;
private Initial Context initial Context = null;
private Account Home account Honme = null;
private Account fromAccount = null;

private Account toAccount = null;

publ ic void ejbActivate() throws EJBException { }
publ ic void ejbCreate() throws EJBException {

} -

publ ic void ejbPassivate() throws EJBException { }

publ ic void ej bRenove() throws EJBException { }

publ ic float getBal ance(long acctld) throws Fi nderException,
EJBException {

}

publ i c void set SessionContext(javax. ej b. Sessi onCont ext ctx)
t hrows EJBException {

}

publ ic void transferFunds(long fromAcctld, [ong toAcctld, float anount)
t hrows EJBException {

}
Implementing the business methods

The business methods of a session bean class define the ways in which an EJB client can manipulate the enterprise bean. The business
methods implemented in the enterprise bean class cannot be directly invoked by an EJB client. Instead, the EJB client invokes the
corresponding methods defined in the enterprise bean's remote interface, by using an EJB object associated with an instance of the
enterprise bean, and the container invokes the corresponding methods in the enterprise bean instance.

Therefore, for every business method defined in the enterprise bean's remote interface, a corresponding method must be implemented in
the enterprise bean class. The enterprise bean's remote interface is implemented by the container in the EJBObject class when the
enterprise bean is deployed.

Figure 18 shows the business methods for the TransferBean class. The getBalance method is used to get the balance for an account. It
first locates the appropriate Account EJB object and then calls that object's getBalance method.

The transferFunds method is used to transfer a specified amount between two accounts (encapsulated in two Account entity EJB objects).
After locating the appropriate Account EJB objects by using the findByPrimaryK ey method, the transferFunds method calls the add
method on one account and the subtract method on the other. Like al finder methods, findByPrimaryKey can throw both the
FinderException and RemoteException exceptions. The try/catch blocks are set up around invocations of the findByPrimaryKey method
to handle the entry of invalid account IDs by users. If the session bean user enters an invalid account I1D, the findByPrimaryKey method
cannot locate an EJB object, and the finder method throws the FinderException exception. This exception is caught and converted into a
new FinderException exception containing information on the invalid account ID.

To call the findByPrimaryKey method, both business methods need to be able to access the EJB home object that implements the
AccountHome interface discussed in Writing the home interface (entity with CMP). Obtaining the EJB home object is discussed in

Implementing the gjbCreate methods.

Figure 18. Code example: The business methods of the Transfer Bean class
public class TransferBean inpl enents Sessi onBean {

private Account fromAccount = null;

private Account toAccount = null; 205

publ ic float getBal ance(long acctld) throws FinderException, EJBException {
Account Key key = new Account Key(acctld);
try {
fromAccount = account Hone. fi ndByPri maryKey(key);
} catch(Finder Exception ex) {

t hr ow new Fi nder Excepti on("Account " + acctld
+ " does not exist.");
} cat ch(Renot eException ex) {
t hrow new Fi nder Exception("Account " + acctld

+ " could not be found.");

return fromAccount. get Bal ance();

public void transferFunds(long fromAcctld, |long toAcctld, float anount)
t hrows EJBException, |nsufficientFundsException, FinderException {
Account Key fronmKey = new Account Key(fromAcct | d);
Account Key toKey = new Account Key(toAcct!d);
try {
fromAccount = account Hone. fi ndByPri naryKey(fronKey);
} cat ch(Fi nder Exception ex) {
t hr ow new Fi nder Excepti on("Account " + fromAcctld
+ " does not exist.");
} catch(Renot eException ex) {
t hrow new Fi nder Exception("Account " + acctld
+ " could not be found.");

}

try {
t oAccount = account Horre. fi ndByPri mar yKey(t oKey) ;

} catch(Finder Exception ex) {
t hrow new Fi nder Exception("Account " + toAcctld
+ " does not exist.");
} cat ch(Renot eException ex) {
t hr ow new Fi nder Excepti on("Account " + acctld
+ " could not be found.");

}

try {
t oAccount . add(anmount) ;

fromAccount . subtract (anount);
} catch(lnsufficientFundsException ex) ({
nySessi onCt x. set Rol | backOnl y() ;
t hrow new | nsuffici ent FundsException("Insufficient funds in
+ fromAcct 1 d);

}
Implementing the ejbCreate methods

Y ou must define and implement an ejbCreate method for each way in which you want an enterprise bean to be instantiated.

Each gjbCreate method must correspond to a create method in the enterprise bean's home interface. (Note that there is no gjbPostCreate
method in a session bean as thereisin an entity bean.) Unlike the business methods of the enterprise bean class, the ejbCreate methods
cannot be invoked directly by the client. Instead, the client invokes the create method in the bean instance's home interface, and the
container invokes the gjbCreate method. If an gjbCreate method is executed successfully, an EJB object is created.
An gjbCreate method for a session bean must meet the following requirements:

« The method must be declared as public and cannot be declared as final or static.

« |t must return void.

« A stateless session bean must have only one gjbCreate method, which must return void and contain no arguments. A stateful

session bean can have multiple g/bCreate methods.

The throws clause can define arbitrary application exceptions. The javax.ejb.EJBEXxception or another runtime exception can be used to
indicate non-application exceptions.

206

An gbCreate method for an entity bean must meet the following regquirements:
« The method must be declared as public and cannot be declared as final or static.
« It must return the entity bean's primary key type.
« It must contain code to set the values of any variables needed by the EJB object.

The throws clause can define arbitrary application exceptions. The javax.ejb.EJBEXxception or another runtime exception can be used to
indicate non-application exceptions. Figure 19 shows the ejbCreate method required by the example TransferBean class. The Transfer

bean's g/ bCreate method obtains a reference to the Account bean's home object. Thisreference is required by the Transfer bean's business
methods. Getting a reference to an enterprise bean's home interface is a two-step process:

1. Construct an Initial Context object by setting the required property values. For the example Transfer bean, these property values
are defined in the environment variables of the Transfer bean's deployment descriptor.

2. Usethe Initial Context object to create and get a reference to the home aobject. For the example Transfer bean, the INDI name of
the Account bean is stored in an environment variable in the Transfer bean's deployment descriptor.

Creating the InitialContext object

When a container invokes the Transfer bean's €jbCreate method, the enterprise bean's initial Context object is constructed by creating a
Properties variable (env) that requires the following values:

« Thelocation of the name service (javax.naming.Context. PROVIDER_URL).
« Thename of theinitial context factory (javax.naming.Context.INITIAL_CONTEXT_FACTORY).

The values of these properties are discussed in more detail in Creating and getting a reference to a bean's EJB object.

Figure 19. Code example: Creating the I nitialContext object in the g bCreate method of the Transfer Bean class

public class TransferBean inplenments Sessi onBean {
private static final String I N TI AL_NAM NG FACTORY_SYSPROP =
j avax. nam ng. Cont ext . | NI TI AL_CONTEXT_FACTORY;
private static final String PROVI DER_ URL_SYSPROP =
j avax. nam ng. Cont ext . PROVI DER_URL;

private String nameService = null;

b.ri.vate String provider URL nul | ;

private Initial Context initial Context = null;

publ ic void ejbCreate() throws EJBException {
/1 Get the initial context

try {
Properties env = System getProperties();

env. put (PROVI DER_URL_SYSPROP, get ProviderUrl ());
env. put (| NI TI AL_CONTEXT_ FACTORY_SYSPROP, get Nanmi ngFactory());
initial Context = new Initial Context(env);

} catch(Exception ex) {

}

/1 Look up the home interface using the JND nane

}

Although the example Transfer bean stores some locale specific variablesin aresource bundle class, like the example Account bean, it
also relies on the values of environment variables stored in its deployment descriptor. Each of these Initial Context Properties valuesis
obtained from an environment variable contained in the Transfer bean's deployment descriptor. A private get method that corresponds to
the property variableis used to get each of the values (getNamingFactory and getProviderURL); these methods must be written by the
enterprise bean developer. The following environment variables must be set to the appropriate values in the deployment descriptor of the
Transfer bean.

« javax.naming.Context.INITIAL_CONTEXT_FACTORY
« javax.naming.Context.PROVIDER_URL

Figure 20 illustrates the relevant parts of the getProviderURL method that is used to get the PROVIDER_URL property value. The
javax.gjb.SessionContext variable (mySessionCtx) is used to get the Transfer bean's environment in the deployment descri ptoréa/7

invoking the getEnvironment method. The object returned by the getEnvironment method can then be used to get the value of a specific
environment variable by invoking the getProperty method.

Figure 20. Code example: The getProvider URL method

public class TransferBean inpl enents Sessi onBean {
private SessionContext nySessionCtx = null;

private String getProviderURL() throws RenoteException {
/1 get the provider URL property either from
//the EJB properties or, if it isn't there
/[luse "iiop:///", which causes a default to the |ocal host

String pr = nySessionCt x. get Envi ronment (). get Property(
PROVI DER_URL_SYSPROCP) ;
if (pr == null)
pr = "iiop://1";
return pr;

}
Getting the reference to the home object

An enterprise bean is accessed by looking up the class implementing its home interface by name through JNDI. Methods on the home
interface provide access to an instance of the class implementing the remote interface.

After constructing the Initial Context object, the gjbCreate method performs a INDI lookup using the INDI name of the Account
enterprise bean. Like the PROVIDER_URL and INITIAL_CONTEXT_FACTORY properties, thisnameis also retrieved from an
environment variable contained in the Transfer bean's deployment descriptor (by invoking a private method named getHomeName). The
lookup method returns an object of type java.lang.Object.

The returned object is narrowed by using the static method javax.rmi.PortableRemoteObject.narrow to obtain areference to the EJB
home object for the specified enterprise bean. The parameters of the narrow method are the object to be narrowed and the class of the
object to be created as aresult of the narrowing. For amore thorough discussion of the code required to locate an enterprise bean in INDI
and then narrow it to get an EJB home object, see Creating and getting a reference to a bean's EJB object.

Figure 21. Code example: Creating the AccountHome object in the gbCreate method of the Transfer Bean class

public class TransferBean inpl enents Sessi onBean {
private String accountName = null;
private Initial Context initial Context = null;

publ ic void ejbCreate() throws EJBException {
/1 CGet the initial context

/1 Look up the home interface using the JND nane
try {
java.l ang. Obj ect ej bHome = initial Context.| ookup(account Nane);
account Hone = (Account Hone)j avax. rm . Port abl eRenpt eObj ect . narr ow
ej bHone, Account Horre. cl ass) ;
} catch (Nam ngException e) { // Error getting the hone interface

}

}
Looking up an enterprise bean's environment naming context

The enterprise bean's environment is implemented by the container. It enables the bean's business logic to be customized without the
need to access or change the bean's source code. The container provides an implementation of the INDI naming context that stores the
ente%isse bean environment. Business methods access the environment by using the INDI interfaces. The deployment descriptor

provides the environment entries that the enterprise bean expects at runtime.

Each enterprise bean defines its own environment entries, which are shared between all of its instances (that is, all instances with the
same home). Environment entries are not shared between enterprise beans.

An enterprise bean's environment entries are stored directly in the environment naming context (or one of its subcontexts). To retrieve its
environment naming context, an enterprise bean instance creates an | nitial Context object by using the constructor with no arguments. It
then looks up the environment naming via the I nitial Context object under the name java:comp/env.

The enterprise bean in Figure 22 changes an account number by looking up an environment entry to find the new account number.

Figure 22. Code example: Looking up an enterprise bean's environment naming context
public class Account Service inplements Sessi onBean {

public void changeAccount Nunmber (i nt account Nunber, ...)
t hrows | nval i dAccount Nunmber Excepti on{

/1 Obtain the bean's environment nam ng context
Context initial Context = new Initial Context();
Cont ext myEnvironnent = (Context)initial Context.|ookup("java: conp/env);

/1 Obtain new account nunber from environment
I nt eger newNunber = (Integer)nyEnvironnment.| ookup("newAccount Nunber");

}
}

Implementing the SessionBean interface

Every session bean class must implement the methods inherited from the javax.ejb.SessionBean interface. The container invokes these
methods to inform the enterprise bean instance of significant eventsin the instance's life cycle. All of these methods must be public, must
return void, and can throw the javax.ejb.EJBException. (Throwing the java.rmi.RemoteException exception is deprecated; see *** for
more information.)

« gbActivate--This method isinvoked by the container when the container selects an enterprise bean instance from the instance

pool and assignsit a specific existing EJB object. This method must contain any code that you want to execute when the
enterprise bean instance is activated.

« gbPassivate--This method isinvoked by the container when the container disassociates an enterprise bean instance from its EJB
object and places the enterprise bean instance in the instance pool. This method must contain any code that you want to execute
when the enterprise bean instance is passivated (deactivated).

« gjbRemove--This method is invoked by the container when a client invokes the remove method inherited by the enterprise bean's
home interface (from the javax.ejb.EJBHome interface). This method must contain any code that you want to execute when an
enterprise bean instance is removed from the container.

« SetSessionContext--This method is invoked by the container to pass a reference to the javax.gjb.SessionContext interface to a
session bean instance. If an enterprise bean instance needs to use this context at any time during its life cycle, the enterprise bean
class must contain an instance variable to store this value. This method must contain any code required to store a reference to the
context.

A session context can be used to get a handle to a particular instance of a stateful session bean. It can also be used to get a
reference to a transaction context object, as described in Using bean-managed transactions.

As shown in Figure 23, except for the setSessionContext method, all of these methods in the TransferBean class are empty because no

additional action isrequired by the bean for the particular life cycle states associated with the these methods. The setSessionContext
method is used in a conventional way to set the value of the mySessionCtx variable.

Figure 23. Code example: Implementing the SessionBean interfacein the Transfer Bean class

public class TransferBean inpl enents Sessi onBean {
private SessionContext nySessionCtx = null;

publ ic void ejbActivate() throws EJBException { }
publ ic void ejbPassivate() throws EJBException { }
publ ic void ej bRenove() throws EJBException { }

publ ic void set Sessi onCont ext (Sessi onCont ext ctx) throwEJBException {
209

nySessi ont x = ctx;

}
Writing the home interface (session)

A session bean's home interface defines the methods used by clients to create and remove instances of the enterprise bean and obtain
metadata about an instance. The home interface is defined by the enterprise bean developer and implemented in the EJB home class
created by the container during enterprise bean deployment. The container makes the home interface accessible to clients through JNDI.

By convention, the home interface is named NameHome, where Name is the name you assign to the enterprise bean. For example, the
Transfer enterprise bean's home interface is named TransferHome. Every session bean's home interface must meet the following
requirements:

« It must extend the javax.ejb.EJBHome interface. The home interface inherits several methods from the javax.ejb.EJBHome
interface. See The javax.ejb.EJBHome interface for information on these methods.

« Each method in the interface must be a create method that corresponds to a €jbCreate method in the enterprise bean class. For
more information, see Implementing the ejbCreate methods. Unlike entity beans, the home interface of a session bean contains no

finder methods.

« The parameters and return value of each method defined in the interface must be valid for Java RMI. For more information, see
The javaio.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause must include the
java.rmi.RemoteException exception class.

Figure 24 shows the relevant parts of the definition of the home interface (TransferHome) for the example Transfer bean.

Figure 24. Code example: The TransferHome home interface

i mport javax.ejb.*;
i mport java.rm.*;
public interface TransferHone extends EJBHone {
Transfer create() throws CreateException, RenoteException;
}

A create method is used by aclient to create an enterprise bean instance. A stateful session bean can contain multiple create methods;
however, a stateless session bean can contain only one create method with no arguments. This restriction on statel ess session beans
ensures that every instance of a statel ess session bean is the same as every other instance of the same type. (For example, every Transfer
bean instance is the same as every other Transfer bean instance.)

Each create method must be named create and have the same number and types of arguments as a corresponding € bCreate method in the
EJB object class. The return types of the create method and its corresponding €jbCreate method are always different. Each create method
must meet the following requirements:

« It must return the type of the enterprise bean's remote interface. For example, the return type for the create method in the
TransferHome interface is Transfer.

« It must have athrows clause that includes the java.rmi.RemoteException exception, the javax.ejb.CreateException exception
class, and all of the exceptions defined in the throws clause of the corresponding ejbCreate method.

Writing the remote interface (session)

A session bean's remote interface provides access to the business methods available in the enterprise bean class. It also provides methods
to remove an enterprise bean instance and to obtain the enterprise bean's home interface and handle. The remote interface is defined by
the enterprise bean devel oper and implemented in the EJB object class created by the container during enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name you assign to the enterprise bean. For example, the
Transfer enterprise bean's remote interface is named Transfer. Every remote interface must meet the following requirements:

« It must extend the javax.ejb.EJBObject interface. The remote interface inherits several methods from the EJBObject interface. See
Methods inherited from javax.ejb.EJBObject for information on these methods.

« You must define a corresponding business method for every business method implemented in the enterprise bean class.

« The parameters and return value of each method defined in the interface must be valid for Java RMI. For more information, see
The java.io.Serializable and java.rmi.Remote interfaces.

« Each method's throws clause must include the java.rmi.RemoteException exception class.

Figure 25 shows the relevant parts of the definition of the remote interface (Transfer) for the example Transfer bean. This interface
defi nzef c}he methods for transferring funds between two Account bean instances and for getting the balance of an Account bean instance.

Figure 25. Code example: The Transfer remote interface

i mport javax.ejb.*;

i mport java.rm.*;

i mport comibmejs.doc.account. *;

public interface Transfer extends EJBObject ({

fI 6at get Bal ance(l ong acctld) throws FinderException, RenoteException;

v0| d transferFunds(long fromAcctld, |ong toAcctld, float anount)
throws | nsufficientFundsException, RenoteException;

Implementing interfaces common to multiple types of enterprise beans
Enterprise beans must implement the interfaces described here in the appropriate enterprise bean component.
Methods inherited from javax.ejb.EJBObject

The remote interface inherits the following methods from the javax.ejb.EJBObject interface, which are implemented by the container
during deployment:

« getEJBHome--Returns the enterprise bean's home interface.
« getHandle--Returns the handle for the EJB object.

« getPrimaryKey--Returns the EJB object's primary key. (For session beans, this cannot be used because session beans do not have
aprimary key.)

« isldentical--Compares this EJB object with the EJB object argument to determine if they are the same.

« remove--Removes this EJB object.

These methods have the following syntax:

public abstract EJBHone get EJBHome();

public abstract Handl e get Handl e();

public abstract Object getPrimaryKey();

public abstract bool ean isldentical (EJBObj ect obj);
public abstract void renove();

These methods are implemented by the container in the EJB object class.

The javax.ejb.EJBHome interface

The home interface inherits two remove methods and the getEJBM etaData method from the javax.ejb.EJBHome interface. Just like the
methods defined directly in the home interface, these inherited methods are also implemented in the EJB home class created by the
container during deployment.

The remove methods are used to remove an existing EJB object (and its associated datain the database) either by specifying the EJB
object's handle or its primary key. (The remove method that takes a primaryKey variable can be used only in entity beans.) The
getEJBMetaData method is used to obtain metadata about the enterprise bean and is mainly intended for use by development tools.

These methods have the following syntax:

publ i c abstract EJBMet aData get EJBMet aDat a() ;
public abstract void renove(Handl e handl e);
public abstract void renove(Object primaryKey);

The javax.ejb.EJBHome interface also contains a method to get a handle to the home interface. It has the following syntax:
public abstract HoneHandl e get HomeHandl e() ;

The java.io.Serializable and java.rmi.Remote interfaces

211

To bevalid for use in aremote method invocation (RMI), a method's arguments and return value must be one of the following types:
« A primitive type; for example, anint or along.
« Anobject of aclassthat directly or indirectly implements java.io.Serializable; for example, javalang.Long.
« Anobject of aclassthat directly or indirectly implements java.rmi.Remote.
« Anarray of valid types or objects.
If you attempt to use a parameter that is not valid, the java.rmi.RemoteException exception is thrown. Note that the following atypical
types are not valid:
« Anobject of aclassthat directly or indirectly implements both Serializable and Remote.

« Anobject of aclassthat directly or indirectly implements Remote, but contains a method that does not throw the
RemoteException or an exception that inherits from RemoteException.

Using threads and reentrancy in enterprise beans

An enterprise bean must not contain code to start new threads (nor can methods be defined with the keyword synchronized). Session
beans can never be reentrant; that is, they cannot call another bean that invokes a method on the calling bean. Entity beans can be
reentrant, but building reentrant entity beans is not recommended and is not documented here.

The EJB server enforces single-threaded access to all enterprise beans. I1legal callbacks result in ajava.rmi.RemoteException exception
being thrown to the EJB client.

Creating an EJB module for enterprise beans

There are two tasks involved in preparing an enterprise bean for deployment:
« Making the components of the bean part of the same Java package. For more information, see Making bean components part of a
Java package.

« Creating an EJB module and associated deployment descriptor. For more information, see Creating an EJB module and
deployment descriptor.

If you develop enterprise beansin an IDE, these tasks are handled from within the tool that you use. If you do not develop enterprise
beansin an IDE, you must handle each of these tasks by using tools contained in the Java Software Development Kit (SDK) and
WebSphere Application Server. For more information on the tools used to create an EJB module in the EJB server programming
environment, see Tools for devel oping and deploying enterprise beans.

Making bean components part of a Java package

Y ou determine the best way to allocate your enterprise beans to Java packages. A Java package can contain one or more enterprise beans.
The example Account and Transfer beans are stored in separate packages. All of the Java source files that make up the Account bean
contain the following package statement:

package comibm ejs. doc. account;

All of the Java source files that make up the Transfer bean contain the following package statement:
package comibm ejs. doc.transfer;

Creating an EJB module and deployment descriptor

An EJB module contains one or more deployable enterprise beans. It also contains a deployment descriptor that provides information
about each enterprise bean and instructions for the container on how to handle all enterprise beans in the module. The deployment
descriptor is stored in an XML file.

During creation of the EJB module, you specify the files for each enterprise bean to be included in the module. These files include:
« Theclassfiles associated with each component of the enterprise bean.
« Any additional classes and files associated with the enterprise bean; for example: user-defined exception classes, properties files,
and resource bundle classes.

Y ou also specify other information about the bean, such as references to other enterprise beans, resource connection factories, and
security roles. After defining the enterprise beans to be included in the module, you specify application assembly instructions that apply
to the module as awhole. Both bean and module information are used to create a deployment descriptor. See The deployment descriptor

for aﬂ% of deployment descriptor settings and attributes.

Developing EJB clients

An enterprise bean can be accessed by all of the following types of EJB clientsin both EJB server environments:

» Javaservlets. For more information about writing Java servlets that use enterprise beans, see Developing servlets that
use enterprise beans.

» Java Server Pages (JSP). For more information about writing JSP, consult a commercially available book.

» Javaapplications that use remote method invocation (RMI). For more information on writing Java applications, consult
acommercialy available book.

« Other enterprise beans. For example, the Transfer session bean acts as a client to the Account bean, as described in
Developing enterprise beans.

It is recommended that you avoid accessing EJB entity beans from client or servlet code. Instead, wrap and access EJB entity
beans from EJB session beans. Thisimproves performance in two ways:

« It reduces the number of remote method calls. When the client application accesses the entity bean directly, each getter
method is aremote call. A wrapping session bean can access the entity bean locally, and collect the datain a structure,
which it returns by value.

« It provides an outer transaction context for the EJB entity bean. An entity bean synchronizesits state with its
underlying data store at the completion of each transaction. When the client application accesses the entity bean
directly, each getter method becomes a complete transaction. A store and aload action follow each method. When the
session bean wraps the entity bean to provide an outer transaction context, the entity bean synchronizes its state when
the outer session bean reaches a transaction boundary.

Except for the basic programming tasks described in this chapter, creating a Java servlet, JSP, or Java application that isa
client to an enterprise bean is not very different from designing standard versions of these types of Java programs. This chapter
assumes that you understand the basics of writing a Java servlet, a Java application, or a JSPfile.

Except where noted, all of the code described in this chapter is taken from the example Java application named
TransferApplication. This Java application and the other EJB clients available with the documentation example code are
explained in Information about the examples described in the documentation.

To access and manipulate an enterprise bean in any of the Java-based EJB client types listed previously, the EJB client must do
the following:

« Import the Java packages required for naming, remote method invocation (RM1), and enterprise bean interaction.

» Get areferenceto an instance of the bean's EJB object by using the Java Naming and Directory Interface (JNDI). For
more information, see Creating and getting a reference to a bean's EJB object.

» Handleinvalid EJB objects when using session beans. For more information, see Handling an invalid EJB object for a
session bean.

» Remove session EJB objects when they are no longer required or remove entity EJB objects when the associated data
in the data source must be removed. For more information, see Removing abean's EJB object.

In addition, an EJB client can participate in the transactions associated with enterprise beans used by the client. For more
information, see Managing transactionsin an EJB client.

Importing required Java packages

Although the Java packages required for any particular EJB client vary, the following packages are required by al EJB clients:
« javarmi -- This package contains most of the classes required for remote method invocation (RM1).
« javax.rmi -- This package contains the PortableRemoteObject class required to get a reference to an EJB object.

« javauutil -- This package contains various Java utility classes, such as Properties, Hashtable, and Enumeration used in a
variety of ways throughout all enterprise beans and EJB clients.

« javax.gb -- This package contains the classes and interfaces defined in the EJB specification.

« javax.naming -- The package contains the classes and interfaces defined in the Java Naming and Directory Interface
(INDI) specification and is used by clients to get referencesto EJB objects.

213

« The package or packages containing the enterprise beans with which the client interacts.

The Java client object request broker (ORB), which is automatically initialized in EJB clients, does not support dynamic
download of implementation bytecode from the server to the client. Asaresult, all classes required by the EJB client at
runtime must be available from the files and directories identified in the client's CLASSPATH environment variable. For
information on the JAR files required by EJB clients, see Setting the CLASSPATH environment variable in the EJB server
environment. Y ou can install needed files on your client machine by doing a WebSphere Application Server installation on the
machine. Select the Developer's Client Files option. Y ou also need to make sure that the ioser and ioserx executable files are
accessible on your client machine; these files are normally part of the Javainstall. If you are using a Windows System, make
sure that EJB clients can locate theioser.dll library file at run time. Figure 26 shows the import statements for the example
Java application com.ibm.gjs.doc.client. TransferApplication. In addition to the required Java packages mentioned previously,
the example application imports the com.ibm.gjs.doc.transfer package because the application communicates with a Transfer
bean. The example application also imports the | nsufficientFundsException class contained in the same package as the
Account bean.

Figure 26. Code example: Theimport statementsfor the Java application Transfer Application

i mport java.awt.*;
i mport java.awt.event.?*;

i mport java.util.?*;
import java.rm.*

i mport javax.nam ng. *;
i nport javax.ejb.*;
i mport javax.rm.Portabl eRenpt eQbj ect ;

i mport comibmejs.doc.account. | nsufficientFundsExcepti on;
i nport comibmejs.doc.transfer.*;

public class TransferApplication extends Frane inplenents
ActionLi stener, W ndowLi stener {

Creating and getting a reference to a bean's EJB object

To invoke a bean's business methods, a client must create or find an EJB object for that bean. After the client has created or
found this object, it can invoke methods on it in the standard way.

To create or find an instance of a bean's EJB object, the client must do the following:

1. Locate and create an EJB home object for that bean. For more information, see Locating and creating an EJB home
object.

2. Usethe EJB home object to create or (for entity beans only) find an instance of the bean's EJB object. For more
information, see Creating an EJB object.

The TransferApplication client contains one reference to a Transfer EJB object, which the application uses to invoke all of the
methods on the Transfer bean. When using session beans in Java applications, it is a good idea to make the reference to the
EJB object a class-leve variable rather than avariable that islocal to a method. This allows your EJB client to repeatedly
invoke methods on the same EJB object rather than having to create a new object each time the client invokes a session bean
method. As discussed in Threading issues, this approach is not recommended for servlets, which must be designed to handle

multiple threads.
Locating and creating an EJB home object

JNDI is used to find the name of an EJB home object. The properties that an EJB client usestoinitialize INDI and find an EJB
home object vary across EJB server implementations. To make an enterprise bean more portable between EJB server
implementations, it is recommended that you externalize these properties in environment variables, properties files, or resource
bundles rather than hard code them into your enterprise bean or EJB client code.

214

The example Transfer bean uses environment variables as discussed in Implementing the ejbCreate methods. The

TransferApplication uses a resource bundle contained in the com.ibm.gjs.doc.client.ClientResourceBundle.classfile. To
initialize a INDI name service, an EJB client must set the appropriate values for the following JNDI properties:

javax.naming.Context. PROVIDER_URL

This property specifies the host name and port of the name server used by the EJB client. The property value must have
the following format: iiop://hostname:port, where hostname is the | P address or hostname of the machine on which the
name server runs and port is the port number on which the name server listens.

For example, the property valuei i op: / / bankser ver. mybank. com 9019 directs an EJB client to look for a
name server on the host named bankserver.mybank.com listening on port 9019. The property value
iiop://bankserver. mybank. comdirectsan EJB client to look for a name server on the host named
bankserver.mybank.com at port number 900. The property valuei i op: /// directsan EJB client to look for aname
server on the local host listening on port 900. If not specified, this property defaults to the local host and port number
900, which isthe same as specifyingi i op: / / /. The port number used by the name service can be changed by using
the administrative interface.

javax.naming.Context.INITIAL_CONTEXT_FACTORY

This property identifies the actual name service that the EJB client must use. This property must be set to
comibmejs.ns.jndi.CN nitial ContextFactory.

Locating an EJB home object is atwo-step process:
1. Create ajavax.naming.Initial Context object. For more information, see Creating an Initial Context object.

2. Usethe Initial Context object to create the EJB home object. For more information, see Creating EJB home object.

Creating an InitialContext object

Figure 27 shows the code required to create the I nitial Context object. To create this object, construct a java.util.Properties
object, add values to the Properties object, and then pass the object as the argument to the Initial Context constructor. In the
TransferApplication, the value of each property is obtained from the resource bundle class named
com.ibm.gjs.doc.client.ClientResourceBundle, which stores all of the locale-specific variables required by the
TransferApplication. (This class also stores the variables used by the other EJB clients contained in the documentation
example, described in Information about the examples described in the documentation). The resource bundle classis
instantiated by calling the ResourceBundle.getBundle method. The values of variables within the resource bundle class are
extracted by calling the getString method on the bundle object.

The createTransfer method of the TransferApplication can be called multiple times as explained in Handling an invalid EJB
object for a session bean. However, after the Initial Context object is created once, it remains good for the life of the client

session. Therefore, the code required to create the Initial Context object is placed within an if statement that determinesif the
reference to the Initial Context object is null. If the reference is null, the Initial Context object is created; otherwise, the
reference can be reused on subsequent creations of the EJB object.

Figure 27. Code example: Creating the I nitialContext object

public class TransferApplication extends Frame inplenents ActionListener,
W ndowLi st ener {

private Initial Context ivjlnitContext = null;

private Transfer ivjTransfer = null;

private ResourceBundl e bundl e = ResourceBundl e. get Bundl e(
"comibmejs.doc.client.dientResourceBundle");

private String nameService

= null;
private String accountNane = null;
= null;

private String providerUrl

vate Transfer createTransfer() {
Transf er Hone transferHone = null;
Transfer transfer = null;

/[l Get the initial context

if (ivilnitContext == null) {

pr

215

try {
Properties properties = new Properties();

/1 Cet location of name service

properties. put (javax. nam ng. Cont ext . PROVI DER_URL,
bundl e. get String("providerUl™"));

/1 Get nane of initial context factory

properties. put (javax. nam ng. Cont ext. | Nl TI AL_CONTEXT_FACTORY,
bundl e. get Stri ng("naneService"));

i';/jllnitOontext = new I nitial Context(properties);
} catch (Exception e) { // Error getting the initial context
}
}

// Look up the home interface using the JNDI nane
H'Create a new Transfer object to return

return transfer;

}
Creating EJB home object

After the Initial Context object (ivjlnitContext) is created, the application uses it to create the EJB home object, as shown in
Figure 28. This creation is accomplished by invoking the lookup method, which takes the INDI name of the enterprise bean in

String form and returns a java.lang.Object abject. The INDI name specified in the deployment descriptor is used.

The example TransferApplication gets the INDI name of the Transfer bean from the ClientResourceBundle class. After an
object isreturned by the lookup method, the static method javax.rmi.PortableRemoteObject.narrow is used to obtain an EJB
home object for the specified enterprise bean. The narrow method takes two parameters: the object to be narrowed and the
class of the EJB home object to be returned by the narrow method. The object returned by the
javax.rmi.PortableRemoteObject.narrow method is cast to the class associated with the home interface.

Figure 28. Code example: Creating the EJBHome obj ect

private Transfer createTransfer() {
TransferHone transferHone = nul | ;
Transfer transfer = null;
[/ Get the initial context

/1 Look up the home interface using the JNDI nane
try {
java.l ang. bj ect homeQbj ect = ivjlnitContext.|ookup(
bundl e. get Stri ng("transferNane"));
transferHonme = (Transfer Home)javax. rm . Port abl eRenot eCbj ect . nar r ow
honme(bj ect, TransferHone. cl ass);
} catch (Exception e) { // Error getting the hone interface

}

/[l Create a new Transfer object to return

return transfer;

}
Creating an EJB object

After the EJB home object is created, it is used to create the EJB object. Figure 29 shows the code required to create the EJB

object by using the EJB home object. A create method isinvoked to create an EJB object or (for entity beans only) afinder
method isinvoked to find an existing EJB object. Because the Transfer bean is a statel ess session bean, the only choice isthe

default create method.
216

Figure 29. Code example: Creating the EJB object

private Transfer createTransfer() {
TransferHome transferHome = null;
Transfer transfer = null;
/[l Get the initial context

// Look up the hone interface using the JNDI nane
}).Create a new Transfer object to return

try {
transfer = transferHone.create();

} catch (Exception e) { // Error creating Transfer object

}

return transfer;

Handling an invalid EJB object for a session bean

Because session beans are ephemeral, the client cannot depend on a session bean's EJB object to remain valid. A referenceto
an EJB object for a session bean can becomeinvalid if the EJB server fails or is restarted or if the session bean times out due to
inactivity. (The reference to an entity bean's EJB object is always valid until that object is removed.) Therefore, the client of a
session bean must contain code to handle a situation in which the EJB object becomesinvalid.

An EJB client can determine if an EJB object isvalid by placing all method invocations that use the reference inside of a
try/catch block that specifically catches the java.rmi.NoSuchObjectException, in addition to any other exceptions that the
method needs to handle. The EJB client can then invoke the code to handle this exception.

Y ou determine how to handle an invalid EJB object. The example TransferApplication creates anew Transfer EJB object if the
oneit is currently using becomesinvalid. The code to create a new EJB object when the old one becomesinvalid is the same
code used to create the original EJB object and is described in Creating and getting a reference to a bean's EJB object. For the

example TransferApplication client, this code is contained in the createTransfer method.

Figure 30 shows the code used to create the new EJB object in the getBalance method of the example TransferApplication.
The getBalance method contains the local boolean variable sessionGood, which is used to specify the validity of the EJB
object referenced by the variableivj Transfer. The sessionGood variable is aso used to determine when to break out of the
do-while loop. The sessionGood variableisinitialized to false because the ivj Transfer can reference an invalid EJB object
when the getBalance method is called. If the ivjTransfer referenceis valid, the TransferApplication invokes the Transfer bean's
getBalance method and returns the balance. If the ivj Transfer referenceisinvalid, the NoSuchObjectException is caught, the
TransferApplication's createTransfer method is called to create a new Transfer EJB object reference, and the sessionGood
variableis set to false so that the do-while loop is repeated with the new valid EJB object. To prevent an infinite loop, the
sessionGood variable is set to true when any other exception is thrown.

Figure 30. Code example: Refreshing the EJB object reference for a session bean

private fl oat getBal ance(l ong acctld) throws Nunber For nat Excepti on, RenoteException,
Fi nder Excepti on {
/1 Assune that the reference to the Transfer session bean is no good

bool ean sessi onGood = fal se;
fl oat bal ance = 0. 0f;
do {
try {
/1 Attenpt to get a balance for the specified account
bal ance = ivj Transfer. get Bal ance(acctld);
sessi onGood = true;

} cati:'h'(NoSucthj ect Exception ex) {
createTransfer();

217

sessi onGood = fal se;
} catch(Renot eException ex) {
/1 Server or connection problem

} cat&:h'(NunberFormit Exception ex) {
/!l Invalid account nunber

} cat.c.h.(Fi nder Exception ex) {
/!l Invalid account nunber

}
} whil e(!sessionGood);
return bal ance;

Removing a bean's EJB object

When an EJB client no longer needs a stateful session EJB object, the EJB client should remove that object. Instances of
stateful session beans have affinity to specific clients. They will remain in the container until they are explicitly removed by
the client, or removed by the container when they time out. Meanwhile, the container might need to passivate inactive stateful
session beans to disk. This requires overhead for the container and impacts performance of the application. If the passivated
session bean is subsequently required by the application, the container activatesit by restoring it from disk. By explicitly
removing stateful session beans when finished with them, applications can decrease the need for passivation and minimize
container overhead.

Y ou remove entity EJB objects only when you want to remove the information in the data source with which the entity EJB
object is associated.

To remove an EJB object, invoke the remove method on the object. As discussed in Creating and getting areference to a
bean's EJB object, the TransferApplication contains only one reference to a Transfer EJB object that is created when the
application isinitialized.

Figure 31 shows how the example Transfer EJB object isremoved in the TransferApplication in the killApp method. To
paralel the creation of the Transfer EJB object when the TransferApplication isinitialized, the application removes the final
EJB object associated with ivj Transfer reference right before closing the application's GUI window. The kill App method
closes the window by invoking the dispose method on itself.

Figure 31. Code example: Removing a session EJB object

private void killApp() {
try {
i vj Transfer. remove();
this. di spose();
System exit (0); } catch (Throwabl e ivjExc) {

Managing transactions in an EJB client

In generdl, it is practical to design your enterprise beans so that al transaction management is handled at the enterprise bean
level. In astrict three-tier, distributed application, thisis not always possible or even desirable. However, because the middle
tier of an EJB application can include two subcomponents--session beans and entity beans--it is much easier to design the
transactional management completely within the application server tier. Of course, the resource manager tier must also be
designed to support transactions.

Note:

EJB clients that access entity beans with CMP that use Host On-Demand (HOD) or the External Call Interface (ECI)

218for CICS or IMS applications must begin a transaction before invoking a method on these entity beans. This restriction

is required because these types of entity beans must use the Mandatory transaction attribute.

Nevertheless, it is still possible to program an EJB client (that is not an enterprise bean) to participate in transactions for those
specialized situations that require it. To participate in atransaction, the EJB client must do the following:

1. Obtain areference to the javax.transaction.UserTransaction interface by using JNDI as defined in the Java Transaction
Application Programming Interface (JTA).

2. Usethe object reference to invoke any of the following methods:
o begin--Begins atransaction. This method takes no arguments and returns void.

o commit--Attempts to commit a transaction; assuming that nothing causes the transaction to be rolled back,
successful completion of this method commits the transaction. This method takes no arguments and returns
void.

0 getStatus--Returns the status of the referenced transaction. This method takes no arguments and returnsint; if
no transaction is associated with the reference, STATUS NO_TRANSACTION isreturned. The following are
the valid return values for this method:

s STATUS ACTIVE--Indicates that transaction processing is till in progress.

= STATUS COMMITTED--Indicates that a transaction has been committed and the effects of the
transaction have been made permanent.

s STATUS COMMITTING--Indicates that atransaction isin the process of committing (that is, the
transaction has started committing but has not completed the process).

» STATUS MARKED_ ROLLBACK--Indicates that atransaction is marked to be rolled back.

» STATUS NO TRANSACTION--Indicates that a transaction does not exist in the current transaction
context.

= STATUS PREPARED--Indicates that atransaction has been prepared but not completed.

= STATUS PREPARING--Indicates that atransaction isin the process of preparing (that is, the
transaction has started preparing but has not completed the process).

» STATUS ROLLEDBACK--Indicates that a transaction has been rolled back.

= STATUS ROLLING_BACK--Indicates that atransaction isin the process of rolling back (that is, the
transaction has started rolling back but has not completed the process).

= STATUS UNKNOWN--Indicates that the status of a transaction is unknown.
o rollback--Rolls back the referenced transaction. This method takes no arguments and returns void.

0 setRollbackOnly--Specifies that the only possible outcome of the transaction is for it to be rolled back. This
method takes no arguments and returns void.

o setTransactionTimeout--Sets the timeout (in seconds) associated with the transaction. If some transaction
participant has not specifically set this value, a default timeout is used. This method takes a number of seconds
(astypeint) and returns void.

Figure 32 provides an example of an EJB client creating areference to a UserTransaction object and then using that object to
set the transaction timeout, begin a transaction, and attempt to commit the transaction. (The source code for this example is not
available with the example code provided with this document.) Notice that the client does a simple type cast of the lookup
result, rather than invoking a narrow method as required with other INDI lookups. In both EJB server environments, the INDI
name of the UserTransaction interfaceisj ava: conp/ User Tr ansact i on.

Figure 32. Code example: Managing transactionsin an EJB client

i mport javax.transaction.*;

/1 Use JNDI to |locate the UserTransacti on obj ect
Context initial Context = new Initial Context();
User Transacti on tranContext = (
User Transaction)initial Context. | ookup("java: conp/ User Transacti on");
/] Set the transaction tinmeout to 30 seconds
t ranCont ext . set Transacti onTi neout (30) ;

/1 Begin a transaction
t ranCont ext . begi n();
/'l Performtransacti on work invoking nmethods on enterprise bean references
219

)).Call for the transaction to conmmt
tranCont ext.commt();

220

Developing servlets that use enterprise beans

A servlet is a Java application that enables users to access Web server functionality. To use serviets, aWeb server is
required. The WebSphere Application Server plugsinto a number of commonly used Web servers. The IBM HTTP Server
with the Advanced Application Server. For more information, consult the Advanced Edition InfoCenter.

Java servlets can be combined with enterprise beans to create powerful EJB applications. This chapter describes how to use
enterprise beans within a servlet. The example CreateAccount servlet, which uses the example Account bean, is used to
illustrate the concepts discussed in this chapter. The example servlet and enterprise bean discussed in this chapter are
explained in Information about the examples described in the documentation.

An overview of standard servilet methods

Usually, aservlet isinvoked from an HTML form on the user's browser. The first time the servlet isinvoked, the servlet's
init method is run to perform any initializations required at startup. For the first and all subsequent invocations of the
servlet, the doGet method (or, aternatively, the doPost method) is run. Within the doGet method (or the doPost method),
the servlet gets the information provided by the user on the HTML form and uses that information to perform work on the
server and access server resources.

The servlet then prepares a response and sends the response back to the user. After aservlet isloaded, it can handle multiple
simultaneous user requests. Multiple request threads can invoke the doGet (or doPost) method at the same time, so the
servlet needs to be made thread safe.

When a servlet shuts down, the destroy method of the servlet isrun in order to perform any needed shutdown processing.

Writing an HTML page that embeds a servlet

Figure 33 showsthe HTML file (named create.html) used to invoke the CreateAccount servliet. The HTML form is used to

specify the account number for the new account, its type (checking or savings), and itsinitial balance. The request is passed
to the doGet method of the servlet, where the servlet isidentified with its full Java package name, as shown in the example.

Figure 33. Code example: Content of the create.html file used to access the CreateAccount servlet

<htm >

<head>

<title>Create a new Account</title>

</ head>

<body>

<hl align="center">Create a new Account</hl>

<f or m net hod="get "
action="/servlet/comibmejs.doc.client.CreateAccount">
<tabl e border align="center">

<l-- specify a new account nunber -->

<tr bgcol or="#cccccc">

<td align="right">Account Nunber:</td>

<td col span="2"><i nput type="text" nane="account" size="20"
max| engt h="10" >

</[tr>

<!-- specify savings or checking account -->
<l-- specify account starting bal ance -->
<l-- subnmit information to servliet -->

<i nput type="submt" nane ="submt" val ue="Create">
<!-- nmessage area -->

221

</ fornmp
</ body>
</htm >

The HTML response from the servlet is designed to produce a display identical to create.ntml, enabling the user to continue
creating new accounts. Figure 34 shows what create.ntml looks like on a browser.

Figure 34. Theinitial form and output of the CreateAccount servlet

4 Create a new Account - Microsoft Internet Explorer

J File Edit ‘“iew Go Favoites Help |

‘<::,c>,e ﬁ‘@

Bachk Eanisard Stop Hefresh Home Search

Create a new Account

Account Mumber: ||

Type:
starting Balance: ||

Create |

Enter information, press "Create”

& savings | T checking

[
4

| | | | | by Compuiter

Developing the servlet

This section discusses the basic code required by a servlet that interacts with an enterprise bean. Figure 35 shows the basic

outline of the code that makes up the CreateAccount serviet. As shown in the example, the CreateAccount serviet extends
the javax.servlet.http.HttpServlet class and implements an init method and a doGet method.

Figure 35. Code example: The CreateAccount class

package comibm ejs.doc.client;
/'l General enterprise bean code.
i nport java.rm . Renot eException;
i mport javax.ejb.DuplicateKeyException;
/1l Enterprise bean code specific to this servlet.
i mport comibmejs.doc. account. Account Hone;
i mport comibmejs.doc.account. Account Key;
i mport comibmejs.doc.account. Account;
/1 Servlet rel ated.
i mport javax.servlet.*;
i mport javax.servlet.http.*;
/1 JIJNDI (nam ng).
i mport javax.naming.*; [/ for Context, Initial Context, Nam ngException
/1 M scel |l aneous:
i mport java.util.*;
222

i mport java.io.*;

publ ic class CreateAccount extends HttpServlet {
/1 Vari abl es

publ ic void init(ServletConfig config) throws Servl et Exception {

public void doGet(H tpServl et Request req, HtpServl et Response res)
throws Servl et Exception, | COException {

/'l --- Read and validate user input, initialize. ---

// If input paraneters are good, try to create account. ---
Il --- Prepare nessage to acconpany response. ---

I --- Prepare and send HTM. response. ---

}
The servlet's instance variables

Figure 36 shows the instance variables used in the CreateAccount servlet. The nameService, accountName, and provider Url

variables are used to specify the property values required during JNDI |ookup. These values are obtained from the
ClientResourceBundle class as described in Creating and getting a reference to a bean's EJB object.

The CreateAccount class also initializes the string constants that are used to create the HTML response sent back to the
user. (Only three of these variables are shown, but there are many of them). The init method in the CreateAccount servlet
provides away to read strings from aresource bundle to override these US English defaultsin order to provide a response
in adifferent national language. The instance variable accountHome is used by all client requests to create a new Account
bean instance. The accountHome variableisinitialized in the init method as shown in Figure 36.

Figure 36. Code example: Theinstance variables of the CreateAccount class

publ ic class CreateAccount extends H tpServlet {
/1 Variables for finding the hone

private String naneService = null;
private String accountNane = null;
private String providerURL = null;

private ResourceBundl e bundl e = ResourceBundl e. get Bundl e(
"comibmejs.doc.client.dientResourceBundl e");
/1l Strings for HTM. output - US English defaults shown.

static String title = "Create a new Account"”;
static String nunmber = "Account Nunber:";
static String type = "Type:";

/1l Variable for accessing the enterprise bean.
private AccountHone account Honme = null;

}
The servlet's init method

Theinit method of the CreateAccount servlet is shown in Figure 37. Theinit method is run once, the first time arequest is
processed by the servlet, after the servlet is started. Typically, the init method is used to do any one-time initializations for a
servlet. For example, the default US English strings used in preparing the HTML response can be replaced with another
national language. The init method is also the best place to initialize the value of references to the home interface of any
enterprise beans used by the servlet. In the CreateA ccount's init method, the accountHome variable isinitialized to

223

reference the EJB home object of the Account bean.

Asin other types of EJB clients, the properties required to do a JINDI lookup are specific to the EJB implementation.
Therefore, these properties are externalized in a properties file or a resource bundle class. For more information on these
properties, see Creating and getting a reference to a bean's EJB object.

Note that in the CreateAccount servlet, a HashTable abject is used to store the properties required to do a INDI [ookup
whereas a Properties object is used in the TransferApplication. Both of these classes are valid for storing these properties.

Figure 37. Code example: Theinit method of the CreateAccount servlet

/1 Variables for finding the EJB hone object

private String nanmeService = null;

private String account Nane nul | ;

private String provider URL nul | ;

private ResourceBundl e bundl e = ResourceBundl e. get Bundl e(
"comibmejs.doc.client. Transfer Resour ceBundl e");

pubI ic void init(ServletConfig config) throws Servl et Exception {
super.init(config);
try {
[/l Get NLS strings froman external resource bundle
.c.réat eTitle = bundle.getString("createTitle");

nurmber = bundl e. get Stri ng(" nunber");
type = bundle.getString("type");

/1 Get values for the naming factory and hone nane.
naneSer vi ce bundl e. get Stri ng(" nanmeServi ce");
account Nare bundl e. get Stri ng("account Nane") ;
provi der URL bundl e. get Stri ng(" provi der URL") ;

}
catch (Exception e) {

/'l Get hone object for access to Account enterprise bean.
Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, naneService);
try {

/]l Create the initial context.

Context ctx = new Initial Context(env);

/'l Get the hone object.

bj ect homehj ect = ctx.| ookup(account Nane) ;

/'l Get the AccountHone object.

account Homre = (Account Hone) javax.rm . Portabl eRenpt eObj ect. narr ow

honme(bj ect, Account Hone. cl ass);

/] Determ ne cause of failure.
catch (Nam ngException e) {

1i:atch (Exception e) {
}

Note:

Although the init method is a good place to obtain references to EJB home objects, it is not agood place to create

enterprise beans or access other beans that might be protected with WebSphere security. Depending upon the

authorization policy on the protected objects, creating or accessing these objects from within the init method could

fail for authentication or authorization reasons because they were not accessed with the proper security credentials.
224

Creating or accessing protected objects should be done after the init method, in one of the servlet's doXXX methods.
The servlet's doGet method

The doGet method isinvoked for every servlet request. In the CreateAccount servlet, the method does the following tasksto
manage user input. These tasks are fairly standard for this method:

« Read the user input from the HTML form and decide if the input is valid--for example, whether the user entered a
valid number for an initial balance.

» Perform the initializations required for each request.

Figure 38 shows the parts of the doGet method that handle user input. Note that the req variable is used to read the user

input from the HTML form. Thereq variable is ajavax.servlet.http.HttpServletRequest object passed as one of the
arguments to the doGet method.

Figure 38. Code example: The doGet method of the CreateAccount servlet

public void doGet (HttpServletRequest req, HttpServl et Response res)
throws Servl et Exception, | Oexception {
/'l --- Read and validate user input, initialize. ---
/1l Error flags.
bool ean account Fl ag true;
bool ean bal anceFl ag true;
bool ean i nput Flag = fal se;
bool ean createFlag = true;
bool ean duplicateFlag = fal se;
/1 Datatypes used to create new account bean.
Account Key key;
int typeAcct = 0;
String typeString = "0";
float initial Bal ance = 0O;
/'l Read input paraneters from HTM. form
String[] accountArray = req.getParaneterVal ues("account");
String[] typeArray = req. getParaneterVal ues("type");
String[] bal anceArray = req. get Paranet er Val ues("bal ance");
/1 Convert input paranmeters to needed datatypes for new account.
/1 (account)
| ong account Long = O;

key = new Account Key(account Long) ;

/1 (type)
if (typeArray[0].equals("1")) {
t ypeAcct 1; /1 Savings account.

typeString = "savings";

}

else if (typeArray[0].equals("2")) {
t ypeAcct = 2; /1 Checki ng account
typeString = "checking";

/'l (bal ance)
try {

initial Bal ance = (Fl oat. val ue (bal anceArray[0])). fl oat Val ue();
} catch (Exception e) {

bal anceFl ag = fal se;
}
// --- If input paraneters are good, try to create account bean. ---
I --- Prepare nessage to acconpany response. ---
// Prepare and send HTM. response. ---

225

}
Creating an enterprise bean

If the user input is valid, the doGet method attempts to create a new account based on the user input as shown in Figure 39.
Besides theinitialization of the home object reference in the init method, thisisthe only other piece of code that is specific
to the use of enterprise beansin a servlet.

Figure 39. Code example: Creating an enter prise bean in the doGet method

public void doGet(H tpServl et Request req, HtpServl et Response res)
throws Servl et Exception, | OException {
/!l --- Read and validate user input, initialize ---.

/!l --- 1f input paraneters are good, try to create account bean. ---
i f (accountFl ag && bal anceFl ag) {
i nput Fl ag = true;
try {
I/ Create the bean.
Account account = account Hone. creat e(key, typeAcct, initial Bal ance);

/] Determ ne cause of failure.
catch (Renot eException e) {

}
catch (Duplicat eKeyException e) {

catch (Exception e) {

}
}
/'l --- Prepare nessage to accompany response. ---
// Prepare and send HTM. response. ---

}
Determining the content of the user response

Next, the doGet method prepares a response message to be sent to the user. There are three possible responses:
» Theuser input was not valid.
« Theuser input was valid, but the account was not created for some reason.
« The account was created successfully. If the previous two errors do not occur, this response is prepared.

Figure 40 shows the code used by the servlet to determine which response to send to the user. If no errors are encountered,
then the response indicates success.

Figure 40. Code example: Determining a user responsein the doGet method

public void doGet(H tpServl et Request req, HtpServl et Response res)
throws Servl et Exception, | OException {

/!l --- Read and validate user input, initialize. ---
/1l --- If input paraneters are good, try to create account bean. ---
Il --- Prepare nmessage to acconpany response. ---

String nessageLine = ;
226

if (inputFlag) {
/'l 1f you are here, the client input is good.
if (createFlag) {
/'l New account enterprise bean was creat ed.

nmessagelLi ne = createdaccount + " " + accountArray[0O] + ", " +
createdtype + " " + typeString + ", " +
creat edbal ance + " " + bal anceArray[0];

}
else if (duplicateFl ag) {
/'l Account with sanme key already exists.

nmessagelLine = failureexists + " " + account Array[0];
el se {
/'l O her reason for failure.
nmessagelLine = failureinternal + " " + account Array[0];
}
el se {

/1 1f you are here, sonething was wong with the client input.
String separator = "";
if (!accountFlag) {

messageline = failureaccount + " " + accountArray[O0];

separator =", ";

}
if (!bal anceFl ag) {
messageli ne = nmessagelLi ne + separator +
failurebal ance + " " + bal anceArray[0];

/!l --- Prepare and send HTM. response. ---

}
Sending the user response

With the type of response determined, the doGet method then prepares the full HTML response and sends it to the user's
browser, incorporating the appropriate message. Relevant parts of the full HTML response are shown in Figure 41. Theres
variable is used to pass the response back to the user. This variable is an HttpServletResponse object passed as an argument
to the doGet method. The response code shown here mixes both display (HTML) and content in one servlet. Y ou can
separate the display and the content by using JavaServer Pages (JSP). A JSP allows the display and content to be devel oped
and maintained separately.

Figure 41. Code example: Responding to the user in the doGet method

public void doGet(H tpServl et Request req, HtpServl et Response res)
throws Servl et Exception, | OException {

/1l --- Read and validate user input, initialize. ---

// If input paraneters are good, try to create account bean. ---
1l --- Prepare nessage to acconpany response. ---

/)“--- Prepare and send HTM. response. ---

[/ HTML returned |looks like initial HTM. that invoked this servlet.
/1l Message |ine says whether servlet was successful or not.

res. set Content Type("text/htm");

res. set Header (" Pragma", "no-cache");

res. set Header (" Cache-control ", "no-cache");

PrintWiter out = res.getWiter();

out.println("<htm >");

out.println("<title>" + createTitle + "</title>");
227

6ﬁi.print|n(" </htm >");

Threading issues

Except for the instance variable required to get a reference to the Account bean's home interface and to support multiple
languages (which remain unchanged for al user requests), all other variables used in the CreateAccount servlet are local to
the doGet method. Each request thread has its own set of local variables, so the servlet can handle simultaneous user
requests.

Asaresult, the CreateAccount servlet isthread safe. By taking a similar approach to servlet design, you can aso make your
servlets thread safe.

228

Tools for developing and deploying enterprise beans

There are two basic approaches to devel oping and deploying enterprise beans:

« You can use one of the available integrated devel opment environments (IDEs) such as IBM
VisualAge(TM) for Java Enterprise Edition. | DE tools automatically generate significant parts of the
enterprise bean code and contain integrated tools for packaging and testing enterprise beans. VisualAge
for Javais the recommended development tool. For more information on using VisualAge for Java, see
Using VisualAge for Java.

« You can use thetools available in the Java Software Development Kit (SDK) and the Advanced
Application Server. For more information, see Developing and deploying enterprise beans.

Using VisualAge for Java

Before you can develop enterprise beansin VisualAge for Java, you must set up the EJB development
environment. Y ou need to perform this setup task only once. This setup procedure directs Visua Age for Javato
import al of the classes and interfaces required to develop enterprise beans.
After generating an enterprise bean, you complete its development by following these general steps:

1. Implement the enterprise bean class.

2. Create the required abstract methods in the bean's home and remote interfaces by promoting the
corresponding methods in the bean class to the appropriate interface.

3. For entity beans, do the following:
a. Create any additional finder methods in the home interface by using the appropriate menu items.
b. Create afinder helper interface, if required.
4. Create the EJB module and corresponding deployment descriptor.
5. Generate the deployment code for the bean.
VisualAge for Java contains a complete WebSphere Application Server run time environment and a mechanism

to generate atest client to test your enterprise beans. For much more detailed information on developing
enterprise beansin VisualAge for Java, refer to the VisualAge for Java documentation.

Developing and deploying enterprise beans

If you have decided to develop enterprise beans without an IDE, you need at minimum the following tools:

« An ASCII text editor. (Y ou can use also use a Java development tool that does not support enterprise
bean development.)

« The SDK Javacompiler (javac) and Java Archiving tool (jar).
» The WebSphere Application Assembly Tool and the WebSphere Administrative Console.

This section describes steps you can follow to develop enterprise beans by using these tools. The following
tasks are involved in the devel opment of enterprise beans:

1. Ensure that you have installed and configured the prerequisite software to devel op, deploy, and run
enterprise beans in the EJB server environment. For more information, see Installing and configuring the
software for the EJB server.

2. Set the CLASSPATH environment variable required by different components of the EJB server
environment. For more information, see Setting the CLASSPATH environment variable in the EJB

229

server environment.

3. Write and compile the components of the enterprise bean. For more information, see Creating the
components of an enterprise bean.

4. (Entity beans with CMP only) Create afinder helper interface for each entity bean with CMP that
contains specialized finder methods (other than the findByPrimaryKey method). For more information,
see Creating finder logic in the EJB server.

5. Create an EJB module and corresponding deployment descriptor by using the Application Assembly
Tool. For more information, see Creating an EJB module.

6. (Entity beans only) Create a database schema to enable storage of the entity bean's persistent datain a
database. For more information, see Creating a database for use by entity beans.

7. Generate deployment code for the EJB module by using the Application Assembly Tool. For more
information, see the WebSphere InfoCenter and the online help available with the Application Assembly
Tool.

8. Install the EJB module into an EJB server and start the server by using the WebSphere Administrative
Console.

Installing and configuring the software for the EJB server

Y ou must ensure that you have installed and configured the following prerequisite software products before you
can begin devel oping enterprise beans and EJB clients with the EJB server:

« WebSphere Application Server Advanced Edition

« One or more of the following databases for use by entity beans with container-managed persistence
(CMP):

o DB2
o Oracle

o Sybase

o Informix

o Microsoft SQL Server

o InstantDB

« The Java Software Development Kit (SDK)

For information on the appropriate version numbers of these products and instructions for setting up the
environment, see the WebSphere InfoCenter.

Setting the CLASSPATH environment variable in the EJB server environment

In addition to the classes.zip file contained in the SDK, the following WebSphere JAR files must be appended
to the CLASSPATH environment variable for devel oping enterprise beans:

o gsjar
e Ucjar
« otherDeployedBean.jar (if the enterprise bean uses another enterprise bean). Thisis the deployed JAR
file containing the enterprise bean being used by this enterprise bean.
For developing and running an EJB client, the following WebSphere JAR files must be appended to the
CLASSPATH environment variable:
e gsjar
230

e Ucjar
« Serviet.jar (required by EJB clients that are servlets)

« otherDeployedBean.jar. Thisisthe deployed JAR file containing the enterprise bean being used by this
EJB client.

Creating the components of an enterprise bean

If you use an ASCI|I text editor or a Java development tool that does not support enterprise bean development,
you must create each of the components that compose the enterprise bean you are creating. Y ou must ensure
that these components match the requirements described in Developing enterprise beans.

To manually develop a session bean, you must write the bean class, the bean's home interface, and the bean's
remote interface. To manually develop an entity bean, you must write the bean class, the bean's primary key
class, the bean's home interface, the bean's remote interface, and if necessary, the bean's finderHel per interface.
After you have properly coded these components, use the Java compiler to create the corresponding Java class
files. For example, because the components of the example Account bean are stored in a specific directory, the
bean components can be compiled by issuing the following command:

C. \ MYBEANS\ COM | BM EJS\ DOC\ ACCOUNT> j avac *.java

This command assumes that the CLASSPATH environment variable contains all of the packages used by the
Account bean.

Creating finder logic in the EJB server

For the EJB server environment, the following finder logic is required for each finder method (other than the
findByPrimaryKey method) contained in the home interface of an entity bean with CMP:

« Thelogic must be defined in a public interface named NameBeanFinderHel per, where Name is the name
of the enterprise bean (for example, AccountBeanFinderHelper).

« Thelogic must be contained in a String constant named findMethodNameWhereClause, where
findMethodName is the name of the finder method. The String constant can contain zero or more
guestion marks (?) that are replaced from left to right with the value of the finder method's arguments
when that method is invoked.

Note:
Encapsulating the logic in a String constant named findMethodNameQueryString has been deprecated.

If you define the findL argeA ccounts method shown in Figure 14, you must also create the
AccountBeanFinderHel per interface shown in Figure 7.

Figure 7. Code example: AccountBeanFinderHelper interface for the EJB server

publ ic interface Account BeanFi nder Hel per{

String findLargeAccount sWiereC ause = "bal ance > ?";
}
Creating an EJB module

The WebSphere Application Server Application Assembly Tool can be used to create an EJB module. An EJB
module can contain one or more enterprise beans. The tool automatically creates the required deployment
descriptor for the module based on information specified by the user.

231

Using the Application Assembly Tool

To create an EJB module and corresponding deployment descriptor, use the Create EJB Module wizard in the
Application Assembly Tool. Thiswizard prompts you to specify the following information for each enterprise
bean to be included in the module:

« The enterprise bean class, home interface class, and remote interface class.

« The bean type (entity or session), and associated attributes (such as persistence management type and
primary key class for entity beans).

« Referencesto another enterprise bean's home interface and to resource connection factories.
» Referencesto security roles for the enterprise bean.

. CMPfields, if applicable.

« Transaction isolation level attributes for enterprise bean methods.

The wizard also prompts you to specify the following application assembly information for the module itself:

« Genera properties of the EJB module, such as the location of class files needed for a client program to
access the enterprise beans in the module and the icons to be associated with the module.

« The deployable enterprise beans that the module will contain.
« Security roles used to access resources in the module.
« Transaction attributes for the enterprise bean methods.

Both bean and module information are used to create the deployment descriptor. See the WebSphere InfoCenter
and the online help for details on how to use the Application Assembly Tool.

Creating a database for use by entity beans

For entity beans with container-managed persistence (CMP), you must store the bean's persistent data in one of
the supported databases. The Application Assembly Tool automatically generates SQL code for creating
database tables for CMP entity beans. The tool names the database schema and table ejb.beanNamebeantbl
where beanName is the name of the enterprise bean (for example, gb.accountbeantbl). If your CMP entity
beans require complex database mappings, it is recommended that you use VisualAge for Java to generate code
for the database tables. At run time, the WebSphere Administrative Console displays a prompt asking whether
you want to execute the generated SQL code that creates the database table.

For entity beans with bean-managed persistence (BMP), you can create the database and database table by
using the database tools or use an existing database and database table. Because entity beans with BMP handle
the database interaction, any database or database table name is acceptable.

For more information on creating databases and database tables, consult your database documentation and the
online help for the WebSphere Administrative Console.

232

Appendix A. Changes for version 1.1 of the EJB
specification
WebSphere Application Server supports version 1.1 of the EJB specification. This appendix describes features

that are new or have changed in version 1.1 and discusses migration issues for enterprise beans written to
version 1.0 of the EJB specification.

New and updated features

The following enterprise bean features are new or have changed for version 1.1.

« Environmental dependencies for enterprise beans are now specified using entriesin a JINDI naming
context. An instance of an enterprise bean creates a javax.naming.Initial Context object by invoking the
constructor with no arguments specified. It looks up the environment naming context by using the
Initial Context object under the name java.comp/env.

« Primary keys are handled differently in version 1.1 of the EJB specification. Entity bean providers are
not required to specify the primary key class for entity beans with container-managed persistence
(CMP), enabling the deployer to select the primary key fields when the bean is deployed into a
container.

« The deployment descriptor has enhanced support for application assembly.

Migrating from version 1.0 to version 1.1

From the client's perspective, enterprise beans written to version 1.1 of the EJB specification appear nearly
identical to enterprise beans written to version 1.0 of the specification. However, the following EJB 1.1 changes
do affect clients:

« Enterprise beans written to version 1.1 of the EJB specification are registered in a different part of the
JNDI namespace. For example, aclient can look up theinitial context of aversion 1.0 enterprise bean in
JNDI by using the initial Context.lookup method as follows:

initial Context. | ookup("conifibm Hello")
The JNDI lookup for the equivalent version 1.1 enterprise bean is:
i nitial Context. | ookup("java:conp/env/ejb/Hello")

« The UserTransaction object is obtained differently for enterprise beans written to version 1.1 of the EJB
specification. Under version 1.0, it was obtained as:

initial Context.|ookup("jtal/UserTransaction")
Under version 1.1, it is obtained as:
i nitial Context.|ookup("java: conp/ User Transacti on")

» Because entity beans written to version 1.1 of the EJB specification now support primitive primary keys
(instead of having to encapsulate them in a primary key class), the client needs to look up these
primitive keys directly. For example, aclient can look up a primitive key of the type java.lang.Integer as
follows:

account Hore. fi ndByPri mar yKey(new I nt eger(5))
Primary key classes are still supported, although their use for primitive data types is deprecated.
From the application developer's perspective, the following changes need to be made to make enterprise beans
written to version 1.0 of the EJB specification compatible with version 1.1 of the specification.
233

« All deployment descriptors must be converted to the XML format specified in version 1.1 of the EJB
specification.

« Ingenera, enterprise beans written to version 1.0 of the EJB specification are compatible with version
1.1. However, you need to modify or recompile enterprise bean code in the following cases:

234

O

The return value of the ejbCreate method must be modified for all entity beans with CMP. The
€jbCreate method is now required to return the same type as the primary key; the actual value
returned must be null. These beans also must be recompiled. For more information, see
Implementing the ejbCreate and gjbPostCreate methods

If the javax.jts.UserTransaction interface is used. Thisinterface has been renamed to
javax.transaction.User Transaction. Enterprise beans that use this interface must be modified to
use the new interface name. There have also been minor changes to the exceptions thrown by
thisinterface.

If the getCallerldentity or isCallerInRole methods of the javax.ejb.EJBContext interface are
used. These methods were deprecated because the javax.security.ldentity class is deprecated
under the Java 2 platform.

If an entity bean uses the UserTransaction interface, which is not permitted under version 1.1 of
the EJB specification.

If an entity bean whose finder methods do not define the FinderException in the methods' throws
classes. Under version 1.1, the finder methods of entity beans must define this exception.

If an entity bean uses the UserTransaction interface and implements the SessionSynchronization
interface. Entity beans can neither use the UserTransaction interface nor implement the
SessionSynchronization interface under version 1.1.

If a statel ess session bean implements the SessionSynchronization interface. Stateless session
beans should not implement the SessionSynchronization interface under version 1.1.

If an enterprise bean violates any of the new semantic restrictions defined in version 1.1 of the
EJB specification.

Throwing the javax.gjb.RemoteException exception from the bean implementationsis
deprecated in version 1.1. This exception should be replaced by the javax.ejb.EJBException or a
more specific exception such as the javax.glb.CreateException. The javax.ejb.EJBException
inherits from the javax.gjb.RuntimeException and does not need to be explicitly declared in
throws clauses.

Declare the javax.elb.RemoteException exception in the remote and home interfaces, as required
by RMI. Throwing this exception directly by the bean implementation is deprecated. However, it
can be thrown by the container due to a system exception or by mapping an exception thrown by
the bean implementation.

Appendix B. Example code provided with WebSphere
Application Server

This appendix contains information on the example code provided with the WebSphere Application Server.

Information about the examples described in the documentation

The example code discussed throughout this document is taken from a set of examples provided with the
product. This set of examples is composed of the following main components:

« The Account entity bean, which models either a checking or savings bank account and maintains the

Note:

balance in each account. An account ID is used to uniquely identify each instance of the bean class and
to act asthe primary key. The persistent data in this bean is container managed and consists of the
following variables:

o accountld--The account ID that uniquely identifies the account. This variable is of type long.

o type--Aninteger that identifies the account as either a savings account (1) or a checking account
(2). Thisvariableis of typeint.

o balance--The current balance of the account. Thisvariableis of type float.

The major components of this bean are discussed in Developing entity beans with CMP.

The AccountBM entity bean, which is nearly identical to the Account entity bean; however, the
AccountBM bean implements bean-managed persistence. This bean is not used by any other enterprise
bean, application, or servlet contained in the documentation example set. The major components of this
bean are discussed in Developing entity beans with BMP.

The Transfer session bean, which models afunds transfer session that involves moving a specified
amount between two instances of an Account bean. The bean contains two methods: the transferFunds
method transfers funds between two accounts, the getBalance method retrieves the balance for a
specified account. The bean is statel ess. The major components of this bean are discussed in Developing

session beans.

The CreateAccount servlet, which can be used to easily create new bank accounts (and corresponding
Account bean instances) with the specified account 1D, account type, and initial balance. Although this
servlet is designed to make it easy for you to create accounts and demonstrate the other components in
the example set, it aso illustrates servlet interaction with an entity bean. This servlet is discussed in
Developing servlets that use enterprise beans.

The TransferApplication Java application, which provides a graphical user interface that was built with
the abstract windowing toolkit (AWT). The application creates an instance of the Transfer session bean,
which is then manipulated to transfer funds between two selected accounts or to get the balance for a
specified account. The TransferApplication code implements many of the requirements for using
enterprise beans in an EJB client. The parts of this application that are relevant to interacting with an
enterprise bean are discussed in Developing EJB clients.

The TransferFunds servlet, which is a servlet version of the TransferApplication Java application. This
servlet is provided so that you can compare the use of enterprise beans between a Java application and a
Java servlet that basically are doing the same tasks. This document does not discuss this servlet in any
detail.

The example code in the documentation was written to be as simple as possible. The goal of these
examplesisto provide code that teaches the fundamental concepts of enterprise bean and EJB client
development. It is not meant to provide an example of how a bank (or any similar company) possibly

235

approaches the creation of abanking application. For example, the Account bean contains a balance
variable that has atype of float. In areal banking application, you must not use afloat type to keep
records of money; however, using aclass like javamath.BigDecimal or a currency-handling class within
the examples would complicate them unnecessarily. Remember this as you examine these examples.

Information about other examples

Table 2 provides a summary of the enterprise bean-specific examples provided with the EJB server

Table 2. Examples available with the EJB server

IName |Bean types |EJB client types |Additional information
IHello | Statel ess session |Java servlet |Very simple example of a session bean.
|Increment |CMP entity |Java servlet |Very simple example of an entity bean.

236

Appendix C. Extensions to the EJB Specification

This appendix briefly discusses functional extensions to the EJB Specification that are available in the EIJB
server environments contained in WebSphere Application Server. These extensions are specific to WebSphere
Application Server and use of these features is supported only with VisualAge for Java, Enterprise Edition. For
information on implementing these features, consult your Visual Age for Java documentation.

Access beans

Access beans are Java components that adhere to the Sun Microsystems JavaBeans(TM) Specification and are
meant to simplify development of EJB clients. An access bean adapts an enterprise bean to the JavaBeans
programming model by hiding the home and remote interfaces from the access bean user (that is, an EJB client
developer).

There are three types of access beans, which are listed in ascending order of complexity:

« Java bean wrapper--Of the three types of access beans, a Java bean wrapper isthe simplest to create. Itis
designed to allow either a session or entity enterprise bean to be used like a standard Java bean and it
hides the enterprise bean home and remote interfaces from you. Each Java bean wrapper that you create
extends the com.ibm.ivj.g/b.access.AccessBean class.

« Copy helper--A copy helper access bean has al of the characteristics of a Java bean wrapper, but it a'so
incorporates a single copy helper object that contains alocal copy of attributes from a remote entity
bean. A user program can retrieve the entity bean attributes from the local copy helper object that resides
in the access bean, which eliminates the need to access the attributes from the remote entity bean.

« Rowset--A rowset access bean has all of characteristics of both the Java bean wrapper and copy helper
access beans. However, instead of a single copy helper object, it contains multiple copy helper objects.
Each copy helper object corresponds to a single enterprise bean instance.

VisualAge for Java provides a SmartGuide to assist you in creating or editing access beans.

Associations between enterprise beans

In the EJB server environment, an association is arelationship that exists between two CMP entity beans. There
are three types of associations. one-to-one and one-to-many. In a one-to-one association, a CMP entity bean is
associated with a single instance of another CMP entity bean. For example, an Employee bean could be
associated with only asingle instance of a Department bean, because an employee generally belongs only to a
single department.

In a one-to-many association, a CMP entity bean is associated with multiple instances of another CMP entity
bean. For example, a Department bean could be associated with multiple instances of an Employee bean,
because most departments are made up of multiple employees.

The Association Editor is used to create or edit associations between CMP entity beans in VisualAge for Java.

Inheritance in enterprise beans

In Java, inheritance is the creation of anew class from an existing class or a new interface from an existing
interface. The EJB server environment permits two forms of inheritance: standard class inheritance and EJB
inheritance. In standard class inheritance, the home interface, remote interface, or enterprise bean class inherits
properties and methods from base classes that are not themselves enterprise bean classes or interfaces.

237

In enterprise bean inheritance, by comparison, an enterprise bean inherits properties (such as CMP fields and
association ends), methods, and method-level control descriptor attributes from another enterprise bean that

resides in the same group.
VisualAge for Java provides a SmartGuide to assist you in implementing inheritance in enterprise beans.

238

4.4. Personalizing applications

Per sonalization describes arange of features that enable applications to treat visitors as particular individuals.
For areally ssimple example, consider a site that issues the message "Hello, John Smith" when the customer
John Smith logs onto the site.

Personalized service can give your Web site a competitive edge, much like a good customer service team can
add value to human-to-human interactions at your physical site and keep customerscoming back.
Personalization can also increase the chance that your Web site presents a user with content that is of particular
interest to that person.

For an e-business site, personalization can be fairly necessary, even if it does not go so far asto call customers
by name. For example,suppose several Web site visitors are performing various transactions concurrently.
Applications need some way to group each user's transactions into a unit that is separate from the transactions
of other users. Session tracking provides such functionality.

See articles 0.11 and 0.12 to learn about two complementary personalizationapproaches supported by IBM
WebSphere Application Server -- trackinguser sessions and maintaining user profiles.

If you are already familiar withthe concepts, skip ahead to 4.4.1 and 4.4.2 for programming details. See 6.6.11
and 6.6.12 to take alook at the administrative aspects.

For additional capability offered by the IBM WebSphere Personalization product,visit the following Web site:
http://ww. i bm com sof t war e/ webser ver s/ personal i zati on/

239

http://www.ibm.com/software/webservers/personalization/

4.4.1: Tracking sessions

IBM WebSphere Application Server provides a service for trackinguser sessions -- the Session Manager. The
serviceis provided in the form of IBM classes and packages.

The key activities for session tracking are summarized.

1. Become familiar with the programming model for accessing session support from servlets. See article
4.4.1.1 for an overviewwith links to details about security, clustering, limitations,and other topics.

2. Create or modify your own servlets to use session support to maintain sessions onbehalf of Web
applications.
Follow the model outlined in the previous step.

3. Ensure the administrator appropriately configures Session Managers in theadministrative domain. See
article 6.6.11.

4. Adjust configuration settings and perform other tuning activities foroptimal use of sessionsin your
environment. See article 4.4.1.1.7.

240

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/060611.html

4.4.1.1. Session programming model and
environment

The session lifecycle, from creation to completion, is as follows:

1
2
3
4

5

. Get the HttpSession object

. Store and retrieve user-defined data in the session

. (Optional) Output an HTML response page containing data from the HttpSession object
. (Optional) Notify Listeners

. End the session

The steps are described in detail below. This information, combined with thecoding example
SessionSample.java, provides a programming model for implementing sessionsin your own servlets.

It is also recommended that you read the topics listed in therelated information. They can influence how you
implement sessionsin your own servlets.

Lifecycle in detail

1

. Get the HttpSession object.

To obtain a session, use the getSession() method of thejavax.servlet.http.HttpServletRequest object in
the Java Servlet 2.2API.

When you first obtain the HttpSession object, the Session Manager uses one of three ways to establish
tracking of the session: cookies, URL rewriting, or SSL information. See section 4.4.1.1.1 for a

discussion to help you decide which is more appropriate for your situation.

Assume the Session Manager uses cookies. In such a case, the Session Manager creates a unique session
ID and typically sendsit back to the browser as a cookie. Each subsequent request from this user (at the
same browser) passes the cookie containing the session 1D, and the Session Manager uses thisto find the
user's existing HttpSession object.

In Step 1 of the code sample, the Boolean(create) isset to t r ue so that the HttpSession is created if it
does not aready exist. (With the Servlet 2.2API, the javax.servlet.http.HttpServletRequest.getSession()
method with no boolean defaultstot r ue and creates a session if one does not already exist for this
user.)

Store and retrieve user-defined data in the session.
After asession is established, you can add and/or retrieve user-defined data to the session. The

HttpSession object has methods similar to those in java.util.Dictionary for adding, retrieving, and
removing arbitrary Java objects.

In Step 2 of the code sample, the servlet reads an integer object from the HttpSession, incrementsiit, and
writes it back. Y ou can use any name to identify valuesin the HttpSession object. The code sample uses
the name sessiontest.counter.

Because the HttpSession object is shared among servlets that the user might access, consider adopting a
site-wide naming convention to avoid conflicts.

(Optional) Output an HTML response page containing data from the HttpSession obj ect.

In order to provide feedback to the user that an action has taken place during the session, you may wish

241

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/SessionSample.java.html

242

to pass HTML code to the client browser that indicates that an action has occurred.

For example, in step 3 of the code sample the servlet generates a Web page that is returned to the user
and displays the value of the sessiontest.counter each time the user visits that Web page during the
session.

(Optional) Notify Listeners.

Objects stored in a session that implement the javax.servlet.http.HttpSessionBindingListener interface
are notified when the session is preparing to end, that is, about to be invalidated. This notice enables you

to perform post-session processing, including permanently saving to a database data changes made
during the session.

End the session.

Y ou can end a session:

o Automatically with the Session Manager, if a session has been inactive for a specified time. The
administrative clients provide away to specify the amount of time after which to invalidate a
session.

o By coding the Servlet to call theinvalidate() method on the session object.

4.4.1.1.1: Deciding between session tracking
approaches

Suppose a servlet implementing sessions is receiving requests from three differentusers. For each user request,
the servlet must be able to figure out the session towhich the user request pertains. Each user request belongs to
just one of the threeuser sessions being tracked by the servlet. Currently, the product offers threeways to address
the problem.

Cookies provide afairly simple approach to tracking sessions. Because cookies donot work in al situations,
URL rewriting provides an aternative. IBM WebSphere Application Server also provides a more secure
mechanism for tracking sessions, through the use of a session ID that is derived from a uniqueidentifier in SSL
information.When deciding whether to use URL rewriting or SSL information,carefully review the
codingrequirements it imposes on applications that require session support.

Cookies

When session management is enabled and a client makes a request, the HttpSession object is created and the
session ID is sent to the browser as a cookie. On subsequent requests, the browser sends the session ID back as
a cookie and the Session Manager uses the cookie to find the HttpSession associated with the user.

URL rewriting

There are situations in which cookies will not work. Some browsers do not support cookies. Other browsers
allow the user to disable cookie support. In such cases, the Session Manager must resort to a second method,
URL rewriting, to manage the user session.

With URL rewriting, links returned to the browser or redirect have the session ID appended to them. For
example, the following link in a Web page:

isrewritten as:

When the user clicks the link, the rewritten form of the URL is sent to the server as part of the client's request.
The Web containerrecognizes

;] sessi oni d=DA32242SSGE2
asthe session ID and saves it for obtaining the proper HttpSession object for this user.

Note: Do not make assumptions aboutthe length or exact content of the ID that follows the equals sign (=).In
fact, the IDs are longer than what this example shows.

To use URL rewriting, applications must follow certain coding guidelines. Also,specia preparation is required.
See the related information for details.

Secure Socket Layer (SSL)

For requests over SSL, SSL information is used to track session requests.When SSL session tracking is enabled
for requests over SSL,SSL information is used as the session |D.SSL information takes precedence over cookies
and URL rewriting.SSL session information cannot be shared between SSL and non-SSL requests.

243

4.4.1.1.1.1: Using cookies to track sessions

No specia programming is required to track sessions with cookies. Followthe programming model and example
described in section 4.4.1.1.

244

4.4.1.1.1.2: Using URL rewriting to track sessions

An application that uses URL rewriting to track sessions must adhere to certain programming guidelines. The application
developer needs to:

« Program session servlets to encode URLS
« Supply aservlet or JSPfile as an entry point to theapplication
« Avoid using plain HTML filesin the application

Program session servlets to encode URLS

Depending on whether the servlet is returning URLSs to the browser orredirecting them, include either encodeURL () or
encodeRedirectURL () inthe servlet code. Here are examples demonstrating what toreplace in your current servlet code.

Rewrite URLs to return to the browser
Suppose you currently have this statement:

out.println("cat al og<a>");

Change the servlet to call the encodeURL method before sending the URL to the output stream:

out.println("<a href=\"");out.println(response. encodeURL
("/store/catalog"));out.println("\">catal og");

Rewrite URLSs to redirect
Suppose you currently have the following statement:

response. sendRedirect ("http://myhost/store/catal 0og");

Change the servlet to call the encodeRedirectURL method before sending the URL to the output stream:
response. sendRedi rect (response. encodeRedirectURL ("http://nyhost/store/catal og"));

The encodeURL () and encodeRedirectURL () methods are part of the HttpServletResponse object. These calls check to see
if URL rewriting is configuredbefore encoding the URL. If it is not configured, they return the original URL .

If both cookies and URL rewriting are enabled and response.encodeURL () or encodeRedirectURL () is called, the URL is
encoded, even if the browser making the HTTP request processed the session cookie.

Y ou can also configure session support to enable protocol switch rewriting.When this option is enabled, the product
encodes the URL with the session IDfor switching between HTTP and HTTPS protocols.For details, see the Related
information.

Supply a servlet or JSP file as an entry point

The entry point to an application (such as the initial screen presented) may not require the use of sessions. However, if the
application in general requires session support (meaning some part of it, such as a servlet, requires session support) then
after asession is created, all URLs must encoded in order to perpetuate the session ID for the servlet (or other application
component) requiring the session support.

The following example shows how Java code can be embedded within a JSP file:
<% esponse. encodeURL ("/store/catal og"); %

Avoid using plain HTML files in the application

Note that to use URL rewriting to maintain session state, do notlink to parts of your applications from plain HTML files
(fileswith .html or .htm extensions).

245

The restriction is necessary because URL encoding cannot be used in plain HTML files. To maintain state using URL
rewriting, every page that the user requests during the session must have code that can be understood by the Java
interpreter.

If you have such plain HTML files in your application (or Web application) and portions of the site that the user might
access during the session, convert them to JSP files.

Thisimpacts the application writer because maintaining sessions with URL rewriting requires that each servlet in the
application must use URL encoding for every HREF attribute on <A> tags, as described previoudly.

Sessions will belost if one or more servletsin an application do not call theencodeURL (String url)
orencodeRedirectURL (String url) methods.

246

4.4.1.1.1.3: Using SSL information to track sessions

No special programming is required to track sessions with SSL information. Followthe programming model and
example described in section 4.4.1.1.

To use SSL information,turn on Enable SSL Tracking in the Session Manager property sheet.Because the SSL
session ID is negotiated between the Web browser and HTTP server, it cannot survive an HTTP server
failure.However, the failure of an application server does not affect the SSL session ID. (Of course, if session
persistence is notconfigured, the session itself islost.)In environments that use WebSphere Edge Server with
multiple HTTP servers, an affinity mechanism must be used when the SSL session ID isto be used as the
session tracking mechanism.

SSL tracking is supported only for the IBM HTTP Server andiPlanet Web servers. The lifetime of an SSL
session ID can be controlled by configuration options in the Web server. For example, inthe IBM HTTP
Server, the configuration variable SSLV3TIMEOUT must be set to allow for an adequate lifetime for the SSL
session ID.Too short an interval could result in premature termination of a session. Also, some Web
browsersmight have their own timers that affect the lifetime of the SSL session ID.These Web browsers might
not leave the SSL session ID activelong enough to be useful as a mechanism for session tracking.

247

4.4.1.1.2: Controlling write operations to persistent
store

Y ou can manually control when modified session data can be persisted to the datastore by using the sync()
method in the interface com.ibm.websphere.servlet.session.|BM Session, which extends the
javax.servlet.http.HttpSession interface.

By calling sync() from the service() method of a servlet, you send any changesin the session to the database.

If neither the manual updatenor the time-based write option is enabled,the sync() call performs no updates.It
merely returns.

Ideally, call sync() after all updates have been made to the session andthe session will not be accessed any
more. In other words, wait until theend of the servlet service() method to call sync().

248

4.4.1.1.3: Securing sessions

HTTP sessions and security can beintegrated in IBM WebSphere Application Server. When security integration
isenabled in Session Managerand a session is accessed in a protected resource,every resource from then onmust
be secured.Y ou cannot mix secured and unsecured resources.Security integration in Session Manager is not
supported in form-based log-inunless LPTA is used.

Security integration rules for HTTP sessions

« Sessionsin unsecured pages are treated as accesses by "anonymous' users.
« Sessions created in unsecured pages are created under the identity of that "anonymous" user.
« Sessionsin secured pages are treated as accesses by the authenticated user.

« Sessions created in secured pages are created under the identity of the authenticated user. They can only
be accessed in other secured pages by the same user. To protect these sessions from use by unauthorized
users, they cannot be accessed from an insecure page.

Programmatic details and scenarios

IBM WebSphere Application Server maintains the security ofindividual sessions.

Anidentity or user name, readable by thecom.ibm.websphere.servlet.session.|BM Session interface, is
associated witha session. An unauthenticated identity is denoted by the user name "anonymous.” |IBM
WebSphere Application Server includes the

com.ibm.websphere.servlet.session.UnauthorizedSessi onRequestExceptioninterface,which is used when a
session is requested without the necessary credentials.

The Session Manager uses the WebSphere security infrastructure todetermine the authenticated identity
associated with aclient HTTP requestthat either retrieves or creates a session. WebSphere security
determinesidentity using certificates, LPTA, and other methods.

After obtaining the identity of the current request, the Session Managerdetermines whether the session
requested using a getSession() call should be returned.

The table lists possible scenarios in which security integration is enabledwhose outcomes depend on whetherthe
HTTP request was authenticated and whether avalid session IDand user name was passed to the Session
Manager.

HTTP request isauthenticated, with an

retrieve a session

session
No session ID
was passed in
for thisrequest, |A new session is created. The user nameis |A new session is created. The user nameis
or theID isfor |"anonymous' "FRED"

asessionthat is
no longer valid

249

A session ID
for avalid
session is
passed in. The
current session
user nameis
"anonymous"

The session is returned.

The session is returned. TheSession Manager
changes the user name to "FRED"

A session ID
for avalid
session is
passed in. The
current session
user nameis
"FRED"

The session is not returned.
UnauthorizedSessionRequest Exception is
thrown*

The session is returned.

A session ID
for avalid
session is
passed in. The
current session
user nameis
"BOB"

The session is not returned.
UnauthorizedSessionRequestException is
thrown*

The session is not returned.
UnauthorizedSessionRequestException is
thrown*

* com.ibm.websphere.servlet.session.Unauthori zedSessionRequestException is thrown to the servlet.

250

4.4.1.1.4: Deciding between single-row and multirow
schema for sessions

Using the single-row schema, each user session maps to a single database row. Using the multirow schema,
each user session maps to multiple database rows.(In amultirow schema, each session attribute mapsto a
database row.)

In addition to allowing larger session records, using multirow schemacan yield performance benefits, as
discussed in article 4.4.1.1.7.3. However, itrequires a little work to switch to from single-row to multirow

schema, as shown in the instructions below.

Switching from single-row to multirow schema

To switch from single-row to multirow schema for sessions.
1. Modify the Session Manager properties to switch from single to multirowschema.
2. Manually drop the database table or delete all the rows in the databasetabl e that the product usesto
maintain HttpSession objects.
To drop thetable:
1. Determine which data source configuration the Session Manager is using.
2. Inthe data source configuration, look up the database name.
3. Usethe database facilities to connect to the database.
4. Drop the SESSIONS table.
3. Restart the Session Manager.

Coding considerations and test environment

Consider configuring direct single-row usage to one database and multirow usageto another database while you
verify which option suits your application's specific needs.(Do this in code by switching the datasource
used;then monitor performance.)

|Programming issue |Application scenario

Reasons to use single-row « You canread or write al values with just one record read/write.

« Thistakes up less space in a database, because you are guaranteed that
each session is only one record long.

|Reasons not to use single-row |2-megabyte [imit of stored data per session.

Reasons to use multirow « The application can store an unlimited amount of data; that is, you are
limited only by the size of the database and a 2-megabyte-per-record
limit.

« The application can read individual fields instead of the whole record.
When large amounts of data are stored in the session but only small
amounts are specifically accessed during a given servlet's processing of
an HTTP request, multirow sessions can improve performance by
avoiding unneeded Java object serialization.

If datais small in size, you probably do not want the extra overhead of

REasons Not to Lse multirow multiple row reads when everything could be stored in one row.

In the case of multirow usage, design your application data objects not to have references to each other, to
251

prevent circular references. For example, suppose you are storing two objects A and B in the session using
HttpSession.put(..) , and A contains areference to B. In the multirow case, because objects are stored in
different rows of the database, when objects A and B areretreived later, the object graph between A and B is
different than stored. A and B behave as independent objects.

252

4.4.1.1.7: Tuning session support

IBM WebSphere Application Server session support has features for tuning session performance and operating
characteristics, particularly whensessions are persisted in a database. These options allow the administrator
flexibility in determining the performance and failovercharacteristics for their environment.

The table summarizesthe features, including whether they apply to sessions tracked in memory, in a database, or
either.Click afeature for details about the feature. Some features are easily manipulatedusing administrative
settings; others require code or database changes.

. Appliesto sessionsin

’ Feature or option Goal ’ memory or database?
[Write frequency IMinimize database write operations. |Database
’M ultirow schema |Fu| ly utilize database capacities. ’Database
Base in-memory session Fully utilize system capacity withoutoverburdening |\
pool size system.
Write contents vAvIrli?éN flexibility in determining what session data to Database

Minimize contention between session requests and

- e invalidation of sessions by Session

Scheduled invalidation Manager.Minimize write operations to databasefor Database

updates to last access time only.
Tablespace and row size Increase efficiency of write operationsto database. |Database

253

4.4.1.1.7.1: Tuning session support: Session
persistence

IBM WebSphere Application Server avoids using the database to read in or access the sesson when it is
determined that the entry in the session cache is still the most recently updated copy.To tune the cache,set the
base in-memory session pool sizeand allow overflow.

In addition to the cache table itself,the product maintains a list of the most recently used sessionsin
memory,ordered from least to most recently used.Whenever a session is accessed, it is added to the
most-recently-used end of the list.When the cache table becomes full and a session that is not in the cache is
accessed, the least recently used session is removed from the cache (but not from the database; the session is
still valid until explicitly invalidated or timed out)to make room for the new entry.

Thisremoval occurs whether or not overflow is enabled.However, under heavy-concurrent-access scenarios,
multiple new sessions might competefor the space vacated by the single, least recently used entry.

« When overflow is disabled, only one new session is placed in the cache;the others must be reread from
the database. To optimize performance,the product does not retry to add the next new sessionby
removing the next least recently used entry.

« When overflow is enabled, one new session is added to the base table, and the rest reside in memory in
the overflow table. Analysis and customer experience show that the size of thistable remainsrelatively
small comparedto the base in-memory session pool size.

It is also important to establish sessionaffinity so that the caching can be most effective. See the Related
informationfor details.

254

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06061100.html

4.4.1.1.7.3: Tuning session support: Multirow schema

By default, a single session maps to a single row in the database table used tohold sessions. With this setup,
there are hard limits to the amount of user-defined,application-specific data that WebSphere Application Server
can access.

IBM WebSphere Application Server supports the use of a multirow schema option in which each piece of
application specific datais stored in a separate row of the database. With this setup, the total amount that can be
placed in asession is now bound only by the database capacities. The only practical limit that remainsis the
size of a session attribute object itself.

The multirow schema potentially has performance benefits in certain usage scenarios, such as when larger
amounts of data are stored in the session but only small amounts are specifically accessed during agiven
servlet's processing of a http request. In such a scenario, avoiding unneeded Java object serialization is
beneficial to performance.

It should be stressed that switching between multirow and single row is not atrivial proposition. See the Related
information for details.

255

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06061100.html

4.4.1.1.7.4: Tuning session support: Write frequency

In the Session Manager, you can configure the frequency for writing session data to the database. This
flexibility enables you to weigh session performance gains against varying degrees of failover support. The
following options are available in Session Manager for tuning write frequency:

« End of service method (the default) - Write session data at the end of the servlet's service() method call.
« Manual update - Write session data when the servlet calls the IBM Session.sync() method.

« Time-based write - Write session data every so many seconds (called the write interval).

When a session isfirst created,session information is always written to the databaseat the end of the service()
call.

End of service method

By default, IBM WebSphere Application Server updates the database with any changes made to the session
during the servlet processing of an HTTP request (for example, during the execution of the service() method).
These updates minimally include the last access time of the session and typically aso include changes affected
by the servlet, such as updating or removing application data.Exactly how much is written back can be
configured with the write contentsoption.

Manual update

With manual updates, the servlet using a session determines when to write session information to the database.
Switching to manual updates improves performance when the number of times an HTTP request's processing
leads to changing a session (typically its application data) is typically |ess than the number of times the session
isaccessed or read in.

When manual update is set, the product session support no longer automatically updates the database at the end
of aservlet's service() method.(However, when an HttpSession object isfirst created, session information is
written to the database as part of postprocessing for the servlet request in which the session was created.)The
last update times are cached and updated asynchronously prior to checks for session invalidation.

For any permanent changes to the session as part of servlet processing, the servlet code must specifically call
the sync() method of the com.ibm.websphere.servlet.session.|BM Session interface.

|Programming issue |Application scenario
Reasons to use manual update « You want direct control over when session information is persisted
to the database.

« The servlets of the application typically read in the session data but
do not write it back as much.

Reasons not to use manual update « You do not want to control persistence of session information by
using the IBM Session object, or you prefer that WebSphere
explicitly control persistence to the database.

« The servlets of the application are writing session information
frequently.

« Your code must comply completely with the Servlet 2.2
specification. The sync() method is not part of the Servlet
specification; it isan IBM extension.

Time-based write
256

With time-based write, session data is written back to the database every time the write interval expires.
Expiration of the write interval does not force awrite operation; datais written only if the session has been
retrieved or modified.

For example, suppose that a web application updates a session object every five seconds.

« |f the Write Frequency option is set to End of service method,session information gets written every
five seconds.

« If the Write Frequency option is set to Manual update,session information gets written whenever the
application codecalls IBM Session.sync().

« |If the Write Frequency option is set to Time based writeand the write interval is set to 120
seconds,session information gets written no more frequently than every 120 seconds.

Using the time based write setting requires that the session invalidation time be at least twice as large asthe
writeinterval. Thisis needed to ensure that a session is not prematurely invalidated.

257

4.4.1.1.7.5: Tuning session support: Base in-memory
session pool size

The base in-memory session pool size number has different meanings, dependingon session support
configuration:

» When sessions are being stored in memory, sessionaccess is optimized for up to this number of sessions.

« When sessions are being stored in a database, it also specifies the cache size andthe number of last
access time updates that are saved in manual update mode.

For persistent sessions,when the session cache has reached its maximum sizeand a new session is requested,
Session Manager removes the least recently used sessionfrom the cache to make room for the new one.

General memory requirements for the hardware system, and the usagecharacteristics of the e-business site, will
determine the optimum value.

Note that increasing the base in-memory session pools size can necessitateincreasing the heap sizes of the Java
processes for the correspondingWebSphere application servers.

Overflow in non-persistent sessions

By default, the number of sessions maintained in memory is specified byBase in-memory session pool size. If
you do notwish to place alimit on the number of sessions maintained in memory and allowoverflow, set
overflow to true.

Allowing an unlimited amount of sessions can potentially exhaust systemmemory and even allow for system
sabotage. Someone could write a maliciousprogram that continually hits your site and creates sessions, but
ignoresany cookies or encoded URL s and never utilizes the same session from oneHTTP request to the next.

When overflow is disallowed, the Session Manager still returns a session with the HttpServletRequest's
getSession(true) method if the memory limit has currently been reached, but it would be an invalid session that
isnot saved in any fashion.

With the WebSphere extension to HttpSession, com.ibm.websphere.servlet.session.|BM Session, an
isOverflow() method returnstrue if the session is such an invalid session. An application could check this and
react accordingly.

258

4.4.1.1.7.6: Tuning session support: Write contents

In Session Manager,you can configure which session data is written to the database. The following options are
available in Session Manager for tuning what isto be written back to the database:

« Write changed (the default) - Write only session data properties that have been updated through
setAttribute() and removeAttribute() method calls.

o Writeall - Write al session data properties.

The Write all setting might benefit servlet and JSP writers who changeJava objects that reside as attributesin
an HttpSession instance.Previoudly, every programmatic change in an attributewould require a setAttribute()
callto make sure changes werereflected in the database in atimely manner.In most cases, the use of this setting
eliminates the need for all but the initial setAttribute() call to bind the object to the session.

However, the use of Write allcould result in more being written back to the database than is necessary.If this
situation appliesto you, consider combining the use of Write all with Time-based write to boostperformance

overall.As always, be sure to evaluate the advantages and disadvantages for your installation.

With either Write Contents setting,when a session is first created,compl ete session information is written to the
database,including all of the objects bound to the session.In subsequent session requests,what is written to the
databasedepends on whether a single-row or multirowschema has been set for the session database, as follows:

Behavior with single-row

<chema Behavior with multirow schema

Write Contents setting

Write changed If any session attribute is Only the session datamodified through
updated, all objectsboundto [setAttribute() or removeAttribute() callsis written.
the session are written.

Write all All bound session attributes are |All session attributes that currently reside in the
written. cache are written.If the session has never left the
cache, all session attributes are written.

259

4.4.1.1.7.7: Tuning session support: Scheduled
Invalidation

Y ou can set specific times for the Session Manager to scan for invalidated sessions. When used with persistent
sessions, this feature has the following benefits:

» The scan for invalidated sessions can be scheduled for times of low application server activity,avoiding
database contention between invalidation scans andread/write operations to service HTTP session
requests.

« There may be significantly fewer database write operations when running with the End of Service
Method" write mode,because the session’s last access time need not be written out after each HTTP
session request. (Manual Update and Time Based Write options already minimize the writing of the last
access time.)

Usage considerations

« With scheduled invalidation configured,HttpSession time-outs are not strictly enforced. Instead, all
invalidation processing is handled at the configured invalidationtimes.

« HttpSessionBindingListener processing is handled at the configuredinvalidation times unless
HttpSession.invalidate() is explicitly called.

« The HttpSession.invalidate() method immediately invalidates thesession from both the session cache and
the database.

260

4.4.1.1.7.8: Tuning session support: Tablespace and page sizes for DB2
session databases

If you are using DB2 for session persistence, you can increase the page size to optimize performancefor the writing of large amounts of datato the
database.In versions earlier than 4.0, IBM WebSphere Application Server supported only a4K page size.Page sizes of 8K, 16K, or 32K are supported
inVersion 4.0.

To use a page size other than the default (4K), do the following:

« If the SESSIONS table already exists, drop it from the DB2 database.

« Create anew DB2 buffer pool and tablespace, specifying the same page size (8K, 16K or 32K) for both, and assign the new buffer pool to this
tablespace. A simple example follows:

DB2 Connect to sessi onDB2 CREATE BUFFERPOOL sessi onBP SI ZE 1000 PAGESI ZE 8KDB2 Connect reset DB2
Connect to sessi onDB2 CREATE TABLESPACE sessi onTS PAGESI ZE 8K MANAGED BY SYSTEM USI NG
(' D: \ DB2\ NODEOOOO\ SQLO0005\ sessi onTS. 0') BUFFERPOOL sessi onBPDB2 Connect reset

Refer to DB2 product documentation for details.

« Configure the correct tablespace name and page size in the Session Manager. (Page size isreferred to as row size in the Session Manager
console.)

When the product is restarted, the Session Manager creates a new SESSIONS tablein the specified tablespace based on the page size specified.

261

4.4.1.1.8: Best practices for session programming

When developing new objectsto bestored in the HTTP session, make sureto implement the Serializable
interface.This enables the object to properly persist session information to the database. An example of thisis:

public class MyObject inplenents java.io.Serializable {...}
Without this extension, the object will not persist correctly and will throw an error.

When adding Java objectsto a session, make surethey arein the correct class path. If Java objects will be added to a
session, be sureto place the class files for those objects in the application server class path or in the web application path.In
the case of session clustering, this appliesto every node in the cluster. Because the HttpSession object is shared among
servlets that the user might access, consider adopting a site-wide naming convention to avoid conflicts.

Do not store large Object graphsin HttpSession.In most applications, each servlet requires only afraction of the total
session data. However, by storing the datain HttpSession as one large object, an application forces WebSphere to process all
of it each time.

Release HttpSession objects when you ar e finished.HttpSession objects live inside the Web container until:

« The application explicitly and programmatically releases it using javax.servlet.http.HttpSession.invalidate(); quite
often, programmatic invalidation is part of an application logout function.

« The application server destroys the allocated HttpSession object when it expires (default is 1800 seconds or 30
minutes).When session persistence is used, the application server can maintain only a certain number of HttpSession
objectsin memory. When this limit is reached, The application server removes the least recently used session entries
from thecache to make aroom for new ones. If Allow Overflow is enabled,the product also uses an overflow memory
table to cache the entries when there is aracing condition for a entry in the cache. The product makes its best effort to
keep the cache at base memory size.

Do not try to save and reuse the HttpSession object outside of each servlet or JSP.The HttpSession object is a function of
the HttpRequest (you can get it only through req.getSession()), and a copy of it isvalid only for the life of the service()
method of the servlet or JSP. Y ou cannot cache the HttpSession object and refer to it outside the scope of a servlet or JSP.

Y ou can improve performance by not breaking session affinity. Some suggestions to help avoid breaking session affinity are:

« When using multiframe JSPs, create the session for the frame page but do not create sessions for the pages within the
frame. (See discussion later in thistopic.)

When applying security to servletsor JSPsthat use sessions with security integration enabled,secure all of the pages
(not just some).When it comes to security and sessions, it'sall or nothing. It does not make sense to protect access to session
state only part of the time.When security integration is enabled in Session Manager,all resources from which asessionis
created or accessed must be either secured or unsecured. Y ou cannot mix secured and unsecured resources.

The problem with securing only a couple of pagesisthat sessions created in secured pages are created under the identity of
the authenticated user. They can be accessed in other secured pages only by the same user. To protect these sessions from use
by unauthorized users, they cannot be accessed from an unsecure page. When a request from an unsecure page occurs, access
is denied and an UnauthorizedSessionRequestException is thrown. (UnauthorizedSessionRequestException is arun-time
exception; itislogged for you.)

Use manual update and either sync() or time-based writein applicationsthat mostly read session data but update
infrequently.When an application is using a session, the LastAccesstime field is updatedany time data is read from or
written to that session. If persistent sessions are being used, this produces a new write to the database. This performance hit
can be avoided by using manual update and having the record written back to the database only when data values are
updated, not on every read or write of the record.To use manual update, you first need to turn it on in the Session Manager. In
addition, the application code must use com.ibm.websphere.servlet.session.|IBM Session instead of the generic HitpSession
class. Within IBM Session, the sync() methodtells the application server that the data in the session object should be written
out to the database. This enables the developer to improve overal performance by having the session information persist only
when necessary.

Although manual update gives you the most precise control for sending updates, the use of time-based write and schedul ed
invalidation optionscan also help the case in which accessis frequent but updating is not.

When using multiframe Java Server Pages (JSP), create the session for the frame page (JSP) but do not createit for
thesz%ges (JSPs) within the frame. By default, JSPs create HT TPSession objects by calling the

request . get Sessi on(true) method. By doing this, each page in the browser is requesting a new session, but only
one session is used per browser instance. Y ou can use

<%@ page session="fal se" %

to turn of f the automatic session creation. Then if the page needs to access session information, use
<% Ht t pSessi on session = javax.servlet.http. H tpServl et Request. get Sessi on(fal se); %

to get the aready existing session that was created by the frame JSP. This enables you to not break session affinity on the
initial loading of the frame pages.

Implement the following suggestions to achieve high performance:
« UselBM WebSphere Edge Server, taking advantage of its affinity options.

« If your applications do not change the session data frequently, use manual update and the sync() function to
efficiently persist session information. As an alternative, consider using the time-based write option.

« Keep the amount of data stored in the session as small as possible. With the ease of using sessions to hold data,
sometimes too much datais stored in the session abjects. A proper balance of data storage and performance must be
determined to effectively use sessions.

« Useadedicated database for the session database. Do hot use the WebSphere repository database or another
application’'s database. This helpsto avoid contention for JIDBC connections and enables better database performance.

For more information, see the following IBM documents on the Web:

« "WebSphere Application Server: Best Practices using HTTP Sessions,"by David Draegar and Jay Toogood.This
article is available from the Devel operWorks site.

« "WebSphere Application Server Development Best Practices for Performance and Scalability," by Harvey W.
Gunther. This IBM white paper is available from the Library section of theWebSphere Application Server product
site.

263

4.4.2: Keeping user profiles

IBM WebSphere Application Server provides a service for processing user profiles, called the User Profile
Manager.

The key activities for implementing user profilesare summarized. For more information about each point,
consult the Related information below.
1. Customize the user profile support as necessary. Options include:

o Using the data representation class with exactly the name/value pairsit currently allows (no
action required)

o Extending the data representation class to allow additional, arbitrary name/value pairs
o Adding columns to the base user profile representation
Basically, you need to evaluate whether the user profilerepresentation provided by IBM represents the

kind of data youwould like to keep about your users. Y ou might find it desirableto customize the IBM
user profile support in one or more of theabove ways.

2. Create or modify servlets to use the User Profile Manager and related user profile support classesto
maintain user profiles on behalf of Web applications.

3. Ensure the administrator appropriately configures User Profile Managers in the administrative domain.

If the programmer andadministrator are not the same person, the programmer might needto provide
settings information to the administrator, based onhow the programmer implemented user profiles.

264

4.4.2.1: Data represented in the base user profile

WebSphere Application Server provides a base implementation for data representation in user profiles through
the interfacecom.ibm.websphere.userprofile.UserProfile.
The interface includes these columns corresponding to fields for demographic data on individual users:
o Address (first line)
« Address (second line)
« First Name
« Surname
« Day phone number
« Night phone number
« City
« Nation
o Employer
o Fax number
« Language
o Email address
« State/Province
» Postal code

265

4.4.2.2: Customizing the base user profile support

The application developer has afew options for customizing the user profile supportprovided by IBM
WebSphere Application Server. The Related information provides instructionsand additional details about each
option.

Extend the data represented in user profiles

Asdiscussed in section 4.4.2.1, the base implementation allows Web applications to maintain several pieces of
data about users. The data representation canbe extended to allow the collection of arbitrary name/value pairs.

Adding columns to the base user profile implementation

Application developers can customize userprofiles by adding columns to the base user profile implementation.
Adding new columnsis accomplished by implementing the interface:

com i bm websphere. userprofil e. UserProfil eExt ender

and extending the base class:
comibm servlet.personalization.userprofile.UserProfile

266

4.4.2.2.1: Extending data represented in user profiles

Use following interface withcom.ibm.websphere.userprofile.UserProfileExtender to extend a user profile hash
table:

com i bm websphere. userprofile.UserProfil eProperties

This enables you to place arbitrary name/value pairsin theuser profile.Extending the hash tableis similar to
using the java.util .Dictionaryclass in the base JDK 1.x or any of the classes that extend it.

267

4.4.2.2.2: Adding columns to the base user profile
Implementation

The base implementation of the user profile is contained in the class:
comibm servlet.personalization.userprofile.UserProfile
It contains the columns discussed in section 4.4.2.1. The application developer can add columnsto the base
implementation,but cannot delete columns from it.
Adding columnsis atwo-step process, as follows:
1. Extend the UserProfile class.
2. Modify your existing servlets to use the new columns.

Several examples are available to demonstrate how to extend thebase user profile implementation and utilize the
extension with aservlet.

| Example | Description

UPServletExamplejava Demonstrates how a servlet opens a user profile and printsthe fields
contained within it

Shows how to extend the UserProfile class to add a column to the user
profile for a cellular phone number.

UserProfileExtendedSample.java
The WebSphere administrator needs to configure the User Profile Manager
to point tothe extended class.

UPServletExampleExtended.java Shows how to modify the UPServletExample servlet to include the cellular
phone number in the output

UserProfileExtended.java Shows how to extend a hash table to place arbitraryname/value pairsinto
the user profile

_ Shows how to extend the servlet. When any of the newly added columnsare
UPServletExtended.java removed or replaced, look for the table named "USERPROFILE" in the
database to which the user profileis configured and drop that table.

The examples are encoded in HTML for viewing in a browser.The documentation directory also contains
non-HTML versions (.javafiles) that are ready for use.

268

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPServletExample.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UserProfileExtendedSample.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPServletExampleExtended.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UserProfileExtended.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPServletExtended.java.html

4.4.2.2.3. Extending the User Profile enterprise bean
and importing legacy databases

IBM WebSphere Application Server implements user profile support as an entity bean. Although you can
extend the base user profile by adding columnsto it, you can also extend the user profile enterprise bean itself
as an alternative customization approach.

Extending the User Profile enterprise bean is more involved than extending the base user profile. Y ou should be
familiar with the concepts that underlie enterprise beans(Java components written to the EJB specification). For
detailed information regarding enterprise beans and their implementation in IBM WebSphere Application
Server, see section 4.3.

The table below summarizes the procedure for extending the user profile enterprise bean and importing data
from an enterprise (legacy) database, with links to example code.

Importing data requires an enterprise bean that maps to the legacy database. For simplicity, the examples
assume that the primary keys of the two enterprise beans are identical, although there is no such requirement.
The primary key of the legacy enterprise bean does not have to match the primary key of the user profile
enterprise bean (the userName column).

Extending the user profile bean to set and get user cell phone data

| Task | Examples

1. Start with the base user profile bean and its remote
interface.

User profile bean

Remote interface

These contain the methods for setting and getting the
base user profilefields

2. Define a home interface and finder helper for the
UPBaseChild bean. Specify the create and finder
methods for the bean.

Because inheritance between home interfaces is not
supported in WebSphere Application Server, you will
need to define all of the methods found in the
UPBaseHome interface in order to use the managerial
functions of the User Profile Manager.

For the home interface

For the bean

Y ou can aso add more methods as necessary to further
customize the User Profile.

269

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseBean.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBase.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildHome.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildBeanFinderHelper.java.html

3. Create read-only and read-write extensions of the
UPBaseChild bean.

In the base implementation of the User Profile beans
provided, read-only and read-write beans are simple
extensions of the UPBase bean. Y ou would similarly
extend your UPBaseChild bean with read-only and
read-write extensions.

Read-only bean extension classes:
« Bean

« Remoteinterface
« Homeinterface

o Finder class

Read-write bean extension classes;
« Bean

+« Remoteinterface
« Homeinterface
o Finder class

4. Define a deployment descriptor for your beans

Using the Application Assembly Tool or IBM
VisualAge for Java, map both beans to the same table
(that is, the same user profile table)and corresponding
columns.Then define the deployment descriptor.

In the base read-only implementation provided, al of the
business methods are marked as read-only, so updating
the fields using setter methods on the read-only bean
does not update the persistent store.

Mark all the business methods in this example as
constant (read-only):

o Read only

Assuming you are not updating any instance
variables in getter methods, you may also mark all
your getter methods this example as constant to
improve performance:

o Read write

Mark some or all of the fields (except the remote
interface to the legacy bean) as container managed
fields. Define other properties to your beans
depending on your requirements.

5. Extend the User Profile data wrapper to include the
new methods

The example shows how to extend the base User Profile
datawrapper classto include the methods for setting and
getting cell phone information in the User Profile

EJB extension

6. Use a WebSphere Application Server administrative
client to configure user profile support. The
administrative configuration includes:

o Thedatawrapper class name
« JNDI lookup names

» Home and remote interfaces for the read-only
and read-write beans

270

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildReadOnlyBean.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildReadOnly.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildReadOnlyHome.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildReadOnlyBeanFinderHelper.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildReadWriteBean.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildReadWrite.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildReadWriteHome.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildReadWriteBeanFinderHelper.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildReadOnlyBean.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UPBaseChildReadWriteBean.java.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/UserProfileEJBExtension.java.html

4.4.2.3: Accessing user profiles from a servlet

Servlets and other application building blocks requiring user profile support should make callsto the class:
com i bm websphere. userprofil e. UserProfil eManager

The class supports the following functions:
» Creating and deleting user profiles
« Getting and updating (cached and immediate) to and from the database
« Getting user profilesfor read-only tasks
« Performing queries on database columns

271

4.5: Dynamic fragment cache

A WebSphere Application Server performance enhancement is the ability to cache the output of dynamic
servlets and JSP files, atechnology that improves application performance. This technology, working within an
application server's Java Virtual Machine (JVM), intercepts callsto a servlet's service method, and checks
whether the invocation can be served from a cache. Because J2EE applications have such high read-write ratios
and can tolerate a small degree of latency in the freshness of their data, fragment caching creates an opportunity
for significant gainsin server response time, throughput, and scalability.

After aservlet isinvoked once (generating the output that will be cached), a cache entry is created containing
not only the output, but also side effects of the invocation as, for example, calls to other servlets or JSPfiles, as
well as meta data about the entry including timeout and entry priority information.

Unique entries are distinguished by an id string generated from the Ht t pSer vl et Request object for each
invocation of the servlet.Servlet caching can then be based on:

« Request parameters and attributes

« the URI used to invoke the servlet

o Session information

« Other options, including cookies

Since JSP files are compiled by WebSphere Application Server into servlets,the dynamic cache function treats
them the same, except in specifically documented situations.

Summary of dynamic fragment caching articles

The dynamic fragment caching documentation describes how to configure dynamic caching in WebSphere
Application Server. For both global configuration and the definition of individual cache policies, users can
configure dynamic fragment cachingthrough XML filesinstalled on the server, or with graphical user interface
(GUI) tools such as theadministrative console or the Application Assembly Tool. The XML files are the
preferred method for configuring dynamic caching because, in some cases, they are easier to implement and
include more function than the GUI configuration.

The dynamic fragment caching articles al so discuss advanced features of the cache, such as how to control
external caches and how to build user-defined drop in components to customize the cache operation.

The dynamic fragment caching articles are:
« 6.6.0.16: Dynamic fragment cache configuration overview

« 6.6.0.16.1: Global configuration

« 6.6.0.16.2: Policy configuration

e 6.6.0.16.4: Dynamic fragment cache XML examples

« 6.6.0.16.4: Dynamic fragment cache monitor

e 4.5.1: Custom ID and MetaData generators

o 4.5.2: Externa Cache Adapter building

« 4.5.3: Dynamic fragment cache frequently asked gquestions

272

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060016.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001601.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001602.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001603.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001604.html

4.5.0: Getting started with Dynamic fragment cache

This article provides you with aquick list of tasks that you must completeto enable dynamic fragment caching
with XML. Click any of the links for more informationon a specific topic.

1. Createaglobal configuration file

Inthe<pr oduct _install ati on>/ properti es directory, locate the
dynacache. sanpl e. xm file. Copy thedynacache. sanpl e. xm filetodynacache. xm .

The sampleisavalid cache configuration file that will enable caching with default values. With caching
enabled, the application server will look for a servlet configuration fileinthe/ pr operti es directory
that declares which servlets should be cached. The options selected are discussed in detail in article,
Global configuration.

2. Createa servlet configuration file

Inthe<pr oduct _install ati on>/ properti es directory, locate the

servl et cache. sanpl e. xnl file. Copy theser vl et cache. sanpl e. xnl to
servl etcache. xm .

This sample file configures WebSphere's default server's snoop servlet for caching. Article Policy
configuration describes the different ways for definining how to cache individual servlets or JSP files.

3. Reinitializethe Application Server

Stop and restart the WebSphere Application Server.
4. Verify the cacheable page.
Using a Web Browser, access URI: / ser vl et / snoop to view the snoop servlet in the default

application. Invoking and reloading the URI several times should return the same output for the snoop
serviet.

[il The snoop servlet is now operating incorrectly, since it displays the request

information from its first invocation rather than from the current request. Y ou can inspect
the entry in the cache with the Servlet cache monitor

273

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001601.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001602.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001602.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001604.html

4.5.1. Custom ID and MetaData generators

WebSphere Application Server's dynamic cache technology allows users to replace the standard configuration
functions with their own custom configuration classes. The configuration duties managed by cache fall into two
categories:

« Generating cache and group ids
« Defining meta data such as timeout, priority, and external caching

Application developers can supply classes to handle either or both of these sets of responsibilities, by
implementingcom i bm websphere. servl et. cache. | dGener at or and
com i bm websphere. servl et. cache. Met aDat aGener at or .

Overriding the default MetaDataGenerator allows users to access configuration information from some other
source. or makes timeout, priority, or external cache group afunction of a variable rather than a constant.A new
IdGenerator gives users the ability to determine cache entry ids and their group ids.Both classes can still use the
cache policy attributes defined for a servlet (<timeout>, <priority>, <request>, and others) to relay data to their
generatorsusing thecom i bm webspher e. servl et . cache. CacheConfi g class.

Each servlet class has individual 1dGenerator and M etaDataGenerator objects associated with it.So if the same
servlet is being executed by WebSphere Application Server in different threads, all threads will use the same
pair of generator objects.

Several dynamic caching classes are not described in detail in this article. See the
com i bm websphere. servl et. cache package (Javadoc) for more inforamtionon the classes and

interfaces used by the cache function.

Custom Id generators

« Configuring the cache to use a custom |dGenerator:

To specify your IdGenerator in the XML file, use the <i dgener at or > tag.

<servl et >

<ti meout seconds="0"/>

<pat h uri="/servl et/ CommandProcessor" />

<i dgener at or cl ass="Sanpl el dGeneratorlnmpl" />
</servlet>

Y ou can aso use the Application Assembly Tool to define the IdGenerator class in the cache policy's
Advanced tab.
« Building a custom IdGenerator:
Y our |[dGenerator must implement thecom i bm webspher e. servl et. cache. | dGener at or
interface. There are three methods in the |dGenerator interface:
1. public void initialize(CacheConfig cc);
2. public String getld(Servl et CacheRequest request);
3. public int getSharingPolicy(ServletCacheRequest request);

The getSharingPolicy method should return Ent r yl nf o. NOT_ SHARED

The initialize method is called during startup. Normally, the cache processes a servlet's XML
configuration and builds a CacheConfig object that is made available to the IdGenerator. The initialize
method then builds alist of request and session variables that must be included in the cache ids for the

274

http://localhost/0802_makepdf/apidocs/index.html

servlet. Since the "plugged-in" IdGenerator is created with a specific servlet's behavior in mind, working
with the CacheConfig is unnecessary; just hard code the configuration into the get | d method.

The get I d method returns the unique String cache id when the servlet isinvoked. If the serviet is
cached, theget | d method returns null. Typically, an Id will incorporate the following:

o The URI of the servlet

« The character encoding of the request (when the result is not null)

« Thenames and values of the input variables that determine the servlet's output

See the coding example for implementation details.

275

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/SampleIdGeneratorImpl.html

4.5.2: External caching

WebSphere Application Server's dynamic cache has the ability to control external caches on Web servers, such asIBM Edge
Server and IBM HTTP Server. When external caching is enabled, the cache matches pages with their URIs and pushes
matching pages to the external cache. The entries can then be served from the external cache instead of the application
server.This creates a significant savingsin performance.

Only certain fragments are eligible for external caching. Since the external cache must use the full URI as a cacheid, the
servlet being externally cached usesthat URI asitsinternal cacheid aswell.Also, because the the cache automatically uses the
URI to build cacheids, it isillegal to define cache variables (for example, request, session, and cookie variables) in an
externally cacheable servlet.

Only full pages are pushed out to external caches, so only externally accessible servlets should be defined as externally
cacheable. For example, if pagel.jsp includes page2.jsp and page3.jsp, then only pagel.jsp should be declared externally
cacheable.lf page3.jsp isinvalidated, then the cache also invalidates the externa entry for pagel.jsp. Therefore the next request
for pagel.jsp is sent to WebSphereApplication Server.

Servlet and JSP file content that is private, requires authentication, or uses SSL should not be cached externally. The
authentication required for those servlet or JSP file fragments cannot be performed on the edge. A suitable timeout value
should be specified if the content islikely to become stale.

Enabling external caching of servlets and JSP files with IBM Edge Server

Edge Server users should consult the Edge Server documentation for information on configuring external caching between
WebSphere Application Server and Edge Server.

Enabling high speed caching of Servlets and JSP files with IBM HTTP Server for
Windows NT/2000

IBM HTTP Server for Windows NT/2000 contains a high speed cache referred to as the Fast Response Cache Accelerator, or
Cache Accelerator. WebSphere Application Server's fragment cache can use IBM HTTP Server as an external cache with
appropriate configuration.

After installing WebSphere Application Server and IBM HTTP Server for Windows NT, you must do the following to enable
the Cache Accelerator:

1. Configure caching on the Web server.

Inthe IBM HTTP Server conf directory, locatethe ht t pd. conf configuration file, and add the following two lines
at the end of thefile:

LoadMbdul e af papl ugi n_nodul e c:/WebSpher e/ AppSer ver/ bi n/ af papl ugi n. dl |
Af paPl ugi nHost 127.0.0. 1: 9081

Thefirst line loads the IBM HTTP Server plug-in that connects the Cache Acceleratorto WebSphere's fragment
cache.Ensure the LoadM odul e path points to your Websphere Application Server installation.

The second line defines the application server instances that should be connectedto this module. When multiple
instances of WebSphere Application Server are defined,repeat the second line for each application server. If the
instances are on different machines from the Web server, use the instances' | P address instead of the localhost address
defined inthis example. In the case of multiple application servers on the same host, choose a different port number for
each instance.

2. Configure an external cache group on the application server.

For each application server that uses the Cache Accelerator, define an external cache group named afpa. Add a member
to that group with an adapter bean name of com i bm ser vl et . dynacache. Af pa. For the address, enter the
assigned port number from the Web server's httpd.conf file. An example of this configuration is availablein the
dyncache.sample.xml file located at:

product _installation/properties/dynacache. sanpl e. xm

See the global configuration section in thisfile for more information.

3. Configure a cache policy using external cache.
276

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

Now you can use the external cache attribute when building your cache policies. See article Policy configurationfor
information on building cache policies.

Y ou can test your configuration by doing the following:
a. Do aCD (changedirectory) tothe pr oduct _i nstal | ati on/ properti esdirectory.

b. Copy the servietcache.sample.xml file to servietcache.xml.
¢. Update thefirst entry with the following definitions to enable the external high speed cache:

<servl et>
<ti meout seconds="0" />
<servletinpl class="SnoopServlet.class" />
<ext er nal cache i d="af pa" />

</servlet>

Y ou can test your changes using the SnoopServlet sample for external caching. The SnoopServlet.classis located in:
product _instal |l ati on\install edApps\ sanpl eApp. ear\ def aul t _app. war\ VEEB- | NF\ cl asses

Thefirst request for htt p: / / your host / ser vl et/ SnoopSer vl et resultsin the response being loaded in the
high speed cache. Subsequent requests are served directly from the cache, which significantly enhances performance.

Setting the "timeout seconds" to "0" means the cached entry remains permanently cached. Setting it to a positive
non-zero value, as for example, 30, causes the high speed cache entry to be deleted after the specified number of
seconds, in this case 30.

To enable JSP files for caching, add the following stanzato the servietcache.xml file:

<servl et>
<ti meout seconds="10" />
<path uri="/very_sinmple.jsp" />
<ext er nal cache id="afpa" />
</servl et >

In this example, you cache the response for 10 secondswhentheht t p: / / your host/very_si npl e. j spfileis
requested.Thefile, very_si npl e. j spislocatedin:

product installation\install edApps\sanpl eApp. ear\default_app. war
After 10 seconds, the cache entry is deleted. The cache entry is updated when a new request occurs for the JSP file.

il ThelBM HTTP Server Fast Response Cache Accelerator isavailable on both Windows NT/2000
and AlX. However, dynamic caching support is currently only available on Windows NT/2000.

Configuring the Fast Response Cache Accelerator cache size.

In the default IBM HTTP Server configuration, the maximum Cache Accelerator dynamic cache sizeis calculated as 1/8 of
physical (pin-able) memory. On a machine with 384Meg of RAM, it allows a maximum of approximately 50Meg for the
Cache Accelerator dynamic cache. When this limit is reached, the Cache Accelerator then deletes older entries to cache new
ones.

The IBM HTTP Server directive, AfpaDynaCacheMax, can be used to fine tune the maximum allowed cache size. This
directive must be placed in the global server configuration scope (along with the other default Cache Accelerator directives),
and Cache Accelerator must be enabled.

Update the following directives in the httpd.conf file of IBM HTTP Server :

Af paEnabl e

Af paCache on

Af paLogFil e "c:/Program Fil es/| BM HTTP Server/| ogs/ af pal og" V-ECLF
Af paDynaCacheMax 10

The above settings enable the Cache Accelerator and limit the dynamic cache sizeto 10 Meg.If you use these directive to
increase the cache size, do not make thecache so large that all physical memory is consumed. Y ou can determine how much
memory is available, when al the applications are running, by using the Windows Task Manager.

277

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001602.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

Assign no more than 50% of available physical memory to the dynamic cache. Specifying too large a cache not only decreases
the performance of other applications,but also puts you at risk for completely running out of memory.

The default configuration does not include the Af paDynaCacheMax directive where the cache size is automatically
calculated as 1/8 of physical memory.

278

4.5.3: Dynamic fragment cache frequently asked
guestions

View frequntly asked questions related to:
« General cache information

» Cache architecture
« Application design
« Cache configuration

General cache information

o Question: What is new in dynamic fragment cache WebSphere Application Server version 4.0?

Answer: Version 4.0 allows you to configure dynamic cache through the GUI. The administrative
console offers parallel configuration optionsto thedynacache. xm file. Cache policies can be
attached to . war filesusing the Application Assembly Tool. While XML adds some advanced cache
policy options, the AAT makes cache policies portable, by installing them along with the application.

The Servlet Cache Monitor isalso new in version 4.0. This Web application installs on an application
server, and alows administrators to inspect the contents of the fragment cache.

Finally, the APIs for programmatically manipulating the cache have been enhanced. These APIs are
located inthecom i bm webspher e. ser vl et . cache package, and contain classes and methods

to customize cache operations.
o Question: What are the security implications of using the fragment cache?

Answer: The cache does al the processing within the Web container after the security processing
completes. Within the application server, there are no extra security problems to be considered.

When using an external cache, security risks change dramatically. Caches outside of WebSphere
Application Server do not undergo security processing. It isimportant not to store sensitive datain an
external cache.

Return

Cache architecture

« Question: What type of servlets and JSP files does the cache support most effectively, simple
presentation JSP files? What about servlets that use enterprise java beans or JDBC? What about
personalized fragments?

Answer: While caching a ssmple presentation JSP file gives moderate performance gains, caching
servlets that request information from enterprise java beans or databases saves WebSphere Application
Server processing power, and decreases |oad on the back end. Y ou should cache fragments that pull
information from outside WebSphere Application Server since the biggest performance gains come from
caching servlets that obtain information from outside the application server.

Personalized information can be cached, though how effective it will be depends on the architecture of
the application. See the Dynamic fragment cache XML examples for a discussion of personalization.
279

http://localhost/0802_makepdf/apidocs/index.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001603.html

« Question: The dynamic cache caches the JSP and servlet output. Does this mean it caches the
Ht t pSer vl et Response object?

Answer: Not quite. It caches the output of the servlet (what iswritten to ther esponse. get Witer
method, for example). It also caches side effects of the servlet's execution, like setting cookies and
headers, including and forwarding other servlets, and setting content type and character encoding.

o Question: Isthisan"in memory" cache, or an "on disk" cache? Does it use the java heap?

Answer: The cache resides completely inside the Java heap. This keepsit in memory, but allows it to
use virtual memory if necessary.

« Question: Doesthe dynamic cache aways need an external cache for caching?

Answer: The dynamic cache does not require an external cache to be present for caching. It will,
however, extend the abilities of such static caches to include caching certain serviets and JSP files.

« Question: If using an external cache that is associated with the dynamic cache (for private user
information), how is the security of the information at the external cache enforced?

Answer: Because private information amost always involves session information, requests for private
user information are usually not externally cacheable. However, in the case of a user id being present in
the URL, or of pages that should only be accessible over HTTPS and not HTTP, external caching can
short circuit the authentication or encryption processes. For sensitive information, external caching is
not the best choice unless specific measures are taken, such as encrypting that user id.

Return

Application design

« Question: My application has a control servlet that works as a dispatcher for 10 other services, and we
only want to cache the output of one or two services from this servlet. Is this servlet cacheable?

Answer: Definitely. Cache policies can be built to "cache" or "not cache" a servlet depending on
whether input variables are present or have a specific value. Therefore, you can "cache" the control
servlet when it is performing some read only action, and "not cache” it when it is updating application
information. In addition, if the cache policy rules are not specific enough for the caching you want to
perform, WebSphere Application Server provides a pluggable interface for writing your own Id
Generators. See the Custom Generators article for more information.

o Question: If | have achain of forwards or includes, can | cache some of the fragments and not others?
If one cached fragment in the chain isinvalidated, do the rest of them get evicted from the cache, too?

Answer: Any of the servlets or JSP files in the chain can be cached. If some or all of them are cached,
and one changes (invalidating only its cache entry) then the output of upstream, cached serviets will
reflect this change. Cached servlets have 'place holders in their output for the results of any includes or
forwards that servlets might perform.

Return

Cache configuration

o Question: | have existing XML configuration files from WebSphere Application Server version 3.5.x
that | would like to use. Are they still valid?

Answer: Yes. Dynacache.xml and servletcache.xml files from version 3.5.x will work with version 4.0
280

Question: How can | tell whether the cache is enabled?

Answer: Check the standard output file for the application server that you configured. You will seea
message indicating whether the cache is enabled or not. Alternatively, use the servlet cache monitor to
inspect the fragment cache.

Question: Isthere away to know whether afragment is getting cached?

Answer: After executing the serviet or JSP file, you can check for the presence of an entry in the cache
using the servlet cache monitor. See article Dynamic fragment cache monitor for more information on

thistool.
Question: How big should my cache be?

Answer: Cache sizes should typically stay in the 1-10K entries range. |dedlly, the cache should be big
enough to contain an entry for each invocation of the fragments to be cached. More likely you will make
the cache big enough to hold the most expensive and most often served fragments, and use the LRU
algorithm to elimate less useful quotes. The capacity can only be measured in number of entries, not in
memory size. Increase the memory available to WebSphere Application Server according to the size and
number of cached responses.

Question: Can | use cache policiesdefined inaser vl et cache. xml fileand policies attached to an
.ear or.war fileonthe same server?

Answer: Yes. Inthe case of a URI being defined in both, the XML file takes precedence.

Question: | do not understand how the <invalidateonly/> tag works. Aren't the invalidate and exclude
rules enough to invalidate a cache entry?

Answer: While the methods in the Cache class are sufficient for manipulating cache entries, users are
not required to implement any java code to enable caching The <invalidate> and <invalidateonly> tags
extend the capabilities of rule based XML configuration to more completely cover the operations you
can perform when using the API directly.

The <invalidate> element allows you to use a fragment invocation to invalidate other cache entries The
classic exampleisa"buy" servlet that adds objects to a shopping cart. Whenever you perform a buy, you
would then invalidate the cache entry for that user's shopping cart.

The <invalidateonly/> element exists for efficiency. Some servlets may not be cacheable, but have
invalidation side effects. With this tag, WebSphere Application Server performs the invalidations, but
does not attempt to cache the servlet. (The caching attempt would have failed, anyway.)

Return

281

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606001604.html

4.6: Java Technologies

The J2EE (Java ™ 2 Platform Enterprise Edition) technologies providestandard architectures for defining and
supporting a multi-tiered programming model.

The technologies support al application components, namely:
« Application clients
« Enterprise JavaBeans T
« Servlets and JavaServer Pages™
o Applets
The Java technologies are:
« JavaMail
« JavaNaming and Directory Interface (JNDI)
« JavaMessage Service (IMS)

See the Related information links for information on other programming topics.

282

4.6.1: Using JavaMail

WebSphere Application Server supports JavaMail version 1.1.3 and the JavaBeans Activation Framework (JAF) version 1.0.1.

In WebSphere Application Server, JavaMail is supported in all Web applicationcomponents, namely:
o Serviets
o JSPfiles
« enterprise beans
« application clients
The JavaMail APls model amail system. These APIs provide a platform and protocol independent framework to build Java based,

e-mail clientapplications. The JavaMail APIsonly provide general mail facilities for reading and sending mail. These APIs require
service providers to implement the protocols.

In addition to service providers, JavaMail requires the JavaBeans Activation Framework or JAFto handle mail content that is not
plain text as, for example, MIME (Multipurpose Internet Mail Extensions),URL (Uniform Resource Locator) pages, and file
attachments.

The service providers implement specific protocols. For example, SMTP (or SimpleMail Transfer Protocol), is atransport protocol
for sending mail. POP3 or Post Office Protocol 3 is the standardprotocol for receiving mail. IMAP or Internet Message Access
Protocol is an alternative protocol to POP3.
The following graphic illustrates the rel ationship among the different JavaMail components:

« JavaMail APls

« JavaBeans Activation Framework

« Service providers

« Mail protocols

The dotted line around specific objects represents the grouping that comprises a working JavaMail installation. With the exception
of POP3, all the components in the installation view are shipped as part of WebSphere Application Server using the following Sun
licensed packages:

« mail.jar - contains JavaMail APls, the SMTP service provider, and the IMAP service provider.
« activation.jar - contains the JavaBeans Activation Framework.

283

IMAP POP3
mail store mail store
____________________________ Java Malil
/ .
SMTP IMAP POP3 '
SP SP SP |
.'
.'
Java Mail API JAF

284

4.6.1.1: Writing JavaMail applications

According to the J2EE specifications, each javax.mail.Sessioninstance must be treated as a resource factory. Therefore, to use JavaMail, do the following:
1. Declare mail resource references in your application component's deployment descriptors,as described in this example:
<resour ce-ref ><descri pti on>descri ption</description><res-ref-nane>mail/ Mil Sessi on</res-ref-nane><res-type>j avax. mai | . Sessi on</r es-type><res- aut h>Cont ai ner </ r es- aut h></resour ce-ref>
2. Configure, during deployment, each referenced mail resource.See article, 4.6.1.2: Configuring JavaMail, for a description of the parameters requiredto configure amail resource.
3. Locatein your application component, during runtime, each specific JavaMail session using JNDI lookup. An example of the code follows:
Sessi on session = (Session)ctx.|ookup("java: conp/env/ mail/Muil Session");

Y our application component can now use session to create messages and get store access.

Coding example for sending and saving a message

The following code segment shows how an application component sends a messageand saves it to the mail account's Sent folder:

javax.nam ng. I nitial Context ctx = new javax.naning.Initial Context();
mai | _session = (javax. mail.Session) ctx.|ookup("java: conp/ env/ nuil/ Mil Session");

M meMessage nsg = new M neMessage(nmil _session);
meg. set Reci pi ent s(Message. Reci pi ent Type. TO, | nternet Address. parse("bob@ol dnail.net"));

nsg. set Fron(new I nternet Address("al i ce@mi | . eedge. cont'));
nmeg. set Subj ect ("I nportant nessage from eEdge. cont');

neg. set Text (nmsg_t ext);

Transport.send(nsg);

Store store = nmil _session.getStore();
store.connect();

Fol der f = store.getFol der("Sent");

if (!f.exists()) f.create(Fol der. HOLDS MESSACES) ;
f . appendMessages(new Message[] {nsg});

See the related information links for the JavaMail APls.

http://www.javasoft.com/products/javamail/1.2/docs/javadocs/javax/mail/Session.html

4.6.1.2: Configuring JavaMail

A mail resourceis configured using appropriate system management facilities,as for example, the thin client.

Refer to article 6.6.37: Administering mail providers and mail sessionsfor detailed configuration instructions.
il The"mail originator" setting (the exact name in the administrative console varies depending
on the product edition; see 6.6.37.0.1 for a description) can beoverridden for individual messages
in your application, using methodM essage.setFrom()

See the related topics for more JavaMail documentation.

286

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/060637.html
http://www.javasoft.com/products/javamail/1.2/docs/javadocs/javax/mail/Message.html#setFrom()

4.6.1.3: Debugging JavaMail

There will be times when you need to debug your JavaMail applications.One option isto turn on JavaMail's debugging feature. With this
option on, JavaMail will print to stdout itsinteractions with the mail servers. Theseinteractions are printed in detail, in a step-by-step
format.

[il with WebSphere Application Server,stdout and stderr are usually redirected to files. The specific file paths can be set
with an application server's Properties > File panel.For example, for the Default Server, stdout is redirected by defaultto
thefile:

<WAS HOVE>\| ogs\ defaul t _server_stdout. | og

Enable debugging programmatically, or through the command line.

« Theeasiest way to turn on debugging is to call methodsetDebug()on the mail session after session is obtained through a JINDI
lookup, as shownbelow:

javax.nam ng. I nitial Context ctx = new javax.nam ng.Initial Context();
mai | _session = (javax.mail.Session) ctx.|ookup("java:conp/env/mail/Mil Session");
mai | _sessi on. set Debug(true);

This debugging approach requires re-compiling and, very likely, re-loading the applicationcomponent in which this code is
embedded. This approach may be impractical at times.

You can also edit thest ar t Ser ver Basi c. bat fileon WindowsNT orst art Ser ver Basi c. sh fileon UNIX platforms
and add the following flagto the line that starts the Java program:

- Dmai | . debug=t rue

« If your JavaMail codeisin aJava client which isinvoked from the commandline, add the -Dmail.debug=true flag to the java
command, and the debugging output will be displayed in the command window.

[il Property mail.debug,set with the last two approaches, is shared by all mail session instances within the
sameJVM process. When debugging is enabled in this manner, JavaMail will print out step-by-step,
mail-relatedinteractions to stdout for all these mail sessions.

The output in stdout looks like the following example;

DEBUG get Provider() returning javax.mail.Provi der[TRANSPORT, snt p]
DEBUG SMIP: useEhl o true, useAuth false

DEBUG SMrPTransport trying to connect to host "sntp3.eedge.coni, port 25
DEBUG SMIP RCVD: 220 rel ayl4. eedge. com ESMIP Sendmai | ; Tue, 19 Dec 2000 15:08:42 -0700
DEBUG SMIPTransport connected to host "sntp3. eedge.coni, port: 25

DEBUG SMTP SENT: EHLO y2001

DEBUG SMIP RCVD: 250-rel ayl4. eedge. com Hel | o testpc. eedge. com pleased to neet you
250- 8Bl TM ME

250- SI ZE 20000000

250- DSN

250- ONEX

250- ETRN

250- XUSR

250 HELP

DEBUG SMIP SENT: MAIL FROM <al i ce@mi | . eedge. conp
DEBUG SMIP RCVD: 250 <al i ce@mil . eedge. conp... Sender ok

DEBUG SMIP SENT: RCPT TO <bob@ol drai | . net >
DEBUG SMIP RCVD: 250 <bob@ol dmail.net>... Recipient ok

Verified Addresses
bob@ol dmai | . net 287

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/mail/Session.html#setDebug(boolean)

DEBUG SMIP SENT: DATA
DEBUG SMIP RCVD: 354 Enter mail, end with "." on a line by itself

DEBUG SMIP SENT:

bEBUG SMIP RCVD: 250 PAA125654 Message accepted for delivery

DEBUG SMIP SENT: QUI T

288

4.6.1.4: Running the JavaMail sample

The JavaMail sampleis packaged in an ear file called jmsample.ear that is locatedin directory:
product _instal | ation_root/install abl eApps
The JavaMail sample contains three application components:
1. one stateful session bean
2. oneserviet
3. oneJSPfile
Each component, when invoked, gathers data to compose a mail message,and then sends the message. Optionally, the sent message can also be saved in anlMAP account, in afolder named Sent. See article Writing JavaMail applicationsfor the coding example to send a message and create the Sent folder.
Complete the following tasks to use jmsample.ear:
1. Set up mail servers
2. Configure a Mail Session resource
3. Install thejmsample.ear components

1. Set up mail servers

To send out email messages, you need amail transport server.Since SMTP is the most widely used transport protocol, such amailserver is also known asa SMTP server. An alternative to installing and configuringyour own SMTP server, is to use an existing implementation.For example, if your Internet mail addressisjohn_smith@mycompany.com,then
mycompany.com could serve as your SMTP server. Ask your company's email administratorfor more information.

The componentsin the jmsample.ear file can optionally save a copy of thesent message into an email account. If you plan to try this capability, you will also need to set up an IMAP mail account.

N

Configure a MailSession resource

See article Properties related to JavaMail supportfor information on Mail Session resource properties.

One property that requires your attention when you configure the Mail Session resource for jmsample.ear is INDI Name.Y ou can explicitly define this property or allow System Management to defineit for you.
Since for all componentsin this sample the Mail Session resource references have been pre-boundto the INDI path nai | / Def aul t Mai | Sessi on, enter this pathin the INDI Name property.

If, at thistime, you do not define the INDI Name as shown above,you will have to bind the application's mail resource references to this mail sessionwhen you install jmsample.ear.

Review the tutorial, Create a JavaMail session,for detailed information on configuring the mail session resource.

w

. Install the jmsample.ear components

Install the jmsample.ear file as an enterprise application.Use the SEAppInstall command.

Perform the following stepsto install the jmsample.ear using the SEAppl nst al | command:
A. Go to acommand prompt.
B. Gototheproduct _i nstal | ati on_root\instal | abl eApps directory, and locate the jmsample.ear file.
C. Enter the following command to install the sample:
= For Windows, enter:

SEApplnstall -install jnmsanple.ear
= For UNIX platforms, enter:
product _instal | ati on_root/bin/ SEAppl nstal|.sh -install jnsanple.ear

The SEAppl nst al | command will display several messages indicating its progress. The command will also prompt you for input. In this example of the dialog, the questions asked by the command are in bold, and your responses areiin italics.
Do you wish to deploy all of the EJBsin thisapplication ([Y]es/[n]o)?
Yes

(A message should display indicating the EJBs were deployed successfully.)
Which type of database are you using (optional)?
0

What DB Schema name do you want to use for this application (optional)?
Press Enter
Do you wish to precompile all JSPsin this application ([Y]es/[n]o)?
Yes
(At the "Default Datasource JINDI Name (optional) []" prompt, press Enter to accept the default.)
(At the"INDI Name [€jb/JM SamEJB]:" prompt, press Enter to accept the default.)
(At the "IJNDI Name [mail/DefaultMail Session]:" prompt, press Enter to accept the default.)
(At the "INDI Name [mail/DefaultMail Session]:" prompt, press Enter to accept the default.)
(At the "JavaMail Sample WebApp (WebApp_1) []:" prompt, enter default_host to specify the virtual host.)
(A message should display stating the application installed successfully.)
D. Stop and restart WebSphere Application Server with the following commands:
= Go to acommand prompt
= OnWindows, enter st opSer ver . On UNIX platforms, enter pr oduct _i nstal | ati on_r oot/ bi n/ st opSer ver. sh

= OnWindows, enter st ar t Ser ver . On UNIX platforms, enter pr oduct _i nstal | ati on_r oot/ bi n/ start Server.sh
(Check the product_installation_root/logs/default_server_stdout.log file and make sure the " Server Default Server open for e-business' message is displayed.)

After theinstall, you can invoke the servlet or JSP by using one of the following URLSs:
http://1ocal host: 9080/ j msanpl e/ servl et
http://1 ocal host: 9080/ j nsanpl e/ Emai | . j sp

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06063700.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0607.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

To test the JavaMail servlet, do the following:
1. Open abrowser window

2. Enterhttp:// 1 ocal host: 9080/ j nsanpl e/ servl et
(The servlet GUI should display.)

3. Enter the following information, replacing variable input as appropriate:

To: Your e-mail address as for example, anybody@mycompany.com

Cc: Optionally enter another e-mail address here.

From: somebody@mycompany.com

Subject: JavaMail Serviet Test

Message to send: Any text as for example, Thisis a test message that isbeing sent from the JavaMail Mail Serviet.
Check the Save the sent message into mail store box.

Send Option: Asis

Click the Send button.
(If the test number at the top of the page was incremented from 1 to 2, the message was sent successfully.)

4. Log on to your e-mail account and verify that you received the mail
To test the JavaMail Java Server Page, do the following:
1. Open abrowser window

2. Enterhtt p: / /1 ocal host: 9080/ j nsanpl e/ Emai | . j sp
(The Java Server Page GUI should display.)

3. Enter the following information, replacing variable input as appropriate:

To: Your e-mail address as for example, anybody@mycompany.com

Cc: Optionally enter another e-mail address here.

From: somebody@mycompany.com

Subject: JavaMail JSP Test

Message to send: Any text as for example, Thisis a test message that isbeing sent from the JavaMail Mail JSP.
Check the Save the sent message into mail store box.

Send Option: Asis

Click the Send button.

(If the test number at the top of the page was incremented from 1 to 2, the message was sent successfully.)
4. Log on to your e-mail account and verify that you received the mail

Use these instructions to invoke the EJB:
A. Locatefile deplmtest.jar in the product_installation_root/InstalledApps/jmsample.ear directory.
B. Copy the deplmtest.jar file to the product_installation_root/classes directory.

il The deplmtest jar file contains all the artifacts for the EJB, including the proxies and asimple client.
C. Theclient uses the system properties as data input forthe message creation.The following example demonstrates how Java system properties are gathered for the EJB client on Windows NT:

[il Theline breaksin this example were added to make the information more legible. Thisinformation really exists as one line of input.
Change the property valuesin this example to the ones you defined for your test.

For the Windows platform, specify the following:

product _instal | ati on_root\java\bin\java

-Dj ava. ext. di rs=product _i nstal l ati on_root\java\jre\lib\ext;product_installation_root\classes;product_installation_root\lib-Djava.nam ng.factory.initial =comibm websphere. nanm ng. Wnl ni ti al Cont ext Fact ory- Dmai | t est .t o=bob@ryconpany. con
-Dmai | test. cc=al i ce@yconpany. com Dnai | t est. f romsj ohn@ryconpany. com - Dmai | t est. subj ="1 nportant nessage sent from an

EJB"-Dnai | t est. message="As the subject line says, this is a very inportant nessage." -Dmailtest.save_nsg=off

- Dmai | test . ej bhome=ej b/ JMSanpEJB nmi | test. Mai | Oient

For UNIX platforms, specify the following:

[} Entering the following command as one, continuous lineof input at acommand prompt might not work on some UNIX platforms. Use the back slashto indicate the command continues on the next line, or invoke the command from a shell script.
product _instal | ati on_root/javal/bin/java
-Dj ava. ext. di rs=product _i nstal l ati on_root/java/jre/lib/ext:product_installation_root/classes:product_installation_root/lib-Djava.nam ng.factory.initial=comibm websphere.nam ng. Wnl ni ti al Cont ext Fact ory- Dmai | t est.to=bob@ryconpany. con
-Dmai | test. cc=al i ce@yconpany. com Dnai | t est . f r on¥j ohn@yconpany. com - Dnai | t est. subj =" I nportant nessage sent from an
EJB"-Dnmi | t est. message="As the subject line says, this is a very inportant nessage." -Dmailtest.save_nsg=off
- Dmai | t est . ej bhone=ej b/ IMSanpEJB mai | test. Mai | Oi ent

See the related topics for links to Javadoc and the Create a JavaMail session tutorial.

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.6.2: INDI (Java Naming and Directory Interface)
overview

Distributed computing environments often employ namingand directory services to obtain shared components
and resources.Naming and directory services associate names with locations, services, information, and
resources.

Naming services provide name-to-object mappings. Directory services provide nformation on objects and the
search tools required to locate those objects. There are many naming and directory service implementations, and
theinterfaces to them vary.

Java Naming and Directory Interface or INDI provides a common interface thatis used to access the various
naming and directory services.See URL java.sun.com/products/jndi/serviceproviders.htmlfor alist of naming

and directory service providers which supportaccess through the INDI interface.
JNDI isanintegral part of other Java programming models and technologies, such as:
« Enterprise JavaBeans (EJB)
« JavaMail
« Java Database Connection Service (JDBC)
» JavaMessage Service (IMS)

291

http://java.sun.com/products/jndi/serviceproviders.html

4.6.2.1: INDI implementation in WebSphere
Application Server

IBM WebSphere Application Server includes a name server to provideshared access to Java components, and
an implementation of thel avax. nam ng JNDI package which allows users to accessthe WebSphere name

server through the INDI naming interface.
WebSphere Application Server does not provide implementations for:
e javax.namng.directory or
e javax. nam ng. | dap packages
Also, WebSphere Application Server does not support interfaces defined in the
j avax. nam ng. event package.

However, to provide accessto LDAP servers, the JDK shipped with WebSphere Application Server supports
Sun's implementation of :

e javax. nam ng. | dap and
« com sun. jndi. | dap. LdapCt xFact ory

WebSphere Application Server's INDI implementation is based on version 1.2 of the INDlinterface, and was
tested with version 1.2.1 of Sun's INDI SPI (Service Provider Interface).

The default behavior of this INDI implementation should be adequatefor most users. However, users with
specific requirements cancontrol certain aspects of the INDI behavior. See the following section for information
on modifying the INDI behavior:

« JNDI caching - Description of the caching feature and properties, andthe effects of the different
properties on caching behavior.

292

http://www.javasoft.com/products/jndi/1.2/javadoc/index.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/directory/package-summary.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/ldap/package-summary.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/event/package-summary.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/ldap/package-summary.html
http://java.sun.com/products/jndi/tutorial/beyond/env/source.html#SYS

4.6.2.2: Using JNDI

Refer to these examplesto learn how to use JNDI.

Get aninitial context

Get aninitia context using JNDI properties found in the current environment
Get aninitial context by explicitly setting INDI properties

Look up a home for an EJB

Look up aJavaMail session

Get an initial context

In general, INDI clients should assume the correct environment isalready configured so there is no need to explicitly set property values and passthem to the

I ni tial Cont ext constructor. However, a INDI client may needto access a name space other than the one identified in its environment.In this event, itis
necessary toexplicitly set one or more properties used by thel ni t i al Cont ext constructor. Anyproperty values passed in directly tothel ni ti al Cont ext
constructor take precedenceover settings of those same properties found elsewhere in the environment.

View the following examples for information on passing property valuestothel ni t i al Cont ext constructor:

Get aninitial context using JNDI properties found in the current environment:

The current environment includes the Java system properties and properties defined inproperties files found in the INDI client's
CLASSPATH. See article Installing files and setting classpathsfor information on defining CLASSPATHS.

- i mport javax.nam ng. Cont ext; i mport javax.nami ng. | nitial Context; - Cont ext
initial Context = new Initial Context();
Get aninitial context by explicitly setting INDI properties:
.. import java.util.Hashtable; i mport j avax. nam ng. Cont ext ; i mport
j avax. nam ng. I ni ti al Cont ext; - Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, "com i bm websphere. nanmi ng. Wnl ni ti al Cont ext Factory");
env. put (Cont ext. PROVI DER_URL, "iiop://nyhost. myconpany.com 900"); Context initial Context = new
I nitial Context(env); .

Look up ahome for an EJB
The example below shows alookup of an EJB home. The actual home lookup nameis determined by the application's deployment descriptors.

/1l Get the initial context as shown in the previous exanple /1 Look up the hone interface
using the JNDI nane try { j ava. |l ang. Ooj ect ej bHone =
initial Context.|ookup("java: conp/ env/ conp/ myconpany/ accounting"); account Home =
(Account Hone) j avax. rm . Por t abl eRenpt eObj ect . nar r ow((org. ong. CORBA. bj ect) ej bHone,
Account Hone. cl ass) ; } catch (Nam ngException e) { // Error getting the hone interface

}

Look up aJavaMail session:

The example below shows alookup of a JavaMail resource. The actua |ookup nameis determined by the application's deployment
descriptors.

/1 Get the initial context as shown above ... Sessi on session = (Session)
initial Context.|ookup("java: conp/env/nmail/Mail Session");

293

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0604.html

4.6.2.3: INDI caching

To increase the performance of INDI operations, WebSphere Application Server'sINDI implementation employs caching to reduce the number of remote
callsto thename server. For most cases, use the default cache setting.

JNDI context objects employ caching to increase the performanceof JNDI lookup operations. Objects bound and looked up are cached in orderto speed up
subseguent lookups of those objects. Objects are cached asthey are bound or initially looked up. Normally, INDI clients should beable to use the default
cache behavior. The following sectionsdescribe in detail cache behavior, and how JNDI clients can override defaultcache behavior if necessary.

» Cache behavior
« Cache properties
« Coding examples

Cache behavior

A cacheis associated withan initial context when aj avax. nami ng. | ni ti al Cont ext object isinstantiatedwith the
java. nam ng. factory.initial property setto:

com i bm webspher e. nam ng. W&nl ni ti al Cont ext Factory

Wsnl ni ti al Cont ext Fact ory searches the environment properties for a cachename, defaulting to the provider URL. If no provider URL is defined,
acache name of "iiop:///" isused. All instances of Initial Context whichuse a cache of a given name share the same cache instance.

After an associationbetween an Initial Context instance and cache is established, the associationdoes not change. A j avax. nami ng. Cont ext object
returned from alookup operationwill inherit the cache association of the Context object on which the lookupwas performed. Changing cache property values
with the Cont ext . addToEnvi ronment () or Cont ext . r enoveFr onEnvi r onnment () method does not affect cache behavior.Properties affecting
agiven cache instance, however, may be changed witheach Initial Context instantiation.

A cacheis restricted toa process and does not persist past the life of the process. A cached objectis returned from lookup operations until either the max
cache life forthe cache is reached, or themax entry life for the object's cache entryis reached.

After thistime, alookup on the object will cause the cacheentry for the object to be refreshed. If abind or rebind operation isexecuted on an object, the
change will not be reflected in any caches otherthan the one associated with the context from which the bind or rebindwas issued. This "stale data"' scenario
ismost likely to happen when multipleprocesses are involved, since different processes do not share the samecache, and Context objectsin all threadsin a
process will typically sharethe same cache instance for a given name service provider.

Usually, cached objects are relatively static entities, and objects becoming staleshould not be a problem. However, timeout values can be set on cache
entriesor on a cache itself so that cache contents are periodically refreshed.

Cache properties

JNDI clients can use several propertiesto control cache behavior. These properties can be set in theenvironment Hashtable passed to the Initial Context
constructor.
You can set properties:
o From the command line
o Inapropertiesfile
o Within a Java program
« To set properties through the command line,enter the actual string value as indicated in this example:
java -Dcom i bm websphere. nani ng. j ndi cache. maxentryl i fe=1440
« Toset propertiesin afile,create atext file listing the properties, as for example:
com i bm webspher e. nam ng. j ndi cache. cacheobj ect =none
o To set propertiesin a Java program,use the following PROPS.JNDI_CACHE* Java constants, defined in com.ibm.websphere.naming.PROPS:
public static final String JNDI _CACHE OBJECT =

"com i bm webspher e. nam ng. j ndi cache. cacheobj ect”; public static final String

JNDI _CACHE_OBJECT_NONE = "none"; public static final String JNDI _CACHE_OBJECT_POPULATED =
"popul at ed"; public static final String JND _CACHE OBJECT_CLEARED = "cl eared"; public static
final String JND _CACHE OBJECT_DEFAULT = JNDI _CACHE_OBJECT_POPULATED; public static final
String JNDI _CACHE_NAME = "com i bm webspher e. nami ng. j ndi cache. cachenane”; public static final
String JNDI _CACHE_NAVE _DEFAULT = "provider URL"; public static final String JND _CACHE MAX LI FE =
"com i bm webspher e. nam ng. j ndi cache. maxcachel i fe"; public static final int

JNDI _CACHE_MAX_LI FE_DEFAULT = O0; public static final String JNDI _CACHE_MAX ENTRY_LI FE =

"com i bm webspher e. nam ng. j ndi cache. maxentrylife"; public static final int

JNDI _CACHE_MAX_ENTRY_LI| FE_DEFAULT = O0;
To set aproperty in your program, enter the following:
env. put (PROPS. JNDI _CACHE_OBJECT, PROPS. JNDI _CACHE _OBJECT_NONE). // Sets a property to a val ue

Cache properties are evaluated when an Initial Context instance iscreated. The resulting cache association, including"none”, cannot bechanged. The "max

life" cache properties affectthe individual cache's behavior. If the cache already exists, cache behavior will beupdated according to the new "max life"
property settings. If no"max life" properties exist in the environment, the cachewill assume default "max life"settings, irrespective of the previous
294

settings. The various cache properties are describedbelow. All property values must be string values.
« com.ibm.websphere.naming.jndicache.cacheobject

Caching isturned on or off with this property. Additionally, an existingcache can be cleared.Listed below are the valid values for this property and
the resulting cachebehavior:

= "populated” (default): Use a cache with the specified name. If the cache already exists, leave existing cache entries in cache; otherwise,
create anew cache.

= "cleared": Use acache with the specified name. If the cache already exists, clear all cache entries from cache; otherwise, create a new cache.

= "none": Do not cache. If this option is specified, the cache nameisirrelevant. Therefore, this option will not disable a cache that is already
associated with other Initial Context instances. The Initial Context being instantiated will not be associated with any cache.

« com.ibm.websphere.naming.jndicache.cachename

It is possible to createmultiple Initial Context instances, each operating on the namespace of adifferent name service provider. By default, objects
from each serviceprovider are cached separately, since they each involve independent namespacesand name collisions could occur if they used the
same cache. The providerURL specified when the initial context is created serves as the defaultcache name. With this property, a INDI client can
specify a cache nameother than the provider URL. Listed below are the valid options forcache names:

= "providerURL" (default): Use the value for java.naming.provider.url property as the cache name. The default provider URL is"iiop:///".
URLs are normalized by stripping off everything after the port. For example, "iiop://server1:900" and "iiop://server1:900/com/ibm/initCtx"
are normalized to the same cache name.

= Any string: Use the specified string as the cache name. Any arbitrary string with a value other than "providerURL" can be used as a cache
name.

« com.ibm.webspher e.naming.jndicache.maxcachelife

By default, cached objects remain in the cache for the life of the process oruntil cleared with the com.ibm.websphere.naming.jndicache.cacheobject
propertyset to "cleared". This property enables a INDI client to set the maximum lifeof a cache as follows:

= "0" (default): Make the cache lifetime unlimited.

= Positive integer: Set the maximum lifetime of the cache, in minutes, to the specified value. When the maximum cache lifetime is reached, the
cacheis cleared before another cache operation is performed. The cacheis repopulated as bind, rebind, and lookup operations are executed.

« com.ibm.webspher e.naming.jndicache.maxentrylife

By default, cached objects remain in the cache for the life of the processor until cleared with the
com.ibm.websphere.naming.jndicache.cacheobjectproperty set to "cleared”. This property enables a INDI client to set themaximum lifetime of
individual cache entries as follows:

= "0" (default): Lifetime of cache entriesis unlimited.

= Positive integer: Set the maximum lifetime of individual cache entries, in minutes, to the specified value. When the maximum lifetime for an
entry isreached, the next attempt to read the entry from the cache will cause the entry to be refreshed.

Coding examples

import java.util.Hashtable;inport javax.nam ng.lnitial Context;inport javax.nam ng.Context;/*****
Caching discussed in this section pertains to the WbSphere Application Server initial context
factory. Assume the property, java.namng.factory.initial, is set to

"comibmejs.ns.Wnlnitial ContextFactory" as a java.lang. System property.*****/ Hasht abl e env; Cont ext
ctx;// To clear a cache:env = new Hashtabl e(); env. put (PROPS. JNDI _CACHE_OBJECT,

PROPS. JNDI _CACHE_OBJECT_CLEARED) ; ctx = new I nitial Context(env);// To set a cache's naxi mum cache
lifetime to 60 m nutes:env = new Hashtabl e(); env. put (PROPS. JNDI _CACHE_MAX_LI FE, "60");ctx = new
Initial Context(env);// To turn caching off:env = new Hashtabl e(); env. put (PROPS. JNDI _CACHE_OBJECT,
PROPS. JNDI _CACHE_OBJECT_NONE) ; ctx = new I nitial Context(env);// To use caching and no caching: env =
new Hasht abl e(); env. put (PROPS. JNDI _CACHE_OBJECT, PROPS. JNDI _CACHE_OBJECT_POPULATED) ; ct x = new
Initial Context(env); env. put(PROPS. JNDI _CACHE_OBJECT, PROPS. JNDI _CACHE_OBJECT_NONE) ; Cont ext
noCacheCtx = new Initial Context(env); Cbject o;// Use caching to | ook up hone, since the home should
rarely change.o = ctx. | ookup("conl nyconl MyEJBHone");// Narrow, etc. ...// Do not use cache if data
is volatile.o = noCacheCt x. | ookup("com mycom Vol atil eCbject");//

295

4.6.2.4: INDI helpers and utilities

Refer to the Sun JNDI specificationfor information on the base INDI APIs. IBM WebSphere Application Server
provides the following JNDI extension and utility to help you implement and debug JNDI.

View the specific files for details.
« JINDI helper class

« Name Space Dump utility

296

http://www.javasoft.com/products/jndi/1.2/javadoc/index.html

4.6.2.4.1: INDI helper class

Theclasscom i bm webspher e. nani ng. Jndi Hel per s contains static methodsto simplify common tasks. Refer to theAPI documentationfor more
information.

JINDI helper methods provide assistance with:
« Recursively creating subcontexts.

e i mport com i bm websphere. nam ng. Jndi Hel per; [...] try { Cont ext
startingContext = new Initial Context(); startingContext =
starti ngCont ext .| ookup("com myconpany"); /| Creates each internediate subcontext, if
necessary, as well as |leaf context. /1 Al readyBoundException is not thrown.
Jndi Hel per. recursiveCreat eSubcont ext (starti ngContext, "apps/accounting"); } catch
(Nam ngException e) /1l Handle error. } [...]
« Rebinding objects and creating intermediate contexts that do not already exist.

[...] i mport com i bm webspher e. nam ng. Jndi Hel per; [...] try { Cont ext
startingContext = new Initial Context(); /1 Creates each internedi ate subcontext, if necessary,
and rebi nds obj ect. Jndi Hel per. recursi veRebi nd(starti ngCont ext,

"com myconpany/ apps/ accounti ng”, someObject); } catch (Nam ngException e) /1 Handl e
error. } [...]

« Binding objects and throwing a NameAlreadyBoundException if the object is already bound.

There are two versions of this JndiHelper method:

public static void recursiveBi nd(Context startingContext, Nane name, Object obj) public
static void recursiveBi nd(Context startingContext, String name, Cbject obj)

[...] i mport com i bm webspher e. nam ng. Jndi Hel per; [...] try { Cont ext
startingContext = new Initial Context(); /'l Creates each internedi ate subcontext, if necessary,
and bi nds obj ect. Jndi Hel per.recursiveBi nd(startingContext, "conl myconpany/apps/accounting",
sonebj ect) ; } catch (Nam ngException e) /1 Handl e error. } } catch
(Exception e) /1 Handl e other errors. } [...]

297

http://localhost/0802_makepdf/apidocs/index.html

4.6.2.4.2: INDI Name Space Dump utility

The name space stored by a given name server can be dumped withthe name space dump utility that is shipped with WebSphere Application Server.This
utility can be invoked from the command line or from a Java program. Thenaming service for the WebSphere Application Server host must be active when
this utilityis invoked.

Toinvoke this utility using thecl ass com i bm webspher e. nanm ng. DunpNaneSpace API, see the APl documentation.

To invoke the utility through the command line, enter the following commandfrom the AppServer/bin directory:
UNIX: dumpNameSpace.sh [[-keyword valug]...]
WindowsNT: dumpNameSpace [[-keyword value]...]

The keywords and associated values for the dumpNameSpace utility are:

-host myhost.austin.ibm.com

Represents the bootstrap host or the WebSphere Application Server host whose name space youwant to dump. The value defaults to
localhost.

-port nnn
Represents the bootstrap port which, if not specified, defaults to 900.
-factory com.ibm.websphere.naming.Wsnlnitial ContextFactory

Indicates the initial context factory to be used to get the INDI initialcontext. The value defaults to:
com.ibm.websphere.naming.Wsnl nitial ContextFactory
The default value generally does not need to be changed.

-startAt some/subcontext/in/the/tree

Indicates the path from the bootstrap host's root context to the toplevel context where the dump should begin. The utility recursively dumps
subcontextsbelow this point. It defaults to an empty string, that is, the bootstrap host root context.

-format {jndi | ins}
jndi Displays name components as atomic strings.
il The default format isjndi.
ins Displays name components parsed per INS rules (id.kind).
-report { short | long}
short Dumps the binding name and bound object type. This output is also provided by JINDI Context.list().
[l The default report option is short.

long Dumps the binding name, bound object type, local object type, and stringrepresentation of the local object (that is, the IORs,
string values, and other values that are printed).

For objects of user-defined classes to display correctly with the long report option, it may be necessary to add their
containing directoriesto the list of directories searched. This can be done by setting the environment variable
WAS_USER_DIRS.The value can include one or more directories, as for example:

UNIX:
WAS USER DI RS=/usr/cl assdirl:/usr/classdir2 export WAS USER DI RS

Windows NT:
set WAS USER DI RS=c:\classdirl;d:\classdir2

All zip, jar, and classfiles in the specified directories can then be resolved bythe class |oader when running
dumpNameSpace

-traceString " some.package.name.to.trace.* =all=enabled"

Represents the trace string with the same format as that generated by the servers. The outputis sent to file, DumpNameSpaceT r ace.out.
-help

Provides a description of Name Space Dump utility and command line usage.

Examples of Name Space Dump utility usage and output

« Invoke the name space dump utility through a Java program.
« Invoke the name space dump utility through the command line.
« View the name space dump utility output.

. zbryoke the name space dump utility by adding the following code to your Java program:

http://localhost/0802_makepdf/apidocs/index.html

{ [...] java.io.PrintStreamfilePrintStream= ... Context ctx = new Initial Context(); ctx =
(Context) ctx.|ookup("ejsadm n/node"); /] Starting context for dunp DunpNanmeSpace dunpUtil = new
DunpNaneSpace(fil ePrint Stream DunpNanmeSpace. SHORT); dumpUWUi | . generat eDunp(ct x); [...1}

Invoke the name space dump utility from the command line by entering the following command:
dunpNarmeSpace -host myhost. myconpany. com -port 901
The generated output will ook like the following example, which isthe SHORT dump format:

Getting the initial contextGetting the starting

cont ext Name
Space Dunp Provider URL: iiop://will:901 Cont ext factory:

com i bm webspher e. nam ng. Wenl ni ti al Cont ext Fact ory Starting context: (top)=bootstrap host root
cont ext Formatting rules: jndi Tinme of dunp: Fri Mar 09 15:11:48 CST

2001==

===Begi nni ng of
Nanme Space Dunp =
1 (top) 2 (top)/jta

j avax. nam ng. Cont ext 3 (top)/jtalusertransaction

comibmejs.jts.jta. User Transacti onl npl 4 (top)/SecurityCurrent
comibmejs.security.util.SecurityCurrentRef 5 (top)/ Cont ext Hone

comibm ej s. ns. CosNan ng. EJSRenpt eCont ext Hone 6 (top)/PropertyHonme

com i bm ej s. ns. CosNani ng. EJSRenot ePr opert yHone 7 (top)/Bi ndi ngHoe

com i bm ej s. ns. CosNani ng. EJSRenot eBi ndi ngHone 8 (top)/will

j avax. nam ng. Cont ext 9 (top)/will/resources j avax. nam ng. Cont ext
10 (top)/will/resources/sec j avax. nam ng. Cont ext 11

(top)/w ll/resources/sec/ SecurityServer com i bm WebSpher eSecurityl mpl. SecurityServerl npl
12 (top)/ejsadm n j avax. nam ng. Cont ext 13 (top)/ejsadm n/ node
j avax. nam ng. Cont ext 14 (top)/ejsadm n/ node/ will j avax. nam ng. Cont ext
15 (top)/ejsadm n/ node/ wi ||/ homes j avax. nam ng. Cont ext 16

(top)/ej sadm n/ node/ wi | | / homes/ Depl oyEJBHomne comibmejs.smtasks. EJSRenot eDepl oyEJBHone 17

(top)/ej sadm n/ node/ wi | | / homes/ Ser vl et Engi neHone
comibm ejs. sm beans. EJSRenot eSer vl et Engi neHone[et c.]

===End of Nane
Space Dunp== —=

299

4.6.3: Java Message Service (JMS) overview

IBM WebSphere Application Server supports messaging as a method of communication based on the Java
M essageService programming interface.

Unlike JavaMail that enables communication initiated by people or by software components to people, Java
Message Service (or IMS)only provides communication between software components and applications.
Communication provided by IMS is loosely coupled, which meansthe sender and receiver do not have to be
active or aware of each other. The communication is also asynchronous. This meansclients do not have to
request messages from the IM S provider in order to receive them, and software components can send messages
to other components without stopping their processes to wait for a response.

In this peer-to-peer communication system, each client connects to a messaging agent that provides the
framework for sending and receiving messages. The client is required to know only the following:

» message format
o destination of the message

There are two approaches to messaging:
« Point-to-point
« Publish/subscribe

The point-to-point messaging approach uses such facilities as message queues, senders (or message producers),
and receivers (or message consumers). Clients send messages that are destined for a specific receiver to a
unique queue. When the receiving client extracts a message from the specific queue, it sends an
acknowledgement indicating the message was processed. Queues hold all messages until the messages are
received or until they expire.

The publish/subscribe messaging approach uses the concepts of publishers, subscribers, and topics. Clients send
messages to atopic or a content hierarchy.In order to receive the message, the message consumers must
subscribe to that topic. So, in this approach,the message producers are known as publishers and the message
consumers are known assubscribers. The IMS provider distributes the messages sent from the multiple
publishers to the topic, to the multiplesubscribers of that topic.

The MQSeries product is the default IMS provider for WebSphere Application Server. The MQSeries

administration tool, JM SAdmin, is used to bind JM S objects (connection factories and destinations) into the
namespace, and to set their properties.

WebSphere Application Server Enterprise Edition Version 4.0 also provides the IMS Listener function. Similar
to an event listener, the IM S Listenerenables WebSphere Application Server to react to anonymous, incoming
JM'S messagesby invoking an appropriate enterprise java bean. The invoked enterprise bean is a stateless
session bean with anonMessage() method.

300

http://www.ibm.com/software/ts/mqseries/api/mqjava.html

4.6.3.1: Using the JMS point-to-point messaging
approach

This article describes the point-to-point messaging approach using WebSphere ApplicationServer's default IM S
provider, MQSeries. The MQSeries messaging server implements point-to-point communication. To enable the
M QSeries point-to-point messaging support, you need:

o MQSeriesVersion 5.2 or greater
o With MQSeries Version 5.2, you need MQSeries SupportPac MA88

MQSeries can now act as a resource manager in application transactions, and WebSphere Application Server can act as
the transaction coordinator.For example, when a client application sends a request, WebSphere Application Server,
using MQSeries, puts the message on an outqueue and waits for a response to return to the in gueue.In this scenario,
there is no guarantee the message was sent, or that the receiver received the message. These types of messages are
known as non persistentmessages.

The point-to-point messaging approach in WebSphere Application Server and MQSeriesisillustrated in the following
graphic:

nitiator ' WebSphere AppServer Application Server
client | ——g | /PPICALICH Application
application | -—— | Server i Server

3

4 E

: L

| | request _

; out | o |_{in

L_|in e | Jout

MG reply ey

Message delivery can be defined as:
« Persistent - thisis the default mode of delivery. The "message send” islogged into stable storage.
« Non persistent - message delivery is not guaranteed. This mode of delivery improves performance and reduces
storage overhead.
Message delivery properties can be set:
« On the queue within the queue manager
« On the queue object using the IM SAdmin tool
e Onindividua messages within your JIMS application
To define a queue in the INDI namespace and to set thepersistence properties for the queue,enter the following
command in the MQSeries IM SAdmin tool:
InitCtx> DEFI NE Q TESTQ PERSI STENCE(XXX)
Where xxx is one of the following:

301

|APP | (Default) Persistence s defined by the application

|QDEF |Persistence is defined by the queue default (Set in the queue manager)
|PERS |Messages are persistent

INON |Messages are non-persistent

If your application sends a message and requires areply, set areasonable timeoutvalue in your application to handle a
delayed or "no" reply situation. The followingapplication code waits for a maximum of 5000 milliseconds:

Message i nMessage = queueRecei ver.receive(5000);
Set asimilar timeout in your reply message.
Transactions to MQSeries are boundary transactions not end-to-end transactions. This means that only a put to a queue,

or aget from aqueue is part of the transaction. The flow to aremote application is notpart of the transaction. In order to
guarantee the message is received bythe remote application, define that message in the IM SAdmin tool as a persistent

message.

WebSphere enterprise applications can use the IMS Listener function to automaticallyreceive messages from input
gueues (JM S destinations) and to coordinate the processing of those messages. This enables automatic
asynchronousdelivery of messages to an enterprise application, instead of the applicationhaving to explicitly poll for
messages on the queue. For more information on the IM S Listener function, see An overview of the IMS Listener.

il Thelink to the IMS Listener documentation will not work unless the WebSphere Application
Server Enterprise Edition product extensions are installed on your system.

See the Support of the MQSeries Java M essage Service resources article for configuration information.

302

http://localhost/0802_makepdf/aes_orig/jmslistn/concepts/cjlovrvw.htm

4.6.3.2: Using the JMS publish/subscribe messaging
approach

This article describes the " publish/subscribe" messaging approach using WebSphere ApplicationServer's default
JMS provider, MQSeries. You can implement the " publish/subscribe" messaging approach in MQSeries with the
Pub-Sub SupportPac or with Integrator.

To alleviate the complexity of a multiple queue manager topology, MQSeries introduced the concept of

Message Brokers with the MQSeries Integrator product. The following graphic illustrates five queue managers
configured to use a Message Broker:

Mainframe

Mesgage

Mainframe
R broker ; —
L [
;”f K‘x_
'Il.-.-'" "'.\h\‘
=g e —
IBM AS/A00 Minkcomp uter

In addition to the Message Broker, the Integrator product also supportsa Message Repository Manager, and the
publish and subscribe messaging approach.With this approach, the Message Broker matches atopic on a
published message with alist of clients who have subscribed to that topic. Neither publisher nor subscriber is
aware of each other. Publishers only know of the topics they describe for their messages, and subscribers only
know of the topicsthey requested.

In this topology, WebSphere Application Server can be a publisher or subscriber, or both, but requires the
configuration and resource support of the MQSeries Integrator product.

Visit the MQSeries Integratorsite for more information.

303

http://www.ibm.com/software/ts/mqseries/v5/pubsub.html
http://www.ibm.com/software/ts/mqseries/integrator/v202/

4.6.3.3: Support of Java Message Service resources

Unlike other J2EE resources that are typically objects that run in and are part of the application server, IMS
resources are external to WebSphere Application Server.This means administrators must first useaJMS
provider's administration tool to create the connection factories and destinations, and to assign these objects
with correctconfiguration attributes. After this step is completed, administrators can then use WebSphere
Application Servers administrative client to create JM S resource objects to reference the external objects.

In WebSphere Application Server Version 4.0, the MQSeries product is defined as thedefault IM S provider.
However, since MQSeries is not shipped with WebSphere Application Server, this IMS provider is not installed

on any node.
Since this provider is predefined, after you install the MQSeries product, you only need to go to the Nodes tab
of theproperties editor for the Provider to install it on the desired nodes.

The following steps describe how to implement JMS support in WebSphere Application Server:
1. Configure aJJMS provider. By default thiswill be the MQSeries product.

2. Create the destination and connection factory with the IMS provider's admin tool.
Thiswill bind references to these objectsin the INDI namespace.

3. Create corresponding JM S resources in WebSphere Application Server, declaring the location where
they were bound by the IMS admin tool as an attribute.
The Reposi t or yObj ect implementation for the resource binds the resource into the WebSphere
Application Servernamespace.

4. Deploy the application, which resolves the IM S resource references with the IM S objects.
5. Start the application server containing the application.

At this point, the Resour ceBi nder object in the application server binds theJM S resource
objects into the namespace.

6. The application code performs a"lookup" on a IMS resource.
The "lookup" findsthe | ndi r ect JNDI Lookup bound at the target WebSphere Application Server
location, and uses it to perform a subsequent lookup of the actualresource in the provider's namespace.

304

4.6.3.4: Support for the use of MQSeries Java Message
Service resources

WebSphere Application Server Enterprise JavaBeans support the transactional use of MQSeries Java Message Service
(IMS) resources.

To use thisfeature, install MQSeries version 5.2 and the MQSeries classes for Javaand IMS.Only MQSeries V5.2
provides this support; earlier versions will not work.
To configure IM S resources for use with WebSphere Application Server:
1. Download the MQSeries Java and JM S classes, or the pub-sub packagefrom one of the following URLs:
o http://www.ibm.com/software/tsmgseries/api/mgjava.html

o http://www.ibm.com/software/tsmgseries/txppacs/malc.html

2. Review the MQSeries Using Java book for a description of the parameters required for WebSphere Application
Server.

il Theinstructionsin this book refer to a\WebSphere Application Server Version 3.5.3
environment, and are not valid for WebSphere Application Server Version 4.0. For example, the
following content in the book isinvalid for Version 4.0:

o Namesof jar files
o Dependent classpath
o Adminserver classpath
3. Do thefollowing to configure WebSphere Application Server and MQSeries for JIM S support:

a. Modify the IMSAdmi n. bat filetoincludetheoption - j ava. ext . di r s=<W5 AE>\| i b when
running the M QSeries administration tool, JIM SAdmin.

b. Modify the IMSAdni n. conf i g file by uncommenting the following lines:
I NI TI AL_CONTEXT_FACTORY=com i bmejs.ns.jndi.CN nitial ContextFactory
PROVI DER_URL=i i op://1 ocal host/ (oriiop://host-nane)

c. Comment out the following linesin the JMSAdm n. confi g file:
I NI TI AL_CONTEXT_FACTORY=com i bm sun. j ndi . f scont ext . Ref FSCont ext Fact ory
PROVI DER_URL=file:/ C./JNDI-Directory/

d. Add thefollowing to the application server classpath:

[il You can add these classes in the console'sdefault VM settings, or by editing
WebSphere Application Server'sadm n. confi g file.

= <MQ JMB>\ | b directory

= comibmng.jar file

= comibmngjns.jar file
[il An dternative way to set up the configuration isto use the administrative console. In
the Resources, JM S Providers folder, specifythe ContextFactory, the provider URL, and

the path to the MQSeries IMS. . j ar files.See the article about administering IMS
support resources for more information.

4. Bind the classes provided by the new function into the INDI namespace using the M QSeries administration
tool, IM SAdmin.The IM SAdmin tool provides for two, new WebSphere Application Server JM S connection

factories:
o WSQCF - anew type of queue connection factory
o WSCTF - anew type of topic connection factory

305

http://www.ibm.com/software/ts/mqseries/api/mqjava.html
http://www.ibm.com/software/ts/mqseries/txppacs/ma0c.html
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw.htm
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw11.htm
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw11.htm

WebSphere Application Server connection factory objects

The following calls can be used either in a global transactionor in an unspecified transaction context:
o QueueSender.send
o MessageConsumer.receive
» MessageConsumer.receiveNoWait
« TopicPublisher.publish
If another resource manager, as for example JDBC, isinvolved in a globaltransaction, the MQSeries IM S resources are

involved in a 2-phase commit.The 1-phase commit occursif only the IM S resources are involved in aglobal
transaction. Thisis afeature of the Transaction Manager optimization.

In aglobal transaction, messages sent with QueueSender . send or published with Topi cPubl i sher. publ i sh
do not become visible until thetransaction is committed. Messages received by MessageConsurer . r ecei veor
MessageConsuner . recei veNoWai t arerequeued if the transaction isrolled back. Both bean-managed
transaction demarcation and contai ner-managedtransaction demarcation are supported.

If no global transaction is active, then an "unspecified transaction context"situation occurs. The following
circumstances cause an "unspecified transaction context:"

« EJB methods when a global transaction cannot occur (for example, ej bCr eat e)

« Bean Managed Transaction methods where the bean writer chose not to begin atransaction

« Container Managed Transaction NOT_ SUPPORTED or NEVER methods

« Container Managed Transaction SUPPORTS methods when no transaction exists
In an unspecified transaction context, the transactional behavior is specified in thetransacted flag that is passed when
the session is created. If the transacted flag is setto fal se, the messaging operations occur immediately. Thisisalso

known as the 0-phase commit.If the flag is set to true, the send, receive, and publish operations occur on the commit of
the session,or also known as the 1-phase commit.

A summary of the transactional behavior for objects created on WSQCF or WSTCF is described in the following table:

|Global transaction context |Unspecified transaction context
|transacted=fal se| 2-phase commit |0-phase commit
|transacted=tr ue |2-phase commit |1-phase commit

To commit or to roll back the messaging work done on a transacted session, call method sessi on. commi t () or
sessi on rol | back() .First check whether sessi on. get Transact ed() returnstrue before committing the
session.Sessi on. get Tr ansact ed() returnstrueif:

« Theuser passed in true as the transacted parameter when the session was created, and
« No global transaction is active at the moment of the call.

If both tests are met, you can commit the session. Trying to commit a session when a global transaction is active will
result in the IMS exception, | | | egal St at eExcept i on, being thrown.

JMS XA support in WebSphere Application Server isintegrated with local transactions.For container managed
transactions, an "unspecified transaction context" causes WebSphereApplication Server to start alocal transaction.In
Version 4.0, the scope of the local transaction is the EJB method.The action taken at the end of the EJB method
(commit or rollback of the local transaction)depends on the information contained in the deployment descriptor. This
information is awebSphere Application Server extension. The transaction manager will commit or rollback
anyoutstanding, uncommitted work done within the local transaction without any user intervention. The default isto
roll back.

Any work performed on aJM S session in an unspecified transaction context, will be rolled back or committed if the
corresponding local transaction isrolled back or committed.

306

[l Requestors are only used with non-transacted sessions. Therefore, QueueRequestorand
TopicRequestor cannot be used with sessions created by WebSphere ApplicationServer IMS connection
factories.

Unsupported interfaces and methods

The following IMS interfaces are not designed for application use and, therefore,cannot be invoked:

Unsupported interfaces
javax.jms.Server Session
javax.jms.Server SessionPool
javax.jms.ConnectionConsumer
all the javax.jms. XA interfaces

The following JMS methods are inappropriatein this environment and interfere with connection management by the
container. Therefore, these methods cannot be used:

Unsupported methods
javax.jms.Connection.setExceptionListener
javax.jms.Connection.stop
javax.jms.Connection.setClientl D
javax.jms.Connection.setMessageL i stener
javax.jms.Session.getMesssagel.istener
javax.jms.QueueConnection.createConnectionConsumer
javax.jms. TopicConnection.createConnectionConsumer
javax.jms. TopicConnection.createDurableConnectionConsumer
javax.jms.MessageConsumer .setMessageL i stener

All the above methods throw the IMS exception, | | | egal St at eExcept i on, when invoked.

[il You cannot register a MessageListenerwith a QueueReceiver or TopicSubscriber.

The following methods throw the IMS exception, | | | egal St at eExcept i on, if used within aglobal transaction:

javax.jms.Session.commit
javax.jms.Session.rollback
javax.jms.Session.recover

[il with the Enterprise JavaBeans programming model, you must ensure all JM S resources are closed
correctly.Since JIM S resources never time-out, JM S resources that are not closed correctly will continue
to consume M QSeries resources. The MQSeries resources also persist until the application server or

M QSeries Queue manager is restarted.

Restrictions

The following restrictions exist regarding the use of IMS XA support in WebSphere Application Server:
« A subscriber can only be used in the same type of transactional context (for example, aglobal transaction or
anunspecified transaction context) as the one that existed when the subscriber was created.
If thisrestriction is not respected, the IMS exception, subscri ber restricti on,isthrown.

If aglobal transaction is active at the creation of the subscriber, that subscriber can be used to receive messages
in different global transactions, but not in an unspecified transaction context.

If an unspecified transaction context is active when the subscriber is created, that subscriber cannotbe used with
aglobal transaction.

307

o The use of JIM S sessions across methods with different transactional attributesis restricted.

If a session was used within a global transaction, it cannot be reused in a differentglobal transaction or in an
unspecified context until the first transaction commits.Similarly, if there iswork outstanding in alocal
transaction then the session cannot be used in aglobal transaction until the local transaction has
finished.Session use, in this case, refers to the send, receive, and publish operations usingthe message producers
or consumers that were created on the session.

308

4.7: Java Clients

In atraditional client server environment, the client requests a service and theserver fulfills the request. A single
server is used by multiple clients.Clients can also access several different servers. This model persists for Java
clients except now these requests make use of a client's runtime environment.

Prior to J2EE (Java ™™ 2 Platform Enterprise Edition), atypical Web-based client application consisted of the
following model:

browser (HTM. file) -> servlet -> EJB

In this model, the client application requires a servlet to communicate with the Enterprise Java Bean (EJB), and
the servlet must reside on the same machineas WebSphere Application Server.

With version 4.0, Java application clients cannow consist of the following models:
o Applet client

« J2EE application client
« Javathin application client

In the Applet client model, a Java applet is embedded in a HyperText Markup Language(HTML) document
residing on aclient machine that is remote from WebSphere Application Server.With this type of client, the
user accesses an EJB in WebSphere Application Serverthrough the java applet in the HTML document.

The J2EE application client is a Java applicationprogram that accesses EJBs, JDBC databases, and Java
Message Service message queues. The J2EE application client program runs on client machines. This program
follows the same Java programming model as other Java programs; however, theJ2EE application client
depends on the application client runtime to configure its execution environment, and it uses the INDI name
space to access resources.

The Java thin application client provides alight-weight Java client programming model. This client is best
suited for use in situations where a Java client application exists but the application must be enhanced to make
use of EJBs, or where the client application requires a thinner, more light-weight environment than the one
offered by the J2EE application client.

309

4.7.1: Applet client programming model

The Java Applet client provides a browser-based Java runtime that is capable of interacting with EJBs directly instead of indirectly through a
servlet.

This client is designed to support those users who want a browser-based Java client application programming environment that provides a richer
and more robust environment than the one offered by theAppl et - >Ser vl et - >EJB model.

The programming model for this client is a cross between the Java application thin client and a servlet client. When accessing EJBs from this client,
the EJB object references can be considered CORBA object references by the applet.

There is no tooling support for this client for developing, assembling or deploying the applet. Y ou are responsible for devel oping the applet,
generating the necessary client bindings for the EJBs and CORBA objects, and bundling these pieces together to be installed on or downloaded to
the client machine. The Java applet client provides the necessary runtime to support communication between the client and the server.

Client side bindings are generated during the deployment phase of J2EE devel opmentusing the Application Assembly Tool. An applet can utilize
these bindings, or you can generate client side bindings using ther m ¢ command that is partof the IBM JDK installed with the WebSphere
Application Server.

See article Packaging and distributing Java clients formore information.

The Applet client makes use of the RMI-110P protocol. The use of this protocol enables the applet to access EJB references and CORBA object
references, but it isrestricted in the usage of some supported CORBA services. If you combine the EJB and CORBA environments in one applet,
you must understand the differences between the two programming models, and you must use and manage each appropriately.

The Applet client provides the runtime to support the J2EE Applet client. The J2EE Applet client does not have any tooling support for developing,
assembling or deploying the Applet. The applet client runtime is provided through the use of the Java applet browser plug-in that isinstalled on the
client machine using the WebSphere ApplicationServer Client CD.

Because the Applet client does not provide for a deployment descriptor, the Applet code cannot make use of the INDI j ava: / conp lookup. The
Applet must know the fully qualified location of the EJB in the INDI namespace. For example, the JNDI : j ava: / conp alowslookup of
enterprise java beans using a short name or a nickname such as:

java.l ang. Obj ect ejbHone = initial Context.|ookup("java:/conp/env/ejb/ \yWEIJBHone") ; \yEJBHonme =
(MyEJBHone) j avax. rmi . Port abl eRenot eCbj ect . narrow ej bHone, MyEJBHone. cl ass);

But the code in an applet client must be more explicit:

j ava. | ang. Cbj ect ej bHome =
initial Context.|ookup("the/fully/qualified/path/to/actual/home/in/namespace/ \WVEJBHone") ; M\yEJBHonme =
(MyEJBHone) j avax. rm . Port abl eRenpt eCbj ect . narrow ej bHone, MyEJBHone. cl ass);

The Applet environment restricts accessing external resources from the browser runtime environment. Some of these resources can be made
available to the Applet by setting the correct security policy settingsin the JRE j ava. pol i cy file. If given the correct set of permissions, the
Applet client must explicitly create the connection to the resource using the appropriate APl (JDBC, JMS, and others). This client does not perform
any initialization of any of the services that the client applet may need. For instance, the client application is responsible for the initialization of the
naming service, either through CosNaming or JNDI.

The following table describes the advantages and disadvantages of the Applet client:

] Advantages | Disadvantages
« Designed for usein an intranet environment.
« Light-weight client suitable for download. o Lack of client runtime initialization of environment and services.
« Provides access to JNDI interfaces for EJB object resolution. « Lack of built-in support for local resource resolution and
« No distribution of the applet to the client machine required configuration.
(performed through the browser) « Does not promote portability of client application code.

« Requires abrowser to be installed on the client machine.

310

4.7.1.1: Developing an Applet client

Unlike typical applets that reside on either Web servers or WebSphere ApplicationServers and can only communicate
using the HTTP protocol, the WebSphere Applet clients are capable of communciating over the HTTP protocol and the
RMI-I110OPprotocol. This additional capability givesthe Applet direct access to enterprise java beans. As such, Applet
clients have the following setup requirements:

« Theseclients are currently available on the Windows NT or Windows 2000 platforms.

[il support for additional platformswill be added in the near future.
Check the prerequisites page for information on new platform support.

« They require one of these browsers:
o Internet Explorer version 5.0+
o Netscape Navigator 4.7+
« The browser must be installed before the client codeis installed.

o TheApplet client isinstalled from the WebSphere Clients for Windows CD by selecting option, "Java
Application/Applet Thin Client."

« You must install the WebSphere Application Server Plug-in for the browser.Select option, "Java
Application/Applet Thin Client," from the WebSphere Clients for Windows CD.

» From the WebSphere Application Server Java Plug-in Control, enter:
-D ava. ext. di rs=\WebSphere\ AppClient\lib

L

1. The Java Run Time Parametersfield issimilar to the command prompt when using
command line options. Therefore, most options available from the command prompt (for
example, -cp, classpath, and others),can be entered in this field as well.

2. The control panel can be accessed from the Start menu.
Clickstart > control panel > WbSphere Java Plug-in Control.

3. The applet container isthe Web browser and the Java Plug-in combination.Y ou must first
install the WebSphere Application Server Applet client so that the browser recognizes the
IBM Java Plug-in.

Tag requirements

Standard applets require the HTML <APPLET> tag to identify the applet to the browser. The <APPLET> tag invokes the
browser's Java Virtual Machine (JVM). Soan applet running on Internet Explorer will use Microsoft's VM.

For applets to communicate with EJBs in the WebSphere Application Server environment, the<APPLET> tag must be
replaced with these two new tags:

<OBJECT>
<EMBED>

Additionaly, thecl assi d andt ype attributes cannot be modified,and must be entered as described in the applet client
example. Finally, the codebas eattribute on the <OBJECT> tag must be excluded.

[il Do not confuse the codebase attribute on the<OBJECT> tag with the codebase attribute on the
<PARAM> tag. Althoughboth are called codebase, they are separate entities.

The following code snippet illustrates the applet code. In this example, MyApplet.classis the applet code, applet.jar isthe
file that contains the applet code, and EJB jar isthefile that contains the EJB code:

311

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0103.html

<OBJECT cl assi d="cl si d: 8AE2D840- EC04- 11D4- AC77- 006094334AA9"
wi dt h="600" hei ght ="500" >
<PARAM NAME=CODE VALUE=M/Appl et O ass. cl ass>
<PARAM NAME="ar chi ve" VALUE=' Applet.jar, EJB.jar'>
<PARAM TYPE="appl i cati on/ x-j ava- appl et ; ver si on=1. 3" >
<PARAM NAME="scri pt abl e VALUE="f al se">
<PARAM NAME="cache-opti on" VALUE="PI ugi n">
<PARAM NAME="cache- archi ve" VALUE="Applet.jar, EJB.jar">
<COMVENT>
<EMBED t ype="appl i cati on/ x-websphere-client" CODE=MyAppl et Cl ass. cl ass
ARCHI VE=" Appl et .jar, EJB.jar" WDTH="600" HEI GHT="500"
scri ptabl e="fal se">
<NOEMBED>
</ COMVENT>
</ NOEMBED>WebSpher e Java Application/ Applet Thin dient for
W ndows is required.
</ EMBED>
</ OBJECT>

il Thevalue of the type attribute on the <EMBED> tag can also be:
<EMBED t ype="application/ x-websphere-client, version=4.0"

Code requirements

The code used by an applet to talk to an EJB isthe same as that used by a standaloneJava program or a servlet, except for
one additional property called java.naming.applet. This property informsthel ni ti al Cont ext and the ORB that this
client is anapplet rather than a standalone Java application or servlet.

When initializing an instance of thel ni ti al Cont ext class, the first two linesin this code snippet illustrate what both
a standal one Java program and a servlet issue to specify the computer name, domain, and port. In this example,

<your server. your donmai n. cone isthe computer name and domain where WebSphere Application Server resides,
and 900 isthe configured port. After the bootstrap values (<yourserver.yourdomain.com>:900) are defined,the client to
server communications occur within the underlying infrastructure. In addition to the first two lines, for applets, you must
add the highlighted third line to your code. That line identifies this program as an applet:

prop.put(Context.INITIAL_CONTEXT _FACTORY,
"com.ibm.websphere.naming.Wsnlnitial ContextFactory");
prop.put(Context.PROVIDER_URL, "iiop://<yourserver.yourdomain.com>:900");

prop.put("java.naming.applet”, this);

Security requirements

When codeisloaded, it is assigned "permissions’ based on the security policy in effect. This policy, specifying which
permissions are available for code from various locations,can be initialized from an external policy file.For each client,
the java.policy file should be updated with the classes that the applet client needs to access, and with the ports on the host
machines where it needs different permissions.

The following lines of code must be added to existing java.policy files.This code allows access to the required ports so
that the applet client can communicate with an EJB.

In the example below, thej ava. net . Socket Per mi ssi on "l ocal host: 1024--", "li sten"entry grants
permision for Applets to open sockets for listening on the localhost for any portfrom 1024 to 65535. Port can be specified
as arange of port numbers or a specific port. A port range specification of the form "N-", where N is a port number,
signifies all ports numbered N and above. A specification of the form "-N" indicatesall ports numbered N and below.

Thefirst SocketPermission statement grants permission to theclient to have ports opened for listening. The second grants
permission toopen a port and make a connection to a host machine, which is your WebSphere Application Server.In this
example, yourserver.yourcompany.com is the complete hostname of yourWebSphere Application Server:

312

per m
per m
perm
per m
per mi
per m
per m

SSi
SSi
SSi
SSi
SSi
SSi
SSi

on
on
on
on
on
on
on

j ava.
j ava.
] ava.
j ava.
j ava.
j ava.
j ava.

util.PropertyPernission "server.root", "read";

util.PropertyPerm ssion "*", "read,wite";
io.FilePermssion "traceSettingsFile", "read,wite";
util.PropertyPernission "traceSettingsFile", "read,wite";
| ang. Runt i mePer m ssi on "nodi fyThread";

net . Socket Per m ssi on "l ocal host:1024-", "listen";

net . Socket Per m ssi on "yourserver. your conpany. cont', connect";

[il For more information on security relatingto user authentication and signed jars, read the official
documentation forJava security architecture

Learn more about the WebSphere Applet client by running the Applet sample.Y ou can install the Applet client sample
from the WebSphere Application Client CD.Thissampleiscaled Hel | oEIJB andisinstalled in
thepr oduct _i nstal | ati on/ Wssanpl es/ C i ent subdirectory on the client machine.

313

http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-spec.doc.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.7.2. J2EE application client programming model

The J2EE application client programming model provides the benefits of the J2EE platform for the Java client
application. The J2EE platform offers the ability to seamlessly develop, assemble,deploy and launch a client
application. The tooling provided with the WebSphere platform supports the seamless integration of these
stages to help the developer create a client application from start to finish.

When aclient application is devel oped using and adhering to the J2EE platform, the client application codeis
portable from one J2EE platform implementation to another. The client application package might require
redeployment using each J2EE platform'’s deployment tool, but the code that comprises the client application
will not change.

The J2EE application client runtime supplies a container that provides access to system services for the client
application code. The client application code must contain a main method. The application client runtime
invokes this main method after the environment isinitialized and runs until the Java virtual machineis
terminated.

The J2EE platform allows the J2EE application client to make use of "nicknames" or "short names," defined
within the client application deployment descriptor. These deployment descriptors identify EJBs or local
resources (JDBC, IMS, JavaMail and URL) for ssimplified resolution through the use of JNDI. This simplified
resolution to the EJB reference and local resource reference also eliminates changes to the client application
code when the underlying object or resource either changes or moves to a different server. Should these changes
occur, the J2EE application client might require redeployment.

The J2EE application client also provides for initialization of the runtime environment for the client application.
Thisinitialization is unique for each client application and is defined by the deployment descriptor. In addition,
the J2EE application client runtime provides support for security authentication to the EJBs and local resources.

The J2EE application client makes use of the RMI-110P protocol. The use of this protocol enables the client
application to access EJB references and to make use of CORBA services that are provided by the 2EE
platform implementation. Use of the RMI-110P protocol and the accessibility of CORBA services assist usersin
developing a client application that requires access to both EJB references and CORBA object references. When
users combine the J2EE and CORBA environments or programming models in one client application, they need
to understand the differences between the two programming models, and they must use and manage each

appropriately.
The following table describes the advantages and disadvantages of the J2EE application client.

| Advantages | Disadvantages

« Provides the user with the benefits of the J2EE
platform.

« Allowstheuseof nicknamesinthe « A heavier client than the Java application thin
Deployment Descriptor for reference identity client, and is not suited for downloading.

« Client application code is portable across J2EE . Designed for usein an intranet environment.
compliant platforms (may need to be : o _—
redeployed for each distinct J2EE platform). « Requires distribution of the application to the

_ client machine.

« Supports CORBA services (usage of CORBA
services may render the client application code
non-portable).

314

4.7.2.1: Resources referenced by a J2EE application client

J2EE application clients access resources by performing lookup operations in the INDI name space. The application client runtime then
provides a mapping of the resource names, used and configured by client application programs, to the actual resource objects.This allows client
application programs to access different resources, such astest or productiondatabases, without the need for updates or recompiles.

To provide this service, the application client runtime requires information about the names and types of resources used by the client application
program.
The three types of resources a J2EE application client can reference are:

1. EJB references - are references to Enterprise Java Beans (EJBS) running on WebSphere Application Server.
2. Resourcereferences - are references to other types of resources, such as:

o JDBC databases

o URLs

o Java Message Service message queues

o JavaMail

3. Environment entries - are references to simple data types that you would not want to code in your application program, such as timeout
values or SQL query strings. The following Java basic data types are supported:

j ava. | ang. Bool ean java.lang. String java. |l ang. | nt eger j ava. | ang. Doubl e
java.lang. Byte j ava. |l ang. Short java.l ang. Long j ava. | ang. Fl oat
The resource information is defined and configured using these two WebSphere Application Server tools:
« Application Assembly Tool (AAT) (used for the definition)
« Application Client Resource Configuration Tool (used for the configuration)

The Application Assembly Tool manages:
o EJB references
o non-client specific Resource references
o al Environment entries

The Application Client Resource Configuration Tool manages:

o client specific Resource references such as a JDBC Datasource name
Thisinformation is stored with theclient application program in an Enterprise Archive File (. ear file).

315

4.7.2.2: Developing a J2EE application client

From an application developer's point of view, creating a J2EE application client program involves these steps:

1
. Assembling the application client (using the Application Assembly Tool)

o 0o~ WODN

Writing the client application program

. Assembling the Enterprise Archive (EAR) file
. Distributing the EAR file

. Configuring the application client resources

. Launching the application client

. Writing the client application program

Write the J2EE application client program on any development machine. At this stage, you do not require access to WebSphere Application Server.
A J2EE application client program is similar to a standard Java program in that it runsin its own Javavirtual machine and is invoked at its main
method. The J2EE application client program differs from a standardJava program because it uses the INDI name space to access resources. In a
standardJava program, the resource information is coded in the program.

Storing the resource information separately from the client application program makes the client application program portable and more flexible.

Using thej avax. nam ng. | ni ti al Cont ext class, the client application program uses the lookup operation to access the INDI name space. The
I ni tial Context classprovidesthel ookup method to locate resources. For more information on JNDI, seefile, INDI overview.

The following exampleillustrates how a client application program usesthe | ni t i al Cont ext class:

i mport javax.nam ng.*public class myAppd i ent{ public static void main(String argv[]) {
Initial Context ctx = new Initial Context(); Qoj ect nyQoj =

ctx. | ookup("java: conp/ env/ ej b/ Hel | oBean") ; Hel | oHorre hore

=(Hel | oHone) j avax. rm . Port abl eRenot eoj ect. narrow(myObj, Hel | oHone. cl ass);

c 1}

In this example, the program is looking up an Enterprise Java Bean called HelloBean. The HelloBean EJB reference is located in the client INDI
name spaceat j ava: conp/ env/ ej b/ Hel | oBean. Since the actual Enterprise Java Bean is running on the server, the application client
runtimereturns a reference to HelloBean's home interface.

If the client application program's lookup was for aResource reference or an Environment entry, then lookup would return an instance of the
configured typeas defined by the client application's Deployment Descriptor.For example, if the program'’s lookup was a JDBC datasource, the
lookup would return an instance ofj avax. sql . Dat aSour ce.

2. Assembling the application client (using the Application Assembly Tool)

The JNDI name space knows what to return on alookup because of the information that is assembled by the Application Assembly Tool (AAT).
Assemble the J2EE application client on any development machine that has the AATinstalled.

When you use the Application Assembly Tool to assemble your application client, you provide the application client runtime with the required
information to initialize the execution environment for your client application program.Refer to the Application Assembly Tool description for
implementation details.

Hereisalist of things to keep in mind when you configure resources used by yourclient application program:

» When configuring Resource references and EJB referencesin the Application Assembly Tool, the General tab contains arequired Name
field. Thisfield specifies where the application client runtime will bind the reference to the real object inthej ava: conp/ env portion of the
JNDI namespace. The application client runtimealways binds these references relativetoj ava: conp/ env. So, for the
programmingexample above, you would specify ej b/ Hel | oBean in the Name field on theGeneral tab of the Application Assembly Tool,
which would reguire the program to perform alookup of j ava: conp/ env/ ej b/ Hel | oBean. If the Name fieldweresettomy St r i ng,
the resulting lookup would bej ava: conp/ env/ nmySt ri ng.

« When configuring Resource references in the Application Assembly Tool, the Name field on the General tab is used for:
= hinding areference of that object type into the INDI name space.

= retrieving client specific resource configuration information that was configured using the Application Client Resource Configuration
Tool.

« When configuring a Resource reference in the Application Assembly Tool, the value in the Name field on the General tab must match the
vauein the INDIName field on the General tab for the resource in theApplication Client Resource Configuration Tool.

« When configuring URL resources using the Client Resource Configuration Tool, the URL provider panel alows you to specify a protocol and
aclassthat handles that protocol. If you want to use the default protocols, such as HTTP, you can leave those fields blank.

« When configuring Resource references using the Application Assembly Tool, the General tab contains afield called Authorization. This
field can be set to either Container or Application. If thefield is set to Container, then the application client runtime will use authorization
information configured in the Application Client ResourceConfiguration tool for the resource. If thefield is set to Application, thenthe
Application Client runtime expects the user application to provide authorizationinformation for the resource. The application client runtime
will ignore any authorization information configured with the Application Client Resource Configuration tool for that resource.

3.3A§sembling the Enterprise Archive (EAR) file

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html

The application is contained in an Enterprise Archiveor . ear fileThe. ear fileiscomposed of:
= EJB, Application Client, and user-defined modules or .jar files
= Web applicationsor . war files
= Metadata describing the applications or application . xm files

You must assemble the. ear file on the server machine.
4. Distributing the EAR file

The. ear file must be made accessible to those client machines that are configured to run this client.

If al the machines in your environment share the same image and platform, run the Application Client Resource Configuration Tool (ACRCT) on
one machine to configure the external resources, and then distribute the configured . ear file to the other machines.

If your environment is set up with avariety of client installations and platforms, you must run the ACRCTfor each unique configuration.
The. ear filescan either be distributed to the correct client machines, or made availableon a network drive.

See article Packaging and distributing Java clientsfor more information.

Distributing the . ear filesisthe responsibility of the system and network administrator.
5. Configuring the application client resources

If local resources are defined for use by the client application, run the ACRCT on the local machine to reconfigure the. ear file. Usethe ACRCTto
change the configuration. The ACRCT is the Application Client Resource Configuration Tool described in the previous steps. For example, the . ear
file may contain aa DB2 resource, which is configured as C: \ DB2. If, however, the user has DB2installed in directory, D: \ Pr ogr am

Fi | es\ DB2, that user must use the ACRCT to create aloca version of the. ear file.

6. Launching the application client
Using the fully assembled and configured . ear filejissuethel aunchC i ent command tolaunch the J2EE application client on the client

machine.

Note: Learn more about the WebSphere J2EE client by running the client sasmple.Y ou can install the client sample from the
WebSphere Application Client CD.On a server machine, the J2EE client sampleis part of the samples gallery. See the "Application
Client" section of Sanpl es. ear .Thissampleiscalled Hel | oEJB and isinstalled in

thepr oduct _i nstal | ati on/ Wssanpl es/ Cl i ent subdirectory on the client machine.

317

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.7.2.3: Troubleshooting guide for the J2EE application
client

This section provides some debugging tips for resolving common J2EE application client problems. To use this
troubleshooting guide, review the trace entries for one of the J2EE application client exceptions, and then locate the
exception in the guide.

« javalang.NoClassDefFoundError

« com.ibm.websphere.naming.Cannotl nstantiateObjectException

« javax.naming.ServiceUnavailableException

« javax.naming.CommunicationException

« javax.naming.NameNotFoundException

« javalang.ClassCastException

« com.ibm.etools.archive.exception.OpenFail ureException (message numbers WSCL 0206E and WSCL 0100E)

Error: java.l ang. NoCl assDef FoundEr r or
Explanation: This exception is thrown when Java cannot load the specified class.

Possible causes:
« Invalid or non-existent class
« Classpath problem
» Manifest problem

User response: First check to determine if the specified class existsin ajar filewithin your ear file. If it does, make
sure the path for the classis correct. For example, if you get the exception:

j ava. | ang. Nod assDef FoundError: WebSpher eSanpl es. Hel | oEJB. Hel | oHone

ensure the class Hel | oHone existsin one of the jar filesin your ear file.lf it exists, ensure the path for the classis
WebSpher eSanpl es. Hel | oEJB.

If both the class and path are correct, then it is a classpath issue. Most likely, you do not have the failing classsjar file
specified in the client jar file's manifest. To check this, open your ear file with the Application Assembly Tool and click
on the Application Client. Add the names of the other jar filesin the ear file to the Cl asspat h field. Thisexceptionis
generally caused by a missing EJB module name from the Cl asspat h field.

If you have multiple jars to enter in the Cl asspat h field, be sure to separate the jar names with spaces.

If you still have the problem, you have a situation where a classis being loaded from the harddrive instead of the ear
file. Thisisavery difficult situation to debug because the offending class is not the one specified in the exception.
Instead, another classis loaded from the hard drivebefore the one specified in the exception. To correct this, review the
classpathsspecified with the - CCcl asspat h option and the classpaths configured with theApplication Client

Resource Configuration Tool. Look for classes that also exist in the ear file. Y ou must resolve the situation whereone

of the classesis found on the hard drive instead of inthe. ear file. Y ou do this by removingentries from the classpaths
or by including the . j ar filesand classesinthe. ear fileinstead of referencing them from the hard drive.

If you are using the - CCcl asspat h parameter or resourceclasspaths in the Application Client Resource
Configuration Tool, and you have configuredmultiple jars or classes, verify they are separated with the correct
character for your operating system. Unlike the classpath field in the Application Assembly Tool these classpath fields
use platform-specific separator characters, usually acolon (on UNIX platforms) or a semi-colon (on Windows).

Note: The system classpath is not used by the Application Client runtime if you use the
| aunchd i ent batch or shell files. In this case, the system classpath wouldnot cause this problem.

318

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060009.html

However, if you load thel aunchd i ent classdirectly, you dohave to search through the system
classpath as well.

Return

Error: com i bm webspher e. nam ng. Cannot | nst ant i at eCbj ect Excepti on: Exception
occurred while attenpting to get an instance of the object for the specified
ref erence object. [Root exception is javax.nam ng. NaneNot FoundExcepti on:
XXXXXXXXXX]

Explanation: This exception occurs when you perform alookup on an object that is not installed on the host server.

Y our program can look up the namein the local client INDI name space, but received a NanmeNot FoundExcept i on
exception because it is not located on the host server. One typical exampleislooking up an EJB that is not installed on
the host server that you access.This exception might also occur if the INDI name you configured in your
ApplicationClient module does not match the actual INDI name of the resource on the host server.

Possible causes:

« Incorrect host server invoked

» Resourceisnot defined

« Resourceisnot installed

« Application server is not started

« Invalid JNDI configuration
User response: |If you are accessing the wrong host server, runthel aunchC i ent command again with the
- CCBoot st r apHost parameter specifying the correct host server name. If you are accessing the correct host server,
use the WebSphere dunpnanespace command line tool tosee alisting of the host server's INDI name space. If you
do not see the failing object's name, the resourceis either not installed on the host server or the appropriate application

server is not started.If you determine the resource is already installed and started, your INDI name in your
clientapplication does not match the global INDI name on the host server. Use the Application Assembly Tool to

compare the INDI bindings value of the failing object's name in the client applicationto the INDI bindings value of the
object in the host server application. They must match.

Return

Error: javax. nam ng. Servi ceUnavai | abl eExcepti on: Caught exception when resol ving
initial reference=NameServi ce. Root exception is org.ong. CORBA. | NTERNAL:
JORB00105: In Profile.getl PAddress(), |netAddress. getByNanme(invali dhostnane)

t hrew an UnknownHost Exception m nor code: O conpleted: No

Explanation: This exception occurs when you specify an invalid host server name.

Possible causes:
« Incorrect host server invoked
o Invalid host server name

User response: Runthel aunchCl i ent command again and specify the correct name of your host server with the
- CCBoot st r apHost parameter.

Return

319

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html

Error: javax. nam ng. Communi cati onException: Caught CORBA. COVWM FAI LURE when
resolving initial reference=\WWsnNaneService. Root exception is
or g. ong. CORBA. COW FAI LURE: m nor code: 3 conpleted: No

Explanation: Thisexception occurs when you runl aunchd i ent to ahost server that does not have the
Application Server started. Y ou also receive this exceptionwhen you specify an invalid host server name. This might
happen if you do not specify a host server name when you run| aunchdl i ent . The default behavior isfor
| aunchd i enttoruntol ocal host , because WebSphere Application Server does not know the name of yourhost
server. This default behavior only works when you are running the client on the samecomputer as where WebSphere
Application Server isinstalled.
Possible causes:

« Incorrect host server invoked

« Invalid host server name

« Invaidreferencetol ocal host

« Application server is not started

« Invalid bootstrap port
User Response: If you are not running to the correct host server, runthel aunchd i ent command again and

specify the name of your host server with the - CCBoot st r apHost parameter. Otherwise, start the Application
Server on thehost server and run thel aunchd i ent command again.

Return

Error: javax. nam ng. NaneNot FoundExcepti on: Nanme conp/env/ejb not found in context
"java:"
Explanation: This exception isthrown when Java cannot locate the specified name in the local INDI name space.
Possible causes:

« No binding information for the specified name

« Binding information for the specified nameisincorrect

« Wrong class loader was used to load one of the program's classes

User Response: Open the ear file with the Application Assembly Tool and check the bindings for the failing name.
Ensure thisinformation is correct. If it is correct, you could have a class |oader issue.

Return

Error: java.l ang. C assCast Exception: Unable to | oadcl ass:

or g. ony. st ub. WebSpher eSanpl es. Hel | oEJB. _Hel | oHone_St ubat

comibmrm.javax.rm . Portabl eRenot eObj ect. narr owm port abl eRenot eCbj ect . j ava: 269)
Explanation: This exception occurs when the application programattempts to narrow to the EJB's home class and the
classloaders cannot find theEJB's client side bindings.

Note: TheHel | oHome_St ub reference in the Errordescription, is asample

Possible causes:
o Thefiles,* Stub. class and_Ti e. cl ass, arenotinthe EJB .jar file
« Classloader could not find the classes

User Response: Look atthe EJB . j ar filelocated inthe. ear and verify the class contains the EJB client side
320

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html

bindings. These are class fileswhosenamesend in _St ub and _Ti e. If these files are not present, then use the
Application Assembly Toolto generate the binding classes. For more information, see article Generating depl oyment

code for modules.If the binding classesareinthe EJB . j ar file, then you might have a classloader issue.

Return

Error: WSCLO206E: File [EAR file nane] is not avalid Enterprise Archive file.
WECLO100E: Exception received:

com i bm et ool s. archi ve. excepti on. QpenFai | ur eExcepti on

Explanation: This error occurs when the Application Client runtime cannot read the Enterprise Archivefile.

Possible cause: The most likely cause of this error isthe EAR filecannot be found in the path specified on the
I aunchd i ent command.

User Response: Verify that the path and filename specified on thel aunchcl i ent command are correct. If you are
running on Windows NTand the path and file name are correct, use a short version of the path and file name (8
character file name and3 character extension).

Return

321

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/060303.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/060303.html

4.7.2.4. J2EE application client classloading overview

When you run your J2EE client application using the WebSphere Application ServerlaunchClient command, a
hierarchy of classloadersis created to load classes used by your application. The parent classloader isused to
load the WebSphere Application Client runtime and any classes placed in the WebSphere Application Client
user directories. The directories used by this classloaderare defined by the WS _EXT_DIRS System property in
thepr oduct _i nstal | ati on/ bi n/ set upcndl i ne command shell.

Asthe J2EE Application Client runtime initializes, additional classloaders are createdas children of this parent
classloader. If your client application uses resources such as JIDBC, JMS, or URLSs, adifferent classloader is
created to load eachof those resources. Finally, a classloader is created to load classes within the . ear file.
Before invoking your clientapplication's main method, this classloader is set as the thread's context classloader.

[il The system classpath is never used and is not part of thehierarchy of classloaders.

In order to package your client application correctly, you must understand which classloader |oads your classes.
When Javaloads a class, the classloader used to loadthat classis assigned to it.Any classes subsequently loaded
by that class will use that classloader or any ofits parents, but it will not use children classloaders.

Unfortunately, Java does not providea good way for determining which classloader loaded your classes. This
makes itdifficult to debug classloading problems. See the Configuring the classpath fields section formore

information on configuring the classpath fields in your application.

In some cases the WebSphere Application Client runtime can detect when your client application classis|loaded
by a different classloader from the one created for it by the WebSphere Application Client runtime. When that
occurs, you will see message:

WBCL0205W The incorrect class | oader was used to | oad {0}.

This message occurs when your client application classis loaded by one of the parentclassloadersin the
hierarchy. Thisistypically caused by having the sameclassesinthe. ear fileand on the hard drive. If one of
the parentclassloaders locates a class, that classloader will load it before the Application Client
runtimeclassloader. In some cases, your client application will still functioncorrectly. In most cases, however,
you will receive "class not found"exceptions.

Configuring the classpath fields

When packaging your J2EE client application, you must configurevarious classpath fields. Ideally, you should
package everything required by yourapplication into your . ear file. Thisistheeasiest way to distribute your
J2EE client application to your clients. However, you should not package such resources as JDBC, JMS, or
URLSs. In the case of these resources, you want to use classpath referencesto access those classes on the hard
drive. You might also have other classes installed on your client machines thatyou do not need to redistribute. In
that case, you also want to useclasspath references to access the classes on the hard drive, as described below.

Referencing classes within the EAR file

WebSphere J2EE applications do not use the system path.Instead, use the MANIFEST Class-Path entries to
refer to other classeswithin the . ear file. Configure these values using the module Classpath fieldsin the
Application Assembly Tool. For example, if your client application needs to accessan Enterprise Java Bean, you

would add the deployed EJB modul€e's name to your applicationclient's Classpath field in the
ApplicationAssembly Tool. The format of the Classpath field for each of thedifferent modules (Application

Client, EJB, Web) isthe same:
o Thevaluesmustreferto. j ar and. cl ass filesthat are contained within the . ear file.

322

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html

« Thevaues must berelative to theroot of the. ear file.
« Thevalues cannot refer to absolute pathsin the file systems.
« Multiple values must be separated by spaces, not colons or semi-colons.
Note: ThisisJava's method for alowing applications to be platform-independent.

Typicaly, you add modules (. j ar files) to theroot of the . ear file. Inthis case, you only need to specify the
name of the module (. j ar file) in the Classpath field. If you choose to add a module with a path, you need
tospecify the path relative to the root of the .ear file.

For referencing . cl ass files, you must specify the directory relative tothe root of the. ear file. Whilethe
Application Assembly Tool allows you to add individual classfilesto the. ear file, it isrecommended that
these additional classfilesare packagedina. j ar file. That . j ar file should then be added to the module
Classpath fields. If you add . cl ass filesto theroot of the. ear file, add "./" to the module Classpath fields.

Consider the following example directory structure in which the file myapp.ear contains an application client
JAR file named client.jar and an EJB module called mybeans.jar. Additional classesresidein classl.jar and
utility/class2.zip. A class named xyz.class is not packaged in aJAR file but isin the root of the EAR file.

Specify ./ nybeans.jar utility/class2.zip classl.jar" asthevaue of theClasspath
property.

The search order is:

nmyapp. ear/client.jar

nmyapp. ear/ nybeans. j ar

nmyapp. ear/ cl assl.jar
myapp.ear/utility/class2.zip
myapp. ear/ xyz. cl ass

View article the 6.4.1: Setting classpaths for more information.

Referencing classes that are not in the EAR file

Y ou have two options to reference classes that are not contained in the . ear file. Which option you choose
depends on the relationship of theexternal classes and the classesinterna to the. ear file. Y ou might use
acombination of both options. Y our options are:

1. Usethepr oduct _install ati on/ app directory.

Use this option when your external classes do not reference classes within the . ear file. One example
would be stand-alone utility classes. To use this option, addyour . j ar filesto the
product installation/app directory.For. cl ass files, add them to this directory in

subdirectories that correspond to thepackage names.

2. If the external classes reference classes within the . ear file, thefirst option will not work because of the
hierarchy of WebSphere classloaders. In this case, you can do one of the following:

o Package the external classesinthe. ear file.
o Usethel aunchd i ent - CCcl asspat h parameter.

This parameter is specified at run-time and takes platform-specific classpath values, which
means multiple values are separated by semi-colons or colons.

Refer to article 6.4.1 about installing application files into the environment, and setting classpaths, for a
description of the WebSphere Application Server classloaders.There are many similarities between the client
andthe server in this respect.

323

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

Resource classpaths

When you configure resources used by your client application using the Application Client Resource
Configuration Tool, you can specify classpaths that are required by the resource. For example, if your

application is using JDBC to a DB2 database, you want to add db2j ava. zi p to the classpath field of the
database provider. These classpath values are platform-specific and require semi-colons or colons to separate
multiple values.

Using the launchClient API

If you use the launchClient shell/bat command, the WebSphere classloaderhierarchy is created for you.

However, if you use the launchClient API, you mustperform this setup yourself. Y ou should mimic
thelaunchClient shell command in defining the Java system properties.

324

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060007.html

4.7.3. Java thin application client programming model

The Java application thin client provides the user a light weight, downloadable Java application runtime that is
capable of interacting with Enterprise Java Beans. This client is designed to support those users who want a
light weight Java client application programming environment without the overhead of the J2EE platform on
the client machine. The programming model for this client is heavily influenced by the CORBA programming
model but supports access to Enterprise Java Beans. When accessing Enterprise Java Beans from this client, the
EJB object references can be considered CORBA object references by the client application.

Thereis no tooling support for this client for developing, assembling or deploying the client application. The
user isresponsible for developing the client application, generating the necessary client bindings for the EJB
and CORBA abjects, and bundling these pieces together to be installed on the client machine.

Client side bindings for Enterprise Java Beans are generated during the deployment phase of J2EE
developmentusing the Application Assembly Tool. A Java application can utilize these bindings or you can
generate client side bindingsusing the rmic command that is part of the IBM JDK installed withWebSphere
Application Server. See article Packaging anddistributing Java clients for more information.

The Java application thin client provides the necessary runtime to support the communication needs between
the client and the server.

The Java application thin client makes use of the RMI-110P protocol. The use of this protocol enables the client
application to access not only EJB references and CORBA object references, but it also allows the client
application to make use of any supported CORBA services. Use of the RMI-110P protocol and the accessibility
of CORBA services can assist a user in developing a client application that needs to access both EJB references
and CORBA abject references. When users combine the J2EE and CORBA environmentsin one client
application, they need to understand the differences between the two programming models, and they must use
and manage each appropriately.

The Java application thin client runtime provides the necessary support for the client application for object
resolution, security, RAS and other services. However, it does not support a container that provides ease of use
to these services. For instance, there is no support for the use of "nicknames" for EJB or local resource
resolution. When resolving to an EJB (using either INDI or CosNaming) the client application must know the
location of the name server and the fully qualified name that was used when the reference was bound into the
namespace. When resolving to alocal resource, the client application cannot resolve to the resource through a
JNDI lookup. Instead the client application must explicitly create the connection to the resource using the
appropriate APl (JDBC, JMS, etc.). This client does not perform any initialization of any of the services that the
client applicationmight require. For instance, the client application is responsible for the initialization of the
naming service, either through CosNaming or JNDI.

The following table describes the advantages and disadvantages of the Java thin application client:

| Advantages | Disadvantages
« Designed for use in an intranet environment

o Lack of client runtime initialization of
environment and services

o Lack of built-in support for local resource

» A light-weight client suitable for download

« Requires access to CosNaming or INDI resolution and configuration
interfaces for EJB or CORBA object - .
resolution « Does not promote portability of client

application code

« Requires distribution of the application to the
client machine.

325

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html

4.7.3.1: Developing a Java application thin client

Install the Java application thin client from the WebSphere Application Client CDby selecting option "Java Application Thin Client" or "Java
Application/Applet Thin Client."

The Java application thin client offers access to most of the client services that are available in the J2EE application client; however, these
services are not as easily accessed in the thin client asthey are in the J2EE application client. The J2EE client has the advantage of
performing a simple JINDI namespace |ookup to access the desired service or resource. The thin client must code explicitly for each resource
in the client application. For example, looking up an EJB Home requires the following code in a J2EE application client:

java.l ang. Obj ect ejbHome = initial Context.|ookup("java:/conp/env/ejb/ MyEJBHone");
MyEJBHonme = (MyEJBHone) j avax. rmi . Port abl eRenot eCbj ect. narr ow ej bHome, MyEJBHone. cl ass);

However, the code in a Java thin application client must be more explicit:

java. | ang. bj ect ej bHone =
initial Context.|ookup("the/fully/qualified/ path/to/actual/homne/in/nanespace/ MyEJBHone");
MyEJBHome = (MyEJBHone)j avax.rm . Portabl eRenot eQoj ect. narrow ej bHome, M/EJBHone. cl ass);

In this example, the J2EE application client accesses alogical name from thej ava: / conp namespace. The J2EE client runtime resolves
that name to the physical location, and returns the reference to the client application. The thin client, on the other hand, must know the fully
qualified physical location of the EJB Home in the namespace. If thislocation changes, the thin client application also must change the value
placed on the lookup() statement. In the J2EE client, the client application is protected from these changes because it makes use of the logical
name.A change might require are-deploy of the EAR file, but the actual client application code remains the same.

The Javathin application client is atraditional Java application that contains a"main" function. WebSphere's Java thin application client
provides runtime support for accessing remote EJBs, and provides the implementation for various services (security, WLM, and others). This
client can also access CORBA objects and CORBA based services. When using both environments in one client application, the user is
responsible for understanding the differences between the EJB and CORBA programming models and for managing both environments.

For instance, the CORBA programming model requires using the CORBA CosNaming name service for object resolution in a namespace
while the EJB programming model requires using the JINDI name service. The client application must initialize and properly manage the use
of these two naming services.

Another difference appliesto the EJB model. The ORB isinitialized using JINDI implementation in the EJB model, and the client application
is unaware that an ORB is present. The CORBA model, however, requires the client application to explicitly initialize the ORB through the
ORB. i nit () static method.

The Java application thin client provides a batch command that you can use to setthe CLASSPATH and JAVA_HOME environment variables
to enable the Java application thinclient runtime.

Set the Java application thin client environment by using the setupClientshell, located in:

product _installation\Appletdient\bin\setupdient.bat (on W ndows)
product installation/Appletdient/bin/setupdient.sh (on UNI X platforns)

After setting the environment variables, add your specific Java client applicationJAR filesto the CLASSPATH and start your Javaclient
application from this environment.

See article Packaging and distributing Java clientsfor more information.

326

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.7.3.2: Java thin application client code example

The code required by a Java application thin client to communicate with an enterprise java bean is similar to
servlet code that communicates with enterprise java beans.

The following code example illustrates how a Java application thin client usesthe | ni ti al Cont ext to dothe
following:

o Perform alookup
« Narrow the returned object into the EJ BHone object
» Invokethecr eat e method.

Click alink to view the referenced line of code in the example. Each line in the code snippet is described in this
next section.

1. Thefirst threelinesin the try section of the code example show how to:
0 Create a properties class
o Settheinitial context factory
o Define the provider URL used during the lookup operation
2. Thefieldsin the provider URL represent:
i1op://myConputer. myDomai n. com 900

liiop:// |myComputer |myDomain.com 1900

configured port
name of the server where |name of the domain for the

protocol [WebSphere Application |server where WebSphere lil Since port 900
Server isinstalled Application Server isinstalled is the default port
value, thismay be
omitted.

3. Thislinein the example shows how to:
create an Initial Context class passing the Propertiesfile

4. Now do alookup the EJB Home on the server

For more information on JNDI, see article 4.6.1: INDI overview.

5. Thenar r owoperation in thisline:
safely casts the object into an instance of Hel | oHone

6. Findly, cal the create method on the HelloHome object to create a Hello object.

Youcanasousefi ndByPri mary key instead of cr eat e.Usethef i ndByPri mar yKey method to
find an existing Hello object.

Code example

327

| nport javax. nam ng. *;
i mport javax.rm.*;
i mport java.rm.*;
i mport java.util.?*;
i nport javax.ejb.*;
I nport WebSpher eSanpl e. Hel | oEJB. *; //package for Hel | oEJB beans
public class HelloCient

{
public static void main(String argv[])
{
try
{ . .
Properties props = new Properties();
props. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"com i bm webspher e. nam ng. Wnl ni ti al Cont ext Factory");
props. put (Cont ext . PROVI DER_URL,
“iiop:// mConputer.nyDomai n. com 900") ;
Initial Context ctx = new I nitial Context(props);
oj ect nyQbj = ctx. | ookup("Wssanpl es/ Hel | oEJBHone") ;
Hel | oHome nyHome = (Hel | oHone)
javax.rm . Port abl eRenot eQbj ect . narrow(obj, Hell oHone. cl ass);
Hel lo hell o = nyHone. create();
}

cat ch(Nam ngExcepti on e)

catch(i?éﬁbteExcept ion e)

cat ch(Cr éét eException e)

}
}

Learn more about the WebSphere Java application thin client by running the client sample.Y ou can install the
client sample from the WebSphere Application Client CD.This sampleiscaled Hel | oEJB andisinstalled in
thepr oduct _i nstal | ati on/ Wesanpl es/ d i ent subdirectory on the client machine.

328

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.7.4: Quick reference to Java client functions

Use the following table to identify the available functions in the different types of Javaclient.

| Available functions |Applet client |[J2EE Application client |Java thin application client
Provides al the benefits of a J2EE No Yes No
platform

Portable across all J2EE platforms No Yes No
Provides the necessary runtime to

support communication between client Yes Yes Yes
and server

Allows the use of nicknamesin the No Yes No
deployment descriptors

Supports use of the RMI-110P protocol Yes Yes Yes
Supports use of the HTTP protocol Yes No No
Enables development of client

applications that can access EJB Yes Yes Yes
references and CORBA object

references

Enablestheinitialization of the client |No Yes No
application's runtime environment

Supports security authentication to No Yes Yes
Enterprise Java Beans

Supports security authentication to No Yes No
local resources

Requires distribution of applicationto |No Yes Yes
client machines

329

4.7.5: Quick reference to Java client topics

Use the following table to |ocate additional Java client topics.

Click aTopics entry to view a description.Click a References entry for additional information on that topic.

| Topics

References

Java clients overview

J2EE application model
J2EE architecture
Quick reference to Java client functions

Applet clients

Developing an Applet client
Packaging, distributing, and installing
Tracing and logging

J2EE application clients

Resources referenced by a J2EE application client
Developing a J2EE application client
Troubleshooting guide for a J2EE application client
J2EE application client client class |oading overview
Packaging, distributing, and installing

Tracing and logging

Configuring application client resources

Launching Java application clients in the J2EE application client
container

Assembling modules and setting properties for applications

Assembling J2EE application modules (.ear files) with theapplication
assembly tool

Javathin application clients

Developing a Java thin application client
Javathin application client code example
Packaging, distributing, and installing
Tracing and logging

330

http://java.sun.com/j2ee/overview2.html
http://java.sun.com/j2ee/tutorial/doc/Overview3.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/060301.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606010501.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606010501.html

4.7.6: Packaging and distributing Java client applications

After aclient application has been developed the next step in the process is packaging and distributing the client application for use on client
machines. Packaging consists of pulling together the various artifacts that the client application requires. Distributing applies to making the

client application available on the target client machines. Each of the WebSphere Java clients differ slightly from each other in the packaging
and distributing phases of the development process. These differences are described bel ow.

Application
client type

Packaging

Distribution

J2EE
Application
Client

Packaging of the WebSphere J2EE Application Client is accomplished through the
Application Assembly Tool (AAT). Thistool generates an Enterprise Archive (. ear)
file as the output from the the assembly and deployment process. The . ear file contains
al of the classfilesthat are required by the client application to run.

The. ear file must be deployed. The deployment can be done throughthe Application
Assembly Tool or when the EJB modules within the . ear file are installed in WebSphere
Application Server. The deployment phasegenerates the client bindings needed by the
client application.

Distributing the J2EE Application
Client. ear filetothetarget client
machine that has WebSphere J2EE
Application Client installed, isa
manual process.

WebSphere Application Server
does not provide any tooling to
assist in the distribution of the
J2EE Application Client . ear
files.

The J2EE Application Client might
require further configuration if the
application makes use of external
resources (such as. JDBC,
JavaMail, IMS or URL). Perform
this configuration with the
Application Client Resource

Configuration Tool.

When the resource configuration is
complete, the application can be
started using the launchClient

command.

Java
Application
Thin Client

The Java application thin client is packaged by manually collecting appropriate JAR files
and Java classes to support the client application.

The Enterprise Java Beans that the client application uses, require that client side
bindings are available on the client target machine. The client side bindings are available
from the deployed EJB JAR files.

The. j ar files, containing the Enterprise Java Beans, are invoked by the application.
These JAR files are located in directory:
product _instal l ati on\Install edApps\ <Your EJBappl i cati on. ear >\

Distributing the Java application
thin client JAR filesto the target
client machine where WebSphere
Java Thin Application Client is
installed, is amanual process.

WebSphere Application Server
does not provide any tooling to
assist in the distribution of the JAR
files.

When the client application files
are present on the target client
machine, you must set up the
environment. WebSphere
Application Server provides a
command that assists usersin
setting up the environment by
defining several environment
variables. Use the setupClient
command located in the
product _installation\bin
directory. After running this
command, add your client
application JAR filesto the
CLASSPATH or usethe

- ¢l asspat h parameter on the
java command.

331

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

Applet
Client

The Applet client is packaged manually by collecting the appropriate JAR files, Java
classes, and HTML files to support the Applet.

The Enterprise Java Beans that the Applet uses, require client side bindings. The client
side bindings are available from the deployed EJB JAR files. What . | ar filesare used
depends on the Enterprise Java Beans invoked. These JAR files are located inthe
product _i nstal | ati on\ I nstal | edApps\ <Your EJBappl i cati on. ear >\

directory.

Distributing the Applet client to the
target client machine that has the
Applet client installed or to the
target WebServer machine (if you
want to make the Applet available
for download), is amanual process.

WebSphere Application Server
does not provide any tooling to
assist in the distribution of the JAR
files.

332

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.7.7: Tracing and logging for the Java clients

Tracing and logging functions are available for the WebSphere client runtime. How this support is enabled and the level of support provided,
differsfor each client model.

. Applet client

Y ou enable the tracing and logging functions for ORB level tracing only,by specifying the following system propertiesin the Java
Runtime parameters field of the WebSphere Application Server Java Plug-in Control Panel:

-Dcom i bm CORBA. Conmilr ace=t r ue
-Dcom i bm CORBA. Debug=t r ue

All verbose, trace, and debug messages are sent to the Java console window on thebrowser. Applets restrict using files for trace
output.

. J2EE Application Client

Y ou enable the tracing and logging functions by specifying one of the following flags on the launchClient command when starting
the J2EE client application:

» CCtrace
» CCtracefile

CCtrace flag

The - CCt r ace flag enables trace. Y ou can trace all or specific components:

» -CCtrace=true
(Thisflag enablestrace for all components and al events.)

s -CCtrace=com i bm <conponent >=<entryexit | debug | event | all>=enabl ed
(Thisflag enables trace for specific components. For example,
-CCtrace=com.ibm.ws.client.*=all=enabled enables trace for all loggers with names starting with com.ibm.ws.client.)

[i}l 1f the-CCtraceflagis not specified, trace is disabled.
CCtracefile flag

Usethe- CCt r acef i | e flag to send the trace output to a specific file:
-CCtracefile=<fully_qualified_output_filename>

(For example,
-CCtracefile=c:\MyTraceFile.log directs the trace output to file, c: \ My Tr aceFi | e. | 0g.)

[i} 1f the-CCtracefileflagisnot set, all output is directed to stdout.

. Java thin application client

Y ou enable the tracing and logging functions by specifying the following system property on the java command when starting the
client application:

-DtraceSettingsFil e=<fil ename>
(Filename is the name of a properties file that must be placed in the classpath accessible by the application.)
The propertiesfileis used for specifying the output file and the components to enable for trace. When you install WebSphere
Application Server, a sample trace settings propertiesfileis provided in:
<product _instal |l ati on>/ properties/ TraceSettings. properties

TheTraceSet ti ngs. properti es filelookslike the following example:

333

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

property to specify the fully qualified file name for the tracefile
traceFi | eName=c:\\ MyTr aceFi | e. | og

Specify trace strings here. Trace strings take the form of:
| ogger ={I| evel } ={type} where

|l evel = entryexit || debug || event || al

type = enabled || disabled
exanpl es:

comibm ej s. ras. SharedLogBase=al | =enabl ed enabl es all tracing for the single |ogger
created in class comibm ejs.ras. SharedLogBase.

com i bm ej s. *=debug=enabl ed enabl es debug tracing for all |oggers with names starting
with comibm ejs.

Miltiple trace strings can be specified, one per |ine.

comibmejs.ras. *=al | =enabl ed

HHEHFHHFHHFHH

[il 1 you specify afilename but no trace string,only message events are written to the specified file. If you specify
afilenameand atrace string, both message events and diagnostic trace entries are written to the specified file. If you
do not specify afilename for the tracefile, al output is directed to stdout.

334

4.8: Web services - an overview

Web services are self-contained, modular applications that can be described, published, located, and invoked
over anetwork.Web services could be weather reports or stock quotes. Transaction Web services,supporting
business-to-business (B2B) or business-to-client (B2C) operations, could be airline reservationsor purchase
orders.

Web services reflect a new "service-oriented” approach to programming, based on the idea of building
applications by discovering and implementing network-available services, or by invoking available
applicationsto accomplish some task. This "service-oriented" approach is independent of specific programming
languages or operating systems.Instead, Web services rely on pre-existing transport technologies (such as
HTTP) and standard data encoding techniques (such as XML)for their implementation.

The Web services architecture describes three roles:

1. Service provider
2. Servicerequester
3. Service broker

Web services components provide three basic operations:
1. Publish

2. Find
3. Bind

In order for some component to become a Web service, it must be:
« Created, and itsinterfaces and invocation methods must be defined
« Published to some repository
« Easy tolocate by potential users
« Invoked and implemented by users
« Unpublished when it isno longer available
Asillustrated in the graphic,

» Web service descriptions can be created and published by service providers who create on-line resources
for personal and business use.

« Web services can be categorized and searched by specific broker services.
« Web services can be located and invoked by requesters of the services.

335

Service
provider
&
RY
<
Senvice - > Service
broker Find requester

With Web services, programming complexity is reduced because application designers do not have to worry
about implementing the services they are invoking. Interactionsin Web services are bound dynamically at
runtime.A service requester describes the features of the required service and uses the service broker to find an
appropriate service.
WebSphere Application Server supports making the following artifacts into Web services:

« Javabeans

« Enterprise Java Beans

« BSF supported scripts

« DB2 stored procedures

See article Web services components for a description of the key components that comprisea Web service.

Visit URL, www.alphaworks.ibm.com/tech/webservicestoolkit,to access the Web services toolkit on

Alphaworks. This site provides tools for creating WSDL files and SOAP clients, and describes working
examples.

Learn more about Web services. Register for the Web services tutorialon Alphaworks.

336

http://www.alphaworks.ibm.com/tech/webservicestoolkit
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument

4.8.1: Web services components

These are the key components of a Web service:

SOAP (simple object access protocol)

WSDL (Web Services Description Language)

UDDI (Universal Discovery , Description and Integration Protocol)
UDDI4J (client version of UDDI)

SOAP or Simple Object Access Protocol

isanew protocol created by IBM, Microsoft, Userland, and DevelopMentor to support remote procedure calls and other requests over HTTP.Built on
HTTP and XML, SOAP attempts to convert application servers into object servers.

See the W3C SOAP protocol site for more information on SOA P messages, supported datatypes, and attributes. For SOAP implementation guidelines,
visit the Apache site.

SOAP requests and the responses are XML based. The following examplesillustrate a SOAP request and response:

Sample SOAP Request
Sanpl e SOAP Request POST /Supplier HTTP/ 1.1 Host: ww. somesupplier.com Content-Type: text/xm;
charset="utf-8" Content-Length: nnnn SOAPAction: "Sone-URI" <SQOAP-ENV: Envel ope
xm ns: SOAP- ENV="ht t p: // schemas. xrm soap. or g/ soap/ envel ope/ "
SOAP- ENV: encodi ngSt yl e="htt p: // schenas. xm soap. or g/ soap/ encodi ng/ " > <SQAP- ENV: Body>

<m Orderltem xm ns: n=" Sone- URI " > <Ret ai | er | D>557010<</ Ret ai | er | D>

<| t emNunber >1050420459</ | t emNunber > <ItemName>AMF Ni ght Hawk Pear| M</ItenmNane>

<l t enDesc>Bow i ng Bal | </ |t enDesc> <Order Quantity>100</ Order Quantity>

<Whol esal ePri ce>130. 95</ Whol eSal ePri ce> <Or der Dat eTi ne>2000- 06- 19 10: 09: 56</ Or der Dat eTi ne>

</m Orderltenr </ SOAP- ENV: Body> </ SOAP- ENV: Envel ope>

The SOAP request indicates that the Orderltem method, from the " Some-URI" namespace, should be invoked from
http: //www.somesupplier.com/Supplier.Upon receiving this request, the supplier application at www.somesupplier.com executes the business logic that
corresponds to Orderltem.

The SOAP protocol does not specify how to process the order. The supplier could run a CGI script, invoke a servlet, or perform any other process that
generates the appropriate response.

[l Seearticle SOAP support for the list of artifacts that WebSphere Application Server supports as Web services,

In this example, the SOAP Envelope element is the top element of the XML document that represents the SOAP message. The reference to the XML
namespace (xm ns: m=" Sone- URI ") specifies the namespace to use for the SOAP identifiers. This request is asking the application to place an
order for the item identified by the elements:

o Retalerld

o ItemNumber

o ltemName

0 ltemDesc

o OrderQuantity

o WholesaePrice

o OrderDateTime
The response comesin the form of an XML document that contains the results of the processing, in this case, the order number for the order placed by
theretailer. The responseis sent by the service provider located at http://www.somesupplier.com/Supplier.

Sample SOAP Response
HTTP/ 1.1 200 OK Content-Type: text/xm; charset="utf-8" Content-Length: nnnn <SOAP-ENV: Envel ope
xm ns: SOAP- ENV="ht t p: // schemas. xnl soap. or g/ soap/ envel ope/ "
SQAP- ENV: encodi ngStyl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ "/ > <SOAP- ENV: Body>
<m Order |t enmResponse xm ns: m=" Sone- URl " > <Or der Nunmber >561381</ Or der Nunber >
</ m Order |t enrResponse> </ SOAP- ENV: Body> </ SQAP- ENV: Envel ope>

The response does not include a SOAP-specified header.The results are placed in an element whose name matches the method name (Orderltem) with
the suffix, "Response” as inOrder|temResponse.

Although Apache SOAP alows for SOAP over SMTP, WebSphere Application Server only supports SOAP over HTTP.
The SOAP Javadoc is shipped with WebSphere Application Server.
Review WebSphere Application Server's Javadoc for SOAP implementation details.

WSDL or Web Services Description Language
337

http://www.w3.org/TR/SOAP/
http://xml.apache.org/dist/soap
http://localhost/0802_makepdf/apidocs/index.html

isan XML-based interface definition language that provides operational information about a service, such as the service interface, implementation
details, access protocol, and contact endpoints. Compliant server applications must support these interfaces, and client users can learn from
thedocument how a service should be accessed.

[l webSphere Application Server does not provide toolsfor generating WSDL files,
View aWSDL representation in the AddressBook2 sample.
See article UDDI4J samples for more information.

Review the WSDL specifications at W3C WSDL protocol site.

UDDI or Universal Discovery Description and Integration (Project)

is a comprehensive, open industry initiative enabling businesses to:
1. Discover each other
2. Define how they interact over the Internet, and share information in aglobal registry architecture.

WebSphere Application Server does not provide a private UDDI directory. IBM, among others,provides public UDDI registries. For more information
about UDDI, see www.uddi.org.Also visitAlphaworksfor the Web services toolkit, which includes an IBM implementation of a private UDDI

registry.

UDDI isthe building block which enables businesses to quickly, easily, and dynamically find and transact with one another by means of their
preferred applications.

As described in the Web services overview, UDDI provides the three basic Web services functions: publish, find, and bind.

uDDI4J

is an open-source Java implementation of the Universal Discovery, Description, and Integration protocol (UDDI).UDDI4J contains an implementation
of the client side of UDDI (everything your application needs to publish, find, and bind a Web service).It aso includes the source code, and the
complete Javadoc for the APIs. For more information,visit the UDDI4J open source site at oss.software.ibm.com/devel operworks/projects/uddi4j.

Review IBM's Javadoc for UDDI4J implementation details.

338

http://www.w3.org/TR/wsdl#_introduction
http://www.uddi.org/
http://www.alphaworks.ibm.com/tech/webservicestoolkit?open&c=cdws&p=uddi
http://oss.software.ibm.com/developerworks/projects/uddi4j
http://localhost/0802_makepdf/apidocs/index.html

4.8.1.1: UDDI4J Overview

UDDI4JisaJavaclasslibrary that provides an API that is used to interact with a UDDI registry. This class
library generates and parses messages sent toand received from a UDDI server.

The central classin thisset of APIsis:
com i bm uddi . client.UDDI Proxy

This classisaproxy for the UDDI server thatis accessed from the client code. Its methods map to theUDDI
Programmer's APl Specification.Review IBM's Javadoc foradditional implementation details.

The classeswithincom i bm uddi . dat at ype represent data objects that send or receiveUDDI information.
In the business and servicemodel, the data objects are a'so known as subpackages.

The subpackage com i bm uddi . r equest contains messages sent to the server.Generally, these classes are
not used directly;rather, they are invoked by the UDDIProxy class.

Similarly, the subpackagecom i bm uddi . r esponse represents response messages from a UDDI server.
UDDI4J error handling

When invoking UDDI Pr oxy inquiry methods, UDDI Except i on isthrown when errors are received fromthe
UDDI proxy.UDDI Except i on can contain a DispositionReport with information regarding the error.

APIsthat do not return a data object, providethe disposition report.

SQAPExcept i on isthrown if acommunication error occursor if the resulting data cannot be parsed asavalid
SOAP message.

View thefile4.8.1.1.1: UDDI4J Samplesfor APl usage examples.

For more information,visit the UDDI4J open source site at
oss.software.ibm.com/devel operworks/projects/uddi4;.

339

http://www.uddi.org/pubs/UDDI_Programmers_API_Specification.pdf
http://www.uddi.org/pubs/UDDI_Programmers_API_Specification.pdf
http://localhost/0802_makepdf/apidocs/index.html
http://oss.software.ibm.com/developerworks/projects/uddi4j

4.8.1.1.1: UDDI4J samples

A set of samplesis provided to illustrateusing the inquiry and publishAPIs, and to demonstrate error handling.
Note: WebSphere Application Server does notprovide a UDDI registry. The IBM UDDI test registry islocated at www.ibm.com/services/uddi/

Any sample that requires you to "publish," "save," or "delete" requires auserid and password. Y ou can only invoke the "find" sample without a userid and password.

To get auserid and password:
1. Accessthe UDDI test registry
2. Register for your userid and password

The registration process requires you to activate your id beforeattempting to use the publish or delete examples.
Note: If the registry is not operational, keep trying. Thisis atest registry andat timesit is not available.
3. Useyour registered userid and password when running the SaveBusinessExampleand Del eteBusinessExample samples.

Y our samples consist of:
« FindExample - isthe "Hello world" of UDDI programs. It is the simplest sample of the UDDI API.
« SaveBusinessExample - is an example of using the publish API. It logsinto the server using the get _aut hToken method; then attempts to save a business.
« DeleteBusinessExample - searches for a particular business using the inquiry API, finds the associated businesskey, logs into the server, and then attempts to delete
the business it found.
[When running DeleteBusinessExample, you might receive the following error messages:

Get aut ht okenRet ur ned aut hToken: ADA3DCA0- 2531- 11D5- 9EBO- 832611502FD0Sear ch for ' Sanpl e busi ness' to
del et eFound busi ness key: D3DD4036- 00E4- F124- 050B- C6113996AA77Er r no: 10140 Err Code: E_user M smat ch
Err Text: E_user M snmat ch (10140) Cannot change data that is controlled by another party.

busi nessEntity = D3DD4036- 00E4- F124- 050B- C6113996AA77Found busi ness

key: 61AE2CC0- OF2C- 11D5- BC1E- B763254A2930Er r no: 10140 Err Code: E_user M smat ch

Err Text: E_user M smat ch (10140) Cannot change data that is controlled by another party.

busi nessEntity = 61AE2CC0- OF2C- 11D5- BC1E- B763254A2930Found busi ness

key: 3BB274CF- 00E3- FA94- 9B72- C6113996AA77

Thisis not a problem with the sample. DeleteBusinessExampl e issues a query for the business name specified in the code and receives alist of
entries with that name. The sample then tries to delete each entry in the list. These error messages occur when the sample tries to delete entries that
you do not own.

Accessing the samples

To access these samples, you can either installthe soapsamples.ear, or you canexpand the soapsanpl es. ear using the EarExpandertool.

These are the steps to access the samples:
1. Create adirectory to hold the expanded soapsamples.earcontents.
2. Fromthepr oduct _i nstal | ati on_r oot \ bi n directory,enter the following commands:

Ear Expander -ear ..\install abl eApps\soapsanpl es. ear-expandDi r ..\tenp\soapsanpl es -operati onexpand
- expansi onFl ags war

3. Issue the cd command to changeto the i nst al | edApps/ soapsanpl es. ear orto the target directory specified in the-expandDir argument
4. Issue the cd command to change to UDDI Sanpl es directory. The source for the samplesisincluded in the sr ¢ directory.

The samples require several pieces of information.The sample source files can be edited and these valuessubstituted. The required values are:
« I'nqui ryURL: TheURL of the UDDI server against which to run inquiries.
o Publ i shURL: The URL of the UDDI server to run publish requests. Typically, thisisa SSL connection.
« Userid: When publishing, auseridisrequired for authentication.
« Password: Thisisthe password for the referenced userid. Password isreferred to as a credential in UDDI terminology.

Running the samples

WebSphere Application Server provides an number of UNIX scripts and DOS .bat files to run the samples. These scripts (or .bat files) add the required jar files to the
classpath. Use atext editor (such as Notepad on Windows NT or VI or E3 on UNIX) to view the scripts (or .bat files). They describethe resources that you need to run the
samples.
The scripts are located in directory UDDI Sanpl es/ uni x_scri pt s.0n Windows NT, the .bat files are located in directory UDDI Sanpl es\ nt _bat .

[l The scriptsare put in thislocationas a result of running the Ear Expander command.
All the scripts (or .bat files) are named after the samples they run. So, for example, to invoke the FindExample sample, you would run theFindExample.sh script.

A UDDI registry might limit the number of business entities that you publish.The IBM Test registry limits you to one business entity.This means, for example, that after
running the SaveBusinessExample, youmust run the Del eteBusi nessExampl e before attempting to publish another business entity.

See the related information links for an enablement scenario.

340

http://www.ibm.com/services/uddi/
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.8.1.2: SOAP support

Version 2.2 of the Apache SOAP implementation is integrated into WebSphere Application Server Version 4.0.
Apache SOAP Version 2.2 is a Java-based implementation of the SOAP 1.1 specification with support for
SOAP with attachments.
WebSphere Application Server Version 4.0 alows you to expose the following artifacts as SOAP services:

« Standard Java classes

« Enterprise beans

« Bean Scripting Framework (BSF) supported scripts

« DB2 stored procedures

Tools are provided to assist you with deployingthese artifacts as SOAP services. See article Deploying a
programming artifact as a SOAP accessible Web service for more information.

As part of deploying your services,you can choose to enable the XML-SOAP Admin tool ,which allows you to
manage your SOAP-enabled services.

WebSphere Application Server also contains an implementation of the security extensions for SOAP. These
security extensions provide secure connections and enable digitally signed messages.See article Securing SOAP

services for more information.

See the related information links for an enablement scenario.

341

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060014.html

4.8.1.2.1: SOAP samples

WebSphere Application Server 4.0 provides sample services and clients that demonstrate how to access SOAP services. The SOAP samples code is based on
the the Apache SOAP 2.2 samples.These samples are contained in the soapsanpl es. ear thatislocated inthei nst al | abl eApps directory. The
source for the sample servicesislocated in the soapsanpl es. ear .

See article DB2 Stored procedure sample setupfor information on configuring a datasource to set the db2-userid and db2-password entries.

Perform the following stepsto install the samplesin your server:
1. Inasingle-server configuration, do the following:

2. Change the directory to:
product _installation_root/bin

3. Instal the EAR file by entering the following data at a command prompt:
[il Thelinebreaksin this example are added to make the information legible. Thisinformation really exists as one line of
unformatted data.

Seappi nstall -install ..\install abl eApps\soapsanpl es. ear - ej bdepl oy fal se
-interactive false

4. To access the sample services from an external Web server, run the file GenPl ugi nCf g. sh on UNIX or GenPl ugi nCf g. bat on Windows NT.
This file makes the Web server aware of the SOAP samples.

5. Start the product.
6. Check on the availability of the sample services using the XML-SOAP Admin tool:

a. From abrowser, goto URL
http://1 ocal host/soapsanpl es/ adm n/i ndex. ht m

b. At thissite, you can:
= List available services
= View the Apache SOAP descriptors
= Stop and start sample services

Running the sample clients

Sample clients are provided to demonstrate how to access the installed SOAP services. These scripts require you to specify the server that will handle the
request.

[il 1f you run the script with no arguments, as for example StockQuoteSample, you will be provided with help on how to use the sample, and
you will receive a description of the command line arguments that the script requires.

To access the samples, change the directory to the following on Windows NT:
product _install ation_root\install edApps\soapsanpl es. ear\ d i ent Code\ nt _bat

On UNIX platforms, the samples directory is:
product _installation_root/install edApps/soapsanpl es. ear/ C i ent Code/ uni x_scripts

[l Issuethechnod 755 *. sh command to restore the executionpermissions of the UNIX scripts.

Sample Command (entered on a singleline)
st ockquot esanpl e | ocal host | BM

Stock quote (requires Internet access) [il If the request appears to hang, and then you receive an "Operation timed out" error, the service

was unable to reach a server on the Internet to obtain the stock quote information. Y ou may need a
direct connection to the Internet.

Addr essBookSanpl e

GET | ocal host "John B. Good"

Addr essBookSanpl e

Address book ALL | ocal host

Addr essBookSanpl e

PUT | ocal host "Herman Miunster" 1313 "Mcki ngbird Lane" Sal em MA 10013 111 222

3434
Address book example 2 Addr essbook2sanpl e | ocal host
EJBAdder Sanpl e | ocal host
EJB On UNIX platforms, enter:
EJBAdder Sanpl e. sh | ocal host
Send Message sendMessageSanpl e | ocal host ..\data\nsgl. xm

Cal cul at or Sanpl e | ocal host

Calculator Sample [l Unlikethe other SOAP samples, which are either java or enterprise beans, the Calculator

Sampleis aJavaScript sample. The actual calculator processing is performed by the Web service.
MimggZent sample M med i ent Sanpl e | ocal host ..\data\foo.txt

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0607.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0606a.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060014.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

DB2SPSanpl e | ocal host
DB2SPSample sample On UNIX platforms, enter:
DB2SPSanpl e. sh | ocal host

Troubleshooting SOAP sample problems

If you cannot run the SOAP samples, check for the following problems:
« Canyourun any of thesamples, suchashtt p: / /| ocal host/ ser vl et/ snoop?If not, make sure the Web server is running.
If you can run the snoop sample, try accessing one of the SOAP samples again, butthis time specify the port number 9080 in addition to the
host name, as for example:
M med i ent Sanpl e | ocal host: 9080 ...\data\foo.txt

If adding the port number resolves the problem, you need to update the plugin configurationby running the GenPl ugi nCf g. bat file on the
Windows platform, or theGenPI ugi nCf g. sh fileon UNIX platforms.

« |f the stockquote sample fails but the other samples work, you are having problems accessing the external Internet.

See the Related topics section for links to an enablement tutorial .

343

4.8.1.2.2: Building a SOAP client

Creating clients to access the SOAP services published in WebSphere Application Server is a straightfoward process.The Apache SOAP
implementation, integrated with WebSphere Application Server, contains aclientAPI to assist in SOAP client application development.

The SOAP API documentation is available in WebSphere Application Server's javadoc.

These are the steps for creating a client thatinteracts with a SOAP RPC service:
1. Obtain theinterface descriptionof the SOAP service
This provides you with thesignatures of the methods that you wish toinvoke.Y ou can either look at a WSDL file for theservice, or view the
service itself to see itsimplementation.
2. Createthe" Call" object

The SOAP "Call" object isthe main interfaceto the underlying SOAP RPC code.
3. Set thetarget URI (Uniform Resour ce I dentifier) in the " Call” object using theset Tar get Cbj ect URI () method.

Pass the URN (Uniform Resource Name, atype of URI), that the service uses for itsidentifier, in the deployment descriptor.
4. Set the method namethat you want to invokein the" Call" object using theset Met hodNarre() method

This method must be one of the methods exposed bythe service located at the URN from the previousstep.

5. Createthe necessary " Parameter” objectsfor the RPC call and then set them in the " Call" object using the set Par ans()
method.
Ensure you have the same number and same type of parameters as those required by the service.

6. Executethe" Call" object'si nvoke() method and retrievethe" Response” object

Remember the RPC call is synchronous, so it may take some time to complete.
7. Check theresponsefor afault using theget Faul t () method, and then extract any resultsor returnedparameters

While most of the providers only returna result, the DB2 stored procedure providercan also return output parameters.

Interacting with a" document-oriented" SOAP service requires you to use lower-level Apache SOAP API calls. You must first construct an
"Envelope" object which containsthe contents of the message (including thebody and any headers) that you wish to send.Then create a"Message"
object where you invoke the send() method to perform theactual transmission.
To create a secure SOAP service, do the following:

1. Create asimple object

2. Define an envelope editor

3. Specify a pluggable envelope editor

4. Definethe transports

Y our code may look like the following example:

Envel opeEdi t or editor=new Pl uggabl eEnvel opeEdi t or (new | nput Source(conf), hone); SOAPTr ansport
transport =new FilterTransport(editor, new SOAPHTTPConnection()); call.set SOAPTransport (transport);

The characteristics of the secure session are specified by the configuration file, "conf."
See article Securing SOAP servicesfor more information on creating secure Web services.
See article 4.8.1.2.2.1: Accessing enterprise beans through SOAPfor information on calling an EJB service.

Since the SOAP API isastandard for Web services, any clientsthat you create to access the WebSphere Application Server SOAP services can
also runin different implementations.

See the related information links for an enablement scenario.

344

http://localhost/0802_makepdf/apidocs/index.html

4.8.1.2.2.1: Accessing enterprise beans through SOAP

Calling enterprise beans through SOAP is handled in the same manner ascalling Java bean methods through SOAP. The SOAP runtime handles the
bean cases for you, such as calling anenterprise bean's create method if the create was not calledpreviously.

A Web service can be a simple statel ess sessionbean that performs number processing and returns a data value.When the client code makes a call to
the data processing method of this service and aninstance of the stateless session is not available, the SOAP runtimedoes the following:

« Cadllsthe EJB create method to obtain a statel ess session
« Cadlsthe requested method

At times the client code must do additional work to use enterprise beans throughSOAP. For example, if a Web application intends to use stateful or
entity beans that persist data between calls, the clientrequires a reference to identify the bean instance that must be accessedin subsequent callsto
methods. This reference/key can be obtained from the response objectthat the client receives on theinitial call to the bean.

Response objects are created:
« When the client explicitly calls a create method
o FromafindByPri maryKey() Entity Bean method call
« From aregular bean method call

The following code example demonstrates calling a bean'screate method with parameters:

/*This code snippet is froma sinple MessageBoard bean thatstores strings sent to it for retrieval
at a later date.*/

};*.Call create with \"This is a test\"to initialize the EIB*/
call = new Call ();
cal | . set Tar get Cbj ect URI (" ur n: nessageboard") ;

/*Note, you can explicitly call a create. Parameters for the bean's create can be passed |ike
paranmeters to any SOAP RPC cal | . */

cal | . set Met hodName("create");

cal | . set Encodi ngSt yl eURI (Const ant s. NS_URI _SOAP_ENC) ;

paranms = new Vector();

par ans. addEl enent (new Paraneter ("nsg", String.class, "This is a test", null));

cal | . set Par ans(par ans) ;

Systemout.printin("Calling create with \"This is a test\"");
resp = call.invoke(url, "");

/*Now use the sane instance of the bean that you just 'created' and initialized. Gbtain the reference
fromthe response object through the nethod get Full Target Cbj ect URI () */
ej bKeyURI = resp. get Ful | Target Obj ect URI () ;

/*Subsequent calls to this bean can now be made by using theobtained ejb key.*/
/*Cal | getMessage using the handle fromthe create*/

call = new Call();

cal | . set Ful | Tar get Obj ect URI (ej bKeyURI) ;

cal | . set Met hodName(" get Message") ;

cal | . set Encodi ngSt yl eURI (Const ant s. NS_URI _SOAP_ENC) ;

Systemout.println("Calling get Message: ") ;

resp = call.invoke(url, "");

345

4.8.1.2.3: Deploying a programming artifact as a SOAP accessible Web
service

Complete these steps to deploy a SOAP accessible Web service in WebSphere Application Server:
1. Createor locate the softwar e resour ceto be exposed as a service

To deploy a service,create a programming artifact, one of the supported types,or locate an existing piece of code of the supported type.
2. Assemble an Enterprise Archive (EAR)file

Package the code artifactinto an Enterprise Archive (EAR). This stepis a deployment packaging requirement of WebSphere Application Server. Use
the Application Assembly Tool (AAT)to package the artifact. See article Application Assembly Toolfor information on using the tool.

3. Createthe Apache SOAP deploymentdescriptor for the desired service

In order to deploy an artifact as a SOAPservice, create a Apache SOAP deploymentdescriptor that describes the service you are creating.This step
exposes the programming artifact as a"service." The descriptor describes and defines the parts of the code that will be invoked with the SOAP calls.

The information containedin the deployment descriptor varies, depending on the type of artifact you are exposing.For example, the following
deployment descriptor might be used with the StockQuoteSample:

<isd:service xmns:isd="http://xnl.apache. org/ xm - soap/ depl oynent " i d="urn: service-urn"
[type="nessage"] > <i sd: provi der type="java" scope="Request | Session |
Application" nmet hods="exposed- net hods" > <isd:java class="inpl enenti ng-cl ass"
[static="true|fal se"]/> </i sd: provi der>

<i sd: faul t Li st ener>or g. apache. soap. server. DOWaul t Li stener</i sd: faul tLi stener>
</isd: service>

View the Apache SOAP deployment descriptor documentationfor more information.
4. Executethe SoapEar Enabl er tool toenable your Web service

As mentioned above, your code artifact must first be packagedinto an Enterprise Archive (EAR). Next, using thedeployment descriptor as input, add
thenecessary pieces to the EAR file to enable the artifact as a Web service. To facilitate this process,use the Java based tool called
SoapEar Enabl er .Depending on whether you secure the Web service, thistool will add two Web modules: soap. war and soap- sec. war to
the EAR file.These Web modules include the SOAP deployment descriptors plus the necessary parts to deploy the service into the WebSphere
Application Server runtime.

[l The service does not become available until the soap-enabled EAR file isinstalled, and the server is restarted.

View the SoapEarEnabler tool documentationfor more information on SoapEar Enabl er .
5. Install the service-enabled EAR file

Take the modified EARTile, created in the previous step,and install it in WebSphere Application Server.

View article Installing applications with the application installer command linefor information on installing EAR files.
6. Updatethe Web server plugin configuration

Run the GenPl ugi nCf g. bat fileon Windows NT or the GenPI ugi nCf g. sh script on UNIX to regenerate the plugin configuration.
7. Restart the application server

See the related information links for an enablement scenario.

346

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060010.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06060006.html

4.8.2. Apache SOAP deployment descriptors

Apache SOAP utilizes XML documents called" deployment descriptors” to provide the SOAP runtime with
information on client services.
Deployment descriptors provide an array ofinformation such as the:

« Service's URN (Uniform Resource Name)(which is used to route the request whenit arrives)

« Method and class details, ifthe service is being provided by a Java class

o User ID and password information, if the serviceprovider must connect to a database

The contents of the deployment descriptor vary,depending on the type of artifact that isbeing exposed using
SOAP.

347

4.8.2.1: SOAP deployment descriptors in WebSphere Application Server

This article describes the different types of deploymentdescriptors that can be used in WebSphere Application Server.Deployment descriptors for each of the
soap samples areincluded in thesoapsanpl es. ear fileinthe Ser ver Sanpl esCode directory(for example,
<product _installation>/install edApps/soapsanpl es. ear/ Server Sanpl eCode/ sr ¢/ addr essbook/ Depl oynent Descri pt or)

Standard Java class deployment descriptor

A deployment descriptor which exposes a servicethat is implemented with a standard Javaclass (including a normal java bean) lookslike this example:

<isd:service xmns:isd="http://xnl.apache. org/ xm - soap/ depl oynent" i d="urn:service-urn"
[type="nessage"]> <i sd: provi der type="java" scope="Request | Session |
Application” nmet hods="exposed- et hods" > <i sd:java cl ass="i npl emrenti ng- cl ass"
[static="true|fal se"]/> </i sd: provi der>

<i sd: faul tLi st ener >or g. apache. soap. server. DOVFaul t Li st ener </i sd: f aul t Li st ener >
</isd:service>
where;
« service-urn isthe URN that you give to a service.(All services deployed within asingle EARfile must have URNS that are unique withinthat EAR file.)
« exposed-methodsis alist of methods, separated by spaces,which are being exposed
« implementing-classisafully qualified class name (that is, a packagename.classname)that provides the methods that are beingexposed.

On the <service> element,there is an optional attribute called type which is set to the value "message"if the service is document-oriented insteadof
RPC-invoked.

On the <java>element, there is an optional attribute calledstatic, which may be set to either "true"or "false", depending on whetherthe methods are exposed or
not exposed. If exposed, this attribute indicates whetherthe method is static or not static.

On the <provider> element, there isa scope attribute which indicates the lifetime ofthe instantiation of the implementing class.
« "Request” indicates the objectis removed after the request completes.
« "Session" indicates the objectlasts for the current lifetime of theHTTP session.
« "Application" indicates the object lasts until the servlet thatis servicing the requests, is terminated.

EJB deployment descriptor

A deployment descriptor that exposes a servicewhich isimplemented with an Enterprise JavaBean looks like this next example:

<isd:service xmns:isd="http://xm .apache. org/ xnl - soap/ depl oynent " i d="urn:service-urn">
<i sd: provi der type="provider-class" scope="Application"

met hods="exposed- net hods" > <i sd: opti on key="JNDI Nane" val ue="j ndi - nane"/>

<i sd: opti on key="Ful | Honmel nt er f aceNane" val ue="hone-nane" /> </i sd: provider>

<i sd: faul tLi stener>org. apache. soap. server. DOVFaul t Li st ener </i sd: faul t Li st ener>
</isd:service>
[l Thedefault valuesfor theiiop URL and context provider keys are:

<i sd: opti on key="Cont ext Provi der URL" val ue="iiop://I|ocal host: 900" /> <i sd: option
key="Ful | Cont ext Fact oryNane" val ue="com i bm webspher e. nam ng. Wénl ni ti al Cont ext Factory" />

To use your own values, you must specify:
<i sd: opti on key="Cont ext Provi der URL" val ue="<URL to the JNDI provider>" /> <i sd: option
key="Ful | Cont ext Fact or yNane" val ue="<Context factory full class nane>" />
A description of the keys and variables follows:
« service-urn and exposed-methods have the same meaning as in the standardJava class deployment descriptor
« provider-classisone of the following depending on the implementation of the bean:

| Provider class |Bean implementation
com.ibm.soap.providers. WA SStatel essEJB Provider [statel ess session bean
com.ibm.soap.providers. WA SStatefulEJBProvider |stateful session bean
com.ibm.soap.providers. WA SEntityEJBProvider |entity bean

« jndi-nameis the registered INDI name of the EJB
« home-nameisthe fully qualified class name of theEJB's home.

Bean Scripting Framework (BSF) script deployment descriptor

A deployment descriptor that exposes a servicewhich isimplemented with a BSF script lookslike the following example:

<isd:service xmns:isd="http://xm . apache. org/ xn - soap/ depl oynment " i d="urn:service-urn">
<i sd: provi der type="script" scope="Request | Session | Application"
nmet hods="exposed- nmet hods" > <i sd:script |anguage="I| anguage-nane"

[souga%:"sour ce-filenane"]>[script-body] </isd:script> </i sd: provi der >

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

<i sd: faul tLi stener>org. apache. soap. server. DOVFaul t Li st ener </i sd: faul t Li st ener >
</isd:service>

where:
« service-urn, exposed-methods, and scope have the same meaning as in the standardJava class deployment descriptor
« language-name is the name of the BSF-supported language that isused to write the script.

The deploymentdescriptor must also have a source attribute on the <script> element,or a script-body attribute. The script-body attribute contains the actual
script that is used to providethe service. If the deployment descriptorhas the source attribute, then source-filename refers to the file which contains the
serviceimplementation.

DB2 stored procedure deployment descriptor

A deployment descriptor which exposes oneor more DB2 stored procedures as a services ooks like the following example:

<isd:service xmns:isd="http://xm . apache. org/ xn - soap/ depl oynment " i d="urn:service-urn">
<i sd: provi der type="comibm soap. provi ders. WASDB2SPPr ovi der" scope="Application"

nmet hods="* | exposed- net hods" > <i sd: opti on key="user| D' val ue="db-userid"/>

<i sd: opti on key="password" val ue="db-password"/> [<isd:option

key="ful | Cont ext Fact or yNane" val ue="context-factory"/> <i sd: opti on key="dat asourceJNDI "
val ue="j ndi - nane"/ >] [<isd:option key="dbDriver" val ue="db-driver"/>

<i sd: opti on key="dbURL" val ue="db-url"/>] </i sd: provi der>

<i sd: faul tLi st ener>or g. apache. soap. server. DOVFaul t Li st ener</i sd: faul t Li stener >
</isd: service>
where:
« service-urn and exposed-methods have the same meaning as in the standardJava class deployment descriptor.
« db-useridisavalid user ID used to access the databasewhere the stored procedures reside.
« db-password isavalid password for the specified user ID
[} The db-userid and db-passwordentries are optional . These entries can be set in the datasource.ln WebSphere Application Server, the

preferred way for administering the db-userid and db-password entriesis with a datasource. Changing the user 1D and password is easier
when the information is located in a datasource rather than in a separate deployment descriptor file. See article DB2 Stored procedure

sample setupfor more information.

« context-factory isthe name of the context factoryused to access the database
« jndi-name is the datasource used to accessthe database
« db-driver isthe database driver usedto access the database.

[l A db-driver isnot required if adatasource JINDI name is specified.
« db-url isthe URL that specifies the database to access

The methods attribute on the <provider> elementcan contain alist of space separatedprocedure namesto expose, or an "*" (asterisk).An asterisk indicates all
available stored procedures shoul dbe exposed.

See the related topics section for links to an enablement scenario.

349

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0607.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0607.html

4.8.3: Quick reference of Web services resources

Use the following table to link directly to Web services descriptions, and additional resources.
Click on any heading in the Topic category for a description of that topic.

Click on any heading in the Resour ces category for links to external sites that provide sample scenarios,
toolkits, tutorials, and additional information.

Reference the Related topics section for links to the SOAP EAR enabler tool and to a Web servicesenablement
tutorial.

| Topic | Resour ces

« Web services topics and devel opment

environment
Web services overview « Waeb services wizard
« Waeb servicestoolkit

« Waeb servicestutoria

« SOAPoverview

o SOAP support in WebSphere Application
Server

o SOAP samples
» Building a SOAP client

« Deploying a programming artifact as a SOAP
accessible Web service

Apache SOAP implementation

« UDDI overview IBM's UDDI registry implementation
o IBM'sUDDI test registry

« UDDI4Joverview

« UDDI4J support in WebSphere Application UDDI4J topics
Server
« UDDI4J samples
» IBM's Javadoc
WSDL overview WSDL topics

See the Related topics section for links to an enablement tutorial.

350

http://www.ibm.com/developerworks/webservices
http://www.ibm.com/developerworks/webservices
http://www.alphaworks.ibm.com/tech/wsde
http://www.alphaworks.ibm.com/tech/webservicestoolkit
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument
http://xml.apache.org/soap
http://www.ibm.com/services/uddi/
http://www.alphaworks.ibm.com/tech/webservicestoolkit?open&c=cdws&p=uddi
http://localhost/0802_makepdf/apidocs/index.html
http://oss.software.ibm.com/developerworks/projects/uddi4j/
http://www.ibm.com/developerworks/library/w-wsdl.html

4.8.4. Securing SOAP services

Since the SOAP specification left security issuesopen, several proposals evolved to bridge the security gaps.
Recentlythe SOAP Security Extension [SOAP-SEC] was published as aW3C Note, specifically addressing the

XML Digital Signature.

The SOAP security extension, included withWebSphere Application Server Version 4.0, is a security
architecturebased on the SOAP security specification,and widely-accepted security technol ogiessuch as Secure

Sockets Layer or SSL.

There are three options for security when using HTTP as the transport protocol.
o HTTP basic authentication

o SSL (HTTPS)
o SOAP signature

Application developers are free to combine these security options according to their security requirements.The
following scenarios describe the implementation of the security options.

HTTP basic authentication

Many applications require users toprovide identifying information.Y ou cannot provide access control for
individual services. Y ou can onlyprovide access control for the router servlets (asfor example the rpcrouter
servlet URI). If auser can get to a servlet, he can access any of the Web services served through the

serviet. Therefore, if you have a set of "secure" services and "unprotected” services, you have to partition them
differently so that "secure" servicesare accessed through an URI that is secured (for example,

/ secur eRPCRout er) andthe unprotected services are open for everyone to access (for example,

/ upr ot ect edRCPRout er).

Using the ApplicationAssembly tool, you can set authorization levels by assigning roles to HT TP methods and
byassigning users to roles. Y ou can then authenticate users, verifying they are authorized to view specific
information. There are many ways to prompt users for authentication data.See articles Overview: Using

programmatic and custom login andThe WebSphere authorization modelfor more information on different
authentication methods, and on role-based authorization scenarios.

SOAP on SSL with HTTP basic authentication

To make arequest over HTTPS, using the SSL support of Apache SOAP, you needa separate Java Secure
Socket Extension (JSSE) provider.

WebSphere Application Server includesthei bnj sse. j ar inthe JDK extensions.

The"SOAP on SSL" scenario is useful for many business-to-business (B2B) applications because:

« Thedatain transit is protected from eavesdropping or forgery by SSL.

« Theclient identity is authenticated through userid and password, which are encrypted by the SSL

transport.

For example, if an inventory application is configured as a Web service, the service provider has the following
two SOAP service entries:

e« https://foo.cominventory/inquiry

e« https://foo.cominventory/update

351

http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/xmldsig-core/
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0505.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0505.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0504.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/0504.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/050103.html
http://java.sun.com/products/jsse/
http://java.sun.com/products/jsse/

Each SOAP service entry should be deployedas a separate enterprise application (EAR)because each service has
adifferent access controlpolicy, whichis. anyone can inquire about the inventorybut only the inventory clerks
can updatethe contents.

The SOAP enablement model limits you to one context root for theunsecured services and another for the
secured services. In this example, you want to make the inquiry service unsecured and the update service
secured. Ifyou want different levels of security for a"secured” service, then you mustdeploy the entriesin the
"secured" service as separate EAR files.
Do the following to enable the "SOAP on SSL" scenario:

« Configure the web server (httpd.conf) so that it only allows SSL access to these servlets.

« Configure the security role for the RPCRout er Ser vl et intheinquiry services EAR so that the
RPCRout er Ser vl et for the'inquiry' serviceis accessible by everyone, while the
RPCRout er Ser vl et for the 'update' service requires authentication based on the HTTP basic
authentication (userid/pasword).

In this case, the 'update’ application does not know the identity of the requester; it only knows that accessis
granted. In other words, the "update" application is not concerned with the identity ofthe user because it knows
WebSphere Application Server is ensuring that only authenticated usershave access.

SOAP on SSL with SOAP Signature

Applications might need non-repudiable proof of exchanged messages.One exampleis aweb service that
accepts part orders.The business partners establish aform of trust relationship based on public keys. This can be
done using the public key infrastructure (PK1) through athird party certificate authority (CA), or by exchanging
public keys with a secure channel. The following service is deployed with a signature verification function:

https://foo.com partorder
Configure signature verification with the following information:

« Scope of signature (indicates the portion of the SOAP envelope that must be authenticated. The default
isthe content of SOAP-ENV:Body).

« Trusted keys or trusted root keys.

« Default key to verify signature if no Keylnfo is specified.

« Other policies regarding signature validation.

« Behavior when signature verification fails.

« Additional requirements on signature (as for example, specific requirements on hash/C14N algorithms
to be used, timestamp validity, and so forth).

If the signature ismissing or if signatureverification fails, the signature verification function canbe configured
so that the servlet returnsa SOAP fault.

To send part orderstotheht t ps: //f 0o. com part or der servicethe service requester should sign his
SOAP messages with a signature component. The signature component isinitialized using two templates:
1. <ds:Signedinfo> template

2. <ds.KeyInfo>template

The<ds: Si gnedl nf 0> template controls the following:
o What parts of the SOAP envelope must be signed
« What agorithms (canonicalization, transformation, digest, sign) should be used

The <ds: Keyl nf o> template controls the following:

352

« Whether or not to include the entire certificate chainin <ds: Keyl nf 0>

Decision to include only certificate and serial number

Public key value

Decision to provide no key information (so that the default key must be used for verification).

Y ou can combine the service request with HTTP basic authentication, if necessary.

353

4.8.4.1: Running the security samples

The process for running the SOAP signed samplesisidentical to the process forrunning the non-signed samples. The soapsanpl es. ear must be
installed, and the server must be started before these samples are invoked.

See article SOAP samples for informationon installing the SOAP samples.

SOAP Signature

The client samples are included in the soapsanpl es. ear file.Do the following to locate and execute the samples:
1. Change your directory (cd) to
product _installation_root/install edApps/ soapsanpl es. ear/ d i ent Code

A set of batch files or script files (on UNIX platforms) have beenincluded to facilitate running the client samples. These batch or script files are
located inthe nt _bat subdirectory on Windows NT, or intheuni x_scr i pt ssubdirectory on UNIX platforms. These scripts setthe classpath
and supply parameters.

2. Invoke the samples using the following scripts:
DSi gAddr essSanpl e | ocal host "c:\WbSpher e\ AppServer\instal | edApps\ soapsanpl es. ear""John B. Good"
DSi gMessageSanpl e | ocal host "c:\WbSphere\ AppServer\instal | edApps\ soapsanpl es. ear". .\ data\ nsgl. xm
[1f you run the script with no arguments, as for example DSigAddressSample, you will be provided with help on how to use the
sample, and you will receive a description of the command line arguments that the script requires.
3. View the output.

For each sample, at the server, you should see that the signature ofthe request is validated. At the client,you should see that the signature of the
responseis validated.

The validation results for both theclient and server are logged to thefollowing files that are created in
thepr oduct _instal | ati on_root/ | nstal | edApps/ soapsanpl es. ear/ soapsec. war/ | ogs directory
o SCAPVHH al | -cl . | og
o SOAPVHH-fail-cl.log
o SCAPVHH al | -sv. | og
o SOQAPVHH-fail -sv. | og

Soap sighature with SSL connection

Ensuring that a connection is over SSL isnot specific to Web services. Y ou must configurethe Web server to ensure that the clientto Web server
connection isover SSL. Y ou must also configure WebSphere Application Server to ensure thatthe Web server to WebSphere Application Server
connection isover SSL.

Article Configuring SSL in WebSphere Application Serverdiscusses how to configure SSL in WebSphere.See your Web server documentation for
information on configuring the SSL server.

For testing purposes, sample client and server keystoredatabases are shipped with the SOAP samples.Y ou must use the IBM Key ManagementTool to
extract the certificates located in files:

o test

« keystore

« databases

Import the certificatesinto your key databases. See article, Tools for managing certificates and keysfor more information on the IBM Key Management
tool.

The test keystores are described in articleKeystore files.

Export the client certificates from the testkeystore file

Perform the following steps to export the client cerificates:
1. Invoke the Key Management Tool (IKeyman)
2. From the file menu, select open

3. Changedirectory (CD) to
product _installation_root/Install edApps/ soapsanpl es. ear/ soapsec. war/ key/

4. Select the SOAPClient keystorefile.
(The keystore password is"client".)

5. Change the key database content type to "Signer Certificates".

6. Highlight the soapca certificate.
354

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/06061801a07.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/050506.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

7. Click the Export button.
8. Change the exported file name to "soapca.arm”.
9. Highlight the "intcal" certificate

10. Click the Export button.

11. Change the exported file nameto "intcal.arm".

Import the certificates into the web serverkey database

. Invoke the Key Management Tool (IKeyman)

. From the file menu, select open (or new if you are creating a new keystore)

. Change directory (CD) to the directory where the keystore file is located.

. Select thefile.

For Signer Certificates, add the "intcal.arm" and the "soapca.arm” you exported in the previous section.
. For Personal Certificates, click Import.

. Specify akey type of PKCS12

. Browse the sdserver.pl12 file located in:
product _installation_root/Install edApps/ soapsanpl es. ear/ soapsec. war/ key/

9. Click OK.
10. Enter "server" when prompted for a password.
11. Select "sdserver” from the key list and press OK.
12. Savethe updated keystorefile

0N UNWN R

355

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.8.4.2: SOAP signature components

An overview of the SOAP signature architecture isillustrated in the figure below.

Transport Hook and Security Components

“FTransport RECRoutersenvlet
ErvelopekEditar EnvelopeEditar

Client Application
Server Application |

Using the SOAP transport hook, you can plug-in the security components:

o Signer

« verifier with logging capability
The transport hook is called the EnvelopeEditor. A PluggableEnvelopeEditor is also provided, which allows you to plugin your
security components. Asillustrated, the Envel opeEditor is encapsulated in the SOAPTransport on the client side.On the server

side, EnvelopeEditor is encapsulated in RPC/MessageRouter Serviet. This means the same components can be used on either
side.

When aclient application sends a request, the request is signed and transmitted to the server. At the server side, the request is
verified and delivered to a server application or, in the case of a RPC, to a Java object. The response is processed in the same
manner.The verifier component also has alogging function to log the verified messages in afile.Signatures and verifier
components are configurable. Y ou can specify encryption, digest message algorithm, certificate path policy, and other security
technologies.

Signature Components

There are two signature components:
 Signature Header Handler

o Verification Header Handler
356

Signature Header Handler (SHH)

The Signature Header Handler isa XML-based configuration file, which enables:

o Template for <Signedinfo> (for customizing references, sign/hash algorithms, C14N algorithms, optional
timestamp)

o Template for <Keylnfo> (for customizing the public key such as X.509 certificate)

Verification Header Handler (VHH)

The Verification Header Handler is a XML-based configuration file, which enables:

o Configurable policy (required scope of signature, trusted root, certstore, certpathchecker) (more sophisticated
policy such as timestamp validation may not be included in 2/15 deliverable)

o Exit for Logging (additional application-specific verification) A reference implementation of logging component
isalso provided.

The digital signature configuration can be changed by editing the configuration for the following components:
« Envelope Editor
« Signature Component
« Verification Component

SOAP Security-related Files

The following table provides an inventory of the SOAP security elements contained in the SOAP security samples module
(soapsec. war).aquick reference for SOAP security topics.

| Path | Contents | Description
. Web-INF, conf, key, log, |Home of the soap
finstalledA pps/soapsampl es.ear/soapsec.war etc. security servlets
Servlet configuration
/install edA pps/soapsampl es.ear/soapsec.war/WEB-INF web. xm file for SOAP security
samples
Configuration files for
/install edA pps/soapsampl es.ear/soapsec.war/conf config files envelope editors and
signature components
. See article Keystore
: SQAPcl i ent -
linstalledA pps/soapsampl es.ear/soapsec.war/key SOAPser ver f|les for more
information.

Logs generated during

linstalledA pps/soapsampl es.ear/soapsec.war/logs Log files security exchange
server side Source for both the
finstalledA pps/soapsampl es.ear/ Server Sampl esCode/src/<service_name> sanpl es non-secure and secure
il samples
Batch files for invoking
. : scripts to run the client side samples
/installedA pps/soapsampl es.ear/ClientCode/nt_bat client sanples to interact with the

server-side services
Batch files for invoking

. . . . scriptsto run client the client side samples
/installedA pps/soapsampl es.ear/ClientCode/unix_scripts samples to interact with the
server-side services
/install edA pps/soapsampl es.ear/ClientCode/data |data files used by samples |
|/installedA pps/soapsamples.ear/ClientCode/src |client side samples source |
Nib S03p.J &, S03p-SEC. |, Location of all jar files

WS-Soap-ext.jar
P) 357

Related Documents

» Simple Object Access Protocol (SOAP) 1.1 - W3C NOTE.

o SOAP Security Extensions: Digital Signature - W3C NOTE.

« XML-Signature Syntax and Processing - W3C CR.

« XML Security Suite- XML digital signature, encryption, access control.

358

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/xmldsig-core/
http://www.alphaworks.ibm.com/tech/xmlsecuritysuite

4.8.4.2.1: Keystore files for testing purposes

Two keystore files, (SOAPserver and SOAPCclient), are available for testing purposes.These files are located in
directory:

product _installation_root/install edApps/soapsanpl es. ear/ soapsec. war/ key
This article describes the certificates that are stored in these two keystore files.

IFilename |Store password | Description
|SOAPserver |server | This keystore is used by a service provider.
|SOAPclient |client |This keystore is used by a service requester.

Common Certificate Authority certificates

The following three certificates are commonly stored in both keystore files.

|Alias | Issuer | Description

|soapca |soapca itself |The certificate of the root Certificate Authority (CA) used for testing purposes.
lintcal |soapca | The certificate of the CA to issue SSL-related certificates.

lintca2 |soapca |The certificate of the CA to issue SOAP-DSIG-related certificates.

Certificates for service providers

The following two certificates are stored in the SOAPser ver keystore.

|Alias || ssuer | Description
Thisisthe certificate of the SSL server. Thisis also stored in the SOAPclient keystore
sslserver intcal |as atrusted certificate. The PKCS12 file including the corresponding private key for

this certificate is sslserver.pl2.

This certificate might be used by a service provider to digitally sign its response

soapprovider (intca2 message. The key password is "server".

Certificates for service requesters

The following three certificates are stored in the SOAPc| i ent keystore.

|Alias || ssuer | Description

dclient intcal T(;uI cht?rtlflcate might be used for the SSL client authentication. The key password is
Thisisthe certificate of the trusted SSL server and the same as the one stored in the

sdlserver intcal |SOAPserver keystore. The PKCS12 file, including the corresponding private key for

this certificate, is sslserver.pl2.

intca2 This certificate might be used by a service requester to digitally sign its request
message. The key password is"client".

soaprequester

o IBM HTTP Server documentation on configuring SSL
« Toolsfor managing certificates and keys

359

http://www.ibm.com/software/webservers/httpservers/doc/v1312/ibm/9atstart.htm
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/050506.html

4.8.4.2.2: Envelope Editor

The Envelope Editor is a component thatcan be plugged into the Apache SOAP transports.At the server side, it is embedded into theRPC and
MessageRouterServlets. At the clientside, it is embedded in the FilterTransport,which implements the SOAPTransport interface.WebSphere
Application Server provides a PluggableEnvel opeEditor,which can be usedto plug-in some editing componentssuch as signature and verification.

Enabling Envelope Editor

At the client side, the configuration ofthe eEnvel ope eEditor is explicitly programmed.On the server side, the transport hook isenabled automatically
inthesoapsec. war filewhen you add the "init" param to the RPC and Messagerouter servlets for the Envel opeEdi t or Fact or y.Thisentry in
theweb. xm for thesoapsec. war fileis added automatically when you "soap enabl€"an application and indicate the service is secure.

Description of the factory class to instantiate Envelope Editors

A factory class creates Envel ope Editors at runtime. The factory classis called DSi gFact ory. The DSi gFact or y class consumes an editor
configuration file, and creates an instance of Envelope Editor. The factory class and the configuration file are specified in:

product _installation_root\install edApps\ear _fil e_nane\soapsec. war\WEB- | NF\ web. xm
The factory classis describedunder the <servlet id="Servlet_1">and <servlet id="Servlet_2">elements:

<di spl ay- nane>Apache- SOCAP- SEC</ di spl ay- nane> <descri pti on>SOAP Security Enabl enent
WAR</ descri ption> <servlet id="Servlet_1"> <servl et - nane>r pcrout er </ servl et - nane>
<di spl ay- nane>Apache- SOAP Secure RPC Rout er </ di spl ay- nane> <descri ption>no
descri ption</ descri ption>
<servl et-cl ass>com i bm soap. server. htt p. WASRPCRout er Ser vl et </ servl et - cl ass> <i nit-param
id="InitParam1"> <par am nane>f aul t Li st ener </ par am nanme>
<par am val ue>or g. apache. soap. server. DOWaul t Li st ener </ par am val ue> </init-paran>
<init-paramid="1InitParam?2"> <par am nane>Envel opeEdi t or Fact or y</ par am nanme>
<par am val ue>com i bm soap. dsi g. dsi gf act ory. DSi gFact or y</ par am val ue> </init-paranp
<init-paramid="1nitParam3"> <par am name>SCQAPEvnel opeEdi t or Confi gFi | ePat h</ par am nane>
<par am val ue>conf/sv-editor-config.xm </ param val ue> </init-paranmp </ servl et>
<servlet id="Servlet_ 2"> <servl et - nane>nessager out er </ ser vl et - nane>
<di spl ay- nane>Apache- SOAP Secure Message Router</di spl ay- nane>
<servl et-class>com i bm soap. server. http. WASMessageRout er Ser vl et </ servl et - cl ass> <i ni t - param
i d="InitParam5"> <par am nane>f aul t Li st ener </ par am nanme>
<par am val ue>or g. apache. soap. server. DOVFaul t Li st ener </ par am val ue> </init-paranp
<init-paramid="1nitParam6"> <par am nane>Envel opeEdi t or Fact or y</ par am nanme>
<par am val ue>com i bm soap. dsi g. dsi gf act ory. DSi gFact or y</ par am val ue> </init-paranpr
<init-paramid="1nitParam7"> <par am name>SOAPEnvel opeEdi t or Conf i gFi | ePat h</ par am nane>
<par am val ue>conf/sv-edi tor-config. xm </ param val ue> </init-paranm> </servlet>

Envel opeEdi t or Fact ory isafactory class.SOAPEnvel opeEdi t or Conf i gFi | ePat h isaconfigurationfile for Envelope Editor.

Configuration file of Envelope Editor

The configuration file, sv- edi t or - confi g. xnm islocated in:
product _i nstal |l _root\install edApps\ <ear_fil e_nane>\ soapsec. war\conf\sv-editor-config.xnl
Under the SOAPENvel opeEditor Config element, thereare two optional elements:

« incoming

« outgoing

The incoming and incoming element definitions look like the following example:

<inconmi ng class="comibm xm . soap. security.dsig. SOAPVerifier"> <init-paranpr
<par am nane>fi | ename</ par am nane> <par am val ue>conf/sv-ver-config. xm </ param val ue>
</init-parant </incom ng> <outgoing class="comibm xnm .soap.security.dsig.SOAPSi gner">
<i nit-paranme <par am nane>fi | ename</ par am nanme>
<par am val ue>conf/sv-si g-confi g. xm </ par am val ue> </init-paranm> </outgoing>

The incoming element specifies a class which "edits" incoming messages, and a configuration file for the editing class. The outgoing element
specifies a class for outgoing message and a configuration file.

Changing the configuration

Y ou do not have a digital signature for response messages if you remove the outgoing element from

product _installation_root\install edApps\<ear_fil e_nane>\soapsec. war\conf\sv-editor-config.xm
and remove the incoming element from

product _installation _root\install edApps\<ear_fil e_name>\soapsec.war\conf\cl-editor-config.xn

360

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.8.4.2.3: Signature Header Handler

The Signature Header Handler (SHH) insertsa digital signature header into a SOAP envelope.Y ou can customize the SHH configuration
with a configuration file. For example, you canspecify a signing policy and the key storefile.

There are two signature configurationfiles:

product _installation_root\install edApps\<ear fil e_nane>\ soapsec\conf\sv-sign-config.xn
product installation_root\install edApps\<ear file_nane>\soapsec\conf\cl-sign-config.xm

Thesoapsanpl es. ear file contains samples of these configuration files.

An explanation of each configuration element in the Signature Header follows:

. KeyStore

The KeyStore element specifies a keystore file that holds the signingkey. In the following example, the attribute "type" indicates a
keystore type, and "jks" indicates Java Key Store. "path" is akeystorefile, and "storepass’ isits store password.

<KeySt or e type="j ks" pat h="key\ SOAPser ver" st orepass="server" [>

The Key Management tool (iKeyman) can beused to create a keystorefile.

. Policy

The PublicKey element specifies the information that should be included inthe <ds:Keylnfo> element. With the current
implementation, you must either include the complete certificate chain, oromit the <ds:Keylnfo> When <ds.Keylnfo> is ommitted,
the recipientmust know the default key to verify the signature.

. Template

The contents of the Template element specify all the details relatedto XML Signature, including signature algorithms, digest
algorithms,canonicalization algorithms, transform algorithms, the portion of theSOAP envelope to be signed, and so on.

. Object
The template can also have Object element(s) for additional authentication information, such as a timestamp.

. ValueOfTimestamp

This SHH understands one special element type, ValueOf Timestamp, whichis replaced with a current time and date before being
inserted intothe signature.

361

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.8.4.2.4: Verification Header Handler

The Verification Header Handler (VHH) validatesa digital signaure header in a SOAP envelope.lts configuration can be customized usinga configuration file
where you specify the following:

« averification policy
« the certificate path
« logging filesto record verified messages

There are two signature configuration files:

product _installation_root\install edApps\<ear file_name>\soapsec. war\ conf\sv-ver-config.xm
product _instal | ati on_root\instal | edApps\ <ear_fil e_nane>\ soapsec. war\ conf\cl -ver-config. xnl

Samples of these configuration files areprovided inthe soapsanpl es. ear file.

An explanation of each configuration element in the Verification Header follows:

. AllowedAlgorithms

All the algorithms supported by this VHH must be listed in this element. Algorithms other than these cannot be used in SOAP- SEC: Si gnat ur e
header. The current implementation supports all required algorithmsin the XML Signature specification, except for SHA1-MAC.

. RequiredAuthenticatedParts

This section specifies what parts of SOAP message need to be authenticated through the SOAP- SEC: Si gnat ur e header. Currently two values are
supported for the part attribute:

1. When part="root," the whole evelope must be signed through the envel oped-signature transform.

2. When part="body," the SOAP-ENV:Body element in the SOAP envelope must be referenced by one of the reference elementsin the
signature.

Part="" allows an attachment to be specified.

If the specified parts are not authenticated through the signature header entry, verification fails.

. DefaultVerificationKeys

When Key| nf o ismissing in the signature, the content of this elementis used as a part of the signature. When communicatingparties know the
identity of each other, the default Key| nf o can beused to reduce the communication data volume.

. Log

Specifies the logging behavior. The following versions of logging exist:
o When target="all," al verification attempts are logged.
o When target="success," only successful verification are logged.
o When target="fail," only unsuccessful verification are logged.

[l Multiple LogFile elements can be specified.

The following example illustrates how to specify logging:

<Log> <SOAPDSI gLogger class="comibm xnm . soap. security. dsi g. SOAPDSi gLogger | npl ">
<LogFil e target="all" path="SOAPVHH-al | .| 0og" append="yes"/> </ SOAPDSI gLogger > <SOAPDSI gLogger
class="comibm xnm . soap. security. dsi g. SOAPDSi gLogger | npl "> <LogFile target="fail"

pat h="SOAPVHH fai | .| og" append="yes"/> </ SOAPDSI gLogger > </ Log>
. PKIXParameters

Currently VHH supports X.509/PK1X certificates only (no HMAC, no PGP, and so forth). The policies for PKIX certificate verification are specified
in this element. Thisis a straightforward mapping of Java CertPath API. Not al of the entries are meaningful in thisinitial release.

Current implementation only allows the useof keystore as the means of specifying trustedroot.

362

http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/root.html

4.10: Developing custom services

Y ou can write a custom service class that implements the com.ibm.websphere.runtime.CustomService interface (shown below). The administrator
can then create a custom service configuration for an applicationserver, supplying the class name. When the application server is started, thecustom
service will be started and initialized.

The properties passed by the application server runtime to the initialize method can include one for an external file containing configuration
information for the service (retrieved with the external ConfigURL Key). In addition, the properties can contain any name-value pairs that are stored
for the service, along with the other system administrations configuration data for the service. The properties are passed to the initialize method of the
service as a Properties object.

There is a shutdown method for the interface as well. Both methods of the interface declare that they may throw an Exception, athough no specific
exception subclassis defined. If an exception is thrown, the runtime will log it, disable the CustomService, and proceed with Server startup.

The interface does not pass in the context for the services to use for registration binding. Thisis how it differs from the Servicelnitializer interface
providedin Version 3.5.

Custom service interface

The following code is the complete source for the interface.

package com i bm websphere.runtine;/** * The CustonBService interface nmust be inplenented by all *
WebSphere Custom Service extensions. * The application server runtime will call the initialize
method of * this interface on every enabl ed Custom Service configured in the server. * */public

interface CustonBService { static final java.lang.String external Confi gURLKey =

"com i bm websphere. runtime. Cust onSer vi ce. ext er nal Confi gURLKey";/** * The initialize nmethod is called
by the application server runtime during * server startup. The Properties object
passed in on this method nust * contain all configuration information necessary for this
service to * initialize properly. * * @aramconfigProperties java.util.Properties */

void initialize(java.util.Properties configProperties) throws Exception;/** * The shutdown method is
called by the application server runtime when the * server begins it shutdown

processing. * * @aram configProperties java.util.Properties */ void shutdown() throws Exception;}
Limitations of the custom service implementation

There are restrictions on the functions that can be executed within a custom service. The initialize method of al custom servicesisinvoked by the
server runtime before most other components have been initialized, including the ORB, Trace, Naming, Transaction Manager, and Connection
Manager. This provides the custom service with great flexibility in effecting the server runtime environment, but also prevents the custom service
initialize method implementation from being able to take advantage of the application server runtime services.

For example, a custom service cannot count of being able to make JNDI lookup method calls in itsinitialize method, since the Naming Service has
not been initialized within the server runtime at that point in server process startup. A custom service can execute code in itsinitialize method that
reads its configuration values and processes them in whatever manner makes sense for that service. This includes executing code that reads the
external configuration file for the custom service, provided that the permissions set for the external config file match those of the server identity
under which the custom service code runs. A JDBC Connection can be obtained and used as long as the pooling services of the WebSphere
Connection Manager are not expected to be used (since the Connection Manager has not been initialized at the time that the custom service initialize
method is invoked).
Specifically, within the implementation of a custom service:

« Theinitiaize and sutdown methods must return control to the runtime.

« No work will be dispatched into the server instance until all custom service initialize methods return.

» Custom services areinitialized serially, but in no predictable order.

« Theinitialize and shutdown methods will be called only once on each service, and once for each operating system process that makes up the
server instance.File 1/0 is supported.

« Initialization of process level "static" data without leaving the process is supported.

« Theidentity/credential that the custom service code runs under is the server identity.

o Only JIDBC RMLT (local tran) operations are supported. All UOW must be completed before the methods return.

« JNDI operations are not supported.

« Creation of threadsis not supported.

« Creation of sockets and /O other than file 1/0 is not supported.

« Execution of standard J2EE code (client code, servlets, enterprise beans) is not supported.

« TheJTA interfaceis not available.This featureis available in J2EE server processes and distributed generic server processes only.

« Whilethe runtime will make a best effort to call shutdown, there is no gaurantee that shutdown will be called prior to process
termination.These restrictions apply to shutdown and init equally.

363

WebSphere Application Server Samples

364

The Samples gallery offers a set of samples that show
you how to perform common Web application tasks,
provide reusable components and demonstrate handy
techniques.

The galery includes:

« TheYourCo intranet Web site, which integrates
many of the small samplesinto one common
application.

« The JavaPet Store Application, which
demonstrates J2EE technology via an online
pet store.

« A Trade application, which demonstrates an
online brokerage.

Once installed on your local machine, the Samples are
located at
http://1 ocal host/Wssanpl es/ i ndex. ht n

Open the above URL in your Web browser, follow the
database configuration instructions, and try the
Samples.

On Windows 2000, it has been found that localhost is
not always recognized. In such a case, use the actual
host name.

The above links will not work if:

« The Samples are not installed on the machine
on which you are viewing this documentation
("locahost™).

« Your Web server is not running.

« You areviewing this documentation from the
IBM Web site instead of viewing locally
installed documentation.

If you don't find the Samples on your localhost,
confirm their installation. The Samples are an option in
the product installation. See the installation

documentation for a variety of case-specific
installation steps.

http://localhost/WSsamples/index.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/02.html
http://localhost/0802_makepdf/aes_orig/nav_Devguidenav/02.html

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

	P54:
	Numbers:
	Numbx:
	L: 54
	C:
	R:

	P55:
	Numbers:
	Numbx:
	L:
	C:
	R: 55

	P56:
	Numbers:
	Numbx:
	L: 56
	C:
	R:

	P57:
	Numbers:
	Numbx:
	L:
	C:
	R: 57

	P58:
	Numbers:
	Numbx:
	L: 58
	C:
	R:

	P59:
	Numbers:
	Numbx:
	L:
	C:
	R: 59

	P60:
	Numbers:
	Numbx:
	L: 60
	C:
	R:

	P61:
	Numbers:
	Numbx:
	L:
	C:
	R: 61

	P62:
	Numbers:
	Numbx:
	L: 62
	C:
	R:

	P63:
	Numbers:
	Numbx:
	L:
	C:
	R: 63

	P64:
	Numbers:
	Numbx:
	L: 64
	C:
	R:

	P65:
	Numbers:
	Numbx:
	L:
	C:
	R: 65

	P66:
	Numbers:
	Numbx:
	L: 66
	C:
	R:

	P67:
	Numbers:
	Numbx:
	L:
	C:
	R: 67

	P68:
	Numbers:
	Numbx:
	L: 68
	C:
	R:

	P69:
	Numbers:
	Numbx:
	L:
	C:
	R: 69

	P70:
	Numbers:
	Numbx:
	L: 70
	C:
	R:

	P71:
	Numbers:
	Numbx:
	L:
	C:
	R: 71

	P72:
	Numbers:
	Numbx:
	L: 72
	C:
	R:

	P73:
	Numbers:
	Numbx:
	L:
	C:
	R: 73

	P74:
	Numbers:
	Numbx:
	L: 74
	C:
	R:

	P75:
	Numbers:
	Numbx:
	L:
	C:
	R: 75

	P76:
	Numbers:
	Numbx:
	L: 76
	C:
	R:

	P77:
	Numbers:
	Numbx:
	L:
	C:
	R: 77

	P78:
	Numbers:
	Numbx:
	L: 78
	C:
	R:

	P79:
	Numbers:
	Numbx:
	L:
	C:
	R: 79

	P80:
	Numbers:
	Numbx:
	L: 80
	C:
	R:

	P81:
	Numbers:
	Numbx:
	L:
	C:
	R: 81

	P82:
	Numbers:
	Numbx:
	L: 82
	C:
	R:

	P83:
	Numbers:
	Numbx:
	L:
	C:
	R: 83

	P84:
	Numbers:
	Numbx:
	L: 84
	C:
	R:

	P85:
	Numbers:
	Numbx:
	L:
	C:
	R: 85

	P86:
	Numbers:
	Numbx:
	L: 86
	C:
	R:

	P87:
	Numbers:
	Numbx:
	L:
	C:
	R: 87

	P88:
	Numbers:
	Numbx:
	L: 88
	C:
	R:

	P89:
	Numbers:
	Numbx:
	L:
	C:
	R: 89

	P90:
	Numbers:
	Numbx:
	L: 90
	C:
	R:

	P91:
	Numbers:
	Numbx:
	L:
	C:
	R: 91

	P92:
	Numbers:
	Numbx:
	L: 92
	C:
	R:

	P93:
	Numbers:
	Numbx:
	L:
	C:
	R: 93

	P94:
	Numbers:
	Numbx:
	L: 94
	C:
	R:

	P95:
	Numbers:
	Numbx:
	L:
	C:
	R: 95

	P96:
	Numbers:
	Numbx:
	L: 96
	C:
	R:

	P97:
	Numbers:
	Numbx:
	L:
	C:
	R: 97

	P98:
	Numbers:
	Numbx:
	L: 98
	C:
	R:

	P99:
	Numbers:
	Numbx:
	L:
	C:
	R: 99

	P100:
	Numbers:
	Numbx:
	L: 100
	C:
	R:

	P101:
	Numbers:
	Numbx:
	L:
	C:
	R: 101

	P102:
	Numbers:
	Numbx:
	L: 102
	C:
	R:

	P103:
	Numbers:
	Numbx:
	L:
	C:
	R: 103

	P104:
	Numbers:
	Numbx:
	L: 104
	C:
	R:

	P105:
	Numbers:
	Numbx:
	L:
	C:
	R: 105

	P106:
	Numbers:
	Numbx:
	L: 106
	C:
	R:

	P107:
	Numbers:
	Numbx:
	L:
	C:
	R: 107

	P108:
	Numbers:
	Numbx:
	L: 108
	C:
	R:

	P109:
	Numbers:
	Numbx:
	L:
	C:
	R: 109

	P110:
	Numbers:
	Numbx:
	L: 110
	C:
	R:

	P111:
	Numbers:
	Numbx:
	L:
	C:
	R: 111

	P112:
	Numbers:
	Numbx:
	L: 112
	C:
	R:

	P113:
	Numbers:
	Numbx:
	L:
	C:
	R: 113

	P114:
	Numbers:
	Numbx:
	L: 114
	C:
	R:

	P115:
	Numbers:
	Numbx:
	L:
	C:
	R: 115

	P116:
	Numbers:
	Numbx:
	L: 116
	C:
	R:

	P117:
	Numbers:
	Numbx:
	L:
	C:
	R: 117

	P118:
	Numbers:
	Numbx:
	L: 118
	C:
	R:

	P119:
	Numbers:
	Numbx:
	L:
	C:
	R: 119

	P120:
	Numbers:
	Numbx:
	L: 120
	C:
	R:

	P121:
	Numbers:
	Numbx:
	L:
	C:
	R: 121

	P122:
	Numbers:
	Numbx:
	L: 122
	C:
	R:

	P123:
	Numbers:
	Numbx:
	L:
	C:
	R: 123

	P124:
	Numbers:
	Numbx:
	L: 124
	C:
	R:

	P125:
	Numbers:
	Numbx:
	L:
	C:
	R: 125

	P126:
	Numbers:
	Numbx:
	L: 126
	C:
	R:

	P127:
	Numbers:
	Numbx:
	L:
	C:
	R: 127

	P128:
	Numbers:
	Numbx:
	L: 128
	C:
	R:

	P129:
	Numbers:
	Numbx:
	L:
	C:
	R: 129

	P130:
	Numbers:
	Numbx:
	L: 130
	C:
	R:

	P131:
	Numbers:
	Numbx:
	L:
	C:
	R: 131

	P132:
	Numbers:
	Numbx:
	L: 132
	C:
	R:

	P133:
	Numbers:
	Numbx:
	L:
	C:
	R: 133

	P134:
	Numbers:
	Numbx:
	L: 134
	C:
	R:

	P135:
	Numbers:
	Numbx:
	L:
	C:
	R: 135

	P136:
	Numbers:
	Numbx:
	L: 136
	C:
	R:

	P137:
	Numbers:
	Numbx:
	L:
	C:
	R: 137

	P138:
	Numbers:
	Numbx:
	L: 138
	C:
	R:

	P139:
	Numbers:
	Numbx:
	L:
	C:
	R: 139

	P140:
	Numbers:
	Numbx:
	L: 140
	C:
	R:

	P141:
	Numbers:
	Numbx:
	L:
	C:
	R: 141

	P142:
	Numbers:
	Numbx:
	L: 142
	C:
	R:

	P143:
	Numbers:
	Numbx:
	L:
	C:
	R: 143

	P144:
	Numbers:
	Numbx:
	L: 144
	C:
	R:

	P145:
	Numbers:
	Numbx:
	L:
	C:
	R: 145

	P146:
	Numbers:
	Numbx:
	L: 146
	C:
	R:

	P147:
	Numbers:
	Numbx:
	L:
	C:
	R: 147

	P148:
	Numbers:
	Numbx:
	L: 148
	C:
	R:

	P149:
	Numbers:
	Numbx:
	L:
	C:
	R: 149

	P150:
	Numbers:
	Numbx:
	L: 150
	C:
	R:

	P151:
	Numbers:
	Numbx:
	L:
	C:
	R: 151

	P152:
	Numbers:
	Numbx:
	L: 152
	C:
	R:

	P153:
	Numbers:
	Numbx:
	L:
	C:
	R: 153

	P154:
	Numbers:
	Numbx:
	L: 154
	C:
	R:

	P155:
	Numbers:
	Numbx:
	L:
	C:
	R: 155

	P156:
	Numbers:
	Numbx:
	L: 156
	C:
	R:

	P157:
	Numbers:
	Numbx:
	L:
	C:
	R: 157

	P158:
	Numbers:
	Numbx:
	L: 158
	C:
	R:

	P159:
	Numbers:
	Numbx:
	L:
	C:
	R: 159

	P160:
	Numbers:
	Numbx:
	L: 160
	C:
	R:

	P161:
	Numbers:
	Numbx:
	L:
	C:
	R: 161

	P162:
	Numbers:
	Numbx:
	L: 162
	C:
	R:

	P163:
	Numbers:
	Numbx:
	L:
	C:
	R: 163

	P164:
	Numbers:
	Numbx:
	L: 164
	C:
	R:

	P165:
	Numbers:
	Numbx:
	L:
	C:
	R: 165

	P166:
	Numbers:
	Numbx:
	L: 166
	C:
	R:

	P167:
	Numbers:
	Numbx:
	L:
	C:
	R: 167

	P168:
	Numbers:
	Numbx:
	L: 168
	C:
	R:

	P169:
	Numbers:
	Numbx:
	L:
	C:
	R: 169

	P170:
	Numbers:
	Numbx:
	L: 170
	C:
	R:

	P171:
	Numbers:
	Numbx:
	L:
	C:
	R: 171

	P172:
	Numbers:
	Numbx:
	L: 172
	C:
	R:

	P173:
	Numbers:
	Numbx:
	L:
	C:
	R: 173

	P174:
	Numbers:
	Numbx:
	L: 174
	C:
	R:

	P175:
	Numbers:
	Numbx:
	L:
	C:
	R: 175

	P176:
	Numbers:
	Numbx:
	L: 176
	C:
	R:

	P177:
	Numbers:
	Numbx:
	L:
	C:
	R: 177

	P178:
	Numbers:
	Numbx:
	L: 178
	C:
	R:

	P179:
	Numbers:
	Numbx:
	L:
	C:
	R: 179

	P180:
	Numbers:
	Numbx:
	L: 180
	C:
	R:

	P181:
	Numbers:
	Numbx:
	L:
	C:
	R: 181

	P182:
	Numbers:
	Numbx:
	L: 182
	C:
	R:

	P183:
	Numbers:
	Numbx:
	L:
	C:
	R: 183

	P184:
	Numbers:
	Numbx:
	L: 184
	C:
	R:

	P185:
	Numbers:
	Numbx:
	L:
	C:
	R: 185

	P186:
	Numbers:
	Numbx:
	L: 186
	C:
	R:

	P187:
	Numbers:
	Numbx:
	L:
	C:
	R: 187

	P188:
	Numbers:
	Numbx:
	L: 188
	C:
	R:

	P189:
	Numbers:
	Numbx:
	L:
	C:
	R: 189

	P190:
	Numbers:
	Numbx:
	L: 190
	C:
	R:

	P191:
	Numbers:
	Numbx:
	L:
	C:
	R: 191

	P192:
	Numbers:
	Numbx:
	L: 192
	C:
	R:

	P193:
	Numbers:
	Numbx:
	L:
	C:
	R: 193

	P194:
	Numbers:
	Numbx:
	L: 194
	C:
	R:

	P195:
	Numbers:
	Numbx:
	L:
	C:
	R: 195

	P196:
	Numbers:
	Numbx:
	L: 196
	C:
	R:

	P197:
	Numbers:
	Numbx:
	L:
	C:
	R: 197

	P198:
	Numbers:
	Numbx:
	L: 198
	C:
	R:

	P199:
	Numbers:
	Numbx:
	L:
	C:
	R: 199

	P200:
	Numbers:
	Numbx:
	L: 200
	C:
	R:

	P201:
	Numbers:
	Numbx:
	L:
	C:
	R: 201

	P202:
	Numbers:
	Numbx:
	L: 202
	C:
	R:

	P203:
	Numbers:
	Numbx:
	L:
	C:
	R: 203

	P204:
	Numbers:
	Numbx:
	L: 204
	C:
	R:

	P205:
	Numbers:
	Numbx:
	L:
	C:
	R: 205

	P206:
	Numbers:
	Numbx:
	L: 206
	C:
	R:

	P207:
	Numbers:
	Numbx:
	L:
	C:
	R: 207

	P208:
	Numbers:
	Numbx:
	L: 208
	C:
	R:

	P209:
	Numbers:
	Numbx:
	L:
	C:
	R: 209

	P210:
	Numbers:
	Numbx:
	L: 210
	C:
	R:

	P211:
	Numbers:
	Numbx:
	L:
	C:
	R: 211

	P212:
	Numbers:
	Numbx:
	L: 212
	C:
	R:

	P213:
	Numbers:
	Numbx:
	L:
	C:
	R: 213

	P214:
	Numbers:
	Numbx:
	L: 214
	C:
	R:

	P215:
	Numbers:
	Numbx:
	L:
	C:
	R: 215

	P216:
	Numbers:
	Numbx:
	L: 216
	C:
	R:

	P217:
	Numbers:
	Numbx:
	L:
	C:
	R: 217

	P218:
	Numbers:
	Numbx:
	L: 218
	C:
	R:

	P219:
	Numbers:
	Numbx:
	L:
	C:
	R: 219

	P220:
	Numbers:
	Numbx:
	L: 220
	C:
	R:

	P221:
	Numbers:
	Numbx:
	L:
	C:
	R: 221

	P222:
	Numbers:
	Numbx:
	L: 222
	C:
	R:

	P223:
	Numbers:
	Numbx:
	L:
	C:
	R: 223

	P224:
	Numbers:
	Numbx:
	L: 224
	C:
	R:

	P225:
	Numbers:
	Numbx:
	L:
	C:
	R: 225

	P226:
	Numbers:
	Numbx:
	L: 226
	C:
	R:

	P227:
	Numbers:
	Numbx:
	L:
	C:
	R: 227

	P228:
	Numbers:
	Numbx:
	L: 228
	C:
	R:

	P229:
	Numbers:
	Numbx:
	L:
	C:
	R: 229

	P230:
	Numbers:
	Numbx:
	L: 230
	C:
	R:

	P231:
	Numbers:
	Numbx:
	L:
	C:
	R: 231

	P232:
	Numbers:
	Numbx:
	L: 232
	C:
	R:

	P233:
	Numbers:
	Numbx:
	L:
	C:
	R: 233

	P234:
	Numbers:
	Numbx:
	L: 234
	C:
	R:

	P235:
	Numbers:
	Numbx:
	L:
	C:
	R: 235

	P236:
	Numbers:
	Numbx:
	L: 236
	C:
	R:

	P237:
	Numbers:
	Numbx:
	L:
	C:
	R: 237

	P238:
	Numbers:
	Numbx:
	L: 238
	C:
	R:

	P239:
	Numbers:
	Numbx:
	L:
	C:
	R: 239

	P240:
	Numbers:
	Numbx:
	L: 240
	C:
	R:

	P241:
	Numbers:
	Numbx:
	L:
	C:
	R: 241

	P242:
	Numbers:
	Numbx:
	L: 242
	C:
	R:

	P243:
	Numbers:
	Numbx:
	L:
	C:
	R: 243

	P244:
	Numbers:
	Numbx:
	L: 244
	C:
	R:

	P245:
	Numbers:
	Numbx:
	L:
	C:
	R: 245

	P246:
	Numbers:
	Numbx:
	L: 246
	C:
	R:

	P247:
	Numbers:
	Numbx:
	L:
	C:
	R: 247

	P248:
	Numbers:
	Numbx:
	L: 248
	C:
	R:

	P249:
	Numbers:
	Numbx:
	L:
	C:
	R: 249

	P250:
	Numbers:
	Numbx:
	L: 250
	C:
	R:

	P251:
	Numbers:
	Numbx:
	L:
	C:
	R: 251

	P252:
	Numbers:
	Numbx:
	L: 252
	C:
	R:

	P253:
	Numbers:
	Numbx:
	L:
	C:
	R: 253

	P254:
	Numbers:
	Numbx:
	L: 254
	C:
	R:

	P255:
	Numbers:
	Numbx:
	L:
	C:
	R: 255

	P256:
	Numbers:
	Numbx:
	L: 256
	C:
	R:

	P257:
	Numbers:
	Numbx:
	L:
	C:
	R: 257

	P258:
	Numbers:
	Numbx:
	L: 258
	C:
	R:

	P259:
	Numbers:
	Numbx:
	L:
	C:
	R: 259

	P260:
	Numbers:
	Numbx:
	L: 260
	C:
	R:

	P261:
	Numbers:
	Numbx:
	L:
	C:
	R: 261

	P262:
	Numbers:
	Numbx:
	L: 262
	C:
	R:

	P263:
	Numbers:
	Numbx:
	L:
	C:
	R: 263

	P264:
	Numbers:
	Numbx:
	L: 264
	C:
	R:

	P265:
	Numbers:
	Numbx:
	L:
	C:
	R: 265

	P266:
	Numbers:
	Numbx:
	L: 266
	C:
	R:

	P267:
	Numbers:
	Numbx:
	L:
	C:
	R: 267

	P268:
	Numbers:
	Numbx:
	L: 268
	C:
	R:

	P269:
	Numbers:
	Numbx:
	L:
	C:
	R: 269

	P270:
	Numbers:
	Numbx:
	L: 270
	C:
	R:

	P271:
	Numbers:
	Numbx:
	L:
	C:
	R: 271

	P272:
	Numbers:
	Numbx:
	L: 272
	C:
	R:

	P273:
	Numbers:
	Numbx:
	L:
	C:
	R: 273

	P274:
	Numbers:
	Numbx:
	L: 274
	C:
	R:

	P275:
	Numbers:
	Numbx:
	L:
	C:
	R: 275

	P276:
	Numbers:
	Numbx:
	L: 276
	C:
	R:

	P277:
	Numbers:
	Numbx:
	L:
	C:
	R: 277

	P278:
	Numbers:
	Numbx:
	L: 278
	C:
	R:

	P279:
	Numbers:
	Numbx:
	L:
	C:
	R: 279

	P280:
	Numbers:
	Numbx:
	L: 280
	C:
	R:

	P281:
	Numbers:
	Numbx:
	L:
	C:
	R: 281

	P282:
	Numbers:
	Numbx:
	L: 282
	C:
	R:

	P283:
	Numbers:
	Numbx:
	L:
	C:
	R: 283

	P284:
	Numbers:
	Numbx:
	L: 284
	C:
	R:

	P285:
	Numbers:
	Numbx:
	L:
	C:
	R: 285

	P286:
	Numbers:
	Numbx:
	L: 286
	C:
	R:

	P287:
	Numbers:
	Numbx:
	L:
	C:
	R: 287

	P288:
	Numbers:
	Numbx:
	L: 288
	C:
	R:

	P289:
	Numbers:
	Numbx:
	L:
	C:
	R: 289

	P290:
	Numbers:
	Numbx:
	L: 290
	C:
	R:

	P291:
	Numbers:
	Numbx:
	L:
	C:
	R: 291

	P292:
	Numbers:
	Numbx:
	L: 292
	C:
	R:

	P293:
	Numbers:
	Numbx:
	L:
	C:
	R: 293

	P294:
	Numbers:
	Numbx:
	L: 294
	C:
	R:

	P295:
	Numbers:
	Numbx:
	L:
	C:
	R: 295

	P296:
	Numbers:
	Numbx:
	L: 296
	C:
	R:

	P297:
	Numbers:
	Numbx:
	L:
	C:
	R: 297

	P298:
	Numbers:
	Numbx:
	L: 298
	C:
	R:

	P299:
	Numbers:
	Numbx:
	L:
	C:
	R: 299

	P300:
	Numbers:
	Numbx:
	L: 300
	C:
	R:

	P301:
	Numbers:
	Numbx:
	L:
	C:
	R: 301

	P302:
	Numbers:
	Numbx:
	L: 302
	C:
	R:

	P303:
	Numbers:
	Numbx:
	L:
	C:
	R: 303

	P304:
	Numbers:
	Numbx:
	L: 304
	C:
	R:

	P305:
	Numbers:
	Numbx:
	L:
	C:
	R: 305

	P306:
	Numbers:
	Numbx:
	L: 306
	C:
	R:

	P307:
	Numbers:
	Numbx:
	L:
	C:
	R: 307

	P308:
	Numbers:
	Numbx:
	L: 308
	C:
	R:

	P309:
	Numbers:
	Numbx:
	L:
	C:
	R: 309

	P310:
	Numbers:
	Numbx:
	L: 310
	C:
	R:

	P311:
	Numbers:
	Numbx:
	L:
	C:
	R: 311

	P312:
	Numbers:
	Numbx:
	L: 312
	C:
	R:

	P313:
	Numbers:
	Numbx:
	L:
	C:
	R: 313

	P314:
	Numbers:
	Numbx:
	L: 314
	C:
	R:

	P315:
	Numbers:
	Numbx:
	L:
	C:
	R: 315

	P316:
	Numbers:
	Numbx:
	L: 316
	C:
	R:

	P317:
	Numbers:
	Numbx:
	L:
	C:
	R: 317

	P318:
	Numbers:
	Numbx:
	L: 318
	C:
	R:

	P319:
	Numbers:
	Numbx:
	L:
	C:
	R: 319

	P320:
	Numbers:
	Numbx:
	L: 320
	C:
	R:

	P321:
	Numbers:
	Numbx:
	L:
	C:
	R: 321

	P322:
	Numbers:
	Numbx:
	L: 322
	C:
	R:

	P323:
	Numbers:
	Numbx:
	L:
	C:
	R: 323

	P324:
	Numbers:
	Numbx:
	L: 324
	C:
	R:

	P325:
	Numbers:
	Numbx:
	L:
	C:
	R: 325

	P326:
	Numbers:
	Numbx:
	L: 326
	C:
	R:

	P327:
	Numbers:
	Numbx:
	L:
	C:
	R: 327

	P328:
	Numbers:
	Numbx:
	L: 328
	C:
	R:

	P329:
	Numbers:
	Numbx:
	L:
	C:
	R: 329

	P330:
	Numbers:
	Numbx:
	L: 330
	C:
	R:

	P331:
	Numbers:
	Numbx:
	L:
	C:
	R: 331

	P332:
	Numbers:
	Numbx:
	L: 332
	C:
	R:

	P333:
	Numbers:
	Numbx:
	L:
	C:
	R: 333

	P334:
	Numbers:
	Numbx:
	L: 334
	C:
	R:

	P335:
	Numbers:
	Numbx:
	L:
	C:
	R: 335

	P336:
	Numbers:
	Numbx:
	L: 336
	C:
	R:

	P337:
	Numbers:
	Numbx:
	L:
	C:
	R: 337

	P338:
	Numbers:
	Numbx:
	L: 338
	C:
	R:

	P339:
	Numbers:
	Numbx:
	L:
	C:
	R: 339

	P340:
	Numbers:
	Numbx:
	L: 340
	C:
	R:

	P341:
	Numbers:
	Numbx:
	L:
	C:
	R: 341

	P342:
	Numbers:
	Numbx:
	L: 342
	C:
	R:

	P343:
	Numbers:
	Numbx:
	L:
	C:
	R: 343

	P344:
	Numbers:
	Numbx:
	L: 344
	C:
	R:

	P345:
	Numbers:
	Numbx:
	L:
	C:
	R: 345

	P346:
	Numbers:
	Numbx:
	L: 346
	C:
	R:

	P347:
	Numbers:
	Numbx:
	L:
	C:
	R: 347

	P348:
	Numbers:
	Numbx:
	L: 348
	C:
	R:

	P349:
	Numbers:
	Numbx:
	L:
	C:
	R: 349

	P350:
	Numbers:
	Numbx:
	L: 350
	C:
	R:

	P351:
	Numbers:
	Numbx:
	L:
	C:
	R: 351

	P352:
	Numbers:
	Numbx:
	L: 352
	C:
	R:

	P353:
	Numbers:
	Numbx:
	L:
	C:
	R: 353

	P354:
	Numbers:
	Numbx:
	L: 354
	C:
	R:

	P355:
	Numbers:
	Numbx:
	L:
	C:
	R: 355

	P356:
	Numbers:
	Numbx:
	L: 356
	C:
	R:

	P357:
	Numbers:
	Numbx:
	L:
	C:
	R: 357

	P358:
	Numbers:
	Numbx:
	L: 358
	C:
	R:

	P359:
	Numbers:
	Numbx:
	L:
	C:
	R: 359

	P360:
	Numbers:
	Numbx:
	L: 360
	C:
	R:

	P361:
	Numbers:
	Numbx:
	L:
	C:
	R: 361

	P362:
	Numbers:
	Numbx:
	L: 362
	C:
	R:

	P363:
	Numbers:
	Numbx:
	L:
	C:
	R: 363

	P364:
	Numbers:
	Numbx:
	L: 364
	C:
	R:

