Web services -- table of contents

Development

4.8: Web services

4.8.1: Web services components
4.8.1.1: UDDI4J Overview
4.8.1.1.1: UDDI4J samples
4.8.1.2: SOAP support
4.8.1.2.1: SOAP samples
4.8.1.2.2: Building a SOAP client
Accessing enterprise beans through SOAP
4.8.1.2.3: Deploying a programming artifact as a SOAP accessible Web service

4.8.2: Apache SOAP deployment descriptors
4.8.2.1: SOAP deployment descriptors

4.8.3: Quick reference of Web services resources

4.8.4: Securing SOAP services
4.8.4.1: Running the security samples
4.8.4.2: SOAP signature components
4.8.4.2.1: Keystore files for testing purposes
4.8.4.2.2: Envelope Editor
4.8.4.2.3: Signature Header Handler
4.8.4.2.4: Verification Header Handler

Administration

6.6.0.14: XML-SOAP Admin tool

4.8: Web services - an overview

Web services are self-contained, modular applications that can be described, published, located, and invoked
over anetwork.Web services could be weather reports or stock quotes. Transaction Web services,supporting
business-to-business (B2B) or business-to-client (B2C) operations, could be airline reservationsor purchase
orders.

Web services reflect a new "service-oriented” approach to programming, based on the idea of building
applications by discovering and implementing network-available services, or by invoking available
applicationsto accomplish some task. This "service-oriented" approach is independent of specific programming
languages or operating systems.Instead, Web services rely on pre-existing transport technologies (such as
HTTP) and standard data encoding techniques (such as XML)for their implementation.

The Web services architecture describes three roles:

1. Service provider
2. Servicerequester
3. Service broker

Web services components provide three basic operations:
1. Publish

2. Find
3. Bind

In order for some component to become a Web service, it must be:
« Created, and itsinterfaces and invocation methods must be defined
« Published to some repository
« Easy tolocate by potential users
« Invoked and implemented by users
« Unpublished when it isno longer available
Asillustrated in the graphic,

» Web service descriptions can be created and published by service providers who create on-line resources
for personal and business use.

« Web services can be categorized and searched by specific broker services.
« Web services can be located and invoked by requesters of the services.

Service
provider
&
RY
<
Senvice - > Service
broker Find requester

With Web services, programming complexity is reduced because application designers do not have to worry
about implementing the services they are invoking. Interactionsin Web services are bound dynamically at
runtime.A service requester describes the features of the required service and uses the service broker to find an
appropriate service.
WebSphere Application Server supports making the following artifacts into Web services:

« Javabeans

« Enterprise Java Beans

« BSF supported scripts

« DB2 stored procedures

See article Web services components for a description of the key components that comprisea Web service.

Visit URL, www.alphaworks.ibm.com/tech/webservicestoolkit,to access the Web services toolkit on

Alphaworks. This site provides tools for creating WSDL files and SOAP clients, and describes working
examples.

Learn more about Web services. Register for the Web services tutorialon Alphaworks.

http://www.alphaworks.ibm.com/tech/webservicestoolkit
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument

4.8.1: Web services components

These are the key components of a Web service:

SOAP (simple object access protocol)

WSDL (Web Services Description Language)

UDDI (Universal Discovery , Description and Integration Protocol)
UDDI4J (client version of UDDI)

SOAP or Simple Object Access Protocol

isanew protocol created by IBM, Microsoft, Userland, and DevelopMentor to support remote procedure calls and other requests over HTTP.Built on
HTTP and XML, SOAP attempts to convert application servers into object servers.

See the W3C SOAP protocol site for more information on SOA P messages, supported datatypes, and attributes. For SOAP implementation guidelines,
visit the Apache site.

SOAP requests and the responses are XML based. The following examplesillustrate a SOAP request and response:

Sample SOAP Request
Sanpl e SOAP Request POST /Supplier HTTP/ 1.1 Host: ww. somesupplier.com Content-Type: text/xm;
charset="utf-8" Content-Length: nnnn SOAPAction: "Sone-URI" <SQOAP-ENV: Envel ope
xm ns: SOAP- ENV="ht t p: // schemas. xrm soap. or g/ soap/ envel ope/ "
SOAP- ENV: encodi ngSt yl e="htt p: // schenas. xm soap. or g/ soap/ encodi ng/ " > <SQAP- ENV: Body>

<m Orderltem xm ns: n=" Sone- URI " > <Ret ai | er | D>557010<</ Ret ai | er | D>

<| t emNunber >1050420459</ | t emNunber > <ItemName>AMF Ni ght Hawk Pear| M</ItenmNane>

<l t enDesc>Bow i ng Bal | </ |t enDesc> <Order Quantity>100</ Order Quantity>

<Whol esal ePri ce>130. 95</ Whol eSal ePri ce> <Or der Dat eTi ne>2000- 06- 19 10: 09: 56</ Or der Dat eTi ne>

</m Orderltenr </ SOAP- ENV: Body> </ SOAP- ENV: Envel ope>

The SOAP request indicates that the Orderltem method, from the " Some-URI" namespace, should be invoked from
http: //www.somesupplier.com/Supplier.Upon receiving this request, the supplier application at www.somesupplier.com executes the business logic that
corresponds to Orderltem.

The SOAP protocol does not specify how to process the order. The supplier could run a CGI script, invoke a servlet, or perform any other process that
generates the appropriate response.

[l Seearticle SOAP support for the list of artifacts that WebSphere Application Server supports as Web services,

In this example, the SOAP Envelope element is the top element of the XML document that represents the SOAP message. The reference to the XML
namespace (xm ns: m=" Sone- URI ") specifies the namespace to use for the SOAP identifiers. This request is asking the application to place an
order for the item identified by the elements:

o Retalerld

o ItemNumber

o ltemName

0 ltemDesc

o OrderQuantity

o WholesaePrice

o OrderDateTime
The response comesin the form of an XML document that contains the results of the processing, in this case, the order number for the order placed by
theretailer. The responseis sent by the service provider located at http://www.somesupplier.com/Supplier.

Sample SOAP Response

HTTP/ 1.1 200 OK Content-Type: text/xm; charset="utf-8" Content-Length: nnnn <SOAP-ENV: Envel ope
xm ns: SOAP- ENV="ht t p: // schemas. xnl soap. or g/ soap/ envel ope/ "
SQAP- ENV: encodi ngStyl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ "/ > <SOAP- ENV: Body>
<m Order |t enmResponse xm ns: m=" Sone- URl " > <Or der Nunmber >561381</ Or der Nunber >
</ m Order |t enrResponse> </ SOAP- ENV: Body> </ SQAP- ENV: Envel ope>

The response does not include a SOAP-specified header.The results are placed in an element whose name matches the method name (Orderltem) with
the suffix, "Response” as inOrder|temResponse.

Although Apache SOAP alows for SOAP over SMTP, WebSphere Application Server only supports SOAP over HTTP.
The SOAP Javadoc is shipped with WebSphere Application Server.
Review WebSphere Application Server's Javadoc for SOAP implementation details.

. WSDL or Web Services Description Language

4

http://www.w3.org/TR/SOAP/
http://xml.apache.org/dist/soap
http://localhost/0802_makepdf/apidocs/index.html

isan XML-based interface definition language that provides operational information about a service, such as the service interface, implementation
details, access protocol, and contact endpoints. Compliant server applications must support these interfaces, and client users can learn from
thedocument how a service should be accessed.

[l webSphere Application Server does not provide toolsfor generating WSDL files,
View aWSDL representation in the AddressBook2 sample.
See article UDDI4J samples for more information.

Review the WSDL specifications at W3C WSDL protocol site.

UDDI or Universal Discovery Description and Integration (Project)

is a comprehensive, open industry initiative enabling businesses to:
1. Discover each other
2. Define how they interact over the Internet, and share information in aglobal registry architecture.

WebSphere Application Server does not provide a private UDDI directory. IBM, among others,provides public UDDI registries. For more information
about UDDI, see www.uddi.org.Also visitAlphaworksfor the Web services toolkit, which includes an IBM implementation of a private UDDI

registry.

UDDI isthe building block which enables businesses to quickly, easily, and dynamically find and transact with one another by means of their
preferred applications.

As described in the Web services overview, UDDI provides the three basic Web services functions: publish, find, and bind.

uDDI4J

is an open-source Java implementation of the Universal Discovery, Description, and Integration protocol (UDDI).UDDI4J contains an implementation
of the client side of UDDI (everything your application needs to publish, find, and bind a Web service).It aso includes the source code, and the
complete Javadoc for the APIs. For more information,visit the UDDI4J open source site at oss.software.ibm.com/devel operworks/projects/uddi4j.

Review IBM's Javadoc for UDDI4J implementation details.

http://www.w3.org/TR/wsdl#_introduction
http://www.uddi.org/
http://www.alphaworks.ibm.com/tech/webservicestoolkit?open&c=cdws&p=uddi
http://oss.software.ibm.com/developerworks/projects/uddi4j
http://localhost/0802_makepdf/apidocs/index.html

4.8.1.1: UDDI4J Overview

UDDI4JisaJavaclasslibrary that provides an API that is used to interact with a UDDI registry. This class
library generates and parses messages sent toand received from a UDDI server.

The central classin thisset of APIsis:
com i bm uddi . client.UDDI Proxy

This classisaproxy for the UDDI server thatis accessed from the client code. Its methods map to theUDDI
Programmer's APl Specification.Review IBM's Javadoc foradditional implementation details.

The classeswithincom i bm uddi . dat at ype represent data objects that send or receiveUDDI information.
In the business and servicemodel, the data objects are a'so known as subpackages.

The subpackage com i bm uddi . r equest contains messages sent to the server.Generally, these classes are
not used directly;rather, they are invoked by the UDDIProxy class.

Similarly, the subpackagecom i bm uddi . r esponse represents response messages from a UDDI server.
UDDI4J error handling

When invoking UDDI Pr oxy inquiry methods, UDDI Except i on isthrown when errors are received fromthe
UDDI proxy.UDDI Except i on can contain a DispositionReport with information regarding the error.

APIsthat do not return a data object, providethe disposition report.

SQAPExcept i on isthrown if acommunication error occursor if the resulting data cannot be parsed asavalid
SOAP message.

View thefile4.8.1.1.1: UDDI4J Samplesfor APl usage examples.

For more information,visit the UDDI4J open source site at
oss.software.ibm.com/devel operworks/projects/uddi4;.

http://www.uddi.org/pubs/UDDI_Programmers_API_Specification.pdf
http://www.uddi.org/pubs/UDDI_Programmers_API_Specification.pdf
http://localhost/0802_makepdf/apidocs/index.html
http://oss.software.ibm.com/developerworks/projects/uddi4j

4.8.1.1.1: UDDI4J samples

A set of samplesis provided to illustrateusing the inquiry and publishAPIs, and to demonstrate error handling.
Note: WebSphere Application Server does notprovide a UDDI registry. The IBM UDDI test registry islocated at www.ibm.com/services/uddi/

Any sample that requires you to "publish," "save," or "delete" requires auserid and password. Y ou can only invoke the "find" sample without a userid and password.

To get auserid and password:
1. Accessthe UDDI test registry
2. Register for your userid and password

The registration process requires you to activate your id beforeattempting to use the publish or delete examples.
Note: If the registry is not operational, keep trying. Thisis atest registry andat timesit is not available.
3. Useyour registered userid and password when running the SaveBusinessExampleand Del eteBusinessExample samples.

Y our samples consist of:
« FindExample - isthe "Hello world" of UDDI programs. It is the simplest sample of the UDDI API.
« SaveBusinessExample - is an example of using the publish API. It logsinto the server using the get _aut hToken method; then attempts to save a business.
« DeleteBusinessExample - searches for a particular business using the inquiry API, finds the associated businesskey, logs into the server, and then attempts to delete
the business it found.
[When running DeleteBusinessExample, you might receive the following error messages:

Get aut ht okenRet ur ned aut hToken: ADA3DCA0- 2531- 11D5- 9EBO- 832611502FD0Sear ch for ' Sanpl e busi ness' to
del et eFound busi ness key: D3DD4036- 00E4- F124- 050B- C6113996AA77Er r no: 10140 Err Code: E_user M smat ch
Err Text: E_user M snmat ch (10140) Cannot change data that is controlled by another party.

busi nessEntity = D3DD4036- 00E4- F124- 050B- C6113996AA77Found busi ness

key: 61AE2CC0- OF2C- 11D5- BC1E- B763254A2930Er r no: 10140 Err Code: E_user M smat ch

Err Text: E_user M smat ch (10140) Cannot change data that is controlled by another party.

busi nessEntity = 61AE2CC0- OF2C- 11D5- BC1E- B763254A2930Found busi ness

key: 3BB274CF- 00E3- FA94- 9B72- C6113996AA77

Thisis not a problem with the sample. DeleteBusinessExampl e issues a query for the business name specified in the code and receives alist of
entries with that name. The sample then tries to delete each entry in the list. These error messages occur when the sample tries to delete entries that
you do not own.

Accessing the samples

To access these samples, you can either installthe soapsamples.ear, or you canexpand the soapsanpl es. ear using the EarExpandertool.

These are the steps to access the samples:
1. Create adirectory to hold the expanded soapsamples.earcontents.
2. Fromthepr oduct _i nstal | ati on_r oot \ bi n directory,enter the following commands:

Ear Expander -ear ..\install abl eApps\soapsanpl es. ear-expandDi r ..\tenp\soapsanpl es -operati onexpand
- expansi onFl ags war

3. Issue the cd command to changeto the i nst al | edApps/ soapsanpl es. ear orto the target directory specified in the-expandDir argument
4. Issue the cd command to change to UDDI Sanpl es directory. The source for the samplesisincluded in the sr ¢ directory.

The samples require several pieces of information.The sample source files can be edited and these valuessubstituted. The required values are:
« I'nqui ryURL: TheURL of the UDDI server against which to run inquiries.
o Publ i shURL: The URL of the UDDI server to run publish requests. Typically, thisisa SSL connection.
« Userid: When publishing, auseridisrequired for authentication.
« Password: Thisisthe password for the referenced userid. Password isreferred to as a credential in UDDI terminology.

Running the samples

WebSphere Application Server provides an number of UNIX scripts and DOS .bat files to run the samples. These scripts (or .bat files) add the required jar files to the
classpath. Use atext editor (such as Notepad on Windows NT or VI or E3 on UNIX) to view the scripts (or .bat files). They describethe resources that you need to run the
samples.
The scripts are located in directory UDDI Sanpl es/ uni x_scri pt s.0n Windows NT, the .bat files are located in directory UDDI Sanpl es\ nt _bat .

[l The scriptsare put in thislocationas a result of running the Ear Expander command.
All the scripts (or .bat files) are named after the samples they run. So, for example, to invoke the FindExample sample, you would run theFindExample.sh script.

A UDDI registry might limit the number of business entities that you publish.The IBM Test registry limits you to one business entity.This means, for example, that after
running the SaveBusinessExample, youmust run the Del eteBusi nessExampl e before attempting to publish another business entity.

See the related information links for an enablement scenario.

http://www.ibm.com/services/uddi/
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html

4.8.1.2: SOAP support

Version 2.2 of the Apache SOAP implementation is integrated into WebSphere Application Server Version 4.0.
Apache SOAP Version 2.2 is a Java-based implementation of the SOAP 1.1 specification with support for
SOAP with attachments.
WebSphere Application Server Version 4.0 alows you to expose the following artifacts as SOAP services:

« Standard Java classes

« Enterprise beans

« Bean Scripting Framework (BSF) supported scripts

« DB2 stored procedures

Tools are provided to assist you with deployingthese artifacts as SOAP services. See article Deploying a
programming artifact as a SOAP accessible Web service for more information.

As part of deploying your services,you can choose to enable the XML-SOAP Admin tool ,which allows you to
manage your SOAP-enabled services.

WebSphere Application Server also contains an implementation of the security extensions for SOAP. These
security extensions provide secure connections and enable digitally signed messages.See article Securing SOAP

services for more information.

See the related information links for an enablement scenario.

4.8.1.2.1: SOAP samples

WebSphere Application Server 4.0 provides sample services and clients that demonstrate how to access SOAP services. The SOAP samples code is based on
the the Apache SOAP 2.2 samples.These samples are contained in the soapsanpl es. ear thatislocated inthei nst al | abl eApps directory. The
source for the sample servicesislocated in the soapsanpl es. ear .

See article DB2 Stored procedure sample setupfor information on configuring a datasource to set the db2-userid and db2-password entries.

Perform the following stepsto install the samplesin your server:
1. Inasingle-server configuration, do the following:

2. Change the directory to:
product _installation_root/bin

3. Instal the EAR file by entering the following data at a command prompt:
[il Thelinebreaksin this example are added to make the information legible. Thisinformation really exists as one line of
unformatted data.

Seappi nstall -install ..\install abl eApps\soapsanpl es. ear - ej bdepl oy fal se
-interactive false

4. To access the sample services from an external Web server, run the file GenPl ugi nCf g. sh on UNIX or GenPl ugi nCf g. bat on Windows NT.
This file makes the Web server aware of the SOAP samples.

5. Start the product.
6. Check on the availability of the sample services using the XML-SOAP Admin tool:

a. From abrowser, goto URL
http://1 ocal host/soapsanpl es/ adm n/i ndex. ht m

b. At thissite, you can:
= List available services
= View the Apache SOAP descriptors
= Stop and start sample services

Running the sample clients

Sample clients are provided to demonstrate how to access the installed SOAP services. These scripts require you to specify the server that will handle the
request.

[il 1f you run the script with no arguments, as for example StockQuoteSample, you will be provided with help on how to use the sample, and
you will receive a description of the command line arguments that the script requires.

To access the samples, change the directory to the following on Windows NT:
product _install ation_root\install edApps\soapsanpl es. ear\ d i ent Code\ nt _bat

On UNIX platforms, the samples directory is:
product _installation_root/install edApps/soapsanpl es. ear/ C i ent Code/ uni x_scripts

[l Issuethechnod 755 *. sh command to restore the executionpermissions of the UNIX scripts.

Sample Command (entered on a singleline)
st ockquot esanpl e | ocal host | BM

Stock quote (requires Internet access) [il If the request appears to hang, and then you receive an "Operation timed out" error, the service

was unable to reach a server on the Internet to obtain the stock quote information. Y ou may need a
direct connection to the Internet.

Addr essBookSanpl e

GET | ocal host "John B. Good"

Addr essBookSanpl e

Address book ALL | ocal host

Addr essBookSanpl e

PUT | ocal host "Herman Miunster" 1313 "Mcki ngbird Lane" Sal em MA 10013 111 222

3434
Address book example 2 Addr essbook2sanpl e | ocal host
EJBAdder Sanpl e | ocal host
EJB On UNIX platforms, enter:
EJBAdder Sanpl e. sh | ocal host
Send Message sendMessageSanpl e | ocal host ..\data\nsgl. xm

Cal cul at or Sanpl e | ocal host

Calculator Sample [l Unlikethe other SOAP samples, which are either java or enterprise beans, the Calculator

Sampleis aJavaScript sample. The actual calculator processing is performed by the Web service.
Mime Client sample M med i ent Sanpl e | ocal host ..\data\foo.txt 9

http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/0607.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/0606a.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html

DB2SPSanpl e | ocal host
DB2SPSample sample On UNIX platforms, enter:
DB2SPSanpl e. sh | ocal host

Troubleshooting SOAP sample problems

If you cannot run the SOAP samples, check for the following problems:
« Canyourun any of thesamples, suchashtt p: / /| ocal host/ ser vl et/ snoop?If not, make sure the Web server is running.
If you can run the snoop sample, try accessing one of the SOAP samples again, butthis time specify the port number 9080 in addition to the
host name, as for example:
M med i ent Sanpl e | ocal host: 9080 ...\data\foo.txt

If adding the port number resolves the problem, you need to update the plugin configurationby running the GenPl ugi nCf g. bat file on the
Windows platform, or theGenPI ugi nCf g. sh fileon UNIX platforms.

« |f the stockquote sample fails but the other samples work, you are having problems accessing the external Internet.

See the Related topics section for links to an enablement tutorial .

10

4.8.1.2.2: Building a SOAP client

Creating clients to access the SOAP services published in WebSphere Application Server is a straightfoward process.The Apache SOAP
implementation, integrated with WebSphere Application Server, contains aclientAPI to assist in SOAP client application development.

The SOAP API documentation is available in WebSphere Application Server's javadoc.

These are the steps for creating a client thatinteracts with a SOAP RPC service:
1. Obtain theinterface descriptionof the SOAP service
This provides you with thesignatures of the methods that you wish toinvoke.Y ou can either look at a WSDL file for theservice, or view the
service itself to see itsimplementation.
2. Createthe" Call" object

The SOAP "Call" object isthe main interfaceto the underlying SOAP RPC code.
3. Set thetarget URI (Uniform Resour ce I dentifier) in the " Call” object using theset Tar get Cbj ect URI () method.

Pass the URN (Uniform Resource Name, atype of URI), that the service uses for itsidentifier, in the deployment descriptor.
4. Set the method namethat you want to invokein the" Call" object using theset Met hodNarre() method

This method must be one of the methods exposed bythe service located at the URN from the previousstep.

5. Createthe necessary " Parameter” objectsfor the RPC call and then set them in the " Call" object using the set Par ans()
method.
Ensure you have the same number and same type of parameters as those required by the service.

6. Executethe" Call" object'si nvoke() method and retrievethe" Response” object

Remember the RPC call is synchronous, so it may take some time to complete.
7. Check theresponsefor afault using theget Faul t () method, and then extract any resultsor returnedparameters

While most of the providers only returna result, the DB2 stored procedure providercan also return output parameters.

Interacting with a" document-oriented" SOAP service requires you to use lower-level Apache SOAP API calls. You must first construct an
"Envelope" object which containsthe contents of the message (including thebody and any headers) that you wish to send.Then create a"Message"
object where you invoke the send() method to perform theactual transmission.
To create a secure SOAP service, do the following:

1. Create asimple object

2. Define an envelope editor

3. Specify a pluggable envelope editor

4. Definethe transports

Y our code may look like the following example:

Envel opeEdi t or editor=new Pl uggabl eEnvel opeEdi t or (new | nput Source(conf), hone); SOAPTr ansport
transport =new FilterTransport(editor, new SOAPHTTPConnection()); call.set SOAPTransport (transport);

The characteristics of the secure session are specified by the configuration file, "conf."
See article Securing SOAP servicesfor more information on creating secure Web services.
See article 4.8.1.2.2.1: Accessing enterprise beans through SOAPfor information on calling an EJB service.

Since the SOAP API isastandard for Web services, any clientsthat you create to access the WebSphere Application Server SOAP services can
also runin different implementations.

See the related information links for an enablement scenario.

11

http://localhost/0802_makepdf/apidocs/index.html

4.8.1.2.2.1: Accessing enterprise beans through SOAP

Calling enterprise beans through SOAP is handled in the same manner ascalling Java bean methods through SOAP. The SOAP runtime handles the
bean cases for you, such as calling anenterprise bean's create method if the create was not calledpreviously.

A Web service can be a simple statel ess sessionbean that performs number processing and returns a data value.When the client code makes a call to
the data processing method of this service and aninstance of the stateless session is not available, the SOAP runtimedoes the following:

« Cadllsthe EJB create method to obtain a statel ess session
« Cadlsthe requested method

At times the client code must do additional work to use enterprise beans throughSOAP. For example, if a Web application intends to use stateful or
entity beans that persist data between calls, the clientrequires a reference to identify the bean instance that must be accessedin subsequent callsto
methods. This reference/key can be obtained from the response objectthat the client receives on theinitial call to the bean.

Response objects are created:
« When the client explicitly calls a create method
o FromafindByPri maryKey() Entity Bean method call
« From aregular bean method call

The following code example demonstrates calling a bean'screate method with parameters:

/*This code snippet is froma sinple MessageBoard bean thatstores strings sent to it for retrieval
at a later date.*/

};*.Call create with \"This is a test\"to initialize the EIB*/
call = new Call ();
cal | . set Tar get Cbj ect URI (" ur n: nessageboard") ;

/*Note, you can explicitly call a create. Parameters for the bean's create can be passed |ike
paranmeters to any SOAP RPC cal | . */

cal | . set Met hodName("create");

cal | . set Encodi ngSt yl eURI (Const ant s. NS_URI _SOAP_ENC) ;

paranms = new Vector();

par ans. addEl enent (new Paraneter ("nsg", String.class, "This is a test", null));

cal | . set Par ans(par ans) ;

Systemout.printin("Calling create with \"This is a test\"");
resp = call.invoke(url, "");

/*Now use the sane instance of the bean that you just 'created' and initialized. Gbtain the reference
fromthe response object through the nethod get Full Target Cbj ect URI () */
ej bKeyURI = resp. get Ful | Target Obj ect URI () ;

/*Subsequent calls to this bean can now be made by using theobtained ejb key.*/
/*Cal | getMessage using the handle fromthe create*/

call = new Call();

cal | . set Ful | Tar get Obj ect URI (ej bKeyURI) ;

cal | . set Met hodName(" get Message") ;

cal | . set Encodi ngSt yl eURI (Const ant s. NS_URI _SOAP_ENC) ;

Systemout.println("Calling get Message: ") ;

resp = call.invoke(url, "");

12

4.8.1.2.3: Deploying a programming artifact as a SOAP accessible Web
service

Complete these steps to deploy a SOAP accessible Web service in WebSphere Application Server:
1. Createor locate the softwar e resour ceto be exposed as a service

To deploy a service,create a programming artifact, one of the supported types,or locate an existing piece of code of the supported type.
2. Assemble an Enterprise Archive (EAR)file

Package the code artifactinto an Enterprise Archive (EAR). This stepis a deployment packaging requirement of WebSphere Application Server. Use
the Application Assembly Tool (AAT)to package the artifact. See article Application Assembly Toolfor information on using the tool.

3. Createthe Apache SOAP deploymentdescriptor for the desired service

In order to deploy an artifact as a SOAPservice, create a Apache SOAP deploymentdescriptor that describes the service you are creating.This step
exposes the programming artifact as a"service." The descriptor describes and defines the parts of the code that will be invoked with the SOAP calls.

The information containedin the deployment descriptor varies, depending on the type of artifact you are exposing.For example, the following
deployment descriptor might be used with the StockQuoteSample:

<isd:service xmns:isd="http://xnl.apache. org/ xm - soap/ depl oynent " i d="urn: service-urn"
[type="nessage"] > <i sd: provi der type="java" scope="Request | Session |
Application" nmet hods="exposed- net hods" > <isd:java class="inpl enenti ng-cl ass"
[static="true|fal se"]/> </i sd: provi der>

<i sd: faul t Li st ener>or g. apache. soap. server. DOWaul t Li stener</i sd: faul tLi stener>
</isd: service>

View the Apache SOAP deployment descriptor documentationfor more information.
4. Executethe SoapEar Enabl er tool toenable your Web service

As mentioned above, your code artifact must first be packagedinto an Enterprise Archive (EAR). Next, using thedeployment descriptor as input, add
thenecessary pieces to the EAR file to enable the artifact as a Web service. To facilitate this process,use the Java based tool called
SoapEar Enabl er .Depending on whether you secure the Web service, thistool will add two Web modules: soap. war and soap- sec. war to
the EAR file.These Web modules include the SOAP deployment descriptors plus the necessary parts to deploy the service into the WebSphere
Application Server runtime.

[l The service does not become available until the soap-enabled EAR file isinstalled, and the server is restarted.

View the SoapEarEnabler tool documentationfor more information on SoapEar Enabl er .
5. Install the service-enabled EAR file

Take the modified EARTile, created in the previous step,and install it in WebSphere Application Server.

View article Installing applications with the application installer command linefor information on installing EAR files.
6. Updatethe Web server plugin configuration

Run the GenPl ugi nCf g. bat fileon Windows NT or the GenPI ugi nCf g. sh script on UNIX to regenerate the plugin configuration.
7. Restart the application server

See the related information links for an enablement scenario.

13

http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/06060005.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/06060010.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/06060006.html

4.8.2. Apache SOAP deployment descriptors

Apache SOAP utilizes XML documents called" deployment descriptors” to provide the SOAP runtime with
information on client services.
Deployment descriptors provide an array ofinformation such as the:

« Service's URN (Uniform Resource Name)(which is used to route the request whenit arrives)

« Method and class details, ifthe service is being provided by a Java class

o User ID and password information, if the serviceprovider must connect to a database

The contents of the deployment descriptor vary,depending on the type of artifact that isbeing exposed using
SOAP.

14

4.8.2.1: SOAP deployment descriptors in WebSphere Application Server

This article describes the different types of deploymentdescriptors that can be used in WebSphere Application Server.Deployment descriptors for each of the
soap samples areincluded in thesoapsanpl es. ear fileinthe Ser ver Sanpl esCode directory(for example,
<product _installation>/install edApps/soapsanpl es. ear/ Server Sanpl eCode/ sr ¢/ addr essbook/ Depl oynent Descri pt or)

Standard Java class deployment descriptor

A deployment descriptor which exposes a servicethat is implemented with a standard Javaclass (including a normal java bean) lookslike this example:

<isd:service xmns:isd="http://xnl.apache. org/ xm - soap/ depl oynent" i d="urn:service-urn"
[type="nessage"]> <i sd: provi der type="java" scope="Request | Session |
Application” nmet hods="exposed- et hods" > <i sd:java cl ass="i npl emrenti ng- cl ass"
[static="true|fal se"]/> </i sd: provi der>

<i sd: faul tLi st ener >or g. apache. soap. server. DOVFaul t Li st ener </i sd: f aul t Li st ener >
</isd:service>
where;
« service-urn isthe URN that you give to a service.(All services deployed within asingle EARfile must have URNS that are unique withinthat EAR file.)
« exposed-methodsis alist of methods, separated by spaces,which are being exposed
« implementing-classisafully qualified class name (that is, a packagename.classname)that provides the methods that are beingexposed.

On the <service> element,there is an optional attribute called type which is set to the value "message"if the service is document-oriented insteadof
RPC-invoked.

On the <java>element, there is an optional attribute calledstatic, which may be set to either "true"or "false", depending on whetherthe methods are exposed or
not exposed. If exposed, this attribute indicates whetherthe method is static or not static.

On the <provider> element, there isa scope attribute which indicates the lifetime ofthe instantiation of the implementing class.
« "Request” indicates the objectis removed after the request completes.
« "Session" indicates the objectlasts for the current lifetime of theHTTP session.
« "Application" indicates the object lasts until the servlet thatis servicing the requests, is terminated.

EJB deployment descriptor

A deployment descriptor that exposes a servicewhich isimplemented with an Enterprise JavaBean looks like this next example:

<isd:service xmns:isd="http://xm .apache. org/ xnl - soap/ depl oynent " i d="urn:service-urn">
<i sd: provi der type="provider-class" scope="Application"

met hods="exposed- net hods" > <i sd: opti on key="JNDI Nane" val ue="j ndi - nane"/>

<i sd: opti on key="Ful | Honmel nt er f aceNane" val ue="hone-nane" /> </i sd: provider>

<i sd: faul tLi stener>org. apache. soap. server. DOVFaul t Li st ener </i sd: faul t Li st ener>
</isd:service>
[l Thedefault valuesfor theiiop URL and context provider keys are:

<i sd: opti on key="Cont ext Provi der URL" val ue="iiop://I|ocal host: 900" /> <i sd: option
key="Ful | Cont ext Fact oryNane" val ue="com i bm webspher e. nam ng. Wénl ni ti al Cont ext Factory" />

To use your own values, you must specify:
<i sd: opti on key="Cont ext Provi der URL" val ue="<URL to the JNDI provider>" /> <i sd: option
key="Ful | Cont ext Fact or yNane" val ue="<Context factory full class nane>" />
A description of the keys and variables follows:
« service-urn and exposed-methods have the same meaning as in the standardJava class deployment descriptor
« provider-classisone of the following depending on the implementation of the bean:

| Provider class |Bean implementation
com.ibm.soap.providers. WA SStatel essEJB Provider [statel ess session bean
com.ibm.soap.providers. WA SStatefulEJBProvider |stateful session bean
com.ibm.soap.providers. WA SEntityEJBProvider |entity bean

« jndi-nameis the registered INDI name of the EJB
« home-nameisthe fully qualified class name of theEJB's home.

Bean Scripting Framework (BSF) script deployment descriptor

A deployment descriptor that exposes a servicewhich isimplemented with a BSF script lookslike the following example:

<isd:service xmns:isd="http://xm . apache. org/ xn - soap/ depl oynment " i d="urn:service-urn">
<i sd: provi der type="script" scope="Request | Session | Application"

nmet hods="exposed- nmet hods" > <i sd:script |anguage="I| anguage-nane"

[source="source-fil ename"] >[scri pt - body] </isd:script> </i sd: provi der >

15

http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html

<i sd: faul tLi stener>org. apache. soap. server. DOVFaul t Li st ener </i sd: faul t Li st ener >
</isd:service>

where:
« service-urn, exposed-methods, and scope have the same meaning as in the standardJava class deployment descriptor
« language-name is the name of the BSF-supported language that isused to write the script.

The deploymentdescriptor must also have a source attribute on the <script> element,or a script-body attribute. The script-body attribute contains the actual
script that is used to providethe service. If the deployment descriptorhas the source attribute, then source-filename refers to the file which contains the
serviceimplementation.

DB2 stored procedure deployment descriptor

A deployment descriptor which exposes oneor more DB2 stored procedures as a services ooks like the following example:

<isd:service xmns:isd="http://xm . apache. org/ xn - soap/ depl oynment " i d="urn:service-urn">
<i sd: provi der type="comibm soap. provi ders. WASDB2SPPr ovi der" scope="Application"

nmet hods="* | exposed- net hods" > <i sd: opti on key="user| D' val ue="db-userid"/>

<i sd: opti on key="password" val ue="db-password"/> [<isd:option

key="ful | Cont ext Fact or yNane" val ue="context-factory"/> <i sd: opti on key="dat asourceJNDI "
val ue="j ndi - nane"/ >] [<isd:option key="dbDriver" val ue="db-driver"/>

<i sd: opti on key="dbURL" val ue="db-url"/>] </i sd: provi der>

<i sd: faul tLi st ener>or g. apache. soap. server. DOVFaul t Li st ener</i sd: faul t Li stener >
</isd: service>
where:
« service-urn and exposed-methods have the same meaning as in the standardJava class deployment descriptor.
« db-useridisavalid user ID used to access the databasewhere the stored procedures reside.
« db-password isavalid password for the specified user ID
[} The db-userid and db-passwordentries are optional . These entries can be set in the datasource.ln WebSphere Application Server, the

preferred way for administering the db-userid and db-password entriesis with a datasource. Changing the user 1D and password is easier
when the information is located in a datasource rather than in a separate deployment descriptor file. See article DB2 Stored procedure

sample setupfor more information.

« context-factory isthe name of the context factoryused to access the database
« jndi-name is the datasource used to accessthe database
« db-driver isthe database driver usedto access the database.

[l A db-driver isnot required if adatasource JINDI name is specified.
« db-url isthe URL that specifies the database to access

The methods attribute on the <provider> elementcan contain alist of space separatedprocedure namesto expose, or an "*" (asterisk).An asterisk indicates all
available stored procedures shoul dbe exposed.

See the related topics section for links to an enablement scenario.

16

http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/0607.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/0607.html

4.8.3: Quick reference of Web services resources

Use the following table to link directly to Web services descriptions, and additional resources.
Click on any heading in the Topic category for a description of that topic.

Click on any heading in the Resour ces category for links to external sites that provide sample scenarios,
toolkits, tutorials, and additional information.

Reference the Related topics section for links to the SOAP EAR enabler tool and to a Web servicesenablement
tutorial.

| Topic | Resour ces

« Web services topics and devel opment

environment
Web services overview « Waeb services wizard
« Waeb servicestoolkit

« Waeb servicestutoria

« SOAPoverview

o SOAP support in WebSphere Application
Server

o SOAP samples
» Building a SOAP client

« Deploying a programming artifact as a SOAP
accessible Web service

Apache SOAP implementation

« UDDI overview IBM's UDDI registry implementation
o IBM'sUDDI test registry

« UDDI4Joverview

« UDDI4J support in WebSphere Application UDDI4J topics
Server
« UDDI4J samples
» IBM's Javadoc
WSDL overview WSDL topics

See the Related topics section for links to an enablement tutorial.

17

http://www.ibm.com/developerworks/webservices
http://www.ibm.com/developerworks/webservices
http://www.alphaworks.ibm.com/tech/wsde
http://www.alphaworks.ibm.com/tech/webservicestoolkit
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument
http://xml.apache.org/soap
http://www.ibm.com/services/uddi/
http://www.alphaworks.ibm.com/tech/webservicestoolkit?open&c=cdws&p=uddi
http://localhost/0802_makepdf/apidocs/index.html
http://oss.software.ibm.com/developerworks/projects/uddi4j/
http://www.ibm.com/developerworks/library/w-wsdl.html

4.8.4. Securing SOAP services

Since the SOAP specification left security issuesopen, several proposals evolved to bridge the security gaps.
Recentlythe SOAP Security Extension [SOAP-SEC] was published as aW3C Note, specifically addressing the

XML Digital Signature.

The SOAP security extension, included withWebSphere Application Server Version 4.0, is a security
architecturebased on the SOAP security specification,and widely-accepted security technol ogiessuch as Secure

Sockets Layer or SSL.

There are three options for security when using HTTP as the transport protocol.
o HTTP basic authentication

o SSL (HTTPS)
o SOAP signature

Application developers are free to combine these security options according to their security requirements.The
following scenarios describe the implementation of the security options.

HTTP basic authentication

Many applications require users toprovide identifying information.Y ou cannot provide access control for
individual services. Y ou can onlyprovide access control for the router servlets (asfor example the rpcrouter
servlet URI). If auser can get to a servlet, he can access any of the Web services served through the

serviet. Therefore, if you have a set of "secure" services and "unprotected” services, you have to partition them
differently so that "secure" servicesare accessed through an URI that is secured (for example,

/ secur eRPCRout er) andthe unprotected services are open for everyone to access (for example,

/ upr ot ect edRCPRout er).

Using the ApplicationAssembly tool, you can set authorization levels by assigning roles to HT TP methods and
byassigning users to roles. Y ou can then authenticate users, verifying they are authorized to view specific
information. There are many ways to prompt users for authentication data.See articles Overview: Using

programmatic and custom login andThe WebSphere authorization modelfor more information on different
authentication methods, and on role-based authorization scenarios.

SOAP on SSL with HTTP basic authentication

To make arequest over HTTPS, using the SSL support of Apache SOAP, you needa separate Java Secure
Socket Extension (JSSE) provider.

WebSphere Application Server includesthei bnj sse. j ar inthe JDK extensions.

The"SOAP on SSL" scenario is useful for many business-to-business (B2B) applications because:
« Thedatain transit is protected from eavesdropping or forgery by SSL.
« Theclient identity is authenticated through userid and password, which are encrypted by the SSL
transport.
For example, if an inventory application is configured as a Web service, the service provider has the following
two SOAP service entries:
e« https://foo.cominventory/inquiry
e« https://foo.cominventory/update
18

http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/xmldsig-core/
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/0505.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/0505.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/0504.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/0504.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/050103.html
http://java.sun.com/products/jsse/
http://java.sun.com/products/jsse/

Each SOAP service entry should be deployedas a separate enterprise application (EAR)because each service has
adifferent access controlpolicy, whichis. anyone can inquire about the inventorybut only the inventory clerks
can updatethe contents.

The SOAP enablement model limits you to one context root for theunsecured services and another for the
secured services. In this example, you want to make the inquiry service unsecured and the update service
secured. Ifyou want different levels of security for a"secured” service, then you mustdeploy the entriesin the
"secured" service as separate EAR files.
Do the following to enable the "SOAP on SSL" scenario:

« Configure the web server (httpd.conf) so that it only allows SSL access to these servlets.

« Configure the security role for the RPCRout er Ser vl et intheinquiry services EAR so that the
RPCRout er Ser vl et for the'inquiry' serviceis accessible by everyone, while the
RPCRout er Ser vl et for the 'update' service requires authentication based on the HTTP basic
authentication (userid/pasword).

In this case, the 'update’ application does not know the identity of the requester; it only knows that accessis
granted. In other words, the "update" application is not concerned with the identity ofthe user because it knows
WebSphere Application Server is ensuring that only authenticated usershave access.

SOAP on SSL with SOAP Signature

Applications might need non-repudiable proof of exchanged messages.One exampleis aweb service that
accepts part orders.The business partners establish aform of trust relationship based on public keys. This can be
done using the public key infrastructure (PK1) through athird party certificate authority (CA), or by exchanging
public keys with a secure channel. The following service is deployed with a signature verification function:

https://foo.com partorder
Configure signature verification with the following information:

« Scope of signature (indicates the portion of the SOAP envelope that must be authenticated. The default
isthe content of SOAP-ENV:Body).

« Trusted keys or trusted root keys.

« Default key to verify signature if no Keylnfo is specified.

« Other policies regarding signature validation.

« Behavior when signature verification fails.

« Additional requirements on signature (as for example, specific requirements on hash/C14N algorithms
to be used, timestamp validity, and so forth).

If the signature ismissing or if signatureverification fails, the signature verification function canbe configured
so that the servlet returnsa SOAP fault.

To send part orderstotheht t ps: //f 0o. com part or der servicethe service requester should sign his
SOAP messages with a signature component. The signature component isinitialized using two templates:
1. <ds:Signedinfo> template

2. <ds.KeyInfo>template

The<ds: Si gnedl nf 0> template controls the following:
o What parts of the SOAP envelope must be signed
« What agorithms (canonicalization, transformation, digest, sign) should be used

The <ds: Keyl nf o> template controls the following:

19

« Whether or not to include the entire certificate chainin <ds: Keyl nf 0>

Decision to include only certificate and serial number

Public key value

Decision to provide no key information (so that the default key must be used for verification).

Y ou can combine the service request with HTTP basic authentication, if necessary.

20

4.8.4.1: Running the security samples

The process for running the SOAP signed samplesisidentical to the process forrunning the non-signed samples. The soapsanpl es. ear must be
installed, and the server must be started before these samples are invoked.

See article SOAP samples for informationon installing the SOAP samples.

SOAP Signature

The client samples are included in the soapsanpl es. ear file.Do the following to locate and execute the samples:
1. Change your directory (cd) to
product _installation_root/install edApps/ soapsanpl es. ear/ d i ent Code

A set of batch files or script files (on UNIX platforms) have beenincluded to facilitate running the client samples. These batch or script files are
located inthe nt _bat subdirectory on Windows NT, or intheuni x_scr i pt ssubdirectory on UNIX platforms. These scripts setthe classpath
and supply parameters.

2. Invoke the samples using the following scripts:
DSi gAddr essSanpl e | ocal host "c:\WbSpher e\ AppServer\instal | edApps\ soapsanpl es. ear""John B. Good"
DSi gMessageSanpl e | ocal host "c:\WbSphere\ AppServer\instal | edApps\ soapsanpl es. ear". .\ data\ nsgl. xm
[1f you run the script with no arguments, as for example DSigAddressSample, you will be provided with help on how to use the
sample, and you will receive a description of the command line arguments that the script requires.
3. View the output.

For each sample, at the server, you should see that the signature ofthe request is validated. At the client,you should see that the signature of the
responseis validated.

The validation results for both theclient and server are logged to thefollowing files that are created in
thepr oduct _instal | ati on_root/ | nstal | edApps/ soapsanpl es. ear/ soapsec. war/ | ogs directory
o SCAPVHH al | -cl . | og
o SOAPVHH-fail-cl.log
o SCAPVHH al | -sv. | og
o SOQAPVHH-fail -sv. | og

Soap sighature with SSL connection

Ensuring that a connection is over SSL isnot specific to Web services. Y ou must configurethe Web server to ensure that the clientto Web server
connection isover SSL. Y ou must also configure WebSphere Application Server to ensure thatthe Web server to WebSphere Application Server
connection isover SSL.

Article Configuring SSL in WebSphere Application Serverdiscusses how to configure SSL in WebSphere.See your Web server documentation for
information on configuring the SSL server.

For testing purposes, sample client and server keystoredatabases are shipped with the SOAP samples.Y ou must use the IBM Key ManagementTool to
extract the certificates located in files:

o test

« keystore

« databases

Import the certificatesinto your key databases. See article, Tools for managing certificates and keysfor more information on the IBM Key Management
tool.

The test keystores are described in articleKeystore files.

Export the client certificates from the testkeystore file

Perform the following steps to export the client cerificates:
1. Invoke the Key Management Tool (IKeyman)
2. From the file menu, select open

3. Changedirectory (CD) to
product _installation_root/Install edApps/ soapsanpl es. ear/ soapsec. war/ key/

4. Select the SOAPClient keystorefile.
(The keystore password is"client".)

5. Change the key database content type to "Signer Certificates".

6. Highlight the soapca certificate. 21

http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/06061801a07.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/050506.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html

7. Click the Export button.
8. Change the exported file name to "soapca.arm”.
9. Highlight the "intcal" certificate

10. Click the Export button.

11. Change the exported file nameto "intcal.arm".

Import the certificates into the web serverkey database

. Invoke the Key Management Tool (IKeyman)

. From the file menu, select open (or new if you are creating a new keystore)

. Change directory (CD) to the directory where the keystore file is located.

. Select thefile.

For Signer Certificates, add the "intcal.arm" and the "soapca.arm” you exported in the previous section.
. For Personal Certificates, click Import.

. Specify akey type of PKCS12

. Browse the sdserver.pl12 file located in:
product _installation_root/Install edApps/ soapsanpl es. ear/ soapsec. war/ key/

9. Click OK.
10. Enter "server" when prompted for a password.
11. Select "sdserver” from the key list and press OK.
12. Savethe updated keystorefile

0N UNWN R

22

http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html

4.8.4.2: SOAP signature components

An overview of the SOAP signature architecture isillustrated in the figure below.

Transport Hook and Security Components

“FTransport RECRoutersenvlet
ErvelopekEditar EnvelopeEditar

Client Application
Server Application |

Using the SOAP transport hook, you can plug-in the security components:

o Signer

« verifier with logging capability
The transport hook is called the EnvelopeEditor. A PluggableEnvelopeEditor is also provided, which allows you to plugin your
security components. Asillustrated, the Envel opeEditor is encapsulated in the SOAPTransport on the client side.On the server

side, EnvelopeEditor is encapsulated in RPC/MessageRouter Serviet. This means the same components can be used on either
side.

When aclient application sends a request, the request is signed and transmitted to the server. At the server side, the request is
verified and delivered to a server application or, in the case of a RPC, to a Java object. The response is processed in the same
manner.The verifier component also has alogging function to log the verified messages in afile.Signatures and verifier
components are configurable. Y ou can specify encryption, digest message algorithm, certificate path policy, and other security
technologies.

Signature Components

There are two signature components:
 Signature Header Handler

o Verification Header Handler
23

Signature Header Handler (SHH)

The Signature Header Handler isa XML-based configuration file, which enables:

o Template for <Signedinfo> (for customizing references, sign/hash algorithms, C14N algorithms, optional
timestamp)

o Template for <Keylnfo> (for customizing the public key such as X.509 certificate)

Verification Header Handler (VHH)

The Verification Header Handler is a XML-based configuration file, which enables:

o Configurable policy (required scope of signature, trusted root, certstore, certpathchecker) (more sophisticated
policy such as timestamp validation may not be included in 2/15 deliverable)

o Exit for Logging (additional application-specific verification) A reference implementation of logging component
isalso provided.

The digital signature configuration can be changed by editing the configuration for the following components:
« Envelope Editor
« Signature Component
« Verification Component

SOAP Security-related Files

The following table provides an inventory of the SOAP security elements contained in the SOAP security samples module
(soapsec. war).aquick reference for SOAP security topics.

| Path | Contents | Description
. Web-INF, conf, key, log, |Home of the soap
finstalledA pps/soapsampl es.ear/soapsec.war etc. security servlets
Servlet configuration
/install edA pps/soapsampl es.ear/soapsec.war/WEB-INF web. xm file for SOAP security
samples
Configuration files for
/install edA pps/soapsampl es.ear/soapsec.war/conf config files envelope editors and
signature components
. See article Keystore
: SQAPcl i ent -
linstalledA pps/soapsampl es.ear/soapsec.war/key SOAPser ver f|les for more
information.

Logs generated during

linstalledA pps/soapsampl es.ear/soapsec.war/logs Log files security exchange
server side Source for both the
finstalledA pps/soapsampl es.ear/ Server Sampl esCode/src/<service_name> sanpl es non-secure and secure
il samples
Batch files for invoking
. : scripts to run the client side samples
/installedA pps/soapsampl es.ear/ClientCode/nt_bat client sanples to interact with the

server-side services
Batch files for invoking

. . . . scriptsto run client the client side samples
/installedA pps/soapsampl es.ear/ClientCode/unix_scripts samples to interact with the
server-side services
/install edA pps/soapsampl es.ear/ClientCode/data |data files used by samples |
|/installedA pps/soapsamples.ear/ClientCode/src |client side samples source |
Nib S03p.J &, S03p-SEC. |, Location of all jar files

WS-Soap-ext.jar
24 ®)

Related Documents

» Simple Object Access Protocol (SOAP) 1.1 - W3C NOTE.
o SOAP Security Extensions: Digital Signature - W3C NOTE.
« XML-Signature Syntax and Processing - W3C CR.

« XML Security Suite- XML digital signature, encryption, access control.

25

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/xmldsig-core/
http://www.alphaworks.ibm.com/tech/xmlsecuritysuite

4.8.4.2.1: Keystore files for testing purposes

Two keystore files, (SOAPserver and SOAPCclient), are available for testing purposes.These files are located in
directory:

product _installation_root/install edApps/soapsanpl es. ear/ soapsec. war/ key
This article describes the certificates that are stored in these two keystore files.

IFilename |Store password | Description
|SOAPserver |server | This keystore is used by a service provider.
|SOAPclient |client |This keystore is used by a service requester.

Common Certificate Authority certificates

The following three certificates are commonly stored in both keystore files.

|Alias | Issuer | Description

|soapca |soapca itself |The certificate of the root Certificate Authority (CA) used for testing purposes.
lintcal |soapca | The certificate of the CA to issue SSL-related certificates.

lintca2 |soapca |The certificate of the CA to issue SOAP-DSIG-related certificates.

Certificates for service providers

The following two certificates are stored in the SOAPser ver keystore.

|Alias || ssuer | Description
Thisisthe certificate of the SSL server. Thisis also stored in the SOAPclient keystore
sslserver intcal |as atrusted certificate. The PKCS12 file including the corresponding private key for

this certificate is sslserver.pl2.

This certificate might be used by a service provider to digitally sign its response

soapprovider (intca2 message. The key password is "server".

Certificates for service requesters

The following three certificates are stored in the SOAPc| i ent keystore.

|Alias || ssuer | Description

dclient intcal T(;uI cht?rtlflcate might be used for the SSL client authentication. The key password is
Thisisthe certificate of the trusted SSL server and the same as the one stored in the

sdlserver intcal |SOAPserver keystore. The PKCS12 file, including the corresponding private key for

this certificate, is sslserver.pl2.

intca2 This certificate might be used by a service requester to digitally sign its request
message. The key password is"client".

soaprequester

o IBM HTTP Server documentation on configuring SSL
« Toolsfor managing certificates and keys

26

http://www.ibm.com/software/webservers/httpservers/doc/v1312/ibm/9atstart.htm
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/050506.html

4.8.4.2.2: Envelope Editor

The Envelope Editor is a component thatcan be plugged into the Apache SOAP transports.At the server side, it is embedded into theRPC and
MessageRouterServlets. At the clientside, it is embedded in the FilterTransport,which implements the SOAPTransport interface.WebSphere
Application Server provides a PluggableEnvel opeEditor,which can be usedto plug-in some editing componentssuch as signature and verification.

Enabling Envelope Editor

At the client side, the configuration ofthe eEnvel ope eEditor is explicitly programmed.On the server side, the transport hook isenabled automatically
inthesoapsec. war filewhen you add the "init" param to the RPC and Messagerouter servlets for the Envel opeEdi t or Fact or y.Thisentry in
theweb. xm for thesoapsec. war fileis added automatically when you "soap enabl€"an application and indicate the service is secure.

Description of the factory class to instantiate Envelope Editors

A factory class creates Envel ope Editors at runtime. The factory classis called DSi gFact ory. The DSi gFact or y class consumes an editor
configuration file, and creates an instance of Envelope Editor. The factory class and the configuration file are specified in:

product _installation_root\install edApps\ear _fil e_nane\soapsec. war\WEB- | NF\ web. xm
The factory classis describedunder the <servlet id="Servlet_1">and <servlet id="Servlet_2">elements:

<di spl ay- nane>Apache- SOCAP- SEC</ di spl ay- nane> <descri pti on>SOAP Security Enabl enent
WAR</ descri ption> <servlet id="Servlet_1"> <servl et - nane>r pcrout er </ servl et - nane>
<di spl ay- nane>Apache- SOAP Secure RPC Rout er </ di spl ay- nane> <descri ption>no
descri ption</ descri ption>
<servl et-cl ass>com i bm soap. server. htt p. WASRPCRout er Ser vl et </ servl et - cl ass> <i nit-param
id="InitParam1"> <par am nane>f aul t Li st ener </ par am nanme>
<par am val ue>or g. apache. soap. server. DOWaul t Li st ener </ par am val ue> </init-paran>
<init-paramid="1InitParam?2"> <par am nane>Envel opeEdi t or Fact or y</ par am nanme>
<par am val ue>com i bm soap. dsi g. dsi gf act ory. DSi gFact or y</ par am val ue> </init-paranp
<init-paramid="1nitParam3"> <par am name>SCQAPEvnel opeEdi t or Confi gFi | ePat h</ par am nane>
<par am val ue>conf/sv-editor-config.xm </ param val ue> </init-paranmp </ servl et>
<servlet id="Servlet_ 2"> <servl et - nane>nessager out er </ ser vl et - nane>
<di spl ay- nane>Apache- SOAP Secure Message Router</di spl ay- nane>
<servl et-class>com i bm soap. server. http. WASMessageRout er Ser vl et </ servl et - cl ass> <i ni t - param
i d="InitParam5"> <par am nane>f aul t Li st ener </ par am nanme>
<par am val ue>or g. apache. soap. server. DOVFaul t Li st ener </ par am val ue> </init-paranp
<init-paramid="1nitParam6"> <par am nane>Envel opeEdi t or Fact or y</ par am nanme>
<par am val ue>com i bm soap. dsi g. dsi gf act ory. DSi gFact or y</ par am val ue> </init-paranpr
<init-paramid="1nitParam7"> <par am name>SOAPEnvel opeEdi t or Conf i gFi | ePat h</ par am nane>
<par am val ue>conf/sv-edi tor-config. xm </ param val ue> </init-paranm> </servlet>

Envel opeEdi t or Fact ory isafactory class.SOAPEnvel opeEdi t or Conf i gFi | ePat h isaconfigurationfile for Envelope Editor.

Configuration file of Envelope Editor

The configuration file, sv- edi t or - confi g. xnm islocated in:
product _i nstal |l _root\install edApps\ <ear_fil e_nane>\ soapsec. war\conf\sv-editor-config.xnl
Under the SOAPENvel opeEditor Config element, thereare two optional elements:

« incoming

« outgoing

The incoming and incoming element definitions look like the following example:

<inconmi ng class="comibm xm . soap. security.dsig. SOAPVerifier"> <init-paranpr
<par am nane>fi | ename</ par am nane> <par am val ue>conf/sv-ver-config. xm </ param val ue>
</init-parant </incom ng> <outgoing class="comibm xnm .soap.security.dsig.SOAPSi gner">
<i nit-paranme <par am nane>fi | ename</ par am nanme>
<par am val ue>conf/sv-si g-confi g. xm </ par am val ue> </init-paranm> </outgoing>

The incoming element specifies a class which "edits" incoming messages, and a configuration file for the editing class. The outgoing element
specifies a class for outgoing message and a configuration file.

Changing the configuration

Y ou do not have a digital signature for response messages if you remove the outgoing element from

product _installation_root\install edApps\<ear_fil e_nane>\soapsec. war\conf\sv-editor-config.xm
and remove the incoming element from

product _installation _root\install edApps\<ear_fil e_name>\soapsec.war\conf\cl-editor-config.xn

27

http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html

4.8.4.2.3: Signature Header Handler

The Signature Header Handler (SHH) insertsa digital signature header into a SOAP envelope.Y ou can customize the SHH configuration
with a configuration file. For example, you canspecify a signing policy and the key storefile.

There are two signature configurationfiles:

Theso

Anexp

28

product _installation_root\install edApps\<ear fil e_nane>\ soapsec\conf\sv-sign-config.xn
product installation_root\install edApps\<ear file_nane>\soapsec\conf\cl-sign-config.xm

apsanpl es. ear file contains samples of these configuration files.

lanation of each configuration element in the Signature Header follows:

KeyStore

The KeyStore element specifies a keystore file that holds the signingkey. In the following example, the attribute "type" indicates a
keystore type, and "jks" indicates Java Key Store. "path" is akeystorefile, and "storepass’ isits store password.

<KeySt or e type="j ks" pat h="key\ SOAPser ver" st orepass="server" [>
The Key Management tool (iKeyman) can beused to create a keystorefile.
Policy

The PublicKey element specifies the information that should be included inthe <ds:Keylnfo> element. With the current
implementation, you must either include the complete certificate chain, oromit the <ds:Keylnfo> When <ds.Keylnfo> is ommitted,
the recipientmust know the default key to verify the signature.

Template

The contents of the Template element specify all the details relatedto XML Signature, including signature algorithms, digest
algorithms,canonicalization algorithms, transform algorithms, the portion of theSOAP envelope to be signed, and so on.

Object
The template can also have Object element(s) for additional authentication information, such as a timestamp.

ValueOfTimestamp

This SHH understands one special element type, ValueOf Timestamp, whichis replaced with a current time and date before being
inserted intothe signature.

http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html

4.8.4.2.4: Verification Header Handler

The Verification Header Handler (VHH) validatesa digital signaure header in a SOAP envelope.lts configuration can be customized usinga configuration file
where you specify the following:

« averification policy
« the certificate path
« logging filesto record verified messages

There are two signature configuration files:

product _installation_root\install edApps\<ear file_name>\soapsec. war\ conf\sv-ver-config.xm
product _instal | ati on_root\instal | edApps\ <ear_fil e_nane>\ soapsec. war\ conf\cl -ver-config. xnl

Samples of these configuration files areprovided inthe soapsanpl es. ear file.

An explanation of each configuration element in the Verification Header follows:

. AllowedAlgorithms

All the algorithms supported by this VHH must be listed in this element. Algorithms other than these cannot be used in SOAP- SEC: Si gnat ur e
header. The current implementation supports all required algorithmsin the XML Signature specification, except for SHA1-MAC.

. RequiredAuthenticatedParts

This section specifies what parts of SOAP message need to be authenticated through the SOAP- SEC: Si gnat ur e header. Currently two values are
supported for the part attribute:

1. When part="root," the whole evelope must be signed through the envel oped-signature transform.

2. When part="body," the SOAP-ENV:Body element in the SOAP envelope must be referenced by one of the reference elementsin the
signature.

Part="" allows an attachment to be specified.

If the specified parts are not authenticated through the signature header entry, verification fails.

. DefaultVerificationKeys

When Key| nf o ismissing in the signature, the content of this elementis used as a part of the signature. When communicatingparties know the
identity of each other, the default Key| nf o can beused to reduce the communication data volume.

. Log

Specifies the logging behavior. The following versions of logging exist:
o When target="all," al verification attempts are logged.
o When target="success," only successful verification are logged.
o When target="fail," only unsuccessful verification are logged.

[l Multiple LogFile elements can be specified.

The following example illustrates how to specify logging:

<Log> <SOAPDSI gLogger class="comibm xnm . soap. security. dsi g. SOAPDSi gLogger | npl ">
<LogFil e target="all" path="SOAPVHH-al | .| 0og" append="yes"/> </ SOAPDSI gLogger > <SOAPDSI gLogger
class="comibm xnm . soap. security. dsi g. SOAPDSi gLogger | npl "> <LogFile target="fail"

pat h="SOAPVHH fai | .| og" append="yes"/> </ SOAPDSI gLogger > </ Log>
. PKIXParameters

Currently VHH supports X.509/PK1X certificates only (no HMAC, no PGP, and so forth). The policies for PKIX certificate verification are specified
in this element. Thisis a straightforward mapping of Java CertPath API. Not al of the entries are meaningful in thisinitial release.

Current implementation only allows the useof keystore as the means of specifying trustedroot.

29

http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/root.html

6.6.0.14: XML-SOAP Admin tool

Use the SOAPEarEnabler toolto add administrative interfaces to your EAR files. Y ou can then use the
XML-SOAP Admin tool with these EAR files.

WebSphere Application Server provides a modified version of theApache SOAP XML-Admin interface (or
XML-SOAP Admin tool) for each SOAP-enabled EAR file.This interface allows you to do the followingfor
each context root:

« List configured services, showing active and stopped services
« Stop aservice

o Startaservice

« View the Apache Soap deployment descriptor for a service

Accessing the XML-SOAP Admin tool

Access the XML-SOAP Admin tool through a Web browser by specifying:
http://1 ocal host/ <cont extroot >/ adm n/i ndex. ht m

Note: The context root, in this example, is the context specified when installing the
SOAP-enabled . ear file.The context root for SOAP samplesissoapsanpl es.

Therefore to use this interface with the SOAP samples,enter:
http://1 ocal host/soapsanpl es/ adm n/i ndex. ht m

Y ou cannot use the XML-SOAP Admin tool to add or remove a service. Usethe SOAP Ear Enabler tool to add
or removeservices. A "stopped” service is persistedacross starts and stops of the applicationserver. Therefore, if
you stopa service, it will remain stopped until thenext time you use the XML-SOAP Admin toolto start it again.

Y ou can add the XML-SOAP Admin tool interface to an enterpriseapplication when you SOAP-enable the EAR
file.ln interactive mode, you are asked whether you want to add the XML-SOAP Admin tool interface.Replying
"yes" will add the necessaryJSP files and bindings that allow you to accessthe XML-SOAP Admin tool
interface for the application.The interface is an optional addition becauseyou may not want to exposeitin a
production environment. Optionally,you may choose to use the application assemblytool to assign rolesto the
XML-SOAP Admin toolso that it is secure.

Updating an existing SOAP-enabled Enterprise Application

The Application Assembly tool is used toupdate the contents and configuration ofan enterprise application. For
example, tosecure the XML-SOAP Admin tool interfacefor a particular EAR, use the application assemblytool
to secure the resource. (See article Securing applicationsfor security information.) However, you cannot use the

application assembly toolto add or remove a Web service.

To add or remove a service to the XML-SOAP Admin tool, startwith the original EAR file and execute the
enabling process again.

Note: The SOAPEar Enabler tool saves a backup copy of the EAR file.

30

http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/06060010.html
http://localhost/0802_makepdf/aes_orig/nav_webservicesnav/05.html

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

