Security -- table of contents

Development and special topics

5: Securing applications -- special topics
5.1: Security components
5.1.1: Security features
5.1.2: Authentication model

5.1.3: Authorization model
5.1.3.1: Securing resources and applications
5.1.3.2: Role-based authorization

5.1.4: Delegation model
5.1.5: Using Windows NT or Windows 2000 with Local authorization
5.1.6: Operating environment
5.2: Introduction: Custom Registries
5.2.1: The CustomRegistry interface

5.2.2: Implementing the CustomRegistry interface

5.2.2.1: Structure of the example registry

5.2.2.2: Implementing the CustomRegistry interface
5.2.2.2.1: Structure of the implementation class
5.2.2.2.2: getRealm and initialize methods
5.2.2.2.3: TheisVaidUser and isValidGroup methods
5.2.2.2.4: The getUsers and getGroups methods
5.2.2.2.5: The getUniqueUserld and getUniqueGroupld methods
5.2.2.2.6: The getUserSecurityName and getGroupSecurityName methods
5.2.2.2.7: The getUserDisplayName and getGroupDisplayName methods
5.2.2.2.8: The getGroupsForUser and getUsersForGroup methods
5.2.2.2.9: The getUniqueUserlds and getUniqueGroupl ds methods
5.2.2.2.10: The mapCertificate and checkPassword methods

5.2.3: Building and configuring the sample user registry application

5.2.4: Source code reference
5.2.4.1: FileRegistrySample source code
5.2.4.1.1: FileRegistrySample.java source code
5.2.4.1.2: FlieRegistrySample properties

5.2.4.2: Custom registry source code
5.2.4.2.1: CustomRegistry.java source code
5.2.4.2.2: CustomRegistryException.java source code
5.2.4.2.3: PasswordCheckFailedException.java source code
5.2.4.2.4: EntryNotFoundException.java source code
5.2.4.2.5: CertificateM apNotSupportedException.java source code
5.2.4.2.6: CertificateM apFailedException.java source code

5.3: Changes to security
5.4: Overview: Using Using programmatic and form logins

5.4.1: Client-side login
5.4.1.1: The TestClient
5.4.1.2: LoginHelper

5.4.2: Server-sidelogin
5.4.2.1: The TestServer
5.4.2.2: ServerSideAuthenticator
5.4.2.3: Accessing secured resources from Java clients

5.4.3: Form login challenges
5.5: Introduction to security certificates
5.5.1: Public-key cryptography
5.5.2: Digital signatures
5.5.3: Digital certificates

5.5.4: Requesting certificates
5.5.4.1: Getting atest certificate
5.5.4.2: Getting a production certificate
5.5.4.3: Using test certificates

5.5.5: Mapping certificates to users

5.5.6: Toolsfor certificates and keys
5.5.6.2: The iKeyman tool
5.5.6.2.1: iKeyman: test certificates
iKeyman: Creating a server key store
iKeyman: Creating aclient trust store
5.5.6.2.2: iKeyman: Certification requests
5.5.6.2.3: Placing asigned digital certificate into akey storefile
5.5.6.2.5: Making key store and trust store files accessible
5.5.6.3: Using the Keytool utility
5.5.6.3.1: Administering a keystore database
5.5.6.3.2: Administering key pair entries

5.5.6.3.3: Administering trusted certificates
5.5.6.3.4: Administering both certificate and key pair entries
5.5.6.3.5: Options used with the keytool command

5.5.7: SSL-LDAP setup
5.5.7.1: Establishing connections between application servers and LDAP servers
5.5.7.2: Enabling SSL connections between WebSphere and LDAP
5.5.7.4: Example: Generating key and strust store files for SSL

5.6: Establishing trust association with areverse proxy server
5.6.1: Configuring trust association between WebSphere and WebSeal
5.6.2: Frequently asked questions about trust association
5.6.3: Writing a custom interceptor
5.7: Secure Association Service
5.7.1: Client-side SAS
5.7.2: SAS on the server side
5.7.3: ORB SSL Configuration
5.7.4: SAS Trace
5.7.5: SAS properties

5.7.6: SAS Programming Introduction
5.7.6.1: SAS Programming/Current
5.7.6.2: SAS Programming/Credentials
5.7.6.2.1: SAS Programming/Credentials
5.7.6.2.2: Client-side programmatic login
5.7.6.2.3: Server-side programmatic login

5.7.7: Selectively disabling security
5.8: Single Sign-On

5.8.1: SSO Configuration/WebSphere

5.8.2: SSO Configuration/Domino

5.8.3: SSO Verification

5.8.4: SSO Troubleshooting

5.9: Z/OS interoperability

Administration

6.6.18: Securing applications

6.6.18.0: General security properties

6.6.18.0.1: Properties for configuring Secure Socket Layer (SSL) support

6.6.18.0.2: Properties for configuring security using local operating system

6.6.18.0.3: Properties for configuring security using Lightweight Third Party Authentication
(LTPA)

6.6.18.0.4: Properties for mapping security rolesand "run as' roles to users and groups

6.6.18.0.5: Properties for configuring using custom user registry (pluggable user registry)

6.6.18.0.6: Custom properties for custom user registry

6.6.18.0.7: Properties for LDAP support

6.6.18.0.8: Properties for Select Users/Groups window

6.6.18.0.9: Advanced properties for LDAP support

6.6.18.0.10: Properties for mapping "Run As" roles to users

6.6.18.0.11: Properties for encrypting and decrypting LTPA keys

6.6.18.1: Securing applications with the Java administrative console
6.6.18.1.1a Specifying global settings with the Java administrative console
6.6.18.1.2: Securing cloned applications
Supported directory services

6.6.18.1ac Summary of security settings with the Java administrative console

6.6.18.1a01: Enabling security with the Java administrative console

6.6.18.1a02: Specifying how to authenticate users with the Java administrative console

6.6.18.1a03: Selecting users and groups for roles with the Java administrative console

6.6.18.1a04: Assigning users to Run As roles using the Java administrative console

6.6.18.1a05: Selecting users and groups for administrative roles with the Java administrative
console

6.6.18.1a06: Making L TPA-secured calls across WebSphere domains with the Java administrative
console

6.6.18.1a07: Configuring SSL in WebSphere Application Server

6.6.18.1a08: Selecting users and groups with the Java administrative console

6.6.18.6: Avoiding known security risks in the runtime environment
6.6.18.7: Protecting individual application components and methods
6.6.18.8: LDAP with MS Active Directory

6.6.18.9: Specifying authentication options in sas.client.props
6.6.18.10: The demo keyring

6.6.18.12: Crytographic token support

5. Securing applications -- special topics

IBM WebSphere Application Server provides security components thatprovide or collaborate with other
services to provide authentication,authorization, delegation, and data protection. WebSphere ApplicationServer
also supports the security features described in the Java 2Enterprise Edition (J2EE) specification. Security
elements in yourWebSphere environment are discussed in article 5.1.

Security is established at two levels. Thefirst level is globalsecurity. Global security appliesto al applications
running in theenvironment and determines whether security isused at all, the type of registry against which
authentication takes place, andother values, many of which act as defaults.

The second level is application security. Application security, whichcan vary with each application, determines
the requirements specificto the application. In some cases, these values can overrideglobal defaults. Application
security includes settings likemechanisms for authenticating users and authorization requirements.

Security information is supplied in one of two places. Securityinformation is classified as global, which applies
to all applicationsrunning in the environment, or application-specific, which istailoredto individual
applications. Global security is administered byusing the WebSphere administrative console; application
securityis administered during the assembly phase by using the applicationassembly tool (AAT) and during the
deployment phase by using theadministrative console and the wscp tool.

Information about the standard security tasks appearsin 6.6.18: Securing applications.General administrative
tasks, including standard global-security tasks,are described in 6.6.0.1: Using the Java administrative
console.The application assembly tool is covered in6.3: Using the application assembly tool.

Therest of the material in this section concentrates on more specializedissues related to security. Some of these
are programmatic innature, and some are administrative. The discussions assume familiaritywith genera
security procedures in the WebSphere Application Serverenvironment.

Article 5.1, The WebSphere security componentsgives an overview of WebSphere Application Server security.

Article 5.2, Using a custom registry describeshow to use a custom registry within WebSphere Application

Server for authentication of users. This allows sitesto provide support for user registries not explicitly supported
byWebSphere itself.

Article 5.3, Changes to security describeschanges in security since the previous version of WebSphere
Application Server.

Article 5.4, Using programmatic and custom |ogindescribes the use of programmatic client and server login

routines that work with the authentication policies and other settings specified by the administrator of
WebSphere Application Server. This allows sitesto customize the way in which authentication information is
collectedfrom users.

Article 5.5, Certificate-based authenticationprovides an introduction to the concepts of certificate-based
authentication and its use in the WebSphereenvironment. This includes a discussion of general
cryptographicconcepts like public-key encryption and digital signatures as well asinformation on the use of
certificates in the WebSphere environment,tools for managing certificates and keys, and other related topics:

« 5.5.1: Introduction to public-key cryptography isthefirst article in a sequence that explainsencryption,
signatures, certificates, and other related topics.

« 5.5.6: Tools for managing certificates and keys documents WebSphere Application Server's
command-line and GUI certificate and key management tools. It also includes common procedures for
managing certificates and keys with the tools.

e 5.5.7: Setting up an LDAP connection over SSL describes how to establish an SSL connection between

5

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/06060001.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/06060001.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/0603.html

WebSphere Application Server and an LDAP server.

Article 5.6, Establishing trust association with areverse proxy serverdescribes how to use areverse proxy server
to perform authentication for applications within WebSphereApplication Server.

Article 5.7, The Secure Association Servicedescribes the Secure Association Service (SAS), which playsa

crucial rolein security for WebSphere ApplicationServer. It also provides reference materia on
security-relatedproperties.

Article 5.8, Single sign-on support between WebSphere Application Server and L otus Domino,describes the

single sign-on (SSO) capability and describes how to configure it between WebSphere Application Serverand
Lotus Domino.

5.1: The WebSphere security components

Security for WebSphere Application Server is managed as a collaborativeeffort by several components:
« Security collaborators
« Security policies
« The Secure Association Service (SAS)
o Theuser registry
» Secure Sockets Layer (SSL)

The security collaborators

The security collaborators reside in the application server process and arethe key run-time components for
enforcing the security constraints andattributes specified in the deployment descriptors. Thereisa
collaboratorfor Web resources in the Web container and another collaborator in the enterprise-bean container.

The Web collaborator performs authentication and authorization. Theenterprise-bean collaborator performs
authorization, but not authentication,and sets the run-as identity for delegated request. The
enterprise-beancollaborator relies on the Secure Association Service (SAS) to authenticateJava client requests to
enterprise beans.Both collaborators do the following when a client request is made fora Web or enterprise-bean
resource:

« Perform an authorization check.
« Log security tracing information.

The Web collaborator can perform an additional authentication operationbefore the two above: If the client has
not already authenticated, theWeb collaborator can challenge the user, to collect a user ID and password.The
challenge mechanism is specified as the login-configurationelement in the Web archive's web.xml deployment
descriptor.

The enterprise-bean collaborator performs an additional operation afterthe two mentioned above. It sets the
run-as identity, based on thedel egation policy. The delegation policy determines the identity to useif the
enterprise bean invokes methods on any other enterprise beans. The delegation policy or run-as mode is
specified in the g b-jar.xmldeployment descriptor.

For example, when a client makes an HTTP request to a protected Webresource such as a JSP file, the request is
dispatched to the Webcollaborator for the security check. The collaborator determinesif the client should be
authenticated and, if so, challengesthe client to collect auser ID and password. The Web
collaboratorauthenticates the user ID and password supplied by the client againsta user registry, for example,
the local operating-system registry.If the client is successfully authenticated, the collaboratorthen consults an
internal authorization table to determine whetherthe user isin one of the roles protecting the resource and, if

SO, permits access.

Security policies

Security attributes for enterprise and Web applications are specified inXML deployment descriptors, typically
using atool like the applicationassembly tool (AAT). The deployment descriptors contain much more
thansecurity attributes, but only those related to security are discussed here.

The security attributes include roles, method permissions, the run-as modeor delegation policy,
login-configuration or challenge type, and data-protection(confidentiality and integrity) settings.

When an application is deployed, the roles are mapped to users or groups.This combination of the users and
7

groups is mapped to roles and to the enterprise beans and Web methods protected by the roles. This mapping
formsthe authorization table. There is an authorization table for each enterpriseapplication, and it is consulted
by the collaborators during theauthorization check.
For more information on security-related attributes for deployment, see:

o The Servlet 2.2 specification, for Web resources

« The Enterprise JavaBeans 1.1 specification, for enterprise-bean resources

« 6.6.0.5: Using the Application Assembly Tool interface

The Secure Association Service (SAS)

SAS performs authentication for Java clients of enterprise beans andhel ps to provide message protection or
encryption between such clientsand WebSphere application servers using RMI/IIOP over SSL for
communication.SAS also provides message protection between WebSphere application services.

User Registry

In environments that enforce security restrictions on applications, one ofthe first steps toward meeting such
restrictions is to require users toauthenticate--to prove their identities--in order toaccess applications. To prove
an identity, a user submits a piece ofinformation, for example, a password or a certificate, to the security
system,and the system checks the information against a database of knownusers. If the submitted information
matches the information in thedatabase, the user has successfully authenticated.

The database of known usersis aregistry. WebSphereA pplication Server supports the following types of
registries:

« Local registries, which are limited to environments with a singleapplication server and single node or
Windows NT domaincontroller.

« Centralized registries, which use the Lightweight Third PartyAuthentication (LTPA) protocol to access a
supported Lightweight DirectoryAccess Protocol (LDAP) service

« Customer-defined registries, which use a WebSphere interface thatfacilitates access to custom registries

SSL

Secure Sockets Layer (SSL) is a public-key network-security protocol thatcan perform both authentication and
message encryption. SSL is used betweenWeb browsers, Web servers, and WebSphere application serversto
encryptmessage data.

For instructions on how to configure SSL in WebSphere ApplicationServer, see article 6.6.18, Securing
Applications.

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/06060005.html

5.1.1: Security features

This section briefly describes some of the features of WebSphereA pplication Server that you can use to secure
your applications.

The security system has two facets. First, it enables administratorsto define security policies to establish control
of resources. Administrators use security policiesto tell WebSphere ApplicationServer how security isto be
handled. The security system also provides built-in security services to enforce the policies.

The IBM WebSphere Application Server security system provides a numberof features, including the following:

Authentication policies and services

Authentication is the process of verifying that users are who they say they are. Y ou can indicate how
you want WebSphere Application Server to verify the identity of users who try to access your resources.
Y ou can choose a supported directory service, the operating system registry, or a custom registry to
verify the identity of users and groups.

Authorization policies and services

Authorization is the process of determining what a user is allowed to do with aresource. Y ou can
specify policies that give different users differing levels of access to your resources. If you define
authorization policies, WebSphere Application Server will enforce them for you.

Delegation policies
Delegation alows an intermediary to do work initiated by a client under an identity based on the
associated delegation policy. Therefore, enforcement of delegation policies affect the identity under
which the intermediary performs downstream invocations, that is, the calls made to complete the current
request. When making downstream requests, the intermediary uses the client's credentials by default;
other choices are also possible. The result is that the downstream resources do not know the identity of
the intermediary; they see the identity under which the intermediary is operating. There are three
possibilities for the identity under which the intermediary operates are when making the downstream
requests:

o Theclient'sidentity (default)

o ltsown identity

o Anidentity specified by configuration
A unified security administration model

The different components of WebSphere Application Server use the same model for security, so after
you learn how to set up security for one type of resource, you can apply that knowledge to other
resources. Enterprise beans, servlets, JSP files, and Web pages are all administered similarly in terms of
security. You can combine al of these resources into an application for which you also establish
security.

Single sign-on support
Application Server supports third-party authentication, a mechanism for achieving single sign-on across

the Internet domain that contains your resources. Y ou can use single sign-on to allow usersto log on
once per session rather than requiring them to log on to each resource or application separately.

Passwor d encoding in configuration files

Severa of the WebSphere configuration files contain user |Ds and passwords. These are needed at run
time to access external secure resources such as databases. Passwords are encoded, not encrypted, to
deter casual observation of sensitive information. Password encoding combined with proper operating
system file system security isintended to protect the passwords stored in these files.

5.1.2: The WebSphere authentication model

Authenticationis the process of determining if a user is who the userclaims to be. WebSphere Application Server authenticates usersby using one of

several authentication mechanisms.J2EE does not specify how toauthenticate to an enterprise-bean container. However, WebSphere usesthe Secure
Association Service (SAS) to authenticate Java clientsto enterprise beans.

The authentication mechanism for Web resources is specifiedby using thel ogi n- conf i g element of the web.xml deploymentdescriptor for the
Web application. Each Web application in an enterpriseapplication can have adifferent | ogi n- conf i g value specified.Hereis an example of a
| ogi n- confi g element where formlogin is specified:

<l ogi n-confi g> <aut h- nmet hod>FORW/ aut h- net hod> <r eal m name>Exanpl e For m Based
Aut henti cati on</real m nanme> <form| ogi n-confi g>
<f orm | ogi n- page>/1 ogi n. ht m </ form| ogi n- page>
<formerror-page>/error.jsp</formerror-page> </forml ogin-config> </l ogi n-confi g>

The servlet specification identfies the following authentication methods:
» Basic authentication:

Thisisthe familiar style of authentication in which the Web browser presents a dialog window requesting the user to enter auser 1D and
password when the user attempts to access a protected Web resource.

After the user providesthe identifier and password, the security service validates them against a database of known users, the user registry.
If the user-provided information is valid, the security system considers the user authenticated.

The registry can take the form of alocal registry, a distributed directory service, or a custom registry.
« Digest authentication

This authentication mechanism is not supported by WebSphere. Y ou must specify one of the other authentication mechanisms.
o Client-certificate

This authentication mechanism requires the client to use a digita certificate. The identity in the digital certificate is mapped to an entry in
either the LDAP registry specified when LTPA was configured or to a custom registry.

» Form-based authentication
This authentication mechanism permits a site-specific login through an HTML page or a JSP form.

See 5.4.2.3: Accessing secured resources from Javaclients for information on authenticating Java clients to enterprisebeans.

10

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/001801.html

5.1.3: The WebSphere authorization model

Authorization information is used todetermine if a caller has the necessary privilege to request aservice. Authorization
information can be stored in many ways. Forexample, with each resource, you can store alist of users and whatthey are
permitted to do. Such alist is called an access-controllist. Another way to store the information is to associate with
eachuser alist of resources and the corresponding privilege held by theuser. Thisis called a capability list.

WebSphere Application Server uses the Java 2 Enterprise Edition(J2EE) authorization model. In this model,
authorization informationis organized as follows:

« During the assembly of an application, permission to execute methods is granted to one or moreroles. A roleisa
set of permissions; for example, in a banking application, roles can include Teller, Supervisor, Clerk, and other
industry-related positions. The Teller role is associated with permissions to run methods related to managing the
money in an account, for example, the withdraw and deposit methods. The Teller roleis not granted permission
to close accounts; that permission is given to the Supervisor role. The application assembler defines alist of
method permissions for each role; thislist is stored in the deployment descriptor for the application.

Role-to-method mapping

| AccountBean methods | AccountServlet methods

\getBalance setBalance [deposit |withdraw |closeAccount [HTTP_GET [HTTP_DELETE
(T [ve | - [ve [ye | - | - [-
e CEK [ve [[- [- [[
|Super visor | - | yes | - | - | yes | - | yes
WeTdle | -~ | - [-~ | - [- | y& | -

There are two special subjects that are not defined by J2EE but are worth mentioning, All AuthenticatedUsers and
Everyone, and a special role, DenyAllRole. A special subject is Websphere-defined entity that is independent of
the user registry. It is used to generically represent a class of users or groupsin the registry.

o AllAuthenticatedUsersis a special subject that permits all authenticated users to access protected
methods. Aslong as the user can authenticate successfully, the user is permitted access to the protected
resource.

o Everyoneisaspecial subject that permits unrestricted access to a protected resource. Users do not have to
authenticate to get access; this special subject allows access to protected methods asif the resources are
unprotected.

o DenyAllRoleisaspecia rolethat is assigned by default to a partialy protected resource. For instance, if
an enterprise bean has four methods and only three are explicitly protected, the fourth method is
associated with the DenyAllRole. This role denies everyone access to the methods it is associated with.
The DenyAllRole is never mapped to any users or groups; it is always empty.

« During the deployment of an application, real users or groups of users are assigned to the roles. The application
deployer does not need to understand the individual methods. By assigning roles to methods, the application
assembler simplifies the job of the application deployer; instead of working with a set of methods, the deployer
works with the roles, which represent semantic groupings of the methods. When a user is assigned to arole, the
user gets all the method permissions that are granted to that role. Users can be assigned to more that one role; the
permissions granted to the user are the union of the permissions granted to each role. Additionaly, if the
authentication mechanism supports the grouping of users, these groups can be assigned to roles. Assigning a
group to arole has the same effect as assigning each individual user to the role.

A "best practice" during deployment is to assign groups, rather than individual users, to roles for the following
reasons:

o It improves performance during the authorization check. There are typically far fewer groups than users.
o For AEs, it can greatly improve application server startup time.
It provides greater flexibility, by using group membership to control resource access.

Users can be added to and deleted from groups outside of the WebSphere environment. Thisis preferred
to adding and removing them to WebSphere roles; the enterprise application must be stopped and

11

O

O

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/001801.html

restarted for such changes to take effect, and this can be very disruptive in a production environment.

Subj ect-to-role mapping

Roles

| Teller |Clerk [Supervisor WebTeller

|TellerGroup | yes | - | - | yes

.| Bob | yes |yes| - [yes
SUbJeCtS|CIerkGroup| - | yes | - | -
| Supervisor | - | - | yes | -

« At execution time, WebSphere Application Server authorizes incoming requests based on the user's identification
information and the mapping of the user to roles. If the user belongs to any role that has permission to execute a

method, the request is authorized. If the user does not belong to any role that has permission, the request is
denied.

The J2EE approach represents a declarative approach to authorization, but it alsorecognizes that not all situations can be
dealt with declaratively. For those situations,methods are provided for determining user and role information
programmetically. ForEnterprise JavaBeans, the following two methods are supported by WebSphere ApplicationServer:

« getCallerPrincipal: This method retrieves the user's identification information.
« isCallerInRole: This method checks the user's identification information against a specific role.

For servlets, the following methods are supported by WebSphere Application Server:
« getRemoteUser
« isUserInRole
o getUserPrincipal

These methods correspond in purpose to the enterprise-bean methods.

12

5.1.3.1: Securing applications and resources

WebSphere supports the J2EE model for creating, assembling, securing, anddeploying applications. This
document provides a high-level descriptionof what isinvolved in securing resourcesin a J2EE
environment.Resources are secured by doing the following:

« Specifying roles and defining method permissions in deployment descriptors.
« Assigning users and groups to roles during application deployment.
« Enabling global security in the WebSphere environment.

The J2EE specifications should be consulted for compl ete details.

Applications are often created, assembled and deployed in differentphases and by different teams.

Application-component providers

Component providers create enterprise beans, servlets, JSP files HTML files, and related components. These
components are packaged intoJ2EE modules for containers that can support them.

Enterprise-bean modules contain enterprise-bean class filesand a deployment descriptor. These modules are
packaged asstandard JAR files, using the .jar extension.

Web modules contain servlets, JSP pages, HTML pages, GIFs, andother, and also include a deployment
descriptor. These modulesare packaged as Web archivefiles, JAR fileswith a .war extension.

Enterprise bean and Web modules can be assembled into enterprise-applicationmodules. These modules are
packaged as enterprise archive files, JAR fileswith a .ear extension.

The component provider specifies most of the configuration meta-informationfor the components, including the
security attributes, in the deploymentdescriptors. These attributes identify roles, specify the methods that
areassociated with the roles, thel ogi n- conf i g method, and soforth. A tool like the WebSphere application
assembly tool (AAT) is usedto create J2EE modules and to set the attributes in the deployment descriptors.

Application assemblers

Application assemblers combine J2EE modules, resolve references betweenthem, and create from them a single
deployment unit, typically a.ear file.A tool like AAT isalso used to accomplish these tasks.
Componentproviders and application assemblers can be the same people, but theydo not have to be.

Deployers

Deployers links entities referred to in an enterprise application tothe run-time environment. One of the
important tasks the deployerperforms is mapping actual users and groups to the application’s roles. The deployer
installs the enterprise application into the environmentand makes the final adjustments needed to run the
application.

Most of the steps in creating J2EE applications involve deploymentdescriptors; the deployment descriptors play
acentral role inapplication security in a J2EE environment.

13

5.1.3.2: Role-based authorization scenarios

This article describes the steps taken by WebSphere ApplicationServer to authorize requests. The two scenarios
are based on a bankingapplication that includes both an enterprise bean called AccountBeanand a servlet called
AccountServlet. The following tables definethe application's role-to-method mapping and user-to-role mapping:

| AccountBean methods | AccountServlet methods
\getBalance |setBalance [deposit |withdraw |closeAccount [HTTP_GET [HTTP_DELETE
| Teller | yes | - [y | yes | - | - | -
e CK [ys [- [- [- [- [- [
|Super visor | - | yes | - | - | yes | - | yes
\WebTeller] - | - | - | - | - | yes | -
Role-to-method mapping
| Roles
| Teller |Clerk [Supervisor |WebTeller
TellerGroup| yes | - | - | yes
. Bob yes | yes - yes
SubJeCtSECIerkGroupi - I yes : - : -
| Supervisor | - | - | yes | -

Subject-to-role mapping
Authorizing a request to an enterprise bean

When aclient attempt to execute a method on the home or remote interfaceof an enterprise bean, WebSphere
Application Server must determine whetherthe user ID, or principal, of the client isin arole that is authorizedto
execute the method.

Scenario: A request attempts to execute the getBalance method on theenterprise bean AccountBean. To authorize
this request, WebSphereA pplication Server does the following:

1. Determinesthe calling client's principal. If the principal cannot be determined, the request is rejected.
Suppose that the user Bob isidentified as the calling principal.

2. Determines the set of roles permitted to invoke the getBalance method. The role-to-method mapping table
indicates that both the Teller and the Clerk roles are authorized to execute the getBalance method.

3. Determinesif the calling principal isin at least one of the authorized roles. The user-to-role mapping table
indicates that Bob isin the Teller, Clerk, and WebTeller roles, so the authorization requirements are met.

4. Determines whether the security policy specifies a different identity to use for invoking the method and
any subsequent methodsiit calls.

5. Invokes the requested method.

Authorizing a request to a Web resource

When a Web browser attempts to execute a method on a Web resource,WebSphere Application Server must
determine whether the user 1D, or principal,of the client isin arole that is authorized to execute the requeston the
Web resource.

Scenario: A request attempts to execute the HTTP_GET method for theserviet AccountServlet. To authorize this
regquest, WebSphere ApplicationServer does the following:

14

. Challenge the user for authentication information. Suppose that the user ID and password for Bob are
successfully authenticated.

. Determine the set of roles permitted to invoke the HTTP_GET method. The role-to-method mapping table
indicates that the WebTeller role is authorized to execute the HTTP_GET method.

. Determineif the calling principal isin at least one of the authorized roles. The user-to-role mapping table
indicates that Bob isin the Teller, Clerk, and WebTeller roles, so the authorization requirements are met.

. Invoke the requested method.

15

5.1.4: The WebSphere delegation model

The WebSphere del egation model is an extension the Enterprise JavaBeansl.1 specification; delegation is fully addressed in Enterprise
JavaBeans2.0 specification. Enterprise beans can have delegation policies;Web resources cannot.

Delegation alows an intermediary to perform atask initiated by a clientunder an identity determined by the associated policy.
Therefore,enforcement of delegation policies affects the identity under whichthe intermediary performs downstream invocations, that is,
invocation madeby the intermediary in order to complete the current request, on other objects.By default, if no delegation policy is set, the
intermediary will use theidentity of the the requesting client while making the downstream calls.Alternatively, the intermediary can perform the
downstream invocations underits own identity or under an identity specified by configuration.

When the intermediary operates under an identity other than its own,downstream resources do not know the identity of the intermediary.
Therefore,they make their access decisions based on the privileges associated with theidentity being used.

The administrator specifies a delegation policy bysetting the run-as mode for each enterprise-bean method. For each,the administrator can
choose among three policies:

« Theclient identity
« The system identity, the identity of the intermediary
« A specified identity, based on a particular role, named in the delegation policy

For example, suppose that a client invokes a session bean thatinvokes an entity bean. If the delegation policy states thatmethods are invoked
under the client's identity, the session beanmakes its invocations under the client's identity. Therefore,it is the client, rather than the session
bean, that must havepermission to invoke the entity-bean methods. If the delegationpolicy requires the system identity, the session bean makes
itsinvocation under the identity of the server in whichthe session bean resides; it is this server that must have permissionon the entity-bean
methods. Finally, if the delegation policyrequires a specified identity, the session bean invokes themethods under thisidentity, so the specified
identity must havepermission on the entity-bean methods.

In WebSphere Application Server, the application assembler determinesthe use of delegation by using the application-assembly tool (AAT)
toset the Securi t yl denti t y valuein the deployment descriptor.If thisvalueis not set, no special instructions about security identitiesare
used, and the intermediary uses the caller identity for any downstreaminvocations. The Securi t yl dent i t y value be associated withany of
the following types:

o« UseCal l erldentity (cannot be used for message-driven beans)
« UseSystem dentity
« RunAsSpecifiedldentity

Useof UseCal | er | denti t y meansthat the intermediarywill useits client's credentials for downstream invocations. Use
ofUseSyst el dent i t y meansthat the intermediary willuse its own credentials for downstream infocations. Use of
RunAsSpeci fi edl denti t y meansthat credentias determined elsewhere will be used.

The application assembler does not typically know the makeup ofthe run-time environment, including the specific user identitiesthat are
available. Therefore, it can be impossible for anassembler to have a concrete value to specify for an intermediary that isto run as a specified
identity. Therefore, the run-asidentity is designated as alogical role name, which correspondsto one of the security roles defined in the
deployment descriptor.That is, if the type of identity is specified astheRunAsSpeci f i edl dent i t y type, the deployment descriptoralso
containsar unAsSpeci fi edl denti t y element withar ol eNarre attribute. Thus, to establish a delegationpolicy under which aresource
runs as an administrator, that is, amember of the admin role, ther unAsSpeci fi edl dent i t yelement looks like this:

C <runAsSpeci fi edl dentity xm:id="ldentity_ 1" rol eNane="admi n"
descri ption="" />

At deployment time, a particular user is assigned to that role andbecomes the run-as identity by indirection. This allows you to usethe
specified-identity delegation policy to run beans under theidentity of a user who has been associated with the role.

16

5.1.5 Using Windows NT or Windows 2000 with Local
authorization

When enabling security on Windows NT or Windows 2000 systems, if Local Operating System (LocalOS) is
selected as theauthentication mechanism, keep the following in mind:

« WebSphere Application Server dynamically determines whether the machineis a member of a Windows
domain.

« WebSphere Application Server does not support Windows NT trusteddomains.

« If amachineisamember of a Windows domain, both the domain userregistry and the machine's local
user registry participate i nauthentication and security role mapping.

« Thedomain user registry takes precedence over the machine's localuser registry and may have
undesirable implications if users with thesame password exist in both user registries.

When L ocal OS is selected as the authentication mechanism, theuser registry used for authentication depends on
whether the machineis a member of a Windows domain. When WebSphere is started, the securityruntime
initialization process dynamically attempts to determine ifthe local machine is amember of a Windows domain.
WebSphereApplication Server relies on the Windows computer browser service tohelp determine which domain
the machine is a member of.

If the machine is not amember of a Windows domain, the userregistry local to that machineis used for
authentication.

If the machine is a member of a Windows domain, both the domain userregistry and the local user registry can
be used for authorization.The Windows domain registry is used for authentication first. If theuser cannot be
authenticated there, authentication will be attemptedat the machine's local user registry.

Authorizing with the domain user registry first can cause problemsif a user exists in both the domain and local
user registries with thesame password. Role-based authorization can fail in this situationbecause the user isfirst
authenticated within the domain userregistry. This authentication produces a unique domain security IDthat is
used in WebSpere Application Server during the authorizationcheck. However, the local user registry is used
for role assignment.The domain security ID will not match the unique security |Dassociated with therole. To
avoid this problem, map security rolesto domain users instead of local users.

17

5.1.6: Relationship to the operating environment

This section discusses how Application Server security relatesto the security provided by your operating system
and by Java.

WebSphere Application Server security sits on top of your operatingsystem security and the security features
provided by other components,including the Java language.

The types of security involved include:

Operating-system security support, for example, authentication against, the local user registry.

Java-language security, provided through the Java Virtual Machine (JVM) used by WebSphere and the
programmatic security classes.

CORBA security, in applications involve interprocess communication between secure ORBs.
EJB security, in applications involving Enterprise Java Beans.
WebSphere security, which relies on and enhances al of the above.

See the Sun Microsystems Enterprise JavaBeans specification, Versionl.1, for adescription of enterprise bean
security in general.

18

5.2: Introduction to custom registries

WebSphereA pplication Server supports the following types of registries:

« Local registries. Local registries are limited to single-machine or Windows NT domain-controller
environments and a single application server. WebSphere Application Server does not support multiple
node, multiple application servers or secure delegation when the Local registry is used as the user
registry.

« Centralized registries, which use the Lightweight Third Party Authentication (LTPA) protocol to
access a supported Lightweight Directory Access Protocol (LDAP) service. Centralized registries are
limited to the set of WebSphere-supported LDAP directory services. The interface for custom registries
allows WebSphere applications to take advantage of new or existing registries that are not otherwise
accessible.

« Customer-defined registries, by using a WebSphere interface that facilitates access to custom
registries.

For the custom-registry choice, WebSphere Application Server provides an interface thatdefines a set of
methods that WebSphere Application Server calls to performsecurity operations for applications configured to
use the customregistry. A developer must implement the methods in this interface byusing calls to the desired
registry. Thislayer of code alows thedesired registry to be plugged into the WebSphere environment.
Theinterface defines avery general set of methods, so it can be used toencapsulate a wide variety of registries.

19

5.2.1: The CustomRegistry interface

Developers can use a WebSphere interface to encapsulate registries that areotherwise unsupported. To encapsul ate such registries, developers
mustimplement the methods in the CustomRegistry interface, which islocated in theJava package com.ibm.websphere.security. The source codeis
available fromCustom-registry source code. The structure of theCustomRegistry interface is shown in Figure 1.

Figure 1. The CustomRegistry interface

package com i bm websphere. security; inport java.util.*;inmport java.security.cert.X509Certificate,;
public interface CustonRegi stry{ /'l General methods public void initialize(java.util.Properties

props) t hrows CustonRegi stryExcepti on; public String getReal m() t hr ows

Cust onRegi st ryExcepti on; /'l User-rel ated net hods publ i c bool ean isValidUser(String userNane)
throws Cust onRegi stryException; public List getUsers() t hrows Cust onRegi stryExcepti on;
public List getUsers(String pattern) t hrows Cust onRegi stryExcepti on; public String

get Uni queUser I d(String user Nane) t hrows Cust onRegi stryException,

Ent r yNot FoundExcepti on; public String getUserSecurityName(String uni queUser|d) t hr ows

Cust onRegi st ryExcepti on, Ent r yNot FoundExcept i on; public String

get User Di spl ayNane(String securityName) t hrows Cust onRegi stryExcepti on,

Ent r yNot FoundExcept i on; public List getUsersForGoup(String groupNane) t hr ows

Cust onRegi st ryExcepti on, Ent r yNot FoundExcept i on; public List getUniqueUserlds(String
uni queGroupl d) t hrows Cust onRegi stryExcepti on, Ent r yNot FoundExcept i on; /1
Group-rel ated net hods public bool ean isValidG oup(String groupNane) t hr ows

Cust onRegi st ryExcepti on; public List getG oups() t hrows Cust onRegi stryExcepti on; public
Li st get G oups(String pattern) t hrows Cust onRegi stryExcepti on; public String

get Uni queG oupl d(String groupNane) t hrows Cust onRegi stryExcepti on,

Ent r yNot FoundExcepti on; public String get G oupSecurityNane(String uni queG oupl d) t hr ows
Cust onRegi st ryExcepti on, Ent r yNot FoundExcept i on; public String

get G oupDi spl ayNane(String groupNane) t hrows Cust onRegi stryExcepti on,

Ent r yNot FoundExcepti on; public List getG oupsForUser(String userNane) t hr ows

Cust onRegi st ryExcepti on, Ent r yNot FoundExcept i on; public List getUniqueG ouplds(String
uni queUser | d) t hrows Cust onRegi stryExcepti on, Ent r yNot FoundExcept i on; 11

Aut henti cati on net hods public String checkPassword(String userld, String password) t hr ows
Passwor dCheckFai | edExcepti on, Cust onRegi st ryExcepti on; public String
mapCertificate(X509Certificate cert) throws Certificat eMapNot Support edExcepti on,
CertificateMapFail edExcepti on, Cust onRegi stryException;}

The CustomRegistry interface supports authentication of individual users bypassword and by digital certificate. It also contains a set of methodsfor
retrieving information about users and a set for retrieving thecorresponding information about groups.

The CustomRegistry interface operates on the basis of the several pieces ofinformation. When implementing the methods in the interface, you
mustdecide how to map the information manipulated by the CustomRegistry interfaceto the information in your registry. The methods in the
CustomRegistryinterface operate on the following information for users:

« User name: an identifier for auser. The CustomRegistry interface requires user names to be unique. For most registries, the user name
logically mapsto an identifier that is meaningful to the user; some common terms for thisidentifier include login name, account name, user
name, and principal.

« Uniqueidentifier: auniqueidentifier for auser. The CustomRegistry interface requires this identifier to be unique. For most registries, the
unique identifer logically maps to a numeric counterpart of a user name. For example, UNIX systems assign auser 1D (UID) to each user
name.

« Display name: an optional string that describes a user. Display names are used by the CustomRegistry interface to provide away to describe
user names, which are typically single-word identifiers. Display names can be used to hold full names or other descriptive information. Some
common terms for this kind of information in registries include annotations, full-name fields, string fields, and others. Some registries do not
support thiskind of information at al. The CustomRegistry implementation uses display names for informational purposes only; display
names are not required to exist or be unique. Display names are shown, along with user names, in the administrative console when a search is
done for users or groups. Although the display names are used only as annotations within the registry, the getRemoteUser and
getUserPrincipal methods, used by servlets and JSPs, and the getCallerPrincipal method, used by enterprise beans, use the information
differently; see The getUserDisplayName and getGroupDisplayName methods for more information.

The CustomRegistry interface also operates on parallel information for groups:
« Group name: an identifier for a group.
« Uniqueidentifier: auniqueidentifier for agroup.
« Display name: an optional string that describes a group.

20

5.2.2: Implementing the CustomRegistry interface

To use aregistry that is not natively supported by WebSphere ApplicationServer, you must provide a class that
implements the CustomRegistry interfaceby providing code for each method in the interface. This code does
thework necessary to retrieve and manipulate the information from the desiredregistry. Most of the methods in
the CustomRegistry interface returneither strings or lists. When you implement these methods, indicatefailure to
retrieve the desired information by returning null strings or nulllists.

To illustrate the structure of an implementation of the CustomRegistryinterface, this document describes a class
that uses a UNIX-like localregistry. The class implements every method in the interface, andbecause the
backing registry is so smple, the methods are simple. Animplementation using arealistic registry will use more
complex,registry-specific code, but the structure will be the same. The sourcecode is available from
Custom-registry source code.

21

5.2.2.1: Structure of the example registry

The registry used in this example consists of two text files. Thesefiles are variants of the UNIX /etc/password and /etc/group files. Thefile containing user
information is called users.props, and the filecontaining group information is called groups.props.

The user-information file

Entriesin the users.props file consist of the following fields,separated by the colon (:) character:
« User name: the unigque name associated with a user's account; maps to the user name in the CustomRegistry interface
« Password: the password associated with the user name
« User ID (UID): asingle, unique number associated with the user name; maps to the unique identifier in the CustomRegistry interface
» Group IDs (GIDs): acomma-delimited list of numeric identifiers indicating the groups to which the user belongs
« Annotation: an optional string of information used for description; maps to the display name in the CustomRegistry interface

In this simple registry, the passwords are simply stored as cleartextfields; the passwords are not encrypted. Any lines that begin withthe hash (#) character
are considered comments and ignored.Figure 3 shows a sample user-information file.

Figure 3. The example users.propsfile

User-information file# Format: usernane: password: U D:d DO,
G D] *: annot ati onbob: bobl: 123: 567: bobdave: davel: 234: 678:j ay: j ayl: 345: 678, 789: Jay- Jayt ed: t ed1: 456: 678: Teddy
Geff:jeffl:222:789: Jef fvi kas: vi kasl: 333: 789: vi kasbobby: bobby1: 444: 789:

The group-information file

Entriesin the groups.props file consist of the following fields,separated by the colon (:) character:
« Group name: the unique name associated with the group; maps to the group name in the CustomRegistry interface
« Group ID (GID): asingle, unique number associated with the group name; maps to the unique identifier in the CustomRegistry interface
« User names: acomma-delimited list of the names of the members of the group
« Annotation: an optional string of information used for description; maps to the display name in the CustomRegistry interface

Any lines that begin with the hash (#) character are considered commentsand ignored. Figure 4 shows a samplegroup-information file.

Figure 4. The example groups.propsfile

Group-information file# Format: groupnane: d D: user naneg[,
user name] *: annot at i onadm ns: 567: bob: Adni ni strative groupoperators: 678:jay,ted, dave: Operators
groupusers: 789:j ay, j ef f, vi kas, bobby:

22

5.2.2.2: Writing the sample application

To enable WebSphere applications to use the registry described in Structure of the example registry, you must
provide a class thatimplements the methods in the CustomRegistry interface, described in TheCustomRegistry

interface. This section describes the structure and methods of a classthat accesses the example registry.

23

5.2.2.2.1: Structure of the implementation class

The class implementing the CustomRegistry interface is calledFileRegistrySample. It primarily contains implementations of themethods in the
CustomRegistry interface, but it aso contains privatevariables representing the user- and group-information files making up theregistry, private
file-manipulation methods for accessing the registry files,and an empty constructor. Figure 5 shows the structure and content of the class, excluding
themethods in the CustomRegistry interface, which are describedseparately.

Figure 5. Code example: The structure of the FileRegistrySample class

import java.util.*;inport java.io.*;inport java.security.cert.X509Certificate;inport
com i bm websphere. security.*; public class Fil eRegistrySanple inplenents CustonRegistry{ private

static String USERFI LENAME = nul | ; private static String GROUPFI LENAMVE = nul | ; private

Buf f eredReader fileQpen(String fil eNane) t hrows Fil eNot FoundExcepti on { try {

return new Buff eredReader (new Fi | eReader (fil eNane)); } cat ch(Fi | eNot FoundException e) {
throw e; } } private void fileC ose(BufferedReader in) { try { if (in!=
null) in.close(); } cat ch(Exception e) { Systemout.printin("Error closing file" +
e); } } private bool ean match(String name, String pattern) { /'l RegExpSanple is an
auxiliary class for regul ar expressions RegExpSanpl e regexp = new RegExpSanpl e(pattern);

bool ean mat ches = fal se; i f (regexp. mat ch(nane)) mat ches = true; return matches;

} public Fil eRegistrySanmple() {} /1 Methods fromthe CustonRegistry interface .

This sample implementation also includes an auxiliary class, RegExpSample,that implements basic regular-expression handling.

24

5.2.2.2.2: The getRealm and initialize methods

The CustomRegistry interface defines the getRealm method for determiningthe name of the security realm. The name of the realm identifies
thesecurity domain for which the registry authenticates users. EachWebSphere Application Server resides in a specific realm, and access to
itsapplications is restricted by the security requirements of the realm. Ifthis method returns a null value, a default name of cust omReal misused.
For the sample implementation, the string cust onReal nis simply coded into the getRealm method.

The CustomRegistry interface also defines the initialize method forinitializing the custom registry. This method is used for establishingcontact with
the registry and performing any initial work. For theexample registry, the intialize method retrieves the names of the registryfiles containing the user
and group information.

WebSphere Application Server expects both the getRealm method and theinitialize method to throw the CustomRegistryException exception in case
ofany problems. Figure 6 showsthe methods as implemented in the FileRegistrySample class.

Figure 6. Code example: The getRealm and initialize methodsin the FileRegistrySample class

public String getReal n() t hrows Cust onRegi st ryExcepti on{ String nane = "custonReal ni'; return
name;} public void initialize(java.util.Properties props) t hrows Cust onRegi stryExcepti on{ try
{ /1l Get the files containing the user and group information. /'l The properties
"usersFile" and "groupsFile" are set in /1l the GU when the registry is configured. i f
(props !'=null) { USERFI LENAME = props. get Property("usersFile"); GROUPFI LENAME =
props. get Property("groupsFile"); } } catch (Exception ex) { t hrow new

Cust onRegi st ryExcepti on(ex. get Message()); } i f (USERFILENAME == nul | || GROUPFILENAME = null) {
t hrow new Cust onRegi stryExcepti on("users/groups information m ssing); 1}

25

5.2.2.2.3: The isValidUser and isValidGroup methods

TheisValidUser and isVaidGroup methods are used to determine whether aprovided user or group name appears in the registry. Theimplementations
of both methods must check that the name supplied as anargument appears in the registry as the name of a user or group and returneither a value of
TRUE if the name appears or FALSE if it doesn't.\WebSphere Application Server expects both the isVaidUser and isValidGroupmethods to throw
the CustomRegistryException exception in case of anyproblems.

To validate users and groups against the sample registry, each methoditerates through the entries in the appropriate file and examines the value inthe
field for the user or group name. When amatch is found, the methodstops looking and returns a TRUE value. If the entirefile is traversedwithout a
match, the method returns a FAL SE value.Figure 7 shows the isValidUsermethod--and the structure of the isValidGroup method--as implemented

inthe FileRegistrySample class. The only difference between the two methodsis the file over which they iterate.

Figure 7. Code example: TheisvValidUser and isValidGroup methodsin the FileRegistrySample class
public bool ean isValidUser(String userNane) t hrows Cust onRegi stryExcepti on{ String s; bool ean

isvValid = fal se; Buf f eredReader in = null; try { in = fil eOpen(USERFI LENAME) ; whi | e
((s=in.readLine())!=null) { if (!s.startsWth("#")) { int index = s.indexOf(":");
if ((s.substring(0,index)).equal s(userName)) { i sVal i d=true; br eak;

} } } } catch (Exception ex) { t hr ow new

Cust onRegi st ryExcepti on(ex. get Message()); } finally { filed ose(in); } return isValid;}
public bool ean isValidGoup(String userNane) t hrows Cust onRegi stryExcepti on{ String s; bool ean
isvalid = fal se; Buf f eredReader in = null; try { in = fil eOpen(GROUPFI LENAME) ; }
catch (Exception ex) { ... } finally { ... } return isvalid;}

26

5.2.2.2.4: The getUsers and getGroups methods

The getUsers and getGroups methods are used to retrieve lists of user orgroup names in the registry. The CustomRegistry interface defines twoof
each method: a version that takes no arguments and returns the namesof all users or groups, and aversion that takes a string and returns thenames of
the users or groups that match a string:

o getUsers()

o getUsers(pattern)
o getGroups()

o getGroups(pattern)

WebSphere Application Server expects these methods to return null values ifno users or groups, or none matching the pattern, are found. All
themethods are expected to throw the CustomRegistryException exception for anyother conditions.

The getUsers(pattern) and getGroups(pattern) methods must be able to handlearguments consisting of the full name of an existing user or group,
whichmatches a single user or group, and of the asterisk (*) character, whichmatches all users or groups. At a minimum, these methods must behave
asfollows:

« If the argument is the complete name of a user or group, that user or group must be returned.
« If the argument isthe asterisk (*) character, the names of all users or groups must be returned. This can be implemented by calling either
getUsers() or getGroups().

Developers can introduce more sophisticated pattern-matchingtechniques. The techniques implemented here determine the retrieval strategies
available on the administrative console. For registriesinvolving thousands of users or groups, the ability to retrieve names based onpartial matches,
common endings, and so forth can greatly enhance theusability of the console.

Figure 8 shows theimplementation of the getUsers() method for theexample registry. The method iterates through the user-information fileand

collects the user name from each entry. When the file is exhausted,the method returns the list of user names. The getGroups() method doesthe same
work on the group-information file.

Figure 8. Code example: The getUsers() and getGroups() methodsin the FileRegistrySample class
public List getUsers() throws CustonRegi stryException{ String s; Li st all Users = new

ArrayList(); Buf f eredReader in = null; try { in = fil eOpen(USERFI LENAME) ; whil e
((s=in.readLine())!=null) { if (!s.startsWth("#")) { int index = s.indexOf(":");
al | Users. add(s. substring(O0,index)); } } } catch (Exception ex) { t hrow new
Cust onRegi st ryExcepti on(ex. get Message()); } finally { filed ose(in); } return

al | Users;} public List getGoups() t hrows Cust onRegi stryExcepti on{ String s; Li st all Goups =
new ArraylList(); Buf f eredReader in = null; try { in = fil eQpen(GROUPFI LENAME) ;

} catch (Exception ex) { ... } finally { ... } return all Goups;}

The behavior of the methods that retrieve the names of all users or groupsis straightforward, but the definition of what constitutes a match, used bythe
pattern-matching methods, varies with the registry used and the types ofinformation it stores. Matching on complete user or group name yields
atmost one match. Partial and wildcard matches can be implemented to increasethe number of matches. For other registries, different characteristics
canmake different matching strategies useful.

Figure 9 shows theimplementation of the getUser(pattern) method forthe example registry. The method iterates through the user-informationfile and
attempts to match the user name with the provided string. Ifthey match, the user name is added to alist. When the file isexhausted, the method returns

the list of user names. ThegetGroups(pattern) method does the same work on the group-informationfile. The match method is alocal, private method
that returns TRUE ifthe two arguments match. This method makes use of the RegExpSample class.

Figure 9. Code example: The getUser s(pattern) and getGroups(pattern) methodsin the FileRegistrySample class

public List getUsers(String pattern) t hrows CustonRegi stryExcepti on{ String s; List all Users =

new Arraylist(); Buf f eredReader in = null; try { in = fil eOpen(USERFI LENAME) ; whil e
((s=in.readLine())!=null) { if (!'s.startsWth("#")) { int index = s.indexOF(":");
String user = s.substring(0,index); if (match(user, pattern))

al | Users. add(user); } } } catch (Exception ex) { t hrow new

Cust onRegi st ryExcepti on(ex. get Message()); } finally { filed ose(in); } return

al | Users;} public List getGoups(String pattern) t hrows Cust onRegi stryExcepti on{ String s;

List all Goups = new ArrayList(); Buf f eredReader in = null; try { in =
fil eOpen(GROUPFI LENAME) ; } catch (Exception ex) { ... } finally { ... } return
al | Groups;}

27

5.2.2.2.5: The getUniqueUserld and getUniqueGroupld methods

The getUniqueUserld and getUniqueGroupl d methods allow the retrieval of aunique identifier for a named user or group.

WebSphere Application Server expects the methods to throw theEntryNotFoundException exception if the user or group name does not exist inthe
registry and to throw the CustomRegistryException exception for any otherconditions.

Figure 10 shows theimplementation of the getUniqueUserld method forthe example registry. The method iterates through the user-informationfile
and attempts to locate an entry with the specified user name. Ifthe name is located, the corresponding UID field is extracted andreturned. If the user
nameis not found, the EntryNotFoundExceptionexception is thrown. The getUniqueGroupld method does the same work onthe group-information
file.

Figure 10. Code example: The getUniqueUser|d and getUniqueGroupld methodsin the FileRegistrySample class
public String getUni queUserld(String userNane) throws Cust onRegi stryException,

Ent r yNot FoundExcept i on{ String s, uniqueUsrlid = null; Buf f eredReader in = null; try { in
= fil eOpen(USERFI LENAME) ; while ((s=in.readLine())!=null) { if (!'s.startsWth("#")) {
int index = s.indexOf(":"); int indexl = s.indexOF(":", index+l); if
((s.substring(0,index)).equal s(userNane)) { int index2 = s.indexOF(":", indexl1+1);
uni queUsrid = s.substring(indexl+1,index2); br eak; } } } }
cat ch(Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally {
filed ose(in); } if (uniqueUsrid == null) { Ent r yNot FoundExcepti on nsee = new
Ent r yNot FoundExcept i on(user Nane) ; t hr ow nsee; } return uni queUsrld;} public String
get Uni queG oupl d(String user Nane) t hrows Cust onRegi stryException, EntryNot FoundExcepti on{ String
s, uniqueGpld = null; Buf f eredReader in = null; try { in = fil eQpen(GROUPFI LENAME) ;

} catch(Exception ex) { ... } finally { ... } if (uniqueGpld ==null) { ... }

return uni queGrpld;}

28

5.2.2.2.6: The getUserSecurityName and getGroupSecurityName
methods

The getUserSecurityName and getGroupSecurityName methods allow theretrieval of the name of a user or group from a unique identifier.

WebSphere Application Server expects the methods to throw theEntryNotFoundException exception if the unique identifier does not exist inthe
registry and to throw the CustomRegistryException exception for any otherconditions.

Figure 11 shows theimplementation of the getUserSecurityName methodfor the example registry. The method iterates through theuser-information

file and attempts to locate an entry with the specifiedUID. If the UID is located, the corresponding name field is extractedand returned. If the UID is
not found, the EntryNotFoundExceptionexception is thrown. The getGroupSecurityName method does the same workon the group-information file.

Figure 11. Code example: The getUser SecurityName and getGroupSecurityName methodsin the FileRegistrySample class
public String getUserSecurityNanme(String uni queld) t hrows Cust onRegi stryExcepti on,

Ent r yNot FoundExcept i on{ String s, usrSecNane = null; Buf f eredReader in = null; try { in
= fil eOpen(USERFI LENAME) ; while ((s=in.readLine())!=null) { if (!s.startsWth("#")) {
int index = s.indexOf(":"); int indexl = s.indexOF(":", index+l); int index2 =
s.indexOF(":", indexl1l+1); if ((s.substring(index1+1,index2)).equal s(uniqueld)) {

usr SecNane = s.substring(0,index); br eak; } } } } catch
(Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally {

fileC ose(in); } if (usrSecName == null) { Ent r yNot FoundExcepti on ex = new

Ent r yNot FoundExcept i on(uni quel d) ; } return usrSecNane;} public String

get GroupSecurityNane(String uni quel d) throws Cust onRegi stryException, EntryNot FoundExcepti on{
String s, grpSecName = null; Buf f eredReader in = null; try { in = fil eQpen(GROUPFI LENAME) ;
} catch (Exception ex) { ... } finally { ... } if (grpSecNanme == null) { ... } return
gr pSecNane; }

29

5.2.2.2.7: The getUserDisplayName and getGroupDisplayName methods

The getUserDisplayName and getGroupDi splayName methods allow the retrievalof the display name, a descriptive field, associated with the name of
auseror group. In the example registry, the annotation field is returned asthe display name.

WebSphere Application Server expects the methods to throw theEntryNotFoundException exception if the specified user or group name is notfound
in the registry and to throw the CustomRegistryException exception forany other conditions. The display nameis an optiona value, so themethods
must return NULL when no display name is found for named user or group.

[l The getRemoteUser or getUserPrincipal method in a servlet or JSP, andthe getCallerPrincipal method in an enterprise bean, also use the
displayname. These methods return the display name if one exists and the user nameif a display name does not exist. Group display names are not an
issue.

Figure 12 shows theimplementation of the getUserDisplayName methodfor the example registry. The method calls the isVaidUser method,described
in Figure 7,to verify that the name appears in the registry. Ifit does not, the method throws the EntryNotFoundException exception. Ifthe user nameis

valid, the corresponding annotation field is extracted andreturned. The getGroupSecurityName method does the same work on thegroup-information
file.

Figure 12. Code example: The getUser DisplayName and getGr oupDisplayName methods in the FileRegistrySample class
public String getUserDi splayName(String user Nane) t hrows Cust onRegi stryExcepti on,

Ent r yNot FoundExcept i on{ String s, displayNane = nul |l ; Buf f eredReader in = null;
if(!'isValidUser(userNane)) { Ent r yNot FoundExcepti on nsee = new

Ent r yNot FoundExcept i on(user Nane) ; t hrow nsee; } try { in = fil eOpen(USERFI LENAME) ;
while ((s=in.readLine())!=null) { if (!'s.startsWth("#")) { int index =
s.indexOF(":"); int indexl = s.lastlndexOr(":"); if
((s.substring(0,index)).equal s(userName)) { di spl ayName = s.substring(index1l+1);

br eak; } } } } catch(Exception ex) { t hrow new

Cust onRegi st ryExcepti on(ex. get Message()); } finally { filed ose(in); } return

di spl ayName;} public String get GoupDi spl ayNane(String user Nane) t hrows Cust onRegi stryExcepti on,
Ent r yNot FoundExcept i on{ String s, displayNanme = null; Buf f eredReader in = null;
if('isvalidGoup(userNarme)) { ... } try { in = fil eOpen(GROUPFI LENAME) ; }
catch(Exception ex) { ... } finally { ... } return displayNane; }

30

5.2.2.2.8: The getGroupsForUser and getUsersForGroup methods

The getGroupsForUser returns alist of the names of the groups to which thenamed user belongs, and the getUsersForGroup method returns alist of
the usernames in a group. These methods must return lists of names, not UIDs orGIDs.

WebSphere Application Server expects the methods to throw theEntryNotFoundException exception if the specified user or group name is notfound
in the registry and to throw the CustomRegi stryException exception forany other conditions.

Figure 12 showsthe implementation of the getGroupsForUser method forthe example registry. Unlike the other user methods, which
returninformation about users from the user-information file, this method iteratesover the group-information file, collecting the name of every group
that liststhe named user as a member. The group-information file stores eachmember list as a set of names, and the user-information file stores each
grouplist asalist of GIDs. By using the group-information file, the methodcan create the list of user names directly. If the method had
beenimplemented by iterating over the user-information file, the method would haveto call the getGroupSecurityName method on each GID to
construct the list ofgroup names.

In the event of an exception, the method calls the isVaidUser method,described in Figure 7,to verify that the user name appearsin theregistry. If it
does not, the method throws the EntryNotFoundExceptionexception. If the user nameis valid, the CustomRegistryExceptionexception is thrown. The
getGroupSecurityName method does similar workon the group-information file.

Figure 13. Code example: The getGroupsForUser and getUser sFor Group methods in the FileRegistrySample class

public List getG oupsForUser(String userNane) t hrows Cust onRegi stryExcepti on,

Ent r yNot FoundExcept i on{ String s; Li st grpsForUser = new ArraylList(); Buf f eredReader in =

nul | ; try { in = fil eQpen(GROUPFI LENAME) ; while ((s=in.readLine())!=null) { if
(!'s.startsWth("#")) { StringTokeni zer st = new StringTokenizer(s, ":"); for
(int i=0; i<2; i++) st. next Token(); String subs = st.nextToken();
StringTokeni zer stl = new StringTokeni zer(subs, ","); whi | e (st1. hasMoreTokens()) {

i f((stl.nextToken()).equal s(userName)) { int index = s.indexOF(":");

gr psFor User . add(s. substring(0,index)); } } } } } catch
(Exception ex) { if (lisValidUser(userNane)) { t hrow new

Ent r yNot FoundExcept i on(user Nane) ; } t hr ow new Cust onRegi stryExcepti on(ex. get Message());

} finally { filed ose(in); } return grpsForUser;} public List getUsersForGoup(String
user Name) t hrows CustonRegi stryException, EntryNot FoundExcepti on{ String s; Li st usrsFor G oup
= new Arraylist(); Buf f eredReader in = null; try { in = fil eOpen(GROUPFI LENAME) ;
} catch (Exception ex) { ... } finally { ... } return usrsFor Group;}

31

5.2.2.2.9: The getUniqueUserlds and getUniqueGrouplds methods

The getUniqueUserlds and getUniqueGroupl ds methods allow the retrieval ofthe unique identifiers for all members of agroup and all the identifiers
forthe groups to which a user belongs. These methods are similar infunction to the getGroupsForUser and getUsersForGroup methods; thedifference
isthat these methods take unique identifiers are arguments andreturn lists of unique identifiers, and the getGroupsForUser andgetUsersForGroup
methods work with names. The similarly namedgetUniqueUserld and getUniqueGroupld methods also take user and group namesare arguments.

WebSphere Application Server expects these methods to return null values ifno matches are found, to throw the EntryNotFoundException exception
if therequested user or group identifier does not exist in the registry, and tothrow the CustomRegistryException exception for any other conditions.

Figure 14 shows the implementationof the getUniqueUserlds method forthe example registry. The method iterates through the group-informationfile
and attempts to locate an entry with the specified groupidentifier. If the identifier islocated, the identifiers of allmembers are extracted and returned.
If the group identifier is notfound in the file, the EntryNotFoundException exception is thrown. ThegetUniqueGrouplds method does similar work on
the user-informationfile.

Figure 14. Code example: The getUniqueUserIds and getUniqueGrouplds methodsin the FileRegistrySample class

public List getUniqueUserlds(String uni queG oupld) t hrows Cust onRegi stryExcepti on,

Ent r yNot FoundExcept i on{ String s = null; Li st uni queUserlds = new ArrayList(); Buf f er edReader
in=null; try { in = fil eOpen(GROUPFI LENAME) ; while ((s=in.readLine())!=null) {
if (!s.startsWth("#")) { int index = s.indexOf(":"); int indexl = s.indexCOf(":"

i ndex+1) ; if ((s.substring(index+1,indexl)).equal s(uniqueGoupld)) {

StringTokeni zer st = new StringTokenizer(s, ":"); for (int i=0; i<2; i++)

st. next Token(); String subs = st.nextToken(); StringTokeni zer st1l = new
StringTokeni zer (subs, ","); whil e (stl. hasMoreTokens())

uni queUser | ds. add(get Uni queUser | d(st 1. next Token())); br eak; } } } }
cat ch(Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally {
fileC ose(in); } return uni queUserlds;} public List getUni queG ouplds(String uni queUserld)

t hrows Cust onRegi st ryExcepti on, Ent r yNot FoundExcept i on{ String s,uniqueGpld = null; Li st
uni queG pl ds=new Arraylist(); Buf f eredReader in = null; try { in = fil eCpen(USERFI LENAME) ;
Wmle((s|nreadL|ne())'—nuII) { } } catch(Exception ex) { ... } finally
{ .} return uni queG plds;}

32

5.2.2.2.10: The mapCertificate and checkPassword methods

The mapCertificate and checkPassword methods allow users to beauthenticated against the custom registry. Both methods return a username, which
istypically the name of the authenticated user. In somecases, however, it is desirable to authenticate a user but return a differentvalid user name. For
example, consider a Web site that offers usersdifferent services depending on their subscription level. When a userenters the site, he or sheis
prompted for login information, which is used toauthenticate the user and determine the subscription level. All usersat one subscription level can then
be assigned the same user name, and usersat another subscription level can be assigned a different one. Becauseauthorization is based on the
subscription level rather than a user'sidentity, and there are fewer subscription levels than individual users, thisapproach simplifies the authorization
procedures for the application.

The mapCertificate method takes a X.509 certificate as an argumentand returns a valid user name as the return value. Typically, thecertificate
holder's name is extracted from the certificate,authenticated against the registry, and returned. WebSphere ApplicationServer expects the method to
throw the CertificateM apNotSupportedExceptionexception if the registry does not support mapping to certificates, to throwthe

CertificateM apFailedException is expected if the certficate does notrepresent avalid user in the registry, and to throw theCustomRegistryException
exception for any other conditions.

Figure 15 shows theimplementation of the mapCertificate method forthe example registry. The method extracts the user name from thecertificate and
returnsit.

Figure 15. Code example: The mapCertificate method in the FileRegistrySample class
public String mapCertificate(X509Certificate cert) throws CertificateMapNot Support edExcepti on,

CertificateMapFail edExcepti on, Cust onRegi st ryExcept i on{ String name=nul | ; try { /1
Extract the SubjectDN fromthe certificate. nanme = cert.get Subject DN(). get Nanme(); }

cat ch(Exception ex) { throw new Certificat eMapNot Support edExcepti on(ex. get Message()); } /1
Determine if the SubjectDN represents a valid user. if(!isValidUser(nanme)) { t hr ow new
Certificat eMapFai | edExcepti on(nane); } return nane;}

The checkPassword method verifies that the password submitted for a username matches the password recorded in the registry for that
user.WebSphere Application Server expects the method to throw thePasswordCheckFailedException exception if the supplied password does not
matchthe recorded password and to throw the CustomRegi stryException exception forany other conditions.

Figure 16 shows theimplementation of the checkPassword method for theexample registry. The method locates the entry for the user in

theuser-information file and matches the supplied password againt the value ofthe password field. If the passwords do not match,
thePasswordCheckFailedException exception is thrown; otherwise, the methodreturns the name of the authenticated user.

Figure 16. Code example: The checkPassword method in the FileRegistrySample class

public String checkPassword(String userld, String passwd) t hrows Passwor dCheckFai | edExcepti on,

Cust onRegi st ryExcepti on{ String s, userName = null; Buf f eredReader in = null; try { in =

fil eOpen(USERFI LENAME) ; while ((s=in.readLine())!=null) { if (!'s.startsWth("#"))
int index = s.indexOr(":"); int indexl = s.indexOF(":",index+1);

/| Check existence of the usernane/password pair. i f

((s.substring(0,index)).equal s(userld) &&

s. substring(i ndex+1, i ndexl). equal s(passwd)) { /'l The usernane and password match the

registry, /!l so authentication succeeds. user Nane = userld;

br eak; } } } } cat ch(Exception ex) { t hrow new

Cust onRegi st ryExcepti on(ex. get Message()); } finally { filed ose(in); } if (userName

== null) { t hr ow new Passwor dCheckFai | edExcepti on(userld); } return user Name; }

33

5.2.3: Building and configuring the sample user
registry application

To use the sample custom registry, perform the following steps:
1. Build the FileRegistrySample application.

2. Configure WebSphere Application Server to use the FileRegistrySample registry.

This section describes these procedures.

Building the FileRegistrySample application

This section describes how to build the sample described in thisarticle. This sample has been designed more for
simplicity thanperformance and is intended only to familiarize you with the custom-registryfeature. An
implementation intended for production use requires muchbetter scalability and performance.
The sample consists of the following files:

« FileRegistrySample.java: the sample implementation itself

« users.props: the usersinformation in the registry

« groups.props. the groups information in the registry
The complete source code is provided elsewhere in this package.

To run this sample, you must first build it and then configure it foruse. This discussion assumes that:
« WebSphere Application Server isinstalled in the C:\WebSphere\AppServer directory.

« Thesampleisbeing run under Windows. The main difference between Windows and other platformsis
where the files are located.

To build the sample, follow these steps:
1. Copy the FileRegistrySample.javafile to adirectory, for example, C:\temp.
2. Add the C:\WebSphere\A ppServer\lib\websphere.jar file to the classpath.

3. Compile the sample by using the Java compiler that is shipped with WebSphere Application Server.
After compilation, you will have two classfiles:

o FileRegistrySample.class
0 RegExpSample.class

4. Copy the two classfilesto adirectory that is on the classpath. For this sample, the
C:\WebSphere\AppServer\classes directory is used because it is already on the classpath. Alternatively,
you can add the directory in which the files reside, or a JAR file containing the files, to the classpath by
modifying the value of the classpath in the appropriate configuration files, for example, on Windows
platforms, admin.config and adminserver.bat.

Configuring the custom registry

Setting up security for a custom registry isvery similar to setting upsecurity for LDAP. If you are unfamiliar
with the configuration ofsecurity in WebSphere Application Server, see Administering applications for more

information about the process.

A custom registry is enabled by using the Security Center panel in theadministrative console. On the
Authentication panel, choosel ightweight Third Party Authentication (L TPA) asthe

authenticationmechanism. Select the Custom User Registry button and fillin the required values for the
34

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/06.html

following in the Custom User Registry Settingssection:
« Security Server ID
« Security Server Password
o Custom User Registry classname

The server ID and password combination must exist in the customregistry. The class name isthe filein which
you have implemented theCustomRegistry interface, for example,com.myCompany.mySample. This classfile
must be in theclasspath environment variable of WebSphere Application Server. For the
FileRegistrySampleapplication, use the following values:

« Security Server ID: dave
« Security Server Password: davel
« Custom User Registry classname: FileRegistrySample

Y ou can use also the Special custom settings button to createproperties that are specific to your custom
registry. All propertiesset here are provided to your implementation class during run time when theinitialize
method is called.

For the FileRegistrySample application, two additional properties areneeded; they are used for locating the files
that make up the registry. Setthe usersFile property to the location of the users.propsfile; set thegroupskFile
property to the location of the groups.props file. For example,if these files are stored in the C:\temp directory,
insert the followingcustom settings:

« userskile-- C:\temp\users.props
« groupsFile -- C:\temp\groups.props

When the required information has been entered, click the OK button. Restart WebSphere Application Server.
When it restarts,the custom registry isin use. The information in the users.propsand groups.props filesis now
the information against whichauthentication and authorization requests are checked.

Y ou can aso use the XML Config tool to update the configurationinformation. When properties are entered
using the Special custom settings button on the administrative consol e the properties are stored with the prefix
Cust om in the database; this way, the administrative console candistinguish properties associated with the
custom registryfrom other properties. The prefix is stripped off and the restof the name is passed to the
implementation. When using the XML Configtool to update the configuration, the string Cust om_ must
beprefixed to the name of the property asit appears in theadministrative console. For example, the usersFile and
groupskileproperties described for the sample application must bereferred to as Custom_userskFile and
Custom_groupsFileif youuse the XML Config tool to modify them.

35

5.2.4: Custom-registry source code

The files collected here comprise the source code forthe sample implementation of a custom registry, the
FileRegistrySample,and the source code for the custom registry component.

36

5.2.4.1: Source code for the FileRegistrySample
application

The files collected here comprise the FileRegistrySample implementationof a custom registry. The material is
organized asfollows:

« TheFileRegistrySamplejavafile

« A file containing the two propertiesfiles:
0 USers.props
0 groups.props

37

5.2.4.1.1: The FileRegistrySample.java file

/111 5639-D57 (C) COPYRIGHT International Business Machines Corp. 2001//// Al Rights Reserved *

Li censed Materials - Property of

Y A e e R /'l This program may be
used, executed, copied, nodified and distributed // without royalty for the purpose of devel oping,

using, marketing, or //

i StribUting. [/ ----mmmmm oo o oo o oo Il 1l This
sample is for the Custom User Registry feature in
VD Spher €/ /- - e o e e oo /1 The nmin purpose

of this sanple is to denonstrate the use of the// Custom Registry feature available in WebSphere
This sanple is a very // sinple File based registry sanple where the users and the groups
information// is listed in files (users.props and groups.props). As such sinplicity and// not the
performance was a major factor behind this. This sanple should be// used only to get faniliarized
with this feature. An actual inplenentation// of a realistic registry should consider various
factors |ike perfornmance, // scalability

L o B e i e R i mport
java.util.*;inport java.io.*;inport java.security.cert.X509Certificate;inport

com i bm websphere. security.*; public class FileRegistrySanple inplenments CustonRegistry { private

static String USERFI LENAME = nul | ; private static String GROUPFI LENAVE = nul | ; public
Fi | eRegi strySanpl e() {} /1 Default Constructor [** * |Initializes the registry. * @aram
props the registry-specific properties with which to * initialize the registry object. *
@xception CustonRegi stryException if the registry is "bad". **x public void
initialize(java.util.Properties props) t hrows Cust onRegi stryException { try {

/* try getting the USERFILENAVE and the GROUPFI LENAME from * properties that are passed in
(i.e from@J). * These val ues should be set in the security center GJ in the

Speci al Custom Settings in the Custom User Registry section of * the Authentication panel.
* For exanpl e: * usersFile c:/tenp/users. props * groupsFile

c:/tenp/ groups. props */ if (props !'=null) { USERFI LENAME =

props. get Property("usersFile"); GROUPFI LENAME = props. get Property("groupsFile");

} } catch(Exception ex) { t hrow new Cust onRegi st ryExcepti on(ex. get Message()) }

i f (USERFILENAME == nul| || GROUPFILENAME == null) { t hrow new

Cust onRegi st ryExcepti on("users/groups information mssing"); } } [** * Checks the
Password of the user. * @aramuserld the user nane data to authenticate. * @aram passwd t he
password of the user. * @eturn the userld that will be used for authentication. * @xception
W ongPasswor dException if passwd is not valid. * @xception CustonRegi stryException if this

Regi stry is "bad". *xf public String checkPassword(String userld, String passwd) t hr ows
Passwor dCheckFai | edExcepti on, Cust onRegi st ryException { String s,userNane = null;
Buf f eredReader in = null; try { in = fil eQpen(USERFI LENAME) ; whil e
((s=in.readLine())!=null) { if (!s.startsWth("#")) { int index =
s.indexOF(":"); int indexl = s.indexOF(":",index+1); /'l check if the
user | d: passwd conbi nati on exists if ((s.substring(0,index)).equals(userld) &&

s. substring(i ndex+1, i ndex1). equal s(passwd)) { /1 Authentication successful, return
t he userld. user Nane = userl d; br eak; }

} catch(Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); }
finally { fileC ose(in); } if (userNane == null) { t hrow new
Passwor dCheckFai | edExcepti on(userld); } return user Naneg; | * Maps a Certificate
(of X509 format) to a valid userld in the Registry. * @aramcert the certificate that needs to be
mapped. * @eturn the nmapped nane of the user (userld). * @xception

CertificateMapNot SupportedException if the particul ar * certificate is not supported. *
@xception CertificateMapFail edException if the mapping of the * certificate fails. * @xception

Cust onRegi stryException if the registry is "bad". *xf public String
mapCertificate(X509Certificate cert) throws Certificat eMapNot Support edExcepti on,

Certificat eMapFai | edExcepti on, Cust onRegi st ryException { String nane=nul | ; try
{ /1 map the SubjectDN in the certificate to a userlD. nane =

cert.get Subj ect DN() . get Name() ; } catch(Exception ex) { t hr ow new

Certifi cat eMapNot SupportedExcepti on(ex. get Message()); } if(lisvali dUser(narre)) {

throw new Certificat eMapFai | edExcepti on(nhane); } return nane; } /* * Returns the
real mof the registry. * @eturn the realm The realmis a registry-specific string indicating
the * realmor domain for which this registry applies. E.g. for * (0S400 or Al X this would be
the host nane of the system whose user registry * this object represents. *If null is
returned by this nethod real mdefaults to the val ue of * "custonReal ni'. * @xception

Cust onRegi stryException if the registry is "bad". ** public String getReal m() t hr ows
Cust onRegi stryException { String name = "custonReal nf; return nane; S * Returns
names of all the users in the registry. * @eturn a List of the nanes of all the users. *
@xception CustonRegi stryException if the registry is "bad". **x public List getUsers()

throws CustonRegi stryException { String s; Buf f eredReader in = null; List allUsers =
new ArraylList(); try { in = fil eOpen(USERFI LENAME) ; whil e
((s=in.readLine())!=null) { if (!'s.startsWth("#")) { int index =
s.indexOF(":"); al | Users. add(s. substring(0,index)); } }
catch (Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally {

f|Ie%ose(|n) } return all Users; | * Returns names of the users in the registry

that match a pattern. * @arampattern the pattern to match. (For e.g., a* will match all *
user Names starting with a). At a mninmumwhen a full name is used * as the pattern the full nane

shoul d be returned back if it is a * valid user. * @eturn a List of the nanes of all the users
that match the pattern. * @xception CustonmRegi stryException if the registry is "bad". **
public List getUsers(String pattern) t hrows Cust onRegi stryException { String s;

Buf f eredReader in = null; List all Users = newArrayList() try { in =

fil eOpen(USERFI LENAME) ; whil e ((s=in.readLine())! nul I) { i f
(!'s.startsWth("#")) { int index = s.indexOf(":"); String user =

s. substring(0,index); if (match(user, patter n)) al | Users. add(user);

} } } catch (Exception ex) { throw new

Cust onRegi st ryExcepti on(ex. get Message()); } finally { filed ose(in); } return
al | Users; | * Returns the nanes of the all the users in a group. * @ar am groupNane t he
name of the group. * @eturn a List of all the names of the users in the group. * @xception
Ent r yNot FoundException i f groupNane does not exist. * @xception CustonRegi stryException if the
registry is "bad". ** public List getUsersForGoup(String groupNane) t hr ows

Cust onRegi st ryExcepti on, Ent r yNot FoundExcepti on { String s; Buf f eredReader in
= null; Li st usrsForG oup = new Arraylist(); try { in = fileOpen(GROUPFI LENANME) ;
while ((s=in.readLine())!=null) { if (!'s.startsWth("#")) { i nt
index = s.indexOF(":"); if ((s.substring(0,index)).equal s(groupNane)) {
StringTokeni zer st = new StringTokenizer(s, ":"); for (int i=0; i<2; i++)

st. next Token(); String subs = st.nextToken(); StringTokeni zer stl
= new StringTokeni zer(subs, ","); whi |l e (stl. hasMoreTokens())

usr sFor Group. add(st 1. next Token()); } } } } catch (Exception
ex) { if (lisValidG oup(groupNane)) { t hrow new

Ent r yNot FoundExcept i on(gr oupNane) ; } t hr ow new

Cust onRegi st ryExcepti on(ex. get Message()); } finally { filed ose(in); } return
usr sFor G oup; } [** * Returns the display name for the user specified by userNane. * @aram
user Nanme the nane of the user. * @eturn the display nane for the user. The display nane * is a
regi stry-specific string that represents a descriptive, not * necessarily unique, name for a user.
If a display nane does not exi st * return null. * @xception EntryNot FoundException if userName
does not exi st. * @xception CustonRegi stryException if the registry is "bad". *xf public
String getUserDi spl ayNanme(String user Nane) t hrows Cust onRegi stryExcepti on,

Ent r yNot FoundExcepti on { String s, displayName = nul | ; Buf f eredReader in = null;
if(!isValidUser(userNane)) ({ Ent r yNot FoundExcepti on nsee = new

Ent r yNot FoundExcept i on(user Nane) ; t hrow nsee; } try { in =
fiIeQ)en(USERFILENANE); while ((s=in. readLlne())l—nuII) { if
(!'s.startsWth("#")) { int index = s.indexCf(":"); int indexl =
s.lastlndexOr(":"); if ((s.substring(O0,i ndex)) equal s(userNane)) {

di spl ayNanme = s.substring(indexl+l); br eak; }
} catch(Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally {
fileC ose(in); } return di spl ayNane; } [** * Returns the Uniqueld for a userNane.

* @aram user Name the nane of the user. * @eturn the Uniqueld of the user. The Uniqueld for an

user is * the stringified formof sone unique, registry-specific, data that * serves to
represent the user. E.g. for the UNI X user registry, the * Uniqueld for a user can be the UD.

* @xception EntryNot FoundException if userNane does not exist. * @xception

Cust onRegi stryException if the registry is "bad". **x public String getUni queUserld(String

user Nane) t hrows Cust onRegi stryExcepti on, Ent r yNot FoundExcepti on { String

s, uni queUsrld = null; Buf f eredReader in = null; try { in fil eOpen(USERFI LENAME) ;
Wh|Ie((s|nreadL|ne())'—nuII) { if (!s. startsWth(#)) { int
index = s.indexCf(":"); int indexl = s.indexOF (":", index+l); i f

((s. substrl ng(0,i ndex)) equal s(userNane)) { i nt index2 = s.indexOF (":", indexl+1);
uni queUsrld = s.substring(index1+1,index2); br eak; }

} } catch(Exception ex) { t hr ow new Cust onRegi stryExcepti on(ex. get Message()); }
finally { filed ose(in); } if (uniqueUsrlid == null) {

Ent r yNot FoundExcepti on nsee = new EntryNot FoundExcepti on(user Nane) ; throw nsee; }
return uni queUsr| d; Y} * Returns the Uniquelds for all the users that belong to a group. *
@ar am uni queG oupl d the uniqueld of the group. * @eturn a List of all the user Unique ids that
are contained in the * group whose Unique id natches the uni queG oupl d. * The Unique id for an
entry is the stringified formof some unique, * registry-specific, data that serves to represent

the entry. E.g. for the * Unix user registry, the Unique id for a group could be the G D and the
* Unique Id for the user could be the U D. * @xception EntryNot FoundException if uni queG oupld

does not exist. * @xception CustonRegi stryException if the registry is "bad". *x public List
get Uni queUser | ds(String uni queG oupl d) t hrows CustonRegi st ryExcepti on,

Ent r yNot FoundExcepti on { String s = null; Li st uni queUserlds = new ArrayList();

Buf f eredReader in = null; try { in = fil eOpen(GROUPFI LENAME) ; whi | e
((s=in.readLine())!=null) { if (!'s.startsWth("#")) { int index =
s.indexOF(":"); int indexl = s.indexOF(":", index+1); i f
((s.substring(index+1,indexl)).equal s(uni queGoupld)) { StringTokeni zer st = new
StringTokeni zer(s, ":"); for (int i=0; i<2; i++)

st. next Token(); String subs = st.nextToken(); StringTokeni zer stl
= new StringTokeni zer(subs, ","); whi |l e (stl. hasMoreTokens())

uni queUser | ds. add(get Uni queUser I d(st 1. next Token())); br eak; }
} } } catch(Exception ex) { throw new Cust onRegi stryExcepti on(ex. get I\/bs§§ge());

} finally { filed ose(in); } return uni queUserl ds; | * Returns the name

for a user given its uniqueld. * @ar am uni queUser|d the Uniqueld of the user. * @eturn the
name of the user. * @xception EntryNot FoundException if the uniqueUserld does not exist. *
@xception CustonmRegi stryException if the registry is "bad". ** public String
get User SecurityNane(String uni queUserl d) t hrows Cust onRegi stryExcepti on,
Ent r yNot FoundExcepti on { String s,usrSecNane = null; Buf f eredReader in = null; try {
in = fil eOpen(USERFI LENAME) ; whi |l e ((s=in.readLi ne()) =nul I') { i f
(!'s.startsWth("#")) { int index = s. |ndex0‘() int indexl =
s.indexOr(":", index+1); int index2 = s.i ndexO‘(, index1+1); if
((s.substring(index1+1,index2)).equal s(uni queUserld)) { usr SecNane =
s. substring(0,index); br eak; } } } } catch
(Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally {
fileC ose(in); } if (usrSecName == null) { Ent r yNot FoundExcepti on ex =
new Ent r yNot FoundExcepti on(uni queUser|d); throw ex; } return usrSecNang; |
* Determines if a user exists. * @ar am user Nane the name of the user. * @eturn true if the
user exists; false otherw se. * @xception CustonRegi stryException if the registry is "bad". **x
public bool ean isValidUser(String userNane) throws CustonRegi stryException { String s;
bool ean isValid = fal se; Buf f eredReader in = null; try { in =
fileOpen(USERFI LENAME) ; whil e ((s=in.readLi ne()) I'=nul l) { i f
(!'s.startsWth("#")) { int index = s.indexOf(":"); if
((s.substring(0,index)).equal s(userNane)) { i sVal i d=true; br eak;

} } } catch (Exception ex) { t hr ow new
Cust onRegi st ryExcepti on(ex. get Message()); } finally { filed ose(in); } return
i svali d; | * Returns nanes of all the groups in the registry. * @eturn a List of the
nanes of all the groups. * @xception CustonRegi stryException if the registry is "bad". *x/
public List getG oups() t hrows CustonRegi stryException { Stri ng s; Buf f eredReader in
= null; List all G oups = new ArraylList(); try { in = fileQpen(GROUPFI LENAME) ;
Wh|Ie((s|nreadL|ne())'—nuII) { if (!s. startsWth(#)) { int
index = s.i ndexO‘("); al | G oups. add(s. substring(0,index)); } }
} catch (Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally
{ filed ose(in); } return all G oups; | * Returns names of the groups in
the registry that match a pattern. * @arampattern the pattern to match. (For e.g., a* will match
al | * group nanes starting with a). At a mininumwhen a full nane is used * as the pattern the
full name should be returned back if it is a * valid group. * @eturn a List of the nanes of the
groups. * @xception CustonRegi stryException if the registry is "bad". *xf public List
get G oups(String pattern) t hrows CustonRegi stryException { String s; Buf f er edReader
in=null; List all Groups = new ArrayList(); try { in = fil eOpen(GROUPFI LENAME) ;
while ((s=in.readLine())!=null) { if (!'s.startsWth("#")) { i nt
index = s.indexOF(":"); String group = s.substring(0,index); i f
(mat ch(group, pattern)) al | Groups. add(group); } } } catch
(Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally {
filed ose(in); } return al |l G oups; | * Returns the names of the groups to which
user Name bel ongs. * @aram user Nane the usernane of the user. * @eturn a List of the nanes of
all the groups that the user bel ongs to. * @xception EntryNot FoundException if userNane does not
exi st . * @xception CustonRegi stryException if the registry is "bad". ** public List
get G oupsFor User (Stri ng user Name) t hrows CustonRegi stryExcepti on,
Ent r yNot FoundExcepti on { Stri ng S; Li st grpsForUser = new ArraylList(); Buf f er edReader
in=null; try { in = fil eOpen(GROUPFI LENAME) ; while ((s=in.readLine())!=null)
{ if (!s.startsWth("#")) { StringTokeni zer st = new StringTokenizer(s,
"), for (int i=0; i<2; i++) st. next Token(); String
subs = st. next Token(); StringTokeni zer st1l = new StringTokeni zer(subs, ",");
whil e (stl.hasMoreTokens()) { i f((st1. nextToken()).equal s(userName)) {
int index = s.indexOf (":"); gr psFor User . add(s. substring(0,index));
} } } } } catch (Exception ex) { i f
(lisValidUser(userNane)) { t hrow new EntryNot FoundExcepti on(user Namne) ; }
t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally { filed ose(in); }
return grpsForUser; }o/x* * Returns the display nane for a group. * @ar am groupNane the nane
of the group. * @eturn the display name for the group. The display nane * is a
regi stry-specific string that represents a descriptive, not * necessarily unique, nanme for a
group. * @xception EntryNot FoundException if the groupNane does not exist. * @xception
Cust onRegi stryException if the registry is "bad". *x public String get G oupDi splayName(String
gr oupNane) throws Cust onRegi stryExcepti on, Ent r yNot FoundExcepti on { String
s, di spl ayNanme = nul | ; Buf f eredReader in = null; i f(lisValidG oup(groupNane)) {
Ent r yNot FoundExcepti on nsee = new EntryNot FoundExcepti on(groupNane) ; t hrow nsee; }
try { in = fileOpen(GROUPFI LENAME) ; while ((s=in.readLine())!=null) {
if (!'s.startsWth("#")) { int index = s.indexOF(":"); int indexl =
s.lastlndexOr(":"); if ((s.substring(0,index)).equals(groupNane)) {
di spl ayNanme = s.substring(indexl+l); br eak; }
} catch(Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally {
fileC ose(in); } return di spl ayNane; | * Returns the Unique id for a group.
* @ar am groupNane the nanme of the group. * @eturn the Unique id of the group. The Unique id for
* agroup is the stringified formof some unique, registry-specific, * data that serves to

reprﬁent the entry. E.g. for the * Unix user registry, the Unique id could be the GD for the

entry. * @xception EntryNot FoundException if groupName does not exi st. * @xception

Cust onRegi stryException if the registry is "bad". *xf public String getUni queG oupld(String

gr oupNane) throws Cust onRegi stryException, Ent r yNot FoundExcepti on { String

s, uni queG pld = null; Buf f eredReader in = null; try { in =

fileOpen(GROUPFI LENAME) ; while ((s=in.readLine())!=null) { if
(!'s.startsWth("#")) { int index = s.indexCf(":"); int indexl =
s.indexOF (": ", index+1); if ((s.substring(0,index)).equal s(groupNane)) {

uni queGr pld = s.substring(index+1,indexl); br eak;

} } catch(Exception ex) { t hr ow new Cust onRegi stryExcepti on(ex. get Message()); }
finally { filed ose(in); } if (uniqueGopld == null) {

Ent r yNot FoundExcepti on nsee = new EntryNot FoundExcepti on(groupNane) ; t hrow nsee;

return uni queG pld; }o/x* * Returns the Unique id for a group. * @aram groupNane the nane of
the group. * @eturn the Unique id of the group. The Unique id for * a group is the stringified
form of some unique, registry-specific, * data that serves to represent the entry. E.g. for the

* Unix user registry, the Unique id could be the G D for the entry. * @xception

Ent r yNot FoundException if groupNanme does not exi st. * @xception CustonRegi stryException if the
registry is "bad". *x/ public List getUniqueG ouplds(String uniqueUserld) t hr ows

Cust onRegi st ryExcepti on, Ent r yNot FoundExcepti on { String s, uniqueGpld = null;

Buf f eredReader in = null; Li st uni queG plds=new ArraylList(); try { in =

fil eOpen(USERFI LENAME) ; while ((s=in. readL|ne())|—nuII) { i f
(!'s.startsWth("#")) { int index = s.indexOf ("), int indexl =
s.indexOr(":", index+1); int index2 = s.i ndexO‘(, index1+1); if
((s.substring(index1+1,index2)).equal s(uni queUserld)) { int lastlndex =
s.lastlndexOF (":"); String subs = s.substring(index2+1, | astl ndex);

StringTokeni zer st1l = new StringTokeni zer (subs, ","); whil e (stl. hasMoreTokens())
uni queG pl ds. add(st 1. next Token()); br eak; } }

} catch(Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally {
filed ose(in); } return uni queQ plds; } [** * Returns the nanme for a group given its
uni quel d. * @ar am uni queGroupld the Uniqueld of the group. * @eturn the nane of the group. *
@xcepti on EntryNot FoundException if the uni queG oupld does not exist. * @xception

Cust onmRegi stryException if the registry is "bad". *xf public String get G oupSecurityNane(String
uni queG oupl d) t hrows Cust onRegi stryExcepti on, Ent r yNot FoundException { String
s, grpSecNane = null; Buf f eredReader in = null; try { in = fil eQpen(GROUPFI LENAME) ;
while ((s=in. readL|ne())'—nuII) { if (!s. startsWth("#")) { i nt
index = s.indexOf(":"); int indexl = s.indexOF(":", index+l); i f

((s. subst ring(i ndex+1 i ndex1)). equal s(uni queG oupld)) { gr pSecNane =

s. substring(0,index); br eak; } } } } catch
(Exception ex) { t hrow new Cust onRegi stryExcepti on(ex. get Message()); } finally {

fileCl ose(in); } if (grpSecName == null) { Ent r yNot FoundExcepti on ex =

new Ent r yNot FoundExcepti on(uni queG oupl d); t hrow ex; } return grpSecNane; oo/
* Determines if a group exists. * @aram groupNane the nane of the group. * @eturn true if the
group exists; false otherw se. * @xception CustonRegi stryException if the registry is "bad".

*x publ i c bool ean isValidG oup(String groupNane) t hrows CustonRegi stryException {

String s; bool ean isValid = fal se; Buf f eredReader in = null; try { in =

fil eOpen(GROUPFI LENAME) ; while ((s=in.readLine())!=null) { if
(!'s.startsWth("#")) { int index = s.indexOf(":"); i f
((s.substring(0,index)).equal s(groupNane)) ({ i sValid=true; br eak;

} } } } catch (Exception ex) { t hrow new

Cust onRegi st ryExcepti on(ex. get Message()); } finally { fileC ose(in); } return
i svalid; } private BufferedReader fileCpen(String fil eNane) t hrows Fil eNot FoundException {
try { return new BufferedReader (new Fi | eReader (fil eNane));

cat ch(Fi | eNot FoundException e) { t hrow e; } } /'l private methods private void
fileC ose(Buf feredReader in) ({ try { if (in!=null) in.close(); } catch(Exception
e) { Systemout.printin("Error closing file" + e); } } private bool ean match(String
name, String pattern) { RegExpSanpl e regexp = new RegExpSanpl e(pattern); bool ean mat ches =
fal se; i f (regexp. mat ch(nane)) mat ches = true; return matches;

[R e e R /1 The program provides
the Regul ar Expression inplenentation used in the// Sanple for the Custom User Registry

(Fil eRegistrySanple). The pattern // matching in the sanple uses this programto search for the
pattern (for// users and

[e 1U] o I Y A e e e T cl ass RegExpSanpl e{

private bool ean match(String s, int i, int j, int k) { for(; k < expr.length; k++)I|abel O:
Obj ect obj = expr[k]; i f(obj == STAR)

i f(++k >= expr.length) return true; i f(expr[k] instanceof

String) { String s1 = (String)expr[k++];

int | =sl.length(); for(; (i = s.indexOr(sl, i)) >= 0; i++)

if(match(s, i +1, j, k)) return true; return

fal se; } for(; i < j; i++) i f(match(s,

i, j, k) return true; return fal se; }

i f(obj == ANY) { if(++i > j) return fal se;

break | abel 0O; } i f(obj instanceof char[][])

if(i >=17j) return fal se; char ¢ = s.charAt (i ++);

char ac[][] = (char[][])obj; i f(ac[0] == NOT) {

41

for(int j1 =1; j1 < ac.length; j1++) if(ac[j1][0] <=c && c <=
ac[j1]1[1]) return fal se; break | abel O;
} for(int k1 = 0; k1l < ac.length; kil++) if(ac[k1][0] <= ¢
&& ¢ <= ac[k1][1]) break | abel O; return fal se;
} i f(obj instanceof String) { String s2 =
(String)obj; int il =s2.length(); i f(!s.regionMatches(i, s2,
0, i1)) return false; i +=i1;

return i == j; } publ i c bool ean match(String s) { return match(s, O,
s.length(), 0); } public bool ean match(String s, int i, int j) { return match(s, i,
i, 0); } public RegExpSanpl e(String s) { Vect or vector = new Vector(); int i
= s.length(); StringBuffer stringbuffer = null; oj ect obj = null; for(int j =
0; j <i; j++) { char ¢ = s.charAt(j); sw tch(c)
case 63: /* '?" */ obj = ANY; br eak; case 42: [* '*' */
obj = STAR br eak; case 91: /* '"[' */ int k = ++;
Vector vectorl = new Vector(); for(; j <i; j++) {
c = s.charAt(j); if() == k & ¢ == "'"") {
vect or 1. addEl ement (NOT) ; conti nue; }
if(c =="\\") { if(j +1<1i)
= s.charAt (++j); } el se if(c =="'")
br eak; char cl1 = c; if() +2<i & & s.charAt(j + 1) =="-")
cl = s.charAt(j += 2); char acl[] = { c, cl
}; vector 1. addEl enent (acl); } char ac[][] = new
char[vectorl.size()][]; vectorl. copylnto(ac); obj = ac;
br eak; case 92: /* "\\' */ if(j +1<i) c =
s.char At (++)); br eak; } if(obj !'= null) {
if(stringbuffer !'= null)
vect or. addEl enent (stringbuffer.toString()); stringbuffer = null;
vect or. addEl enent (obj) ; obj = null; } el se {
if(stringbuffer == null) stringbuffer = new StringBuffer();
stringbuf fer.append(c); } } if(stringbuffer != null)
vect or. addEl enent (stringbuffer.toString()); expr = new Qbj ect[vector.size()];
vect or. copyl nto(expr); } static final char NOT[] = new char[2]; static final Integer ANY =
new | nteger (0); static final Integer STAR = new Integer(1); hj ect expr[];}

42

5.2.4.1.2: Properties files for FileRegistrySampleapplication

The users.props file

Here is the format for the users.props fil e# name: passwd: ui d: gi ds: di spl ay name# where nane =
user | d/ user Name of the user# passwd = password of the user# uid = uni queld of the
user # gid = grouplds of the groups that the user bel ongs to# di splay name = a
(optional) display name for the

user. bob: bobl: 123: 567: bobdave: davel: 234: 678: j ay:j ayl: 345: 678, 789: Jay- Jayt ed: t ed1: 456: 678: Teddy
Geff:jeffl:222:789: Jef fvi kas: vi kas1: 333: 789: vi kasbobby: bobby1: 444: 789:

The groups.props file

Here is the format for the groups.props file# nane:gid: users: di splay name# where name = groupld
of the group# gid = uni quel d of the group# users = list of all the userlds that the
group cont ai ns# di splay nane = a (optional) display name for the

group. admi ns: 567: bob: Adni ni strative groupoperators: 678:jay, ted, dave: Operators
groupusers: 789:j ay, j ef f, vi kas, bobby:

43

5.2.4.2: Source code for the custom-registry
component

The files collected here comprise the custom-registry component.This includes the interface, CustomRegistry,
that must be implemented,as well as several exception classes. The material is organized as follows:

« The CustomRegistry.javafile

« The CustomRegistryException.javafile

« The PasswordCheckFailedException.javafile

« The EntryNotFoundException.javafile

« The CertificateMapNotSupportedException.javafile
o The CertificateMapFailedException.javafile

44

5.2.4.2.1: The CustomRegistry.java file

/1 1BM Confidential OCO Source Material// 5648-C83, 5648-C84 (C) COPYRI GHT International Business
Machi nes Corp. 2001// The source code for this programis not published or otherw se divested// of
its trade secrets, irrespective of what has been deposited with the// U S. Copyright Ofice.package
com i bm websphere. security;inmport java.util.*;inport java.security.cert.X509Certificate;/** * The
CustonRegi stry interface provides an APl that supports the following registry entry types: *
*

e user *

e group *
* |Inpl enentation of this interface nust provide inplenmentations for: *

*

e initialize *

« checkPassword *

« mapCertificate *

e getReal m*

« getUsers *

o getUsers(String) *

« get UsersFor G oup *

o get User Di spl ayNane *

« get Uni queUserld *

« getUni queUserlds *

« get User SecurityName *

o isValidUser *

« getGoups *

« getGoups(String) *

« get G oupsFor User *

« get G oupDi spl ayNanme *

« get Uni queG oupld *

« get Uni queG oupl ds *

o get G oupSecurityNanme *

e« isValidGoup *
**/public interface CustonRegistry { /* * |In all of the nethods in this interface if the return

type is a String * then an enpty String or a failure in the nethod should return null. * | f
the return type is a List, return null for a failure or for a list * with no entries. A B

* |nitializes the registry. * @aram props the registry-specific properties with which to
initialize the * registry object. * @xception CustonRegi stryException if the registry is "bad"
xf public void initialize(java.util.Properties props) throws CustonRegi stryException; [

* Checks the password of the user. * @aram userld the usernane whose password needs to be
checked. * @aram password the password of the userld. * @eturn a valid username (this can be
the sane userld whose password * was checked or it could be sonme other userld in the registry if
the * inplenentation was to do so). * @xception CheckPasswordFai | edException if userld/password
* conbi nati on does not exist in the registry. * @xception CustonRegi stryException if the registry
is "bad". *x public String checkPassword(String userld, String password) t hr ows

Passwor dCheckFai | edExcepti on, Cust omRegi stryException; [** * Maps a Certificate (of
X509 format) to a valid userld in the Registry. * @aramcert the certificate that needs to be
mapped. * @eturn the nmapped nane of the user (userld). * @xception

Certificat eMapNot SupportedException if the particul ar * certificate is not supported. *
@xception CertificateMapFail edException if the mapping of the * certificate fails. *

@xception CustonRegi stryException if the registry is "bad". x|/ public String
mapCertificate(X509Certificate cert) throws CertificateMapNot Support edException
CertificateMapFail edExcepti on, Cust onRegi stryException; [** * Returns the real mof
the registry. * @eturn the realm The realmis a registry-specific string indicating the *
real mor domain for which this registry applies. E.g. for * 0OS400 or Al X this would be the host
name of the system whose user registry * this object represents. * |f null is returned by this
met hod real mdefaults to the val ue of * "custonReal ni. * @xception CustonRegi stryException if
the registry is "bad". **x public String getReal m() t hrows CustonRegi stryException; [**
* Returns nanes of all the users in the registry. * @eturn a List of the names of all the users
* @xception CustonRegi stryException if the registry is "bad". *x/ public List getUsers()
throws CustonRegi stryException; [** * Returns names of the users in the registry that match a
pattern. * @arampattern the pattern to match. (For e.g., a* will match all * user Names
starting with a) * @eturn a List of the names of all the users that match the pattern. *

45

@xception CustonRegi stryException if the registry is "bad". **x public List getUsers(String

pattern) t hrows CustonRegi stryException; /[** * Returns the nanes of the all the users in a
group. * @aram groupNane the nane of the group. * @eturn a List of all the names of the users
in the group. * @xception EntryNot FoundException if groupNane does not exist. * @xception

Cust onRegi stryException if the registry is "bad". *x public List getUsersForGoup(String

gr oupNane) t hrows EntryNot FoundExcepti on, Cust onRegi stryException; [** * Returns
the display nanme for the user specified by userNane. * @aram user Name the nane of the user. *

@eturn the display nane for the user. The display name * is a registry-specific string that
represents a descriptive, not * necessarily unique, name for a user. If a display nane does not

exi st * return null. * @xception EntryNot FoundException if userNane does not exist. *
@xception CustonmRegi stryException if the registry is "bad". ** public String

get User Di spl ayNanme(String user Nane) t hrows EntryNot FoundExcepti on,

Cust onRegi stryException; [/** * Returns the Uniqueld for a userNane. * @aram user Narme the nane
of the user. * @eturn the Uniqueld of the user. The Uniqueld for an user is * the stringified
form of sone unique, registry-specific, data that * serves to represent the user. E.g. for the
UNI X user registry, the * Uniqueld for a user can be the U D. * @xception

Ent r yNot FoundException if user Name does not exist. * @xception CustonRegi stryException if the
registry is "bad". *x/ public String getUni queUserld(String userNane) t hr ows

Ent r yNot FoundExcepti on, Cust onRegi st ryException; [** * Returns the Uniquelds for all
the users that belong to a group. * @aram uni queG oupld the uniqueld of the group. * @eturn a
List of all the user Unique ids that are contained in the * group whose Unique id matches the

uni queG oupl d. * The Unique id for an entry is the stringified formof sone unique, *

regi stry-specific, data that serves to represent the entry. E. g. for the * Uni x user registry,
the Unique id for a group could be the G D and the * Unique Id for the user could be the U D. *
@xcepti on EntryNot FoundException if uni queG oupld does not exist. * @xception

Cust onRegi stryException if the registry is "bad". *x public List getUniqueUserlds(String

uni queG oupl d) t hrows EntryNot FoundExcepti on, Cust onRegi st ryException; [** *
Returns the nanme for a user given its uniqueld. * @aram uni queUserld the Uniqueld of the user.

* @eturn the nane of the user. * @xception EntryNot FoundException if the uniqueUserld does not
exi st . * @xception CustonRegi stryException if the registry is "bad". ** public String

get User Securi tyNane(String uni queUserl d) t hrows EntryNot FoundExcepti on,

Cust onRegi stryException; [** * Determines if a user exists. * @aram user Name the name of the
user. * @eturn true if the user exists; fal se otherwi se. * @xception CustonRegi stryException
if the registry is "bad". *xf public bool ean isValidUser(String userNane) t hr ows

Cust onRegi st ryException; [/** * Returns nanes of all the groups in the registry. * @eturn a

Li st of the nanmes of all the groups. * @xception CustonRegi stryException if the registry is
"bad" . ** public List getG oups() throws CustonRegi stryException; [** * Returns nanes
of the groups in the registry that match a pattern. * @arampattern the pattern to match. *
@eturn a List of the nanes of the groups. * @xception CustonRegi stryException if the registry is
"bad". **x public List getGoups(String pattern) t hrows CustonRegi stryException; [** *
Returns the nanmes of the groups to which userNane bel ongs. * @aram user Nanme the usernanme of the
user. * @eturn a List of the names of all the groups that the user belongs to. * @xception
Ent r yNot FoundException if user Name does not exist. * @xception CustonRegi stryException if the
registry is "bad". *x public List getG oupsForUser(String userNane) t hr ows

Ent r yNot FoundExcepti on, Cust onRegi st ryException; [** * Returns the display nane for a
group. * @aram groupNane the nane of the group. * @eturn the display name for the group. The
di spl ay nane * is aregistry-specific string that represents a descriptive, not * necessarily
uni que, nane for a group. * @xception EntryNot FoundException if the groupName does not exist. *
@xception CustonRegi stryException if the registry is "bad". *xf public String

get G oupDi spl ayNane(String groupNane) t hrows EntryNot FoundExcepti on,

Cust onRegi stryException; [** * Returns the Unique id for a group. * @ar am groupNane the nane
of the group. * @eturn the Unique id of the group. The Unique id for * a group is the

stringified formof sone unique, registry-specific, * data that serves to represent the entry.
E.g. for the * Unix user registry, the Unique id could be the G D for the entry. * @xception
Ent r yNot FoundException if groupName does not exi st. * @xception CustomnmRegi stryException if the
registry is "bad". *xf public String getUni queG oupl d(String groupNane) t hr ows

Ent r yNot FoundExcepti on, Cust onRegi st ryException; [** * Returns the Unique ids for all
the groups that contain the Uniqueld of * a user. * @aram uni queUserld the uniqueld of the
user. * @eturn a List of all the group Unique ids that uniqueUserld bel ongs to. * The Unique id
for an entry is the stringified formof some unique, * registry-specific, data that serves to

represent the entry. E.g. for the * Unix user registry, the Unique id for a group could be the
G D and the * Unique Id for the user could be the U D. * @xception EntryNot FoundException if

uni queUser |l d does not exist. * @xception CustonRegi stryException if the registry is "bad". *xf
public List getUniqueG ouplds(String uniqueUserld) t hr ows EntryNot FoundExcepti on,

Cust onRegi st ryException; /** * Returns the name for a group given its uniqueld. * @aram

uni queGroupl d the Uniqueld of the group. * @eturn the nane of the group. * @xception

Ent r yNot FoundException if the uni queG oupld does not exist. * @xception CustonRegi stryException
if the registry is "bad". *x public String get GoupSecurityName(String uni queG oupl d)

t hrows EntryNot FoundExcepti on, Cust onRegi stryException; [** * Determines if a group
exi sts. * @aram groupNane the nane of the group. * @eturn true if the group exists; false

ot herwi se. * @xception CustonRegi stryException if the registry is "bad". *x publ i c bool ean
i sVal i dG oup(String groupNane) t hrows Cust onRegi stryException;}

46

5.2.4.2.2: The CustomRegistryException.java file

/1 1BM Confidential OCO Source Material// 5648-C83, 5648-C84 (C) COPYRI GHT International Business
Machi nes Corp. 2001// The source code for this programis not published or otherw se divested// of
its trade secrets, irrespective of what has been deposited with the// U S. Copyright Ofice.package
com i bm websphere. security;/** * Thrown to indicate that a error occurred while using the *
specified customregistry. */public class CustonRegistryExcepti on extends Exception { [** *
Create a new CustonRegi stryException with an enpty description string. */ public

Cust onRegi stryException() { super () ; } [** * Create a new CustomnRegi stryException with
the associ ated string description. * * @aram nmessage the String describing the exception.

*/ publ i c CustonRegi stryException(String nessage) { super (nessage) ; 1}

47

5.2.4.2.3: The PasswordCheckFailedException.java file

/1 1BM Confidential OCO Source Material// 5648-C83, 5648-C84 (C) COPYRI GHT International Business
Machi nes Corp. 2001// The source code for this programis not published or otherw se divested// of
its trade secrets, irrespective of what has been deposited with the// U S. Copyright Ofice.package
com i bm websphere. security;/** * Thrown to indicate that the userld/Password conbi nati on does not
exist * in the specified customregistry. */public class PasswordCheckFai | edExcepti on extends

Exception { [** * Create a new PasswordCheckFai |l edException with an enpty description string
*/ publ i ¢ Passwor dCheckFai | edException() { super () ; } [** * Create a new

Passwor dCheckFai | edException with the associated string description. * * @aram nessage the
String describing the exception. */ publ i ¢ Passwor dCheckFai | edException(String nessage) {
super (nessage) ; 1}

48

5.2.4.2.4: The EntryNotFoundException.java file

/1 1BM Confidential OCO Source Material// 5648-C83, 5648-C84 (C) COPYRI GHT International Business
Machi nes Corp. 2001// The source code for this programis not published or otherw se divested// of
its trade secrets, irrespective of what has been deposited with the// U S. Copyright Ofice.package
com i bm websphere. security;/** * Thrown to indicate that the specified entry is not found in the *
customregistry. */public class EntryNot FoundExcepti on extends Exception { [** * Create a new
Ent r yNot FoundException with an enpty description string. */ publ i c EntryNot FoundException() {
super () ; } [** * Create a new EntryNot FoundException with the associated string description.
* * @aram nmessage the String describing the exception. */ public

Ent r yNot FoundExcepti on(String nessage) { super (nmessage) ; 1}

49

5.2.4.2.5: The CertificateMapNotSupportedException.java file

/1 1BM Confidential OCO Source Material// 5648-C83, 5648-C84 (C) COPYRI GHT International Business
Machi nes Corp. 2001// The source code for this programis not published or otherw se divested// of
its trade secrets, irrespective of what has been deposited with the// U S. Copyright Ofice.package
com i bm websphere. security;/** * Thrown to indicate that the certificate mapping for the * specified
certificate is not supported. */public class CertificateMapNot Support edException extends Exception {

[** * Create a new CertificateMapNot SupportedException with an enpty description string. */
public CertificateMapNot SupportedException() { super (); } [** * Create a new
Certificat eMapNot Support edException with the associated string description. * * @aram
nessage the String describing the exception. */ public

Certificat eMapNot SupportedException(String nessage) { super (nmessage) ; 11}

50

5.2.4.2.6: The CertificateMapFailedException.java file

/1 1BM Confidential OCO Source Material// 5648-C83, 5648-C84 (C) COPYRI GHT | nternational Business
Machi nes Corp. 2001// The source code for this programis not published or otherw se divested// of
its trade secrets, irrespective of what has been deposited with the// U S. Copyright Ofice.package
com i bm websphere. security;/** * Thrown to indicate that a error occurred while mapping the *

specified certificate. */public class CertificateMapFail edExcepti on extends Exception { [** *
Create a new CertificateMapFail edException with an enpty description string. */ public
CertificateMapFail edException() { super () ; } [** * Create a new

CertificateMapFail edException with the associated string description. * * @aram nmessage the
String describing the exception. */ public CertificateMapFail edException(String nessage) ({
super (nessage) ; 1}

51

5.3: Changes to security since Version 3

With version 4.0, WebSphere Application Server adopts the security model described inthe Java 2 Enterprise
Edition (J2EE) specification. This specification describestechniques for creating, assembling, deploying, and
securing enterprise applications. Thesecurity-related aspects of J2EE are now supported by WebSphere and

include the following:

« The use of J2EE deployment descriptors to declaratively specify various security constraints for Web
and enterprise-bean resources. This change isimportant because many of an application's security
attributes are now specified during the creation and assembly phases instead of during the deployment
phase. In Version 3.x, most application-level security attributes are specified during the deployment

phase.
e The use of role-based authorization.

Many security features have changed with respect to the security offered by IBMWebSphere Application Server

Version 3. This table summarizes the differences.

| Version 4

| Version 3.x

When global security is enabled, only the resources of
the administrative application are protected. All other
resources are unprotected.

When global security is enabled, enterprise beans are
protected by default.

WebSphere no longer secures or protects URIs, for
example, HTML filesand CGl scripts, that are served
by an external Web server, for example, Apache or
IHS. WebSphere secures or protects only URIs served
by WebSphere. URIs not served by WebSphere can be
protected with IBM's WebSeal security solution, or the
URIs and the resources they represent can be
restructured and packaged in a Web application
archive (aWAR file) so that WebSphere can serve
them.

WebSphere can protect URIs served by an externa
Web server.

Deployment descriptors are provided in XML. The
web.xml, g/b-jar.xml, and application.xml
deployment-descriptor files are used to declare security
contraints. Security constraints include the
identification of the methods belonging to roles, the
login configuration or challenge mechanism, whether
HTTPS/SSL isrequired, and so forth. The application
assembly tool (AAT) is used to create and manipulate
deployment descriptors and the various archive (EAR,
WAR, and JAR) filesthat contain them.

Most of application-specific security attributes are
defined by using the administrative console during
the application's deployment phase.

The login configuration and challenge type apply to
individual Web applications, not to individual
enterprise applications,

52

The challenge type applies to an entire enterprise
application.

The local operating-system user registry now supports
J2EE form-based login configuration. This means that
AESs can now supports the form-based login
configuration.

J2EE form-based login replaces AbstractL oginServlet,
CustomL oginServlet, and SSOA uthenticator, which
are now deprecated. Although these features still exist
inversion 4.0, they are intended to be used for
migration purposes only until the application can be
modified to use J2EE form-based login.

AbstractLoginServlet, CustomL oginServlet, and
SSOA uthenticator are features used to create custom
or form based login mechanisms for web applications.
CustomL ogin servlets are supported only with the

L TPA authentication mechanism, which is available
only in Advanced Edition.

Passwords are encoded with a simple masking
alogorithm in various ASCII WebSphere configuration
filesto deter casual observation.

Passwords are in plain text.

53

5.4: Overview: Using programmatic and form logins

This section describes the use of login specifications (including the use of Single Sign-On)in WebSphere
Application Server.

When Java enterprise-bean client applications require the user to provide identifying information,the writer of
the application must collect that informationand authenticate the user. The work of the programmer can be
broadlyclassified in terms of where the actual user authentication is performed:

1. Inaclient program
2. Inaserver program

Users of Web applications can be prompted for authentication datain many ways. The login-config element in
the Web application's deployment descriptor defines the mechanism used to collectthis information.
Programmers who want to customize login procedures,rather than relying on general -purpose devices like a401
dialog windowin a browser, can use aform based login to provide an application-specificHTML form for
collecting login information.

No authentication occurs unless WebSphere global security isenabled. Additionally, if you want to use
form-based login forWeb applications, you must specify "FORM" in the aut h- net hodtag in the
| ogi n- conf i g element in the deploymentdescriptor of each Web application.

54

5.4.1: Client-side login

Use aclient-side login when a pure Java client needs to log usersinto the security domain but does not need to use the authenticationdata itself.

Client-side login works in the following manner:
1. The user makes arequest to the client application.

2. The client presents the user with alogin form for collecting authentication data. The user inserts his or her user ID and password into the
form and submitsiit.

. The client programmatically places the user's authentication data into an ORB-related data structure called the security context.
. The client program invokes a method on a server.
. The server processes the request, extracting the authentication data from the context and performing authentication.

. If the authentication was successful, the server grants the request and returns the security credentials for further use. If the authentication
fails, the server denies service.

o 01~ W

The client programmer is responsible for writing the code toextract the authentication data and insert it into the CORBAdata structures.
WebSphere provides a utility class, the LoginHel perclass, that can be used to simplify the CORBA programming needed todo this kind of
programmatic login. The TestClient applicationillustrates the use of the LoginHelper class.

In order to use the LoginHelper class, the client needs to knowthe security properties of the ORB, so you must load a propertiesfile containing
those values when you start the client program.The file sas.client.props file installed with WebSphere containsvalid values. Specify the properties
file on the command lineas follows:

-Dcom i bm CORBA. Confi gURL=URL of properties file

For example, to load the sas.client.props file and run the TestClientprogram, issue the following command:
java -Dcom i bm CORBA. client. ConfigURL=file://<install_root>/properties/sas.client.props TestCient

Because the JDK which requires a call to System.exit()any time the AWT is activated, the client programmerneeds to call System.exit() at the end
to exitthe program.

55

5.4.1.1: The TestClient program

The TestClient program illustrates the use of the LoginHelper class,a utility class provided to help simplify programming client-sidelogin. The
excerpt below shows the performLogin method.

TestClient class

public class Testdient { private void performnlogin() { /1l Get the user's ID and
passwor d. String userid = custonGetUserid(); String password = custonmCet Password();

/1l Create a new security context to hold /] authentication data. Logi nHel per | ogi nHel per =
new Logi nHel per () ; try { // Provide the user's ID and password for authentication.
org.onyg. SecuritylLevel 2. Credentials credentials = | ogi nHel per. | ogi n(userid,
passwor d) ; /1l Use the new credentials for all future invocations.

| ogi nHel per. setlnvocati onCredenti al s(credential s); /!l Retrieve the user's nane from
the credentials /'l so we can tell the user that |ogin succeeded.

String username = | ogi nHel per. get User Nane(credenti al s); System out. println("Security context

set for user: "+usernane); } catch (org.ong. SecuritylLevel 2. Logi nFai |l ed e) {
/1 Handl e the LoginFail ed exception. C

56

5.4.1.2: The LoginHelper class

The LoginHelper classis a WebSphere-provided utility class thatprovides wrappers around CORBA security methods. It can be usedby pure
Java clients that need the ability to programmaticallyauthenticate users but don't need to use the authentication data onthe client side.

The methods in this class give a client program away tocollect authentication information from a user and packageit to be sent to a server. The
server authenticates the userand returns security credentials to the client.

The following list summarizes the public methods in the LoginHel per class. The sourcefileisinstalled at:

<instal | ati on_root>/install edApps/ sanpl eApp. ear/ def aul t _app. war/ VEB- | NF/ cl asses/ Logi nHel per.java
and the classfileisinstalled at:

<instal | ati on_root>/install edApps/ sanpl eApp. ear/ def aul t _app. war/ VEB- | NF/ cl asses/ Logi nHel per. cl ass
LoginHelper()

The constructor obtains a new security-context object from the underlying ORB. This object is used to carry authentication information
and resulting credentials for the client.

Syntax:
Logi nHel per() throws Il egal Stat eException
login()

This method takes the user's authentication data (identifier and password), authenticates the user (validates the authentication data), and
returns the resulting Credentials object.

Syntax:

org.ong. SecuritylLevel 2. Credentials login(String userlD, String password) t hr ows
1l egal St at eException

setlnvocationCredentials()
This method sets the specified credentials so that all future methods invocations will occur under those credentials.

Syntax:
voi d setlnvocationCredential s(org.ong. SecuritylLevel 2. Credenti al s i nvokedCr eds) t hr ows
org.ong. Security.InvalidCredential Type, org.ong. SecuritylLevel 2. 1 nval i dCredenti al

getl nvocationCredentials()
This method returns the credentials under which methods are currently being invoked.

Syntax:
org.ong. SecuritylLevel 2. Credenti al s getlnvocationCredenti al s() t hr ows
org.ong. Security.lnvalidCredential Type
getUser Name()
This method returns the user name from the credentials in a human-readable format.
Syntax:
String getUser Nane(org. ong. SecuritylLevel 2. Credenti al s creds) t hr ows
org.ong. Security.DuplicateAttributeType, org.ong. Security.lnvalidAttributeType

57

5.4.2: Server-side login

Use a server-side login when a program needs to log users into the securitydomain and to use the authentication
dataitself. A client-side logincollects the authentication data and sends it to another programfor actual
authentication; a server-side login does both tasks.

Server-side login works in the following manner:

1. The user makes arequest that triggers a servlet.

2. The servlet presents the user with alogin form for collecting authentication data. The user inserts his or
her user ID and password into the form and submitsit.

3. The servlet presents the request to the server.

4. The server processes the request, extracting the authentication data from the context and performing
authentication.

5. If the authentication was successful, the server grants the request. If the authentication fails, the server
denies service.

The server programmer is responsible for writing the code toextract the authentication data, insert it into the
CORBAdata structures, and authenticate the user. WebSphere provides autility class, the
ServerSideAuthenticator class, that can be usedto simplify the CORBA programming needed to do thiskind
ofprogrammatic login. This class extends the LoginHel per classused for client-side login. The TestServer
applicationillustrates the use of the ServerSideAuthenticator class.

58

5.4.2.1: The TestServer program

The TestServer program illustrates the use of the ServerSideAuthenticatorclass, a utility class provided to help simplify programming
server-sidelogin. The excerpt below shows the performL oginAndA uthentication method.

TestServer class

public class Test Server{ .. private void perfornLogi nAndAut henti cati on() { /'l Get the
user's | D and password. String userid = custontGetUserid(); String password =
cust onGet Password(); // Ensure imedi ate authentication. bool ean forceAut hentication = true;
/1l Create a new security context to hold /1 authentication data. Server Si deAut hent i cat or
server Auth = new Server Si deAut henti cator(); try { /1l Perform aut hentication based
on supplied data. org.ong. SecuritylLevel 2. Credentials credentials =
server Aut h. | ogi n(userid, password, forceAuthentication); /'l Retrieve the user's nane from
the credentials /'l so we can tell the user that |ogin succeeded. String usernane =
server Aut h. get User Nane(cr edenti al s); System out. println("Authentication successful for
user: "+usernane); } catch (Exception e) { /1 Handl e excepti ons. } }

-}

59

5.4.2.2: The ServerSideAuthenticator class

The ServerSideAuthenticator classis a WebSphere-provided utility class thatprovides wrappers around CORBA security methods. It extends the LoginHel perclass
for use by servers.

The following list summarizes the public methods in theServerSideAuthenticator class. The sourcefileisinstalled at:

<installation_root>/install edApps/ sanpl eApp. ear/ def aul t _app. war/ VEEB- | NF/ cl asses/ Ser ver Si deAut henti cator.java
and the classfileisinstalled at:

<installation_root>/install edApps/sanpl eApp. ear/ def aul t _app. war/WEB- | NF/ cl asses/ Ser ver Si deAut henti cat or. cl ass
Server SideAuthenticator ()

The constructor obtains a new security-context object from the underlying ORB. This object is used to carry authentication information and resulting
credentials.

Syntax:
Server Si deAut henticator() throws |11 egal StateException
login()

This method takes the user's authentication data (identifier and password), authenticates the the user (if the force_authn argument is set to TRUE), and
returns the resulting Credential's object.

Syntax:

org.ong. SecuritylLevel 2. Credentials login(String userlD, String password,

bool ean force_aut hn) throws org.ong. SecuritylLevel 2. Logi nFai | ed,

comibm | Ext endedSecurity. Real mNot Regi st er ed, com i bm | Ext endedSecurity. UnknownMappi ng,

com i bm | Ext endedSecurity. Mechani snilypeNot Regi st er ed,
comibm | Ext endedSecurity. | nvalidAdditional Criteria

authenticate()
This method does the actual authentication work.

Syntax:

org.ong. SecuritylLevel 2. Credentials authenticate(String userlD, String password) t hr ows
org.ong. SecuritylLevel 2. Logi nFai | ed, org.ong. SecuritylLevel 2. I nvali dCredenti al ,
org.ong. Security.lnvalidCredential Type, com i bm | Ext endedSecurity. Real nNot Regi st er ed,

com i bm | Ext endedSecurity. UnknownMappi ng,
com i bm | Ext endedSecurity. Mechani snTypeNot Regi st er ed,
com i bm | ExtendedSecurity. | nvalidAdditional Criteria

60

5.4.2.3: Accessing secured resources from Java clients

A Javaclient that needs to access a secured resource must knowthat resource is secured. This page describes how to provide clientswith the
information they need.

1. Create atext file. Init, specify the following property-value pairs:
o com i bm CORBA. securityEnabl ed=true
o Configure SSL as described in 5.7.3: ORBSSL Configuration.

Y ou can use the properties file sas.client.props installed with WebSphere Application Server as amodel.

2. When you start the client, load the properties file you just created. Specify the properties file on the command line as follows:
-Dcom i bm CORBA. Confi gURL= <URL of properties file>

For example, to load a properties file called my.client.props located in the product installation directory for aclient called MyClient App:
java -Dcomibm CORBA. client. ConfigURL=file://install_root/properties/ny.client.props M/d ientApp

61

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

5.4.3: Form-based login

Applications can present site-specific login forms by making use of WebSphere'sform-login type. The J2EE specification defines form login as one
of the authenticationmethods for Web applications. However, the Servlet 2.2 specification does not define amechanism for logging out. WebSphere
extends J2EE by also providing a form-logoutmechanism.

Form login

A form login works in the following manner:
1. Anunauthenticated user attempts to use a resource secured with aform-login authenti cation method.
2. The user isredirected to the form-login page, which takes the user to an HTML form that collects authentication information.
3. Theuser enters his or her user ID and password into the form and submitsiit.
4. The submission triggers a special WebSphere servlet that authenticates the user.
5. If the user authenticates successfully, the orginally requested secure resource can be accessed.

[il If you select LTPA as theauthentication mechanism under global security settings and use form login in any Webapplications, you must also
enable single sign-on (SSO). If SSO is not enabled,authentication during form login fails with a configuration error. SSO is required becauseit
generates an HTTP cookie that contains information representing the identity of theuser at the web browser. Thisinformation is needed to authorize
protected resources whena form login is used.

Configuring form login

Form login is one of the possible values for the aut h- net hod taginthel ogi n- conf i gelement in the deployment descriptor of aWeb
application. For example:

<l ogi n-confi g> <aut h- met hod>FORM</ aut h- net hod> <r eal m nane>Exanpl e For m Based
Aut henti cati on</real m name> <f orm | ogi n- confi g>
<f orm | ogi n- page>/1 ogi n. ht M </ f or m | ogi n- page>
<formerror-page>/error.jsp</formerror-page> </forml ogi n-config> </l ogi n-config>

Thef or m | ogi n- page element above specifies the form to display when arequest is made to a protected Web resource in the Web application.
The form-login page isusually an HTML or JSPfile, but it can also be a servlet. The page named inthef or m er r or - pageelement is displayed if
an error occurs during login.

The form-login page

The form-login page is usually an HTML form with text-entry fields for a user ID andpassword. The HTML fileisincluded in the Web application
archive (WAR) file. However,there severa key requirement:.

« Thetext-entry field for the user ID must be named j_username
« Thefield for the password must be named j_password.
« The post action must bej_security check.

The j_security_check post action is a special action recognized by the web container;it dispatches the action to a special WebSphere servlet that
authenticates the user.

Hereisan example of aform-login HTML page:

<! DOCTYPE HTML PUBIi C "-//WBC/ DTD HTML 4.0 Transitional//EN'> <htm > <META
HTTP- EQUIV = "Pragma" CONTENT="no-cache"> <title>Form Login Page </title>
<body> <h2>Sanpl e Form Logi n</ h2> <FORM METHOD=POCST
ACTI ON="j _security_check"> <p> Please Enter user |ID and
password:
 User |ID <input type="text" size="20"
name="j _user nane" > Password <input type="password" size="20"
name="j _password">

 And then click this
button: <i nput type="submit" nane="login" val ue="Logi n"> </ p>
</form </ body> </htm >
Form logout

Form logout is a mechanism to log out without having to close all Web-browser sessions.After logging out with form logout, access to a protected
Web resource requiresreauthentication.

Suppose that it is desirable to log out after logging into a Web application andperforming some actions. A form logout worksin the following
manner:

1. Thelogout-form URI is specified in the Web browser and loads the form.

2. The user clicks on the submit button of the form to logout.

%zThe WebSphere security code logs the user out.

4. Upon logout, the user is redirected to alogout exit page.

Configuring form logout

Form logout does not require any attributes in any deployment descriptor. Itissimplyan HTML or JSP file that isincluded with the Web application.

The form logout page

The form-logout page is like most HTML forms except that, like the form-login page, ithas a special post action that is recognized by the Web
container, which dispatches it toa special internal WebSphere form-logout servlet.

The post action in the form-logout page must be ibm_security _logout.

A logout-exit page can be specified in the logout form, and the exit page can be aHTMLor JSP file within the same Web application that the user is
redirected to after loggingout. The logout-exit page is simply specified as a parameter in the form-logout page. 1fno logout-exit page is specified, a
default logout HTML messageis returned to the user.

Here is asample form logout HTML form. This form configures the logout-exit page toredirect the user back to the login page after logout.

<! DOCTYPE HTML PUBIi C "-//WBC/ DTD HTM. 4.0 Transitional//EN'><htmn > <META HTTP- EQUI V =
"Pragma" CONTENT="no-cache"> <title>Logout Page </title> <body> <h2>Sanpl e
For m Logout </ h2> <FORM METHOD=POST ACTI ON="i bm security_| ogout” NAME="I| ogout ">
<p>

 dick this
button to |l ogout: <i nput type="submt" nane="| ogout"

val ue="Logout " > <I NPUT TYPE="H DDEN' name="1| ogout Exi t Page" VALUE="/|ogin.htm ">
</ p> </fornp </ body></ht i >

63

5.5: Certificate-based authentication

Certificates and keys are part of an authorization mechanismsupported in WebSphere Application Server.
Instead of requiringeach component of an application to log users in, acertificate-based authentication
mechanism centralizes thelogin process. In such a system, users need to explicitlyprove their identities only to a
certificate authority (CA).A CA isatrusted third party; components of a system agree totrust the CA to do the
necessary authentication for them.

When the CA authenticates a user, it issues the user a certificatethat contains avariety of data, including the
identity of theissuing CA, how much the CA trusts the user, and an expirydate for the certificate. Other
components of the system canread the user's certificate to determine if the certificate(and thus the identity it
represents) isvalid.

To use certificates for authentication in WebSphere ApplicationServer, choose Lightweight Third-Party
Authentication (LTPA) or custom user registry as your authentication mechanism.

Certificate-based authentication relies on several relatedtechnologies:
« Public-key encryption
« Digital signatures
« Certificate- and key-management systems

In order for certification to work, a system requires three things:
« Trustworthy certificate authorities
« A way to protect certificates from tampering or forgery
« A way to guarantee that the holder of the certificate is the owner of the certificate.

Trust

In order to accept third-party certificates from users,the components of the system need some way to know
which CAsto trust. Thisis handled by creating atrust base, a collection of certificates authenticating the CAs
themselves. Certificate authoritiescan be commercial ventures--companies that offer certificationas their
business--or they can be local entities. Creating thetrust base is part of the work of the system administrator,who
must contact commercial CAs (if used), configure local CAs (ifused), and build the trust base.

Each certificate issued to a user identifies the CA that issuedthe certificate. The component examining the
certificate decideswhether the certificate is trustworthy by determining ifthe issuing CA isin the trust base.
Maintaining the integrityof the trust base is acrucial part of third-party authentication.

Aswith any authentication mechanism, a user's ability topresent avalid certificate from avalid CA provesonly
thatthe user was able to meet the CA's requirements for proving identity.It does not prove that the user is not
malicious, usinga stolen identity, or otherwise undesirable. Procedures forestablishing trust in those scenarios
are application- and site-specific.A site with stringent requirements can choose to pay a commercialcertification
company that agrees to impose requirements onthose who request certificates, and a site doing testing cancreate
certificates that impose no requirements at all. Administratorsfor each application must determine how thorough
the CAs must be.

Protection from forgery

Evenif all the certificates in a system appear to be issued by trustedCAs, the certificates are worthless if they
can be easily forged(for example, to create certificates for unauthorized users) ortampered with (for example, to
give users "better" certificatesthan they are permitted to have). To preserve their contents,certificates are
protected using digital signatures based on apublic-key encryption strategy, making the forgery of and

64

tamperingwith certificates (or any other data) impossible in practice.
Use of certificates by owners

If an intact certificate issued by atrusted CA can be used bysomeone other than the rightful owner of the
certificate, theauthentication system has failed. The system of digital signaturesbased on public-key encryption
provides not only away to ensurethat certificates are intact; it also guarantees that thecertificate can be used
only by itsrightful owner. The mechanicsof public-key encryption ensure that a stolen certificate is useless.

65

5.5.1: Introduction to public-key cryptography

All encryption systemsrely on the notion of akey. A key isthe basisfor atransformation, usually mathematical,
of an ordinarymessage into a unreadable one. For centuries, most encryption systemshave relied on what is
called private-key encryption. Only withinthe last 30 years has a challenge to private-key encryptionappeared:
public-key encryption.

Private-key encryption

Private-key encryption systems use asingle key. This requires thesender and the receiver to share the key. Both
must have the key; the sender encrypts the message by using the key, and the receiverdecrypts the message with
the same key. Both must keep the key privateto keep their communication private. This kind of encryption
hascharacteristics that make it unsuitable for widespread, general use:

« Itrequiresakey for every pair of individuals who need to communicate privately. The necessary
number of keys rises dramatically as the number of participants increases.

« Thefact that keys must be shared between pairs of communicators means the keys must somehow be
distributed to the participants. The need to transmit secret keys makes them vulnerable to theft.

« Participants can communicate only by prior arrangement. There isno way to send a usable encrypted
message to someone spontaneoudly. Y ou and the other participant must have made arrangements to
communicate by sharing keys.

Private-key encryption is also called symmetric encryption, becausethe same key is used to encrypt and decrypt
the message.

Public-key encryption

In the 1970s, a mathematical breakthrough led to the development ofanother major cryptographic system,
public-key encryption. Public-keyencryption uses a pair of mathematically related keys. A messageencrypted
with the first key must be decrypted with the second,and a message encrypted with the second key must be
decrypted withthe first. Each participant in a public-key system has a pairof keys. One of these keysis kept
secret; thisisthe private key.The other is distributed to anyone who wantsiit; thisis thepublic key .

To send an encrypted message to you, the sender encrypts themessage by using your public key. When you
receive it, you decrypt itby using your private key. When you wish to send a message to someone,you encrypt it
by using the recipient's public key. The message canbe decrypted only with the recipient's private key. This kind
ofencryption has characteristics that make it very attractive for general use:

« Public-key encryption requires only two keys per participant. The total number of keys rises much less
dramatically asthe number of participants increases than it does in private-key encryption.

« The need for secrecy is more easily met. The only thing that needs to be kept private is the private key,
and since it does not need to be shared, it isless vulnerable to theft in transmission than the shared key
in a private-key system.

« Public keys can be published. This eliminates the need for prior sharing of a secret key before
communication. Anyone who knows your public key can use it to send you a message that only you can
read.

Public-key encryption is also called asymmetric encryption, becausethe same key cannot be used to encrypt and
decrypt the message. Instead,one key of apair is used to undo the work of the other. WebSphere
ApplicationServer uses the RSA public/private key-encryption agorithm.

With private-key encryption, you have to be careful of stolenor intercepted keys. In public-key encryption,
where anyone cancreate a key pair and publish the public key, the challenge isin verifying that the owner of the

66

public key really isthe personyou think it is. Thereis nothing to stop a user from creatinga key pair and
publishing the public key under afalse name. The person listed as the owner of the public key will notbe able to
read messages encrypted with that key because heor she will not have the private key. If the creator of the
falsepublic key can intercept these messages, that person candecrypt and read messages intended for someone
else.To counteract the potential for forged keys, public-key systemsprovide mechanisms for validating public
keys (and otherinformation) with digital signatures and digital certificates.

67

5.5.2: Introduction to digital signatures

A digital signature isanumber attached to a document. For example,in an authentication system that uses
public-key encryption, digitalsignatures are used to sign certificates. This signature establishestwo different
things for you:

« Theintegrity of the message: Isthe message intact? That is, has the message been modified between the
time it was digitally signed and now?

« Theidentity of the signer of the message: |s the message authentic? That is, was the message actually
signed by the user who claims to have signed it?

A digital signatureis created in two steps. The first consistsof distilling the document down into alarge number.
This number isthe digest code or fingerprint. The digest codeitself is then encrypted, resulting in the digital
signature. Thedigital signature is appended to the document from which thedigest code was generated.

There are several ways of generating the digest code--WebSphere ApplicationServer supports the MD5
message digest function and the SHA 1 secure hashalgorithm--but al of them reduce a message to a number.
This process isnot encryption; rather, it is a sophisticated checksum. The messagecannot be regenerated from
the resulting digest code. The crucial aspect of distilling the document down to a number is this:if the message is
changed, even in trivial way, a different digest coderesults. This means that when the recipient gets a message
and verifiesthe digest code by recomputing it, any changesin the document willresult in a mismatch between
the stated and the computed digest codes.If a message is changed, the resulting digest code changes as well.

So far, there is nothing to stop someone from intercepting a message,changing it, recomputing the digest code,
and retransmitting themodified message and code. We need away to verify the digest code aswell.Thisis done
by reversing the use of the public and private keys.For private communication, it makes no sense to encrypt
messages withyour private key; these can be decrypted by anyone with your public key.But this technique can
be useful for proving that a message must havecome from you. No one else could have created it, since no one
elsehas your private key. If some meaningful message results from decryptinga document by using someone's
public key, it verifies the fact thatthe holder of the corresponding private key did, in fact, encryptthe message.

The second step in creating a digital signature takes advantageof this reverse application of public and private
keys. After a digestcode has been computed for a document, the digest code itself is encryptedwith the sender's
private key. The result isthe digital signature,which is simply attached to the end of the message.
When the message is received, the recipient follows these steps to verifythe signature:

« Recompute the digest code for the message.

« Decrypt the signature by using the sender's public key. Thisyields the original digest code for the
message.

« Compare the original and recomputed digest codes. If they match, the message is both intact and
authentic. If not, something has changed and the message is not to be trusted.

68

5.5.3: Introduction to digital certificates

A digital certificate is equivalent to an electronic ID card. ltserves two purposes:
« To establish the identity of the owner of the certificate
« Todistribute the owner's public key

Certificates provide away of authenticating users, referred to asauthentication by trusted third parties. Instead
of requiring eachparticipant in an application to authenticate every user, third-partyauthentication relies on the
use of certificates, electronic ID cards.

Certificates are issued by trusted parties, called certificateauthorities (CASs). These authorities can be
commercia venturesor they can belocal entities, depending on the requirements of yourapplication. Regardless,
the CA istrusted to adequately authenticateusers before issuing certificates to them. Also, when a CA
issuescertificates, it digitally signs them. When a user presents a certificate,the recipient of the certificate
validatesit by using the digitalsignature. If the digital signature validates the certificate,the certificate is known
to be intact and authentic. Participantsin an application need only to validate certificates; they do not needto
authenticate users themselves. The fact that a user can present avalid certificate proves that the CA has
authenticated the user.The descriptor trusted third-party indicates that the systemrelies on the trustworthiness of
the CAs.

Contents of a digital certificate

A certificate contains severa pieces of information, includinginformation about the owner of the certificate and
theissuing CA.Specificaly, acertificate includes:

« Thedistinguished name (DN) of the owner. A DN isaunique identifier, afully qualified name including
not only the common name (CN) of the owner, but the owner's organization and other distinguishing
information.

« The public key of the owner.

« The date on which the certificate was issued.
« The date on which the certificate expires.

« Thedistinguished name of theissuing CA.

« Thedigital signature of theissuing CA. (The message-digest function isrun over all the preceding
fields.)

The coreidea of acertificate isthat a CA takes the owner'spublic key, signs the public key with the its own
private key, andreturns this to the owner as a certificate. When the owner distributesthe certificate to another
party, it signs the certificate with itsprivate key. The receiver can extract the certificate (containingthe CA's
signature) with the owner's public key. By using theCA's public key and the CA's signature on the
extractedcertificate, the receiver can validate the CA's signature. If it isvalid, the public key used to extract the
certificate is known to be good.The owner's signature is then validated, and if the validationsucceeds, the owner
has successfully authenticated to the receiver.

The additional information in a certificate allows an application todecide if it should honor the certificate. With
the expiration date, theapplication can determineif the certificate is still valid.With the name of the issuing CA,
the application can check thatthe CA is considered trustworthy by the site.

A process that uses certificates must be able to provide its personal certificate, the one containing its public key,

and the certificateof the CA that signed its certificate, called a signing certificate.In cases where chains of trust
are established, several signingcertificates may be involved.

Requesting certificates

69

To get a certificate, you must send a certificate request to theCA. The certificate request includes the following:
« The distinguished name of the owner (the user for whom the certificate is being requested).
o The public key of the owner.
« Thedigital signature of the owner.

The message-digest function isrun over all these fields.

The CA verifies the signature with the public key in the requestto ensure that the request is intact and authentic.
The CA thenauthenticates the owner. Exactly what the authentication consists of depends on a prior agreement
between the CA and the requestingorganization. If the owner in the request is successfully authenticated,the CA
issues a certificate for that owner.

Using certificates: Chains of trust and self-signed certificates

To verify the digital signature on a certificate, you must have thepublic key of theissuing CA. Since public keys
are distributed incertificates, you must have a certificate for the issuing CA. Thatcertificate will be signed by the
issuer. One CA can certifyother CAs, so there can be a chain of CAsissuing certificates forother CAs, all of
whose public keys you need. Eventually, though,you reach a starting point. The starting point is aroot CAthat
issuesitself a self-signed certificate. In order tovalidate a user's certificate, you need certificates for all
interveningparticipants, back to the root CA. Then you have the public keysyou need to validate each

certificate, including the user's.

A self-signed certificate contains the public key of theissuer and is signed with the private key. The digital
signatureis validated like any other, and if the certificate is valid,the public key it contains can be used to check
the validityof other certificates issued by the CA. However, anyone cangenerate a self-signed certificate. In fact,
you will probablygenerate self-signed certificates for testing purposes beforeinstalling production certificates.
The fact that a self-signedcertificate contains avalid public key does not mean that theissuer isreally atrusted
certificate authority. In order toensure that self-signed certificates are generated by trustedCAs, such certificates
must be distributed by secure means(hand-delivered on floppy disks, downloaded from secure sites,and so
forth).

Applications that use certificates store those certificatesin key, or keyring, files. Thisfile typically containsthe
necessary personal certificates, its signing certificates,and its private key. The private key is used by the
applicationto create digital signatures. Servers will always have personalcertificates in their key files. A client
requires a personal certificateonly if the client must authenticate to the server, that is, whenmutual
authentication is enabled.

To allow aclient to authenticate to a server, a server's keyringfile contains the server's private key and
certificate and thecertificates of its CA. A client's keyring must contain thecertificates of the CAs of each server
to which the client mustauthenticate.

If mutual authentication is needed, the client's keyring must contain the client's private key and certificate and
thecertificates of any CAs. The server's keyring needsa copy of the certificate of the client's CA aswell.

70

5.5.4: Requesting certificates

When you request a certificate from a certificate authority,you need to take into account:
« Thetimeit takesto get a certificate
« Reguirements the CA imposes on the format of information

Time requirements

Because of the diligence expected of acommercial CA, the authenticationprocess for principals can take a
significant amount of time. Commercial CAs often require up to aweek to complete their authentication
process.Even on-site CAs can take between minutes and days to complete theirauthentication process.

Asaresult, when planning to add a new application server or host (nameserver) to your enterprise, you must
take into account the time ittakes to get a certificate. Although primarily of concern for productioncertificates, it
can also be a concern in getting test certificates aswell.

Note that if your server's certificate is compromised, or if someother server in its trust-base is compromised,
you must acquirea replacement certificate. Thisinvolves similar time requirements.

Requirements on the format of information

When you create a certificate request, you need to provide the informationabout the owner of the certificate.
The required information and itsformat vary across certificate authorities. Also, the WebSphere
ApplicationServer graphical tool and command-line tools vary in the way they representthe name.

Certificates use names in the X.500 format. A name in this styleconsists of many components. The entire name
is called a distinguishedname (DN). It consists of a set of components, which often includesa common name
(CN), and organization (O), an organizationunit (OU), a country (C), alocality (L) and many others.
Forexample, an X.500 name for a server called PolicyServerl aspart of the Accounting division of the US-based
AccountingCorpcan look like this:

"CN=Pol i cyServer1l, QOU=Accounting, O=AccountingCorp, c=US"

Certificates are often used to represent server principals, so atypicalconvention isto create CNs of the
formhost_name/server _name, for example,for the server PolicyServerl on the host central ops.acctcorp.com,
thecommon name is central ops.acctcorp.com/PolicyServerl.

Some CAs require the use of fully-qualified host names in commonnames. For example, VeriSign does not sign
your certificate unlessthe domain portion of the host name is owned by your organization.Check with the CA
for any requirements on common-name fields.

The distinguished name can include other information as well. Some certificateauthorities, including VeriSign,
require that you spell out completelythe state or province fields. For example, you need to specify "New

Y ork"rather than "NY." Check with the CA for any such requirements before generatingyour certificate
requests.

71

5.5.4.1: Getting a test certificate from acertificate
authority

To obtain a certificate from a certificate authority, youmust create file containing a certificate signing request
(CSR).Y ou then send the file to the CA. The procedure for gettingthe file to the CA varies with the CA and with
the type of certificate, test or production, being requested. It is oftenhelpful to request atest certificate from a
CA before requestinga production certificate.

Thisfile describes how to get atest certificate from a specificcommercial CA, VeriSign, which offers a test
certificate for free. The test certificate is alegitimate certificate, fully signedand endorsed for actual use, and it
can be used to validateyour configuration before you acquire a production certificate.However, the test
certificate is only good for two weeks afterreceipt, so it is not useful for production use.

After you have created file containing a certificate signing request,request atest certificate by following these
steps:
1. Start your Web browser and link to VeriSign's home page at http://www.verisign.com.

2. Choosethefreetrial SSL trial 1D option. This displays a page where you can request afreetrial of a
secure server |D.

3. Follow theinstructions for requesting afreetrial 1D. Be sure to read the frequently asked questions
(FAQ) list, the legal agreement for VeriSign trial subscribers, and the information comparing Tria
Secure Server IDsto Secure Server Digital IDs. VeriSign also provides online help for each step of the
process.

4. When you get to the page on which you submit the CSR file, scroll down to the edit box. Thisis where
you insert the CSR.

5. Open the file containing the CSR; use any text editor that supports cut-and-paste actions.
6. Inyour editor window, select all of the text, including the header
----- BEG N NEW CERTI FI CATE REQUEST- - - - -
and the corresponding trailer.
7. Paste the test into the edit box on the Enrollment page in your browser.
8. Click the Continue button.
9. On theresulting page, verify and complete the following information:

o Verify Distinguished Name: Check all of the information displayed about your certificate. In
particular, ensure that the Common Name is correct and unique.

o Enter Technical Contact Information: Enter the requested information about you. VeriSign
needs this information to send you your signed certificate. In particular, make sure that your
e-mail addressis correct. VeriSign will e-mail your certificate to this address.

o Read the Digital ID Subscriber Agreement: Read the terms and conditions stipul ated by
VeriSign about the Test ID you are requesting.
If you do not accept these conditions, do not continue.

10. When the information is complete, and if you accept the VeriSign's Subscriber Agreement, click the
Accept button.

Y ou will recieve an acknowledgement, usually by e-mail, that you havesuccessfully completed your request.
Y ou will probably be instructedto download the certificate and to install it in your browser.

[il Do not install the certificate in your browser. For use withWebSphere, the certificate must beinstalled in a
keyring,not in your browser.

72

http://www.verisign.com/

5.5.4.2: Getting a production certificate from a
certificate authority

To obtain a certificate from a certificate authority, youmust create file containing a certificate signing request
(CSR).Y ou then send the file to the CA. The procedure for gettingthe file to the CA varies with the CA and with
the type of certificate, test or production, being requested.

Thisfile describes how to get a production certificate from a specificcommercial CA, VeriSign. Getting a
production certificate can beexpensive, depending on the type of certificate and its strength.lt is often
instructive to request atest certificate from a CAbefore requesting a production certificate.

After you have created file containing a certificate signing request,request a production certificate by following
these steps:

1. Start your Web browser and link to VeriSign's home page at http://www.verisign.com.

2. Choose Web Server Certificates --> Buy Now --> [Buy] Global Site Services. This begins a series of
pages that collect the information VeriSign needs to process your certificate request. Read each page
carefully. When you complete a page, display the next page by clicking the Continue button.

The page titled Before Y ou Start lists the things you should do before beginning this process, including
installing web server software, setting up your Internet proxies, determining how you will pay for the
certificate, reviewing the legal agreement and, if necessary, printing the enrollment guide. Y ou should
treat any referencesto "web server software” as references to the WebSphere software.

3. The pagetitled Step 1: Obtain Proof of Right provides instructions on one of the authentication steps
that VeriSign performs. In this case, you must prove that your enterprise has the right to operate under
the Organization name that you specified in your CSR. The VeriSign process is optimized to using
D-U-N-S numbers for this purpose. If you take this approach, you must provide your D-U-N-S number
or, if you areaU.S. company, VeriSign can look it up for you.

If you don't have a D-U-N-S number, or if you don't want to use thisto prove your right to the
Organization name, you can provide alternate proof of right. For example, if you have aletter of
incorporation or similar article, you can fax acopy to VeriSign. Using an alternate proof of right will
slow the process down, because you will not be able to continue until VeriSign has received and
processed the alternative proof.

4. The pagetitled Step 2: Confirm Domain Name informs you that you (your enterprise) must own the
domain name indicated in the common name of your certificate. These domain names are registered
with NIC, and VeriSign will verify that the domain name you specified belongs to your enterprise; this
is part of the authentication process completed by certificate authorities.

5. The pagetitled Step 3: Generate CSR instructs you to create your CSR. If you have aready created a
CSR file, you can skip this step.

6. The pagetitled Step 4: Submit CSR provides you with an edit box. Thisiswhere you will insert the
CSR.

7. Open the file containing the CSR; use any text editor that supports cut-and-paste actions.
8. Inyour editor window, select all of the text, including the header

----- BEG N NEW CERTI FI CATE REQUEST- - - - -

and the corresponding trailer.
9. Paste thetest into the edit box on the Submit CSR page in your browser.

10. The pagetitled Step 5: Complete Application page requires you to enter alot of information. Verify
your distinguished name and enter the following:

o Server information
73

http://www.verisign.com/

= Vendor of the server software: Click the pull-down button and select IBM.

= A challenge phrase: A text string. This can be anything you like, and you should treat it
like a password. You will be asked to present this same challenge phrase when you
submit arenewal request or if you ask to have the certificate revoked (for example, if the
certificate is compromised). Y ou may aso be asked to supply this challenge phrase when
speaking with VeriSign.

o Technical contact information: This should identify you. Your e-mail addressis particularly
important; VeriSign will e-mail the certificate to this address.

o Organizational contact information: This should be someone other than yourself whoisa
member of your enterprise. VeriSign will contact this person during the authentication process,
to verify the legitimacy of your request.

o Billing contact information: Enter the person in your organization who is responsible for
payment.

o Thetype of Secure Server 1D that you are requesting
o Payment information

o Organizational information (your D-U-N-S number): If you use an alternate proof of right, then
VeriSign will instruct you on how to fill out this information.

11. Review the Server Certificate Agreement. To accept the conditions and submit your request, click the
Accept button. If reject the conditions, click the Decline button.

VeriSign will send you an e-mail message containing your signedproduction certificate. The certificate must be
installed ina keyring class.

74

5.5.4.3: Using test certificates

If you need to start using a server before you get a productioncertificate from a CA -- for example, to test your
installation --you can do either of the following, less secure, alternatives:

« You can use the test certificate (in the DummyServerKeyFile, see 5.7.3: ORB SSL Configuration)

provided with WebSphere to perform some early tests. However, you should replace it with a certificate
that legitimately represents your server as soon as possible. For this, you do can either of the following:

o Acquire production (or test) certificates from the CA
o Create your own test CA and issue test certificates
« You can configure the server initially without its certificate keyring. This means that clients cannot
access the server securely. Again, this situation is acceptable only for testing purposes.

When you receive the certificate from the CA, you can modify theconfiguration of the server to use the new
certificate. Clients canthen access the server with the security provided by the certificate.

75

5.5.5: Mapping certificates to users for client authentication
and authorization

Client-side certificates allow access to secured resources from Webclients. A client presents an X.509-compliant digital
certificateto perform mutual authentication with a Web server. The WebSpheresecurity run time attempts to map the
certificate to a known user inthe associated LDAP directory. If the certificate is successfullymapped to a user, then the holder
of the certificate is believedto be the user in the registry and is authorized as this user.

After the Web server gets the client's certificate, there mustbe away to map the certificate to a user. WebSphere
ApplicationServer supports two techniques for mapping certificates to entriesin LDAP registries:

« By exact distinguished name

« By matching attributes in the certificate to attributes of LDAP entries

Mapping by exact distinguished name

This approach attempts to map the distinguished name (DN) associatedwith the Subject in the certificate to an entry in the
LDAP directory.If the mapping is successful, the user is authenticated and isauthorized according to the privileges granted to
the identity in the LDAPdirectory.

The mapping is case insensitive. For example, the following twoDNs match on a case-insensitive comparison:

"cn=Sm th, ou=NewlUnit, o=NewConpany, c=us""cn=smth, ou=newunit, o=NewConpany, c=US"

If amatch is found, authentication succeeds, and if nomatch is found, authentication fails.

Mapping by filtering certificate attributes

This approach maps certificate attributes to attributes of entriesin anLDAP directory. For example, you can specify that the
common name (CN)attribute of the Subject field in the certificate isto be matched againstthe uid attribute of your LDAP
entry. If the mapping is successful, the useris authenticated and is authorized according to the privileges granted to theidentity
in the LDAP directory.

If you are matching the Subject CN field in the certificate to theuid attribute of the LDAP entry, a certificate with the Subject
DN"cn=Snmi th, ou=NewUnit, o=NewConpany, c=us" maichesanLDAP userentry with uid=Smith.

To use this mapping technique, you must request CertificateM apping and set up the certificate filter in the administrative
console.
1. Click Task --> Configure Application Security
Set the Challenge Type to " Certificate"
Click Task --> Global Security Settings --> User Registry
Click the Advanced button
Set the Certificate Mapping choice to " Certificate Filter"

Enter the certificate filter you want to implement. For example, to match the CN attribute of the Subject in the
certificate to the uid attribute in the LDAP entry, enter (ui d=${ Subj ect CN})

o g0k~ wDbd

This specification extracts the CN field from the Subject attribute in thecertificate ("Smith") and creates afilter ("uid=Smith")
fromit.The LDAP directory is searched for a user entry that matches thefilter. If an entry matches the filter, authentication
succeeds.Note that the search and match of the LDAP directory arebased in part on how your LDAP directory is configured.

76

5.5.6: Tools for managing certificates and keys

WebSphere Application Server, Advanced Edition provides utilities for managing certificatesand keys:
« A graphical tool, called iKeyman, the IBM Key Management tool.
« The standard Java command-line tool, keytool.
The graphical tool is easier to use than the command-linetools, which makes it ideal for occasional or casual

use. However,command-line tools support scripting of certificate management,which is useful for
administrators who do alot of thiswork or whowant to automate the work.

77

5.5.6.2: The IBM Key Management tool

WebSphere provides a graphical tool, the IBM Key Management tool (iKeyman)for managing keys and certificates. The
graphical tool is easierto use than the command-line tools, which makes it ideal for occasionalor casua use.

Using the tool

To start the iKeyman tool:
1. Moveto the product_installation_root/bindirectory.

2. Issue one of the following commands:
o On Windows systems:
i keyman
o On Unix systems:
i keyman. sh

The iKeyman window appears as shown below.

IBH Key Management M= B3
Key Database File Create Yiew Help

D) = W

-Hey database information
DB-Type:
File Hame: _

ey database content

Personal Certificates -

|| A personal certificate has its associated private key in the database. |

78

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

5.5.6.2.1: Creating a self-signed test certificate

For test purposes, you can create a self-signed certificatespecifically for aserver and its Secure Sockets Layer
(SSL) basedJava clients. Y ou can also set up atemporary certificateauthority by creating a self-signed
certificate and using it to signother certificates.

This procedure is useful when the WebSphere test certificate hasexpired, or if you want a self-signed test
certificate thatspecifically recognizes your server. If you need atest certificatethat has been signed by a
Certificate Authority (CA), follow theprocedurein article 5.5.6.2.2, Creating acertification request.

To create your own self-signed test certificate, complete the followingsteps:
1. Create aserver key storefile. See article 5.5.6.2.1.1, Creating a serverkey store, for details.
2. Create aclient trust storefile. See article 5.5.6.2.1.2, Creating aclient trust store, for details.

3. Enable Websphere Application Server to access the client andserver keyring files. See article5.5.6.2.5,
Making client and server key store and trust store filesaccessible, for details.

79

5.5.6.2.1.1 Creating a server key store

Thefirst step in creating a self-signed test certificate is tocreate a server key storefile. It contains a private key for the serverfor
which the test certificate is being requested and a public key forcertificate requests. Y ou can optionally create atrust store filewhich

contains additional trusted signers. To create a server key store, complete the following steps:
1. Start the IBM Key Management tool. See article 5.5.6.2, The IBM Key Management tool, for instructions.

2. Create aserver key storefile.

3. Create a new self-signed personal certificate.

4. Export the public key from the server key store file. Thiskey isrequired by the client trust storefile.

The rest of this article describes how to complete these steps.

Create a server keyring file

To create a server key storefile, do the following:

1. Open anew key database file by selecting Key Database File --> New from the menu bar. The New dialog box is displayed.

ew __H

Key database type

File Name:

Location:

S5Light key databhase class

|I{eyring.class

GiskitdCisamples |

0K Cancel

2. Set Key Database Typeto KS.

3. Enter the name and location of the server key storefile. In this example, the file name is ServerKeyStoreFile.jks and the

location is product_installation_root/etc
4. Click the OK button to continue. The Password Prompt dialog box is displayed.

Pazsword Prompt

Password: | |

Confirm Password: | |

[_| Set expiration time?

Password Strength:

OK

Reset Cancel

5. Enter apassword to restrict access to the key database. In this example, the password is WebAS.
The server keyring password is stored in the administrative console. The client keyring password is stored in the

80

Browse...

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

sas.client.props file using the property com.ibm.CORBA.SSL ClientK eyRingPassword. Y ou need to set the keyring-password
properties to this password so that the keyring file can be opened by iKeyman during runtime. See article 5.5.6.2.5, Making

client and server key store and trust store files accessible, for details.
il Do not set an expiration date on the password or save the password to afile. Y ou must then reset the password when it
expires or protect the password file. This password is used only to release the information stored by iKeyman during runtime.

. Click the OK button to continue. The tool now displays all of the available default signer certificates. These are the public
keys of the most common CAs. You can add, view or delete signer certificates from this screen.

Create a new self-signed personal certificate

Creating a self-signed personal certificate creates a private keyand public key within the server key storefile. A server key store
filecontains both a private and public key. A client trust store file onlycontains the public key of the self-signed certificate, but as
atrusted signer. A client key storefileisoptional. It is usualyonly necessary when client authentication is used.
WebSphereApplication Server does not support SSL mutual authentication.

To create a self-signed certificate, do the following:

1. Click the New Self-Signed... button on the tool bar or select Create --> New Self-Signed Certificate... from the menu. The
Create New Self-Signed Certificate form is displayed.

Ereate Mew 5Self-5igned Certificate

Please provide the following:

Key Label |
Version X509vy3 -

Key Size 1024 -

Common Hame |sectest1.austin.ihm.cnm

Organization

|
Organization Unit (optional) |
Locality (optional) |
|

|

StateProvince (optional)

Zipcode (optional)

Countrny us

Yalidity Period 3645 | Days

0K Reset Cancel

2. Enter the appropriate information for your self-signedcertificate.

Key Label

Give the certificate akey label, which is used to uniquely identify the certificate within the key store. If you have only
one certificate in each key store, you can assign any value to the label. However, it is good practice to use a unique
label related to the server name.

Common Name

Enter the server's common name. Thisisthe primary, universal identity for the certificate; it should uniquely identify
the principal that it represents. In a WebSphere environment, certificates frequently represent server principals, and
the common convention is to use CNs of the form host_name/server_name.

Organization
Enter the name of your organization.

81

Other X.500 fields

Enter the organization unit (a department or division), location (city), state/province (if applicable), zipcode (if
applicable), and select the two-letter identifier of the country in which the server belongs.
For a self-signed certificate, these fields are optional. Commercial CAs may require them.

Validity period
Specify the lifetime of the certificate in days, or accept the defaullt.
3. Click the OK button to continue. The ServerK eyStoreFilejksfile now contains a self-signed personal certificate. Y ou must
copythe key store file to the designated directory on the server'shost.
[il 1f you have onlyone personal certificate, it is automatically set as the defaultcertificate for the database. If you have more than
one, you mustselect one as the default certificate. Y ou can change the defaultcertificate as follows:
1. Highlight the certificate
2. Click the View/Edit... button
3. Check the box on the resulting screen to make the chosen certificate the default
4. Click the OK button

Export the public certificate

The client trust store file needs to reference the publiccertificate created for the self-signed personal certificate. Toenable the client
trust store file to use the public certificate, exportthe public certificate from the server key store file as follows:

1. Click Extract Certificate.
2. Under Datatype, select Base64-encoded ASCI| data.
3. Enter the certificate file name and location. In this case, thename is cert.arm and the location is product_installation_root/etc.

4. Click OK to export the public certificate

82

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

5.5.6.2.1.2 Creating a client trust store

The second step in creating a self-signed test certificate is tocreate a client trust storefile. It isatrusted signer to the
publickey for the self-signed test certificate. Y ou can optionally createa client key storefileif client authorizationis
desired. Key storefiles store private keys and personal certificates; trust store filescontain public keys.

To create aclient trust store file, complete the following steps:

1. Start the IBM Key Management tool if you have not already done so. See article 5.5.6.2, The IBM Key
Management tool, for instructions.

Create aclient keyring file.
Import the public key that was exported from the server keyring file.
Set the certificate as a trusted root.

a b~ W DN

Exit the IBM Key Management tool.

Therest of this article describes how to complete these steps.

Create a client trust store file

To create aclient keyring file, do the following:
1. Open anew key database file by selecting K ey Database File --> New from the menu bar. The New dialog box is
displayed.
New

Key database type | SSLight Key databhase [:'I'ass b

File Name: |Heyring.class || Browse...
Location: |G:U5I-:it4 Clsamplest |
oK Cancel

2. Set Key Database Typeto JKS.

3. Enter the name and location of the client keyring file. In this example, the file name is ClientTrustStoreFile.jks and
the location is product_installation_root/etc

4. Click the OK button to continue. The Password Prompt dialog box is displayed.

83

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

Password Prompt

Password: | |

Confirm Password: | |

|_| Set expiration time?

Password Strength:

oK Reset Cancel

5. Enter apassword to restrict access to the key database. In this example, the password is WebAS.

The server key store password is stored in the administrative console. The client trust store password is stored in the
sas.client.props file using the property com.ibm.CORBA .trustStorePassword. Y ou heed to set the trust store
password properties to this password so that the trust store file can be opened by iKeyman during runtime. See
article 5.5.6.2.5, Making client and server key store and trust store files accessible, for details.

[il Do not set an expiration date on the password or save the password to afile. Y ou must then reset the password
when it expires or protect the password file. This password is used only to release the information stored by
iKeyman during runtime.

. Click the OK bhutton to continue. The tool now displays all of the available default signer certificates. These are the

public keys of the most common CAs. Y ou can add, view or delete signer certificates from this screen.

Import the public key from the serverkey store file

Next, you need to import the public key certificate that wasexported from the server keyring. (See article 5.5.6.2.1.1,
Creating a serverkey store.) To import the public key, do the following:

1
2.
3.

4,
5.
6.

Choose Sgner Certificates -->Add.
Specify the data type of the exported key. In this case, the data type is Base64-encoded ASCI | data.

Specify the name and location of the public key that was exported from the server keyring. In this case, the key
name is cert.arm and the location is product_installation_root/etc.

Click OK.
Enter aunique label for the key. In this example, the label is Server CA.
Click OK. The certificate label appearsin thelist of certificates.

Verify that the certificate is a trustedroot

The client certificate must be a trusted root of the public keycertificate that you just created. To verify this, do the
following:

1
2.

3.
84

Select the name of the certificate you just created. In this case, the certificate nameis Server CA.
Select View-->Edit. The Key information dialog box appears.
Make sure that the box beside Set the certificate asa trusted root is checked.

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

4. Click OK.

Exit the IBM Key Management tool

Exit the Ikeyman tool by closing the IBM Key Management window.

85

5.5.6.2.2: Creating a certification request

To obtain a certificate from a certificate authority, you mustsubmit a certificate signing request (CSR). Y ou can request eitherproduction
or test certificates from a CA with aCSR.

With iKeyman, generating a certificate signing request also generatesa private key for the server for which the certificate is
beingrequested. The private key remains in the server's keyring class,so it stays private: the public key isincluded in the CSR.

To create a certificate signing request (CSR), complete the followingsteps:
1. Start the IBM Key Management tool. See article 5.5.6.2, The IBM Key Management tool,for instructions. This displays the IBM
Key Management window.

IBI'-'I Key Management Hi=] E3
Key Database File Create Yiew Help

N =l

-Hey database information
DB-Tvpe:
File Name: |

ey databhase content

Personal Certificates Bt

A personal certificate has its associated private Key in the database.

2. Open anew key database file by selecting Key Database File --> New from the menu bar. The New dialog box is displayed.

3. Set Key Database Typeto KS.
4. Enter the name and location of the new key file.

86

Hew |

Key database type | SSLight Key database [:'I'ass -

File Hame: |Heyring.c|ass || Browse...
Location: |G:U5I{it4 Clsamplest |
oK Cancel

Click the OK button to continue. The Password Promptdialog box is displayed.

Password Prompt i

Password: | |

Confirm Password: | |

[_] Set expiration time?

Password Strenath:

OK Reset Cancel

. Enter apassword to restrict access to the key database. In this example, the defaultpassword is WebAS.

The server key store password is stored in the administrative console. The client trust store password is stored in the
sas.client.props file using the property com.ibm.ssl.trustStorePassword. Y ou need to set the key store-password propertiesto this
password so that the key store file can be opened by iKeyman during runtime. See article 5.5.6.2.5, Making client and server key

store and trust store files accessible, for details.

il Do not set an expiration date on the password or save the password to afile. You must then reset the password when it
expires or protect the password file. This password is used only to release the information stored by iKeyman during runtime.

. Click the OK button to continue.
. Locate the Key database content portion in the center of the main window Select K ey Database Content --> Per sonal

Certificate Requests. This updates the IBM Key Management window with any existing personal certificate requests.

. Click the New... button.
10.

The Create New Key and Certificate Request dialog box is displayed. Enter the necessary information to complete your request.
Theinformation certificate authorities require varies; be sure to determine the necessary fields and formats before sending your
request.

87

Eleate Mew Kep and Certificate Request

Please provide the following:

Key Label [|
Key Size 1024 -

Comimon Hame |sectest1.austin.ihm.cnm

Organization |

Organization Unit (optional) |
Locality (bptional) |
State/Province (optional) | |

Fipcode {optional) | |

Countny s -

Enter the name of a file in which to store the certificate reguest;

Gdskitd Clsamplesicertren.arm Browse...

OK Reset Cancel

Key Label

Give the certificate a key label, which is used to uniquely identify the certificate within the key store. If you have only one
certificate in each key sotre, you can assign any value to the label, but it is good practice to use a unique label, related to
the server name.

Common Name

Enter the server's common name. Thisisthe primary, universal identity for the certificate; it should uniquely identify the
principal that it represents. In a WebSphere environment, certificates frequently represent server principals, and the
common convention is to use CNs of the form <host_name>/<server_name>.

Organization
Enter the name of your organization.
Other X.500 fields

Enter the organization unit (a department or division), location (city), state/province (if applicable), zipcode (if
applicable), and select the two-letter identifier of the country in which the server belongs.

File name for the certificate request
Enter the name of thefile for the request. CSR files are typically named for the server, with a.arm extension.
11. Click the OK button.

12. AnInformation pandl is displayed to indicate that the request file has been successfully created. Click the OK button to dismiss
the panel.

13. Exit the Ikeyman tool by closing the IBM Key Management window.

Y ou must how submit the certificate-request file to the CA. Theprocedure will vary with the CA and with the type of certificate(test or
production) being requested.

88

5.5.6.2.3: Placing a signed digital certificate intoa key store file

When a certificate authority issues you a signed certificate for aserver, you need to place that certificate in that server's key store
file.The certificate is used by the server to authenticate its identityand to distribute its public key. This article describes howto place a
new certificate (either atest or a production certificate)into akey store file using the iKeyman tool.

To place asigned certificate into a server's key store file, complete thefollowing steps:

1. When you receive e-mail from the CA containing your certificate, save the message into afile. In this example, the certificate
was saved to afile called PolicyServerl.responseMail .arm.

2. Start the IBM Key Management tool. See article 5.5.6.2, The IBM Key Management tool,for instructions. This displays the IBM
Key Management window.

IBH K.ey Management M= B
Key Database File Create \iew Help

N = S

Key database information
DB-Tyne:

File Hame:

Hey database content

Personal Certificates -

A personal certificate has its associated private Key in the database.

3. Open adestination key database file by selecting Key Database File --> Open from the menu bar.
4. Enter the name and location of the key store file at the prompt and click Open. The password prompt dialog box is displayed.

5. Enter the key store file's password and click OK to continue. The IKeyman window is displayed. The title bar shows the name of
the key database file you selected, indicating that the file is open.

6. Click on the certificate types pull-down list beneath K ey Database Context, and select Personal Certificates (the default).
7. Click the Receive button. The Receive Certificate from a File dialog window is displayed.

8. Click Data Type and select the data type of the signeddigital certificate. Emailed certificates are generallyBase64-encoded
ASCII.

9. Enter the name of the file containing the saved e-mail. Y ou can also use the Browse button to find and select thefile.
89

10. Click the OK button to continue to add the certificate in the file to the previously selected key store file. The Enter a Labeldialog
box is displayed.

11. Typealabel for the new signed digital certificate and clickOK. The IBM Key Management window is displayed. The
Personal Certificates field shows the label of the signed digital certificateyou just added.

At this point, the server's key store file contains both its private key(which was generated as part of requesting the certificate) and
thecertificate.

90

5.5.6.2.5: Making client and server keystore and trust
store files accessible

After you have created key store and trust store files and insertedthe necessary certificates, you need to make
the key store and truststore files accessible to the client and server programs.

To use created server and client key store and trust store files inyour WebSphere environment, you must first
copy them to the client andserver machines.
« Copy the client trust store file (ClientTrustStoreFile.jks) to the following location on the client machine:
product installation_root/etc/CientTrustStore.jks

« Optionally, copy the client key store file (ClientK eyStoreFile.jks) to the following location on the client
machine:

product _installation_root/etc/CientKeyStore.jks
« Copy the server key store file (ServerKeyStoreFile.jks) to thefollowing location on the server machine:
product _install ation_root/etc/ ServerKeyStoreFile.jks

« Copy the server trust store file (ServerTrustStoreFile.jks) to thefollowing location on the server
machine:

product installation_ root/etc/ServerTrustStoreFile.jks

Managing the server SSL key store and trust store files

The administrative model in WebSphere Application Server allows theSSL settings for each WebSphere
component to be centrally andindividually managed. SSL settings are centrally managed in theadministrative
consol e through the default SSL Settings panel. Inaddition, any of the default settings can be overridden for
anindividual component by using the HTTPS, ORB, and LDAPS SSL settingspanels. See article 6.6.18,

Securingapplications, for more detailed information about using theadministrative console to configure
WebSphere security.

il Always use theadministrative console to manage the server key store and trust storefiles. Changes madein
the console overwrite any manual changes tothe sas.server.propsfile. Client key store and trust store files
aremanaged in the sas.client.props file because clients can be located ona remote machine.

The Default SSL Settings panel can be used to configure WebSphereA pplication Server components using SSL.
Parameters that are setthrough the ORB SSL Settings panel override the default SSL settingsfor the ORB.
Regardless of which settings are in effect, the ORB usesthese settings as follows. (Additionally, the ORB
requires the SA Sproperties files on the client and server to be configured asdescribed below.)

Key file name

The path of the SSL key file used by server connections. For the server key store file generated in this
document, add the following to thisfield:

product _installation_root/etc/ ServerKeyStoreFile.jks
Key file password
The password for the SSL key file for server connections. On the server, the key file password is
configured in the administrative console.
Key file format
The key file formats supported by the ORB are JK S, PKCS12, and JCEK . JK Sisthe default key file
format. The client and server key file format is set through thecom i bm ssl . keySt or eType
91

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

property.
Trust file name

The path of the SSL trust file used by clients. On the server, the trust file name is configured in the
administrative console. For the client keyring file generated in this document, add the following to this
field:

product installation root/etc/CientTrustStoreFile.jks

Trust file password

The password for the SSL trust file. On the server, the trust file password is configured in the
administrative console.

Client Authentication
The WebSphere AEs ORB does not currently support SSL client authentication using digital certificates.

Managing the client SSL key store and trust store files

Y ou need to modify the sas.client.propsfile, which is located inthe product installation root/propertiesdirectory.

If you used WebAS as the password when yougenerated the client and server keyrings, you need to make
thefollowing changes to the sas.client.props file:

« com.ibm.ssl.keyStore=product_installation_root/etc/ClientK eyStoreFile.jks
o com.ibm.ssl.keyStorePassword=WebAS
o com.ibm.ssl.trustStore=product_installation_root/etc/ClientTrustStoreFile.jks

e com.ibm.ssl.trustStorePassword=WebAS

Y ou can now start your WebSphere application using the newlycreated key store and trust store files.

92

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

5.5.6.3: Understanding how the Keytool utility works

The Keytool utility is a Java-based key-and-certificatemanagement utility. The following categories cover the
administrationtasks that are handled by the utility:

« Administering a keystore database discusses tasks that apply to a keystore database.
« Administering key pair entries discusses tasks that apply to key pair entriesin a keystoredatabase.

« Administering trusted certificates discusses tasks that apply to trusted certificate entries ina keystore
database.

« Administering both certificate and key pair entries discusses tasks that apply to both key pair and
trustedcertificate entries.

Options used with the keytool command provides reference information about the options used withthe keytool
command, and this article covers the followingconceptual and overview topics:

« Rulesfor using the keytool commands
« Filesthat are used by the Keytool utility
o Default values

» Standards

« Security considerations

Rules for using the keytool commands

Options are used in combination with the keytool command toperform the administration tasks needed to
implement and maintain a keystoredatabase. See Options used with the keytool command for the full list of

options.

The following rules apply to all options:
« All options are preceded by the minus sign (-).
« Theoptions are case insensitive, so aliases of ruth andRuth refer to the same entry.

« Commands must be entered on asingle line. (When acommand examplein these topics is shown on
multiple lines, it is done only to accommodatelimitation in the width of the screen or page.

« The order in which the option occurs in the command string isirrelevant.

« If no password is provided on the command line, the Keytool utility issuesa prompt for the password
when it isrequired to complete thekeytool command.

« If the value for an option contains a blank space, the value must beenclosed in quotation marks (").

« When the keytool command is issued with no options, thekeytool help is activated. (The -help option
alsoactivates the help facility.)

Files that are used by the Keytool utility

The Keytool utility interacts with severa files while it accomplishes itssecurity functions. This topic examines
these files and the functionthey serve when used with the Keytool utility.

The .keystore file
93

The Keytool utility storesits key pair entries and trusted certificateentries in a keystore database. The keystore
database is afile that has the default name of .keystore and is located by defaultin the user's home directory. The
keystore database uses otherfiles to interact with certificate authorities (CAs) and to hold its trustbase, which is
itslist of trusted certificates.

See Administering a keystore database for more information on the keystore database.

The cacerts files

The cacertsfile holds the CA certificates, which are the listof trusted certificates managed by the Keytool
utility. Thisfileresidesin the JDK security properties directory in the run-time environmentdirectory.

When a new certificate isimported into the keystore, the Keytool utilityverifies that the certificate has integrity
(that is, the contents areintact), and that it is authentic (that is, the entity claiming to have sentthe datais actually
the entity it claimsto be). The Keytool utilityattempts this verification by building a chain of trust from that
certificateto the self-signed certificate that belongs to the root CA. Because thelist of trusted certificates held in
the cacertsfile are aready trusted, theKeytool utility uses the certificatesin that file asits basis forcomparison.

The Keytool utility suppliesfive VeriSign root certificates in the cacertsfile. The Distinguished Names
associated with the VeriSign root CAcertificates are as follows:

o OU=Class 1 Primary Certification Authority, O="VeriSign, Inc.",C=US

o OU=Class 2 Primary Certification Authority, O="VeriSign, Inc.",C=US

o OU=Class 3 Primary Certification Authority, O="VeriSign, Inc.",C=US

o OU=Class 4 Primary Certification Authority, O="VeriSign, Inc.",C=US

o OU=Secure Server Certification Authority, O="RSA Data Security,Inc.", C=US

See Security considerations for maintaining the cacerts file for information on keeping the cacerts file secure.

See Administering trusted certificates for more information on certificate management by theKeytool utility.

Keytool files used by a CA

The Keytool utility uses the -certreq option to generate anauthentication request for a self-signed certificate
from a CertificateAuthority (CA). The -certreq option creates a CertificateSigning Request (CSR) for the
certificate and places the CSR in afile namedcertreq_file.csr, where certreq_file.csr isthe name of the filethat is
to be sent to the CA for authentication. If a CA considers thecertificate to be valid, it issues a certificate reply
and placesthe reply inafile named cert_reply.cer, where cert_reply.cer isthe filereturned by the CA which
holds the results of the CSR authorizations that weresubmitted in the certreq_file.csr file. The Keytool utility
usesthe -import option to read the *.cer file into thekeystore.

Default values

The Keytool utility supplies default values with many of itsoptions. Table 1 identifies the default value when
the option has adefault associated with it.

In addition to the option-related default values, the Keytool utility takesits implementation type from the
keystore.type property which islocated in the security propertiesfile. Java supplies JKS as thedefault
implementation type for use with the Keytool utility. Customizing a keystore implementation type discusses

how to enable the JKS type or how to specify acustomized type.

94

Standards

The Keytool utility uses the following certificate standards:
o X.509 Certificates

« X.500 Distinguished Names
« Internet RFC 1421 printable encoding standard

X.509 Certificates

The Keytool utility uses the X.509 certificate standardto define what information isto be included in a
certificate and what dataformat is to be used for the information. The information in theX.509 certificateis
encoded using Abstract Syntax Notation1(ASN.1) standard to describe data and the Definite Encoding Rules
(DER)standard to identify how the information is to be stored andtransmitted. The X.509 certificates takes the
valuesfor its Thevalues subject and issuer fields from the X.500 Distinguished Name (DN)standard.

X.500 Distinguished Names

The Keytool utility uses -dname option to supply the followingsubcomponents of the X.500 Distinguished
Namestandard:

« CN (common name)

« OU (organization unit)

« O (organization name)

o L (city)

o S(state)

o C (country code)
The choice of including the subcomponent optional; however, if asubcomponent isincluded, its order of
occurrence is mandatory. Theutility is case insensitive to the abbreviations used for thesubcomponents; so, for

example, CN, cn,Cn, and cNare al identified as the common namesubcomponent for the X.500 DN. The
Keytool utility prompts formissing subcomponents when a DN is required.

Internet RFC 1421 printable encoding standard

The Keytool utility uses the Internet RFC 1421 standard todefine its printable encoding format. This certificate
format is alsoknown as Base 64 encoding. Thisformat is enclosed by beginand end tagging. However, the
-export option defaults todisplaying the output in binary encoding. If the printable encodingformat is desired,
include the -rfc option with the-export command.

Security considerations

The security provided by the Keytool utility relies on passwords andcertificate authentication. This section
provides suggestions forensuring security.

Security considerations for passwords

Passwords can be specified on the command line or in a script when the-stor epass or -keypass option is
supplied.However, prudent security procedures discourage this practice, unless you arein atesting environment

95

Or on a secure system.

When arequired password is not supplied, a prompt isissued. Takecare when supplying the password at the
prompt because the entry is echoed(displayed as typed) on the screen.

When an identity database is migrated into a keystore database, all privatekeys are encrypted to the same
password. The system administrator mustreassign a unique password to each entry. See Migrating an identity

database into a keystore database for instructions on performing this task.

Security considerations for importing trusted certificates

Before importing atrusted certificate into your list of trustedcertificates, view its fingerprint by using the
-printcert optionand compare the output with a secure source. A fingerprintis a hash value that is calculated by
using a message digest function toencrypt a digital signature. By making a visual comparison between
thefingerprint of the received certificate with that of the sent certificate, youcan ensure that the certificate was
not tampered with in transit.Unless the -import option is issued with the -nopromptoption included, the
-printcert option is automatically invoked toensure verification prior to including the certificate in your list of
trustedcertificates. (If the -noprompt option isissued, nointeraction with the user occurs.)

Security considerations for maintaining the cacerts file

The cacerts keystore file has an initial password ofchangeit. Administrators need to change thispassword. In
addition, the JDK installation grants default accesspermission to the cacerts file. Administrators need to change
theaccess permission for thisfile.

96

5.5.6.3.1: Administering a keystore database

The Keytool utility administrates the storage of keys and certificates in akeystore file. A password protects
access to the keystore,and within the keystore each private key has its own password. TheKeyStore class, which
is provided in the java.security package,contains well-defined interfaces to access and modify multiple types
ofkeystore implementations. See Understanding how the Keytool utility works for conceptual information on

the use of the Keytoolutility. Options used with the keytool command provides reference information for the
options usedwith the keytool command.

The administration tasks that you perform using the Keytool utility fallinto the following categories:
« Tasksthat apply to the keystore database, which is the focus of thisarticle.
« Tasksthat apply to key pair entries. (See Administering key pair entries.)
« Tasksthat apply to trusted certificate entries. (See Administering trusted certificates.)
» Tasksthat apply to both key pair and trusted certificate entries.(See Administering both certificate and
key pair entries.)

Managing a keystore involves the following tasks:
« Creating akeystore

« Adding entriesto a keystore

« Deleting a keystore database

« Customizing the name or location of a keystore

« Changing the password for a keystore

« Customizing a keystore implementation type

« Accessing and displaying keystore entries

« Migrating an identity database into a keystore database

Creating a keystore

Use the keytool command with the -keystor e option toexplicitly create a keystore. See Customizing the name
or location of akeystore for information on this option.

In addition, to create a default keystore, issue the keytoolcommand in combination with the -genkey, -import,
or-identitydb options, without including the -keystor eoption. Using the options in this way creates a default
file named.keystore and placesit in the user's home directory.

For example,
o OnaWindows NT system, if auser'sID issandr a, then theuser.home system property valueis:

C\Wnnt\Profil es\sandra

« OnaUNIX system, the default .keystore file is user.homeproperty value translates to the user's home
directory.

Adding entries to a keystore

97

An entry in akeystore can be either of two types:

« A keyentry. Typicaly, thisisan entry which consistsof a private key and a certificate chain. A
certificatechain holds alinked set of certified authorizations that connect the publickey back to its
corresponding private key.

« A trusted certificate entry. Thisis a certificate whichholds the public key of another entity. The holder
trusts in theauthenticity of the certificate because the entity has vouched for thecertificate by signing it.

For more information on keys, certificates and digital signatures, see 5.5: Introduction to certificate-based
authentication.

Use the keytool command in combination with a-genkey, -import, or -identitydb option toadd an entry to the
keystore. See the following topics for informationon these options:

« Generating akey pair entry
« Importing certificates
« Migrating an identity database into a keystore database

Deleting a keystore database

To remove a keystore, use operating system commands to del ete the keystorefile.

See Deleting a keystore entry for information on removing an entry from thekeystore.

Customizing the name or location of a keystore

When you include the -keystor e option with the-genkey, -import, or -identitydb options, Thekeytool
command uses the name and location supplied with-keystor e option to override the default keystore name
andlocation.

See Generating a key pair entry for an example of the -keystor e option combinedwith -genkey option.

Changing the password for a keystore

To change the keystore password, combine the -stor epasswd optionwith the keytool command. A prompt is
issued for theexisting password, if it is not provided. For example:

keyt ool -storepasswd - new newpassword -storepass ol dpassword

In this example, the password for the default keystore is changed fromoldpassword to newpassword.

Customizing a keystore implementation type

The KeyStore class, which is provided in the java.security package,contains well-defined interfaces to access
and modify multiple types ofkeystore implementations. A keystore type defines theformat of the datathat is
stored in the keystore. It also identifiesthe algorithms used to protect the private keys in the database.
SunMicrosystems supplies a proprietary keystore format, JKS, for use as abuilt-in default keystore
implementation type. The JKS type usesindividual passwords to protect private keys. It also protects
thekeystore database with a password. The default type is identified bythe following line in the security
property file:

98

keyst ore. type=j ks
Keystore type designations are case insensitive; so JKS is consideredto be the same as jks.

In addition to the default JKS implementation type, thejava.security package contains an abstract KeystoreSpi
class, whichenables other keystore formats to be implemented using Service Providerinterfaces (SPI). When an
implementation type other than the defaulttype is used to create the keystore, the client must provide an SPl and
supplya KeystoreSpi subclass implementation type.

Each application that uses the keystore retrieves the value for thekeystore.type property and compares the value
to each installedprovider until amatch is located. Applications use a static methodcalled getDefaultType, which
is part of the KeyStore class, to retrieve thevalue of the keystore.type property. An instance of the
defaultkeystore typeis created by the following line of code:

KeySt ore keystore = KeyStore. getlnstance(Keystore. getDefaultType())

Keystores having different implementation types are not compatible.A pplications can choose different types of
keystore implementations fromdifferent providers. The Keytool utility treats the keystore locationthat is passed
to it on the command line as afile name. It reads inthe keystore information and provides access to the file by
converting thefile name into a Filel nputStream class object.

For information on implementing customized keystore types, see the SunMicrosystems web site:
http://java. sun. conl

Accessing and displaying keystore entries

The Keytool utility uniquely identifies a keystore entry by itsalias. To access a specific entry, include the -alias
optionwhen issuing keytool commands.

Listing keystore entries

To display keystore entries, combine the -list option when youissue the keytool command. Include the
-aliasoption with the -list option to display the entry associated withthat alias. If the entry associated with the
aliasisakey pair, thefirst certificate in the certificate chain, which isthe public key for theentry, is displayed. If
the entry associated with the alias is atrusted certificate, then the MD5 fingerprint, in the default binary
codeformat is displayed. (A fingerprint is a hash value that is calcul atedby using a message digest function to
encrypt adigital signature.) Y oucan display the output in printable encoding format, as defined by thel nternet
RFC 1421 standard, by including the -rfc option.

If you combine the -list option with the keytoolcommand and do not include an alias, the entire content of the
keystore isdisplayed.

Printing a keystore certificate

The -printcert option outputs the fingerprint of the certificateentry, using the MD5 binary code format. If the
-rfc optionis used with the -printcert option, the output is displayed inprintable encoding format. The
-printcert option enables acertificate's fingerprint to be compared to an entry from a trustedsource.

The contents of afile can be sent to the -printcert option bysupplying the file name with the -file option.

The -printcert option is automatically invoked when the-import option isissued. (The -noprompt
optionsuppresses the -printcert output.)

99

Migrating an identity database into a keystore database

The -identitydb option reads the information from a JDK 1.1.x-style identity database and migratesit in to
thekeystore. The -file option is used to supply the file nameof the identity database. If no file nameisgiven, it
reads theidentity database from standard input. If a keystore does not alreadyexist, it is created.

Only identities (database entries) labeled as trusted are migrated in tothe keystore. An identity that isrejected is
ignored. Thetrusted identity's name is used as the alias for the keystoreentry. All private keys are encrypted
under the same password, whichisst or epass. If adefault keystore is being created to holdthe entries from
the identity database, this same password is automaticallyassigned to the keystore al'so. When the migration is
complete, thesystem administrator must use the -keypasswd option to assignindividual passwordsto the private
keys and the -stor epass optionto change the default password applied to the keystore.

In an identity database, it is possible to have multiple certificatesassociated with the same public key. Ina
keystore, each entry has aprivate key and a corresponding public key, which is stored in the first linkof the
certificate chain. When identities are migrated from theidentity database into a keystore, only the first certificate
in the identityis stored in the keystore. The name of the identity in the firstcertificate becomes the alias in the
keystore, and an alias must beunique.

The following command is an example combining the -identitydboption with other options:

keytool -identitydb -file idb file -storepass storepass -v

This command does the following:

« Itreadstheinformationinthefilenamedi db_fi | e, storesitas a keystore entry that isidentified by an
alias, which is created by thename of the identity in the first certificate, and assigns the
passwordst or epass to all private keys in the identity database and also tothe keystore itself.

« The-v option provides a more detailed output.

The -identitydb option is combined with the followingoptions:
. -file
o -J
« -keystore
o -storepass
o -Storetype
o« -V

These options are described in Options used with the keytool command.

100

5.5.6.3.2: Administering key pair entries

Administrators use the Keytool utility to perform tasks that apply thekeystore database or to the keystore entries: key pairs and
trustedcertificates. Administering a keystore database discusses the tasks that apply to the keystoredatabase; Administering trusted certificates

discusses tasks that only apply to trustedcertificates entries, and Administering both certificate and key pair entries discusses the tasks that are
common to both entrytypes. Understanding how the Keytool utility works provides conceptual information about the Keytoolutility. This
article discusses the administrative tasks that applyonly to managing key pair entriesin akeystore:

« Generating akey pair entry
« Modifying akey pair entry

Options used with the keytool command provides reference information for the options that are usedwith the Keytool utility.

Generating a key pair entry

The -genkey option adds data to a keystore or creates thekeystore if one does not aready exist. It generates akey pair (publickey and
associated private key) and places the public key in an X.509v1 self-signed certificate. That certificate is stored as asingle-element certificate
chain, which is placed, along with the private key,into a new keystore entry. The keystore entry isidentified by andlias.

The following command is an example of the use of the -genkeyoption in combination with other options:

keyt ool -genkey -dname "cn=Sandra Smith, ou=IBMPITT, o=IBM c¢=US" -alias sandra -keypass accl00
-keystore C:\Wnnt\Profil es\sandra -storepass PITTNV -validity 180

Note that the command must be entered as single line. Multiplelines are used in the example due to space constraints.

This command does the following:
o It creates akeystorefilenamed sandr a inC. \ W nnt \ Pr of i | es directory and assigns the passwordPl TTNV to the keystore.

« It generates a public/private key pair for the entity having theDistinguished Name values of Sandr a Sni t h for the common
name,| BMPI TT for the organizational unit, | BMfor theorganization. The password acc 100 is assigned to the privatekey.

o It usesthe default DSA key-generation algorithm and creates two keys 0f1024 bits, the default length.
o It usesadefault signature algorithm, SHA1withDSA, to create aself-signed certificate that is valid for 180 days.

The -genkey option is combined with the following options:
. -alias
« -dname
o« J
« -keyalg
« -keypass
« -keysize
« -keystore
« -sigalg
« -storepass
« -storetype
oV
o -validity

See Options used with the keytool command for a description of these options.

Modifying a key pair entry

Changes can occur that affect the Distinguished Name of a keystore entry,for example, an employee can change departments within the
sameorganization. In such a case, the organization unit (OU) subcomponentof the employee's Distinguished Name is changed. It can
bedesirable to update an entry's Distinguished Name while still retainingits existing key pair. To do this, follow these steps:

1. Usethe -keyclone option to create a copy of the existingentry.
keyt ool -keyclone -alias jane -dest janenew

In the command, the entry identified by the aliasj ane iscloned and assigned to the destination aliasj anenew.
2. Generate anew self-signed certificate with the new department indicatedin the Distinguished Name.
keytool -selfcert -alias janenew -dnane "CN=Jane Brown, OU=Purchasing, O=I BM C:li%l

Issue this command on asingle line; values for the -dnameoption must be specified in the order shown.
3. Generate a Certificate Signing Request (CSR) for the changed entry.

keytool -certreq -alias janenew
4. Import the certificate reply from the Certificate Authority (CA).

keytool -inport -alias janenew -file VSSjanenew. cer
5. Remove the obsolete entry from the keystore.

keytool -delete -alias jane

The combination of the -keyclone and -dest optionsalso can be used to establish multiple certificate chains for akey pair, orfor backup
purposes.

102

5.5.6.3.3: Administering trusted certificates

Administrators use the Keytool utility to perform tasks that apply thekeystore database or to the keystore entries: key pairs and trustedcertificates.
Administering a keystore database discusses the tasks that apply to the keystoredatabase; Administering key pair entries discusses tasks that only

apply to key pair entries,and Administering both certificate and key pair entries discusses the tasks that are common to both entrytypes.
Understanding how the Keytool utility works provides conceptual information about the Keytool utility and Options used with the keytool command

provides reference information for the options used with thekeytool command. This article discusses the administrativetasks that apply only to
managing trusted certificate entries in akeystore:

« Managing trusted certificates

« Adding atrusted certificate to the cacertsfile
« Regenerating a self-signed certificate

« Generating a Certificate Signing Request

« Importing certificates

« Exporting certificates

Managing trusted certificates

When the -genkey option is used with the keytoolcommand to generate a new key pair entry, the public key is automaticallywrapped into a
self-signed certificate. A self-signedcertificateis one in which the same entity acts as both the issuer(signer) of the certificate and as the
authentication subject of thecertificate. This self-signed certificate, containing the public key,takes the first position in the certificate chain that is
associated with thecorresponding private key.

Further authentication can be obtained by submitting a certificate signingrequest (CSR) for the self-signed certificate to a certificate authority(CA).

Adding a trusted certificate to the cacerts file

Combine the -tr ustcacer ts option with the -importoption when the keytool command isissued to add a new certificateto the list of trusted
certificates (the cacerts file).

See Generating akey pair entry for an example of how the -trustcacer ts option iscombined with the keytool command.

See Security considerations for importing trusted certificates for security considerations related to trustedcertificates.

Regenerating a self-signed certificate

Certain circumstances, for example, when an employee transfers to adifferent department within the same company, can necessitate the
regenerationof a self-signed certificate in order to assign the same key pair to adifferent X.500 Distinguished Name. The procedure for this
taskfollows:

1. Usethe -keyclone option to copy the original key entry.

Use the -selfcert option to generate a new self-signedcertificate that uses the new Distinguished Name.
Use the -certreq option to generate a CSR for the clonedentry.

Use the -import command to accept the certificate retuned bythe CA.

Use the -delete option to delete the original (now obsol ete)entry.

o s w DN

The certificate is stored in the keystore as a single-element certificatechain. It isidentified by the specified alias, and it replaces theoriginal
(obsolete) entry.

The following command is an example combining the -selfcer toption with other options:

keyt ool -selfcert -alias PUB900 -keypass r82Rij -dnane "cn=Barbara Brown, ou=purchai ng, o=IBM
c=Us"

Note that the command must be entered as single line. Multiplelines are used in the example due to space constraints. Also, thevalues for the
-dname option must be specified in the ordershown.

This command generates a self-signed certificate for which the issuer andthe subject are the same entity.

The -selfcert option can be combined with the followingoptions:
. -alias
« -dname
o -J
103

« -keypass
o -keystore
« -sigalg

o -storepass
» -storetype
o« -V

See Options used with the keytool command for descriptions of these options.

Generating a Certificate Signing Request

To generate a Certificate Signing Request (CSR), issue thekeytool command in combination with the -cer tregoption.

The following command is an example combining the -cer tr eqoption with other options:
keytool -certreq -alias PUB700 -file csrFile

This command does the following:
« |t generates a CSR to be submitted to a CA. The CSR is held in thecsrFilefile.
« |t compares the certification returned from the CA with the trustedcertificate for that entry in the cacertsfile. If the certificate isaccepted, the
-import option can be used to place it in thekeystore database.
The -certreq option can be combined with the followingoptions:
. -alias
. -file
o -J
« -keypass
o -keystore
o -storepass
» -storetype
Y,

See Options used with the keytool commandfor a description of these options.

Importing certificates

The -import option reads the certificate from thecert_file file (or from standard input, if no fileis given) andstoresit in the keystore entry that is
identified by thealias. The -import option can be used with thekeytool command to import X.509 v1, v2, or v3 certificatesand PK CS#7-formatted
certificate chains. The data to be importedcan be stored in binary encoding format or in printable encoding format(Base64 encoding). If printable
encoding format is used, it must adhereto the Internet RFC 1421 standard, as shown:

"- - - - -BEG@ N CERTIFICATE- - - - -" certificate information- bounded by Begin-End string "- - -
- -END CERTI FI CATE- - - - -"

The following command is an example combining the -import optionwith other options:

keytool -inmport -alias PUB500 -file foreign.cer -keypass changeit -trustcacerts

Note that the command must be entered as single line.

This command does the following:

« It readsthe certificate in the file named f or ei gn. cer ,storesit as akeystore entry that isidentified by the aliasPUB500, and assigns the
password changei t to the privatekey.

« It givesconsideration to including the certificate in the cacerts file(located in the JDK security properties directory) into its chain oftrust.

« |t creates adefault keystore file using the default type. Itprompts for the keystore password. If the certificates are rejected bythe chain of
trugt, it prints out the fingerprint of the rejected certificateto enable a manual comparison with atrusted source. (If the-noprompt option has
been included with the command, there is nointeraction with the user.)

« ltscertificateisvalid for the default period of 90 days.

See The cacerts files for more information on how the keytool utility uses thecacertsfile.
See Security considerations for maintaining the cacertsfile for information on keeping the cacerts file secure.

The -import option can be combined with the followingoptions:
10813

. -file

L] 'J

« -keystore
o -rfc

o -storepass
o -storetype
o« -V

See Options used with the keytool command for a description of these options.

Exporting certificates

The -export option reads the certificate associated with thespecified alias from the keystore and placesit in afile, which is suppliedby the -file
option (or by standard output, if no file isgiven).

If the specified alias is associated with atrusted certificate, thedefault output isin binary code format. The -rfc option canbe added to change the
output to printable encoding format (Internet RFC1421). If the specified aliasis associated with akey pair entry, thefirst certificate in the chain,
which authenticates the public key, isreturned.
The following command is an example combining the -export optionother options:
keyt ool -export -alias joebrown -file joebrown.cer
This command reads the entry associated with the aliasj oebr ownand placesit in binary format into the file namedj oebr own. cer . A prompt is
issued for the keystorepassword because the -stor epass option was not included with thecommand.
The -export option can be combined with the followingoptions:

» -dlias

. -file

o -J

o -keystore

o -rfc

» -storepass

o -storetype

o« -V

See Options used with the keytool command for a description of these options.

105

5.5.6.3.4: Administering both certificate and key pair
entries

Administrators use the Keytool utility to perform tasks that apply to thekeystore database or to the keystore
entries: key pairs and trustedcertificates. Administering a keystore database discusses the tasks that apply to the

keystoredatabase; Administering key pair entries discusses tasks that apply to key pair entries, and
Administering trusted certificates discusses the tasks that apply totrusted certificate entries. Understanding how
the Keytool utility works provides conceptual information about the Keytool utilityand Options used with the
keytool command provides reference information for the options used with thekeytool command. This article
discusses the administrativetasks that apply both keystore entry types and covers the followingtopics:

o Assigning an dias

« Deleting akeystore entry

« Setting an expiration period

« Changing a password for a keystore entry

Assigning an alias

All keystore entries, whether key pair entries or trusted certificateentries, are identified by aunique alias. The
aliasis assigned to theentry when you generate a new public-private key pair (-genkeyoption), when you import
acertificate to the list of trusted certificates(-import option), or when you migrate an identity
database(-identitydb option).

Subsequent keytool commands use the alias to identify the entryon which the operation is to be performed.

Deleting a keystore entry

To delete akeystore entry, identify the entry by its alias and issue thekeytool command in combination with the
-deleteoption. For example:

keytool -alias fred -delete

This command removes the entry associated with the aliasf r edfrom the keystore.

Setting an expiration period

The default expiration period for a keystore entry is 90 days. Tochange this value, identify the entry by itsalias
and issue thekeytool command in combination with the -validityoption. For example:

keytool -alias sally -validity 180

In addition, when the entry isinitially created, the expiration period canbe changed by using the keytool
command with a-genkey, -import, or-identitydb option and adding the -validityoption.

Changing a password for a keystore entry

To change the password associated with an keystore entry, issue thekeytool command in combination with the

106

-keypasswdoption for an entry, which isidentified by its alias. Forexample:
keyt ool -keypasswd -alias sally ol dpassword -new newpassword

This command changes the password for the entry identified assal | y from oldpassword to newpassword.A
prompt isissued for the existing password associated with the specifiedalias, if no password is supplied with the
command.

See Changing the password for a keystore for information on changing the password for the keystoredatabase.

107

5.5.6.3.5: Options used with the keytool command

Administrators use the Keytool utility to perform tasks that apply thekeystore database or to the keystore
entries: key pairs and trustedcertificates. Administering a keystore database discusses the tasks that apply to the

keystoredatabase; Administering key pair entries discusses tasks that apply to key pair entries,Administering
trusted certificates discusses tasks that apply to trusted certificate entries,and Administering both certificate and
key pair entries discusses the tasks that are common to both entrytypes. Understanding how the Keytool utility
works provides conceptual information about the Keytoolutility. This article provides reference information
about the optionsthat are used with the keytool command.

Table 1 lists the options that can be combined with thekeytool command. The columns provide the
followinginformation:

« Options-- Specifies the option that can be combined withthe keytool command
« Function--Briefly describes the administrative taskaccomplished by the option
» Values-Listsvalid data entries for the option

« Components--Identifies the Keytool components (keystore,key pair entries, trusted certificate entries)
with which the option can beused

« Use--Provides additional information about using theoption

Table 1. Options used with the keytool utility

|Option |Function |Values |Components [Use
-alias Assigns an identity (User supplied . Key_ pair o« Caseinsensitive
to akeystore entry entries . mykey (Default)
e Trusted
certificate
entries
-certreq Generates a Requires a-file option « Key pair |Submitted to a certificate
certificate signing |supplying the .csr file entries |authority
request name
-delete Removesan entry |Requires a-alias option to « Keypair |Caseinsensitive
from the keystore |identify the entry entries
e Trusted
certificate
entries
o Keystores
-dest Identifies the User supplied « Key pair
destination alias for entries
acloned entry « Trusted
certificate
entries

108

-dname Assignsan X.500 |User supplied Key pair o Order of
Distinguished entries subcomponents
Name to an entry Trusted matters
certificate « Inclusion of
entries subcomponentsis
optional
-export Outputs a Requires a -file option to Key pair
certificate in binary |supply the output file entries
code Trusted
certificate
entries
-file name Identifies files to be [User supplied Key pair « Standard input
gxsgg :tor import or « Input: an identity entries (default for reads)
database Trusted « Standard output
« Input: acertificate certl_flcate (default for writes)
reply from a entries
certificate Keystores
authority
o Output: certificate
signing request
-genkey o Createsa |User supplied Key pair
new key entries
pair entry
o Createsa
keystore, if
none exists
-help Displays help for Issuing the keytool
the Keytool utility command with no options
also displays help
-identitydb Migrates an Requires the -file option Keystores|Only trusted entries are
identity database to |to supply the identity imported
a keystore database |database name
-import Brings the contents |Requires the -file option Trusted [Automatically invokesthe
of afileinto the to identify the file source certificate |-printcert option (unless
keystore entries |the-noprompt optionis
included)
-Jcommand |PassesaJava
command to the
interpreter
-keyalg Signifiesthe o DSA (default) Key pair |Entry for this option
algorithm to be . RSA entries |determines the value for
used for key pair Trusted |the-sigalgoption
Creation certificate
entries

109

-keysize Specifies akey size Reqqi resaval ue_in Key pair o 1024 bits (default)
multiples of 64 bits entries « Rangeisfrom 512
Trusted to 1024 bits
certificate
entries
-keypass Assigns a password |User supplied Key pair |Caseinsensitive
to akey pair entries
Trusted
certificate
entries
-keystore Customizes the User supplied Key pair |The-genkey, -import, or
name and location entries -identitydboptions create
of akeystore Trusted |2 keystore if none exists
certificate
entries
Keystores
-keypasswd |Changesa User supplied Key pair |Caseinsensitive
password for a entries
keystore entry Trusted
certificate
entries
-keyclone Clones akey store |Requiresa-dest option to Key pair
entry id_entify the destination entries
aias Trusted
certificate
entries
-list « Display an Key pair |MD5 fingerprint (default)
entry_if an entries
a Ias||'séd Trusted
SUPpII certificate
« Display the entries
contents of
akeystoreif Keystores
nodiasis
supplied

110

-new Identifiesthe new |User supplied Key pair |Combined with the
password entries |-keypasswd and
Trusted |-Storepasswdoptions
certificate
entries
Keystores
-noprompt Indicates that no Trusted [Suppresses the default
prompts are to be certificate |-printcert option
issued during an entries |associated with a-import
import operation option
-printcert Prints a certificate Trusted |[Binary code format
fingerprint certificate |(default)
entries
-rfc Converts output Combined with the Trusted [UsesInternet RFC 1421
display to printable |-printcert and -list certificate [standard
encoding format options entries
-selfcert Generates a new o If -dname option Key pair » Output: X.509 v1
self-signed is supplied, issuer entries self-signed
certificate and subject take Trusted certificate
gl_eX_.SO(_) certificate
istinguished entries
Name
o If no-dname
option is supplied,
issuer and subject
takeX.500
Distinguished
Name of alias
-sigalg Specifiesthe o SHA1withDSA Key pair |Correlates with the value
algorithm to be « MD5withRSA entries |for the -keyalg option
used to sign the Trusted
certificate certificate
entries
-storetype Assignsatypetoa |A Service Provider Key pair o JKS (Default)
keystore or an entry |Interface format entries « Caseinsensitive
into akeystore Trusted
certificate
entries
Keystores
-storepass Assigns a password [User supplied Caseinsensitive
to akeystore

111

-trustcacerts [Indicates that the o Trusted
certificate isto be certificate
considered for entries
inclusion in thelist
of trusted
certificates (the
cacertsfile)

-v Designates verbose
output

-validity Identifies an o Key pair |90 days (default)
expiration period entries

o Trusted
certificate
entries

112

5.5.7: Introduction: Setting up an LDAP connection
over SSL

Thistopic describes how to establish an SSL connection between WebSphereA pplication Server and an LDAP
server. This page gives an overview; referto the linked pages for more details.

Setting up an SSL connection between WebSphere Application Server andan LDAP server requires two logical
tasks:

1. Establishing a WebSphere-to-L DAP connection without SSL

2. Enabling SSL over the WebSphere-to-LDAP connection

To establish a connection between WebSphere and an LDAP server, you must:

1. Create certificates and keys for the WebSphere server to use in authentication, and create a trust store
that will also hold a certificate used for validating certificates for the LDAP server.

2. Configure the LDAP server of your choice.

After you have established the WebSphere-to-L DAP connection, you canadd the SSL constraint to the
connection. To do this, you must

1. Configure your LDAP server to use SSL.

2. Get the necessary certificates for authenticating the LDAP server and add them to your WebSphere trust
store.

3. Configure WebSphere to use SSL.

113

5.5.7.1: Establishing connections betweenapplication
servers and LDAP servers

1

2.

5.

Disable WebSphere security before shutting down the administrativeserver and client. Thisis not strictly
necessary, but it makesrecovery easier if something goes wrong.

To use SSL between WebSphere Application Server and the LDAPserver, create your own key and trust
storefiles (if youhave not done so already). Put the LDAP server's certificate inthe trust store file, asthis
isused for most public keys. The keystore is used for aserver's or client's (in the case of
clientauthentication) private keys.

The same trust store file can be used for LDAP asis used for theORB and HTTPS. Add the LDAP
server's public key or root CAcertificate to the trust store specified in the Default SSLConfiguration in
the Security Center of the administrative console.See the articles under section 5.5.6, Tools formanaging

certificates and keys, for instructions on how to createkey and trust stores with the WebSphere
Application Server key tools.

The key and trust store files you create are used to configureglobal security. They are also used to enable
an SSL connectionbetween WebSphere and the LDAP server.

Place your server key and trust store filesin the appropriatedirectories on the server machine. See
Making client and server key store and truststore files accessible for details.

WebSphere determines which key and trust store files to use andtheir passwords based on the settingsin
the Default SSL Configurationpanel in the Security Center of the Administrative Console. Y ou canalso
override the default settings by changing the LDAP SSL Settingsin the Security Center.

Restart the administrative server and client and configure WebSphere Security including LDAP.
1. Enable Security (under the Security Center --> General).

2. Set the Default SSL Configuration (under Security Center --> General --> Default SSL
Configuration).

3. Set the Authentication Mechanism to Lightweight Third-Party Authentication (LTPA) (under
Security Center --> Authentication --> Authentication M echanism)

4. Set up your LDAP settings (under Security Center --> Authentication Tab --> LDAP
Settings)

= Choose a Security Server ID from your LDAP user registry. ThisID must be avalid user
from the registry. Do not use the LDAP administrative ID because thisis not a searchable
ID and validation failures will occur.

= Set the Security Server Password associated with the Security Server ID.

= Set the host name or |P address of the LDAP server.

= Set the port to 389 (or whatever the TCP/IP listener port is for your LDAP server).

= Set the Base Distinguished Name of your LDAP directory.

= Optionally, set the Bind Distinguished Name and Bind Password of your LDAP server.

= Optionally, modify the Advanced settings as necessary for your LDAP server's directory
configuration.

= Do not select the SSL button and then Enable SSL yet.
5. Click Finish.

The application server now communicates with the LDAP server and the Security Server ID will be
authenticated. If the Security Server ID is not valid, you should receive an error message indicating this. Check
your LDAP server's configuration to resolve any problems with the WebSphere LDAP Settings. Y ou can verify

114

the communication with your LDAP server by monitoring its connections.

115

5.5.7.2: Enabling SSL connections between
WebSphere ApplicationServer and an LDAP Server

1. Configure SSL inthe LDAP server. The procedure varies with the LDAP server being used. Consult the
documentation for your server for details. For example, with the SecureWay LDAP server, the following
must be done:

1. Setthe SSL statusto SSL ON.

2. Set the Authentication Method to Server Authentication. The SSL protocol requires the server
to be authenticated. In this case, the LDAP server is the server and WebSphere Application
Server isthe client. If you need mutual authentication, choose Server and Client
Authentication.

3. Make sure that the secure port is set to 636. (Y ou can optionally choose a different port, but you
must set this port correctly when configuring LDAP SSL in WebSphere Application Server.)

4. Point the Key Database path and filename to the LDAP server's keyfile. In SSL, certificates are
used for authentication. Therefore, the LDAP server requires a certificate, which must be
included in its keyfile.

5. Set the Key Label to the label used for the LDAP server's certificate.

2. Update your WebSphere Application Server trust store file. The trust store file is the repository for the
WebSphere server's trust base. Because it needs to authenticate the LDAP server during SSL
initialization, the trust store file must provide information about the LDAP server.

In order to validate the LDAP server's certificate, your server needs the public key of the CA that issued
the LDAP server's certificate. Thiskey isfound in that CA's certificate, so you need to add the
certificate of the CA that issued the LDAP server's certificate to your trust store file on the server. (For
more information on authentication by certificate, see 5.5: Certificate-based authentication.)

To add the additional certificate to the trust store file, do the following:
1. RunIKeyMan, asdescribed in 5.5.6.2: The IBM Key Management tool

2. Add the new certificate to the server's trust storefile.
3. Enablethe SSL connection in WebSphere.

1. Modify your LDAP configuration (under Security Center --> Authentication --> L DAP
Settings).

1. Set the port to 636. (If you used a different port number, set the port to that numer.)
2. Click SSL.

3. Click Enable SSL.

4.

Select Use Global SSL default configuration, unless you want to use a different key
and trust store file for LDAP.

2. Click OK.

4. Stop and restart the administrative server and client. After they restart, you are prompted to login to the
LDAP registry.

Tips

« If your SSL connection does not work, try the following:
1. Verify that your LDAP server islistening to port 636 (orthe other port specified in the settings).

2. Verify that the LDAP server's certificate is still valid.
116

« If you need to export the certificate for the LDAP server's CA from keyring or other type of file, look for
an option that lets you export the certificate in DER binary format or Base64-encoded ASCII. The tools
you have can vary with the LDAP server.

« If you transfer a certificate file from aremote host by using FTP, be sure to set the transfer mode to
binary.
« Make sure that your place your updated keyring classin the correct location.

117

5.5.7.4: Example: Generating key andtrust store files for SSL

This procedure describes how to create key and trust store filesthat permit SSL communications between WebSphere Application Serverand an LDAP server. This require the creation of key and trust files,one set for the server and one set for the client. The server's keystore file contains the public and private keys for the server. Theserver's trust store file contains the certificate authority'scertificate. The client's key store file contains

public and privatekey of the client (if client authentication is desired). The client'strust store file stores the server's public key and the CA's rootcertificate.
1. Download the al publi ifi for the root certifi thority (root CA) and save it to afile. In this example, the fileis called caroot.arm.
2. Generate the server-side key store and trust store files.
1. Request acertificate for the server, if it doesn't already have one.
1. Generate a certificate request from within the key store file and saveit to afile. In this example, the fileis called certreg.arm.
2. Submit the request to the certificate authority.
3. Savethe newly obtained certificate to afile. In this example, the fileis called newcert.arm.

2. Placethe certificate into a key store file. This can be done using either the keytool command-line tool or the graphical IBM Key Managment (1keyman) tool. For example, if you are using the Ikeyman tool, you must:

. Create anew key storefile. In this example, the fileis called ServerKeyStore.jks.
. Specify the the certificate in the newcert.arm file as the certificate to be received into the keyring file. Thisis done on the Personal Certificates panel in the Ikeyman tool.

. The client al'so needs access to the server's certificate, so extract the certificate and saveit to afile. In thi thefileis called arm.
. Add the certificate of the signing CA (saved in the file caroot.arm) to the key storefile. Thisi: the Signer Certifi el in the Ikeyman tool.

S RN AY I

3. Generate the client-side key and trust store files. This can be done using either the keytool command-line tool or the graphical IBM Key Managment (Ikeyman) tool. For example, if you are using the Ikeyman tool, you must:

1. Createanew trust storefile. In this example, thefileis called ClientTrustStorel .
2. Add the certificate of the signing CA, saved in the file caroot.arm, to the trust store file. Thisis done on the Signer Certificates panel in the Ikeyman tool.
3. Add the certificate of the server, saved in the file websphere.arm, to the key sorefile. Thisis also done on the Signer Certificates panel in the Ikeyman tool.

4. Optionally, if client authentication is desired, create a new client key store file called ClientK eyStoreFile.jks. Y ou can then request a certificate from a CA, submit the certificate request to the CA, and add the certificate to the client key storefile.
4. Install the new keyring files into the WebSphere Application Server environment. Place all key and trust store files (ServerK eyStoreFile,jks, ServerTrustStoreFile,jks, ClientK eyStoreFilejks and ClientTrustStoreFile.jks) on the server in the product_installation_root/etc directory.

5. Configure the server properties as follows:

1. Start the administrative console.

2. Open the Security Center.

3. Select Default SSL Configuration.

4. Modify the following SSL properties:
= Key File Name: product_installation_root/etc/ServerK eyStoreFilejks
« Key file password: WebAS
« Confirm password: WebAS
= Key fileformat: KS
= Trust file name: product_installation_root/etc/ServerTrustStoreFilejks
= Trust file password: WebAS
« Confirm password: WebAS
« Security level: high (128 bit encryption)

If you use the same file for key and trust stores, you can specify the same file name for both properties:

» Key File Name: product_installation_root/etc/ServerK eyStoreFilejks
= Trust File Name: product_installation_root/etc/ServerK eyStoreFile.jks

If you only specify akey file name, the trust file name is automatically set to the same name as the key file name.
6. Theclient side requires only the ClientKey le.jk d ClientTrust: jks files. Modify the following linesin the sas.client.propsfile:
comibmssl.trustStore=CientTrustStoreFile.jkscomibm ssl.trustStorePasswor d=WebAScom i bm ssl . trust St oreType=JKScom i bm ssl
(128 bit encryption)

. keyStore=Q i ent KeyStoreFile.jkscomibm ssl.keySt orePasswor d=WebAScom i bm ssl . keySt or eType=JKScom i bm ssl . prot ocol =SSLv3com i bm CORBA. st andar dPer f or nQOPMbdel s=hi gh

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

5.6: Establishing trust association with areverse
proxy server

WebSphere Application Server can authenticate incoming user requests, but in somescenarios, like Web-based
applications, it is often desirable to delegate this work toanother process, typically areverse proxy server. This
delegation requires theestablishment of atrust relationship, or trust association, between
WebSphereApplication Server and the proxy server. In this case, the proxy server authenticates theclients for
WebSphere Application Server, which accepts the authentication because ittrusts the proxy. WebSphere
Application Server applies its authorization policies to therequests.

To delegate authentication work to a third-party server, two things must be done:

« You must have an interceptor, that is, a Java class, which is used by WebSphere Application Server to
receive requests from the proxy server.

« You must establish trust between the proxy server and WebSphere Application Server. Thistypically
requires the proxy to authenticate to WebSphere Application Server.

WebSphere Application Server provides a ready-to-use interceptor for Tivoli WebSealVersion 3.6, but you can
also write your own; see Writing a custominterceptor for more information. The other related information

discusses theconfiguration of WebSphere Application Server and WebSeal.

When the interceptor isin place and atrust relationship is established, WebSphereApplication Server is ableto
accept and process HTTP requests that come through the proxyserver rather than directly from the HTTP client.
The proxy server authenticates the HTTPclients and passes authenticated requests to WebSphere Application
Server. WebSphereApplication Server authorizes access to the requested resources based on the
application'sauthorization policies.

Before the authorization of clients can be delegated to a proxy server, the followingWebSphere prerequisites
must be met:

« Security must be enabled in WebSphere Application Server. If it security is disabled, incoming requests
cannot be selectively authorized and refused.

« The authentication mechanism used by WebSphere Application Server must be Lightweight Third-Party
Authentication (LTPA). You cannot delegate authentication to a proxy if you are using the local
operating system as your authentication mechanism.

« If you are using WebSeal Version 3.6 as your reverse proxy server, certificates are not supported as a
challenge mechanism. Only the basic authentication, that is, auser ID and password combination, is
supported.

« Trust Association must be enabled in the Authentication tab of the Security Center in the administrative
console.

119

5.6.1: Configuring trust association between WebSphereApplication Server and WebSeal Version 3.6

To atrust iation between i and WebSeal, you must perform configuration work for each ofthe following:
« WebSphere Application Server
+ Theinterceptor for WebSeal (configuration is optional)
« WebSeal

This file describes the configuration for each component andprovides a sample configuration.

Configuring WebSphere Application Server to run in trust association

Configuring WebSphere Application Server to run in trustassociation is a two-step process:
1. Enable trust association in the Security Center console.
2. Set up the trust-association interceptors that are going to receive HTTP requests from the trusted proxy server.

Enabling trust association

To inthe ty Center console, do

Start the administrative server for the domain, if necessary.

Start the administrative console, if necessary.

Click on the Console action bar and then choose Security Center from the drop-down menu.

Click the Authentication tab in the Security Center.

Select the Enable Web Trust Association check box inthe LTPA sattings group.

Complete the LDAP registry information, if necessary, by selecting L DAP. See 6.6.18.0.7: Properties for configuring LDAP support for more information.
Click OK to save the changes and close the SecurityCenter console.

N ook wNPE

Setting up trust-association interceptors
Create afile called named trustedservers.properties, and place the filein the product_installation_root/properties directory.

The trustedservers. properties file for WebSeal must include the followingthree lines and an optional fourth line:
com i bm webspher e. secur i ty. trustassoci ati on. enabl ed=t r uecom i bm webspher e. securi ty. t rust associ at i on. t ypes=webseal 36com i bm webspher e. securi ty. t rust associ at i on. webseal 36. i nt er cept or =com i bm ej s. securi ty. web. VébSeal Tr ust Associ at i onl nit er cept or com | bm webspher e. securi ty. trust associ ati on. webseal 36. conf i g=webseal 36

L g descri of the prop pai
+ com i bm webspher e. securi ty. trust associ at i on. enabl ed=t r ue
This property-val ue pair enables the use of trust assocation.
« comibm websphere. security. (rust associ ati on. t ypes=webseal 36
i alue pair whichyou trust. If you are using multiple proxy servers, you can specify a comma-delimited list as the value.
+ comi bm websphere. security. trust associ at i on. webseal 36. i nt er cept or = com i bm ej s. secur i ty. web. WebSeal 36Tr ust Associ at i onl nt er cept or
Thi; Pz the. for the proxy. When specifying this class, note the following:

0 Theclassmust be i ion on
& You only need to specify the implementation clasforanmlscepmronoe even if multiple pr classfor the eptor.
+ com i bm webspher e. securi ty. ust associ ati on. webseal 36. conf i g=nebseal 35
OPTIONAL. This property pail file for the 6 interceptor. The of thi: d bed under "Configuring the WebSeal interceptor.”
Each property-value pair must appear on asingle linein the file. Pairsappearing on more than one linein have been broken il

Configuring the WebSeal interceptor (optional)

WebSphere Application Server provides aJavaclasscom i bm ej s. secur i ty. web. VebSeal 36Tr ust Associ at i onl nt er cept or that implements the essential interceptor for enabling trust associationbetween WebSeal 3.6 and WebSphere Application Server.

By default, the interceptor processes all HTTP requests it receives.Y ou can configure the eptor to restrict the i LTI icti be specified by identifier,originating host, and originating port, and by combinations. This configuration is optional.
To configure the interceptor, create a property file for theoptional configuration-file property, and place the file in the<product_i 1_root: y. Inthi le, we create a to the the optional property-value paircom i bm webspher e. securi ty. trust associ ati on. webseal 36. confi g in properties fil
U i will process. The properties act as requirements onrequests, and each request must meet all of the i Requests not meeting all of not il they are passed on to WebSphere ApplicationServer for processing.

Thefile can set values for any of the following WebSeal properties, forexample:
« com i bm webspher e. securi ty. webseal 36. i d=i v-user, iv-creds

This property-value pair tells the interceptor to filter incoming HTTP requests by identifier. The value is acomma-delimited list of identifiers. Every HTTP request ed by thei Only the contain all of the listed ID: header names for processing by thei All other jests passed on to ppli Server for processing in the usual way. By default, al HTTP requests
are considered by the interceptor for processing
Because the WebSeal 36 interceptor should process only HTTP WebSed, the r value for use with WebSphere Application Server sets this property to one or both of these values:

0 iv-user

0 iv-creds

The example property-value pair uses both.
« com i bm webspher e. securi ty. vebseal 36. host names= <host name1>, <host nane2>
This property-value pair specifies alist of names of the machines on which WebSeal servers run and from which the interceptor can accept HTTP requests. If this property is not set, the interceptor accepts requests from any host.
« comibm \nebsphere security. webseal 36. port s=444
which HTTP

prop pal g

order to from other por . Thelist applies to all hosts from which the interceptor accepts requests. There s no way to specify alist of portsfor one host and a different list for adifferent host. If this property is not st, from any port for processing.

Configuring WebSeal
The last step isto configure Tivoli's WebSeal product. This product is notpart of WebSphere Application Server, so you should consult the WebSeal documentation for details and in case of problems.

To enable communication between WebSeal and WebSphere Application Server,the the Web server being used by WebSphere Application Server must becomean SSL junction in the schema of the Tivoli Policy Director. If the Webserver is using the default SSL port, port 443, creste an SSL. junctionwith the following junctioncp command:

create -c -t ssl -h <hostname> /<juncti on-nane>

where
« The- ¢ flag directs WebSedl to passit: ication i in the basic ication header of every request that it sends to pplication Server. Th ication i isthe user 1D and password of the WebSeal server. This allow: pplication Server to request that it receives from the WebSeal server.
« The-t ssl option requeststhe creation of junction of the type SSL.
« The-h <host name> option specifies the host machine of the Web server used by WebSphere Application Server.

For example, the command:
create -c -t ssl -h was_host.ral ei gh. i bm com / nyj uncti on
creates an SSL junction called myjunction for the machine was_host.raleigh.ibm.com.

I the Web server i not listening to the default SSL port, port 443,use the port option to th ioncp command to indi portbeing used:
-p <port_nunber >
The WebSeal server must have a user ID and password it can use whenit authenticates to WebSphere Application Server. To set up this authenticationinformation, you must do the following:
1. Designate alD from the WebSphere Application Server user registry for use by WebSeal. Y ou can create a special WebSeal 1D in WebSphere Application Server, or you can simply use an existing |D from the WebSphere Application Server registry.
2. Put this user 1D and associated password in the WebSeal configuration file, iv.conf. In thisfile, you must have the following:

basi c_aut h_user nane=<user I d > basi ¢_aut h_passwd=<passwor d>
where <userld> and <password> are valid account from the pp Server registry.
Because SSL isinvolved in the junction, you must ensure that the Webserver being used by ppl Server nfigured with SSL \gser only. Inthi WebSeal playsacl le. Therefore, you must copy the certificate of theissuing CA of theWeb into the WebSeal fi di

Please consult the WebSeal Policy Director manual for detailed informationon setting up SSL connections between WebSeal and ajunction server.During the procedure, be sure to update the configuration file for thesecurity manager, secmgrd.cont, to include the following line:
junction-ca-cert-file = <ca-certfile>

where <ca-certfile> path of the the CA servers, for example,
Jopt/intraversel/lib/certs/junctioncacert.pem
Without the line, basi ication will not tak and ppli Server.

Finally, to access a resource through WebSeal, you need to use SSL. Therefore,you must ensure that WebSeal itself is configured for SSL.

Sample configuration

This section describes a sample configuration.
+ WebSphere Application Server isinstalled on the machine was_host.raleigh.ibm.com.
« The Web server is Netscape Enterprise Server, aso installed on the machine was_host.raleigh.ibm.com. The Web server is listening on port 4343 for SSL requests.
« The LTPA security mechanism is used, with the LDAP server residing on the machine Idap_host.raleigh.ibm.com.
+ WebSedl isinstalled on the machine webseal _host.raleigh.ibm.com. It listens on port 444 for SSL requests.

« A junction was created using the following command:
junctioncp create -c -t ssl -h was_host.ral ei gh.ibmcom-p 4343 /nyjunction

« Inthe WebSeal iv.conf file, the following lines are included:

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

basi c_aut h_user nane=web_user basi c_aut h_passwd=t est passwor d
where the 1D web_user with password inthe ppl Server registry.
+ Inthe Policy Director secmgrd.cont file, the following lineis included:
junction-ca-cert-file=/opt/intraversellib/certs/junctioncacert.pem

« ThelD testuserl with password sherlock is avalid WebSedl user. It is also avalid WebSphere Application Server user.

A user tests the system by logging in s testuser1 and aitempting accessthe pplication Server servlet p:
« To test access without WebSeal, the user enters the following in the Web browser:
https:// was_host. ral ei gh. i bm conf ser vl et/ snoop
+ To test access through WebSeal, the user enters the following:
https://webseal _host. ral ei gh. i bm com 444/ ai nf ser vl et/ snoop
In both cases, a prompt is displayed in which the user 1Usherlock i and th let is di: the Web browser.

5.6.2: Frequently asked questions about trust
associationbetween WebSphere Application Server
and WebSeal

Can | still submit requestsdirectly to WebSphere Application Server,without passing through Web Seal ?
Y es. WebSphere Application Server will behave in the usual manner when requests are not received from the
WebSeal server. However, please review the above section about the WebSeal 36 interceptor.

What happensif security isnot enabled in WebSphere Application Server,and the HTTP request is given
tothe WebSeal server?

The WebSeal server will still try to authenticate the user. If authenticationis successful, WebSphere Application
Server is going to serve the requestwhether or not the user has permissions to access the resource.

Can | havetrust associations with several WebSeal servers, possiblyfrom different locations, at the same
time?
Y es, to the extent that different WebSeal servers are alowed to createjunctions to the same Web server.

Will WebSphere Application Server single sign-on (SSO) work with WebSeal 3.6 as a front-end?

Yes. If your setup is such that there is only one WebSeal server andseveral junctions to Web servers, SSO itself
is taken care of by WebSeal,and in this case, the SSO domain name of WebSphere ApplicationServer
installation might not even matter. WebSphere Application ServerSSO will work the usual way even for a setup
consisting of several WebSeal servers, each one having ajunction to a Web server being used byWebSphere
Application Server.

Can | usethe same LDAP directory for my WebSeal server and WebSphereApplication Server?
Y es. However, users and groups that were created by the Policy Directoritself may not be shared with
WebSphere Application Server as schema specificto the Policy Director might be in use.

What if | want to demand that all requests pass through my WebSeal server?
To have all requests pass through the WebSeal server, simplydo none of the optional configuration of the
interceptor.In that case, every HTTP request is processed by the interceptor.

Can | use custom login with trust association?
No. Thereis no point in doing so. Remember that WebSeal does theauthentication. Therefore, when the request
reaches WebSphere ApplicationServer, it ignores any challenge type declared for your application.

What happensif | disabletrust association and access a WebSphereApplication Server resource through
the WebSeal server?

The WebSeal server will still try to authenticate the user. However, because there is no interceptor involved,
WebSphere Application Server will applywhatever challenge type is appropriate for the resource requested. If
thechallenge type is basic, the WebSeal ID and password will alwaysbe used. Thus, the end user ID and
password will be ignored.Certificate challenge type will not work. Custom login will notwork either.

122

5.6.3: Writing a custom interceptor

If you are using athird-part reverse proxy server other than TivoliWebSeal Version 3.6, you must provide an implementation
class for theWehSphere interceptor interface for your proxy server. This filedescribes the interface you must implement.

Using the TrustAssociationInterceptor interface

WebSphere Application Server provides the interceptor Java
interface,com.ibm.websphere.security. TrustA ssociationl nterceptor, whichdefines the following methods:

e public boolean isTargetlnterceptor(HtpServl et Request req) t hr ows
WebTr ust Associ ati onExcepti on;

e public void validateEstablishedTrust(HttpServl et Request req) t hr ows
WebTr ust Associ ati onExcepti on;

e« public String getAuthenticatedUsernanme(HttpServl et Request req) t hr ows

WebTr ust Associ ati onExcepti on;

The isTargetlnterceptor method is used to determine whether therequest originated with the proxy server associated with the
interceptor.The implementation code must examine the incoming request objectand determine if the proxy server forwarding
the request is avalid proxy server for thisinterceptor. The result of this methoddetermines whether the interceptor processes the
request or not.

The validateEstablishedTrust method determines if the proxy serverfrom which the request originated is trusted or not. This
methodis called after the isTargetl nterceptor method. The implementationcode must authenticate the proxy server. The
authentication mechanismis proxy-server-specific. For example, in the WebSphere-providedimplementation for the WebSeal
server, this method retrieves thebasi c-authentication information from the HTTP header and validatesthe information against
the user registry used by WebSphere ApplicationServer. If the credentials are invalid, the code throws
theWebTrustA ssoci ationException exception, indicating that the proxyserver is not trusted and the request is to be denied.

The getAuthenti catedUsername method is called after trust hasbeen established between the proxy server and WebSphere
ApplicationServer. WebSphere Application Server has accepted the proxy server'sauthentication of the request and must now
authorize the request. To authorize the request, the name of the original requestor must be subjectedto an authorization policy to
determine if the requestorhas the necessary privilege. The implementation code for thismethod must extract the user name
from the HTTP request headerand determine if that user is entitled to the requested resource.For example, in the
WebSphere-provided implementation for theWebSeal server, the method looks for an iv-userattribute in the HT TP request
header and extracts the user | Dassociated with it for authorization.

After the interceptor class has been created, WebSphere ApplicationServer must be configured to use it by setting propertiesin
thetrustedservers.properties file. This procedure is described for the WebSealinterceptor in Configuring trustassociation

between WebSphere and WebSeal, and the proceduredescribed there varies as follows:

» Establish aname for your proxy to use in the WebSphere Application Server configuration properties. Use this name
when you set the property com i bm websphere. security. trustassoci ati on. types. For example, if
you call your proxy myProxy, then set the property as follows:
com i bm websphere. security.trustassoci ati on.types=myproxy

» Based on the name you specified as the type of the proxy, WebSphere Application Server looks for a property that
names the implementation class. Set the value of this property to the name of your implementation class. The
implementation class must be locatable from the information on the class path.

The name of the property is based on the name you assigned to your proxy according to this pattern:

com i bm websphere. trustassoci ati on. <proxyname>. i nt erceptor

For example, for the proxy called myProxy, the property nameis

com i bm websphere. trustassoci ati on. nyproxy. i nter cept or, and for the proxy type webseal 36, the
property nameisiscom i bm webspher e. trust associ ati on. webseal 36. 1 ntercept or.

Making your custom interceptor configurable

To allow configuration of your custom interceptor by reading aconfiguration file, you can subclass the
WebSphere-providedclass com.ibm.websphere.security. WebSphereBaseT rustA ssoci ationl nterceptorand provide
implementations of the following methods:

o abstract public int init(String propsfile);
123

o abstract public void cleanup();

The init method reads the configuration file specified for theinterceptor. The configuration file is specified in the
trustedservers.properties file by using a property, the name of which is determined by thispattern:

com i bm websphere. trustassoci ati on. <proxynane>. confi g

For example, for the proxy called myProxy, the property name

iscom i bm websphere. trustassoci ati on. nypr oxy. confi g, and forthe proxy type webseal 36, the property

nameiscom i bm websphere. trustassoci ati on. webseal 36. conf i g.The value of the property is the name of
the configuration file for theinterceptor.

The cleanup method does any necessary termination work for the interceptor.

124

5.7: The Secure Association Service (SAS)

When global security is enabled in WebSphere Application Server, alrequests from clients to Enterprise
JavaBeans are sent as RM I/l OPmessages via the Object Request Broker (ORB) to the server that hoststhe
enterprise beans. As part of every such request and response, theORB invokes the Secure Association Service
(SAYS) on the client and the serversides. On the client side, SAS intercepts requests before they are sent,obtains
the client's security credentials, attaches the credential sto the request as part of the security context, and sends
the request.On the server side, SAS intercepts the incoming request, extracts thesecurity context from the
message, authenticates the client's credentials, and passes the request to the enterprise bean container, wherethe
request is authorized. The response is also routed throughthe SAS interceptors.

This article discusses the work performed by the Secure AssociationService and describes the properties
available to configure its behavior.

The business methods in the client do not need to be written tohandle security. Security policies are defined
during the deploymentphase, and WebSphere Application Server automatically enforces thedefined security
policy, which specifies authorization requirements,before invoking the requested methods. The only thing
required of theuser of aclient program is authentication information. In some cases,the client program uses the
CORBA security interfaces to establishthe proper credentials programmatically, before methods are invoked.In
applications that do not establish credentials programmatically,SAS automatically prompts the user to collect
the necessary information.The information collected is determined by the settings configuredfor the

com i bm CORBA. | ogi nSour ce property. For example,if the value of this property is specified as

pr onpt , SASprompts the user for auser ID and password combination.If the user does not enter the
information within a specified periodof time, determined by the value of the

com i bm CORBA. | ogi nTi nmeout property, SAS removes the login prompt and the request is handledwith
no security. If the requested method is protected, therequest will fail because the user does not have the
necessarypermission. If amethod allows everyone, authenticated or not,access, the request can succeed.

125

5.7.1: SAS on the client side

When an enterprise-bean client, for example, a Java client, a servlet,or another enterprise bean, invokes a remote method, SAS
interceptors arecalled to do the following work on the client side:

1. Establish an SSL connection
2. Establish a secure association between the client and the server
3. Send the request to the server

The following sections describe these steps in detail.

Establishing an SSL connection

Establishing an SSL connection requiresinformation from both the client and the server prior. The clientobtains some of this
information from the client-side property file,sas.client.props. Some of the information must come from the server,which stores the
information with the naming service. To contact aserver, the client retrieves information about the server from thenaming service.
The returned information includes an interoperabl eobject reference (IOR), which the client uses to determine the type of connection
expected by the server. If global security is enabledwithin WebSphere Application Server, serversinsert a structure ofsecurity
information, called a security tag into their IORsbefore registering the |ORs with the naming service.

Theinformation from the security tag in the IOR and from thesas.client.propsfileis sufficient for creating an SSL connection.If the
necessary information for an SSL connection is not present, aT CP/IP connection is created instead. For example, if the client
doesnot find a security tag in aserver's IOR, an SSL connection cannot becreated. If the target method is secured, the request must
come in ona secure connection. Requests coming in on a TCP/IP connection alwaysfail for alack of permission provided the
method being invoked isprotected; no credentials are created for a TCP/IP connection. Atypical error message that indicates this
condition is:

aut horization failed for / while invoking nethod A
If global security is enabled, RMI/11OP connections are typicallymade using SSL. There are afew exceptions, for which

TCP/IPconnections are automatically made. These exceptions includename-server lookups, is_a queries, and a few other
specialmethods. SSL connections are always the default for business methods.

The pure Java client or server acting as a client (that is, bymaking an outgoing connection to another server) gets some of
theinformation it needs from the object's IOR from the server. Additionalinformation is obtained from the client propertiesfile.

For a pure Java client (one that executes in a separate processfrom the server), the properties file used is the one specified on
thecom.ibm.CORBA.ConfigURL property on the Java command line. Thisisusually the sas.client.props file.

For a server acting as a client, the property file used is thesas.server.props file on the server system. Some of the informationin the
sas.server.props file can only be changed by using theadministrative console. Other parts of the sas.server.props file canbe changed
using atext editor.

Most of the SSL and login configuration is done by using theSecurity Center in the administrative console and written into
theWebSphere Application Server repository. After the administrativeserver restarts, the configuration information is migrated
from therepository to the sas.server.props.futurefile. It is then mergedinto the sas.server.props file, which is used when the
adminstrativeserver restarts.

The property file for an applicationis specified as a Java property on the command line when the applicationis started. The
property, com i bm CORBA. Conf i gURL, requires avalid URL as avalue. For example, the URL for the sas.client.props
file,assuming a default installation, is specified as follows:

o For Windows NT systems:
com i bm CORBA. Confi gURL=file:/c:/WbSphere/ AppServer/properties/sas.client.props
o For UNIX systems:
com i bm CORBA. Confi gURL=file:///usr/WbSpher e/ AppServer/properties/sas.client.props
Y ou can verify the URL syntax by following the URL with a browseron the system where the file resides. If the browser can read

thefile, the URL isvalid. The com.ibm.CORBA.ConfigURL property istypically specified on the java command line of the client
program byusing the -D option in front of the property.

Theinformation required before SAS can make a secure connection isshown bel ow.

Information obtained from the server's IOR
126

This section describes the information retrieved on the client sidefrom the server's IOR and lists possible server-side sources for
thatinformation. For example, some of the information in the IOR comesfrom server-side properties.

« Server TCP/IP address: Thisis determined by the TCP/IP configuration.

« Server TCP/IP port: Thisisusually assigned dynamically, but it can be explicitly set by using the server-side property in
the sas.server.propsfilecom i bm CORBA. Li st ener Port .

« Server SSL port: Thisisusually assigned dynamically, but it can be explicitly set by using the server-side property in the
sas.server.propsfilecom i bm CORBA. SSLPort .

« Server security name: Thisis configured using the Administrator's Console through the Security Center. It contains the
realm and user ID of the target server. The realm typically describes the name of the authentication server. The format of
the value varies with the authentication mechanism:

o For Loca OS:
DOVAI N/ server _id

The DOMAIN attribute can be either a Machine Name or Domain Name depending upon whether the WebSphere
server is configured on adomain (if your operating system supports the domain concept).

o For Lightweight Third-Party Authentication (LTPA):
LDAP HOST AND PORT/ server _id

The server_id must be avalid user in the LDAP registry. The LDAP administrative ID is not supported for use as
the WebSphere Server Security ID. If you want to specify auser called "cn=root", you can add avalid LDAP user
record where the UID has cn=root specified to make it searchable.
« Quality of protection (QOP) required: Thisis set by using the server-side property
com i bm CORBA. st andar dCl ai nQOPMbdel s. The value of this property determines the quality of the SSL
connection required by the server. If aclient attempts to connect at a value lower, it will automatically be bumped up to this
value. However, if the client tries to make a connection at a higher quality of protection, the connection should be opened at
the higher value. Valid values are:

o hi gh: 128-bit encryption and digital signing
o medi um 40-bit encryption and digital signing
o | ow: No encryption or digital signing

Information obtained from the client's properties

This section describes the information retrieved on the client sidefrom the client's properties files.

« Quality of protection (QOP) offered: Thisis set by using the client-side property
com i bm CORBA. st andar dPer f or mMQOPMbdel s. The value indicates what the client expectsto do in creating an
SSL connection; however, the server's quality-of-protection value can require the client to exceed its expected level. Valid
values are:

o hi gh: 128-bit encryption and digital signing
o medi um 40-bit encryption and digita signing
o | ow: No encryption or digital signing
« Login information: Thisisinformation needed to authenticate the user. It is set by using the following client-side
properties:
0 polmdi bm CORBA. | ogi nSour ce: This determines the source of the authentication information. Valid values
include:

= pronpt : A graphical panel is presented for the user for collecting the user ID and password. Pure Java
clients must call the JDK API Syst em exi t (0) at the end of the program in order to properly end the
Javaprocess. Thisis because the JDK starts a backward AWT thread that is not killed when the login prompt
disappears. If you choose not to useaSyst em exi t (0) call, pressing Ctrl-C ends the process.

= st di n: Theuser is prompted for user ID and password by using a non-graphical console prompt. Currently
only supported by a pure Javaclient.

= properties: Theuser ID and password are retrieved from the following two properties:
com i bm CORBA. | ogi nUseri d
com i bm CORBA. | ogi nPassword

If you are using a client-side property fileto log in (for instance,
com i bm CORBA. | ogi nSour ce=pr operti es), you must specify the realm where you arelt5y7ing to

log into. There are two waysto do this:

= Setthecom i bm CORBA. pri nci pal Nane property inthat filetor eal m' | ogi nUseri d,
where the loginUserid is the same as the value of thecom i bm CORBA. | ogi nUser i d property
and the realm matches the realm specified for the server localos machine name or domain name
depending on the type of registry used. Note that the realm name is case sensitive. For example:
com i bm CORBA. | ogi nUseri d=userid
com i bm CORBA. pri nci pal Name=REALM useri d

= Specify the realm on the same line as loginUserid. For example:
com i bm CORBA. | ogi nUser i d=REALM userid

= key fil e: Theuser ID specified by using the property com i bm CORBA. | ogi nUser i d and therealm
name retrieved from the IOR are used to extract a user ID and password for authentication from akey file.
The name of the key file to use is specified by setting thecom i bm CORBA. keyFi | eNane property.

o com i bm CORBA. aut henti cat i onTar get : This value determines the authentication method used to
establish credentials. The valid values are:

= basicauth
= | ocal os
[tpa

The only supported value for a pure Javaclient isbasi caut h. A server actingas a client performs alogin by
properties. This creates basi caut h credentials, which are then authenticated by the target server. On the server
side, | ocal os and| t pa can be specified; the value you select determines the type of registry against which
basi caut h credentials are verified.

« Client SSL Configuration Properties: See 5.7.3: ORB SSL Configuration

Thisinformation is used by SAS to construct the SSL connectionto the server. During this process, the client uses the publickey in
the key store file to secure messages.

WebSphere Application Server provides several dummy keyring filesfor use in test and devel opment environments. These keyring
filesshould not be used in a production environment where messageprotection is desired. The certificate in this keyring filecan be
used to do valid encryption, but the private key neededfor decrypting the messagesis readily available.

During the SSL handshake between the client and server, thequality-of-protection level for the connection is determined
byevaluating the client and server settings; the result is called thecoalesced QOP. If the server setting is higher than the
clientsetting, the server setting is used for both. The server setting isthe minimum acceptable level for the connection. If the client
settingis higher but the server supports the higher level, then the clientsetting is used. If the server does not support the higherlevel
offered by the client, the client uses the server setting.

The coalesced QOP value is used to determine the cipher suite to usewhen creating the SSL connection. The value determines the
characteristicsof the SSL connection as follows:

« If the coalesced QOP isthe hi gh value, the messages are encrypted with 128-bit algorithms and digitally signed.

« |f the coalesced QOP isthe medi umvalue, the messages are encyrpted with 40-bit algorithms and digitally signed.

« |f the coalesced QOPisthel owvalue, only digital signing occurs.
In cases where client authentication is required but the logininformation is not specified, the message is sent over an

insecureT CP/IP connection. Ensure that methods are protected usingauthorization if you do not want unauthorized users to access
them.When a TCP/IP connection is used to access a protected method, anauthorization failure occurs.

Establishing a secure association between the client and server

Once aconnection is created at the server, SAS requires that a secureassociation between the client and server be established. This
entail sauthenticating the client on the server side and establishing a SAS securitysession on both the client and server sides. Most
problems that occur with authentication will happen during this process. Thisis where the serverauthenticates the client and returns
success or failure. In many cases wherea failure occurs, you can expect to receive aNO_PERMISSION exception. To getmore
information from the exception, use the getMessage() method to get a textdescription about the failure.

Sending the request to the server

After the SSL connection is created and a secure association isestablished, the client's request is sent to the server.

Re&giving aresponse from the server

Once the server processes the request it sends a response back to the client. The SAS client processes the responseto determineif it
was successful or not. If not successful, it will throw an exception to the business client to handle.Some of the exceptions you can
expect to see are:

The exception is usually one of the following:

« 0rg.omg.CORBA.NO_PERMISSIONTYypically received because the userid and password entered on the client failed to
authenticate. This could be due to an incorrectuserid/password or an internal reason such as the user registry being
unavailable.

« 0rg.omg.CORBA.COMM_FAILURETYypically received when a server is not listening on the host and port specified in the
IOR of the business object. Forexample, if an application server has been stopped which was sharing a particular resource,
access to that resource will return a COMM_FAILURE.

« 0rg.omg.CORBA.INTERNALTypically received when the SAS code reaches a path that was unexpected or amessage is
out of sequence. This can happenunexpectedly and SAS tracing may be required.

129

5.7.2: SAS on the server side

When an RMI/I1OP request arrives at a server, SAS intercepts therequest and performs the necessary security
tasks before the businessmethod is invoked on the server. After the method isinvoked, aresponse is sent back
to the client.

Configuring the Server

Configuring a server for security starts at the administrativeconsole in the Security Center. The properties
specified there arepropagated into the WebSphere Application Server repository and theneventually to the
sas.server.props file for use by the SAS runtime.Some of the properties in the sas.server.props file are from
theSecurity Center configuration and some are defaults which are editablein the file. The sas.server.propsfile
documents which properties canbe changed without getting overwritten and which will get overwrittenby the
information in the repository. See 5.7.5: SAS properties reference for more infoabout these properties.

Authenticating the user

When a server first receives arequest, a user must beauthenticated and authorized before the method can be
invoked. Partof SAS's responsibility isto authenticate the user to the userregistry to validate that they are who
they say. The SAS programming model has APIs forauthenticating users on both the client and server sides.
Currently,the only client authentication supported is Basic Auth (i.e.,authenticating a userid and password). SSL
client authentication isplanned for afuture release.

Invoking the method

Once SAS authenticates the user, a credential is created withinformation about the user. This credential is
associated with thethread of execution and the method is invoked in the container afterbeing authorized.

Sending aresponse back to the client

After the method isinvoked, aresponse is sent back to the client.

Credential forwarding - support for multiple nodes

Local OS credentials are only supported on the same node they werecreated. Therefore, when using the Local
OS registry, only asinglenode configuration is supported. If you need a multi-nodeconfiguration, LTPA isthe
only supported option as the credential scan be validated with trust on another node (that is, a differentphysical
machine).

Credential expiration for LTPA credentials

When using the LTPA authentication mechanism, authenticatedcredentials have a configurable expiration
period. When users make arequest to a server, acredential is created on the server side andassociated with the
user's SAS security session on the server side.After the initial user request is made to a server, the SAS
securitysession is stateful (meaning it will remember the state of the user).Every subsequent user request will
use the same SA'S security sessionand the same user credentials. Make sure that you set a high enoughvalue for
the LTPA credential expiration time to keep usercredentials from expiring after a series of requests.

130

5.7.3: ORB SSL Configuration
Thess

Configuring SSL through an SSL Settings panel

s adLOAPS L atingspares.
Tho g . onesaL -

1 S neamnarnecne.
2 St Sy ot

3 Set e S5 Contgrsin

4 Mooty porolowng S5 prepries

o erame cicSphorappSavaRacDUTTy Sk B e s
Koy llopasnons WeehS

ot et Witk
Sty Leve: i (123 5t ccypion)

Koy e name c\sphathppsanenacummySavaK oS
R ————

N, mosy ofolowinglnesin o sl sopslotocorgue e 5.

Linsalaon rostacrecry. Linsalson rocebin

keystore.
Ky aeropasard
e e o eSS ey et

w
Keyfetermat

s 0EK. KeyStoroType.
o tlename.
The ol eSS s e

trustsiore,
s flepasverd

Quaity f Prseton (esrity L)

Com b 0. = andarder o rCCPARe
el can el ong e e h (hecata,

Com b ORBA. 1 andar Al o nQCFGel 31 vel

SS._RSA WTH RO1 170 \DSSSL FSA VI TH FOI 125 SHISSL RSA WTH (€S CPC SIS

SSL_RSA_EXPORT_WI TH_O4_40_MISSSL_RSA BXPORT_WA TH_CESAD_CBC SHASSL_SA EXPORT_ W TH_RC2_CBC,40_MISSSL_DHE_ s, EYPORT_W TH_DE540_CBC SHASSL_THE 05, EXPCRT_W TH CES40_CBC. 544

SSL_RSA W TH ML MOSSSL_RSA W TH NLL_SHASSL_CH anan W THRO4_128_MDSSSL_CH anon W TH CES_CRC_ SHSSL_OH_anon W TH_SDES.EDE. CBC_ SHASSL_CH anon_EXPORT_W TH_RCA_40_MOSSSL_DH anon_EXPCRT_W TH CESIO_CBC. SHA

SSL_RSA VI TH MAL_MDSSSL_RSA W TH NAL_SHA
EnableCrypto Tokn Supert

Toarstay

e
Lty File TheDLL or e ctfc 1t et hetefceto ey ke i
[————————y
e apponed cypo sl el
Dovee e xoustloby S5 clans.
- 1B Sty it e
© Garfts e
- Farbon ey 10002000 (US8 et dice)
Do it e ustioby S5, clatsand svrs
e
« ncierréorce

« Farbou oot
Dynamic Properties.

comiom s protod

S (k) S 5420, 59120, 431
s

TUs Sppers s
SSL_TLS Sipons SSL1ZD S50 SSL4AL

W Imseertaon
P T———
camiom s kMg inlareniion
PR ———— Inpercain
camom s ruaanager
Inperttn

camiom st ruaSaeType
The s of h e s Pl el e JKSPK CS12, 10 CEK
PR ———"

SSL interoperability issues

Keapnefallowing ety suesin i e corigingSs.-

(areeTisorss. o

B [enty e

Debugging SSL Handshake Problems

ver.teacest i g nserver = trace. o
o bie R icect he slction v, teflonng.
1 S ool vingintre VM Avcuments it of teplicaon e
om | b ORBA. Debug= o | b CCRBA ComT ace-t ve
PR ———————
racespesiicaton sing ORORaS=l-eced
Tracocutput e cly_rooe direceypportiog
N, bl uping appertfor I by g el

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

5.7.4: Tracing SAS

The Secure Association Service (SAS) uses a messaging model, so for everySAS request, thereisaresponse. In a
distributed environment, wherea client can call a server, which can then act as a client and callanother server, solving
security-related problems often requirestracing multiple servers simultaneously.

Freguently, these servers reside on the same machine; the interactionbetween an administrative server and an
application server is often whereproblems arise. The administrative server includes a component calledthe security
server, which performs authentication work, andmessages are frequently exchanged between the application serverand
the administrative server during authentication. Furthermore,the administrative server stores authorization information
in arepository, so authorization requests result in additional trafficbetween the administrative server and the application
server.

Collecting information about SAS messages is often crucial fordebugging security problems, and SAS provides a set of
propertiesthat govern the collection of SAS messages, including the typesof messages and the destination of the
collected messages. These propertiesare set in the property file used by each server; thisistypically the sas.server.props
file.
The SAS message and trace logging facility captures informationabout the following different types of events:

« Activity: indicates that a specific event has occurred

« Error: indicates that a run-time problem has occurred and suggests a potential solution

« Exception: indicates that a run-time problem has occurred and prints a corresponding stack trace

« Trace: tracks the path through the code so that, when an error occurs, you can determine the events preceding it

This behavior is determined by the value of thecom i bm CORBA. securityTracelLevel property.

Thevalue of thecom i bm CORBA. securi t yDebug propertyis used to determine whether the collected messages
can be displayedon the standard output stream.

In addition, you can selectively send the messages for each type of eventto afile. For each type of event, you set an
output-mode property. The output mode determines determines where the messages collected forthe event, for example,
activity, are collected. Y ou can use any ofthe following output modes:

« File: output goesto the destination set inthecom i bm CORBA. securityTraceCQut put property, and a
new file is created after each server restart.

« Fileappend: output goes to the destination inthecom i bm CORBA. securi t yTraceQut put property, and
new output is appended after each server restart.

» Console: output is redirected to the standard output stream.

« Both: output isredirected to both the standard output stream and to the destination set in the
com i bm CORBA. securityTraceQut put property, and anew fileis created after each server restart.

« None: no output occurs.
The output mode is set for each type of trace event. Each ofthese properties can take any of the output modes as values:
« com i bm CORBA. securityActivityQut put Mode
« com i bm CORBA. securityErrorsQut put Mode
« com i bm CORBA. securityExcepti onsQut put Mode
« com i bm CORBA. securityTraceCQut put Mbde

To send al trace messages to the standard output stream, use thefollowing settings:
com i bm CORBA. securit yDebug=consol ecom i bm CORBA. securityTracelLevel =i nt er mredi at e

132

5.7.5: SAS properties reference

This following describes the properties used in the configuration filessas.client.properties and
sas.server.properties. These files containlists of property-value pairs, using the
syntax<pr opert y>=<val ue>.

The property names are case sensitive, but the values are not; thevalues are converted to lower case when the
fileisread.

In WebSphere Application Server version 4.0, some propertiesdo not appear in the sas.server.propsfile. Instead,
theseproperties must be configured by using the administrative console. The entry for each property indicates
how it can be modified.

Authentication properties

com.ibm.CORBA .authenticationTar get
Specifies the mechanism for authenticating principals.

valid values. basicauth, localos, Itpa
default value: basicauth

client/server usage: can be directly edited in the sas.client.props file; the server-side value must be set
by using the Security Center within the administrative console

com.ibm.CORBA.loginUserid
Holds the name of an authorized user of the user registry, used when thel ogi nSour ce property is
specified aspr oper ti es. The corresponding password is stored inthe | ogi nPasswor d property.
valid values. auser name in the registry
default value: no default value
client/server usage: can be directly edited in the sas.client.props file; the server-side value must be set
by using the Security Center within the administrative console

com.ibm.CORBA .loginPasswor d
Holds the password for the user named inthel ogi nUser i d property, use whenthel ogi nSour ce
property is specified aspr operti es.
valid values. the password for the user named inthel ogi nUser i d property
default value: no default value
client/server usage: can be directly edited in the sas.client.props file; the server-side value must be set
by using the Security Center within the administrative console

com.ibm.CORBA .principalName
Specifies the principal under which the WebSphere administrative server runs. The format is
REALM/user|D.
valid values. arealm name and a user name in the registry
default value: no default value

client/server usage: can be directly edited in the sas.client.propsfile; the server-side value must be set
133

by using the Security Center within the administrative console
com.ibm.CORBA .loginSource
Indicates the source for the user IDs and passwords.

valid values. prompt, properties, stdin, key file, none
o Thevalue st di n issupported only in the sas.client.propsfile.

o Thevauenone istypically used for applications that perform programmatic logins before they
require credentials on athread of execution.

default value: prompt

client/server usage: sas.client.props and sas.server.props
com.ibm.CORBA .loginTimeout

Specifies the length of time (in seconds) for which the login window is displayed to a user for entering
login information (realm, user 1D, password).

valid values. 0to 600 (0 to 10 minutes)
default value: 300 (5 minutes)

client/server usage: sas.client.props and sas.server.props

SSL Properties

For more information on configuring SSL, see5.7.3: ORB SSL Configuration.

Miscellaneous properties
com.ibm.CORBA .securityEnabled
Indicates whether security is enabled or not.
valid values. false, no, true, yes
default value: true

client/server usage: can be directly edited in the sas.client.props file; the server-side value must be set
by using the Security Center within the administrative console

com.ibm.CORBA .bootstrapRepositoryL ocation

Holds the full path of the bootstrap repository file, which contains information about security properties
needed during the boot process.

valid values:. the absolute path to the repository file
default value: <server_root>/etc/secbootstrap

client/server usage: sas.server.props only

Trace and message properties

com.ibm.CORBA .securityDebug

Specifies whether debugging messages are displayed on the console or not.
134

valid values; console, false, no, true
default value: false

client/server usage: sas.client.props and sas.server.props
com.ibm.CORBA .securityTracel evel
Determines the level of tracing provided.

valid values. none, basic, intermediate, advanced
o Tracelevel basi c reports basic messages and israrely used

o Tracelevel i nt er medi at e istypically used to troubleshoot long-run problems to minimize
tracing

o Tracelevel advanced isused in most cases for troubleshooting
default value: none

client/server usage: sas.client.props and sas.server.props
com.ibm.CORBA .securityTraceOutput

Determine the output filefor SASwhenfi |l e, fi | eappend, or both are chosen for the output mode
properties (securi t yActi vi t yQut put Mode, securi t yEr r or sQut put Mode,
securityExcepti onsQut put Mode, or secur it yTraceQut put Mode).

valid values: avalid path and file name in the file system.
default value: <server.root>/logs/sas.log

client/server usage: sas.client.props and sas.server.props
com.ibm.CORBA .securityActivityOutputM ode
Determines where to direct activity messages.

valid values. none, file, fileappend, console, both

o fil e:output goesto the destination set inthecom i bm CORBA. securi tyTraceCQut put
property and a new fileis created after each server restart.

o fil eappend: output goesto the destination in the
com i bm CORBA. securityTraceQut put property and new output is appended after
each server restart.

o consol e: output isredirected to the standard output stream.

o bot h: output is redirected to both the standard output stream and to the destination set in the
com i bm CORBA. securityTraceQut put property, and anew fileis created after each
server restart.

0 Nnone: no output occurs.
default value: file

client/server usage: sas.client.props and sas.server.props
com.ibm.CORBA .securityErrorsOutputMode
Determines where to direct error messages.
valid values: none, file, fileappend, console, both
(The values work as described for thesecuri t yActi vi t yQut put Mode property.)
135

default value: both

client/server usage: sas.client.props and sas.server.props

com.ibm.CORBA .securityExceptionsOutputM ode

Determines where to direct exception messages.

valid values: none, file, fileappend, console, both
(The values work as described for thesecuri t yActi vi t yQut put Mode property.)

default value: file

client/server usage: sas.client.props and sas.server.props

com.ibm.CORBA .securityTraceOutputM ode

136

Determines where to direct trace messages. Client and server side.

valid values. none, file, fileappend, console, both
(The values work as described for thesecuri t yActi vi t yQut put Mode property.)

default value: file

client/server usage: sas.client.props and sas.server.props

5.7.6: Introduction to SAS programming

A fundamental concern within distributed systemsin general is the protection of data and business assets
available through the information system. Thisis no less true in distributed, object-oriented systems. Vauable
informationexists in business objects. This information can be manipulated and accessedremotely and therefore
must be protected from unauthorized use. TheSecurity Service in WebSphere Application Server helps to
protect theseassets.

The Security Serviceis used primarily to prevent end users from accessinginformation and resources that they
are not authorized to use. Although theseresources are predominantly distributed objects, they can aso
includeresources, neither object-oriented nor distributed, used by business objects.In many cases, WebSphere
Application Server is used to wraplegacy resources, such as existing business applications and enterprise
data.Such resources are often centralized resources, held in a physically secureenvironments or in environments
with restricted access over controlledchannels.

A key objective of object-oriented programming and business re-engineeringis to provide for the abstraction of
business resources that enables themto be used more readily in new applications. This abstraction frequentlyhas
the effect of increasing access to those legacy resources, resourcesthat have been traditionally, either by intent
or because ofthe limitations of technology, more restricted. Thus, the object-orientedapproach has the potential
for undermining the protection that legacyresources require and have traditionally enjoyed.

The Security Service must, therefore, compensate for any protections thatcan be otherwise lost due to the
increased accessibility of business objects ina distributed object system. The Security Service must not limit
anybenefit an application programmer receives by using WebSphere ApplicationServer, except by preventing
unauthorized access to resources.When security policies for a set of legacy resources have been established
forproduction systems, the Security Service uses these policies to protectresources in the object-oriented
system. It is not necessary to specifyexisting security policies a second time or to keep two sets of policiesin
synchronization.

Object systems tend to introduce many more independent objects thanequivalent procedural systems, which
tend to collect individual objects into larger-grained artifacts like resources managers and databasetables. The
presence of so many objects can introduce issuesrelated to administrative scalability. These issues present their
ownsecurity exposures. when administration becomes overwhel ming,administrators just stop administering, and
objects remain unprotected. The Security Service guards against this risk by factoring securitypolicies across a
server, forming an administrative boundary forcontrolling unauthorized access to both the objects that are
containedwithin a server and the resources that are used by the server.WebSphere security provides support for
the authentication of users,which prevents unauthenticated users from accessing secure servers. It also
guarantees the identity associated with a request to a businessobject, so that object can determineif it should
grant access.The Security Service also provides support for protecting message trafficbetween clients and
servers and between servers acting as clients andother servers.

The role of the Secure Association Service (SAS)

Users and processes can be authenticated to the system. They canhave identities, which means that they can be
distinguished and thattheir access to resources can be controlled. Any entity that can beidentified and
authenticated in the system is referred to as aprincipal. A principal can be the user of aclient programor it can
be a server process. Other entities can also be principalsif they can be associated with identities and have
mechanisms fordemonstrating their identities.

When a principal is authenticated, the Security Service createsa credential object for that principal. The
credential representsan authenticated principal; credentials are created only afterthe principal s are authenticated.

In a secure server, al activities occur on behalf of a specific principal,typically the identity associated with the
user of the client. When aprincipal is authenticated at a client (aclient principal), a credentialis created for that

137

client and associated with the thread of executionwithin the process. The credential is passed to the server when
the clientissues any requests to the server, and the thread of execution in theserver is tagged with the credentials
of the client principal thatoriginated the request. If the server issues any subsequent requests asa result of the
original request, the client's credential is passed alongwith any requests that originate from the server.

The Security Serviceis able to efficiently and safely communicate thecredentials for the client principal by
establishing a secure associationbetween the client and the server. Each client and server pair forms aunique
association, even when the server acts as a client to another server.The secure association is also used to protect
any message traffic betweenthe client and the server processes.

When to use SAS programming

SAS programming is useful when applications must login programmaticallyor manipulate the credentials on the
thread of execution for the purposeof controlling the identity which is executing specificmethods. (Examples of
these uses areillustrated in this material.)SAS programming can be combined with other WebSphere
ApplicationServer programming techniques, including the use of security and standards-based models, like
servlets, enterprise beans,Java ServerPages, HT TP programming, and many others.

The SAS programming interfaces are based on CORBA Security Servicespecification from the Object
Management Group (OMG). For moredetails, visit the OMG Web site and obtain the CORBA Security

Servicespecification.

138

http://www.omg.org/technology/documents/formal/security_service.htm
http://www.omg.org/technology/documents/formal/security_service.htm

5.7.6.1: Getting a reference to a Current object

The Current class contains an implementation ofthe CORBA SecurityL evel2 Current object. The classprovides access to security-level 2 function as
defined in theObject Management Group (OMG) CORBA Security Service specification.

A Current object allows you to obtain or manipulate thecredentials that you want to use in your program. Y ou can obtain aCurrent object in either the
client or the server. However,you can only get a Current object if the Security Servicerun time has been installed and the ORB has been initialized.
To obtain a Current object, using following steps:

1. Obtain areference to the com.ibm.CORBA..iiop.ORB object. Y ou can obtain a reference to the com.ibm.CORBA..iiop.ORB object by
invoking the com.ibm.gjs.0a. EJSORB.getORBI nstance() method, which is static.

2. Create areference to the org.omg.SecuritylL evel 2.Current object, and then use the ORB.resolve_initial_references method to get accessto the
security Current object. Passthe string " Secur i t yCur r en to the resolve _initial_references method.

Code sample: obtaining a Current object

/'l Get the current ORB instance. comibm CORBA.iiop.ORB orb =

comibm ejs. oa. EJSORB. get ORBI nst ance() ; /] Get the security Current object. if (orb !'= null)
org.ong. SecuritylLevel 2. Current securityCurrent =

(org.ong. SecuritylLevel 2. Current)orb.resolve_initial _references("SecurityCurrent"); i f
(securityCurrent == null) Systemout.println("Security has not been initialized");

139

5.7.6.2: Extracting credentials from a thread

Y ou can use a credential associated with the thread of executionto examine and manipulate the identity of the principal thatissued the request, the
identity of the server, or the identity used forany outgoing requests.
Retrieving a credential from athread of execution requires twogeneral steps:

1. Obtain areference to the security Current object.

2. Extract the desired credential.

The technique for extracting the desired credential varies withthe credential. Any thread of execution in aclient or a servercan be associated with one
of the following credentials:

Received credential

The received credential identifies the principal for whom arequest is being performed. In the server, the received credentia is the credential
that arrived with the currently executing request. In the client, the received credential is the same as the client's own credentia; there is no
incoming request carrying an external credential with it.

I nvocation credential

Theinvocation credential isthe credential that accompanies any requests made from this thread of execution. In the server, when delegation
is enabled, the invocation credential is automatically set to the received credential. Otherwise, the invocation credential is the server's own
credential.

Own credential

The own credential is also known as the default credential of the process. This credential identifies the principal associated with the process.
In the server, thisis the server principa; in the client, it isthe client principal. Note that a server's own credential can become its invocation
credential when delegation is disabled.

When extracting a credential from the thread of execution,you must decide which credential you want. Additionally, thesecurity run time must be
installed, and the ORB must be initialized.

Extracting the received credential

To extract the received credential from athread of execution, use the followingsteps:
1. Obtain areference to the security Current object.
2. Call the SecurityCurrent.received_credentials method. This method returns an list of Credentials; the received credentia isin the first

position.
3. Obtain the received credential from thefirst positionin thelist.
.. /1l Get a reference to the security Current object. /1 Cbtain the received
credential s. org.ony. SecuritylLevel 2. Credential s[] recvdCreds =
securityCurrent.received_credential s(); /'l Retrieve the received credential fromthe first

posi tion. org.onyg. SecuritylLevel 2. Credentials recvdCred = recvdCreds[0];

Extracting the invocation credential

To extract the invocation credential from athread of execution,use the following steps:
1. Obtain areference to the security Current object.

2. Toretrieve the invocation credential, call the Current.get_credentials method with the attribute
org.ong. Security. Credenti al Type. Secl nvocati onCr edent i al s asthe argument. This method returns a Credentials
object.
The only difference between extracting invocation credentials andextracting own credentials is the value of the argument passed tothe get_credentials
method.

/1l CGet a reference to the security Current object. /1 Obtain the invocation
credential s. try { org.ong. SecuritylLevel 2. Credentials invCred =
securityCurrent.get_credential s(org.ong. Security. Credenti al Type. Secl nvocati onCredenti al s); }
catch (Security::lnvalidCredential Type e) { e.printStackTrace(); }

Extracting the own credential

To extract the own credential from athread of execution, use the followingsteps:
1. Obtain areference to the security Current object.

2. Toretrieve the own credential, call the Current.get_credentials method with the attribute
org.ong. Security. Credenti al Type. SecOmCr edent i al s asthe argument. This method returns a Credential s object.

The only difference between extracting invocation credentials andextracting own credentials is the value of the argument passed tothe get_credentials
method.

/Il Get a reference to the security Current object. /1 Obtain the own credential s.
try { org.ong. SecuritylLevel 2. Credentials ownCred =
140

securityCurrent.get_credential s(org.ong. Security. Credenti al Type. SecOmCr edenti al s); } catch
(Security::InvalidCredential Type e) { e.printStackTrace(); }

141

5.7.6.2.1: Manipulating credentials

A credential object is an object that implements theorg.omg.SecuritylL evel2.Credentials interface. Thisinterface
supportsmany operations on credentials. A specific credential object containsidentifying information about a
principal for a session; this informationincludes the security name of the principal, the principal’s hosthame,and
more. The Credentials interface defines methods for the following:

« Copying acredentia
« Retrieving the information in the credential
« Determining if the credential has expired

142

5.7.6.2.2: Client-side programmatic login

Client-side programmatic login allows the programmer to control whena user is prompted for the user ID and password used in

constructingbasi c-authentication credentials. Without programmatic login, WebSphereA pplication Server security automatically prompts the user
when thefirst method isinvoked at a secured server. Clients that can use thistechnique are Java clients and servlets that access enterprise beans
onother servers.

On the client side, the basic-authentication credentials are maintainedin the Current object on the client's thread of execution.

The LoginHelper class is a WebSphere-provided utility class thatprovides wrappers around CORBA security methods. It can be usedby pure Java
clients that need the ability to programmaticallyauthenticate users but don't need to use the authentication data onthe client side. It provides the
request_login method, which is usedby the Security Service to get login information from the client(or server) if the required credentials are not
available.

A LoginHelper object can be used to obtain the user informationwith which to perform alogin; that is, it can be used to collectthe information needed
for a basic-authorization credential .|t is typically implemented to present alogin pop-up.An instance of the LoginHel per object can be created at any
time. TheSecurity Service can provide different implementations of this objectfor different conditions, but the actual implementation class usedby the
Security Serviceisdirectly coded into the service, to preventtampering.

The example code illustrates how to get a reference to a L oginHel perobject from a Current object, how to create a basi c-authorizationcredential, and
how to set the credential onto the Current objectfor propogation to a server or other access. For more informationon programmatic login, see 5.4:

Using programmatic and custom login.

...1l Get the security Current object....if (current !'= null){ /1l Get a handle to LoginHel per fron
the Current object. comibm | Ext endedSecurity._Logi nHel per | ogi nHel per = current. | ogin_hel per();

/1l Construct a basic-authorization credential for /'l later authentication by the server.

org.ony. SecuritylLevel 2. Credentials credentials = | ogi nHel per. request_| ogi n(security_nane,
real m nane, passwor d, new

org.ong. SecuritylLevel 2. Credenti al sHol der (), new

org.ony. Security. QpaqueHol der ()); /1 Set the credentials for outbound requests.

current.set_credential s(org.ong. Security. Credenti al Type. Secl nvocati onCredenti als, credentials);

-}

143

5.7.6.2.3: Server-side programmatic login

Server-side programmatic login will authenticate the basi c-authorization dataor credential token and create a credential authenticated againstthe local
registry or LTPA registry. The basic-authorization credentialcan be sent from aclient or created in the server. After authentication,the authenticated
credential is maintained by the security session and isset onto the Current object each time a method request gets executed. The credentials remain
available on the Current object as long as therequest is being executed on the server.

There are two ways to create the authenticated credential object:

« Map the basic-authentication credential to thelocal or LTPA registry by calling the
com.ibm.| ExtendedSecurity.Credential sOperations.get_mapped_credentials method. This method maps the information in the
basi c-authentication credential to the specified registry. If authentication fails, the get_mapped_credentials method returns an empty
credential. (Thereisalso aget_mapped_creds method; it throws an exception if authentication fails.)

« Call the Principal Authenticator.authenticate method, which takes the user 1D and password as arguments.

The code example illustrates a server that creates a basi c-authenticationcredential using the LoginHelper class and then creates an
authenticatedcredential by calling the get_mapped_credentials method.

...1l Get the security Current object....if (current !'= null){ /1l Get a handle to LoginHel per fron
the Current object. comibm | Ext endedSecurity._Logi nHel per | ogi nHel per = current. | ogin_hel per();

/'l Construct a basic-authorization credential for /1l later authentication by the server.

org.ong. SecuritylLevel 2. Credentials credentials = | ogi nHel per. request _| ogi n(security_nang,

real m nane, passwor d, new

org. ong. SecuritylLevel 2. Credenti al sHol der (), new

org.ony. Security. QpaqueHol der()); /!l Set the credentials for outbound requests.

current.set_credential s(org.ong. Security. Credenti al Type. Secl nvocati onCredentials, credentials);
/1 Map the basic-authentication credentials to the registry.

org.ong. SecuritylLevel 2. Credentials mapcreds = nul|; mapcreds =

((comibm | ExtendedSecurity. Credenti al sOperations)creds). get_mapped_credential s(null, "", null);

/1 Check to see if authentication succeeded. if (mapcreds = null) System out. println("Login
failed");}

If you prefer to catch an exception when authentication fails, use theget_mapped_creds method and catch the
org.omg.Security.L oginFailedexception.

try{ /1 Map the basic-authentication credentials to the registry.

org.ong. SecuritylLevel 2. Credentials mapcreds = nul | ; mapcreds =

((comibm | ExtendedSecurity. Credenti al sOperations)creds). get_napped_creds(null, "", null);}catch
(org.ong. Security. LoginFailed e){ Systemout.println("Login failed");}

144

5.7.7: Disabling security on specific application servers

In some circumstances, it is useful to allow unrestricted accessto resources managed by WebSphere Application Server, but it isoften less desirable to leave
the administration of those resourcesunrestricted. This article describes how to unprotect the resourcesmanaged by an application server while protecting the
resources ofthe WebSphere Application Server administrative server. This meansthat users of the administrative console are authenticated beforethey can
modify the resources, but use of the resources requiresno authentication or authorization.

Resources must be unprotected on a node-by-node basis. If you havemultiple nodes and want only some to offer unprotected resources, you mustunprotect
each node individually. Use this procedure only to createunprotected nodes.

How the procedure works

During initialization of the administrative server, the IOR for each enterprisebean hosted in an application server is registered with the name server.The IOR
for each enterprise bean contains a security tag if any of thefollowing propertiesis set to the valuet r ue, which isthe default value:

« com i bm CORBA. SSLTypel C i ent Associ at i onEnabl ed

« com i bm CORBA. LTPAC i ent Associ ati onEnabl ed

« com i bm CORBA. DCECQ i ent Associ at i onEnabl ed

When the client reads the |OR, the presence of the securitytag indicates to the client that the server expects the clientto use a secure connection for sending
messages. As aresult,the client must obtain authentication information from theuser so the server can authenticate the user.

If the property issetto f al se, the IOR does not contain asecurity tag, and the client creates a TCP/IP connection to theserver. Messages sent over aTCP/IP
connection are not secured.The application server receives the request on the TCP/IP portand handles the request.

Authorization of requests is completely disabled when theSSLTypel C i ent Associ at i onEnabl ed issettof al se.Thistellsthe application server not
to enable security on inboundrequests. This applies only when the application server uses a differentset of configuration properties than the administrative
server does.The technique for disabling security on selected application serversis to provide them with a different propertiesfile.

Setup Steps

1. Ensure that you have enabled global security and have restarted the administrative server at least once. This ensures that you have the correct security
settings in the sas.server.propsfile. By default, all the components use thisfile; in this procedure, the administrative server and any secured application
servers continue to use this server, but unsecured application servers use a different file.

2. Delete the sas.server.props.futurefile. If thisfileis present, when a server restarts, information in the sas.server.props.futurefile is copied into the
sas.server.props file, effectively rewriting the sas.server.props file. Changes made during this procedure can be lost.

3. Make acopy of the sas.server.propsfile; in this example, the copy is called sas.appserver.props. The administrative server and the secured application
servers continue to use the original sas.server.propsfile.

4. Edit the sas.server.props file and modify the settings as described.
™ You must make these changes carefully; incorrect settings can result in unwanted security behavior, and it is possible to create a state in which

the administrative server cannot start if security is enabled. Also, once security is enabled, do not change any values other than the ones listed here
unless you are sure of the consequences.

o If thevalue of thecom i bm CORBA. aut henti cati onTarget property isl ocal os, set thefollowing properties:
= Client-association properties
com i bm CORBA. SSLTypel d i ent Associ ati onEnabl ed=true
com i bm CORBA. Local OSCl i ent Associ at i onEnabl ed=t rue
com i bm CORBA. LTPAC i ent Associ at i onEnabl ed=f al se
= Server-association properties

com i bm CORBA. SSLTypel Server Associ ati onEnabl ed=true
com i bm CORBA. Local OSSer ver Associ ati onEnabl ed=true
com i bm CORBA. LTPASer ver Associ at i onEnabl ed=f al se

o If thevalue of thecom i bm CORBA. aut henti cati onTar get property islt pa, setthefollowing properties:
= Client-association properties
com i bm CORBA. SSLTypel Cl i ent Associ at i onEnabl ed=tr ue

com i bm CORBA. Local Osd i ent Associ ati onEnabl ed=f al se
com i bm CORBA. LTPAC i ent Associ at i onEnabl ed=true

= Server-association properties
com i bm CORBA. SSLTypel Server Associ ati onEnabl ed=true

com i bm CORBA. Local OSSer ver Associ at i onEnabl ed=f al se
com i bm CORBA. LTPASer ver Associ at i onEnabl ed=t rue

5. Edit the new sas.appserver.props file and modify the settings as described.

% Do not change any other values in the file except those indicated. In particular, do not set thesecur i t yEnabl ed property tof al se; an
unsecured application server must still be a secure client of the administrative server. Also, each time aprincipal or password in the sas.server.props
file is changed, make the corresponding changesin thisfile.

o If thevalueof thecom i bm CORBA. aut henti cati onTarget property isl ocal os, set thefollowing properties:
= Client-association properties

com i bm CORBA. SSLTypel Cl i ent Associ ati onEnabl ed=f al se

com i bm CORBA. Local Osd i ent Associ ati onEnabl ed=f al se 145

com i bm CORBA. LTPAC i ent Associ at i onEnabl ed=f al se
com i bm CORBA. DCECI i ent Associ at i onEnabl ed=f al se

= Server-association properties
com i bm CORBA. SSLTypel Server Associ ati onEnabl ed=t rue

com i bm CORBA. Local OSSer ver Associ ati onEnabl ed=true
com i bm CORBA. LTPASer ver Associ at i onEnabl ed=f al se

o If thevalue of thecom i bm CORBA. aut henti cati onTar get property islt pa, setthefollowing properties:
= Client-association properties
com i bm CORBA. SSLTypel Cl i ent Associ ati onEnabl ed=f al se
com i bm CORBA. Local OSCl i ent Associ at i onEnabl ed=f al se

com i bm CORBA. LTPACI i ent Associ ati onEnabl ed=f al se
com i bm CORBA. DCECl i ent Associ at i onEnabl ed=f al se

= Server-association properties
com i bm CORBA. SSLTypel Ser ver Associ at i onEnabl ed=t r ue

com i bm CORBA. Local OSSer ver Associ ati onEnabl ed=f al se
com i bm CORBA. LTPASer ver Associ at i onEnabl ed=t rue

6. Ensure that the following five lines of the sas.server.props file and the new sas.appserver.props file are exactly the same. The following sample shows
the structure you are looking for:

com i bm CORBA. | ogi nUseri d=<useri d> com i bm CORBA. pri nci pal Name=<DOVAI N useri d>
com i bm CORBA. | ogi nPasswor d=<passwor d> com i bm CORBA. securityEnabl ed=t rue
com i bm CORBA. aut henti cati onTar get =l t pa

7. Start the administrative console and add a command-line entry to the application server. Modify this entry so that the command-line property
com i bm CORBA. Conf i gURL is set to the new sas.appserver.props file; for example:

o Syntax for WindowsNT:
-Dcom i bm CORBA. Confi gURL=fi | e:/ C./Wbspher e/ appserver/properties/sas. appserver. props

o Syntax for UNIX:
-Dcom i bm CORBA. Confi gURL=file:///usr/WbSphere/ AppServer/ properti es/ sas. appserver. props

Repeat this step for any other application servers from which you want serve unprotected resources. For application servers from which you want to
serve protected resources, do not modify the Conf i gURL property; continue to use the sas.server.props filein the value.

8. Stop and restart the entire WebSphere Application Server domain to make the changes take effect.

[il I you are using a pure Java client against an application serverusing the sas.appserver.props configuration file, the Java clientno longer needs to use the
sas.client.propsfile.

146

5.8: Single Sign-On

Single sign-on (SSO) support allows Web users to authenticate once whenaccessing both WebSphere
Application Server resources, such as HTML, JSPs,servlets, and enterprise beans, and Domino resources, such
as documentsin a Domino database, or when accessing resources in multipleWebSphere domains.

Web users can authenticate once to a WebSphere application server orDomino server and then access any other
WebSphere application servers orDomino servers in the same DNS domain that are enabled for Single Sign-On
(SSO)without logging on again. Thisis accomplished by configuring the WebSphereapplication servers and the
Domino servers to share authentication information.

To enable SSO among WebSphere application servers, you must configureSSO for WebSphere. To enable SSO
between WebSphere application serversand Domino servers, you must configure SSO for both WebSphere and
forDomino.

This configuration is described in subsequent sections, but thereare prerequisites that applications must meet in
order to support theuse of single sign-on.

Prerequisites and conditions

To take advantage of support for single sign-on between WebSphere applicationservers or between WebSpere
and Domino, applications must meet thefollowing prerequisites and conditions:

All servers must be configured as part of the same DNS domain. For example, if the DNS domainis
specified as mycompany.com, then SSO will be effective with any Domino or WebSphere application
server on a host that is part of the mycompany.com domain, for example, amycompany.com and
b.mycompany.com.

All servers must share the same user registry. Thisregistry can be either a supported LDAP directory
server or, if SSO isbeing configured between two WebSphere application servers, a custom user
registry. Domino does not support the use of custom registries, but a Domino-supported registry can be
used as a custom registry within WebSphere. For more information on custom registries, see
Introduction to custom registries.

A Domino Directory (configured for LDAP access) or other LDAP directory can be used for the user
registry. The LDAP directory product must be supported by WebSphere Application Server. Supported
products include both Domino and all IBM SecureWay LDAP directory servers. Regardless of the
choice to use an LDAP or custom registry, the SSO configuration is the same. The differenceisin the
configuration of the registry.

All users must be defined in asingle LDAP directory. Using LDAP referrals to connect more than one
directory together is not supported. Using multiple Domino Directory Assistance documents to access
multiple directoriesis not supported.

Users must enable HTTP cookies in their browsers, because the authentication information that is
generated by the server is transported to the browser in a cookie. The cookie is then used to propagate
the user's authentication information to other servers, exempting the user from entering the
authentication information for every request to a different server.

For Domino

o Domino R5.0.6afor iSeries 400 (or later) and Domino R5.0.5 (or later) for other platforms are
supported.

o A Lotus Notesclient R5.0.5 (or later) isrequired for configuring the Domino server for SSO.
o Authentication information can be shared across multiple Domino domains.
For WebSphere Application Server

o WebSphere Application Server V3.5 (or later) for al platformsis supported.
147

148

Any HTTP Web server supported by WebSphere Application Server can be used.
Authentication information can be shared across multiple WebSphere administrative domains.

Basic authentication (user 1D and password) using the basic and form-login mechanismsis
supported.

Permissions for either all authenticated users or groups of usersis supported. If you are using the
Domino Directory for authentication and have not specified a Base Distinguished Name during
setup, permissions for individual usersis aso supported.

5.8.1: Configuring SSO for WebSphere Application
Server

To use SSO between WebSphere Application Server and Domino or betweentwo WebSphere application
servers, you mustfirst configure SSO for WebSphere Application Server. SSO for WebSphere Application
Server alows authentication information to be shared acrossmultiple WebSphere Application Server
administrative domains and withDomino servers.

To provide SSO to WebSphere application serversin more than one WebSphereA pplication Server
administrative domain, you must configure each of theadministrative domains to use the same DNS domain,
user registry (using LDAPor a custom registry), and a common set of LTPA keys as described in the detailed
sections below:

« Modify WebSphere Application Server security settings.
« Stop and restart the administrative server.

o Export LTPA keysto afile.

« Authorize users.

« Verify the configuration.

[il This section assumes that you have already installed WebSphereA pplication Server and configured one or
more application serversin one or more WebSphere Application Server administrative domains.

[il This section assumes that you are using LDAP as the user registry. The SSO setup is the same, regardless of
the use of an LDAPregistry or a custom registry. The difference isin theconfiguration of the registry itself.For
more information on custom registries, see5.2: Introduction to custom registries.

Before attempting to configure SSO for WebSphere Application Server, youcan verify the accessibility of
WebSphere Application Server by doing thefollowing:

« Verify that the application servers are configured correctly by using a Web browser to access application
resources.

« Verify the LDAP directory you are going to use is available and configured with at least one user.
Configuring SSO for WebSphere Application Server requires access to the LDAP directory. You can
use the Domino Directory or another LDAP directory.

Modify WebSphere Application Server security settings

SSO configuration isincluded as part of the overall security configurationof a WebSphere Application Server
administrative domain.

1. Start the WebSphere administrative server for the administrative domain.
2. Start the WebSphere administrative console.
3. On the administrative console, select Security Center from the console menu.
4. Select the General tab if it isnot already selected. On this panel,
1. Enable WebSphere Application Server security by checking the Enable Security check box.

2. Verify that the Security Cache Timeout field is set to areasonable value for your application.
When the timeout is reached, WebSphere Application Server clears the security cache and
rebuilds the security data. If the valueis set too low, the extra processing overhead can be
unacceptable. If the valueis set too high, you create a security risk by caching security datafor a

149

5.

6.

7.

150

long period of time. The default value is 600 seconds.
Click the Authentication tab. In this window:

1. Set the Authentication M echanism field to Lightweight Third Party Authentication (LTPA), to
use an LDAP directory as the user registry.

2. Check the Enable Single Sign On (SSO) box to enable SSO and authentication information to
be placed in HTTP cookies.

3. Set the Domain field to the domain portion of your fully qualified DNS name for the system
running your WebSphere Application Server administrative domain. For example, if your
system’s host name is myhost.mycompany.com, type mycompany.com in this field.

Before closing this window, you also need to configure the LTPA keys to be used by the administrative
domain that you are configuring. Y ou must perform one of the following steps, based on the number of
administrative domains you are configuring:

o If you are configuring the first or only WebSphere Application Server administrative domain,
generate the LTPA keys as follows:

1. Click Generate Keysto generate keysfor LTPA.

2. When prompted, type the LTPA password to be associated with these LTPA keys. Then
click OK to savethe LTPA keys. Y ou must use this password when importing these keys
into other WebSphere Application Server administrative-domain configurations (if any)
and when configuring SSO for Domino.

o If you are configuring an additional WebSphere Application Server administrative domain, you
must import the LTPA keys used during the configuration of the first administrative domain.
Import the LTPA keys as follows:

1. Click Import From File to import the LTPA keysfrom afile.

2. When prompted, select the file that was generated previously during the configuration of
the initial administrative domain.

3. Click Open.

4. When prompted, type the LTPA password you set when initially generating the keys.
Then click OK to import the keys.

Click the LDAP button. (If you are using a custom registry, click the Custom User Registry button
instead. This discussion assumes the use of an LDAP user registry.)

Fill inthe LDAP fields as follows:

o Security Server ID: The user ID of the administrator for the WebSphere administrative domain.
Use the short name or user ID for a user already defined in the LDAP directory. Do not specify a
Distinguished Name by using cn= or ui d= before the value. Thisfield is not case sensitive.
When you start the WebSphere Application Server administrative console, you are prompted to
log in with an administrative account. Y ou must enter exactly the same value that you specify in
thisfield.

o Security Server Password: The password corresponding to the Security Server ID field. This
field is case sensitive.

o Directory Type: Thetype of LDAP server you are using. For example, you can select
SecureWay for IBM SecureWay LDAP Directory or Domino 5.0 for Domino R5.05 from the
list.

o Host: The fully qualified DNS name of the machine on which the LDAP directory runs, for
example myhost.mycompany.com.

o Port: The port on which the LDAP directory server listens. By default, an LDAP directory
server using an unsecured connection listens on port 389. If your server meets this description,
you can leave this field blank.

8.
9.

o Base Distinguished Name: The Distinguished Name (DN) of the directory in which searches
begin within the LDAP directory. For example, for auser withaDN of cn=John Doe,
ou=Rochest er, o=l BM c¢=US and abase suffix of c=US, the base DN can be specified as
any of:

= ou=Rochester, o=IBM c=us
= 0=| BM c=us
= C=US

Thisfield is not case sensitive.

il Thisfieldisrequired for al LDAP directories except the Domino Directory. If you are
using the Domino Directory and you specify a Base Distinguished Name, you will not be able to
grant permissions to individual Web users for resources managed by your WebSphere
application server.

o Bind Distinguished Name: The DN of the user who is capable of performing searches on the
directory. In most cases, thisfield is not required; typically, all users are authorized to search an
LDAP directory. However, if the LDAP directory contents are restricted to certain users, you
need to specify the DN of an authorized user, for example, an administrator,
cn=adm ni strator.

o Bind Password: The password corresponding to the Bind Distinguished Name field. This value
isrequired only if you specified avalue for the Bind Distinguished Name field. Thisfield is case
sensitive.

Click Finish to save the security settings.

Click OK to acknowledge the information dialog box that warns that changes do not take effect until the
administrative server isrestarted.

Stop and restart the administrative server

Whever changes are made to the global security settings, theWebSphere Application Server administrative
server must be stoppedand restarted for the changes to take effect.

1

© NSO Ok ®WDN

On the administrative console, expand the Nodes icon.

Click the node representing your administrative server.

Expand the Application Serversicon within your administrative server.

Click the Default Server icon or theicon for the appropriate applicaiton server.
Click either Stop or For ce Stop, and wait for the server to stop.

Right-click the node representing the administrative server, and select Stop.
Click Yes on the confirmation dialog box.

Monitor the administrative server task (or job) to ensure that the server stops. Then restart the
administrative server, monitoring the server task (or job) to determine when the server isrunning. As
you watch the server job, notice that it starts, stops, and then starts again. Thisis normal behavior after
global security settings have been changed.

Start the administrative console. Specify the user ID and password by using exactly the same values that
you specified for the Security Server ID and Security Server Password fields in the Global Security
Settings wizard.

Export the LTPA keys to a file

To complete the security configuration for SSO, you need to export theL TPA keysto afile. Thisfileis
subsequently used during theconfiguration of additional administrative domains and during theconfiguration of

151

SSO for Domino.

1. Stop the WebSphere administrative domain to insure that the security settings are stored in WebSphere
Application Server's configuration files or repository.

Start the administrative server for the domain.

Start the administrative console.

On the administrative console, select Security Center from the console menu.
Select the Authentication tab.

Click the Lightweight Third Party Authentication (L TPA) button.

Click the Export To File tab to export the LTPA keysto afile.

When prompted, specify the name and location of the file to contain the LTPA keys. Y ou can use any
file name and extension. Note the name and extension you specify; you must use thisfile when you
configure SSO for any additional WebSphere Application Server administrative domains and for
Domino.

9. Click Saveto savethefile.

10. Click Cancel to close the wizard. (This procedure has not changed any global security setting, so there
are no new settings to save.)

O N O U~ DN

Authorize users

Before you can test the SSO configuration for WebSphere ApplicationServer, you must grant users permissions
to resources so that their access canbe tested. These tasks are not specific to SSO configuration and are
notcovered in detail here. See The WebSphereauthorization model for more information.

Verify the configuration of SSO for WebSphere

After configuring each administrative domain, restart the WebSphere administrative console and log onto each
of theadministrative domains to verify that the LTPA security settings are correct.

To verify the SSO configuration, attempt to configure at |eastone resource, such as the Hello servlet, to be
protected by a WebSphere application server. Use the Role Mapping panel inthe security center of the
administrative console to authorizeWeb users to the resource.

The discussion in Verifying SSO betweenWebSphere and Domino assumes that SSO is being setup
betweenWebSphere and Domino. If you are setting up SSO between twoWebSphere application servers, the
verification procedure canstill be used if you replace the references to theDomino server with references to the
second WebSphere applicationserver. Be sure that the LTPA keys are being shared properlybefore running the
test. The keys must be exported from oneWebSphere Application Server domain and imported into thesecond
domain so that the LTPA token can be decrypted.

152

5.8.2: Configuring SSO for Lotus Domino

To use SSO with Domino and WebSphere Application Server, youmust first configure SSO for WebSphere
Application Server andthen configure SSO for Domino.

Configuring SSO for Domino is accomplished by selecting a newMulti-server option in a Server document for
session-based authentication, and by creating a new domainwide configuration document, calledthe Web SSO
Configuration document, in the Domino Directory. The Web SSO Configuration document, which must be
replicated to allDomino servers participating in the SSO domain, is encrypted forparticipating Domino servers
and contains a shared secret used byDomino servers for authenticating user credentials.

To provide SSO to Domino servers, do the following:

« Create the Web SSO Configuration document.
« Configure the Server document.

« Finish the Domino configuration.

o Verify the SSO for Domino configuration.

In addition, you can optionally do the following:
« Configure additional Domino serversin the original domain.

« Configure Domino serversin different domains.

To complete this procedure, you need the following informationfrom the configuration of SSO for WebSphere
Application Server:

« The path and name of the file containing the LTPA keys created during SSO configuration for
WebSphere Application Server

« The password used to protect the LTPA keys from WebSphere Application Server
o The name of DNS domain in which WebSphere Application Server is configured

Create the Web SSO Configuration document

To create the Web SSO Configuration document, use a Lotus Notes ClientR5.0.5 (or later) and follow these
steps:
1. Inthe Domino Directory, select the Servers view.
Click on the Web pull-down menu item.
Select the Create Web SSO Configuration option to create the document.
On the Web SSO Configuration document, click the Keys pull-down menu.

Select the Import WebSphere L TPA Keys option to import the LTPA keys previously created for
WebSphere Application Server and stored in afile.

Type the path to the file containing the keys for WebSphere Application Server and click OK.

Type the password that was used when generating the LTPA keys. The SSO Configuration document is
automatically updated to reflect the information in the imported file.

8. Fill inremaining fieldsin this document. Groups and wildcards are not allowed in the fields. The
following list describes the fields and the expected values:

o Token Expiration: The number of minutes atoken can exist before expiring.

a ~ DN

N o

[il A token does not expire based on inactivity; it is valid for only the number of minutes
specified from the time of issue.

153

9.

o Token Domain: The DNS domain portion of your system's fully qualified Internet name. Thisis
arequired field.

[il All servers participating in SSO must reside in the same DNS domain; this value must be
the same as the Domain value specified when configuring WebSphere Application Server. Also,
WebSphere Application Server treats the DNS domain as case sensitive, so ensure that the DNS
domain value is specified in exactly the same way, including the same case.

o Domino Server Names: The Domino serversthat will be participating in SSO. This SSO
Configuration document will be encrypted for the creator of the document, the members of the
Ownersand Administratorsfields, and the servers specified in thisfield. These servers can be
in different Domino domains; however they must be in the same DNS domain.

i} Youmust specify afully qualified Domino server name, for example,
MyDom noSer ver / MyQu. The Domino server name that you specify here must also match the
name of the corresponding server's Connection document in your client's Domino Directory.

o LDAP Realm: Thefully qualified DNS host name of the LDAP server.

il Thisfieldisinitialized from the information provided in the imported LTPA keysfile. You
need to change this value only if an port value for the LDAP server was specified for the
WebSphere Application Server administrative domain. If a port was specified, a backslash
character (\) must be inserted into the value before the colon character (:). For example, replace
myhost.mycompany.com:389 with myhost.mycompany.com\:389.

Save the Web SSO Configuration document. It now appears in the Web Configurations view.

If you are configuring multiple Domino servers for SSO, refer to Configuring additional Domino servers.

Configure the Server document

To update the Server document for SSO, follow these steps:

1.

S.
6.
7.

In the Domino Directory, select the Servers view.

2. Edit the Server document.
3.
4. Click the Enable Name & Password Authentication for the HTTP Port box to enable basic

Sdlect the Ports --> Internet Ports--> Web tab

authentication for Web users.

Select Internet Protocols--> Domino Web Engine.

Select Multi-server in the Session Authentication field to enable SSO for Domino.
Save the Server document.

If you are configuring multiple Domino servers for SSO, refer to Configuring additional Domino servers.

Finish the Domino configuration

Before continuing, finish configuring the Domino server foruse by Web users. The remaining configuration
steps are not specificto SSO and are not covered here in detail. Refer to the Domino 5 Administration Help for
information on the following:

Configuring access to an LDAP directory when the Domino Directory is not being used

« Authorizing Web users to Domino resources

Verify the SSO for Domino configuration

154

To verify the SSO configuration for Domino, ensure that theDomino server is configured correctly and that
Web users areauthorized to access Domino resources by performing the followingsteps:

« To verify that the Domino server is configured correctly, stop and restart the Domino HTTP Web server.
If SSO is configured correctly, the following message appears on the Domino server console: HTTP:
Successful ly | oaded Wb SSO Confi gurati on.

il I1f aDomino server enabled for SSO cannot find a Web SSO Configuration document or is not
included in the Domino Server Names field and therefore cannot decrypt the document, the following
message appears on your server'sconsole: HTTP: Error Loadi ng Web SSO
configuration. Reverting to single-server session authentication.

« Toverify that users are authorized, attempt to access a Domino resource, such as a Domino Directory,
first as auser defined in the Domino Directory itself, for local authorization, and then as a user defined
in the LDAP directory service, for authorization of WebSphere Application Server users.

Configure additional Domino servers in a single domain

If you are using SSO with multiple Domino servers, perform thefollowing steps for each additional server:
1. Replicate the initial Web SSO Configuration document to each additional Domino server.
2. Update the Server document for each additional Domino server.
3. Restart each of the Domino HTTP web servers.

Configure Domino servers in multiple Domino domains

If you are using SSO with Domino servers is multiple Domino domains,you must also set up cross-domain
authentication among the Dominoservers. For example, assume there are Domino servers in twoDomino
domains, X and Y. Use the following procedure to enablethe Domino servers to perform SSO between the
domains:

1. A Domino administrator must copy the Web SSO Configuration document from the Domino Directory
for Domain X and paste it into the Domino Directory for Domain Y. The Domino administrator needs
rights to decrypt the Web SSO Configuration document in Domain X and to create documentsin the
Domino Directory for Domain'Y.

2. Ensurethat your Lotus Notes client's location home server is set to aDomino server in Domain Y.
3. Edit the Web SSO Configuration document for Domain Y.

4. Inthe Participating Domino Serversfield, include only the Domino servers with Server documentsin
Domain Y that will participate in SSO.

5. Savethe Web SSO Configuration document. It is now to be encrypted for the participating Domino
serversin Domain Y, so these servers now have the same key information as the Domino serversin
domain X. This shared information allows Domino serversin Domain Y to perform SSO with Domino
serversin Domain X.

155

5.8.3: Verifying SSO between WebSphere and Domino

This document discusses the verification of SSO between Dominoand WebSphere Application Server. Before
proceeding, verifythat the following conditions are met:

The LDAP directory contains at least one user that is defined for testing purposes.

The WebSphere Application Server administrative console can be started for each of the WebSphere
Application Server administrative domains involved in SSO.

A user can authenticate to each administrative domain using a security name defined in the LDAP
directory.

At least one user in the LDAP directory must be authorized to access at least one Domino resource, such
as the Domino Directory.

At least one user in the LDAP directory must be authorized to access at |east one WebSphere
Application Server resource, such asthe Hello servlet.

From aWeb browser that is configured not to accept HT TP cookies, you are able to reach the following
resources:

o WebSphere-protected resources, like servlets, after being prompted for auser 1D and password.

o Domino-protected resources, like Lotus Notes databases, after being prompted for auser 1D and
password.

If all of the preliminary tests succeed, you are ready to verify thatSSO is working correctly. To test the SSO
functionality, performthe following steps:

1
2.

3.

156

Restart the Web browser.

Configure the Web browser to accept HTTP cookies. (If you are using Internet Explorer, enable the
per-session (not stored) type of cookies.

Configure the browser to notify you before accepting HTTP cookies. Thiswill provide visual
confirmation that Domino and WebSphere Application Server are generating and returning HTTP
cookiesto your browser after you authenticate. (Y ou can suppress the cookie notifications after you
verify that cookies are being exchanged.)

From the browser, specify the URL for aresource protected by the Domino server; for example, attempt
to open a database that permits no access to anonymous users, as described in the following example:

o Make sureto user afully qualified DNS host name in the URL; for example, enter
http:// nyhost. nyconpany. com nanes. nsf instead of
http://nyhost/ nanes. nsf.

o When prompted for auser ID and password, make sure that you specify auser ID that is
authorized to resources for both the Domino and WebSphere application servers.

il Theformat of the name depends on the level of restriction Domino is using for Web users
and whether Domino or another LDAP directory is being used. (For details on the options for
basi c authentication, refer to the Domino 5 Administrative Help; in particular, see the
information on controlling the level of authentication for Web clients.) The level of restriction
Domino uses for Web usersis set in the Web server authentication field on the Security window
of the Server document. If you are using the default configuration settings, you can specify the
user's short name or user ID.

o When prompted, accept the HTTP cookie.

Successfully accessing such aresource verifies that the token generated by the Domino server is
accepted by WebSphere Application Server.

From the same browser session, attempt to access a resource protected by WebSphere Application
Server. If SSO isworking correctly, accessis granted without prompting you to log in. (If you are

prompted, refer to SSO fails when accessing protected resources for assistance.) Make sure to use the
fully qualified DNS host name in the URL. For example, type

http:// nyhost. nyconpany. com webapp/ exanpl es/ showCf g instead of

http:// nyhost/webapp/ exanpl es/ showCf g.

. From the same browser session, attempt to access resources managed by any additional Domino and
WebSphere Application Server domains included in your SSO configuration.

. Restart your browser session and perform the SSO-verification steps again, but thistime, start by
accessing a resource protected by WebSphere Application Server. Thiswill verify that the token
generated by WebSphere Application Server is accepted by the Domino server or servers. When
prompted for auser ID and password, use the user's short name or user ID; thisis the default naming
convention for users in WebSphere Application Server.

157

5.8.4: Troubleshooting SSO configurations

This article describes common problemsin configuring singlesign-on between WebSphere Application Server and Domino and
suggestspossible solutions. The problems include the following:

« Failureto save the Domino Web SSO Configuration document

« Domino server console fails to load the Web SSO Configuration document upon Domino HTTP server start-up
« Authentication fails when accessing a protected resource

« Authorization fails when accessing a protected resource

« SSO fails when accessing protected resources

Failure to save the Domino Web SSO Configuration document

The client must be able to find Domino Server documents for theparticipating SSO Domino servers. The Web SSO
Configurationdocument is encrypted for the servers that you specify, so the home server indicated by the client's location recordmust
point to a server in the Domino domain where the participatingservers reside. This ensures that lookups can find the public keysof the
servers.

If you receive a message that states that one or more of the participatingDomino servers cannot be found, then those servers will not be
able todecrypt the Web SSO Configuration document or perform SSO.

When the Web SSO Configuration document is saved, the status bar indicateshow many public keys were used to encrypt the document
by findingthe listed servers, authors, and administrators on the document.

Domino server console fails to load the Web SSOConfiguration document upon
Domino HTTP server startup

During configuration of SSO, the Server document is configured forMulti-Server in the Session Authentication field. Therefore,
theDomino HTTP server tries to find and load a Web SSO Configurationdocument during startup. The Domino server console reports
thefollowing if avalid document is found and decrypted:

HTTP: Successfully | oaded Wb SSO Confi gurati on.

If aserver cannot load the Web SSO Configuration document, SSOdoes not work. Such a server reports the following message:
HTTP: Error Loadi ng Web SSO configuration. Reverting tosingle-server session
aut henti cati on.

Make sure that there is only one Web SSO Configurationdocument in the Web Configurations view of the DominoDirectory and in the
$WebSSOConfigs hidden view.Y ou cannot create more than one, but additional documentscan be inserted during replication.

Check the hidden view $WebSSOConfigs as follows:
1. From aLotus Notes client, select File --> Database --> Open.
2. Inthe Open Database diaog, either type the Domino server name and press Enter or select the Domino server from thellist.

3. Typethevalue names. nsf for the FileName field, located at the bottom of the Open Database dialog box. Do not press Enter.
Instead, hold the the shift and control keys down and click Open on the dialog box. This opens the Domino Directory with all
the hidden views exposed.

4. At the bottom of the view list, click $WebSSOConfigs and ensure there is only one document in this view. If there are more than
one, delete them al and re-create the Web SSO Configuration document.

If there is only one Web SSO Configuration document, anothercondition that can elicit the same error message is that thepublic key of
the Server document does not match the public keyin the ID file. In this case, attempts to decrypt theWeb SSO Configuration document
fail and the error message isgenerated.

This situation can occur when the ID file is created multiple times but the Server document is not updated correctly.Usually, thereis an
error message displayed on the Domino Server Consolethat states that the public key does not match the server ID. If this happens,then
SSO does not work because the document is encrypted witha public key for which the server does not possess the correspondingprivate

key.

To correct a key-mismatch problem, do the following:
1. Copy the public key from the server ID file and paste it into the Server document.
2. Re-create the Web SSO Configuration document.

158

Authentication fails when accessing a protected resource

If aWeb user isrepeatedly prompted for auser ID and password,SSO is not working because either the Domino or WebSphere
securityserver is not able to authenticate the user with the LDAP server. Check the following possibilities:

« Verify that the LDAP server can be accessed from the Domino server machine. Use the TCP/IP ping utility to verify TCP/IP
connectivity and that the host machineis running.

« Verify that the LDAP user is defined in the LDAP directory. Use the ldapsear ch utility to confirm that the user 1D exists and
that the password is correct. For example, the following command, entered as a single line, can be run from the OS/400 Qshell, a
UNIX shell, or aWindows DOS prompt:

% | dapsearch -D "cn=John Doe, ou=Rochester, o=IBM c¢=US" -w mypassword -h
myhost . myconpany. com -p 389 -b "ou=Rochester, o=IBM c=US" (objectclass=*)

(The percent character (%) indicates the prompt and is not part of the command.)
A list of directory entriesis expected. Possible error conditions and causes follow:

o No such object: This error indicates that the directory entry referenced by either the user's DN value, which is specified
after the -D option, or the base DN value, which is specified after the -b option, does not exist.

o Invalid credentials: This error indicates that the password isinvalid.

o Can't contact LDAP server: This error means that the host name or port specified for the server isinvalid or that the
LDAP server isnot running.

o Anempty list means that the base directory specified by the -b option does not contain any directory entries.

« If you are using the user's short name (or user ID) instead of the Distinguished Name, ensure that the directory entry is
configured with the short name. For a Domino Directory, thisisthe Short name/User | D field of the Person document. For
other LDAP directories, thisis the userid property of the directory entry.

« |If Domino authentication fails when using an LDAP directory other than Domino Directory, verify the configuration settings of
the LDAP server in the Directory Assistance document in the Directory Assistance database. Also verify that the Server
document refers to the correct Directory Assistance document.

The following LDAP values specified in the Directory Assistance document must match the values specified for the user
registry in the WebSphere administrative domain:

o Domain name

o LDAP host name
o LDAP port

o BaseDN

Additionally, the rules defined in the Directory Assistance document must refer to the base DN of the directory containing the
directory entries of the users.

[} You can trace the Domino server's requests to the LDAP server by adding the following line to the server's notes.ini file:
webaut h_ver bose _trace=1

After restarting the Domino server, trace messages are displayed in the Domino server's console as Web users attempt to
authenticate to the Domino server.

Authorization fails accessing a protected resource

After authenticating successfully, if aWeb user is shown an authorizationerror message, security is not configured correctly. Check the
followingpossibilities:

« For Domino databases, verify that the user is defined in the access-control settings for the database. Refer to the Domino
Administrative documentation for the correct way to specify the user's DN. For example, for the DN cn=John Doe,
ou=Rochester, o=IBM c=US, thevalue on the access-control list must beset asJohn Doe/ Rochester /| BM US.

« For resources protected by WebSphere Application Server, verify that the security permissions are set correctly.

o If granting permissions to selected groups, make sure that the user attempting to access the resource is a member of the
group. For example, you can verify the members of the groups by using the following URL to display the directory
contents: Ldap: / / myhost . myconpany. com 389/ ou=Rochester, o=IBM c¢=US??sub

o If you have changed the LDAP configuration information (host, port, and base DN) in a WebSphere Application Server
administrative domain since the permissions were set, the existing permissions are probably invalid and need to be
re-created.

SSO fails when accessing protected resources

If aWeb user is prompted to authenticate each time he or sheaccesses a resource, SSO is not configured correctly. Check the following
159

possibilities:

1

Both WebSphere Application Server and Domino must be configured to use the same LDAP directory. The HTTP cookie used
for SSO stores the full Distinguished Name (DN) of the user, for example, cn=John Doe, ou=Rochester, o=IBM
¢=US, and the DNS domain.

If the Domino Directory is being used, Web users must be defined by hierarchical names. For example, update the User name
field in the Person document to include names of this format as the first value: John Doe/ Rochest er/ | BM US.

URL sissued to Domino and WebSphere application servers configured for SSO must specify the full DNS server name, not just
the host name or TCP/IP address. For browsers to be able to send cookies to a group of servers, the DNS domain must be
included in the cookie, and the DNS domain in the cookie must match the URL. (Thisiswhy cookies cannot be used across
TCP/IP domains.)

Domino and WebSphere Application Server must be configured to use the same DNS domain. Verify that the DNS domain
valueis exactly the same, including capitalization. The DNS domain value can be found on the Configure Global Security
Settings panel of the WebSphere administrative console and in the Web SSO Configuration document of a Domino server. If
you make a change to the Domino Web SSO Configuration document, replicate the modified document to all Domino servers
participating in SSO.

Clustered Domino servers must have the host name populated with the full DNS server name in the Server document for
Domino ICM (Internet Cluster Manager) to redirect to cluster members using SSO. If thisfield is not populated, by default, ICM
redirects URL s to clustered Web servers by using only the host name. It cannot send the SSO cookie because the DNS domain is
not included in the URL.

To correct the problem, do the following:

1. Edit the Server document.
2. Select the Internet Protocols-- > HTTP tab.
3. Enter the server's full DNS name in the Host names field.

If aport value for an LDAP server was specified for aWebSphere Application Server administrative domain, the Domino Web
SSO Configuration document must be edited and a backslash character (\)must be inserted into the value of the LDAP Realm
field before the colon character (:). For example, replace myhost.mycompany.com:389 with myhost.mycompany.com\:389.

160

5.9: Configuring security interoperation with WebSphereon z/OS

WebSphere Application Server Advanced Edition supports interoperabilitybetween application serversrunning on UNIX or NT
platforms andapplication servers running on the z/OS platform. This supportallows application servers on the UNIX or NT sideto
authenticateto the application server on the z/OS side and communi cate securely.Unauthenticated requests from the UNIX- or
NT-based application serversare rejected. Authentication is supported between application servers,not individua applications.

To configure this support, serveral steps must be taken. WebSpheresecurity must be enabled on both sides. Information used
forauthenticating to the Z/OS-based application server must be collectedand stored in akey file for use by the UNIX- or NT-based
application server.The Secure Sockets Layer (SSL) protocol, which is used to secure thecommunication channel, requires that the
UNIX- or NT-based serveralso have avalid certificate for the z/OS-based application server.Finally, the UNIX- or NT-based
applications must be configured to usethe appropriate identities so that they can communicate with the z/OS-basedapplication servers.
The following describes the specific steps that mustbe taken:

1. Coallect the login information for the zZ/OS-based application server and storeit in akey file for use by the UNIX- or NT-based
application server. See Creating the key file for more information.

2. Enable global security for WebSphere Application Server for the UNIX- or NT-based application servers. See 6.6.18: Securing
applications for more information.

3. Enable global security for WebSphere Application Server for the zZ/OS-based application server. See WebSphere Application
Server V4.0 for ZOSand OS/390: Installation and Customization for more information; this can be reached from the Library
link on the main WebSphere Application Server page.

4. Create a certificate for use by the UNIX- or NT-based application server, as required by the SSL protocol. See Creating the
certificate for more information.

5. Configure the UNIX- or NT-based applications to use the identity of the application server when communicating with
z/OS-based applications. See Configuration for interoperation for more specific information or 6.6.18: Securing applications

for general information.

6. Configure the Z/OS-based application server to accept communications from the UNIX- or NT-based application servers. See
WebSphere Application Server V4.0 for Z0OSand OS390: Installation and Customization for more information; this can be
reached from the Library link on the main WebSphere Application Server page.

Creating the key file

The UNIX- or NT-based application servers must have accessto the information needed to authenticate to each z/OS-basedapplication
server. The login information, which includes thetarget realm, user 1D, and password, for every z/OS targetmust be stored in alocal
text file. The passwords in thisfile are encoded when the security service processes the filg,but it is also suggested that accessto the
fileitself berestrictedby storing the file in a securable file system and settingpermissions appropriately. For example, on a
Windows-based system,NTFS partitions systems are securable, but DOS partitions are not.
The information in the key file must be formatted as follows:
« Each entry must contain these three pieces of information, in the order specified, separated by spaces:
1. Realm name: The IP name of the Daemon Server in WebSphere for zZ/OS.
2. User ID: The user ID defined for SSL-secured servers on the z/OS platform.
3. Password: The password corresponding to the user ID defined for SSL-secured servers.
« Thefile must contain no blank lines.
« Usethe hash (#) character to include comments and other informational lines.
« All comments must begin on new lines; they cannot appear after the authentication entries on the same line.
A samplefileis provided with WebSphere Application Server. Thisfile, wsserver.key, isinstalled in

the<product_installation_root>/propertiesdirectory. It can be copied or modified. The following also illustratesthe structure of the
file

Sample key file## First target real m#Target Real m serverl D server Passwor d## Second t ar get
real m#Tar get Real n2 server| D2 server Passwor d2## End of key file

Creating the certificate

The SSL protocol is used to protect communication between theUNIX- or NT-based application server and the z/OS-based
applicationserver. To complete the SSL handshake between them, the UNIX- or NT-basedapplication server must hold avalid key
certificate. To create thiscertificate, perform the following steps:

161

http://www.ibm.com/software/webservers/appserv/
http://www.ibm.com/software/webservers/appserv/

1. Onthe Z/OS side, extract the public key of the ZZOS-based application server by using the zZ/OS key-management tools. See
WebSphere Application Server V4.0 for ZOS and OS/390: Installation and Customization for more information; this can be
reached from the Library link on the main WebSphere Application Server page.

2. Onthe UNIX or NT side, open the certificate for the UNIX- or NT-based application server and add the public key of the
2/OS-based application server as asigner certificate. See 5.5.6: Tools for managing certificates and keys for more information

on the tools and techniques for managing certificates.

Configuration for interoperation

Before UNIX- or NT-based application servers and z/OS-basedapplications servers can interoperate, the application serversand
applications must be configured for interoperation. On theUNIX or NT side, thisinvolves the following:

« Configuring application resources, for example, enterprise beans, that must access the zZ/OS-based application server to run
under the identity of the hosting application server. In the interoperability scenario, it is the application servers, not individual
applications, that authenticate, so resources like enterprise beans must run under the identity of application server. For
example, before deploying an enterprise bean that can contact the z/OS-based application server, the RunAs identity of the
bean must be set to System I dentity.

« Setting properties for the application server so that it can find the key file and key certificate containing the information about
the z/OS-based application servers. The following properties must be set:

O

ul

162

com.ibm.CORBA .loginSource: settokey fil e.

com.ibm.CORBA keyFileName: set to the absolute path of the key file. For example,
C:\WebSphere\A ppServer\properties\wsserver.key.

com.ibm.CORBA.SSL ClientK eyRing: set to the absolute path of the key certificate file containing the public key of
the z/OS-based application server.

com.ibm.CORBA.SSL ClientK eyRingPasswor d: set to the password protecting the file specified in the
com i bm CORBA. SSLO i ent KeyRi ng property.

com.ibm.CORBA.requestTimeout and com.ibm.CORBA .locateRequest Timeout: set both propertiesto 0 in the
sas.client.props and sas.server.props files. The reason for thisis that, when a WebSphere application server on zZ/OS
first starts, it has no regions available for processing work. Setting these timeout properties to zero prevents timeouts
from occurring before the regions are established.

http://www.ibm.com/software/webservers/appserv/

6.6.18: Securing applications

For purposes of security, Application Server categorizes assetsinto two classes: resources and applications.
» Resources areindividual components, such as servlets and enterprise beans.
« Applications are collections of related resources.

Security can be applied to applications and to individual resources. Setting up security involves the following
general steps:

1. Setting global values for use by all applications.

2. Refining settings for individual applications.

Securing applications with IBM WebSphere ApplicationServer product security involves a series of tasks.
Completing thetasks results in a set of policies defining whichusers have access to which methods or operations
in whichapplications.

For example, the security administrator establishes policies specifyingwhether the user Bob is permitted to use
the company's I nventoryapplication to perform a write operation, such as changing the numberunits of
merchandise recorded in the company's inventory database.

The product security server works withthe selected user registry or directory product to enforce thepolicies
whenever a user tries toaccess a protected application. For example, Bob might beprompted for a digital
certificate verifying hisidentity when hetries to use the Inventory application.

163

6.6.18.0: General security properties

Key:

a

Applies to Java administrative console of Advanced Edition Version 4.0

% Applies to Web administrative console of Advanced Single Server Edition Version 4.0
B

Appliesto Application Client Resource Configuration Tool

Cache Timeout % or Security Cache Timeout "ﬁ

Time after which the authentication cache will be refreshed. Caching can improve performance with
respect to authentication lookups.

Specify this value in seconds, with a minumum of 30.

Default SSL Configuration "ﬁ or Useglobal SSL default configuration %
Apply the default SSL configuration to the entire administrative domain.

For Advanced Edition, see Configuring SSL support instructions.

Enabled % or Enable Security ‘2

Whether global security is enabled. When security is not enabled, all other security settings are not
validated or used.

{™ For Advanced Edition (non-Single Server), when security is enabled for the first timewith the LTPA
authentication mechanism selected, you will be prompted toenter a password for encrypting and

decrypting LTPA keys. Makesure you remember the password! For more information about LTPA keys,
refer tothe article about making L TPA-secured calls across WebSphere domains.

Security Cache Timeout "ﬁ
See Cache Timeout

Use Domain Qualified User Names % E
When the value of this setting is true, user names returned by calls such as getUserPrincipal () will be
qualified with the security domain in which they reside

Use global SSL default configuration B
See the Default SSL Configuration field description

164

6.6.18.0.1: Properties for configuring Secure Socket Layer (SSL) support
e 0 sbiisnsive comef A Eion Verien 40
[——

B i apin it e Tk
ForAhance it S Srver, e Confun S st s

[3

s

Conempreees B B
Typethe e i i ot geing

Opnamicpropaies 8 B

o roood

P ———

T

ot S

[—

b st Ty

e —

Ertr s et o ay o pofolowimciohr e
Enable Cient Authenticaion W5 B
Gl Auticaion

EnptecrpoTokn sport BB B

s, W B
Wit toette S agpert

KeyFerorm
Troforma o pekey e Fosiblevalus re K5 PKCSI2 ard CEK

Keyienams B

anss
s

Prre— Y
Thopses s ecsing oy e

Ubrary Fie B B

ThoDLL or e b whichimelarestretrtostoh g docn
Py W B

Thepeaos forhe cryptogapic donce

Sy Lo B B

Tty T S W, 0 il s SHES R
g 05

SSUREA EXPORT W DESi0 OB A
S5 RSA-EXPORT WHTH RG CBC 40 D5,

50 WITH NULL DS,

TamTpe B B
Thotype ot oen ah s ST

Trus o Fermt
[T T——y

o Filename ¥

Aswiness.

RERpTe—
Jramr——

Ll 1

SIWS_HE ot el Sarver KeyFi .| ks

L ralion rot.

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

6.6.

18.0.2: Properties for configuring security using

local operating system

Key:
E Applies to Java administrative console of Advanced Edition Version 4.0

% Appliesto Web administrative console of Advanced Single Server Edition Version 4.0

e Appliesto Application Client Resource Configuration Tool

&

Authentication M echanism =

Select how to authenticate users that try to access applications.
o Against the local operating system user registry, or
o Against an LTPA based LDAP registry or custom registry

Note that the local operating system user registry isintended for single machineand single application
server environments. Advanced Single Server Edition supports only the local operating system
mechanism.

[il When form-based login is used with local operating system authentication, the user information is
stored in the HTTP session. Using an HTTP connection is not very secure, meaning the information can
be obtained by others. Using SSL connections (HTTPS) between the browser and the Web server will
improve security.

M When security is enabled for the first timewith the L TPA authentication mechanism selected, you
will be prompted toenter a password for encrypting and decrypting LTPA keys. Makesure you

remember the password! For more information about L TPA keys, refer tothe article about making
L TPA-secured calls across WebSphere domains.

Security Server 1D i or Server 1D B

166

The user 1D under which the server runs, for security purposes. This D is not associated with the system
process. This|D refersto the application security context within the WebSphere Application Server
product.

If using local operating system authentication, the following conditions apply:
o On UNIX operating systems, the ID must be root or have root authority.

o On Windows operating systems, the account must be a member of the Administrators group and
must have the rightsto "Log on asa service" and "Act as part of the operating system." If the
Windows machine is amember of an NT domain, then the ID must also be an administrator in
the NT domain. Do not use an account whose name matches the name of your machine or
Windows Domain.

If using LDAP or custom registry authentication (not available for Advanced Sngle Server Edition), the
following conditions apply:

o Theuser should be avalid user in the LDAP or custom registry

o The user should not be aroot DN or administrator DN because those users are not awaysin the
directory in al LDAP implementations.

Security Server Password & or Server Password B
The password corresponding to the server ID

167

6.6.18.0.3: Properties for configuring security using
Lightweight Third Party Authentication (LTPA)

Key:
E Applies to Java administrative console of Advanced Edition Version 4.0

% Appliesto Web administrative console of Advanced Single Server Edition Version 4.0

e Appliesto Application Client Resource Configuration Tool

Domain "ﬁ

Restrict SSO to serversin the domain you specify in thisfield. This domain name is used when creating
HTTP cookies for Single Sign On. It determinesthe scope to which Single Sign On applies.

For example, a domain of austin.ibm.com would allow Single Sign On to work between WebSphere
application server A at serverA.austin.ibm.comand WebSphere application server B at
serverB.austin.ibm.com. Note that cross-domainSingle Sign On is not supported. That is, a server at
austin.lotus.com, and anotherat austin.ibm.com cannot partipicate in WebSphere Single Sign On.

Enable Single Sign On &2

Causes your LTPA directory service to store extrainformation in the tokens so that other applications
can accept clients as already authenticated by WebSphere Application Server. When clients try to access
the other applications, they will not be interrupted and asked to log in.

When you enable Single Sign On, the Domain field will be enabled. Y ou must enter a DNS domain
name. See the Domain field description for more information. The Limit to SSL connections
onlycheck box will also be enabled. The Import Keys and Export K eys button will also be enabled.

Enable Web Trust Associations E

When enabled, one or more trust associations will be active. Trust associations enable a third party
reverse proxy server to perform authentication on behalf of the WebSphere Application Server security
component. To do so, you need to create a corresponding interceptor for the reverse proxy server and
determine how "trust” will be established between them. See the security documentation in the
InfoCenter for additional information.

[&

Limit to SSL connectionsonly ™=

Specifiesto use a connection with SSL for Single Sign On, to prevent the SSO token from flowing over
non-secure connections. When thisis set, form-based authentication will not work when resources are
accessed over HTTP. The resources can be accessed only over HTTPS.

If this property is set and form-based login is used for authentication, the resources can be accessed only
using secure connections (HTTPS). Connections that are not secure (HTTP) will not work. If basic login
for authentication is used and the access is through an connection that has not been secured, then SSO
will not work. The user will be prompted to log in again.

&

Token Expiration =

How many minutes can pass before a client using an LTPA token must authenticate again. LTPA uses
tokens to store the authenticated status of a client.

168

A positive integer indicates the token life, in minutes

169

6.6.18.0.4: Properties for mapping security roles and
"run as" roles to users and groups

Key:

i

Applies to Java administrative console of Advanced Edition Version 4.0

% Appliesto Web administrative console of Advanced Single Server Edition Version 4.0

e Appliesto Application Client Resource Configuration Tool

Note, clicking Cancel in the Security Center will not undo the changes made to the roles.

Roles i

Roles to which you want to map users and groups in order to give the users and groups permissionto run
asthoseroles.

Users e

Users to which you want to map roles. The users must be defined in your chosen authentication
mechanism.

Groups E

Groups to which you want to map roles. The groups must be defined in your chosen authentication
mechanism.

170

6.6.18.0.5: Properties for configuring using custom
user registry (pluggable user registry)

Key:
E Applies to Java administrative console of Advanced Edition Version 4.0
% Appliesto Web administrative console of Advanced Single Server Edition Version 4.0

e Appliesto Application Client Resource Configuration Tool
Display these settings by selecting the Custom User Registry radio buttonlocated in the middle
of the Authentication tabbed page when LTPA is the selected authentication mechanism.

To add or remove custom settings, besides thoseavailable in the administrative console, click the
SpecifyCustom Settings button.

&

Custom User Registry Classname ™=
The name of the custom user registry implementation class file. This should be a dot separated class
name.

For example, if the implementation file is com/myCompany/sampleRegistry.java, then enter
com.myCompany.sampleRegistry. The class file should be in the WebSphere Application Server
classpath. (See InfoCenter article 6.4.1 about setting classpaths.)

Security Server ID E
The user ID under which the server runs, for security purposes. This user should be avalid user in the

custom user registry.

Security Server Password &
The password corresponding to the Security Server ID.

171

6.6.18.0.6: Custom properties for custom user
registry

Key:

i

Applies to Java administrative console of Advanced Edition Version 4.0
% Appliesto Web administrative console of Advanced Single Server Edition Version 4.0
e Appliesto Application Client Resource Configuration Tool
Use the Add button to enter new name-value pairs. Use Remove to remove a sel ectedsetting.

Name E

The name of any user defined custom registry properties.

Value &
The value for the corresponding property.

172

6.6.18.0.7: Properties for configuring LDAP support

Key:

a

Applies to Java administrative console of Advanced Edition Version 4.0

% Applies to Web administrative console of Advanced Single Server Edition Version 4.0
B

Appliesto Application Client Resource Configuration Tool

Display these settings by selecting the L DAP radio buttonlocated in the middle of the Authentication tab when
LTPA isthe selected authentication mechanism.

Click the Advanced button to set advanced LDAP properties. Click the SSL Configuration button to set SSL
properties for LDAP.

Base Distinguished Name s

The base distinguished name of the directory service, indicating the starting point for LDAP searches of
the directory service. (See RFC 1779 for adiscussion of this technique).For example, for auser with a
DN ofcn=John Doe, ou=Rochester, o=IBM c=US, the base DNcan be specified as any of
(assuming a suffix of c=us):

o ou=Rochester, o=IBM c=us
o o=IBM c=us
0o C=us

Thisfield is not case sensitive.

il Thisfieldisrequired for al LDAP directories except theDomino Directory. If you are using the
Domino Directory andyou specify a Base Distinguished Name, you will not beable to grant permissions
to individual Web users for resourcesmanaged by your WebSphere application server.

Bind Distinguished Name B2

The distinguished name for application server to use to bind to the directory service. If no nameis
specified, the application server binds anonymously. See the Base Distinguished Name field description
for examples of distinguished names.

Bind Password E
The password for the application server to use to bind to the directory service

Directory Type &

The directory service product to use to locate information against which to authenticate users and
groups.

Modifications to the default values in the advanced LDAP properties will cause this field valueto change

to Custom.
Host E

The host ID (1P address or DNS name) of the LDAP server
Port "i

173

The host port of the LDAP server. The port number will default to 389 if none is specified.

If multiple WebSphere application servers are installed and configured to run in the sameSingle Sign On
domain, or if the WebSphere application server will inter-operate with a previousversion of WebSphere
application server, then it isimportant that the port number match inall configurations.

For example, if the LDAP port is explicitly specified as 389 in aVersion 3.5.x configuration, and a
Version 4.0 application server is going to inter-operate with the V3.5.xserver, then port 389 should also
be specified explicitly for the Version 4.0 server. Notethat thisis true even though the default port
number is 389 -- if the port is specifiedexplicitly in one server configuration, it should be specified
explicitly in allserver configurations.

Security Server 1D &
The user ID under which the server runs, for security purposes

If using LDAP or custom registry authentication (not available for Advanced Sngle Server Edition), the
following conditions apply:
o Theuser should be avalid user inthe LDAP or custom registry

o The user should not be aroot DN or administrator DN because those users are not aways in the
directory in al LDAP implementations.

Security Server Password &
The password corresponding to the Security Server ID

174

6.6.18.0.8: Properties for Select Users/Groups window

Key:
E Applies to Java administrative console of Advanced Edition Version 4.0

% Applies to Web administrative console of Advanced Single Server Edition Version 4.0
B

Appliesto Application Client Resource Configuration Tool

The following three options can be selected in any combination. See belowfor important usage notes.

&

Everyone ==
Grants anyone and everyone the access to the role. This choice basically provides no security protection.

All Authenticated Users ‘i
Grants users who are authenticated access to the resource.

Select User Groups E
Grants users or groups whom you select access to the role.
Generdly, it is preferable to grant groups rather than individual users accessto arole. It iseasier to
manage roles mapped to groups because there are typically fewer groups than users, users can be added

to or removed from groups outside of WebSphere, and the authorization table has fewer entries, which
can improve performance.

Usage notes

« If "Everyone' is selected then any other selections will be ignored.
« If "All authenticated users' is selected, but "Everyone" is not, then " Select users/groups” will be ignored.

« When "Select users/groups’ is selected, the search button can be used to select users and groups using a
pattern.

For better performance, avoid using general wildcard search (* for example) if the target registry
contains a large number of users or groups. Currently, only the first 1000 users and the first 1000 groups
will be displayed. The display name is attached to the security name in the "Available Users/Groups®
panel.

175

6.6.18.0.9: Advanced properties for configuring LDAP
support

Key:

i

Applies to Java administrative console of Advanced Edition Version 4.0

% Appliesto Web administrative console of Advanced Single Server Edition Version 4.0

e Appliesto Application Client Resource Configuration Tool

[il If any of the user and group filters are modified from their default value, the Directory
Typefield value on the Authentication tabbed page will change to Custom.

"

Certificate Filter =
If you specified the filter Certificate Mapping, use this property to specifythe LDAP filter to use to map
attributes in the client certificate to entriesin LDAP.Note that if more than one LDAP entry matches the
filter specification at runtime,then authentication will fail because it results in an ambiguous match.
The syntax or structure of thisfilter is:
LDAP attribute=${Client certificate attribute}

For example:
ui d=${ Subj ect DN}
The |eft side of the filter specification is an LDAP attribute that depends on theschema that your LDAP

server is configured to use. The right side of the filter specificationis one of the public attributes in your
client certificate. Note that the right side mustbegin with ${ and end with }.

The following certificate attribute values may be used on the right side of the filterspecification. Note
that the case of the stringsisimportant.

o ${UniqueKey}
${ PublicK ey}

${ Issuer}

${ NotAfter}
${NotBefore}

${ SerialNumber}
${ SigAlgName}
${SigAlgOID}
${ SigAlgParams}
${ SubjectDN}

${ Version}

o o o o o o o g o g

To enable thisfield, select CERTIFICATE_FILTER for the Certificate Mapping.

Certificate Mapping W

Whether to map X.509 Certificates into an LDAP directory by EXACT_DN or
CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified Certificate Filter for

176

the mapping.

Group Filter s

An LDAP filter clause for searching the registry for groups. It istypically used for Security Role to
Group assignment. It specifies the property by which to look up groups in the directory service. For
more information about this syntax, see the LDAP directory service documentation.

Group ID Map E

An LDAP filter that maps the short name of agroup to an LDAP entry. Specifies the piece of
information that should represent groups when groups are displayed.

For example, to display groups by their names, specify *:cn. The* isawildcard character that searches
on any object classin this case. Thisfield takes multiple objectclass.property pairs delimited by a
semicolon (";").

Group Member ID Map E

An LDAP filter that identifies User to Groups memberships. Specifies which property of an objectclass
stores the list of members belonging to the group represented by the objectclass. Thisfield takes
multiple objectclass:property pairs delimited by a semicolon (*;"). For more information about this
syntax, see the LDAP directory service documentation.

Initial INDI Context Factory ‘i
Java classname of theinitial context factory of a provider

User Filter E

An LDAP filter clause for searching the registry for users. It istypically used for Security Roleto User
assignment. It specifies the property by which to look up usersin the directory service.

For example, to look up users based on their user I1Ds, specify
(ampersand(uid=%v)(objectclass=inetOrgPerson) where ampersand is the ampersand symbol.

For more information about this syntax, see the LDAP directory service documentation.

User IDMap &

An LDAP filter that maps the short name of a user to an LDAP entry. Specifies the piece of information
that should represent users when users are displayed.

For example, to display entries of the type object class = inetOrgPerson by their IDs, specify
inetOrgPerson:uid. Thisfield takes multiple objectclass:property pairs delimited by a semicolon (*;").

177

6.6.18.0.10: Properties for mapping "Run As" roles to
users

Key:

i

Applies to Java administrative console of Advanced Edition Version 4.0
% Appliesto Web administrative console of Advanced Single Server Edition Version 4.0

e Appliesto Application Client Resource Configuration Tool

Security Name ‘2
For LDAP, a security name is the full distinguished name, such as CN=Bob Smith, o=austin.ibm.com.

For the Windows operating system, it is the user name with the hostname or domain name attached,
such as myDomain\user1l.

Short Name E
For LDAP, a short name can be the uid, such as bob.

For the Windows operating system, it is the user name without the hostname or domain name attached,

such as userl.
Password s

The password corresponding to the User
User E

The user Short Name or Security Name as entered in other fields

The user name entered here depends on the selection in the Select User S/Groups/Group panel under
the Role M apping tabbed page of the Security Center.

If "Everyone (no authentication)” is selected, the user name defined in this panel is optional. Any user
name in the current registry isvalid.

If "Everyone (no authentication)" is not selected but the "All authenticated users" is selected then the
user nameis required. Any user name in the current registry isvalid.

If the " Select users/groups’ is the only selection then the user name is required. This user name must

have been assigned to the same role in the Role M apping panel or belong to a group that has been
assigned to the samerole.

178

6.6.18.0.11: Properties for encrypting and decrypting
LTPA keys

Key:

i

Applies to Java administrative console of Advanced Edition Version 4.0

% Appliesto Web administrative console of Advanced Single Server Edition Version 4.0

e Appliesto Application Client Resource Configuration Tool

Password ‘2

The password to encrypt and decrypt the LTPA keys. This password should be used when importing
these keys into other WebSphere Application Server administrative domain configurations (if any) and
when configuring SSO for Domino Server.

179

6.6.18.1: Securing applications with the Java
administrative console

To configure security, use the Security Center. Access the Security Centerby clicking Console -> Security
Center on the console menu bar.
With it, you can complete the following security tasks:

« Enable product security

« Define asecurity realm and set of valid users

« Specify how to authenticate users seeking access to applications

« Grant users permissions to access applications

180

6.6.18.1.1a: Specifying global settings with the Java
administrative console
1. Start the Security Center by clicking Console -> Security Center from the console menu bar.

2. Complete the task, referring to the information below for assistance.
3. Stop the administrative server and start it again for the changes to takeeffect.
The next time the administrator opens the WebSphere AdministrativeConsole, the administrator will be

prompted to log in (if security has been enabled), using an 1D and passwordspecified during Security
Centerconfiguration.

General

Use the General tab to specify whether to enable security. If the check box is notselected, any other security
settings you specify will be disregarded.

This page aso contains an option for setting a security cache timeout. The securitysystem caches authentication
lookup information it receives from the user registry ordirectory service. Use thisfield to specify how long to
cache the information (inseconds). Caching can improve lookup performance.

Authentication

Use the Authentication tabbed page to specify how to authenticate theinformation presented by userstrying to
access an application or resources.

The administrator can have users or groups authenticated against either the local operating system user registry
(such as Windows NT User Manager program) or an LDAP or custom user registry.

Role Mapping

Use the Role Mapping page to assign usersin particular groups to specific roles.Role mapping gives particular
users or groups authorization to access one ormore applications defined by arole.

The users, groups and roles were defined when the application was installed or configured.

Run As Role Mapping

Use the Run As Role Mapping page to assign only one user to a specific role.The application is delegated to
that user. Any user who knows the assigned user'siD and password can access the application.

Administrative Roles

Use the Administrative Roles page to map an administrative role to at least one user or group.

181

6.6.18.1.2: Securing cloned applications

In an environment containing server groups (formerly called models)and clones, each server group and clone
must be secured individually. Securing a server group does not automatically secure its clones.

For example, if you clone an application server that contains secure enterprise applications, then you need to
secure those same enterpriseapplications (if you want to) on the cloned application servers.

Secure a cloned application as you would secure any new application.

182

6.6.18.1.4a.4.1: Supported directory services

For alist of supported directory services, see the prerequisites Web site discussed in the article about the site.
An additional Custom option is available for tailoring any of the default filtersto fit a supported LDAP
directory service.

183

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/0103.html

6.6.18.1a: Summary of security settings with the Java
administrative console

Use the Security Center task wizard to specify global and default security settings for al applications:
« Global settings apply to existing and future applications and cannot be customized.
« Default settings apply only to future applications and can be customized.

The default settings are used as atemplate or starting point for configuring individual applications. The
administrator should still explicitly configure security settings foreach application.

| Task | Wizard pagedescription |Global or default?
Enable security; specify how long to cache :

authentication lookup results 6.6.18.1aL: Generd Global

’Specify how to authenticate users ’6.6.18.13,2: Authentication ’Default

’Sel ect users and groups for roles ’6.6.18.1&3: Role Mapping ’Global

’Assi gn one user to each role ’6.6.18.18.4: Run As Role Mapping ’Global

]Select users and groups for administrative roles]6.6.18.1&5: Administrative Roles]Global

’M aking L TPA-secured calls across WebSphere ’6.6.18.1&6: Authentication ’ Global

domains

|Configuring SSL support [6.6.18.1a7: General |Default

IBM WebSphere Application Server provides security at several levels.The security characteristics of an
individual application can come fromany of these levels. At the most general level are the global
securitycharacteristics set up to act as application defaults. This filebriefly describes these global values.

In WebSphere, the global defaults for security apply to allapplications. Some of the values can be changed on
anapplication-by-application basis, and others remain constant acrossall applications.

An example of avalue that can be set on a per-application basisis the type of authentication procedure. You
must establish adefault procedure, but this value is used for applicationsthat do not explicitly indicate how they
will authenticate users.

An example of value that cannot be changed on a per-applicationbasis is whether to ignore security or not. In
Application Server,security is either enabled or disabled. If it is enabled, allapplications are secured according
to their configurations. Ifsecurity is disabled, all applications run unsecurely, regardliessof their configurations.

184

6.6.18.1a.1: Enabling security with the Java
administrative console

IBM WebSphere Application Server security can be enabled or not enabled. If securityis not enabled, all other
security settings are ignored.

Selecting how to enable security
The administrator can enable server security by selecting the Enable Securitycheck box on the General tabbed

page of the Security Center. The administrator can use the Gener al tabbed page to specify additional general
settings.

185

6.6.18.1a.2: Specifying how to authenticate users with
the Java administrative console

Use the Authentication tab of the Security Centerwizard to specify how to authenticate or verify the user data
receivedas aresult of achallenge (such as alogon screen).

The WebSphere security server must havesome way to check the user ID and password, digital certificate, or
otheruser identification for credibility. It relies on the authenticationmechanism specified by the administrator.

Selecting how to authenticate user data

Users can be authenticated by one of two authentication mechanisms, either theoperating system user registry or
Lightweight Third-Party Authentication (LTPA).

The operating system user registry simply compares users to valid usersin the underlying operating system.
When the administrator selects the Local Operating Systemauthentication mechanism, the Authentication
tabbed page changes to allow theadministrator to set a security server 1D and password under which the
application will run. Theinformation is used for delegation of the application resource.

The Local Operating System authentication mechanism supports the basic challenge type. If the administrative
server isrunning as a non-root user, then the Local OperatingSystem cannot be used. LTPA authentication in
connection with LDAP or with the Custom User Registry must be used to enable security. Similarly, if the
administrative server is beingused in a multi-node configuration, LTPA authentication must be used.

When the administrator selects L ightweight Third-Party Authentication (L TPA) as theauthentication
mechanism, the Authentication tabbed page changes. This change enables theadministrator to specify LTPA
settings and information about the Lightweight Directory Access Protocol (LDAP)-compliant directory service
product to be used, or the custom user registry. LTPA causes a search to be performedagainst the selected
registry (LDAP or custom user registry). LTPA supports both the basic and certificate challenge types.

The help files that describe the OS, LTPA, LDAP, and custom user registry settings provide guidance
forcompleting options on the Authentication tabbed page.

186

6.6.18.1.a.3: Selecting users and groups for roles with
the Java administrative console

Use the Role Mapping tab of the Security Center wizard to assign users or groups to a particular role. Different
roles can have different security authorizations. Mapping users or groups to arole authorizes those users or
groups to accessapplications defined by the role.

Users, groups and roles are defined when an application isinstaled or configured.

Mapping users or groups to roles

The administrator maps a user or group as follows:

1
2.
3.

© N o O &

In the Role Mapping tabbed pane, the administrator selects an application.
Click Edit M apping to open the Role Mapping dialog.

In the Role Mapping dialog, the administrator selects arole and clicks on Select to open the Select
Users/Groups dial og.

In the Select Users/Groups dialog, the administrator selects who is authorized access for the role.
Click OK when finished mapping a user or group to arole.

The administrator repeats the previous two steps for other roles or as needed.

Click OK to exit the Role M apping dialog.

Click OK or Apply on the Security Center.

187

6.6.18.1.a.4: Assigning users to Run As roles using
the Java administrative console

Use the Run As Role M apping tab of the Security Center wizard to assign auser only to a particular Run As
role. During delegation the user assigned to the Run As Role will be used when making invocation to other
methods. See InfoCenter section 5.1.4, "The WebSphere delegation model,” for detail description.

Before performing this subtask

Before completing the Run As Role Mapping subtask, the administrator needs to compl etesubtasks in the Role
Mapping tabbed pane of the Security Center and map users or groupsto the roles.

Mapping users to Run As roles

To map usersto Run Asroles:
1. Inthe Run As Role M apping tabbed pane, the administrator selects an application.
2. Click Edit Mapping to open the Run As Role Mapping dialog.

3. Inthe Run As Role M apping dialog, the administrator selects arole and clicks on Select to open the
Select User dialog.

4. Inthe Select User dialog, the administrator enters the User | D/Password of a user who should havebeen
granted the same role or who belongs to a group that has been granted the same role(in the Role
Mapping task).

Click OK when finished mapping a user to a Run AsRole.

The administrator repeats the previous two steps for other roles or as needed.
Click OK to exit the Run As Role M apping dialog.

Click OK or Apply on the Security Center.

O N o U

188

6.6.18.1.a.5: Selecting users and groups for
administrative roles with the Java administrative
console

Use the Administrative Roles tabbed page of the Security Center wizard to assign users or groupsto the
administrative role.WebSphere security model has the configuration capability to assign any user or group to
have the WebSphere administrator authority. Thisis encapsulated with the notion of an "AdminRole" which is
scoped to the WebSphere administrative application. Any user who has been granted the administrative role, or
is part of agroup which has been granted the administrative role, will be able to administer the WebSphere
administrative domain. Thisrole will grant such a user or a group the capability to perform any WebSphere
administrative function. For example, the administrator can create a new application server, stop a running
server, deploy an application, and configure security settings.

Mapping users or groups to administrative roles

The administrator maps a user or group as follows:

In the Administrative Roles tabbed pane, the administrator selects an application.

Click Edit Mapping to open the Administrative Roles dialog.

In the Select Users/Groups dialog, the administrator selects who is authorized access for the role.

Click OK when finished mapping a user or group to arole.
Click OK to exit the Administrative Roles dialog.
Click OK or Apply on the Security Center.

o gk wbdE

189

6.6.18.1a.6: Making LTPA-secured calls across
WebSphere domains with the Java administrative
console

If applicationsin two different WebSphere Application Server domainsneed to be able to communicate, the two
WebSphere application servers mustshare security information so that the servers themselves cancommunicate.
Specifically, the LTPA component of the administrativeserversin both domains must use the same LTPA key.
This allows the twoservers to communicate securely with each other, and it allows the called serverto decrypt
security information from the calling server. Otherwise, the WebSphereapplication server in the calling domain
cannot authenticateto the application server in the called domain.

See below for an example.

This article describes the procedure for making L TPA-secured calls:
1. Generate keys

2. Export the key information
3. Makethefile accessible to the second domain
4. Import the key information

Generate keys

Use the Gener ate K eys button on the Authentication tabbedpage to generate LTPA keys.

When LTPA keys generated, you must provide a password that is used to protected the keys. This password is
required when the keys are imported from afile into another WebSphere Application Server domain.

Export the key information

Y ou must export the calling domain's LTPA keysto afileso that the key can be made available to another
domain,where the keys are imported from the file.

[il Before LTPA keys can be exported, they have to be created.Such keys are typically created when security
is enabled for the first time using the LTPA authentication mechanism for the domain, or can be created any
time by clicking the Gener ate K eys button. When the LTPA keys are created,you must provide a password that
is used to protect the keys. Thispassword is required when the keys are imported from a fileinto another
application, so you must have this password.

To export the LTPA key information, perform these steps:
1. Start the administrative server for the domain, if necessary.
Start the administrative console, if necessary.
Click on the Consoleaction bar and then choose Security Center from the drop-downmenu.
Click the Authentication tab in the Security Center.
Ensure that LTPA is selected as the authentication mechanism.
Click the Export Key button.

When prompted, specify the name and location of the fileto contain the LTPA keys. Y ou can use any
file name and extension.Note the name and extension you specify; this file must laterbe imported by the

application in the second domain.
190

N o o s~ DN

8. Click Saveto savethefile.

9. Click Cancdl to close the wizard. (This procedurehas not changed any global security setting, so there
are nonew settings to save.)

Make the file accessible to the second domain

The file containing the exported keys must be installed in alocationwhere the importing administrative server
can find it. For example, to move thefile from one machine to another, you can put it on afloppy disk andinstall
it on the second machine. Thisfile contains security keys,so treat it with care. Some sites have policies
describing howsuch transfers can be done.

Import the key information

Y ou must import the LTPA keys of calling domain from thefile. This allows the called domain to decrypt
informationencrypted by the calling domain.
To import the key information from afile, perform these steps:
1. Start the administrative server for the domain, if necessary.
Start the administrative console, if necessary.
Click on the Consoleaction bar and then choose Security Center from the drop-downmenu.
Click the Authentication tab in the Security Center.
Ensure that LTPA is selected as the authentication mechanism.
Click the Import Key button.
When prompted, select the file that was generatedduring the export step.
Click Open.
When prompted, type the LTPA password established wheninitially generating the keys.
Click OK to import the keys.
. Stop and restart the administrative server.

© o N kWD

N
= o

Example of LTPA-secured calls across domains

Suppose that a servlet running in DomainA needs to call an enterprise bean running in Domain B.Before this
exchange can take place, the two WebSphere applicationservers have to exchange LTPA key information. To
exchange the necessaryinformation between the two domains, three things must be done:

1. Thekeysfor the LTPA component in the calling application'sdomain must be exported to afile. In the
example scenario,the calling application is the servlet.

2. Thefile must be made accessible to the administrative serverof the called WebSphere Application
Server domain.

3. The key information from the calling domain must be importedby the LTPA component of the called
domain. In the examplescenario, the called application is the enterprise bean.

191

6.6.18.1a.7: Configuring SSL in WebSphere Application Server

« "What is Secure Socket Layer?' and related concepts

« Overview: WebSphere Application Server's use of SSL

« Configuring SSL for browsers

« Configuring SSL for Web servers

« Configuring SSL for IBM HTTP Server, specifically

« Configuring SSL for WebSphere plug-ins for Web servers
» Configuring SSL for WebSphere Application Server

Overview: WebSphere Application Server's use of SSL

SSL (Secure Socket Layer) is used by several WebSphere Application Server componentsin order to provide secure communication. In particular, SSL is
used by:
« HTTPS: the application server's built-in HTTPS transport.
« ORB. the application server's client and server ORB.
« LDAPS: the admin server's secure connection to the LDAP registry used for authentication. Thisis available only in WebSphere Application Server
Advanced Edition.

The administrative model in WebSphere Application Server allows these various SSL components to be centrally managed by configuring the default SSL
Settings. Furthermore, any of the default settings can be overridden by configuring the specific SSL settings for HTTPS, ORB, and LDAPS. This provides
both central administration aswell asindividua configurability which may be required for the various uses of SSL.

Configuring SSL for the browser

Configuring SSL for the browser is browser-specific. Consult your browser documentation for instructions.

Generally speaking, when the you type "https://..." instead of "http://...", the browser creates an SSL connection instead of a simple TCP connection to the
Web server. The browser then typically either prompts the user or failsto connect if it was unable to validate the Web server or to agree upon the level of
security options (the strength of the encryption algorithm to use).

Configuring SSL for the Web server

Configuring SSL for the Web server depends on the type of Web server. Consult your Web server documentation forinstructions.

Generally speaking, when SSL is enabled, an SSL key fileisrequired. Thiskey file should contain both the CA certificates (signer certificates) aswell as
any personal certificates. Client authentication can also be enabled; by default, it is disabled.

[l Inorder for the client certificate (the certificate from the browser) to be forwarded by the WebSphere Web server plug-in to the WebSphere Application
Server, client authentication must be enabled for the Web server. Enabling client authentication in WebSphere Application Server itself is not required
unless you want to authenticate the WebSphere Web server plug-in (or any other clients connecting directly to the WebSphere Application Server over SSL).

Configuring SSL for IBM HTTP Server, specifically

This section provides a brief example of configuring SSL for IBM HTTP Server. See the IBM HTTP Server documentation for the most recent and complete
instructions. Note also that the httpd.conf.sample file of your Web server provides examples of al directives, including the SSL-related directives.

1. Create akeyfile using the IHS key management utility.
1. Create adirectory at alocation such as "product_installation_root/myKeys'

This directory will be used to hold all of your SSL key files and certificates.
2. Start the Key Management Utility from the IBM HTTP Server start menu.

To start this utility on aWindows platform, click: Start -> Programs->1BM HTTP Server -> Start Key Management Utility
3. Click the Key Database File menu and select New.
4. Specify settings and click OK:
= Key Database Type: CMS Key Database File
= File Name: WebServerKeys.kdb
= Location: The path to your "myKeys" directory
5. Enter apassword for your SSL key file (twice for confirmation).
6. Check the " Stash the password to afile?" option. Click OK.

[l Thiscauses afile named "WebServerKeys.sth" to be created containing an encoded form of the password. Note that this encoding
prevents a casual viewing of the password but is not highly secure. Therefore, operating system permissions should be used to prevent all
access to thisfile by unauthorized persons.

192

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/001810.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

7. When you see the list of default Signer Certificates, click the Signer Certificates menu and select Per sonal Certificates.

If you have a server certificate from a CA (for example, Verisign), you can click Import to import this certificate into your SSL key file. You
will be prompted for the type and location of the file containing the server certificate.

If you do not have avalid server certificate from a CA, but want to test your system, click New Self-Signed.
Y ou will be prompted minimally to enter aKey Label such as"Test" and Organization, such as"IBM". Choose to use the default values for
other values.
8. Click the Key Database File menu and select Close.
2. Add the following lines to the bottom of your httpd.conf file:

LoadMbdul e i bm ssl _nodul e nodul es/ | BMWbdul eSSL128. dI | Li sten 443 SSLEnabl e
Keyfile "product_installation_root/nyKeys/ WbServer Keys. kdb" # SSLd i entAuth required

This causes the Web server to listen on port 443 (the default SSL port).
Uncomment the last line containing "SSL ClientAuth required” if you want to enable client authentication. Thiswill cause IHS to send arequest for a
certificate to the browser. Y our browser may prompt you to choose a certificate to send to the Web server in order to perform client authentication.
3. Start your IBM HTTP Server.
4. Test your configuration from a browser by entering a URL such as:
https://1 ocal host
If you are using a self-signed certificate, instead of a certificate issued by a CA such as Verisign, then your browser should prompt you to seeif you

want to trust the unknown signer of the server's certificate. Additionally, if you enabled client authentication, then your browser may prompt you to
select a certificate to send to the Web server in order to perform client authentication. The page should then be displayed.

Configuring SSL for WebSphere plug-ins for Web servers

After SSL isworking between your browser and Web server, proceed to configure SSL between the Web server plug-in and the WebSphere Application
Server product. Thisis not required if the link between the plug-in and application server is known to be secure or if your applications are not sensitive. If
privacy of application datais a concern, however, this connection should be an SSL connection.

Step 1: Creating an SSL key file for the WebSphere Web server plug-in

When configuring SSL, you must first create an SSL key file.

Note that if you are using the IBM HTTP Server, you may use the same SSL key file which the Web server is using; however, it is recommended that
separate SSL key files be used because the trust policy for the connection to the web server will likely be different than the trust policy for the connection to
the application server.

For example, we may want to allow many browsers to connect to the Web server's HTTPS port, whereas we only want to allow a small, well-known number
of WebSphere plug-ins to connect directly to a WebSphere application server's HTTPS port. The following is an example of how to create an SSL key file
for your WebSphere plug-in which will only allow the plug-in to connect to the application server on it's SSL port.

1. Create the directory product_installation_root\myKeysif you have not aready done so.

This directory will contain all of the SSL key files and extracted certificates that you will create.
2. Start the key management utility of GSKit.

GSKit isthe SSL implementation used by the WebSphere plug-in, which is the same implementation used by the IBM HTTP Server.

The default path on Windows to this utility is C:\Program Files\ibm\gsk5\bin\gsk5ikm.exe.
3. Click the Key Database File pulldown and select New.
4, Specify settings and click OK:
o Key databasetype: CMS Key Database File
o Filename: plug-inKeys.kdb
o Location: your myKeys directory
5. Enter apassword for your SSL key file (twice for confirmation).
6. Check the Stash the password to afile? option. Click OK.

This causes afile such as "product_installation_root\myKeys\plug-inK eys.sth to be created containing an encoded form of the password. This
encoding prevents a casual viewing of the password but is not highly secure. Therefore, operating system permissions should be used to prevent all
access to thisfile by unauthorized persons.

7. When you seethe list of default Signer Certificates, select thefirst certificate and click Delete.
8. Repeat the previous step until all of the signer certficates have been deleted.
9. Create a self-signed certificate:

1. Click the Signer Certificates menu and select Personal Certificates.

2. Click New Self-Signed.

3. Enter "plug-in" for the Key Label and "IBM" for the Or ganization.
193

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

4. Click OK.
10. Extract the certificate so that you can import it into the application server key file later.
1. Click Extract Certificate.
2. Specify settings:
= Baseb4-encoded ASCII data: Data Type
= Certificatefile name: plug-in.arm
= Location: path to your myKeys directory
3. Click OK.
11. Click the Key Database File menu and select Close.

Step 2: Modifying the WebSphere Web server's plug-in configuration file

Now that you have created the SSL key file for the plug-in, edit the plug-in configuration file so that it references your key file.

The following is an example of the plug-in configuration file. This configuration causes the plug-in to forward HTTP requests to the HTTP port of the
application server, and to forward HTTPS requests to the HTTPS port of the application server.

The SSL configuration information is specified for secureServer1, which is the only member of the secureServers group. All HTTPS requests are forwarded
to the secureServers group. (A server group is aconcept that issupported only in Advanced Edition, not in Advanced Single Server Edition.)

The SSL key file is specified by the keyring property, and the stash file (which contains an encoded password) is specified by the stashfile property. Make
sure that the path of thisfileis specified in your Web server configuration (for example, in "httpd.conf" for IHS).

<?xm version="1.0"?> <Confi g> <Log LogLevel ="Error"

Name=<"product _i nstall ati on_root\l ogs\native.log"> <Virtual Host G oup Nanme="st andar dHost ">

<Vi rtual Host Nanme="*:80"/> </ Vi rtual Host G oup> <Vi rt ual Host Group Nanme="secur eHost ">

<Vi rtual Host Nane="*:443"/> </ Vi rt ual Host G oup> <Uri Group Nare="WebSpher eURl s" > <Uri
Name="/servl et/ snoop/ *"/ > <Uri Nanme="/servl et/snoop"/> <Uri

Nanme="/servl et/ snoop2/*"/ > <Uri Name="/servl et/snoop2"/> <Uri Name="/servlet/hello"/>
<Uri Name="/ErrorReporter"/> <Uri Nanme="/servlet/*"/> <Uri Name="/servlet"/>

<Uri Name="*.jsp"/> <Uri Name="/j_security_check"/> <Uri Name="/webapp/ exanpl es"/ >
<Uri Name="/WebSpher eSanpl es"/ > <Uri Name="/WebSpher eSanpl es/ Si ngl eSanpl es"/ > <Uri
Nanme="/t hene"/ > </ Ui G oup> <Server G oup Nane="standardServers"> <Server

Nanme="st andar dSer ver 1" > <Transport Hostnanme="1|ocal host" Port="9080" Protocol ="http"/>

</ Server > </ Server G oup> <Server G oup Nanme="secureServers"> <Server

Nanme="secur eServer 1" > <Transport Host nanme="I|ocal host" Port="9443" Protocol ="https">

<Property name="keyring" val ue="product _i nstallation_root\nyKeys\ pl ug-i nKeys. kdb" >
<Property nane="stashfile" val ue="product_installati on_root\nyKeys\pl ug-i nKeys. sth">

</ Transport > </ Server > </ Server G oup> <Rout e Virtual Host Group="st andar dHost "
Uri Group="WebSpher eURI s" Server Group="st andardServers"/> <Rout e Virtual Host G oup="secur eHost"
Uri Group="WebSpher eURI s" Server G oup="secureServers"/> </ Config>

™ The XML implementation of the plug-in configuration file could changebefore this documentation is updated again. Consult the actual configuration file
installed onyour system with your current product version and fix pack level as the most current and correct version of the XML syntax.

Configuring SSL for WebSphere Application Server

The administrative console provides the following access points to SSL settings.

Use the Default SSL Settings to centrally manage SSL settings for resources in the administrative domain. Any of the default settings can be overridden in
the settings for an individual resource type -- the transport, ORB, or LDAPs security settings.

« Default SSL Settings

Open the Security Center and click Default SSL Configuration.
o HTTPS SSL settings for the HTTP transport of a Web container

Edit the transport properties. In particular, select the Enable SSL check box.
o ORB SSL settings

The ORB currently uses the default SSL settings.
o LDAPS SSL settings

Use the Security Center with LTPA selected as the Authentication M echanismin order to display the LDAP configuration settings. Click SSL
Configuration.

The above ettings that can be configured through any of these SSL settings is described by the:
« SSL property reference

In the SSL settings dialog, note the Crypto Token button for configuring settings for supported cryptographic devices.

194

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/06064500.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/06060001.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/0606130102.html

Configuring SSL for the application server's HTTPS transport

In order to configure SSL, you must first create an SSL key file. The contents of this file depend on whom you want to allow to communicate directly with
the application server over the HTTPS port (in other words, you are defining the HTTPS server security policy).

This article presents arestrictive security policy, in which only awell-defined set of clients (the WebSphere plug-ins for the Web server) are allowed to
connect to the application server HTTPS port. The following procedure for creating an SSL key file without the default signer certificates follows that
restrictive trend.
Step 1: Create an SSL key file without the default signer certificates

1. Start IKeyMan.

On Windows, start IKeyMan from the WebSphere Application Server entry on the Windows Start menul.
2. Create anew key database file.
1. Click Key Database File and select New.
2. Specify settings:
= Key databasetype: KS
= FileName: appServerKeys.jks
= Location: your myKeys directory, such as "product_installation_root\myKeys
3. Click OK.
4. Enter apassword (twice for confirmation) and click OK.
3. Deleteal of the signer certificates.
4. Click Signer Certificates and select Personal Certificates.
5. Add anew self-signed certificate.
1. Click New Self-Signed to add a self-signed certificate.
2. Specify settings.
= Key Label: appServerTest
= Organization: IBM
3. Click OK.
6. Extract the certificate from this self-signed certificate so that it can be imported into the plug-in's SSL key file.
1. Click Extract Certificate.
2. Specify settings:
= Data Type: Base64-encoded ASCII data
= Certificatefile name: appServer.arm
= Location: the path to your myKeys directory
3. Click OK.
7. Import the plug-in's certificate.
1. Click Personal Certificates and select Signer Certificates.
2. Click Add.
3. Specify settings:
= Data Type: Base64-encoded ASCII data
= Certificate file name: appServer.arm
= Location: the path to your myKeys directory
4. Click OK.
8. Enter "plug-in" for the label and click OK.
9. Click Key DatabaseFile.
10. Select Exit.

Step 2: Add the signer certificate of the application server to the plug-in's SSL key file

1. Start the key management utility.

2. Click the Key Database File menu and select Open.

3. Select the file product_installation_root\myKeys\plug-inK eys.kdb.
4. Enter the associated password and click OK.

5. Click Personal Certificates and select Signer Certificates.

6. Click Add.

7. Specify settings.

o Data Type: Base64-encoded ASCI| data
o Certificate File Name: appServer.arm

o Location: the path to your myKeys directory. 195

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

8. Click OK.
9. Click Key Database File and select Exit.

Step 3: Reference the key file in WebSphere Application Server systems administration

Reference the appropriate SSL key file in the default SSL settings configuration panel or in the HTTPS SSL settings configuration panel. Here, we will use
the default SSL settings panel.

1. Start the administrative console.
2. Open the Security Center.
3. Specify settings in the default SSL configuration.
o Key File Name: product_installation_root/myKeys/appServer.jks
o Key File Password: enter your password
o Key FileFormat: KS
o Trust File Name: (empty)
o Trust File Password: (empty)
o Client Authentication: selected
4. Saveyour changes.

Step 4: Stop the servers and start them again

The configuration is complete. In order to activate the configuration, stop and restart both the Web server and the application server.

196

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/0606000101.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

6.6.18.1a.8: Selecting users and groups with the Java
administrative console

1. Display the page for selecting users and groups by clickingConsole -> Security Center on the console
menu bar, thensel ecting the Role Mapping or Administrative Role tabbed page.
Y ou might also encounter this tabbed page as part of installingan enterprise application or module.

2. Select arole from the table and click Select.

3. Select who should be assigned therole.

View properties reference for:
o Select Users/Groups window

At runtime, the authorization checking will grant access in the following order: Everyone, All
authenticated users, and then Select user s/groups. If auser or group isin more than one of these roles,
the first match will grant access.

If you opt to select a user or group for the role, then enter aname in the search field or enter a search
pattern. For important search usage notes, see:
o Select Users/Groups window

After aresult of the search is displayed in the Available User SGroups tree view, select one or more
users or groups and click Add.

4. Click OK to commit the role to user or group mapping.
5. Repeat the steps for each role that needs to be mapped.

Related references
Properties for mapping security roles and "run as' rolesto users and groups

197

6.6.18.6: Avoiding known security risks in the runtime
environment

Securing the properties files

WebSphere Application Server depends on several configuration filescreated during installation. These files
contain password informationand should be protected accordingly. Although the files are protectedto a limited
degree during installation, this basic level of protectionis probably not sufficient for your site. Y ou should
ensure that thesefiles are protected in compliance with the policies of your site.

The files are found in the bin and properties subdirectories in theWebSphere <product_installation_root>.The
configuration filesinclude:

« Inthe bin directory: admin.config
« Inthe properties directory:

0 Sas.server.props

0 sas.client.props

0 sas.server.props.future

[il Failure to adequately secure these files can lead to abreach of security in your WebSphere applications.

Securing properties files on Windows NT

To secure the properties files on Windows NT, follow this procedurefor each file:
1. Open the Windows Explorer for aview of the files and directories on the machine.
Locate and right-click the file to be protected.
On the resulting menu, click Properties.
On the resulting dialog, click the Security tab.
Click the Permissions button.
Remove the Everyone entry.
Remove any other users or groups who should not be granted access to thefile.

Add the users who should be allowed to access the file. At minimum, add the identity under which the
administrative server runs.

O N O U~ DN

Securing properties files on UNIX systems

This procedure applies only to the ordinary UNIX filesystem. If yoursite uses access-control lists, secure the
files by using that mechanism.

For example, if your site's policy dictates that the only user who shouldhave permission to read and write the
propertiesfilesis the root user,to secure the properties files on a UNIX system follow this procedurefor each
file:

1. Go to thedirectory where the propertiesfiles reside.

2. Ensurethat the desired user (in this case, root) owns each file and that the owner's permissions are
appropriate (for example, rw-).

3. Delete any permissions given to the "group".

198

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

4. Delete any permissions given to the "world".
Any site-specific requirements can affect the desired owner, group andcorresponding privileges.

Risks illustrated by example applications

The level of security appropriate to aresource varies with thesensitivity of the resource. Information considered
confidentialor secret deserves a higher level of security than public information,and different enterprises will
assess the same information differently. Therefore, a security system needs to be able to accommodate a
widerange of needs. What is reasonable in one environment can be considereda breach of security in another.

The following describes some user practices and their potential risks.When applicable, it uses components of
the example application to illustrate the point.

Invoker Servlet

Purpose: The invoker servlet serves servlets by class name.For example, if you invoke
/servlet/com.test.HelloServlet, the invokerwill load the servlet class (if it isin its classpath) and executethe
servlet.

Security consideration: By using this servlet, a user can accessany other servlet in the application, without
going through the proper channels. For example, if /servlet/testHello is a URI associated with
com.test.HelloServlet, and if that URI is protected, user must beauthenticated to invokes /servlet/testHello, but
any user can invoke/servlet/com.test.HelloServlet, circumventing the security on the URI.Thisis a security
exposure if you have secured servlets installed inthe system.

Solution: Avoid installing this servlet in your configuration.

An application's error page

Purpose: In case of application errors, users are redirectedto an error page associated with the Web application.
This can beany type of Web resource to which customers should be redirectedin case of an error.

Security consideration: This page should be unprotected. Ifit is protected, the server cannot authenticate the
user from the context and therefore cannot send the user to the error page whenan error occurs.

Solution: Do not secure these resources.

The web application "examples"

Purpose: This application is available as part of the defaultinstallation.

Security consideration: The servlets available in this application can export sensitive information, for example,
theconfiguration of your server.

Solution: The "examples' Web application should not beinstalled in a production environment.

Avoiding other known security risks

Thisfile addresses specific problem areas. As aways, periodically check the product Web site Library page for
the latest information. See alsothe product Release Notes.

« Toavoid asecurity risk, ensure that the WebSphere Application Server document root and the Web
server document root are different. Keep your JSP filesin the WebSphere Application Server document

199

http://www.ibm.com/software/websphere/appserver/library.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/relnotesindx.html

200

root or it will be possible for users to view the source code of the JSP files.

WebSphere Application Server checks browser requests against its list of virtual hosts. If the host header
of the request does not match any host on the list, WebSphere Application Server lets the Web server
serve the file. Suppose the requested file is a JSP file in the Web server document root -- the JSP fileis
served as aregular file.

This problem has been noticed in scenarios using Netscape Enterprise Server. Due to the nature of the
problem, it is possible that other Web server brands are susceptible.

Microsoft Internet Information Server users:
To use the Microsoft Internet Information Server with security enabled, in combination with IBM
WebSphere Application Server security, you need to:

o Configure 1S authentication settings to Anonymous.
o Disable NTLM (Windows NT Challenge/Response) in the Microsoft Management Console
o Disable Basic Authentication on the Microsoft Management Console

L ook for the setting on the Directory Security tab of the WWW Services properties.

Problems are common when Internet Information Server NTLM is enabled along with IBM WebSphere
Application Server security. The above settings are recommended to avoid problems.

Usersof Distinguish Names (DN) in LDAP:

Make sure you use Distinguished Names (DNs) that your directory service product supports. Although
WebSphere Application Server security supports valid LDAP DNs, some directory-service products
support only asubset. For example, testing revealed that some directory services do not support all valid
LDAP DNs. Specifically, avalid DN of the form OID.9.2.x.y.z=foo was rejected by one or more of the
supported directory services.

Also, directory services vary in how they represent DNs, and DNs are both case- and space-sensitive. In
some cases, this leads to situations in which a user entersavalid DN and is authenticated but is still
refused access. This problem is often solved by using the Common Name (the short name) rather than
the full Distinguished Name.

Users of digital certificateswith European characters:

If you use the iKeyman GUI tool to obtain manage certificates that contain European charactersin
names, the GUI will not display them. For example, adigital certificate contains the name of the
company that owns the certificate and the name of the company that issued the certificate. In the US,
there are companies that use symbols instead of |ettersin their names, like @Home and $mart $hopper.
European charactersin certificate names will not be displayed by the GUI.

6.6.18.7: Protecting individual application
components and methods

Protecting enterprise beans after redeployment

All methods in enterprise beans and Web applications are unprotectedby default.

Security is not automatically updated when changes are made to a bean. Itwill be updated after the old
application is stopped, the new application is deployed into the runtime, and the new application is started.

Adding a method to a bean

If you add a method to a bean, you must use the Application AssemblyTool to associate the new method with a
role.

Modifying a method on a bean

If you modify a method on a bean, you must use the ApplicationAssembly Tool to ensure that the method still
has a role associatedwith it.

Unprotecting resources

All methods in enterprise beans and Web applications are unprotected by default. If you have add asingle
method-to-role mapping to an enterprise-bean method, the user will be given an option to assign "DenyAllRole"
roleto all other unprotected methods during application installation. If the unprotected methods are assigned the
"DenyAllRol€e" role, then these methods are protected; nobody is permitted to use them. If the unprotected
methods are not assigned the "DenyAllRole" role, these methods are not protected and anyone can access those
methods.

Unprotecting an entire application

During application assembly, if you have assigned roles to methods withan application, you have protected
those methods. To unprotectthe methods, you can do either of the following:

o Usethe Application Assembly Tool to remove the method-to-role mappings for every method in the
application

« Assign the Everyone subject to all of the rolesin the application, either during application installation or
using the Security Center after installation

Unprotecting a Method

The only way to unprotect a specific method is to use the ApplicationAssembly Tool to edit the method-to-role
mapping. Change the role associatedwith the method to a different role, one that is associated only withthe
Everyone subject.

201

6.6.18.8: Using Microsoft Active Directory as an LDAP
Server

To use Miscrosoft Active Directory as the LDAP server for authenticationwith WebSphere Application Server,
there are some specific steps you musttake. By default, Microsoft Active Directory does not allowanonymous
LDAP queries. To make LDAP queries or browse thedirectory, an LDAP client must bind to the LDAP server
usingthe distinguished name (DN) of an account that belongs to theAdministrator group of the Windows
system.

To set up Microsoft Active Directory as your LDAP server, followthis procedure:

1. Determine the full DN and password of an account in the Administrators group. For example, if the
Active Directory administrator creates an account in the Users folder of the Active Directory Users and
Computers Windows NT/2000 control panel and the DNS domain isibm.com, the resulting DN has the
following structure:
cn=<adm nUser nane>, cn=users, dc=ibm dc=com

2. Determine the short name and password of any account in the Microsoft Active Directory. This does not
have to be the same account as used in the previous step.

3. Usethe WebSphere Application Server administrative console to set up the information needed to use
Microsoft Active Directory:

1. Start the administrative server for the domain, if necessary.

2. Start the administrative console, if necessary.

3. On the administrative console, click Console -> Security Center on the console menu bar.
4

. Select the Authentication tabbed page. On it, select Lightweight Third Party Authentication
(LTPA) as the authentication mechanism.

5. Enter the following information in the LDAP settings fields:
= Security Server I1D: The short name of the account chosen in 2
= Security Server Password: the password of the account chosen in step 2
= Directory Type: Active Directory
= Host: The DNS name of the machine running Microsoft Active Directory

» Base Distinguished Name: the domain components of the DN of the account chosen in
step 1. For example:
dc=i bm dc=com

= Bind Distinguished Name: the full DN of the account chosen in step 1. For example:
cn=<adm nUser nane>, cn=users, dc=i bm dc=com

= Bind Password: the password of the account chosen in step 1
6. Click OK button to save the changes.
7. Stop and restart the administrative server to make the changes take effect.

202

6.6.18.9: Specifying authentication options in sas.client.props

Y ou can use the sas.client.props file to direct WebSphere ApplicationServer to authenticate users by prompting or by using a user ID and password set in the
properties file. The following steps describe theprocedure:

1. Locate the sas.client.propsfile. By default, it islocated in the properties directory under the <product_installation_root> of your WebSphere Application

Server installation.
2. Edit thefileto set up the authentication procedure:
o To authenticate by prompting, set the loginSource property to the value "prompt":
com i bm CORBA. | ogi nSour ce=pr onpt
Note that when using prompt, a graphical panel is presented for the user for collecting the user ID and password. Pure Java clients must call the JDK

API System.exit(0) at the end of the program in order to properly end the Java process. Thisis because the JDK starts a backward AWT thread that is
not killed when the login prompt disappears. If you choose not to use a System.exit(0) call, pressing Ctrl-C ends the process.

o To authenticate by prompting on the console (stdout), set the loginSource property to the value "stdin". The user is then prompted for user 1D and
password by using anon-graphical console prompt. Thisis currently only supported by a pure Javaclient.
o To authenticate by the values configured in the file, set the loginSource property to the value "properties’ and set the desired values for the
loginUserid and loginPassword properties:
com i bm CORBA. | ogi nSour ce=properties com i bm CORBA. | ogi nUseri d=<user _I| D>
com i bm CORBA. | ogi nPasswor d=<passwor d>

3. Savethefile.

203

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html

6.6.18.10: The demo keyring

[il Do not use the demo keyring in production systems. It includesa self-signed certificate for testing purposes,
and the privatekey for this certificate can be obtained easily, which puts the securityof all certificates stored in
thefile at risk. This keyringis intended only for testing purposes.For information on obtai ningproduction
certificates, see Requestingcertificates; for information on creating keyring files,see Tools for managing

certificates and keyrings.(The links will only work if you are reading this as part of the InfoCenter that you can
obtain fromhttp://www.ibm.com/software/webservers/appserv/infocenter.html).

204

http://www.ibm.com/software/webservers/appserv/infocenter.html

6.6.18.12: Crytographic token support

To understand how to make WebSphere Application Server (both the runtime and the IKeyMan key
management utility) work correctly with any crypto hardware, you should become familiar with the JSSE
documentation available from the Application Server product installation:

product installation_root/javal/docs/jsse/readne.jsse.ibmhtm

Be sure to unzip thefile:

product _installation_root/javal/docs/jsse/native-support.zip

to the appropriate location; otherwise, link errors will occur.

Follow the documentation that accompanies your device in order to install your crypto hardware. Installation
instructions for IBM crypto hardware devices can be found
athttp://www.ibm.com/security/cryptocards/ntml/library.shtml

The product supports the use of the following cryptographic devices.

These can be used by an SSL client or server:

« IBM 4758-23
« nCipher nForce
« Rainbow Cryptoswift

These can be used by SSL clients:
o IBM Security Kit Smartcard
o GemPlus Smartcards

« Rainbow iKey 1000/2000 (USB "Smartcard" device)

o Eracom CSA800

IBM HTTP Server Version 1.3.19 supports the following cryptographic devices. [Thisinformation is provided
for convenience. Consultthe IBM HTTP Server Web site and documentation as the ultimate authority].

Cryptographic devices Célerer\lltéror Interface Operating system

: . Client or Windows NT, Solaris,
Rainbow Cryptoswift erver BSAFE 3.0 HP-UX

. Client or BHAPI plugin under under : :
nCipher nFast erver BSAEE 4.0 Windows NT, Solaris
nCipher nForce accelerator mode (s:érl\e/}g or BHAPI/BSAFE Windows NT, Solaris
nCipher nForce - key storage Client or PKCS11 Windows NT, Solaris,
mode server HP-UX, AlX, Linux

Client or :

IBM4758 rver PKCS11 Windows NT, AlX

{™ Be sureto check the WebSphere Application Server prerequisites Web sitefor the currently

supported version(s) of IBM HTTP Server.

205

http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/root.html
http://www.ibm.com/security/cryptocards/html/library.shtml
http://localhost/0802_makepdf/ae_orig/nav_Securityguidenav/0103.html

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

	P54:
	Numbers:
	Numbx:
	L: 54
	C:
	R:

	P55:
	Numbers:
	Numbx:
	L:
	C:
	R: 55

	P56:
	Numbers:
	Numbx:
	L: 56
	C:
	R:

	P57:
	Numbers:
	Numbx:
	L:
	C:
	R: 57

	P58:
	Numbers:
	Numbx:
	L: 58
	C:
	R:

	P59:
	Numbers:
	Numbx:
	L:
	C:
	R: 59

	P60:
	Numbers:
	Numbx:
	L: 60
	C:
	R:

	P61:
	Numbers:
	Numbx:
	L:
	C:
	R: 61

	P62:
	Numbers:
	Numbx:
	L: 62
	C:
	R:

	P63:
	Numbers:
	Numbx:
	L:
	C:
	R: 63

	P64:
	Numbers:
	Numbx:
	L: 64
	C:
	R:

	P65:
	Numbers:
	Numbx:
	L:
	C:
	R: 65

	P66:
	Numbers:
	Numbx:
	L: 66
	C:
	R:

	P67:
	Numbers:
	Numbx:
	L:
	C:
	R: 67

	P68:
	Numbers:
	Numbx:
	L: 68
	C:
	R:

	P69:
	Numbers:
	Numbx:
	L:
	C:
	R: 69

	P70:
	Numbers:
	Numbx:
	L: 70
	C:
	R:

	P71:
	Numbers:
	Numbx:
	L:
	C:
	R: 71

	P72:
	Numbers:
	Numbx:
	L: 72
	C:
	R:

	P73:
	Numbers:
	Numbx:
	L:
	C:
	R: 73

	P74:
	Numbers:
	Numbx:
	L: 74
	C:
	R:

	P75:
	Numbers:
	Numbx:
	L:
	C:
	R: 75

	P76:
	Numbers:
	Numbx:
	L: 76
	C:
	R:

	P77:
	Numbers:
	Numbx:
	L:
	C:
	R: 77

	P78:
	Numbers:
	Numbx:
	L: 78
	C:
	R:

	P79:
	Numbers:
	Numbx:
	L:
	C:
	R: 79

	P80:
	Numbers:
	Numbx:
	L: 80
	C:
	R:

	P81:
	Numbers:
	Numbx:
	L:
	C:
	R: 81

	P82:
	Numbers:
	Numbx:
	L: 82
	C:
	R:

	P83:
	Numbers:
	Numbx:
	L:
	C:
	R: 83

	P84:
	Numbers:
	Numbx:
	L: 84
	C:
	R:

	P85:
	Numbers:
	Numbx:
	L:
	C:
	R: 85

	P86:
	Numbers:
	Numbx:
	L: 86
	C:
	R:

	P87:
	Numbers:
	Numbx:
	L:
	C:
	R: 87

	P88:
	Numbers:
	Numbx:
	L: 88
	C:
	R:

	P89:
	Numbers:
	Numbx:
	L:
	C:
	R: 89

	P90:
	Numbers:
	Numbx:
	L: 90
	C:
	R:

	P91:
	Numbers:
	Numbx:
	L:
	C:
	R: 91

	P92:
	Numbers:
	Numbx:
	L: 92
	C:
	R:

	P93:
	Numbers:
	Numbx:
	L:
	C:
	R: 93

	P94:
	Numbers:
	Numbx:
	L: 94
	C:
	R:

	P95:
	Numbers:
	Numbx:
	L:
	C:
	R: 95

	P96:
	Numbers:
	Numbx:
	L: 96
	C:
	R:

	P97:
	Numbers:
	Numbx:
	L:
	C:
	R: 97

	P98:
	Numbers:
	Numbx:
	L: 98
	C:
	R:

	P99:
	Numbers:
	Numbx:
	L:
	C:
	R: 99

	P100:
	Numbers:
	Numbx:
	L: 100
	C:
	R:

	P101:
	Numbers:
	Numbx:
	L:
	C:
	R: 101

	P102:
	Numbers:
	Numbx:
	L: 102
	C:
	R:

	P103:
	Numbers:
	Numbx:
	L:
	C:
	R: 103

	P104:
	Numbers:
	Numbx:
	L: 104
	C:
	R:

	P105:
	Numbers:
	Numbx:
	L:
	C:
	R: 105

	P106:
	Numbers:
	Numbx:
	L: 106
	C:
	R:

	P107:
	Numbers:
	Numbx:
	L:
	C:
	R: 107

	P108:
	Numbers:
	Numbx:
	L: 108
	C:
	R:

	P109:
	Numbers:
	Numbx:
	L:
	C:
	R: 109

	P110:
	Numbers:
	Numbx:
	L: 110
	C:
	R:

	P111:
	Numbers:
	Numbx:
	L:
	C:
	R: 111

	P112:
	Numbers:
	Numbx:
	L: 112
	C:
	R:

	P113:
	Numbers:
	Numbx:
	L:
	C:
	R: 113

	P114:
	Numbers:
	Numbx:
	L: 114
	C:
	R:

	P115:
	Numbers:
	Numbx:
	L:
	C:
	R: 115

	P116:
	Numbers:
	Numbx:
	L: 116
	C:
	R:

	P117:
	Numbers:
	Numbx:
	L:
	C:
	R: 117

	P118:
	Numbers:
	Numbx:
	L: 118
	C:
	R:

	P119:
	Numbers:
	Numbx:
	L:
	C:
	R: 119

	P120:
	Numbers:
	Numbx:
	L: 120
	C:
	R:

	P121:
	Numbers:
	Numbx:
	L:
	C:
	R: 121

	P122:
	Numbers:
	Numbx:
	L: 122
	C:
	R:

	P123:
	Numbers:
	Numbx:
	L:
	C:
	R: 123

	P124:
	Numbers:
	Numbx:
	L: 124
	C:
	R:

	P125:
	Numbers:
	Numbx:
	L:
	C:
	R: 125

	P126:
	Numbers:
	Numbx:
	L: 126
	C:
	R:

	P127:
	Numbers:
	Numbx:
	L:
	C:
	R: 127

	P128:
	Numbers:
	Numbx:
	L: 128
	C:
	R:

	P129:
	Numbers:
	Numbx:
	L:
	C:
	R: 129

	P130:
	Numbers:
	Numbx:
	L: 130
	C:
	R:

	P131:
	Numbers:
	Numbx:
	L:
	C:
	R: 131

	P132:
	Numbers:
	Numbx:
	L: 132
	C:
	R:

	P133:
	Numbers:
	Numbx:
	L:
	C:
	R: 133

	P134:
	Numbers:
	Numbx:
	L: 134
	C:
	R:

	P135:
	Numbers:
	Numbx:
	L:
	C:
	R: 135

	P136:
	Numbers:
	Numbx:
	L: 136
	C:
	R:

	P137:
	Numbers:
	Numbx:
	L:
	C:
	R: 137

	P138:
	Numbers:
	Numbx:
	L: 138
	C:
	R:

	P139:
	Numbers:
	Numbx:
	L:
	C:
	R: 139

	P140:
	Numbers:
	Numbx:
	L: 140
	C:
	R:

	P141:
	Numbers:
	Numbx:
	L:
	C:
	R: 141

	P142:
	Numbers:
	Numbx:
	L: 142
	C:
	R:

	P143:
	Numbers:
	Numbx:
	L:
	C:
	R: 143

	P144:
	Numbers:
	Numbx:
	L: 144
	C:
	R:

	P145:
	Numbers:
	Numbx:
	L:
	C:
	R: 145

	P146:
	Numbers:
	Numbx:
	L: 146
	C:
	R:

	P147:
	Numbers:
	Numbx:
	L:
	C:
	R: 147

	P148:
	Numbers:
	Numbx:
	L: 148
	C:
	R:

	P149:
	Numbers:
	Numbx:
	L:
	C:
	R: 149

	P150:
	Numbers:
	Numbx:
	L: 150
	C:
	R:

	P151:
	Numbers:
	Numbx:
	L:
	C:
	R: 151

	P152:
	Numbers:
	Numbx:
	L: 152
	C:
	R:

	P153:
	Numbers:
	Numbx:
	L:
	C:
	R: 153

	P154:
	Numbers:
	Numbx:
	L: 154
	C:
	R:

	P155:
	Numbers:
	Numbx:
	L:
	C:
	R: 155

	P156:
	Numbers:
	Numbx:
	L: 156
	C:
	R:

	P157:
	Numbers:
	Numbx:
	L:
	C:
	R: 157

	P158:
	Numbers:
	Numbx:
	L: 158
	C:
	R:

	P159:
	Numbers:
	Numbx:
	L:
	C:
	R: 159

	P160:
	Numbers:
	Numbx:
	L: 160
	C:
	R:

	P161:
	Numbers:
	Numbx:
	L:
	C:
	R: 161

	P162:
	Numbers:
	Numbx:
	L: 162
	C:
	R:

	P163:
	Numbers:
	Numbx:
	L:
	C:
	R: 163

	P164:
	Numbers:
	Numbx:
	L: 164
	C:
	R:

	P165:
	Numbers:
	Numbx:
	L:
	C:
	R: 165

	P166:
	Numbers:
	Numbx:
	L: 166
	C:
	R:

	P167:
	Numbers:
	Numbx:
	L:
	C:
	R: 167

	P168:
	Numbers:
	Numbx:
	L: 168
	C:
	R:

	P169:
	Numbers:
	Numbx:
	L:
	C:
	R: 169

	P170:
	Numbers:
	Numbx:
	L: 170
	C:
	R:

	P171:
	Numbers:
	Numbx:
	L:
	C:
	R: 171

	P172:
	Numbers:
	Numbx:
	L: 172
	C:
	R:

	P173:
	Numbers:
	Numbx:
	L:
	C:
	R: 173

	P174:
	Numbers:
	Numbx:
	L: 174
	C:
	R:

	P175:
	Numbers:
	Numbx:
	L:
	C:
	R: 175

	P176:
	Numbers:
	Numbx:
	L: 176
	C:
	R:

	P177:
	Numbers:
	Numbx:
	L:
	C:
	R: 177

	P178:
	Numbers:
	Numbx:
	L: 178
	C:
	R:

	P179:
	Numbers:
	Numbx:
	L:
	C:
	R: 179

	P180:
	Numbers:
	Numbx:
	L: 180
	C:
	R:

	P181:
	Numbers:
	Numbx:
	L:
	C:
	R: 181

	P182:
	Numbers:
	Numbx:
	L: 182
	C:
	R:

	P183:
	Numbers:
	Numbx:
	L:
	C:
	R: 183

	P184:
	Numbers:
	Numbx:
	L: 184
	C:
	R:

	P185:
	Numbers:
	Numbx:
	L:
	C:
	R: 185

	P186:
	Numbers:
	Numbx:
	L: 186
	C:
	R:

	P187:
	Numbers:
	Numbx:
	L:
	C:
	R: 187

	P188:
	Numbers:
	Numbx:
	L: 188
	C:
	R:

	P189:
	Numbers:
	Numbx:
	L:
	C:
	R: 189

	P190:
	Numbers:
	Numbx:
	L: 190
	C:
	R:

	P191:
	Numbers:
	Numbx:
	L:
	C:
	R: 191

	P192:
	Numbers:
	Numbx:
	L: 192
	C:
	R:

	P193:
	Numbers:
	Numbx:
	L:
	C:
	R: 193

	P194:
	Numbers:
	Numbx:
	L: 194
	C:
	R:

	P195:
	Numbers:
	Numbx:
	L:
	C:
	R: 195

	P196:
	Numbers:
	Numbx:
	L: 196
	C:
	R:

	P197:
	Numbers:
	Numbx:
	L:
	C:
	R: 197

	P198:
	Numbers:
	Numbx:
	L: 198
	C:
	R:

	P199:
	Numbers:
	Numbx:
	L:
	C:
	R: 199

	P200:
	Numbers:
	Numbx:
	L: 200
	C:
	R:

	P201:
	Numbers:
	Numbx:
	L:
	C:
	R: 201

	P202:
	Numbers:
	Numbx:
	L: 202
	C:
	R:

	P203:
	Numbers:
	Numbx:
	L:
	C:
	R: 203

	P204:
	Numbers:
	Numbx:
	L: 204
	C:
	R:

	P205:
	Numbers:
	Numbx:
	L:
	C:
	R: 205

