
WebSphere Application Server CORBA support

CORBA support

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices”on
page 91 .

© IBM Corporation, 2001 US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

CORBA support concept articles 1
WebSphere CORBA support 2

WebSphere CORBA support scenarios
...

3

CORBA client to WebSphere EJB server
...

4

WebSphere EJB server (as a CORBA
client) to CORBA server

5

WebSphere to 3rd-party ORB
interoperation

6

General CORBA interoperation
considerations

6

WebSphere to 3rd-party CORBA ORB
coexistence

14

The CORBA programming model 14
The CORBA client programming model
...

16

The CORBA server programming model
...

22

Interface Definition Language (IDL),
usage and implementation

24

WebSphere CORBA value type library for
C++ ...

28

C++ value type library, data type
mappings ...

29

C++ value type library, runtime type
information ...

30

C++ value type library, application
programming interface

30

WebSphere Enterprise JavaBeans as
clients of 3rd-party CORBA ORBs

31

WebSphere Enterprise JavaBeans as
CORBA clients, the CORBA components
...

32

WebSphere Enterprise JavaBeans as
CORBA clients, the CORBA interfaces
...

32

Writing WebSphere Enterprise
JavaBeans as clients of a 3rd-party
CORBA ORB

33

Writing CORBA servers for third-party
ORBs ...

34

Problem determination 34
Hints and tips: The activity log 36

An overview of basic CORBA concepts
...

36

CORBA support task articles 39
Developing a C++ CORBA client 40

Creating IDL files for an Enterprise
JavaBean ..

40

Creating the CORBA client main code
(client.cpp) ...

41

Creating CORBA client main code
(client.cpp), adding include statements
and global declarations

42

Creating CORBA client main code
(client.cpp), adding code to check input
parameters ..

42

Creating CORBA client main code 43

(client.cpp), adding code to initialize the
client environment

43

Creating CORBA client main code
(client.cpp), adding code to get a pointer
to the root naming context

44

Creating CORBA client main code (client
.cpp), adding code to access the servant
object ...

45

Creating CORBA client main code (client
.cpp), adding code to call methods on
the servant object

46

Creating CORBA client main code
(client.cpp), adding code to shutdown the
client and release resources used

46

Building a C++ CORBA client 47
Developing a CORBA server 49

Storing a logical definition for a CORBA
server in the system implementation
repository ..

50

Defining the interface for a CORBA
servant class ...

50

Compiling a CORBA server
implementation class IDL (using idlc)

52

Adding declarations to a CORBA servant
class definition (servant.ih)

53

Adding code to a CORBA servant
implementation (servant_I.cpp)

54

Creating the CORBA server main code
(server.cpp) ...

55

Creating CORBA server main code
(server.cpp), adding include statements
and global declarations

56

Creating CORBA server main code
(server.cpp), adding code to check input
parameters ..

57

Creating CORBA server main code
(server.cpp), adding code to initialize the
server environment

58

Creating CORBA server main code
(server.cpp), adding code to access
naming contexts

60

Creating CORBA server main code
(server.cpp), adding code to name,
create, and bind servant objects

63

Creating CORBA server main code
(server.cpp), adding code to create a
WSServerShutdown object

64

Creating CORBA server main code
(server.cpp), adding code to put the
server into a loop to service requests
...

65

Creating CORBA server main code
(server.cpp), adding code to shutdown
the server and release resources used
...

65

Building a C++ CORBA server 67
Specifying runtime properties for C++
CORBA clients and servers

68

Creating your own C++ valuetypes 69
Writing a WebSphere Enterprise JavaBean 71

Contents

WebSphere Application Server CORBA support - Page 3

as a client of a 3rd-party CORBA ORB 71
Writing a WebSphere Enterprise
JavaBean as a CORBA client, contacting
the client-side ORB

72

Writing a WebSphere Enterprise
JavaBean as a CORBA client, locating
servant objects ..

73

Writing a WebSphere Enterprise
JavaBean as a CORBA client, invoking a
servant object ..

74

Writing a WebSphere Enterprise
JavaBean as a CORBA client, building the
Enterprise JavaBean

76

Tasks for problem determination 78
Formatting an activity or trace log 78
Reading a formatted activity log 79
Formatting and merging multiple trace files
...

81

Filtering the information in a formatted
trace file ...

81

Identifying and resolving CORBA
interoperability issues

83

CORBA support example articles 84
Sample: C++ CORBA client of a C++
servant object ...

85

Sample: C++ CORBA client of an Enterprise
JavaBean ..

86

CORBA interoperation samples 87
C++ value type library, examples 89

Contents

WebSphere Application Server CORBA support - Page 4

CORBA support concept articles
This part contains concept topics about the CORBA support provided by WebSphere
Application Server 4.0 enterprise services. These topics are intended to provide background
information that you should understand to be able to complete tasks to enable and use the
CORBA support.

• “CORBA support task articles” on page 39

• “CORBA support example articles” on page 84

• “CORBA support reference articles” on page

WebSphere Application Server CORBA support - Page 1

WebSphere CORBA support
WebSphere Application Server provides CORBA support that enables the use of CORBA
interfaces between a server object providing a service and a client using the service. In
practice this means WebSphere C++ CORBA servers and WebSphere EJB services can be
accessed by CORBA clients, and WebSphere CORBA clients can access CORBA servers.

As part of the WebSphere J2EE environment, the C++ CORBA support provides a basic
CORBA environment that can bootstrap into the J2EE name space and can invoke J2EE
transactions. However, it does not provide its own Naming and Transaction services, for
which a C++ CORBA client or server relies on the J2EE environment as a service provider.
The C++ CORBA technology is provided on Solaris (Forte C++), AIX (VisualAge for C++),
and Windows NT and Windows 2000 (Microsoft Visual C++).

The CORBA support comprises the following two main areas of functionality:
C++ CORBA Software Development Kit (SDK)

You can use the C++ CORBA SDK to build a lightweight WebSphere CORBA
server for use with new or existing C and C++ programs. You can also use the SDK
to build a WebSphere C++ CORBA client for use with a WebSphere C++ CORBA
server, WebSphere EJB server, or with a 3rd-party C++ CORBA server (as part of a
CORBA interoperation scenario). For example, you could use the SDK to build a
C++ CORBA client to connect a C++ desktop application to a WebSphere EJB
server.

WebSphere to 3rd-party CORBA interoperation
You can use the CORBA interoperation functionality to invoke CORBA applications
outside of WebSphere from servlets and Enterprise JavaBeans on a WebSphere
EJB server (acting as a CORBA client). You can also invoke WebSphere Enterprise
JavaBeans from CORBA applications calling out from CORBA outside of
WebSphere.

With CORBA interoperation, distributed objects are invoked using the ORB
included with WebSphere. This enables the propagation of service contexts such
as in-progress transactions. Because these service contexts are potentially
usable by the third-party ORB receiving the calls, you might (for example) be
able to include processing performed by the third-party ORB within the scope of
a WebSphere-initiated transaction.

If CORBA interoperation is inadequate, you can consider ORB coexistence as an
alternative solution. Coexistence refers to the ability of two different ORB runtime
environments to reside and function in the same process. With coexistence,
distributed objects are invoked using a 3rd-party ORB running in the WebSphere
environment. This allows the 3rd-party ORB's bootstrapping protocol and
vendor-specific APIs to be used.

The CORBA interoperation functionality uses a CORBA value type library for
C++, provided as part of the WebSphere CORBA support, that simplifies calls
from CORBA to Enterprise JavaBeans. The CORBA interoperation environments
supported include VisiBroker C++ 3.3.3, VisiBroker Java 3.4, VisiBroker
C++/Java 4.0/4.1, Orbix C++ 3.0.1 (except Solaris), Orbix C++ 3.0.2 (Solaris
only), Orbix Web 3.2, and Orbix2000 C++/Java 1.2. The platforms supported
include AIX 4.3.3, NT 4.0, Windows 2000, and Solaris 2.7.

To make use of the CORBA support provided by WebSphere Application Server you should
be familiar with the CORBA specification and programming model. You should also be

WebSphere Application Server CORBA support - Page 2

familiar with WebSphere Application Server application development.

The following articles provide the main conceptual information about the CORBA support:

• “WebSphere CORBA support scenarios” on page 3

• “The CORBA programming model” on page 14

• “Interface Definition Language (IDL), usage and implementation” on page 24

• “CORBA value type library for C++” on page 28

• “CORBA services provided” on page 11

WebSphere CORBA support scenarios
The WebSphere Application Server CORBA support enables the use of CORBA interfaces
between a server object providing a service and a client using the service. In practice this
means WebSphere C++ CORBA servers and WebSphere EJB services can be accessed by
CORBA clients, and WebSphere CORBA clients can access CORBA servers, in the
following scenarios:

• WebSphere to WebSphere CORBA scenarios.

These scenarios enable creation of CORBA client/server applications within the
WebSphere Application Server environment.

• WebSphere C++ CORBA client to a WebSphere EJB server.

This enables a C++ CORBA client to access Enterprise
JavaBeans hosted by a WebSphere EJB server. For more
information, see “CORBA client to WebSphere EJB server” on
page 4 .

• WebSphere C++ CORBA client to a WebSphere C++ CORBA
server.

This enables a WebSphere C++ CORBA client to access a
CORBA server implementation object hosted by a C++ CORBA
server within the WebSphere Application Server environment.
This CORBA support provides the basic CORBA building blocks
from which to create C++ CORBA client/server applications within
WebSphere.

• WebSphere EJB server (as a CORBA client) to a WebSphere C++
CORBA server.

This enables Enterprise JavaBeans hosted by a WebSphere EJB
server to access a CORBA server implementation object hosted
by a C++ CORBA server. For more information, see “WebSphere
EJB server (as a CORBA client) to CORBA server” on page 5 .

• WebSphere to 3rd-party CORBA interoperation scenarios.

These scenarios enable 3rd-party applications based on CORBA ORBs to interoperate
with WebSphere, allowing such applications to leverage WebSphere-supported open
technologies such as Java ServerPages, XML, Java Servlets, and Enterprise
JavaBeans. This promotes code reuse, interoperability with existing CORBA-based
applications, and reduces the cost of developing new applications.

• 3rd-party CORBA client to WebSphere EJB server.

This enables 3rd-party CORBA clients to access Enterprise
JavaBeans hosted by WebSphere EJB servers. For more
information, see “CORBA client to WebSphere EJB server” on

WebSphere Application Server CORBA support - Page 3

page 4 .

• WebSphere EJB server (as CORBA client) to 3rd-party CORBA
ORB.

This enables Enterprise JavaBeans hosted by a WebSphere EJB
server to access CORBA server implementation objects hosted by
3rd-party CORBA servers. For more information, see “WebSphere
EJB server (as a CORBA client) to CORBA server” on page 5 .

• WebSphere to 3rd-party ORB coexistence.

If a WebSphere to 3rd-party CORBA interoperation scenario is inadequate, you can
consider ORB coexistence as an alternative solution. Coexistence refers to the ability of
two different ORB runtime environments to reside and function in the same process. For
more information, see “WebSphere to 3rd-party CORBA coexistence” on page 14.

CORBA client to WebSphere EJB server
CORBA clients can use the CORBA client programming model to access Enterprise
JavaBeans hosted by a WebSphere EJB server, as shown in the following figure:

Figure 1 of 8. CORBA client to WebSphere EJB server scenario

The EJB server provides the server implementation objects (Enterprise JavaBeans) that
client applications need to access and implements the services that support those objects.
The EJB class file is used to generate IDL for the class and its home (this is reverse of the
typical CORBA model where IDL is used to generate the object). Serializable objects used
in the enterprise JavaBean interface are expressed in IDL as CORBA valuetypes.
Implementations for CORBA valuetypes must be provided on the client, so it is important to
keep this simple.

In this scenario, when the client wants to call a method on a server object (an Enterprise
JavaBean), the following sequence of events occur:

1. When the client environment is started, the client ORB is initialized and the ORB
bootstrap process gets access to the naming service (with CORBA CosNaming
bindings).

2. When a client application needs to access an Enterprise JavaBean, the client

WebSphere Application Server CORBA support - Page 4

environment uses the naming service to find the home for the bean.

3. The home locates or creates the Enterprise JavaBean then passes the interoperable
object reference (IOR) of the bean back to the client.

4. The client's ORB creates a stub object (local to the client) for the bean and stores the
IOR in the stub object.

5. The client uses the stub object to communicate with the remote bean as though it was in
the local address space.

For more information about the elements in this scenario, see “An overview of basic CORBA
concepts” on page 36.

WebSphere EJB server (as a CORBA client) to CORBA server
Enterprise JavaBeans are Java objects operating in a sophisticated runtime environment
(EJB containers). The EJB container manages transactions, security, and other services.
These typically correspond to CORBA services. Because EJBs are Java objects they can
act as CORBA clients, using the CORBA ORB managed by the container, as shown in the
following figure. Enterprise JavaBeans, acting as CORBA clients using the WebSphere Java
ORB, benefit from full propagation of service contexts because of the tight integration
between the EJB container and the ORB.

Figure 2 of 8. WebSphere EJB server (as a CORBA client) to CORBA server scenario

In this scenario, when the client (an Enterprise JavaBean on a WebSphere EJB server)
wants to call a method on a servant object, the following sequence of events occur:

1. When the client environment is started, the client ORB is initialized and the ORB
bootstrap process gets access to the naming service (with CORBA CosNaming
bindings).

2. When an Enterprise JavaBean needs to access a CORBA servant object, the
WebSphere EJB server uses the naming service to find the servant object then return
the interoperable object reference (IOR) of the servant back to the client.

3. The client creates a stub object (local to the client) for the servant and stores the IOR in
the stub object.

4. The client uses the IOR to locate the servant and the stub object to communicate with
the servant as though it was a local process.

WebSphere Application Server CORBA support - Page 5

For more information about the elements in this scenario, see “An overview of basic CORBA
concepts” on page 36.

WebSphere to 3rd-party ORB interoperation
WebSphere Application Server supports CORBA interoperation between WebSphere (C++
CORBA clients/servers and EJB servers) and 3rd-party CORBA ORBs in the following
scenarios that involve programming models supported by WebSphere Application Server.

• 3rd-party CORBA client to WebSphere EJB server.

This enables 3rd-party CORBA clients to access Enterprise JavaBeans hosted by
WebSphere EJB servers. For more information, see “CORBA client to WebSphere EJB
server” on page 4 .

• WebSphere EJB server (as CORBA client) to 3rd-party CORBA ORB.

This enables Enterprise JavaBeans hosted by a WebSphere EJB server to access
CORBA objects hosted by 3rd-party CORBA servers. For more information, see
“WebSphere EJB server (as a CORBA client) to CORBA server” on page 5 .

If a WebSphere to 3rd-party CORBA server interoperation scenario is inadequate, you can
consider ORB coexistence as an alternative solution. Coexistence refers to the ability of two
different ORB runtime environments to reside and function in the same process. For more
information, see “WebSphere to 3rd-party CORBA coexistence” on page 14.

The following table summarizes the CORBA scenarios supported for interoperation and
coexistence between WebSphere Application Server enterprise services and 3rd-party
CORBA ORBs:

CORBA client EJB/CORBA server Supported

Scenario ***

3rd-party ORB, CORBA C++
language bindings

WebSphere-hosted Enterprise
JavaBean

Yes

WebSphere ORB, CORBA C++
language bindings

3rd-party Java CORBA object Yes

WebSphere ORB, CORBA C++
language bindings

3rd-party C++ CORBA object Yes

WebSphere ORB, CORBA
Java language bindings (EJB
server as CORBA client)

3rd-party Java CORBA object Yes

WebSphere ORB, CORBA
Java language bindings (EJB
server as CORBA client)

3rd-party C++ CORBA object Yes

WebSphere ORB coexistent
with 3rd-party ORB

3rd-party CORBA object Yes

General CORBA interoperation considerations
This topic provides an overview of general considerations for interoperation between
WebSphere Application Server and 3rd-party CORBA ORBs.

Why CORBA interoperation is an issue

Two CORBA ORBs should be able to interoperate, but in practice interoperation works well

WebSphere Application Server CORBA support - Page 6

for two ORBs from the same vendor, but not so well for ORBs from different vendors. Even
though the CORBA specification is designed to allow vendor ORBs to interoperate, there
are many factors that restrict or prevent full interoperation, including:

• Proprietary extensions to Vendor ORB implementations:

• Use different configuration and initialization procedures

• Other features affecting interoperability that, while desirable and
beneficial, are beyond the scope of the CORBA specification, and
therefore are not supported by other ORBs.

• Vendors may implement different levels of the CORBA specification. This is especially
problematic for client access to Enterprise JavaBeans, which requires features found in
the GIOP 1.2 protocol.

• Vendors may implement different parts of the same specification.

• There may be bugs in an implementation of the CORBA specification.

• Ambiguities in the CORBA specification, where different vendors have interpreted the
specification differently. OMG has a process defined to resolve such ambiguities as they
are identified, however vendors typically proceed with their own interpretation until such
ambiguities are clarified by the OMG.

Even if two ORBs fully conform to the CORBA specification, you usually need to configure
each ORB implementation to recognize the presence of the other ORB or, more specifically,
to initialize references to objects implemented on the other ORB.

Different host operating systems can impose different configuration and initialization
procedures. You should carefully review the relevant documentation from each ORB vendor
specific to the host operating environment. ORB vendors support a variety of operating
systems, but not all operating systems are supported by any one ORB vendor.

Resolving the CORBA interoperation issue

The CORBA specification and vendor ORBs are continually evolving, and are expected to
evolve to the point where interoperability is adequate for most, if not all, scenarios.
Meanwhile, it is essential to understand what interoperation works as expected, what does
not work, and what options are available for resolving the interoperation issues.

There are many interdependent factors that must be considered when designing a CORBA
interoperation solution between ORBs from different vendors, or resolving problems in an
existing design.

GIOP and J2EE

Communication between different ORBs is based on the General Inter-ORB Protocol
(GIOP) specification, and the Internet Inter-ORB Protocol (IIOP) implementation of the
GIOP. For J2EE 1.3, IIOP is required for J2EE products to interoperate; therefore Enterprise
JavaBeans must be accessible via the RMI-IIOP protocol. Also, CORBA is the J2EE
distributed interlanguage specification, so JavaIDL is required to support J2EE applications
calling CORBA applications.

CORBA language binding considerations
Different languages require different language bindings to a Vendor's ORB, and may even
require different ORBs from the same vendor. This requires a level interoperability between
the ORBs, which should be taken into consideration. The CORBA architecture defines
language bindings for a number of languages, including C++, Java, COBOL, PL/I, Smalltalk,
and others. CORBA concepts are generally language independent, although valuetype
bindings have not yet been defined for all language bindings.

C++ language bindings are available for C++ CORBA clients and servers supporting 1.1
and valuetypes from IIOP 1.2. To aid application development, WebSphere Application

WebSphere Application Server CORBA support - Page 7

Server enterprise services provides a valuetype library that contains the C++ valuetype
implementation for some commonly used Java classes in the java.lang, java.io, and java.util
packages. For example, Integer, Float, Vector, Exception, OutputStream, and so on.

CORBA value type considerations
The Java language to IDL specification maps Java serializables to CORBA valuetypes
(pass-by-value objects). Therefore every Java serializable to be passed between a client
and server (for example, by a CORBA client as a parameter or return value for an
Enterprise JavaBean) must be re-implemented in the language of the client. (The
implementation for the valuetype must be defined and provided in the language runtime for
both the client and the server.) Implementation of Java serializables as valuetypes in C++ or
another language can be a significant development effort.

Valuetypes were introduced by the CORBA 2.3 specification and many 3rd-party ORBs do
not yet implement the specification, or do not implement it fully.

To aid application development, WebSphere Application Server provides a valuetype library
that contains the C++ valuetype implementation for some commonly used Java classes in
the java.lang, java.io, and java.util packages. For example, Integer, Float, Vector, Exception,
OutputStream, and so on. For more information about the valuetype library provided with
WebSphere Application Server, see “WebSphere CORBA valuetype library for C++” on
page 28.

Java language to IDL specification

An Enterprise JavaBean is implemented in Java, with no hint of the CORBA architecture in
its programming model. The Enterprise JavaBean specification requires that the server
implementation be restricted to using those Java language constructs defined as the
RMI/IDL subset by the Java language to IDL specification.

By following the Java language to IDL specification, you can create CORBA clients
implemented in any programming language for which there is a defined mapping, and for
which an ORB supporting valuetypes is available.

When valuetypes are not supported

For languages other than Java, such as C++, the CORBA architecture is often the only
viable option for accessing Enterprise JavaBeans.

For session bean interfaces that only use primitive data types, you can use generated IDL
files to access the Enterprise JavaBeans even if the client ORB does not support
valuetypes. However, the IDL generated from such an Enterprise JavaBean can still include
valuetype declarations for exceptions or other entities.

For valuetypes, java.lang.String or any other serializable cannot be used in a parameter or
return type. There can also be problems catching exceptions, because they contain
valuetypes.

If you decide that the features supported by valuetypes are not needed, consider using the
strategies outlined in “Unsupported CORBA data types” on page 10.

CORBA communication protocols (GIOP/IIOP)
The CORBA architecture provides the General Inter-ORB Protocol (GIOP) to define
message formats between objects in a distributed environment. The Internet Inter-ORB
Protocol (IIOP) is an implementation of GIOP.

GIOP includes a Common Data Representation (CDR) that resolves differences between
native hardware architectures1 within such an environment. GIOP supports a number of

WebSphere Application Server CORBA support - Page 8

1 Different hardware architectures can have variations in byte ordering and alignment for multi-byte data types within the address space.
GIOP provides the means for resolving the differences across platforms.

2 There are differences in the wchar and wstring encoding betweenGIOP 1.1 and 1.2, which creates interoperability challenges.
For detailed information, review the portion of the CORBA specification relating to GIOP and CDR.

simple data types, compound data types, object references, exceptions, and other features,
depending upon the version of the specification (as shown in the following table).
Nevertheless, early ORBs can encounter interoperability problems related to byte ordering.

If you suspect a GIOP-related interoperability problem, it is reasonably safe to adopt GIOP
1.0; all major ORBs support GIOP at this level. WebSphere supports client ORBs that use
GIOP1.0 or GIOP1.1, with or without valuetypes from 1.2. Client ORBs cannot call
WebSphere using GIOP1.2. Likewise, WebSphere ORBs can call 3rd-party CORBA servers
at GIOP1.1 only. The WebSphere ORB does not accept or produce fragmented messages.

GIOP
feature

Data
types

GIOP version WebSphere ORB

1.0 1.1 1.2 Java C++

Simple
data
types

octet,
char,
short,
unsigned
short,
long,
unsigned
long
long
long,
unsigned
long
long,
float,
double,
boolean,
string

Yes Yes Yes Yes Yes

long
double

Yes Yes Yes - -

fixed Yes Yes Yes - -

wchar,
wstring

- Yes Yes1 1.1 1.1

enum Yes Yes Yes Yes Yes

Compound
data
types

struct,
union,
array,
sequence

Yes Yes Yes Yes Yes

valuetype - - Yes Yes Yes

CORBA::ObjectYes Yes Yes Yes Yes

any Yes Yes Yes Yes Yes

context Yes Yes Yes Yes Yes

exception Yes Yes Yes Yes Yes

Message
formats

Request,
Reply,

Yes Yes Yes Yes Yes

WebSphere Application Server CORBA support - Page 9

GIOP
feature

Data
types

GIOP version WebSphere ORB

1.0 1.1 1.2 Java C++

CancelRequest,
LocateRequest,
LocateReply,
CloseConnection,
MessageError

Fragment Yes Yes Yes Yes Yes

Bi-directional - - - Yes - -

Resolving unsupported CORBA data types
If a client ORB does not support a data type required by a server object, such as an
Enterprise JavaBean or C++ servant object, you can use a variety of techniques to resolve
this, including the following:

• “Removing a data type that is not needed from the IDL for a server object” on page 10.

• “Using a wrapper to hide an unsupported data type” on page 10.

• “Using the dynamic invocation interface to call the server” on page 11

Removing a data type that is not needed from the IDL for a server object

If a client ORB does not support a data type defined in the IDL file for a server object, and
the client does not need to use the associated feature, you can remove the data type from
the IDL used to create the client. For example, you can use the following steps to enable the
client to use a version of the IDL file to access the server object:

1. Generate the IDL file that represents the server object. For example, to generate IDL for
an Enterprise JavaBean, run rmic -idl on the Enterprise JavaBean's home and
remote interfaces.

2. Make a copy of the IDL file to use with the client.

3. Edit the IDL for the client to remove all references to unsupported data types. This can
involve removing exceptions, objects, attributes, and methods (but not individual
parameters or return types).

4. Compile the IDL, and link the client with the generated bindings.

Using a wrapper to hide an unsupported data type

You can use a wrapper to hide unsupported data types needed by a server object behind a
thin intermediate server object. The wrapper can be a CORBA object or a session bean. If a
wrapper is being used to resolve an ORB that does not support valuetypes, then the
wrapper should be implemented as a CORBA object to avoid the various extraneous
valuetypes generated by the EJB-to-IDL compiler.

A wrapper provides an alternate and supported interface, and delegates its implementation
to the original server object. The CORBA client accesses the intermediate wrapper, and the
wrapper is deployed on a server that can directly access the target server object. The
wrapper interface must be designed such that it provides access to the target object's
interface without using valuetypes (for an EJB server) or other unsupported data types.

A wrapper may be the only way to get client access working for some vendor ORBs.

When using wrappers, consider the following points:

• Management: The wrappers must be installed and managed in a CORBA server.

• Lifecycle: For an Enterprise JavaBean, the EJB container manages the lifecycle

WebSphere Application Server CORBA support - Page 10

3 For Session Beans, you can manage the wrapper's lifecycle by unexporting and destroying the wrapper when the bean is removed.
Since not all beans are eventually removed, like entity beans, the unexport and destruction of the wrapper may have to be explicitly
exposed to the client's programming model.

automatically. If the wrapper is a CORBA object in the same server as the Enterprise
JavaBean, the wrapper's lifecycle must be explicitly managed in your code1. In this
situation, it is better to put CORBA wrappers in a CORBA server and Enterprise
JavaBeans in a different EJB server.

• Data types: The wrappers must convert between Enterprise JavaBean types and IDL
types, unless the client uses only primitive types. For example, EJB object references
must be converted into IDL object references. Also, Java serializables have to be
converted into IDL equivalents.

The client marshals data into an opaque octet stream and passes it to the IDL wrapper.
The IDL wrapper demarshals the data, inflating java objects by value if necessary, and
passes data on to the target server object. For a target Enterprise JavaBean, this can be
done in a session bean, which is free to use RMI-IIOP and valuetypes while interacting
with entity beans.

• Hand coding: Both the wrapper interface design and the wrapper object must be
hand-coded.

Using the dynamic invocation interface to call the server

As a last resort, the CORBA Dynamic Invocation Interface (DII) enables a client to make a
call to a server without using IDL. Instead, the client makes a call by constructing the
method parameters dynamically, storing them as CORBA::Any data types. This mode of
access can be useful in the following cases:

• Accessing remote objects, such as Enterprise JavaBeans, when the representative IDL
might contain unsupported data types with the following characteristics:

• The data types would prevent the IDL from being compiled for by
the client ORB's idl compiler.

• The data types are not required for the methods or features that
must be accessed.

• The client does not have prior knowledge of the IDL definitions.

• The repository ID of an Enterprise JavaBean interface is redefined; for example some
older ORBs do not support the rmi: prefix.

CORBA object services
CORBA object services interoperate by delivering context information, with messages, that
establishes service state and other parameters. Some older ORBs do not support the
passing of such context, or use proprietary context data that cannot interoperate with
another server.

Conversely, because a service context is not part of the message normally seen at the
programmer's level, solutions that involve a break in the normal flow of a message do not
automatically propagate a service context. Such solutions include wrapper classes or
messages manually propagated across coexistent ORBs. If context propagation is required
under such circumstances it must be explicitly or manually managed in the code. If
available, request interceptors provide a useful way to propogate contexts.

Naming service
For CORBA applications, WebSphere supports the CORBA CosNaming service,
which binds CORBA objects to a public name. Clients are bootstrapped according
to the CORBA programming model, CORBA-compliant IORs must be obtained, and
server objects must be bound into the CORBA CosNaming service. (For CORBA
client access to Enterprise JavaBeans, the EJB home must be bound into the
CORBA CosNaming service.)

For more information about the naming service, see “The naming service” on
page 12.

WebSphere Application Server CORBA support - Page 11

Transaction service
WebSphere supports the Enterprise JavaBean object transaction service (OTS).
WebSphere follows the CORBA transaction service specification for propagating
transaction contexts, and forwards the transaction context to the server. For
interoperation with 3rd-party ORBs, incoming contexts are honored and outgoing
transaction contexts are generated as appropriate.

For more information about the transaction service, see “The transaction service”
on page 13.

Security service
The CORBA specification does not yet define an accepted interoperable security
standard.

The WebSphere C++ CORBA SDK does not support a Security Service.
Therefore, a C++ CORBA client, developed using this SDK, cannot authenticate
to a secure WebSphere EJB server (so can only access objects which are
configured to allow unauthenticated users to call them).

When using CORBA interoperation between WebSphere and a 3rd-party ORB, a
security context can flow, although it may be ignored. You can use a coexistent
ORB to pass a security context manually, though it is your responsibility to pass
relevant context information.

For more information about the security service, see “The security service” on
page 13.

The naming service

WebSphere supports the CORBA CosNaming service, which binds CORBA objects to a
public name. Clients are bootstrapped according to the CORBA programming model,
CORBA-compliant IORs must be obtained, and server objects must be bound into the
CORBA CosNaming service. (For CORBA client access to Enterprise JavaBeans, the EJB
home is automatically bound into the CORBA Naming Service and is therefore can be
accessed through the CosNaming interfaces.)

The naming service provides a mapping between names and object references. When an
object is created, it is assigned an object reference, which can be bound with a
::CosNaming::Name name into the namespace managed by the naming service. Any client
(or any other object) with access to the naming service can use the associated
::CosNaming::Name name to retrieve the object reference.

The namespace is hierarchical and similar in structure to a file system directory tree. The
nodes of the namespace are CORBA::objects (either NamingContext objects or leaf
objects). A NamingContext object, or naming context, can contain zero or more bindings of
name-object reference pairs. Each object, bound by name into a naming context, can be a
leaf object or a subordinate NamingContext in the tree. Subordinate NamingContexts
similarly can contain bindings of other NamingContexts and leaf objects.

For example, a servant object called WSLoggerObject1 is bound into naming context called
WSLoggerContext (which was created by a CORBA server for the servant objects that it
hosts). The WSLoggerContext naming context is bound into the domain naming context
called domain, which is bound into the root naming context for the naming service. This
could be represented by the object reference domain.WSLoggerContext.WSLoggerObject1
and represented by the hierarchy:

/ (root)
|

domain
|

WebSphere Application Server CORBA support - Page 12

WSLoggerContext
|

WSLoggerObject1

This can also be represented by the name string
"/domain/WSLoggerContext/WSLoggerObject1"

The transaction service

WebSphere supports the object transaction service (OTS) and follows the CORBA
transaction service specification for propagating transaction contexts; it forwards the
transaction context from a client to the server. An ORB uses incoming transaction contexts
to either handle transactions transparently or ignore transaction contexts that it does not
understand.

For transactional support, a CORBA client of an Enterprise JavaBean must rely on one of
the following options:

• Container-managed transactions, where the container automatically starts and ends
each new transaction

• Bean-managed transactions

• Client-initiated transactions.

WebSphere C++ CORBA clients and servers only provide a client-side transaction service;
they can only act as a transactional client to a server which supports a transaction service
(for example, a WebSphere EJB server). Objects on a WebSphere C++ CORBA server are
not recoverable.

In many cases the Enterprise JavaBean infrastructure within WebSphere automatically
initiates transactions, even if the application code does not. If an Enterprise JavaBean calls
a CORBA server from within a transaction, the following may happen:

• (Best) the CORBA server resources are coordinated with the transaction, or there are no
resources to coordinate.

• The server does not recognize the transaction context, so it is ignored. The application
writer must recognize this and code accordingly.

• The server crashes due to the presence of the WebSphere transaction context. The
application writer must either design the Enterprise JavaBean to not run from within a
transaction context, or use coexistence to ensure that the transaction context is not
automatically propagated. To disable automatic creation of transaction contexts: deploy
the WebSphere Enterprise JavaBean with a transaction attribute other than the default
TX_REQUIRED: use TX_NOT_SUPPORTED, TX_SUPPORTS, or an equivalent
transaction attribute that does not force the creation of transaction context.

If an EJB client is to use a CORBA server in the scope of a transaction, consider the
following transaction timeout issue. If the Enterprise JavaBean is executing a loop, or if the
server object takes an excessive amount of time to execute, and the Enterprise JavaBean
executes within the scope of a single transaction, then built-in transaction timeouts can be
exceeded. This causes unexpected failures that have nothing to do with CORBA
architectural issues. This is natural behavior, but not necessarily expected if you are not
familiar with the issues. This can be avoided by creating a new transaction each time
through the loop.

For clients to third-party ORBs, you can use the coexistent ORB solution to start 3rd-party
transactions.

The security service

The CORBA specification does not yet define an accepted interoperable security standard.
You can use a coexistent ORB to pass security context manually, though it is your

WebSphere Application Server CORBA support - Page 13

responsibility to pass relevant context information.

WebSphere to 3rd-party CORBA ORB coexistence
If a WebSphere to 3rd-party interoperation scenario is inadequate, you can consider ORB
coexistence as an alternative solution. Coexistence refers to 'the ability of two different ORB
runtime environments to reside and function in the same process'. It is important to
understand that the Java ORB Portability Interfaces were designed to facilitate a selection of
multiple ORBs, with the intent that there would be one ORB loaded at a time. These
interfaces were not designed to support multiple ORBs coexisting at the same time.

An advantage of coexistence is that the client does interoperate with the server (using the
same ORB or, at least, ORBs from the same vendor) at all levels: IIOP, services, and
proprietary features.

However, the runtimes of different ORBs can interact and behave in surprising ways. Older
ORBs that define incompatible org.omg.* runtime APIs cannot coexist with WebSphere: the
stubs implemented to these APIs do not work in the WebSphere environment. At best, they
do not compile; at worst, they compile with hidden side effects. Newer ORB runtimes that
use the Java ORB portability interfaces, as defined in the Java language mapping
specification for the OMG Interface Definition Language (IDL) 2.3, should coexist better
although, even for newer ORBs, some incompatibilities can exist.

To enable coexistence, you can need more handcrafting of code, because the application
cannot rely solely on an environment that presupposes one ORB (for example, EJB
containers).

Each ORB has its own independent root name context, which may or may not be
equivalent. These name contexts are independent, and an object reference available in one
should not be expected to be available in the other. However, in theory, an IOR obtained
from one naming context should be valid in any ORB.

A coexistent ORB does not propagate service contexts for CORBA services from other
ORBs. For example, for the security service, two coexisting ORBs have two different
security contexts, authentications, authorizations, and so on.

A 3rd-party client ORB runtime coexisting with a WebSphere EJB server runs independent
of the WebSphere EJB container or its controlling infrastructure. Therefore the 3rd-party
ORB is unlikely to look for or understand service contexts on the thread of execution,
believing itself to be a client residing in its own process. Likewise, the EJB container has no
knowledge of the 3rd-party ORB. Thus the WebSphere context is not considered within the
execution of a method to an object accessed through a coexisting 3rd-party ORB.

The CORBA programming model
The CORBA programming model describes the artifacts that you develop and implement to
enable client applications to interact with server applications in a CORBA environment. In
this context, the word client refers to any program running in a process on a client or server
computer. The server, a server process, hosts a servant object (in CORBA 2.3 terminology)
through which the client accesses business functions. In a C++ CORBA server, the servant
object implements the business functions; in an EJB server, the business logic is
implemented by an Enterprise JavaBean.

The CORBA programming model, as a distributed-object programming model, is
characterized as follows:

Objects
CORBA objects are defined with the OMG Interface Definition Language (IDL). IDL

WebSphere Application Server CORBA support - Page 14

is compiled to generate client stubs and server skeletons, which map an object's
services from the server environment to the client.

Communications protocol
The specification is the General Inter-ORB Protocol (GIOP), of which the
Interoperable Inter-ORB Protocol (IIOP) is one implementation.

Object references
CORBA Interoperable Object References (IOR) provide a platform and vendor
independent object reference.

Naming service
The CORBA CosNaming service is bootstrapped with resolve_initial_references().
CosNaming binds a CORBA object to a public name.

“The CORBA programming model” on page 15shows the artifacts that you develop and
implement for the CORBA programming model.

Figure 3 of 8. The CORBA programming model

The CORBA programming model comprises the following two interrelated parts:

• The server programming model describes the interfaces and processes used to develop
CORBA server objects that make up the business logic and business data inherent in a
server application. Application programmers use the server programming model if they
are developing CORBA server objects that perform business functions that are used in
the implementation of client objects. For more information about the server programming
model, see “The server programming model” on page 22.

• The client programming model describes what client applications do to make use of
objects provided by server applications. Application programmers developing tier-1
(client) or tier-2 (server) CORBA applications use the client programming model if they

WebSphere Application Server CORBA support - Page 15

4 The J2EE server programming model is used for WebSphere EJB servers.

are developing CORBA clients whose implementation uses either CORBA server objects
or Enterprise JavaBeans. For more information about the client programming model, see
“The client programming model” on page 16.

In WebSphere Application Server enterprise services, the CORBA client and server
programming models are used as follows:

• The CORBA client programming model is used for WebSphere C++ clients, WebSphere
Java clients (including WebSphere EJB servers acting as CORBA clients) that want to
access a WebSphere C++ Server or 3rd-party CORBA ORB acting as a CORBA server.

• The CORBA client programming model is also used for WebSphere C++ clients that
want to access a WebSphere Enterprise JavaBean1

• The CORBA server programming model is used for WebSphere C++ servers and
3rd-party CORBA ORBs

The CORBA client programming model
This topic describes the CORBA client programming model, which describes what CORBA
clients do to use either CORBA server objects or Java Enterprise JavaBeans. Application
programmers use the CORBA client programming model to develop tier-1 (client) or tier-2
(server) CORBA applications whose implementation uses either CORBA server objects or
Java Enterprise JavaBeans.

The information about the CORBA client programming model, provided in the following
topics, is based on developing C++ CORBA clients:

• “C++ CORBA client, initializing the ORB” on page 16

• “C++ CORBA client, locating the root naming context (bootstrapping)” on page 16

• “C++ CORBA client, locating a servant object” on page 18

• “C++ CORBA client, using a servant object” on page 18

• “C++ CORBA client, locating an EJB home” on page 18

• “C++ CORBA client, using an Enterprise JavaBean” on page 19

• “C++ CORBA client, using client-side object references” on page 19

• “Coding tips for proper CORBA memory management” on page 19

• “Using object references” on page 20

Examples of client programming are given in the WSLoggerClient sample, which if you
selected to install the enterprise services' samples, is installed in the following directory:
WAS_HOME/Enterprise/samples/sampcppsdk. Information about how to build and run
the samples is also provided: see WAS_HOME/Enterprise/samples/index.htm.

C++ CORBA client, initializing the ORB
One of the first things that a C++ CORBA client application needs to do when it is started is
to initialize the client ORB and return a pointer to it, by calling the CORBA::ORB_init()
method. (If necessary, this method creates a new instance of the ORB.) For example, the
following code extract initializes the ORB and return a pointers to it:
op = ::CORBA::ORB_init(argc, argv, "DSOM");

Where argc and argv refer to the properties specified on the command used to start the
server. On the CORBA::ORB_init() method you must specify DSOM after the parameter argv.

C++ CORBA client, locating the root naming context (bootstrapping)
The naming service can be used to manage a directory of objects, to map the name of each
object to its associated object reference. To locate a server object somewhere in a CORBA
environment, a client can locate the naming service, then use a name to retrieve an

WebSphere Application Server CORBA support - Page 16

associated object reference from the naming service.

The location of the naming server that provides the naming service, and the number of the
port that it uses to communicate with clients and servers, are specified by enterprise
services' runtime properties. The values that you specify for the runtime properties must
match the equivalent settings used to configure WebSphere Application Server.

Object references are bound into the naming service relative to the root naming context.

When a client is started, it uses a "bootstrapping" operation to locate the naming service
then locate the root naming context, as follows:

1. The client calls the ORB::resolve_initial_references("NameService") method, which
returns a CORBA::Object.

2. Before the client can use the returned reference as a naming context, the client must
narrow the object to the desired class.

For example:
objPtr = op->resolve_initial_references("NameService");
rootNameContext = ::CosNaming::NamingContext::_narrow(objPtr);

The resolve_initial_references("NameService") method is implemented according to a
pre-INS specification. It does work with earlier versions of some 3rd-party ORBs, but not
with ORBs that implement the current INS specification.

If the client bootstrapping operation does not establish contact with a remote naming
service, you can use alternative strategies to retrieve the IOR of the naming service, as
outlined in “Strategies for retrieving the IOR of a remote object” on page 17.

Strategies for retrieving the IOR of a remote object

If the client bootstrapping operation does not establish contact with a remote naming
service, you can use the following alternative strategies to retrieve the IOR of a remote
object:

• Have the ORB use a name service URL for the Name Service initial reference.

You can obtain the remote ORB's root name context and stringify it into a file. During
ORB initialization, CORBA clients and servers can set the ORB property
com.ibm.CORBA.InitialReferencesURL to the URL of the file that contains the stringified
IOR of a root naming context. The root naming context is then returned by calling
resolve_initial_references("NameService").

• Pass the naming service object reference directly to a client.

You can write an application to store the stringified IOR of a remote ORB's root naming
context into a file. You can then make the file available (for example, by copying) to the
client environment. The client can then read the stringified IOR from the supplied file and
use the ORB::string_to_object interface to resolve the root naming context. This
approach needs to be used only once during initialization, even if the client is to access
many different server objects registered with the same naming service. In addition, the
IOR for the name server is typically fairly static, so it is relatively simple to manage in a
distributed environment.

• Similar to the preceding option, put a stringified IOR for a remote object into a file and
have the client read that IOR and use the ORB::string_to_object interface to resolve the
object reference, but not use a Name Service at all.

• Name space federation.

The client can look up an entry in the name server of one ORB, then rebind the

WebSphere Application Server CORBA support - Page 17

reference in the name server of a different ORB. For example, you can write a utility to
look-up an EJB's home in the WebSphere name service, stringify the object reference
and write it to a file. You can then use another utility to read this file, destringify the
object reference and bind it into a 3rd-party ORB's naming service.

• Bind a remote object into the local Name Space.

• Use a coexistent naming service.

A client can make use of a coexistent 3rd-party ORB that supports bootstrapping with
other ORBs from the same vendor.

C++ CORBA client, locating a servant object
To be able to locate a servant object somewhere in a CORBA environment, a client needs
to know the object reference that uniquely identifies the target object.

When an object is created, it is assigned an object reference, which can be bound with a
name in the naming service. Any client (or any other object) with access to the naming
service can use the associated name to retrieve the object reference.

Object references are bound into the naming service relative to the root naming context.
After a client has located the root naming context, it can use the standard CosNaming
interface to navigate the name space and retrieve the object reference associated with any
name; for example:
// Create a new ::CosNaming::Name to pass to resolve().

// Construct it as the full three-part complex name.
::CosNaming::Name *loggerName = new ::CosNaming::Name;
loggerName->length(3);
(*loggerName)[0].id = ::CORBA::string_dup("domain");
(*loggerName)[0].kind = "";
(*loggerName)[1].id = ::CORBA::string_dup("WSLoggerContext");
(*loggerName)[1].kind = ::CORBA::string_dup("");
(*loggerName)[2].id = ::CORBA::string_dup("WSLoggerObject1");
(*loggerName)[2].kind = ::CORBA::string_dup("");
::CORBA::Object_ptr objPtr = rootNameContext->resolve(*loggerName);
liptr = WSLogger::_narrow(objPtr);

If the client bootstrapping operation does not establish contact with a remote naming
service, you can use the alternative strategies to retrieve the IOR of a remote object, as
outlined in “Strategies for retrieving the IOR of a remote object” on page 17

C++ CORBA client, using a managed object
When a client has retrieved a reference to a servant object, you can invoke methods on that
object. For example, liptr->setFileName("log.out"); calls the setFileName()
method on the object identified by the liptr object reference to set the value of the FileName
attribute.

C++ CORBA client, locating the EJB home
If a C++ CORBA client is to access an Enterprise JavaBean, it needs to locate the EJB
home. After locating the root naming context, the client can use the Naming Service to
locate the EJB home. In WebSphere Application Server 3.5, Enterprise JavaBeans were
bound into the root naming context that was shared by all hosts using the same
administrative database. In WebSphere Application Server 4.0, each host has its own root
context. To maintain the semantic compatability between WebSphere Application Server 3.5
and 4.0, all the Enterprise JavaBeans in 4.0 are bound into the domain's legacy root. This is
equivalent to the root naming context to which all Enterprise JavaBeans were bound in
WebSphere Application Server 3.5.

In WebSphere, the JNDI name for a bean is mapped to the home class for that bean. The
JNDI name is specified in the ibm-ejb-jar-bnd.xmi file generated for the deployed bean's jar
file. If you run the command was_root/bin/dumpNameSpace, you can see the mapping

WebSphere Application Server CORBA support - Page 18

of the JNDI name to the corresponding Java class. For an Enterprise JavaBean, the JNDI
name (top)/ejbhome is mapped to the home class. The Enterprise JavaBean is located
in (top), the WebSphere Application Server 4.0 equivalent to the domain's legacy root. The
three components of (top) are "domain", "legacyRoot", and ejbcontext. The following code
creates a COSNaming Name for the bean's full path:

::CosNaming::Name *ejbName = new ::CosNaming::Name;
ejbName->length(4);
(*ejbName)[0].id = ::CORBA::string_dup("domain");
(*ejbName)[0].kind = "";
(*ejbName)[1].id = ::CORBA::string_dup("legacyRoot");
(*ejbName)[1].kind = ::CORBA::string_dup("");
(*ejbName)[2].id = ::CORBA::string_dup(" ejbcontext");
(*ejbName)[2].kind = ::CORBA::string_dup("");
(*ejbName)[3].id = ::CORBA::string_dup(" ejbhome");
(*ejbName)[3].kind = ::CORBA::string_dup("");

The steps to locate an EJB home are:

1. Creating a COSNaming Name for the Enterprise JavaBean's full path:

2. Calling resolve (with Name) on the root naming context

3. Narrowing the object returned by resolve() to the appropriate type, an object pointer to
the EJB home.

For an example of locating an EJB home, see the samples article "Tutorial: Creating a
user-defined C++ client that uses an EJB" at
WAS_HOME/Enterprise/samples/sampcppsdk/ejbsamp/hellosamp/wsBuildEJBClient.htm
(if you have installed the samples option).

The object pointer to the EJB home can be used to create a Enterprise JavaBean object, as
described in “Using an Enterprise JavaBean” on page 19.

C++ CORBA client, using an Enterprise JavaBean
When a client that wants to access an Enterprise JavaBean, it first locates the EJB home as
described in “C++ CORBA client, locating the EJB home” on page 18 . The object pointer to
the EJB home can then be used to create an Enterprise JavaBean object; for example:
ejbPtr = ejbHomePtr->create();

When the Enterprise JavaBean object has been created successfully, any of its methods
can be called; for example:
msg = ejbPtr->message();

C++ CORBA client, using client-side object references
A client can pass a local object reference to the server, enabling the server to make a
method call back to a client-side object. This callback capability is useful if the client needs
to be notified of some event on the server. It is also useful if the server needs customized
client functionality to fulfill its implementation.

A callback to the client is conceptually no different from any client/server situation: when a
client passes an object reference C to a server S, and S invokes a method on C, the server
S is acting as a client, and C is acting as a server.

A callback object can be an Enterprise JavaBean, which the server (acting as client) can
access through the various means of client access to an Enterprise JavaBean. In particular,
if the server object is implemented in C++, you must deal with all the complexities of calling
an Enterprise JavaBean from a C++ client.

Coding tips for proper CORBA memory management
The rule for proper CORBA memory management is that the caller owns all storage.

Memory management in Java is somewhat automatic.

WebSphere Application Server CORBA support - Page 19

The general model for C++ CORBA memory management on the client is to use _var
objects. This means that when an _ptr is returned, it should be placed into an _var by the
client. The _var assumes responsibility for the storage pointed to by the _ptr that is placed
into the _var. The _var is a class and its destructor runs when the _var goes out of scope.

The other option for C++ CORBA clients is to use the duplicate() and release() methods.
The duplicate() method is available for making a copy of a client stub object, while the
release() method is used to free the local memory used by a pointer.

For more reference information about C++ CORBA memory management, see “CORBA
programming: Storage management and _var types” on page .

Managing the storage of object references

Managing the storage of object references is one of the areas where proper memory
management is required. You must use use _var variables or the duplicate and release
methods as stated above.

There are also special considerations when passing object references as parameters. The
caller is always responsible for allocating storage for object references. The caller is also
responsible for releasing of all inout and returned object references.

For inout parameters the caller provides an initial value. If the callee wants to reassign the
inout parameter, it must first all the release() operation on the initial input value. To continue
to use an object reference passed as an inout, the caller must first duplicate the reference.

CORBA support, handling exceptions
The preferred coding practice for handling errors in C++ and Java is by using exceptions,
which is supported by using the standard try and throw logic of exception handling. Handling
exceptions is a critical part of the client programming model. The exceptions that are thrown
must be understood and handled appropriately by application developers.

In some cases, a server implementation object can encounter an error for which it might
need to throw an exception to the client to give the client the opportunity to recover from the
error.

This topic provides the following information about handling exceptions:

• “Using appropriate exceptions” on page 20

• “Catching exceptions” on page 21

CORBA support, using appropriate exceptions

CORBA exceptions are used to communicate between server implementation objects and
client applications. You must follow specific rules regarding which CORBA exceptions to
use. The following abstract CORBA exception classes are defined:

“CORBA::Exception” on page
This is the abstract class that is the base of all CORBA exceptions. Because this
class is abstract, it is never thrown. However, it can be used in catch blocks to
process all CORBA exceptions in one block.

“CORBA::UserException” on page
This is the abstract class for all CORBA user exceptions and is a subclass of
CORBA::Exception. This class should be used as the base class of all user-defined
exception classes. The contents of these classes have no special format. Methods
that throw these classes must declare their usage in IDL using the raises clause.

“CORBA::SystemException” on page
This is the abstract class for all CORBA standard exceptions and is a subclass of

WebSphere Application Server CORBA support - Page 20

CORBA::Exception. These exceptions can be thrown by any method regardless of
the interface specification. Standard exceptions cannot be listed in raises
expressions, therefore whether or not an interface throws a system exception is
unknown. This means that you should be prepared to handle standard exceptions
on all method calls. Each standard exception includes a minor code to provide more
detailed information.

Any method can throw a standard exception, even if there are no exceptions declared in the
raises clause of that method, so a method can throw an exception at any time.

Note: CORBA standard exceptions are a predefined list of exceptions that can be thrown
from any method. CORBA has defined the class that provides this support as
CORBA::System Exception. For more information about CORBA exceptions, see The
Common Object Request Broker: Architecture and Specification.

CORBA support, catching exceptions

Client programs are required to handle exceptions, because the default behavior for
uncaught exceptions is to end the process. (If the client process ends unexpectedly, suspect
an uncaught exception.)

A client program can handle exceptions within the catch clause of a try/catch block that
encompasses remote method invocations or calls to ORB services. Typically exception
instances are actually instances of either the SystemException or UserException classes.

When deciding how or what exceptions to catch in a client application, consider the
following general rules for exception handling:

• Perform as specific error recovery as makes sense. You can perform specific error
recovery by proper structuring of catch clauses.

• Check for the most specific exceptions first, and most general exceptions last.

• Make use of information that is available in the exception. All CORBA exceptions support
the .id() method that returns the exception identifier. System exceptions also provide
.minor() and .completed() methods that return the minor code and completion status
respectively.

Specific standard exceptions cannot be caught individually. If you need to handle individual
standard exceptions, you can do so within a CORBA::SystemException catch block and use
the .id() method.

Consider the following simple client example:
try
{

// Some real code goes here
foo.boo();

}
// Catch and process specific User exceptions
...
// Catch any other User exceptions defined for the method in the
// `raises' clause
catch (CORBA::UserException &ue)
{

// Process any other User exceptions. Use the .id() method to
// record or display useful information
cout << "Caught a User Exception: " << ue.id() << endl;

}
// Catch any System exceptions
catch (CORBA::SystemException &se)
{

// Process any System exceptions. Use the .id(), and .minor()
// methods to record or display useful information
cout << "Caught a System Exception: " << ue.id() << ": " <<

ue.minor() << endl;
}
catch (...)
{

// Process any other exceptions. This would catch any other C++
// exceptions and should probably never occur
cout << "Caught an unknown Exception" << endl;

}

WebSphere Application Server CORBA support - Page 21

The CORBA server programming model
This topic describes the CORBA server programming model, which describes the interfaces
and processes used to develop CORBA server objects that make up the business logic and
business data inherent in a server application. Application programmers use the server
programming model if they are developing CORBA server implementation objects, known
as servant objects, that perform business functions used in the implementation of client
objects.

The concepts about the server programming model are derived from the following general
procedure for developing a CORBA server. The steps link to more detailed concepts. For
task information about developing a CORBA server, see “Developing a CORBA server” on
page 49.

Examples of server programming are given in the WSLoggerServer sample, for which files
are included with WebSphere in the following directory:
WAS_HOME/Enterprise/samples/sampcppsdk.

1. Specifying the business logic implementation interface for the servant (servant.idl).

In an IDL (interface definition language) file, you define the public interface to the
methods provided by the business logic. This defines the information that a client must
know to call and use a servant object. For more information about the IDL definition of an
implementation, see “Interface Definition Language (IDL), usage and implementation” on
page 24.

2. Compiling the servant IDL (using idlc).

Compiling the servant IDL file produces the usage binding files to implement and use the
servant object within a particular programming language. For example, this creates an
implementation template that provides a native, server language class template into
which method behavior can be inserted. WebSphere supports CORBA servers
implemented in C++.

3. Adding declarations for class variables, constructors, and destructors to the servant
class definition (servant.ih).

The implementation class interface header (servant.ih) created by idlc contains a
skeleton class definition, but lacks declarations for class variables, constructors, and
destructors. You need to add the missing declarations.

4. Completing the servant implementation (servant_I.cpp).

The implementation class (servant_I.cpp) created by idlc contains a skeleton
implementation definition, which you need to complete by adding the business logic that
the servant is to provide.

5. Creating the server main code (server.cpp). You need to create the server code, to
define the methods that the server implements. In particular, you need to create the main
method, which controls the server runtime by performing the following tasks:

1. Validating user input

2. “Initializing the server environment” on page 23

3. Accessing naming contexts

4. Creating a servant object

5. Binding the servant object to the appropriate naming context

6. Creating a server shutdown object

7. Going into a wait loop

WebSphere Application Server CORBA support - Page 22

8. Servicing requests

6. Building the server object and server code. Like anyother programming model, you need
to build the modules that the server host can use to run the server and the servant.

7. Storing a logical definition for the server in the system implementation repository (using
regimpl).

Each server needs a unique logical definition in the implementation repository of the host
on which the server is to run. The logical definition defines the server alias that is used to
control the server.

Initializing the CORBA server environment
One of the first things that a CORBA server application needs to do when it is started is to
initialize the server environment, to perform the following actions:

1. Getting a pointer to the implementation repository.

The implementation repository is a persistent data store of ImplementationDef objects,
each representing a logical CORBA server that has been registered in the repository. A
server application typically gets a pointer to the implementation repository by using the
CORBA::ImplRepository method; for example:
::CORBA::ImplRepository_ptr implrep = new ::CORBA::ImplRepository();

2. Getting a pointer to the ImplementationDef associated with the server alias.

The ImplementationDef, which is obtained from the Implementation Repository,
describes the server; for example, it specifies a UUID that uniquely identifies the server
throughout a network. Each server must retrieve its own ImplementationDef object from
the Implementation Repository (using the ImplRepository class), because the
ImplementationDef is a parameter required by the BOA::impl_is_ready method. A server
application typically gets a pointer to its ImplementationDef by using the
CORBA::ImplRepository find_impldef or find_impldef_by_alias method; for example:
imp = implrep->find_impldef_by_alias(argv[1]);

Where argv[1] is the server alias specified as a string on the command used to start the
server.

3. Initializing the communications protocol.

This action sets the communication protocol that the server supports to SOMD_TCPIP in
the ImplementationDef, using the following code extract:
imp->set_protocols("SOMD_TCPIP");

4. Initializing the ORB and BOA.

This action is used to initialize the ORB and BOA and to return a pointer to each.

A server application initializes the ORB by calling the CORBA::ORB_init() method, which
also returns a pointer to the ORB. (If necessary, this method creates a new instance of
the ORB.) For example, the following code extract initializes the ORB and return a
pointers to it:
op = ::CORBA::ORB_init(argc, argv, "DSOM");

Where argc and argv refer to the properties specified on the command used to start the
server. On the CORBA::ORB_init() method you must specify DSOM after the parameter
argv.

A server application initializes the BOA by calling the CORBA::BOA_init() method on the

WebSphere Application Server CORBA support - Page 23

ORB. For example, the following code extract initializes the BOA and returns a pointer to
it:
bp = op->BOA_init(argc, argv, "DSOM_BOA");

Where argc and argv refer to the properties specified on the command used to start the
server. On the BOA_init() method you must specify DSOM_BOA after the parameter argv.

5. Registering the server application as a CORBA server.

This action calls the CORBA::BOA::impl_is_ready method to initialize the server
application as a CORBA server. This method initializes the server's communications
resources so that it can accept incoming request messages and export objects. For
example, the following code extract registers the server (with the alias specified on the
command used to start the server):
bp->impl_is_ready(imp, 0);

Note: The zero (0) value indicates that the server should not register itself with the
somorbd daemon, because CORBA servers within WebSphere only support transient
objects. This parameter is an IBM extension to the CORBA specification, and should
specified only for lightweight servers of transient objects.

CORBA server shutdown objects
When a CORBA server is started, it initializes itself then calls the method
execute_request_loop() specifying a blocking mode (::CORBA::BOA::SOMD_WAIT). This
puts the server into an infinite wait loop, during which the ORB can transmit requests to and
from the servant object hosted bythe server. Because the execute_request_loop() method
never returns, the server can never terminate unless it is forced to. A server shutdown
object makes it possible to terminate the server gracefully. The server creates a server
shutdown object, giving it a string that is used to shutdown the server.

To stop the server, run the WSStopServer program (provided with WebSphere Application
Server enterprise services), which tells the ORB to shut the server down. WSStopServer
has the following command syntax:
WSStopServer server_alias

Where server_alias is the server alias (defined in the Implementation Respository).

Accessing naming contexts for a CORBA server
Before a CORBA server can create and make available a servant object, it must have a
logical name space for the servant object to exist in. This logical name space is a naming
context for servant objects. The server can create a new naming context within any location
within the root naming context. For example, a server called servantServer could create a
new naming context called servantContext into which the server binds the servant object.
Optionally, this context could be located within a domain context, which in turn is located
within the root naming context. (You can create a servant context with only the root naming
context as its parent, or with one or more intermediary parent contexts.)

Interface Definition Language (IDL), usage and implementation
The interface to a class of objects contains the information that a caller must know to use an
object, specifically, the names of its attributes and the signatures of its methods. In the
CORBA programming model, the Object Management Group (OMG) Interface Definition
Language (IDL) is the formal language used to define object interfaces independent of the
programming language used to implement those methods.

WebSphere Application Server CORBA support - Page 24

Figure 4 of 8. IDL, usage and implementation

“IDL, usage and implementation” on page 25 is an overview of the relationship between IDL
and application development languages. Object providers use IDL to define the interfaces to
their objects. The IDL can be directly defined by the object provider or can be produced
transparently to the user in application development tools. Code emitters and generators
produce the following elements:

• A usage binding that provides a native, client language rendering of the IDL, for example
as a C++ class or Java interface. The usage binding is also used to generate a client
stub object that through delegation maps the interface onto the server object providing
the implementation.

• An implementation template that provides a native, server language class template into
which method behavior can be inserted, for example, by editing the file and adding
source code. The implementation of a class of objects (that is, the procedures that
implement operations and the variables used to store an object's state) is written in the
implementor's preferred programming language (for example, C++ or Java).

• Implementation objects such as skeletons and stubs may also be emitted and compiled
if the client and server are in different processes or in different languages. These
implementation objects provide the functions needed to make interlanguage calls and
remote method execution.

The IDL compiler takes as input an IDL file and produces the usage binding files that make
it convenient to implement and use objects that support the defined interface within a

WebSphere Application Server CORBA support - Page 25

particular programming language.

For an Enterprise JavaBean, you can create the IDL files from the bean's interface and
home classes.

CORBA C++ client usage bindings
In these bindings, the client usage picture for the IDL types declared in the file T.idl appears
as follows. Bold lines enclose files that are generated from IDL. Double lines enclose files
that would normally be produced by a programmer or development tool.

Figure 5 of 8. Client usage pictures for IDL types. The corba.h header file is included in
the T.hh file, which is then included in the T_C.cpp file. The T_C.cpp file is then compiled,
along with C++ client code that uses data whose types are defined in T.idl and included in
T.hh. The final output is the client application executable.

The corba.h header file defines the C++ mappings for primitive IDL data types and other
types required by the bindings, within a scope called CORBA. For more information about
the scope see “IDL name scoping” on page . These types are implemented in a shared
library that can be linked with a client application. A client application is created by
compiling/linking emitted bindings and client code to produce an executable file.

The C++ bindings for the IDL types defined in the file T.idl are represented by a set of
declarations in the emitted T.hh header file. The classes declared in T.hh that support client
code are implemented by the code emitted into a corresponding T_C.cpp implementation
file. The pair of files T.hh and T_C.cpp thus collectively provide the client bindings for T. (To
minimize the number of generated files, some types used by servers are also declared in
T.hh).

In general, the C++ bindings map non-primitive IDL types to C++ classes that implement
constructors, destructors, assignment operators, and other functionality. Auxiliary classes
are also sometimes defined, such as classes to automate storage management for array
elements, sequence elements, and structure and union fields. The names of these auxiliary
classes are not specified by CORBA, because specially-designed conversion operators and

WebSphere Application Server CORBA support - Page 26

copy constructors hide their existence from client code. These classes are not of interest to
programmers that use the bindings.

CORBA C++ server usage bindings
To allow IDL interfaces to be implemented in C++, server-side bindings are emitted. The
resulting classes work with the client bindings. The following figure illustrates the module
structure of the server-side bindings, assuming that interface T is declared in the file T.idl.

Figure 6 of 8. Module structure of server-side bindings. The corba.h header file is
included in the T.hh file, which is then included in the T_C.cpp file. The T_C.cpp file is then
included in the T_S.cpp file, which is then compiled, along with C++ server code. The C++
server code defines the class T_Impl, includes the implementation header file, T.ih (which
includes the T.hh file), and defines the class T_Impl:public and the virtual T_skeleton. The
final output is the server executable.

The differences between this figure and the client-side figure presented in Client C++
Bindings are:

• An emitted T_S.cpp file that provides server-side implementation bindings is compiled.

• Server-side C++ code (written by a programmer) defines the implementation for the
operations introduced and inherited by the T interface.

The T_S.cpp file provides an implementation for the class T_Dispatcher. This class inherits
from the dispatcher classes corresponding to T's parents. An instance of this class contains
a T_ptr that addresses the T_Impl object upon which it will dispatch operation invocations.
Each target object (for example, each T_Impl instance) exported by a server must have a
corresponding dispatcher object, whose purpose is to receive a CORBA::Request object,
determine what method is being invoked, stream the method arguments out into local
variables, invoke the method on the target object, then stream the results back into the
request so these can be returned to the caller.

The target object for a T_Dispatcher is an instance of the T_Impl class, which subclasses
from (at least) the T_Skeleton class defined by the implementation bindings (in the file
T.hh). The T_skeleton class inherits from the T interface class and the skeleton classes

WebSphere Application Server CORBA support - Page 27

corresponding to T's parents. As a result, T_skeleton inherits all the methods that T_Impl
must support. Furthermore, this is done in a way that forces T_Impl to indeed provide
implementations for all of these methods.

Take notice of the fact that the class name T_Impl is entirely arbitrary. The implementation
class may have any name. Also note that the implementation class is not nested within any
of the C++ classes that might be used to provide nesting scopes corresponding to IDL
modules within which the interface T is defined. Thus, naming conflicts are a concern. A
simple solution is to use underscores to concatenate module names with the name of the
implemented interface. For example, if the interface T is defined within module M, then the
implementation class name M_T_Impl can be used.

If the programmer responsible for T_Impl desires, the implementations (and supporting
instance data) for any or all of T's parents can be inherited from their implementation
classes, using C++ inheritance. Alternatively, T_Impl can provide its own implementation for
the operations inherited into T. The image below graphically illustrates these options from
an IDL snippet, using a dotted inheritance line to show optional C++ inheritance.

interface A
{

...
};
interface B : A
{

...
};

Figure 7 of 8. Inherited implementation. Object_ORBProxy (a proxy implementation for
CORBA::Object) is derived from objects A and B through five levels of inheritance, in a
process which involves both pure (or skeleton) and proxy implementations of objects A and
B at different levels.

The above figure focuses on C++ classes. The term pure is based on the use of this word in
C++ to describe virtual functions that have no implementation (denoted in C++ by assigning
a 0 to the name of the virtual function). Classes with pure virtual functions cannot be
instantiated. Therefore, the skeleton classes require a subclass to provide complete
implementations for all virtual functions in an interface. The dotted line in the previous figure
indicates one way that B_Impl can provide implementations for the pure virtual functions
inherited from A_Skeleton (using B_Skeleton). One way of viewing the skeleton classes is
that they "turn off" proxy behavior and require subclasses to explicitly provide an alternative
(non-proxy) implementation.

WebSphere CORBA value type library for C++
The Java Language to IDL specification maps Java serializables to CORBA value types.
Therefore every Java serializable to be passed by a CORBA client as a parameter or return
value for an Enterprise JavaBean must be re-implemented in the language of the client.
Implementation of Java serializables as value types in C++ or another language can be a
significant development effort.

To aid application development, WebSphere Application Server provides a valuetype library
that contains C++ valuetype implementations for some commonly used Java classes in the
java.lang, java.io, java.util, and javax.ejb packages. For example, Integer, Float, Vector,
Exception, OutputStream, and so on. The valuetype library supports the WebSphere C++
ORB.

These classes represent an established hierarchy in the Java language and are
implemented to preserve the inheritance relationship that exists in certain Java packages.

WebSphere Application Server CORBA support - Page 28

These classes enable CORBA programmers to use the WebSphere C++ classes in the
same way they would use their Java counterparts. Constructors in the original Java classes
do not need to be mapped to the IDL definitions and the C++ bindings; when mapped,
constructors become init methods on the factory classes.

The IDL compiler always provides a pointer type definition for each type. For example, for a
valuetype class T, typedef T * T_ptr. Unlike mapping for interfaces, the reference
counting for valuetype must be implemented by the instance of the valuetypes. The IDL
compiler also generates a _var class, which you can use instead of the _ptr. The _var class
for a valuetype automates the reference counting; that is, it automatically manages the
memory associated with the dynamically allocated object reference. When the T_var object
is deleted, the object associated with T_ptr is released. When a T_var object is assigned a
new value, the old object reference pointed to by T_ptr is released after the assignment
takes place. A casting operator is also provided to allow you to assign a T_var to a type
T_ptr.

For more information about the WebSphere CORBA value type library for C++, see the
following topics:

• “C++ valuetype library, data type mappings” on page 29

• “C++ valuetype library, runtime type information” on page 30

• “C++ valuetype library, application programming interface” on page 30

• “C++ valuetype library, methods implemented” on page

• “C++ value type library, examples” on page 89

• “Creating your own C++ valuetypes” on page 69

C++ value type library, data type mappings
The WebSphere CORBA valuetype library for C++ provides mappings for the following
primitive data types:

IDL Type C++ Type

short CORBA::Short

long CORBA::Long

long long CORBA::LongLong

unsigned short CORBA::UShort

unsigned long CORBA::ULong

unsigned long CORBA::ULongLong

float CORBA::Float

double CORBA::Double

long double CORBA::LongDouble

char CORBA::Char

wchar CORBA::Wchar

boolean CORBA::Boolean

octet CORBA::Octet

Note: The rmic -idl utility maps a Java byte to an IDL octet, and a Java char to an IDL
wchar.

Objects behave somewhat differently, as shown in the following examples (Java type-> IDL

WebSphere Application Server CORBA support - Page 29

type-> C++ type):

• Array
byte[]-> ::org::omg::boxedRMI::seq1_octet-> ::org::omg::boxedRMI::seq1_octet*

• String
java.lang.String-> ::CORBA::WstringValue-> ::CORBA::WstringValue*

• Standard Java objects
Java.util.Enumeration-> abstract valuetype Enumeration-> ::java::util:: Enumeration

The IDL definition for the Enumeration valuetype (as generated by the rmic -idl utility) is:
module java {

module util {
abstract valuetype Enumeration;

};
};

C++ value type library, runtime type information
Some of the classes in the WebSphere value type library contain methods that accept
instances of a superclass. For such cases, the library use a C++ dynamic_cast to determine
the type of the passed object; for example:
CORBA::Boolean equals(CORBA::ValueBase& arg0)
{

...
OBV_java::lang::Integer* argInteger =

dynamic_cast<OBV_java::lang::Integer*>(& arg0) ;
...

}

This functionality allows you to perform type inquiries just as you would in Java using the
'instance of' operator.

Note: However, for this code to work, a polymorphic hierarchy must exist (that is, at least
one virtual function must be implemented in the class hierarchy).

Another possible approach is to use the 'typeid()' operator of the type_info class; for
example:
#include <typeinfo>
#include <iostream>
using namespace std;
class Test1 { __ };
class Test2 : Test1 {_..};
void main(void)
{
Test2* ptr = new Test2();
cout << typeid(*ptr).name() << endl; //yields the string "class Test2"
}

Depending on the compiler that is used, you must enable certain options in order for this
functionality to work properly. For example, for MSVC++ the /GR option must be added to
the compiler settings.

C++ value type library, application programming interface
The WebSphere valuetype library for C++ implements the methods listed in “C++ valuetype
library, methods implemented” on page . Because the implemented classes are derived
from generated classes, the member functions they contain differ slightly from those in the
java classes. For example, in java the class java.io.FilterOutputStream extends the
abstract class java.io.OutputStream, so it must provide definitions for all abstract
methods specified in the superclass. However, in the valuetype library hierarchy
java_io_FilterOutputStream_Impl is derived from
java_io_OutputStream_Impl; a concrete class that defines the methods of the
generated class ::java::io::OutputStream.

The types used in the signatures of these methods are derived from the OMG Specification.

WebSphere Application Server CORBA support - Page 30

The semantics of each of the valuetype methods conforms exactly to those of their Java
counterparts. For a more detailed function specification of each method, see Sun's javadoc.

For each valuetype, there is a corresponding factory class. You should use the creation
methods of a factory class (class name with _init or _factory suffix) to create instances of a
valuetype (unlike the normal practice of using constructors to create objects in Java). Except
in two cases, each creation method of the factory classes corresponds to a constructor in
the Java counterparts of the valuetypes.

In addition to the valuetype classes, a utility class called VtlUtil is defined to provide several
common methods to print debugging messages, to handle exceptions, to get registered
factory objects, and to make transformation between C++ strings and the
::CORBA::WstringValue objects.

Note: You can reuse a registered factory object with the com::ibm::ws::VtlUtil::getFactory()
method instead of creating a new factory every time.

The vtlib.h header file contains the definitions of all the factory classes and the VtlUtil class.
These classes are defined in the com::ibm::ws name space.

For an example of using a registered factory object, the com::ibm::ws::VtlUtil::getFactory()
method, and the creation methods of a factory, see “C++ valuetype library, examples” on
page 89.

WebSphere Enterprise JavaBeans as clients of 3rd-party CORBA ORBs
Enterprise JavaBeans running in WebSphere Application Server can act as clients to
CORBA servers running on third-party ORBs. The following articles describe the concepts
of such an EJB application and cover the inclusion of CORBA invocations in an Enterprise
JavaBean:

• “The CORBA components” on page 32describes in general terms the CORBA
components of the EJB application: the interfaces, their use by the client, and their
implementation by the server.

• “The CORBA interfaces” on page 32describes the CORBA interfaces in more detail.

• “Writing WebSphere Enterprise JavaBeans that act as CORBA clients ” on page 34
describes the CORBA-related tasks in calling CORBA servers from an enterprise bean.

The discussion here is necessarily general, particularly about 3rd-party CORBA servers.
Servers written for third-party ORBs must take into account the differences between the
ORBs, including supported services, administrative concerns, and other issues. In general,
the structure of the servers remains constant, so this discussion is mostly structural in
nature.

Because 3rd-party CORBA servers vary, so must the clients that use them. The CORBA
calls integrated into an enterprise bean are determined, to some degree, by the
requirements of the server and its ORB. Again, the structure remains relatively constant, but
the details vary. The structure of the code for the enterprise bean still follows the standard
EJB programming model; the type of work the code must perform to be an enterprise bean
is unchanged. The use of CORBA calls to another server is in addition to the bean code,
and this document concentrates on that addition.

Readers are assumed to be familiar with the writing of enterprise beans. For detailed
information on that topic, see “Writing Enterprise Beans in WebSphere” in the WebSphere
Application Server Advanced Edition infocenter. .

WebSphere Enterprise JavaBeans as CORBA clients, the CORBA

WebSphere Application Server CORBA support - Page 31

components
This article describes the main CORBA components for interoperation between enterprise
beans running within WebSphere Application Server and CORBA servers running on
third-party ORBs and uses a sample application to illustrate the description. The application
consists of the following standard components:

The interfaces
The sample application provides two CORBA IDL interfaces. The Primitive interface
exercises the primitive CORBA data types, for example, characters, octets,
integers, and floats, and the Complex interface exercises the CORBA data types
any and Object. The methods in each interface are designed to test the
interoperability of that data type. The client sends the server a value; the server
modifies the value in a predictable way and returns the value to the client. The client
checks the returned value against a locally computed expected value. If they match,
then the data type has been successfully transferred between the WebSphere and
third-party ORB environments. For more information about the interfaces, see
“WebSphere Enterprise JavaBeans as CORBA clients, the CORBA interfaces” on
page 32.

The server
The server is a CORBA server running on a third-party ORB. It implements the
methods in the two CORBA interfaces in servant objects and makes the servant
objects available for clients to use. The implementations are very simple: when the
client sends a value, the server modifies it in a predictable way, for example, adding
a fixed value to an integer or negating a Boolean, and returns the new value to the
client. For more information about the server and its implementation, see “Writing
CORBA servers for third-party ORBs” on page 34.

The client
The client using the CORBA servant interfaces is an enterprise bean (a stateless
session bean) running in WebSphere Application Server. On the request of its own
client, the enterprise bean establishes contact with the CORBA server and invokes
methods in one of the CORBA interfaces. Typically, it issues one call to each
method and compares the returned results with the expected results. To compute
the expected results, the client locally does the same work as the server, using the
same code. If the client receives the same value from the server, then the two
applications are interoperating properly for the data type being tested. For more
information on the server and its implementation, see “Writing WebSphere
Enterprise JavaBeans that act as CORBA clients ” on page 33.

WebSphere Application Server provides many sample implementations of interoperation
with 3rd-party ORBs. These articles use only one representative implementation and
discusses the pieces of the client and server relevant to the interoperability issue. It does
not discuss the standard parts of the application; for example, the EJB programming model.
Writing CORBA servers is discussed in general terms, but the detail is beyond the scope of
these articles and the specifics vary with the ORB being used. Although code from a
particular implementation is used to illustrate the discussion, it is intended only to help clarify
the discussion. It is not expected to work as source code for every ORB.

Additionally, the sample application is used simply as a framework for illustrating the issues
surrounding interoperability. The details of the application design and implementation are
not discussed. In some cases, the code extracts are distilled from several methods to make
clear the logical flow of events rather than to represent the actual call sequence in one
specific implementation.

WebSphere Enterprise JavaBeans as CORBA clients, the CORBA
interfaces

WebSphere Application Server CORBA support - Page 32

The following example defines two CORBA interfaces. These interfaces, written in the
CORBA interface-definition language (IDL), define methods to test the interoperability of
CORBA data types between an enterprise bean running in the WebSphere Application
Server and a CORBA server running on a third-party ORB. The Primitive interface defines
the methods for testing the primitive CORBA data types, for example, characters, octets,
integers, and floats. The Complex interface defines similar methods for the CORBA data
types any and Object.

For each data type, there are three methods; each one returns the value in a different way.
For example, the Primitive interface defines the following methods for a short integer:
...
interface Primitive
{

const string serviceName = "primitive";
const string testShortName = "short";
short testShortIn(in short argin);
void testShortOut(in short argin,

out short argout);
void testShortInOut(inout short arginout);
// Parallel methods for other data types
...

}
...

In the first method, the client sends the value in by using an in argument, and the server
returns the result as the value of the method. In the second method, the client sends the
value in the first argument, and the server returns it in by using the out argument.. In the
third method, the client sends the value in by using an inout argument, which the server
modifies to return the value. For each data type in each interface, a similar set of methods
exists. The methods in the Complex interface are structured similarly.

Writing WebSphere Enterprise JavaBeans as clients of a 3rd-party
CORBA ORB

Enterprise JavaBeans hosted by WebSphere Application Server can act as clients of
CORBA servers, including servers running on third-party ORBs. These EJB clients follow
the same design model as any other enterprise beans. In general, a minimal enterprise
bean consists the following developer-provided code:

• A home interface, which provides bean-creation methods

• A remote interface, which defines the business methods available to the clients of the
bean

• The bean class, in which the methods required by the Enterprise JavaBeans
specification are implemented, including implementations of the methods required by the
home and remote interfaces.

During deployment, additional code is generated for the container in which the bean resides.
This code is specific to the container, for example, WebSphere Application Server, and is
completely independent of any calls the bean makes to non-WebSphere-based servers.

When the enterprise bean acts as a client to a server, the code supporting that exchange
resides in the implementation of the business methods of the bean. This includes the code
for getting a reference to the client-side WebSphere ORB, contacting the server or desired
servant object, and calling the methods in the CORBA IDL interface between the enterprise
bean and the CORBA server.

Typically, the least straightforward part of using a CORBA server on a third-party ORB from
an enterprise bean in the WebSphere environment is establishing the connectivity between
the enterprise bean and the server. After connectivity has been established, making remote
invocations is simply a matter of calling the methods in the CORBA IDL interface.

The technique used to establish connectivity between the enterprise bean and the server
depends on the design of the application and the techniques supported in common between

WebSphere Application Server CORBA support - Page 33

the two ORBs. Common techniques include the following:

• Having the enterprise bean contact the name service used by the remote ORB and look
up the desired servant object.

• Using a client-side property to hold an initial object reference (IOR) to the name service
of the remote ORB. The client reads the property and uses the IOR to contact the name
service, from which it can look up the desired servant object.

• Having the server write a file that contains the name-service IOR. The client reads the
file and uses the IOR to contact the name service, from which it can look up the desired
servant object.

• Having the server write a file that contains the IOR to the servant objects. The client
reads the file for the desired object and uses the IOR to contact the object directly.

Writing CORBA servers for third-party ORBs
CORBA servers can be written for ORBs other than the ORB provided with WebSphere
Application Server. These servers follow the same general structure as a server written for
the WebSphere ORB, but differences between ORBs mean differences in the details.
Writing a server for a specific third-party ORB requires familiarity with the ORB; such a
server is not a WebSphere-based application at all.

In general, a minimal CORBA server comprises the following code:

• A main routine, which typically does the following:

• Initializes the ORB within the server

• Establishes a way for clients to contact the server

• Establishes a way for the clients to locate the servant objects

• Puts the server into a listening state, ready to accept requests
from clients

• Servant classes, which implement the interfaces between the client and server
Each server also requires some amount of application-specific code; this can include
initialization code, helper methods, and a limitless range of other material. The techniques
used in a particular server written for a specific ORB are determined by the needs of the
application and by the ORB itself.

The methods used to initialize the ORB and to put the server into the listening state are
usually standard CORBA methods, but there can be variations across ORBs and across
versions of the same ORB. The mechanisms used by clients to locate servers and
implementation objects vary with the design of the application and with the naming facilities
supported in an environment. Two common choices are to have the server register naming
contexts for itself and its servant objects in a CORBA name service, from which the client
can retrieve them, and to have the server register its naming contexts and write them to files
as interoperable object references (IORs), which the client retrieves and uses to re-create
the naming contexts.

After the server is written, it must be compiled and run. The steps involved in compiling and
running a server written for a third-party ORB depend heavily on the requirements of the
ORB, the platform on which the server runs, the language in which the server is written, and
the design of the application.

Problem determination
When running, WebSphere Application Server enterprise services records information about
its activities in its activity log. The activity log on each host captures events that show a
history of the enterprise services' activities on that host. Some of the entries in the log are

WebSphere Application Server CORBA support - Page 34

informational and others report on system exceptions, such as returned CORBA exceptions.

If you encounter enterprise services runtime errors, it is often useful to read the activity log
and try to diagnose the problem yourself. After this, if you still need assistance from IBM to
help you diagnose problems, you can provide the formatted activity log output to your IBM
service personnel.

There is one activity log for each host machine. By default, the activitycpp.log file resides in
the WebSphere Application Server enterprise services' service subdirectory,
wasee_install\services; where wasee_install is the directory into which you installed
WebSphere Application Server enterprise services on the host. You can specify an
alternative location on the com.ibm.CORBA.activityLogDirectory property in the properties
file identified by the SOMCBPROPS environment variable. You can also specify the
maximum size of the activity log on the com.ibm.CORBA.activityLogMaxSize property. The
activity log file is created automatically when the first log entry needs to be written.

Because the activity log is an accumulation of information, it always contains extraneous
data. Some activity log entries report serious failures, but many of them only report on the
execution of activities, expected exceptions, or warnings of potentially dangerous situations.
For example, in most instances, lower level components write an entry in the activity log
when they decide to throw an exception, even when the caller of the lower level component
is prepared to handle the exception and continue processing on a normal code path.
Although all these entries on activities, handled exceptions, and warnings can make it
difficult to read the log, sometimes they do provide useful data to help you determine the
exact cause of the problem that you are diagnosing.

Before you can read the contents of an activity log, you must format the log file. For more
information about formatting an activity log, see “Formatting an activity or trace log” on
page 78.

For more information about the data fields of entries in the activity log, see “Fields in a
formatted activity log entry” on page .

If you need to do low-level debugging of problems identified in the activity log, you can turn
on tracing for appropriate components then format and study the detailed information
generated.

Note: Trace is used by or for IBM service personnel to assist in collecting data in possible
defect situations. This support should only be used under direction of IBM service
personnel. Incorrectly setting trace attributes for objects can result in performance
degradation for normal operation.

If you turn on tracing for a component type, extra detailed information is recorded in one or
more trace logs for the host. Multiple trace files can be generated if needed. By default, the
trace log files are stored in the WebSphere Application Server's service subdirectory. You
can specify an alternative location on the com.ibm.CORBA.traceLogDirectory property in the
properties file identified by the SOMCBPROPS environment variable. You can also specify
the maximum size of a trace log on the com.ibm.CORBA.traceLogMaxSize property. Trace
log files are created automatically, and have the following name format: yydddhhmmss.xxx
format where:

yy
is the year

ddd
is the Julian date

hh
is the hour

WebSphere Application Server CORBA support - Page 35

mm
is the minutes

xxx
is a three digit number between 101 and 999. After 999, the number rolls over to
101.

Before you can read the contents of a trace log, you must format the log file. You can also
merge and format multiple log files into a single output file, sort and display the contents of
trace logs in various groupings. For more information about formatting a trace log, see
“Formatting an activity or trace log” on page 78.

Hints and tips: The activity log
In most problem determination situations, you need to quickly pinpoint the activity log entries
related to the problem that you are investigating. One way to do this is to reduce the activity
log to a more manageable size. Here are some ways to reduce the size of the activity log:

• “Setting the size of the activity log” on page 36 “Creating smaller activity logs” on page 36
“Naming formatted logs” on page 36

Setting the size of the activity log

Before starting client or server processes on a host, set the
com.ibm.CORBA.activityLogMaxSize runtime property to the desired number of Kbytes. You
can use 15K for testing robustness and 50K for long runs.

Note: The activity log wraps when it is full.

For more information about specifying runtime properties, see “Specifying properties for
C++ CORBA clients and servers” on page 68.

Creating smaller activity logs

Smaller activity logs may speed up your problem determination process. If the run-time error
can be reproduced by rerunning your application, consider performing the completing steps
to create a set of small activity logs:

1. Format your last activity log into a file and save it.

2. Delete the activity log. Rerunning the application with a new activity log minimizes the
extraneous information in the log.

3. Restart the clients and servers on the host.

4. When the clients and servers have started, run the showlog command to format the
activity log to the output filelog1 then delete the activity log.

5. Run your test.

6. After the test, run the showlog command to format the activity log to the new output file
log2.

You now have a set of small, formatted activity logs. For example, if log2 shows that a client
could not find a factory, log1 shows you why that factory was not registered.

Naming formatted logs

Consider giving representative file names for the formatted activity logs; for example, you
can specify the following showlog command:
showlogcpp activitycpp.log -d > serverStartup.980808.firstrun.out

An overview of basic CORBA concepts

WebSphere Application Server CORBA support - Page 36

A CORBA environment is based on client applications finding and using objects that provide
a desired function. The objects typically represent something in the real world, for example
shopping carts, and are hosted by servers (typically CORBA servers or EJB servers). The
type of object is defined by it's interface and the semantics defined for that interface. There
can be many instances of an object (with the same interface and semantics), but
representing different entities. CORBA provides the Interface Definition Language (IDL) to
define object interfaces, and ORBs to provide access to objects through a distributed
environment. The binding of an object's interface to a specific implementation is handled in
the server environment

Figure 8 of 8. Conceptual view of a C++ CORBA environment

A CORBA environment comprises the following elements:
Client environment

The client runtime environment enables CORBA client applications to access server
implementation objects. The client environment can be any of the following:

• A WebSphere CORBA C++ client or server (written with the CORBA C++ SDK)

• Java code in a WebSphere J2EE Client or Application Server

• A non-IBM-ORB-based CORBA client or server.

Client programming languages
WebSphere CORBA clients can be developed in C++. Also, Enterprise JavaBeans
hosted by a WebSphere EJB server, as a CORBA client, can access server
implementation objects hosted by CORBA servers. 3rd-party CORBA clients can be
developed in C++, ActiveX, Java, or other languages supported by the CORBA
client programming model. IDL language-bindings include COBOL.

Object
From the client's point of view, a CORBA object is an entity with an object reference
that provides the operations defined in its interface. These operations are always
available to the client, from the time the object instance is created until the time it is
destroyed.

Client stub
To the client, the object on the server appears as if it resides in the client program.
This is accomplished by using a client-side stub object. The stub object has the
same interface as the server-side object it represents, but does not directly
implement the object's methods. Instead, the stub object translates a method
invocation into a format that is communicated over the ORB to the server. The

WebSphere Application Server CORBA support - Page 37

server then finds the target servant object, which executes the actual method
implementation.

When a client wants to call a method on a server object, it creates an object
reference, a pointer to the servant object, and stores it in the stub object.

Server implementation (servant) object
The server implementation object (also known as a servant object) is visible only to
the server. The servant implementation is the executing CPU and memory resource
that performs an object's operation. The client only knows that it invoked an
operation defined on the object's IDL interface, and the response came back.

Object reference
An object reference contains information that is used to identify a target object. For
example, a client-side stub object (as an object reference) contains information to
locate the target server and the target servant object within that server.

An interoperable object reference (IOR) is a distributed object pointer that allows
objects to communicate across network boundaries. IORs provide a platform-
and vendor-independent object reference. The representation of an IOR depends
on where it is used. For instance, it is represented in a wire-level message format
when it is being sent between ORBs and in an object format when it is stored in a
stub object. A client can convert an IOR into a string, save it to a file, and then
terminate. When the client is activated again, the IOR can be read from the file,
and then converted back into an object reference.

CORBA-compliant Object Request Broker (ORB)
The CORBA-compliant ORB enables clients to communicate with the application
server. The ORB sends local client requests across a network by using the Internet
Inter-ORB Protocol (IIOP), which is a TCP/IP-based communications protocol with
CORBA-defined message exchanges. Separate ORBs resides at each end of the
communication channel.

Object adapter
The object adapter acts as a mediator between the communications framework of
the ORB and the servant objects that reside on a server. When the server-side ORB
receives a request, the ORB passes the request to the object adapter. The object
adapter analyzes each request received by the ORB and dispatches it to the
servant object that is the target for the request. The object adapter class provides
methods that allow the server application to participate in the exporting and
importing of object references and the selection of threads on which remote
requests are dispatched.

Server
The server provides the runtime environment in which a servant object can exist.
For example, it initializes the ORB and object adapter, creates a servant object,
gives it a name in an appropriate naming context in the naming service. This makes
it possible for the client to find and use the servant. The server puts itself into an
infinite wait loop, during which the ORB can transmit requests to and from the
servant object that the server hosts. If the server is shut down, it removes the
servant object from the runtime environment and cleans up the resources used to
support the servant object.

IIOP
The client and server ORBs communicate using the CORBA Internet Inter-ORB
protocol (IIOP), which is a TCP/IP-based protocol with CORBA-defined message
exchanges. CORBA uses the General Inter-ORB Protocol (GIOP) to define the
format of messages and uses IIOP to map between GIOP messages and TCP/IP

WebSphere Application Server CORBA support - Page 38

messages. IIOP allows ORBs to communicate with each other and enables them to
use the Internet for distributed object communication.

Naming service
The naming service forms the lookup directory for a distributed system. It provides
an interface for binding and resolving names to object references. When an object
is created, its object reference can be bound to a name in the naming service. Any
other object with access to the naming service can use the name to return the
associated object reference. The naming service implements the CosNaming
service, the standard naming service defined by the CORBA services specification.

A CORBA client can use the Interoperable Name Service (INS) specification to
call resolve_initial_references("NameService") on the client ORB to establish a
root naming context for the naming service.

Interface Definition Language (IDL)
The CORBA Interface Definition Language (IDL) enables clients and servers to
have a platform-independent and language-neutral standard on which to base their
communications.

Using IDL, application developers can specify the public interface to a CORBA
class or Enterprise JavaBean (as the servant class). For a CORBA server
implementation, the application developer typically creates the IDL "by hand". For
an Enterprise JavaBean a tool is used to create the IDL from the interface/class
file. The IDL definition of a servant is used to generate the client stub. An IDL
compiler generates the code necessary to use an interface with a specific
programming language.

Serializable objects used in an Enterprise JavaBean's interface are expressed in
IDL as CORBA valuetypes. Therefore every Java serializable to be passed by a
CORBA client as a parameter or return value for an Enterprise JavaBean must
be re-implemented in the language of the client. To simplify the development of
CORBA clients of Enterprise JavaBeans, you should try to minimize the range of
Java serializables used in the Enterprise JavaBean's interface.

Implementation repository
The implementation repository is a persistent data store of ImplementationDef
objects, each representing a logical server that has been registered.

WebSphere Application Server takes care of the communications protocol, ORB, and object
references. WebSphere Application Server supports RMI-IIOP. In addition, WebSphere
Application Server implements JNDI using a Directory which also supports CORBA
CosNaming bindings, making WebSphere Enterprise JavaBeans visible to CORBA clients.

CORBA support task articles
This part contains task topics about the CORBA support provided by WebSphere
Application Server 4.0 enterprise services. These topics are intended to describe how you
should complete tasks to enable and use the CORBA support.

• “CORBA support concept articles” on page 1

• “CORBA support example articles” on page 84

• “CORBA support reference articles” on page

WebSphere Application Server CORBA support - Page 39

Developing a C++ CORBA client
Use this task to develop a C++ CORBA client. This task generates and registers the client
DLLs and the client-side usage bindings needed by C++ CORBA client programs to access
an object class (Enterprise JavaBean or CORBA servant object) hosted by an application
server.

To develop a C++ CORBA client, you complete the following steps:

1. Create the interface definition (IDL) files that specifies the public interface to the
server implementation object class. If you want the client to access a CORBA
server implementation class, you create the IDL file as part of the procedure to
define the servant implementation, as described in “Defining the interface for a
servant implementation (servant.idl).” on page 50. If you want the client to
access an Enterprise JavaBean, you can create the IDL file from the bean
class, as described in “Creating IDL files for an Enterprise JavaBean” on page 40
.

2. Use the idlc command to emit the client-side usage bindings from the IDL,
specifying the option -suc:hh.
If you want the client to access a CORBA server implementation, you emit the
client-side usage bindings when you compile the servant.idl file, as described in
“Compiling the servant IDL (using idlc)” on page 52. If you want the client to
access an Enterprise JavaBean, you can use the same procedure with the IDL
file created from the bean class.

For example, to emit the client-side bindings from the Hello.idl file, at a
command line change to the directory that contains the IDL file, then type the
following command:

idlc -suc:hh Hello.idl

When the specified idl file is compiled successfully, the idlc command creates
the binding files and returns a value of zero. For example, for the above
example idlc command, the following binding files are created: Hello.hh and
Hello_C.cpp

3. Create the main code for the client program, as described in, “Creating the
CORBA client main code (client.cpp)” on page 41.

You can next compile and link the C++ client main program, as described in “Compiling a
C++ client program” on page 47.

Creating IDL files for an Enterprise JavaBean
Use this task to generate the interface definition language (IDL) files that specify the
interface to an Enterprise JavaBean. You can then use the IDL to create client-side usage
bindings for CORBA clients to use the Enterprise JavaBean's interface. You need to
complete this task only if you are developing a CORBA client that needs to access an
Enterprise JavaBean.

To develop the IDL files for an Enterprise JavaBean, complete the following steps:

1. Develop the Enterprise JavaBean. For more information about developing
Enterprise JavaBeans, see “4.3: Developing Enterprise JavaBeans” in the
WebSphere Application Server Advanced Edition infocenter. .

2. Ensure that the JAR file that contains the Enterprise JavaBean class can be
accessed by the rmic command; for example, the JAR file should be in the

WebSphere Application Server CORBA support - Page 40

system classpath.

3. Use the Java rmic -idl command to generate IDL files from the Enterprise
JavaBean's remote and home interfaces.

For example, to generate IDL files for the Enterprise JavaBean
com.ibm.ejb.samples.hello.Hello, you could use the following command:

rmic -idl com.ibm.ejb.samples.hello.Hello com.ibm.ejb.samples.hello.HelloHome

This step results in the class.idl and classHome.idl files. For example, for the
above rmic command for the Hello Enterprise JavaBean class, created the
following idl files: Hello.idl and HelloHome.idl.

You can use the IDL file to create the client-side usage bindings needed by a CORBA client,
as described in “ Developing a C++ CORBA client” on page 40 .

Creating the CORBA client main code (client.cpp)
Use this task to create the main code for a CORBA client, to locate a servant object hosted
by a CORBA server and to call methods on the server object. The client's main method
performs the following tasks:

1. Validating user input

2. Initializing the client environment

3. Getting a pointer to the root naming context

4. Accessing the servant object

5. Calling methods on the servant object

6. Stopping the client and releasing resources used

To create the main code for a CORBA client, complete the following steps:

1. Create a source file,client.cpp, where client is the name of the client program.

2. Edit the client source file, client.cpp, to add appropriate code to implement the
client. To do this, complete the following steps:

a Add include statements and global
declarations needed, as described in “Creating
CORBA client main code (client.cpp), adding
include statements and global declarations” on
page 42.

b Add the main method, in the form:
main(int argc, char *argv[])
{

int rc;
::CORBA::Object_ptr objPtr;
::CosNaming::NamingContext_var

rootNameContext = NULL;
Servant_var liptr = NULL;
exit(0);

}

3. Add code to check the input parameters provided on the command used to start
the client, as described in “Creating CORBA client main code (client.cpp),
adding code to check input parameters” on page 42.

4. Add code to initialize the client environment, as described in “Creating CORBA
client main code (client.cpp), adding code to initialize the client environment” on
page 43.

5. Add code to get a pointer to the root naming context, as described in “Creating
CORBA client main code (client.cpp), adding code to get a pointer to the root
naming context” on page 44.

WebSphere Application Server CORBA support - Page 41

6. Add code to access the servant object that has already been created by the
server, as described in “Creating CORBA client main code (client.cpp), adding
code to access the servant object” on page 45.

7. Add code to call methods on the servant object, as described in “Creating
CORBA client main code (client.cpp), adding code to call methods on the
servant object” on page 46.

8. Add code to shutdown the client and release resources used, as described in
“Creating CORBA client main code (client.cpp), adding code to shutdown the
client and release resources used” on page 46.

This task is one step of the parent task, “Developing a CORBA client” on page 40 .

Creating CORBA client main code (client.cpp), adding include
statements and global declarations

Use this task to add the include statements and global declarations needed to the source
file for a CORBA client main code. This task is one step of the parent task to create the
CORBA client main code, as described in “Creating a CORBA client main code (client.cpp)”
on page 41 .

To add include statements and global declarations to the source file for a CORBA client
main code, edit the client source file, client.cpp to complete the following steps:

1. Add the following include statements:
#include "servant.hh"
#include <CosNaming.hh>

Where:
servant.hh

Specifies the name of the client-side usage bindings file for the server
implementation class, servant. This file is created when the server
implementation class IDL is compiled, as described in “Compiling a
CORBA server implementation class IDL (using idlc)” on page 52.

CosNaming.hh
Specifies the header file for the COSNaming functions.

2. Add the following global declaration:
static ::CORBA::ORB_ptr op;

Where:
::CORBA::ORB_ptr op

Declares a pointer to the ORB.

You can also add the code for the functions needed in the client main code, as described in
the parent task “Creating a CORBA client main code (client.cpp)” on page 41 .

Creating CORBA client main code (client.cpp), adding code to check
input parameters

Use this task to add code to the source file for a CORBA client, to check input parameters.
This code is used to check the parameters that a user specifies when starting the CORBA
client.

This task is one step of the parent task to create the CORBA client main code, as described
in “Creating a CORBA client main code (client.cpp)” on page 41 .

This examples in this task are based on a CORBA client that is started by the following
command:

WebSphere Application Server CORBA support - Page 42

client log_file_name iterations

Where:
client

is the name of the client program.

log_file_name
is the the full pathname of a log file used to record actions by the client.

iterations
is the number of times that the client code should be run when the client program is
started.

The code checks that the command used to start the CORBA client specifies two arguments
required.

To add code to check the input parameters to the source file for a CORBA client main code,
complete the following steps::

1. Edit the client source file, client.cpp, and add the following code:
main(int argc, char *argv[])
{

int rc;
::CORBA::Object_ptr objPtr;
::CosNaming::NamingContext_var rootNameContext = NULL;
servant_var liptr = NULL;
if (argc != 3)
{

cerr << "Usage: client <log_file_name> <iterations>" << endl;
exit(-1);

}
else
{

cout << "Entered client with log file name = " << argv[1];
cout << " and iteration count = " << argv[2] << endl;

}
if ((rc = perform_initialization(argc, argv)) != 0)

exit(rc);

Where the client program name and arguments are as specified above.

This task adds code to check input parameters to the main method in the source file for a
CORBA client.

You need to add code to the client source file to initialize the client environment, as
described in “Creating a CORBA client main code (client.cpp), adding code to initialize the
client environment” on page 43.

Creating CORBA client main code (client.cpp), adding code to initialize
the client environment

Use this task to add an initialization method to the source file for a CORBA client. This code
is used to perform the initialization tasks needed when the client is started.

The aim of the client initialization method is to complete the following tasks to initialize the
ORB and object adapter.

This task is one step of the parent task to create the CORBA client main code, as described
in “Creating a CORBA client main code (client.cpp)” on page 41 .

To add an initialization method to the source file for a CORBA client main code, edit the
client source file, client.cpp, and add the following code:

1. Add an initialization method, and add a statement to the main method to call the
new method, as shown in the following code extract:
int perform_initialization(int argc, char *argv[])

WebSphere Application Server CORBA support - Page 43

{
// Initialize the ORB.
op = ::CORBA::ORB_init(argc, argv, "DSOM");
}
cout << "Initialized ORB" << endl;
return(0);

}
...
main(int argc, char *argv[])
{
...
if ((rc = perform_initialization(argc, argv)) != 0)

exit(rc);
}

Where:
perform_initialization(argc, argv)

Calls the initialization method of the client main code, to initialize the
client environment. The method takes as argument the log file name
and iteration count specified on the command used to start the client.

This task adds code to initialize the client environment for a CORBA client.

You need to add code to the client source file to enable the client to access naming
contexts, as described in “Creating CORBA client main code (client.cpp), adding code to
access naming contexts” on page 44.

Creating CORBA client main code (client.cpp), adding code to get a
pointer to the root naming context

Use this task to get a pointer to the root naming context. This task adds a "get name
context" method (for example, called get_name_context) to the source file for a CORBA
client. This method is used to access the naming service and return a pointer to the root
naming context. The method performs the following actions after the server environment
has been initialized:

1. Getting a pointer to the naming service.

2. Getting a pointer to the root naming context.

This task is one step of the parent task to create the CORBA client main code, as described
in “Creating a CORBA client main code (client.cpp)” on page 41 .

To add a get_name_context() method to the source file for a CORBA server main code, edit
the server source file, servantServer.cpp, and add the following code:

1. Add the get_name_context() method, as shown in the following code extract:
// This method accesses the Name Service and then gets
// the root naming context, which it returns;
// the WSLogger context.
::CosNaming::NamingContext_ptr get_naming_context()
{

::CosNaming::NamingContext_ptr rootNameContext = NULL;
::CORBA::Object_ptr objPtr;
// Get access to the Naming Service.
try
{

objPtr = op->resolve_initial_references("NameService");
}
// catch exceptions ...
if (objPtr == NULL)
{

cerr << "ERROR: resolve_initial_references returned NULL" << endl;
release_resources(op);
return(NULL);

}
else

cout << "resolve_initial_references returned = " << objPtr << endl;
// Get the root naming context.
rootNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
if (::CORBA::is_nil(rootNameContext))
{

cerr << "ERROR: rootNameContext narrowed to nil" << endl;
release_resources(op);
return(NULL);

}
else

cout << "rootNameContext = " << rootNameContext << endl;

WebSphere Application Server CORBA support - Page 44

// Release the temporary pointer.
::CORBA::release(objPtr);
return(rootNameContext);

}

Where:
rootNameContext

is the pointer to the root naming context.

This code gets a pointer to the naming service then narrows the pointer object
to the appropriate object type and assigns it to the new pointer object called
rootNameContext, performs some checks, then releases the original pointer
object, objPtr.

2. Optional: Add a statement to the main method to call the new method, as
shown in the following code extract:
...

if ((rc = perform_initialization(argc, argv)) != 0)
exit(rc);

// Get the root naming context.
rootNameContext = get_naming_context();
if (::CORBA::is_nil(rootNameContext))

exit(-1);

This step returns a pointer object, rootNameContext, to the root naming context.

You need to add code to the client source file to access the servant object created by the
server, as described in “Creating CORBA client main code (client.cpp), adding code to
access the servant object” on page 45.

Creating CORBA client main code (client .cpp), adding code to access
the servant object

Use this task to add code to the source file for a CORBA client, to get access to the servant
object that has already been created by the CORBA server and bound into the name space.
The client code gets access to the servant object by creating a ::CosNaming::Name that
specifies the full name of the object from the root naming context.

For the example code in this task, the CORBA server created the servant object called
servantObject1 in a new context, servantContext, that is bound to the domain naming
context, which in turn is bound to the root naming context. Therefore the full name for the
servant object, from the root naming context, is domain.servantContext.servantObject1.

This task is one step of the parent task to create the CORBA client main code, as described
in “Creating a CORBA client main code (client.cpp)” on page 41 .

To enable the client to get access to the servant object, edit the client source file, client.cpp,
and add the following code:

1. Add code to the main method to get a new ::CosNaming::Name for the servant
object and to look up the servant object with that name in the name space:

// Get the root naming context.
rootNameContext = get_naming_context();
if (::CORBA::is_nil(rootNameContext))

exit(-1);
// Find the servant_Impl created by the server. Look up the
// object using the complex name of domain.servantContext.servantObject1,
// which is its full name from the root naming context, as created
// by the server.
try
{

// Create a new ::CosNaming::Name to pass to resolve().
// Construct it as the full three-part complex name.
::CosNaming::Name * servantName = new ::CosNaming::Name;
servantName->length(3);
(*servantName)[0].id = ::CORBA::string_dup("domain");
(*servantName)[0].kind = "";
(*servantName)[1].id = ::CORBA::string_dup(" servantContext");
(*servantName)[1].kind = ::CORBA::string_dup("");
(*servantName)[2].id = ::CORBA::string_dup(" servantObject1");

WebSphere Application Server CORBA support - Page 45

(*servantName)[2].kind = ::CORBA::string_dup("");
::CORBA::Object_ptr objPtr = rootNameContext->resolve(* servantName);
liptr = servant::_narrow(objPtr);
cout << "After narrow, liptr = " << liptr << endl;

}
// catch exceptions ...

This task adds code that enables a CORBA client to find the specified servant object
(created by a CORBA server) in the system name space.

You need to add code to the client source file to enable the client to call methods on the
servant object, as described in “Creating CORBA client main code (client.cpp), adding code
to call methods on the servant object” on page 46.

Creating CORBA client main code (client .cpp), adding code to call
methods on the servant object

After a CORBA client has got access to a servant object, the client can call methods on the
servant object/ The methods depend entirely on the business functionality of the client, but
have the following general syntax:
servant_pointer ->method_name (arguments);

This task is one step of the parent task to create the CORBA client main code, as described
in “Creating a CORBA client main code (client.cpp)” on page 41 .

For example,
...
liptr = servant::_narrow(objPtr);
...
cout << "Logging to file " << liptr->getFileName() << endl;
liptr->setFileName(argv[1]);
cout << "Now logging to file " << liptr->getFileName() << endl;

This code forms the main business functionality of the client; when you have added the
method calls needed to your client code, the next stage is to add code to shut down the
client and release the resources that it uses, as described in “Creating CORBA client main
code (client.cpp), adding code to stop the client and release resources” on page 46.

Creating CORBA client main code (client.cpp), adding code to
shutdown the client and release resources used

Use this task to create code for a CORBA client, to shut down the client and release the
resources that it used.

This task is one step of the parent task to create the CORBA client main code, as described
in “Creating a CORBA client main code (client.cpp)” on page 41 .

To create code to shut down a CORBA client, edit the client source file, client.cpp to
complete the following steps

1. Add a release_resources method, as shown in the following code extract:
// This function deallocates resources used throughout the program.
void release_resources(::CORBA::BOA_ptr bp, ::CORBA::ORB_ptr op)
{

// Deallocate the various resources we have allocated.
::CORBA::release(bp);
::CORBA::release(op);

}

This method is called at the end of the client's main method after the client has
finished accessing the servant object. (You add a call to this method in the next
step.) The method takes as input pointers to the BOA and the ORB. It releases
the resources used by the client.

2. Add code to the main method to call the release_resources method (after the

WebSphere Application Server CORBA support - Page 46

client has finished accessing the servant objects), as shown in the following
code extract:

// Deallocate all resources.
release_resources(bp, op);
cout << endl << "Client COMPLETED" << endl;
cout.flush();
exit(0);

}

This task adds code that shuts down a CORBA client and releases the resources that it
used.

Building a C++ CORBA client
This topic provides an overview of the task to build the code for a C++ CORBA client. The
actual steps that you complete depend on the development environment that you use.

For example, if you are using the Microsoft C++ 6.0 compiler on Windows NT to build a C++
CORBA client, you can use the following commands:

1. At a command line, type the following command:
cl /nologo -c -GX /Z7 /c /nologo /MD /Od /X /DLL /Zi -DEXCL_IRTC
-DSOMCBNOLOCALINCLUDES -D_MS_INC_DIR= msvc60_install \include
-D_USE_NAMESPACE -DNO_STRICT -I msvc60_install \include
-Imsvc60_install \include
-Iwasee_install \include client.cpp

Where
msvc60_install

is directory in which the Microsoft C++ 6.0 compiler is installed; for
example, d:\msvc60\vc98.

wasee_install
is the directory into which WebSphere Application Server enterprise
services is installed.

client
is the name of the C++ client main code file.

2. At a command line, type the following command:
cl /nologo -c -GX /Z7 /c /nologo /MD /Od /X /Zi -DEXCL_IRTC

-DSOMCBNOLOCALINCLUDES
-D_MS_INC_DIR= msvc60_install -D_USE_NAMESPACE_USE_NAMESPACE
-DNO_STRICT -I msvc60_install \include -I msvc60_install \include
-Iwasee_install \include -I. servant_C.cpp

Where
servant

is the name of the server implementation object (servant) that the client
is to access.

3. At a command line, type the following command:
link /nologo /DEBUG /OUT:client.exe
/DEFAULTLIB:\WebSphere\AppServer\Enterprise\lib\somosa1m.lib
\WebSphere\AppServer\Enterprise\lib\somororm.lib
\WebSphere\AppServer\Enterprise\lib\somsrvsm.lib client.obj servant_C.obj

This task is one step of the parent task, “Developing a CORBA client” on page 40 .

For more examples of building C++ CORBA client code (on several platforms) for
WebSphere Application Server, see the samples article "Tutorial: Creating a user-defined
C++ server and client" at
WAS_HOME/Enterprise/samples/sampeex/sampcppsdk/wsBuildLogger.htm.

WebSphere Application Server CORBA support - Page 47

WebSphere Application Server CORBA support - Page 48

Developing a CORBA server
Use this task to develop a CORBA server to service requests for business functions used in
the implementation of client objects. The instructions and code extracts provided in this task
are based on the development of the WSLoggerServer sample, for which files are included
with WebSphere in the following directory:
WAS_HOME/Enterprise/samples/sampcppsdk.

Developing a CORBA server involves developing a server implementation class (known as
a servant) and a server, as described in the following steps:

1. Create and edit an IDL file, servant.idl, to specify the public interface to the
servant object class; where servant is the name of the server implementation
class.
For more information about creating and editing an IDL file for the servant
object class, see “Defining the interface for a servant implementation
(servant.idl).” on page 50

This steps results in a fully-specified servant.idl file.

2. Compile the servant IDL file,servant.idl, to produce the usage binding files
needed to implement and use the servant object within a particular
programming language.
For more information about compiling an IDL file, see “Compiling the servant
IDL (using idlc)” on page 52.

This step results in the set of usage binding files required for the servant.idl file.

3. Add declarations for class variables, constructors, and destructors to the
servant implementation header (servant.ih).
For more information about adding declarations to an implementation header,
see “Adding declarations to a CORBA servant implementation header
(servant.ih)” on page 53.

This step results in the servant implementation header file, servant.idl, that
contains all the declarations for class variables, constructors, and destructors
needed by the implementation.

4. Complete the servant implementation servant_I.cpp, to add the code that is to
implement the servant business logic.
For more information about completing the servant implementation, see
“Adding code to a CORBA servant implementation (servant_I.cpp)” on page 54.

This step results in the server implementation file, servant_I.cpp, that contains
the code needed by the implementation to support the business logic.

5. Create the server main, server.cpp, to write the code for the methods that the
server implements (for example, to perform initialization tasks and create
servant objects).
For more information about completing the servant implementation, see
“Creating the server main code (server.cpp)” on page 55.

This step results in the server main source file, server.cpp, that contains the
main method and associated code needed to implement the server.

6. Build the server code, as described in “Building a C++ CORBA server” on page 67
.

Storing a logical definition for a CORBA server in the system
implementation repository

WebSphere Application Server CORBA support - Page 49

Use this task to register a CORBA server in the implementation repository. To register a
CORBA server in the implementation repository, you need to identify the server's alias, the
server application program, and the server object implementation class (servant) that the
server implements. The information registered is used to activate the server process when
the server is started, and thereafter to help clients to find the server that supports servants
that they want to use.

To register a CORBA server in the implementation repository, you use the regimpl utility, as
follows:

1. To register the server, server_alias, type the following command:
regimpl -A -i server_alias -p server_application -t SOMD_TCPIP

Where
server_alias

is the server alias by which the server is known

server_application
is the name of the application program that implements the server.

[Windows] The program name has the form program.exe.

[Unix] The program name has the form program.

This task results in the implementation repository containing an entry for the server and the
server object implementation class that it supports.

For example, for a server object implemetation class called WSLogger, supported by the server application
WSLoggerServer, you would use the following regimpl commands:

regimpl -A -i WSLoggerServer

This task is one step of the parent task, “Developing a CORBA server” on page 49 .

Defining the interface for a CORBA servant class
Use this task to define the public interface of a CORBA servant class that is to provide the
business logic to be used by clients. This defines the information that a client must know to
call and use servant objects of that class, and forms one stage of the tasks to develop a
CORBA server or client.

To specify the public interface for a CORBA servant class, you create an IDL (interface
definition language) file that contains an interface declaration:

1. Create an IDL file, servant.idl, where servant is the name of the server
implementation class.

This steps results in a fully-specified servant.idl file.

2. Edit the servant.idl file to add an interface definition.
The interface definition declares the interface name (and optionally its base
interface names), and the methods (operations), and any constants, type
definitions, and exception structures that the interface exports.

The following information is an overview of the format of an interface
declaration, and provides links to the reference topics that provide details about
parts of the IDL declaration and IDL syntax. For reference information about
IDL interface declarations, and the component declarations that they can

WebSphere Application Server CORBA support - Page 50

contain, see “IDL interface declarations” on page .

An interface declaration has the following syntax:
interface interface-name
[: base-interface1, base-interface2, ...]
{
[constant declarations]
[type declarations]
[exception declarations]
[attribute declarations]
[operation declarations]

};

interface-name
The name of the public interface for the servant object, this should
match the servant class name.

[: base-interface1, base-interface2, ...]
The base-interface names for one or more parent interfaces from which
this interface, interface-name , is derived.

You need to specify base-interface names only if this interface is
derived from one or more parent interfaces. Each base interface is
specified in the form : interface_name and can be named only
once in the interface statement header. If you specify a base-interface
name, you must also add an include statement for the base-interface
IDL file to the top of the servant.idl file.

[constant declarations] and [type declarations]
An interface declaration can include constant declarations and type
declarations as in C and C++, with some restrictions and extensions.
For more information about these declaration types, see “IDL type and
constant declarations” on page .

[exception declarations]
An interface declaration can include exception declarations, which
define data structures to be returned when an exception occurs during
the execution of an operation. Each exception declaration specifies a
name and, optionally, a struct-like data structure for holding error
information. For more information about these declaration types, see
“IDL exception declarations” on page .

[attribute declarations]
Declaring an attribute as part of an interface is equivalent to declaring
one or two accessor operations: one to retrieve the value of the
attribute (a get or read operation) and (unless the attribute specifies
readonly) one to set the value of the attribute (a set or write operation).
For more information about these declaration types, see “IDL attribute
declarations” on page .

[operation declarations]
Operation declarations define the interface of each operation
introduced by the interface. (An IDL operation is typically implemented
by a method in the implementation programming language. Hence, the
terms operation and method are often used interchangeably.). For more
information about these declaration types, see “IDL operation
declarations” on page .

The order in which these declarations are specified is usually optional, and
declarations of different kinds can be intermixed. Although all of the

WebSphere Application Server CORBA support - Page 51

declarations are listed above as optional, in some cases using one declaration
can mandate another. For example, if an operation raises an exception, the
exception structure must be defined beforehand. In general, types, constants,
and exceptions, as well as interface declarations, must be defined before they
are referenced, as in C or C++.

This task results in a fully-specified IDL file, servant.idl, that contains a declaration for the
public interface to a servant class, servant.

For example, for a servant class called WSLogger, the IDL file, WSLogger.idl, was created and edited to add
the following interface definition:

interface WSLogger
{

void setFileName(in string newFileName);
string getFileName();
void setMethodName(in string newMethodName);
string getMethodName();
short openLogFile();
short closeLogFile();
short writeLogMessage(in string newMessage, in short newSeverity);
enum mdyFormat { DMY_DATE_FORMAT,

MDY_DATE_FORMAT };
void setDateFormat(in unsigned short newDateFormat);
unsigned short getDateFormat();

};

You can next compile the servant.idl to create the usage bindings and other files needed to
complete the implementation, as described in “Compiling the servant IDL (using idlc)” on
page 52.

This task is one step of the parent task, “Developing a CORBA server” on page 49 .

Compiling a CORBA server implementation class IDL (using idlc)
Use this task to compile the IDL file, servant.idl, that defines the public interface for a
CORBA server implementation class. You can also use this task to compile the IDL file (also
referred to in this task as servant.idl) for an Enterprise JavaBean.

Note: If your servant.idl file references other IDL files, ensure that all those other IDL files
can be accessed by the idlc program.

To compile the IDL file, servant.idl, you can use the idlc command to complete the following
steps:

1. At a command line change to the directory that contains the IDL file,servant.idl,
where servant is the name of the server implementation class.

2. Type the following command:
idlc -ehh:ih:ic:uc:sc servant.idl

The options specified, and the files created are summarised in “Options for the
idlc command” on page . The names of the generated output files are derived
from the file name of the specified IDL file. For example, for the IDL file,
servant.idl, the emitter option -ehh outputs the file servant.hh.

This produces the files servant.hh, servant.ih, servant_I.cpp, servant_C.cpp,
and servant_S.cpp.

This task creates the usage binding files needed to implement and use the servant object
within a particular programming language.

WebSphere Application Server CORBA support - Page 52

For example, for a server object implemetation class called WSLogger, the IDL file, WSLogger.idl, was
created and edited to add its interface definition. To compile the IDL file, the following command was used:

idlc -ehh:ih:ic:uc:sc WSLogger.idl

This created the following files: WSLogger.hh, WSLogger.ih, WSLogger_I.cpp,
WSLogger_C.cpp, and WSLogger_S.cpp.

You can next add declarations for class variables, constructors, and destructors to the
servant class definition, servant.ih, as described in “Adding declarations to the servant class
definition” on page 53.

This task is one step of the parent task, “Developing a CORBA server” on page 49 . It can
also be used to create the client-side bindings files needed to develop a CORBA client that
is to access an Enterprise JavaBean, as described in “Developing a CORBA client” on
page 40 .

Adding declarations to a CORBA servant class definition (servant.ih)
Use this task to add declarations for class variables, constructors, and destructors for a
CORBA servant class to its skeleton implementation header file, servant.ih. This defines any
private variables for the implementation code in the associated servant_I.cpp file.

This task follows on from the task to compile the servant.idl file that defines the public
interface for the server implementation class. For more information about compiling the IDL
file, which creates the servant.ih file, see “Compiling the servant IDL (using idlc)” on page 52
.

To add declarations for class variables, constructors, and destructors to an implementation
header file,servant.ih, complete the following steps:

1. At a command line change to the directory that contains the servant.ih file,
where servant is the name of the servant class.

2. Edit the implementation header file, servant.ih, to add appropriate declarations
for class variables, constructors, and destructors. For more information about
the types of declarations that you can add to an implementation header file, see
“IDL type declarations” on page .

For example, the idlc command idlc -ehh:ih:ic:uc:sc
-mdllname=WSLogger WSLogger.idl converted the following interface
declaration to the class declaration in the WSLogger.ih file. The WSLogger.ih
file was then edited to add the extra declarations shown in bold.

Table: 1. Example: WSLogger interface and declarations added to the skeleton
implementation header

Interface declaration in WSLogger.idl Implementation header in WSLogger.ih

interface WSLogger {
void setFileName(in string newFileName);
string getFileName();
void setMethodName(in string

newMethodName);
string getMethodName();
short openLogFile();
short closeLogFile();
short writeLogMessage(in string

newMessage, in short newSeverity);
const short DMY_DATE_FORMAT = 1;
const short MDY_DATE_FORMAT = 2;
void setDateFormat(in unsigned short

newDateFormat);
unsigned short getDateFormat();

};

class WSLogger_Impl : public virtual
::WSLogger_Skeleton {

public:
::CORBA::Void setFileName (const

char* newFileName);
char* getFileName ();
::CORBA::Void setMethodName (const

char* newMethodName);
char* getMethodName ();

WebSphere Application Server CORBA support - Page 53

Interface declaration in WSLogger.idl Implementation header in WSLogger.ih

::CORBA::Short openLogFile ();
::CORBA::Short closeLogFile ();
::CORBA::Short writeLogMessage (const

char* newMessage, ::CORBA::Short
newSeverity);

::CORBA::Void setDateFormat
(::CORBA::UShort newDateFormat);

::CORBA::UShort getDateFormat ();
private:

char * fileName;
char * methodName;
::CORBA::UShort dateFormat;
ofstream logFile;
::CORBA::UShort logFileOpen;

public:
WSLogger_Impl(char * newFileName);
virtual ~WSLogger_Impl();

};

You can next add code to skeleton implementation definition, servant_I.cpp, to implement
the business logic, as described in “Completing the server implementation (server_I.cpp)”
on page 54.

This task is one step of the parent task, “Developing a CORBA server” on page 49 .

Adding code to a CORBA servant implementation (servant_I.cpp)
Use this task to add code for a CORBA server implementation class to its skeleton
implementation file, servant_I.cpp. The code defines the methods that implement the
business logic for the server implementation class, servant.

This task follows on from the task to add declarations for class variables, constructors, and
destructors to the servant implementation header file,servant.ih. For more information about
adding declarations to an implementation header, see “Adding declarations to a CORBA
servant implementation header (servant.ih)” on page 53 .

To add code to an implementation file,servant_I.cpp, to add the business logic that the
servant is to provide, complete the following steps:

1. At a command line change to the directory that contains the servant_I.cpp file,
where servant is the name of the server implementation class.

2. Edit the implementation file, servant_I.cpp, to add appropriate code to
implement the business logic methods.

For example, the idlc command idlc -ehh:ih:ic:uc:sc
-mdllname=WSLogger WSLogger.idl converted the following interface
declaration to the skeleton methods in the implementation file,
WSLogger_I.cpp. The WSLogger_I.cpp file was then edited to add the code to
implement the methods, with the code added for the
WSLogger_Impl::writeLogMessage method shown in bold.

::CORBA::Void WSLogger_Impl::setFileName (const char* newFileName)
{
}
char* WSLogger_Impl::getFileName ()
{
}
::CORBA::Void WSLogger_Impl::setMethodName (const char* newMethodName)
{
}
char* WSLogger_Impl::getMethodName ()
{
}
::CORBA::Short WSLogger_Impl::openLogFile ()
{
}
::CORBA::Short WSLogger_Impl::closeLogFile ()
{
}
// This method writes one line of message text to the log file. The line
// prefaced with the current date and time in the currently specified

WebSphere Application Server CORBA support - Page 54

// format, the current method name (if any), the severity level, and
// the message text.
::CORBA::Short WSLogger_Impl::writeLogMessage (const char* newMessage,

::CORBA::Short newSeverity)
{

::CORBA::String_var timeString;
if (logFileOpen == FALSE)

return(-1);
// Get the date and time string.
time_t tp;
time_t tp2;
if ((tp = time(&tp2)) != -1)
{

struct tm *x = gmtime(&tp2);
timeString = ::CORBA::string_dup(ctime(&tp2));

}
// Determine the day and month.
::CORBA::String_var day = ::CORBA::string_alloc(3);
::CORBA::String_var month = ::CORBA::string_alloc(4);
day[0] = timeString[8];
day[1] = timeString[9];
day[2] = 0;
month[0] = timeString[4];
month[1] = timeString[5];
month[2] = timeString[6];
month[3] = 0;
// Copy the time and year.
::CORBA::String_var time = ::CORBA::string_alloc(14);
strncpy(time, (const char *) &timeString[11], 13);
time[13] = 0;
// Output the time of the log message.
if (dateFormat == DMY_DATE_FORMAT)

logFile << day << " " << month;
else if (dateFormat == MDY_DATE_FORMAT)

logFile << month << " " << day;
logFile << " " << time << ", ";
if (getMethodName() != NULL)

logFile << getMethodName() << ", ";
logFile << "severity " << newSeverity << ": ";
// Output the log message.
logFile << newMessage << endl;
return 0;

}
::CORBA::Void WSLogger_Impl::setDateFormat (::CORBA::UShort newDateFormat)
{
}
::CORBA::UShort WSLogger_Impl::getDateFormat ()
{
}

You can next create the server main code (server.cpp), to implement the server, as
described in “Creating a CORBA server main code (server.cpp)” on page 55.

This task is one step of the parent task, “Developing a CORBA server” on page 49 .

Creating the CORBA server main code (server.cpp)
Use this task to create a CORBA server that hosts a servant object. The server performs the
following tasks

1. Validating user input

2. Initializing the server environment

3. Accessing naming contexts

4. Naming, creating, and binding a servant object

5. Creating a server shutdown object

6. Going into a wait loop

7. Servicing requests

This task follows on from adding code for the business logic methods in the servant
implementation file,servant_I.cpp. For more information about adding code to a servant
implementation file, see “ Completing the servant implementation (servant_I.cpp)” on
page 54 .

To create the main code for a CORBA server, complete the following steps:

1. Create a source file,servantServer.cpp, where servant is the name of the
implementation class for which the server is to service requests.

WebSphere Application Server CORBA support - Page 55

2. Edit the server source file, servantServer.cpp, to add appropriate code to
implement the server methods. To do this, complete the following steps:

a Add include statements and global
declarations needed, as described in “Creating
CORBA server main code (server.cpp), adding
include statements and global declarations” on
page 56.

b Add the main method, in the form:
void main(int argc, char *argv[])
{

::CORBA::Object_ptr objPtr;
::CORBA::Status stat;
int rc = 0;

}

3. Edit the server source file, servantServer.cpp, to add appropriate code to check
the input parameters provided on the command used to start the server, as
described in “Creating CORBA server main code (server.cpp), adding code to
check input parameters” on page 57.

4. Edit the server source file, servantServer.cpp, to add appropriate code to
initialize the server environment, as described in “Creating CORBA server main
code (server.cpp), adding code to initialize the server environment” on page 58.

5. Edit the server source file, servantServer.cpp, to add appropriate code to
access naming contexts, as described in “Creating CORBA server main code
(server.cpp), adding code to access naming contexts” on page 60.

At this point initialization has been accomplished and a naming context created
for servant objects.

6. Edit the server source file, servantServer.cpp, to add appropriate code to name,
create, and bind servant objects, as described in “Creating CORBA server main
code (server.cpp), adding code to name, create, and bind servant objects” on
page 63.

7. Edit the server source file, servantServer.cpp, to add code to create a server
shutdown object, as described in “Creating CORBA server main code
(server.cpp), adding code to create a server shutdown object” on page 64.

8. Edit the server source file, servantServer.cpp, to add code to put the server into
an infinite loop (to service any ORB requests received), as described in
“Creating CORBA server main code (server.cpp), adding code to put the server
into an infinite loop” on page 65.

9. Edit the server source file, servantServer.cpp, to add code to shutdown the
server and release resources used, as described in “Creating CORBA server
main code (server.cpp), adding code to shutdown the server and release
resources used” on page 65.

This task is one step of the parent task, “Developing a CORBA server” on page 49 .

Creating CORBA server main code (server.cpp), adding include
statements and global declarations

Use this task to add the include statements and global declarations needed to the source
file for a CORBA server main code. This task is one step of the parent task to create the
CORBA server main code, as described in “Creating a CORBA server main code
(server.cpp)” on page 55 .

To add include statements and global statements to the source file for a CORBA server
main code, edit the server source file, servantServer.cpp, and add appropriate statements:

1. Add appropriate include statements; for example:

WebSphere Application Server CORBA support - Page 56

#include "servant.ih"
#include "servershutdown .h"
#include <CosNaming.hh>

Where:
servant.ih

Specifies the name of the implementation header file for the servant
class, servant, to be hosted by the server.

servershutdown.h
Specifies the name of the header file for the class used to shutdown the
CORBA server.

CosNaming.hh
Specifies the header file for the COSNaming functions.

2. Add appropriate global declarations; for example:
// Global declarations:
static ::CORBA::ORB_ptr op;
static ::CORBA::BOA_ptr bp;
::CORBA::ImplementationDef_ptr imp ;
servant_var object_Impl;

Where:
::CORBA::ORB_ptr op

Declares a pointer to the ORB.

::CORBA::BOA_ptr bp
Declares a pointer to the BOA.

::CORBA::ImplementationDef_ptr imp
Declares a pointer to the ImplementationDef associated with the server
alias.

servant_var object_Impl
Declares the servant object to be created later in the server main code.

You can add the code for the functions needed in the server main code, as described in the
parent task “Creating a CORBA server main code (server.cpp)” on page 55 .

Creating CORBA server main code (server.cpp), adding code to check
input parameters

Use this task to add code to check input parameters to the source file for a CORBA server.
This code is used to check the parameters that a user specifies when starting the CORBA
server.

This task assumes that the CORBA server is started by the following command:
servantServer server_alias

Where:
servant

is the name of the server implementation class that the server supports.

server_alias
is the server alias (defined in the Implementation Respository).

The code checks that the command used to start the CORBA server specifies a string,
server_alias, the server alias. During the subsequent server initialization function called
when the server starts, the server alias is used to retrieve the server's ImplementationDef;
therefore, the string specified must match the server alias predefined in the system
Implementation Repository.

WebSphere Application Server CORBA support - Page 57

This task is one step of the parent task to create the CORBA server main code, as
described in “Creating a CORBA server main code (server.cpp)” on page 55 .

To add code to check the input parameters to the source file for a CORBA server main
code, complete the following steps::

1. Edit the server source file, servantServer.cpp, and add the following code:
void main(int argc, char *argv[])
{

::CORBA::Object_ptr objPtr;
::CORBA::Status stat;
int rc = 0;
// Validate the input parameters.
if (argc != 2)
{

cerr << "Usage: servant <server_alias >" << endl;
exit(-1);

}
if ((rc = perform_initialization(argc, argv)) != 0)

exit(rc);
...

}

Where:
server_alias

Specifies the server alias predefined in the system Implementation
Repository.

perform_initialization(argc, argv)
Calls the initialization function of the server main code, to check that the
server alias is defined in the system Implementation Repository (and to
perform other tasks to initialize the server environment).

This task adds code to check input parameters to the main method in the source file for a
CORBA server.

You need to add code to the server source file for the server initialization function, as
described in “Creating CORBA server main code (server.cpp), adding code to initialize the
server environment” on page 58.

Creating CORBA server main code (server.cpp), adding code to
initialize the server environment

Use this task to add a server initialization method to the source file for a CORBA server.
This code is used to perform the initialization tasks needed when the server is started.

The aim of the server initialization method is to complete the following tasks to initialize the
server environment:

1. Getting a pointer to the Implementation Repository

2. Getting a pointer to the ImplementationDef associated with the server alias.

3. Initializing the communications protocol.

4. Initializing the ORB and object adapter.

5. Registering the server application as a CORBA server.

This task is one step of the parent task to create the CORBA server main code, as
described in “Creating a CORBA server main code (server.cpp)” on page 55 .

To add a server initialization method to the source file for a CORBA server main code, edit
the server source file, servantServer.cpp, and add the following code:

1. Add an initialization method, and add a statement to the main method to call the

WebSphere Application Server CORBA support - Page 58

new method, as shown in the following code extract:
// This function performs general initializtion, including retrieval
// of the appropriate ImplementationDef, setting the communications
// protocol, and initalization of the ORB and BOA.
int perform_initialization(int argc, char *argv[])
{

return(0);
}
void main(int argc, char *argv[])
{

::CORBA::Object_ptr objPtr;
::CORBA::Status stat;
int rc = 0;
// Validate the input parameters.
if (argc != 2)
{

cerr << "Usage: WSLoggerServer <server_alias>" << endl;
exit(-1);

}
if ((rc = perform_initialization(argc, argv)) != 0)

exit(rc);
...
}

Where:
server_alias

Specifies the server alias predefined in the system Implementation
Repository.

perform_initialization(argc, argv)
Calls the initialization method of the server main code, to perform tasks
to initialize the server environment. The method takes as argument the
string (server alias) specified on the command used to start the server.

2. Edit the initialization method, to add code to initialize the server's
implementation repository and retrieve the appropriate implementation
definition, as shown in the following code extract:
int perform_initialization(int argc, char *argv[])
{

// Initialize the server's Implementation Repository.
::CORBA::ImplRepository_ptr implrep = new ::CORBA::ImplRepository();
// Retrieve the appropriate ImplementationDef by using the server alias.
try
{

imp = implrep->find_impldef_by_alias(argv[1]);
}
// catch exceptions ...
cout << "Retrieved ImplementationDef" << endl;

...
}

3. Edit the initialization method, to add code to initialize the server's
communications protocol, as shown in the following code extract:
int perform_initialization(int argc, char *argv[])
{
...

cout << "Retrieved ImplementationDef" << endl;
// Set the server's communication protocol.
imp->set_protocols("SOMD_TCPIP");
cout << "Set communication protocol" << endl;

...
}

4. Edit the initialization method, to add code to initialize the ORB and object
adapter, as shown in the following code extract:
int perform_initialization(int argc, char *argv[])
{
...

cout << "Set communication protocol" << endl;
...

// Initialize the ORB.
op = ::CORBA::ORB_init(argc, argv, "DSOM");
// Initialize the BOA.
try
{

bp = op->BOA_init(argc, argv, "DSOM_BOA");
}
// catch exceptions ...
cout << "Initialized ORB" << endl;

...
}

WebSphere Application Server CORBA support - Page 59

5. Edit the initialization method, to add code to register the server, as shown in the
following code extract:
int perform_initialization(int argc, char *argv[])
{
...

cout << "Initialized ORB" << endl;
// Initialize this application as a server, allow it to accept
// incoming request messages, and register it with the somorbd
// daemon.
try
{

bp->impl_is_ready(imp, 0);
}
// catch exceptions ...
cout << "Finished initialization of implementation" << endl;
return(0);

}

This enables the server to accept incoming request messages, and registers it
with the somorbd daemon.

This task adds code to initialize the server environment for a CORBA server.

You need to add code to the server source file to enable the server to access naming
contexts, as described in “Adding code to access naming contexts to a CORBA server main
code (server.cpp)” on page 60.

Creating CORBA server main code (server.cpp), adding code to access
naming contexts

Use this task to add a "get name context" method (for example, called get_name_context)
to the source file for a CORBA server, to access naming contexts. This method is used to
create a new naming context within which the CORBA server can create and make
available servant objects. The method performs the following actions after the server
environment has been initialized:

1. Getting a pointer to the naming service.

2. Getting a pointer to the root naming context.

3. (Optional) Creating a ::CosNaming::Name for the domain and getting a pointer to the
domain naming context.

4. Getting a new servant naming context for servant objects.

This task is one step of the parent task to create the CORBA server main code, as
described in “Creating a CORBA server main code (server.cpp)” on page 55 .

To add a get_name_context() method to the source file for a CORBA server main code, edit
the server source file, servantServer.cpp, and add the following code:

1. Add a get_name_context() method, and add a statement to the main method to
call the new method, as shown in the following code extract:
// This function accesses the Name Service and then gets or creates
// the desired naming contexts. It returns the naming context for
// the servant context.
::CosNaming::NamingContext_var get_naming_context()
{

::CosNaming::NamingContext_var rootNameContext = NULL;
::CosNaming::NamingContext_var domainNameContext = NULL;
::CosNaming::NamingContext_var servantNameContext = NULL;
::CORBA::Object_ptr objPtr;
return(servantNameContext);

}
...
void main(int argc, char *argv[])
{
...

if ((rc = perform_initialization(argc, argv)) != 0)
exit(rc);

// Get the various naming contexts.
::CosNaming::NamingContext_var servantNameContext = NULL;
servantNameContext = get_naming_context();
if (::CORBA::is_nil(servantNameContext))

exit(-1);
...
}

WebSphere Application Server CORBA support - Page 60

Where:
rootNameContext

is the pointer to the root naming context.

domainNameContext
is the pointer to the (optional) domain naming context.

servantNameContext
is the pointer to the naming context for servant objects.

2. Edit the get_name_context() method, to add code to get a pointer to the naming
service, as shown in the following code extract:
// This function accesses the Name Service and then gets or creates
// the desired naming contexts. It returns the naming context for
// the servant context.
::CosNaming::NamingContext_var get_naming_context()
{

::CosNaming::NamingContext_var rootNameContext = NULL;
::CosNaming::NamingContext_var domainNameContext = NULL;
::CosNaming::NamingContext_var servantNameContext = NULL;
::CORBA::Object_ptr objPtr;
// Get access to the Naming Service.
try
{

objPtr = op->resolve_initial_references("NameService");
}
// catch exceptions ...

...
return(servantNameContext);

}

This step returns a pointer object, objPtr, to the naming service.

3. Edit the get_name_context() method, to add code to get a pointer to the root
naming context, as shown in the following code extract:
::CosNaming::NamingContext_var get_naming_context()
{
...

else
cout << "resolve_initial_references returned = " << objPtr << endl;

// Get a root naming context.
rootNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
if (::CORBA::is_nil(rootNameContext))
{

cerr << "ERROR: rootNameContext narrowed to nil" << endl;
release_resources(bp, imp, op);
return(NULL);

}
else

cout << "rootNameContext = " << rootNameContext << endl;
// Release the temporary pointer.
::CORBA::release(objPtr);

...
}

This code narrows the pointer object to the appropriate object type and assigns
it to the new pointer object called rootNameContext, performs some checks,
then releases the original pointer object, objPtr.

This step returns a pointer object, rootNameContext, to the root naming
context.

4. Edit the get_name_context() method, to add code to create a
::CosNaming::Name for the domain and get a pointer to the domain naming
context, as shown in the following code extract:
::CosNaming::NamingContext_var get_naming_context()
{
...

// Get a root naming context.
...

// Release the temporary pointer.
::CORBA::release(objPtr);
// Create a ::CosNaming::Name for the domain.
::CosNaming::NameComponent nc;
nc.kind = CORBA::string_dup("");
nc.id = CORBA::string_dup("domain");
::CosNaming::Name_var name = new ::CosNaming::Name(1, 1, &nc, 0);
// Get the domain naming context.
try
{

WebSphere Application Server CORBA support - Page 61

objPtr = rootNameContext->resolve(name);
cout << "objPtr from nameContext resolve = " << objPtr << endl;

}
// catch exceptions ...
cout << "Resolved domain in root name context" << endl;
domainNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
if (::CORBA::is_nil(domainNameContext))
{

cerr << "ERROR: domainNameContext narrowed to null" << endl;
release_resources(bp, imp, op);
return(NULL);

}
cout << "domainNameContext = " << domainNameContext << endl;
// Release the temporary pointer.
::CORBA::release(objPtr);

...
}

The ::CosNaming::Name is initialized with the string "domain", which is the
name of the domain naming context in which a new servant naming context is
to be created. The domain naming context is located within the root naming
context, so the root naming context is asked to resolve the name "domain".
After resolving the name, the code narrows the result to get the domain naming
context, assigns it to the new pointer object called domainNameContext,
performs some checks, then releases the original pointer object, objPtr.

This step returns a pointer object, domainNameContext, to the domain
naming context.

5. Edit the get_name_context() method, to add code to create a
::CosNaming::Name that specifies the name of the new context,
"servantContext" (into which servant object are placed) and get a pointer to the
naming context, as shown in the following code extract:
::CosNaming::NamingContext_var get_naming_context()
{
...

// Create a ::CosNaming::Name for the domain.
...

// Release the temporary pointer.
::CORBA::release(objPtr);
// Get a new naming context for our objects.
::CosNaming::NameComponent nc2;
nc2.kind = CORBA::string_dup("");
nc2.id = CORBA::string_dup(" servantContext");
::CosNaming::Name_var name2 = new ::CosNaming::Name(1, 1, &nc2, 0);
try
{

servantNameContext = domainNameContext->bind_new_context(name2);
cout << "bind_new_context, servantNameContext = " << objectNameContext

<< endl;
}
// catch exceptions ...
catch(::CosNaming::NamingContext::AlreadyBound e)
{

cerr << "ERROR: bind_new_context threw AlreadyBound" << endl;
cout << "Trying to resolve the context" << endl;
try
{

::CosNaming::Name * servantName = new ::CosNaming::Name;
servantName->length(1);
(*servantName)[0].id = ::CORBA::string_dup(" servantContext");
(*servantName)[0].kind = ::CORBA::string_dup("");
::CORBA::Object_ptr objPtr = domainNameContext->resolve(* servantName

);
cout << "Before objectNameContext = " << servantNameContext << endl;

servantNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
cout << "After servantNameContext = " << servantNameContext << endl;

}
// catch exceptions ...

}
return(servantNameContext);

}
...
}

Where:
servant

is a string related to the name of the servant object class; for example,
for the servant object class WSLogger you might create a naming
context pointer called loggerNameContext.

WebSphere Application Server CORBA support - Page 62

This code narrows the pointer object to the appropriate object type and assigns
it to the new pointer object called , servantNameContext performs some
checks, then releases the original pointer object, objPtr.

This step returns a pointer object, servantNameContext, to the naming
context for servant objects.

This task creates and returns a pointer object, servant NameContext, to the naming
context for servant objects.

You need to add code to the server source file to name, create, and bind servant objects, as
described in “Creating CORBA server main code (server.cpp), adding code to name, create,
and bind servant objects” on page 60 .

Creating CORBA server main code (server.cpp), adding code to name,
create, and bind servant objects

Use this task to add code to the source file for a CORBA server, to get a new
::CosNaming::Name for servant objects, create servant objects, and bind them into the
appropriate naming context. This makes it possible for clients to find and use servant
objects.

This task is one step of the parent task to create the CORBA server main code, as
described in “Creating a CORBA server main code (server.cpp)” on page 55 .

To add code to name, create, and bind servant objects, edit the server source file,
servantServer.cpp, and add the following code:

1. Add code to the main method to get a new ::CosNaming::Name for servant
objects and to call a method to create and bind servant objects, as shown in the
following code extract:
int create_and_bind(::CosNaming::Name *nc, ::CosNaming::NamingContext_var

servantNameContext)
{

return(0);
}
void main(int argc, char *argv[])
{
...

// Get the various naming contexts.
::CosNaming::NamingContext_var servantNameContext = NULL;
servantNameContext = get_naming_context();
if (::CORBA::is_nil(servantNameContext))

exit(-1);
// Get a new ::CosNaming::Name for our servant_Impl object.
// This is done here rather than in create_and_bind() so that the
// name can be reused later, when terminating the server.
::CosNaming::Name *nc = new ::CosNaming::Name;
nc->length(1);
(*nc)[0].id = ::CORBA::string_dup(" servantObject1");
(*nc)[0].kind = ::CORBA::string_dup("");
// Create a new servant_Impl object and bind it to the

servantNameContext.
if ((rc = create_and_bind(nc, servantNameContext)) != 0)

exit(-1);
...
}

Where:
servantNameContext

is the pointer to the naming context for servant objects.

servantObject1
is the name under which we choose to bind this servant object in the
servantNameContext This name uniquely defines the servant_Impl
object in the servantNameContext.

create_and_bind method
is the name of the method that the server calls to create servant objects

WebSphere Application Server CORBA support - Page 63

and bind them into the naming context.

The ::CosNaming::Name is obtained outside the create_and_bind() method so
that the name can be reused later, when terminating the server.

2. Add a create_and_bind method, and add a statement to the main method to
call the new method, as shown in the following code extract:
int create_and_bind(::CosNaming::Name *nc, ::CosNaming::NamingContext_var

servantNameContext)
{

// Create a servant object.
servantImpl = new servantImpl("defaultlog");
// Bind the object to this name in the servant naming context.

try
{

servantNameContext->bind(*nc, objectPtr);
cout << "bind of servant

NameContext succeeded" << endl;
}
// catch exceptions ...
return(0);

}

This method takes as input the ::CosNaming::Name obtained before the
method is called and the pointer to the naming context for servant objects. The
code creates a servant object then binds the object to the ::CosNaming::Name
in the servant naming context and performs a variety of binding checks.

Note: A string is passed to the servant object's initializer, to specify a default
name for the log file. This name is not used by client programs, because clients
change the default name to a user-specified value by invoking the method
setFileName().

This task adds code that enables a CORBA server to name, create, and bind servant
objects.

You need to add code to the server source file to enable the server to create a server
shutdown object that can be used to help shutdown the server, as described in “Creating
CORBA server main code (server.cpp), adding code to create a server shutdown object” on
page 64.

Creating CORBA server main code (server.cpp), adding code to create a
WSServerShutdown object

Use this task to add code to the source file for a CORBA server, to create a
WSServerShutdown object, which enables the server to be shut down whenever needed.

This task is one step of the parent task to create the CORBA server main code, as
described in “Creating a CORBA server main code (server.cpp)” on page 55 .

To add code to create a WSServerShutdown object, complete the following steps:

1. Edit the main method in the server source file, servantServer.cpp and add code
to create a WSServerShutdown object, as shown in the following code extract:
void main(int argc, char *argv[])
{
...

// Create a new servant_Impl object and bind it to the objectNameContext.
if ((rc = create_and_bind(nc, servantNameContext)) != 0)

exit(-1);
...

// Create a WSServerShutdown object that can break the server out of the
// method execute_request_loop() when we are ready to terminate
// the server. The WSStopServer command will make the subsequent
// invocation of execute_request_loop() return to the server.
WSServerShutdown *shutdownObj = new WSServerShutdown(argv[1], bp);
cout << "Created WSServerShutdown object" << endl;
cout << endl;
cout << "server listening...." << endl << endl;
cout.flush();
// Go into an infinite loop, servicing ORB requests as they are received.

WebSphere Application Server CORBA support - Page 64

...
}

When created, the WSServerShutdown object is initialized with the server alias
and the object adapter pointer.

This task adds code to create a WSServerShutdown object. After the server has initialized
itself, it creates the WSServerShutdown object, which waits for a message informing it that
the server is to be shutdown. That message can be sent by the StopServer command line
program provided with WebSphere Application Server enterprise services.

To continue developing the server main code, you need to add code to put the server into
an infinite wait loop, during which the ORB can transmit requests to and from the servant
object hosted by the server, as described in “Creating CORBA server main code
(server.cpp), adding code to put the server into an infinite loop” on page 65.

Creating CORBA server main code (server.cpp), adding code to put the
server into a loop to service requests

Use this task to add code to the source file for a CORBA server, to put the server into an
infinite loop during which the ORB can transmit requests to and from the servant object
hosted by the server.

This task is one step of the parent task to create the CORBA server main code, as
described in “Creating a CORBA server main code (server.cpp)” on page 55 .

To add code to put the server into an infinite loop, edit the server source file,
servantServer.cpp, and add the following code:

1. Add code to the main method to call a method to start the loop. There are
several ways to do this, including calling the execute_request_loop()
execute_next_request methods.This method should be called only after
CORBA::BOA::impl_is_ready has been called successfully. The following
example code extract shows the use of the execute_request_loop() method; in
this example, a block wait is specified by CORBA::BOA::SOMD_WAIT:
void main(int argc, char *argv[])
{
...

// Initialize this application as a server, ...
try
{

bp->impl_is_ready(imp, 0);
}

...
cout << "Created ServerShutdown object" << endl;
cout << endl;
cout << "server listening...." << endl << endl;
cout.flush();
// Go into an infinite loop, servicing ORB requests as they are
// received. execute_request_loop() will return when an external command,
// StopServer, is executed.
stat = bp-<;gt;execute_request_loop(::CORBA::BOA::SOMD_WAIT);
cout << "execute_request_loop has returned!" << endl;
// Terminate the server.

...
}

This task adds code that puts a CORBA server into a loop during which it can service
requests for the servant object that it hosts.

You need to add code to the server source file to enable the server to complete the server
shutdown when requested, as described in “Creating CORBA server main code
(server.cpp), adding code to shutdown the server and release resources used” on page 65.

Creating CORBA server main code (server.cpp), adding code to
shutdown the server and release resources used

Use this task to create code for a CORBA server, to shut down the server and release the
resources that it used.

This task is one step of the parent task to create the CORBA server main code, as

WebSphere Application Server CORBA support - Page 65

described in “Creating a CORBA server main code (server.cpp)” on page 55 .

To create code to shut down a CORBA server, complete the following steps

1. Edit the server source file, servantServer.cpp, and add a release_resources
method, as shown in the following code extract:
// This function releases resources used throughout the program.
void release_resources(::CORBA::BOA_ptr bp, ::CORBA::ImplementationDef_ptr

imp, ::CORBA::ORB_ptr op)
{

// Release the various resources we have allocated.
bp->deactivate_impl(imp);
::CORBA::release(bp);
::CORBA::release(op);
::CORBA::release(imp);

}

This method is called at the end of the server's main method after other
shutdown processing has been completed. (You add a call to this method in the
next step.) The method takes as input pointers to the object adapter, the
server's implementation repository entry, and the ORB. It deactivates the
implementation repository entry then releases the resources used by the
server.

2. Edit the server source file, servantServer.cpp, and add code to the main
method to respond to the server being shutdown (when the
execute_request_loop is forced to return), as shown in the following code
extract:
void main(int argc, char *argv[])
{
...

// Go into an infinite loop, servicing ORB requests as they are
// received. execute_request_loop() will return when an external command,
// WSStopServer, is executed.
stat = bp->execute_request_loop(::CORBA::BOA::SOMD_WAIT);
cout << "execute_request_loop has returned!" << endl;
// Terminate the server.
// Unbind the servant object from the object naming context.
cout << "Unbinding the servant object" << endl;
try
{

objectNameContext->unbind(*nc);
}
catch(::CORBA::SystemException &ex;)
{

cerr << "ERROR: SystemException minor = " << ex.minor() <<
" and id = " << ex.id();

cerr << " was received when calling unbind()" << endl;
}
// Remove the logger naming context.

try
{

objectNameContext->destroy();
}
catch(::CosNaming::NamingContext::NotEmpty e)
{

cerr << "ERROR: destroy threw NotEmpty" << endl;
}
release_resources(bp, imp, op);
cout << "Exiting servantServer..." << endl;
cout.flush();

}

This code completes the following actions:

1. Unbinds the servant object from the object naming
context.

2. Removes the object naming context.

3. Calls a release_resources method to releases resources
used by the server.

This task adds code that shutdowns a CORBA server and releases the resources that it
used, when the server's execute_request_loop() is forced to return. The loop returns when a
shutdown request has been made by a separate server shutdown program.

WebSphere Application Server CORBA support - Page 66

Building a C++ CORBA server
This topic provides an overview of the task to build the code for a C++ CORBA server. The
actual steps that you complete depend on the development environment that you use.

For example, if you are using the Microsoft C++ 6.0 compiler on Windows NT to build a C++
CORBA server, you can use the following commands:

1. Compile the server.cpp, servant_I.cpp, and servant_S.cpp files.

At a command line, type the following command for each file:

-DSOMCBNOLOCALINCLUDES -D_MS_INC_DIR= msvc60_install \include
-D_USE_NAMESPACE -DNO_STRICT -I msvc60_install \include
-Imsvc60_install \include
-Iwasee_install \include -I. filename

Where
msvc60_install

is directory in which the Microsoft C++ 6.0 compiler is installed; for
example, d:\msvc60\vc98.

wasee_install
is the directory into which WebSphere Application Server enterprise
services is installed.

filename
is the name of the file to be compiled (server.cpp, servant_I.cpp, or
servant_S.cpp).

2. link /nologo /DEBUG /OUT:WSLoggerServer.exe
/DEFAULTLIB:\WebSphere\AppServer\Enterprise\lib\somosa1m.lib
\WebSphere\AppServer\Enterprise\lib\somororm.lib

\WebSphere\AppServer\Enterprise\lib\somsrvsm.lib
servantServer.obj servant_I.obj servant.obj

This task is one step of the parent task, “Developing a CORBA client” on page 40 .

For more examples of building C++ CORBA server code (on several platforms) for
WebSphere Application Server, see the samples article "Tutorial: Creating a user-defined
C++ server and client" at
WAS_HOME/Enterprise/samples/sampeex/sampcppsdk/wsBuildLogger.htm.

WebSphere Application Server CORBA support - Page 67

Specifying runtime properties for C++ CORBA clients and
servers

This topic provides an overview of the task to specify the runtime properties for C++ clients
and server. You do this by defining the properties in a properties file, and specifying the full
path, including the file name, of the properties file on the SOMCBPROPS environment
variable. If you want clients and servers to use different properties, you must ensure that the
SOMCBPROPS environment variable is set within the local environment of the client or
server.

To specify the runtime properties of a C++ client or server, complete the following steps:

1. Create a properties file; for example, client.props:

2. Edit the properties file to specify appropriate runtime properties.
The properties and values that you choose depend on your use of the clients
and servers, and are selected from the properties listed in the reference topic
“Runtime properties for CORBA clients and servers” on page .

Example properties files (called WSClient.props, WSServer.props, and
WSEJBClient.props), which show use appropriate subsets of the runtime
properties for CORBA clients and servers, are provided with the WSlogger
sample. If you have installed the enterprise services' samples, the properties
files are located in WAS_HOME/Enterprise/samples/sampcppsdk

The values that you specify for the runtime properties must match the
equivalent settings used to configure WebSphere Application Server, where
applicable.

3. Specify the name of the properties file on the SOMCBPROPS environment
variable.

WebSphere Application Server CORBA support - Page 68

Creating your own C++ valuetypes
To aid application development, WebSphere Application Server provides a valuetype library
that contains C++ valuetype implementations for some commonly used Java classes in the
java.lang, java.io, java.util, and javax.ejb packages. For example, Integer, Float, Vector,
Exception, OutputStream, and so on. However, you may want to create your own C++
valuetypes.

You can create your own C++ valuetypes by completing the following steps, which use
java.util.Hashtable as an example:

1. Generate the IDL file of your Java class using the following command:

rmic -idl java.util.Hashtable.java

2. Generate the .hh and _C.cpp files, using the following command:

idlc -mcpponly -mnohhguards -mdllname=vtlib_name -shh:uc -Iinclude-path
java.util.Hashtable.idl

This outputs the files Hashtable.hh and Hashtable_C.cpp. These two files are
generated files and should not be edited. The Hashtable.hh file contains the
super class definition and the definition of a default implementation class in the
OBV_java::util namespace (if the original java is an abstract class or an
interface, there is no default implementation class). The Hashtable_C.cpp file
contains the default implementation of the java::util::Hashtable and
OBV_java::util::Hashtable that are defined in Hashtable.hh.

3. Generate the .ih and _I.cpp files, using the following command

idlc -mcpponly -mnohhguards -mdllname=vtlib_name -eih:ic -Iinclude-path
java.util.Hashtable.idl

This outputs the files Hashtable.ih and Hashtable_I.cpp. These files contain
initial templates for the definitions of the corresponding concrete subclasses
that implement the abstract super class java::util::Hashtable. The name of a
concrete implemention subclass is the valuetype name prefixed with the Java
package name and suffixed with _Impl. In the case of Hashtable, it is
java_util_Hashtable_Impl, which inherits from the default implementation class
OBV_java::util::Hashtable. These files are only generated once. The files are
next edited to add the implementation details.

4. To add the implementation details to the .ih and _I.cpp files, complete the
following steps:

a Add the implementation of all the public
methods defined in the super class; in this
case, java::util::Hashtable. New instance
variables and methods can be added to the
implementation class,
java_util_Hashtable_Impl.
Instance variables of a java class are mapped
into the C++ conterparts in the default
implementation class in the OBV_*
namespace. ORB marshaling/demarshaling
uses these instance variables. Therefore, in
the *_Impl class, you need to use the getters
and setters of the instance variables defined in
the default implementation class in the OBV_*

WebSphere Application Server CORBA support - Page 69

namespace.

b Add the implementation of the creation
methods defined in the corresponding factory
class. These methods correspond to the
constructors in the Java class.

c Create a factory object for the valuetype and
register it with the ORB by using the following
method:
orb->register_value_factory(...);
This enables the ORB to get the factory of the
valuetype to create instances for the valuetype
during marshaling and demarshaling.

For an example of the use of C++ valuetypes, see the sample vtlib_vb.ih and vtlib_I_vb.cpp
files in the directory
WAS_HOME\samples\interop\ejb\java\ws4.0\cpp\visibroker4.0\client.

WebSphere Application Server CORBA support - Page 70

Writing a WebSphere Enterprise JavaBean as a client of a
3rd-party CORBA ORB

An enterprise bean hosted by WebSphere Application Server can act as a client to a
CORBA server on a third-party ORB. The enterprise bean itself is written like any other
enterprise bean. It must implement the required methods in the usual home and remote
interfaces so that its clients can contact it. The remote interface defines the business
methods of the bean, and all of the work related to using the CORBA server occurs in the
implementation of those methods. The use of a CORBA server does not change the usual
programming tasks associated with enterprise beans, but the code in the remote methods
must include code for communicating with the server. This includes code for the following:

• Getting a reference to the client-side ORB, which is needed for communicating with the
servant objects

• Looking up the servant objects

• Calling the methods in the CORBA IDL interface betwen the enterprise bean and the
server

In the sample application, the enterprise bean that acts as a client of the CORBA server is
written as a stateless session bean. The writing such an enterprise bean can be divided
logically into two pieces:

• Writing the usual parts of an enterprise bean:

• The home interface: In the enterprise bean described here, this
interface consists of a single create method.

• The remote interface: In the bean described here, this interface
consists of methods that initiate the interoperability tests. These
methods are called by the client of the enterprise bean to run a
suite of interoperability tests. Of primary interest are the following
methods:

• setOrbProperties: This method obtains a reference to the
client-side ORB and sets necessary properties.

• testNameService: This method attempts to locate the
servant objects either by contacting the name service
directoy and looking up the server, by re-creating the
name-service IOR from the file that the server writes and
looking up the servant objects, or by re-creating the
servant-object IORs from the files that the server writes and
contacting the objects directly. (The specific test that is run is
determined by a mode variable.)

• testPrimitive: This method connects to the servant object,
starts a loop, and runs through the methods in the Primitive
interface.

• testComplex: This method connects to the servant object,
starts a loop, and runs through the methods in the Complex
interface. (This method is structurally identical to the
testPrimitive method and is not discussed in detail.)

These methods make use of other methods designed to support
the interaction with the CORBA server.

• The bean class: This is the class in which the methods required
by the home and remote interfaces are implemented. It can also
contain methods used internally by the home and remote
methods.

• Writing the code to support the interaction with the CORBA server. This code is called

WebSphere Application Server CORBA support - Page 71

from the methods in the remote interface and is the primary object of this discussion. In
general, the types of things this code must do include:

• Getting a reference to the client-side ORB. See “Contacting the
client-side ORB” on page 72for more information.

• Establishing connections to servant objects. See “Locating
servant objects” on page 73for more information.

• Issuing remote invocations to the server. See “Invoking servant
objects” on page 74for more information.

Writing a WebSphere Enterprise JavaBean as a CORBA client,
contacting the client-side ORB

To use a CORBA server running on a third-party ORB, an enterprise bean in the
WebSphere environment must explicitly make contact with the client-side ORB so that it can
issue remote method invocations to the server.

The enterprise bean described in this example makes use of a class called ClientOrb, which
provides most of the logic needed for using the client-side ORB. This class includes the
appropriate auxiliary files and methods The methods include the getOrb method, which
returns a reference to the client-side ORB, and the related getOrbProperties method, which
is used to read the values used in initializing the ORB from a properties file specified at
startup. The ClientOrb class does the following:

1. Includes the resources in the source code. For the ClientOrb class, these
include standard Java resources, CORBA naming resources, and some
application-specific utilities.
package com.ibm.orb.interop.samples;
// Java
import java.io.FileReader;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.FileNotFoundException;
import java.util.Properties;
// CORBA
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NameComponent;
import org.omg.CosNaming.NamingContext;
import org.omg.CosNaming.NamingContextHelper;
// Application-specific
import com.ibm.orb.interop.samples.Defs;
import com.ibm.orb.interop.samples.util.Logger;
import com.ibm.orb.interop.samples.util.Report;
import com.ibm.orb.interop.samples.util.UserReport;

2. Provides the getOrb method, which obtains a reference to the client-side ORB if
one is not already available. If the method obtains a new reference, it also
intializes the ORB by passing a set of properties. The client-side ORB is the
IBM ORB, not the third-party ORB.
public ORB getORB()
{

if (orb==null)
{

...
com.ibm.ejs.oa.EJSORB.getORBInstance();
if (orb==null)

orb = ORB.init((String[]) null,
getOrbProperties());

}
return orb;

}

WebSphere Application Server CORBA support - Page 72

Writing a WebSphere Enterprise JavaBean as a CORBA client, locating
servant objects

Before a CORBA client can call methods on a servant object, it must establish a connection
to that object. The techniques available for establishing such connections depend in part on
the ORB for which the server is written and on the design of the application.

The server described in this example puts binding information into the name server and also
writes string versions of that information out into files. The client therefore has several
choices in the way it looks up the servant objects. It can do any of the following:

• Go directly to the name service and look up the desired servant object.

• Read the name-service binding information from the file created by the server,
reconstruct the IOR from this information, use the IOR to reach the name service, and
look up the desired servant object.

• Read the servant-object binding information from the file created by the server,
reconstruct the IOR, and contact the object directly.

The code that accomplishes these tasks is spread across a variety of methods. The code
shown below reflects the logical sequence of events, not explicit code extracts. The getOrb
method called in these code fragments is described in “Contacting the client-side ORB” on
page 72 ; this method returns a reference to the client-side ORB.

Note: When an enterprise bean declares CORBA naming-context objects, it must explicitly
type them as org.omg.CORBA.Object types to distinguish them from java.lang.Object types.

The sample client is designed to test several techniques for establishing connectivity to the
servant objects, so it provides the following code to support these techniques:

1. To get a reference to the name service, do one of the following:

a Get an initial reference to the name server by
calling the resolve_initial_references method
on the ORB reference, and then narrow the
reference.
org.omg.CORBA.Object
nameServiceObject = null;
NamingContext nc = null;
nameServiceObject =
getORB().resolve_initial_references("NameService");
nc =
NamingContextHelper.narrow(nameServiceObject);

b Read the context from the file written by the
server, reconstruct the IOR, and narrow the
reference.
org.omg.CORBA.Object
nameServiceObject = null;
NamingContext nc = null;
String
nameServiceIOR;
nameServiceIOR =
readIOR("nameservice.ior",
"NameService");
nameServiceObject =
getORB().string_to_object(nameServiceIOR);
nc =
NamingContextHelper.narrow(nameServiceObject);

2. To get a reference to a servant object, do one of the following:

a By using the naming context obtained in the
previous step, look up the servant object by
name. The resulting object, of the type
org.omg.CORBA.Object, must be narrowed
before it can be used. For example, if the client

WebSphere Application Server CORBA support - Page 73

looks up the Primitive servant object, where
the value of the name argument used below is
"primitive", the PrimitiveHelper.narrow method
must be used.
org.omg.CORBA.Object servantObject
= null;
NamingContext primitive =
null;
// Name service...
nc =
NamingContextHelper.narrow(nameServiceObject);
NameComponent nameSeq[] = new
NameComponent[1];
nameSeq[0] = new
NameComponent(name, "");
servantObject =
nc.resolve(nameSeq);
// Later...
primitive =
PrimitiveHelper.narrow(servantObject);

b Read the context from the file written by the
server, reconstruct the IOR, and narrow the
reference. This does not require a
naming-service context.
org.omg.CORBA.Object
primitiveObject = null;
NamingContext primitive =
null;
String
primitiveIOR;
primitiveIOR =
readIOR("primitive.ior",
"primitive");
primitiveObject =
getORB().string_to_object(primitiveIOR);
primitive =
PrimitiveHelper.narrow(primitiveObject);

Writing a WebSphere Enterprise JavaBean as a CORBA client, invoking
a servant object

An enterprise bean acting as a client to a CORBA server uses the servant objects in the
same way as any other CORBA client: it obtains a reference to the object and invokes the
methods. This work is typically done within the implementation of the methods in the
enterprise bean's remote interface.

In the example on which this task is based, the methods in the remote interface are
implemented by calling methods in several supporting classes. For example, the remote
interface provides calls to test the CORBA Primitive and Complex interfaces. Methods in the
Primitive interface are called by the client-side TestPrimitive class, which is used in the
implementation of the remote interface. (The structurally similar TestComplex class
performs the same tasks for the Complex interface.) The TestPrimitive class provides the
following:

• Constructors

• Methods for testing each data type in the Primitive interface, singly and iteratively
From an organizational perspective, the class is structured as follows:
package com.ibm.orb.interop.samples;
// Java
import java.util.Properties;
// CORBA
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NameComponent;
import org.omg.CosNaming.NamingContext;
import org.omg.CosNaming.NamingContextHelper;

WebSphere Application Server CORBA support - Page 74

// Application-specific
import com.ibm.orb.interop.samples.Defs;
import com.ibm.orb.interop.samples.idl.*;
import com.ibm.orb.interop.samples.util.Report;
public class TestPrimitive
{

private boolean showData = false;
private ClientOrb clientOrb = null;
private Report testReport = null;
private Primitive primitive = null; // Target server reference
// Constructors
public TestPrimitive(ClientOrb clientOrb, Primitive primitive)
{ ... }
public TestPrimitive(ClientOrb clientOrb,

org.omg.CORBA.Object primitive)
{ ... }
/// Methods to exercise the Primitive interface
public void testOctet(String testName) { ... }
public void testBoolean(String testName) { ... }
public void testShort(String testName) { ... }
...

}

The TestPrimitve class provides the following kinds of code:

1. Two constructors, which are used to obtain a reference to the client-side ORB
and to narrow a CORBA Object reference to a Primitive servant object.
public TestPrimitive(ClientOrb clientOrb, Primitive
primitive)
{

super();
this.clientOrb = clientOrb;
this.primitive = primitive;
...

}
public TestPrimitive(ClientOrb clientOrb,

org.omg.CORBA.Object primitive)
{

this(clientOrb, PrimitiveHelper.narrow(primitive));
}

2. Methods for testing each of the methods in the Primitive interface. A typical
TestPrimitive method calls the three Primitive methods for a particular data
type. In the Primitive interface, each data type has three methods, each
designed to exercise a different way of returning values: as the value of the
method, as an out argument, and as an inout argument. The typical
TestPrimitive methods follows this pattern: compute the expected return value,
call the remote method that returns the result as the value of the method,
compare the actual and expected results, log the results, call the remote
method that returns the result as an out, compare the result to the expected
value, log the results, call the remote method that returns the result as an
inout, compare and log the results. For illustration, the code fragment shows
the relevant parts of the TestPrimitive.testShort method, which calls the
methods in the Primitive interface that work with short integers.
short initial = 32000;
short expected = PrimitiveOps.processShort(initial);
org.omg.CORBA.ShortHolder holder = new
org.omg.CORBA.ShortHolder();
try
{

// Test the first of three methods.
short result = primitive.testShortIn(initial);
...
testReport.log("Initial: " + initial

+ ", Expected: " + expected
+ ", Result: " + result);

}
catch (Exception e)
{ ... }
try
{

// Test the second of three methods.
primitive.testShortOut(initial, holder);
short result = holder.value;

WebSphere Application Server CORBA support - Page 75

...
testReport.log("Initial: " + initial

+ ", Expected: " + expected
+ ", Result: " + result);

}
catch (Exception e)
{ ... }
try
{

// Test the third of three methods.
holder.value = initial;
primitive.testShortInOut(holder);
short result = holder.value;
...
testReport.log("Initial: " + initial

+ ", Expected: " + expected
+ ", Result: " + result);

}
catch (Exception e)
{ ... }

Writing a WebSphere Enterprise JavaBean as a CORBA client, building
the Enterprise JavaBean

After the client is coded, it must be compiled. For a basic enterprise bean, this work is done
as part of the deployment, in which the code needed by the container for managing the
bean is generated. For a bean that also acts as a CORBA client, the CORBA-related code
must be separately compiled. This code is outside the domain of the deployment process.
The usual approach is as follows:

• Use the Websphere IDL compiler to compile the CORBA IDL interfaces; this is done to
generate the client-side code.

• Compile the Java code that supports the CORBA calls to the server.

• Compile the enterprise-bean code.

• Package and deploy the bean for the WebSphere environment.

• Start the bean.
The packaging, deployment, and starting of the bean are done in the usual manner for
enterprise beans running in the WebSphere environment. They are not discussed here.

The enterprise bean described in this example makes use of two CORBA IDL interfaces,
Primitive and Complex. These are compiled for Java with IDL compiler provided by
WebSphere Application Server. The source code for the client consists of the IDL-generated
files, the code called by the bean's business methods to invoke the CORBA server, and the
actual enterprise-bean code, consisting of the home and remote interfaces and the bean
class. These are compiled with Java's javac compiler. The example application is built as
follows:

1. Set the environment variables for the build.
set
PATH=%JDKROOT%\bin;%JDKROOT%\jre\bin;%JDKROOT%\jre\bin\classic;%PATH%
set WAS_CP=.
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\j2ee.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ejbcontainer.jar
set CLASSPATH=%WAS_CP%

2. Compile the IDL files for the client. To generate Java code from the IDL files,
use the idlj compiler provided with WebSphere Application Server. The -v option
requests verbose output; the -fall option directs the compiler to generate all
bindings.
% idlj -v -fall Primitive.idl
% idlj -v -fall Complex.idl

WebSphere Application Server CORBA support - Page 76

3. Compile the CORBA-related source code and the IDL-generated interface code
into class files.
% javac com\ibm\orb\interop\samples\idl*.java
% javac com\ibm\orb\interop\samples\util*.java
% javac com\ibm\orb\interop\samples\Defs.java
% javac com\ibm\orb\interop\samples\ClientOrb.java
% javac com\ibm\orb\interop\samples\PrimitiveOps.java
% javac com\ibm\orb\interop\samples\ComplexOps.java
% javac com\ibm\orb\interop\samples\TestNameService.java
% javac com\ibm\orb\interop\samples\TestPrimitive.java
% javac com\ibm\orb\interop\samples\TestComplex.java

4. Compile the enterprise-bean source code into class files.
% javac com\ibm\orb\interop\samples\ejb\Client.java
% javac com\ibm\orb\interop\samples\ejb\ClientHome.java
% javac com\ibm\orb\interop\samples\ejb\ClientBean.java

5. Package the bean for deployment by using the WebSphere application
assembly tool (AAT) to create an enterprise application (EAR) file.

6. Deploy the bean into the container by using the WebSphere administrative
console.

7. Start the bean by using the WebSphere administrative console.

WebSphere Application Server CORBA support - Page 77

Tasks for problem determination
You can use the following tasks to help identify the cause of a runtime problem with
WebSphere Application Server enterprise services:

• To set the directories and maximum sizes for activity and trace logs, and to turn on
various component traces, you can specify appropriate runtime properties as described
in “Specifying runtime properties for C++ CORBA clients and servers” on page 68

• To format one activity log or trace log, you can use the showlog utility, as described in
“Formatting an activity or trace log” on page 78

• To examine the information output by formatting an activity log, see“Reading a formatted
activity log” on page 79

• To format several trace logs at the same time and merge the output into one file, you can
use the combtrace utility, as described in “Formatting and merging multiple trace files” on
page 81.

• To simplify the task of finding appropriate information in a formatted trace log, you can
filter the information as described in“Filtering the information in a formatted trace file” on
page 81

• “Identifying and resolving CORBA interoperability issues” on page 83

Formatting an activity or trace log
The WebSphere Application Server enterprise services' activity logs and trace logs must be
formatted before you can read their contents. You can use the showlog utility to format an
activity log or trace log, and pipe the formatted output to a file that you can view using the
Log Analyzer or any text editor:

Note: Run the showlog utility on the host where the log was created (where events in the
log occurred) to get the optimum substitution values in the output file.

If you want to format several trace logs at the same time and merge the output into one file,
you can use the combtrace utility, as described in “Formatting and merging multiple trace
files” on page 81.

To use the showlog utility to format an activity or trace log file, complete the following steps

1. Open a command-line window on the host where the log file is stored.

2. On the command line, type the following command
showlog -cpp [-debug|-d|-d1|-d2|-d3] [-?] filename [>
outfilename]

The command line options may be specified in any order.

Where:
-cpp

Indicates that you want to format an enterprise services' log.

-debug, -d, -d1
These alternative options are all equivalent and display log messages
in level 1 debug mode. Under this mode, showlog formats each activity
log entry with full debug information, but ORB communication traces
are not formatted.

-d2
This option is used when formatting ORB communication trace logs. It

WebSphere Application Server CORBA support - Page 78

displays log messages in debug level 2 mode which is equivalent to
debug level 1 mode plus the formatting of ORB communication trace
messages in brief mode for enhanced readability. You get additional
GIOP header data following the raw data dump.

-d3
This option is used when formatting ORB Communication trace logs. It
displays log messages in debug level 3 mode which is equivalent to
debug level 2 mode plus the verbose expansion of communication
traces. This includes formatting of service context and tagged profile
information. You get additional GIOP header data and other information
on the service context, object key, principal, and so on.

-?
displays the help information for the showlog command.

filename
is the input log file, for example, activitycpp.log. The showlogcpp
utility reads the file and formats it for reading. The filename does not
have to be the first option specified.

> outfilename
This option is used to pipe the formatted output to a new file.

Note: If the log output is piped to a file and an editor is used to display the
information, turn on word wrap in the editor to view the full contents of a
line.

Note: If you do not specify -debug, -d, or -d1, then only PrimaryMessage,
ExtendedMessage, and RawDataLen information is included for each entry in
the log.

The showlogcpp utility formats the information in the input log file, and optionally pipes the
output to a new file that can be displayed in a text editor (or some other utility).

For example, the following steps format the activity log file c:\WebSphere\AppServer\services\activitycpp.log
and pipe the formatted output to the file showlogcpp.out:

1. Open a command line window on the host where the activity log is stored

2. At the command line, type the following command:
showlogcpp c:\WebSphere\AppServer\services\activitycpp.log > showlogcpp.out

After formatting a trace file, you can use the protrace utility to filter the output in the
outfilename file, as described in “Filtering the information in a formatted trace file” on page 81
.

Reading a formatted activity log
The WebSphere Application Server enterprise services' activity logs and trace logs must be
formatted before you can read their contents. You can use the showlog utility to format an
activity log or trace log, and pipe the formatted output to a file as described in “Formatting
an activity or trace log” on page 78 .

To read a formatted activity log, you can use you can use a text editor

It is easier to locate the cause of a problem in smaller activity logs. Therefore, consider
reducing the size of the activity log before attempting to read it. For more information about,
see “Hints and tips: activity log” on page 36 .

WebSphere Application Server CORBA support - Page 79

When reading a formatted activity log, you need to identify the group of entries that are
related to the problem or error that you want to resolve. A group of entries forms a bracket,
as follows:

The start of the bracket
Initial failure, which is a single entry in the log

Results of the initial failure
A number of entries in the log

The end of the bracket
Last result of the failure, which is a single entry in the log

In general, when you are reading the activity log, you start with its last entry and then work
backwards, reading the previous entry, then the one before that, and so on.

To find the bracket of entries for a problem that you are diagnosing, complete the following
steps:

1. Identify the end of the bracket.
The first step in reading the activity log is to identify the last entry that reported
the problem that you want to diagnose (that is, the end of bracket entry). This is
essential for identifying the cause of the problem. You want to start with the
latest entry in the activity log and search backwards for the entry that reports
the problem.

Note: Sometimes, the last entries of the log do not relate to the problem that
you are interested in. For example, there may be entries made by the ORB or
by requests not associated with the problem

If you do not know the UOW for the problem that you want diagnose, you can
examine the entries by alternative groupings, such as TimeStamp. You can
look for the end of bracket by searching in the log starting with its last entry with
the TimeStamp.

When the entry related to the failure has been identified, you have found the
end of the bracket. Remember the unit of work (UOW) and record IDs
(Rec_nnnn) for the end of bracket entry. In the next step, you look at entries
within that unit of work.

Sometimes you may not have any UOW identification for the end of bracket
entry. In such situations, you must look at entries that do not have a UOW
identification.

2. Find relevant entries.
Examine each entry with the unit of work identified for the end of bracket entry,
to see if the entry is related to the problem. Examine the entries with the same
unit of work identifier in reverse timestamp sequence, starting with the entry
before the end of bracket, then the entry before that, and so on, to try to identify
all the relevant entries until you find the first entry for the initial cause of the
problem.

Some activity log entries are reraised exceptions received from lower level
calls. The fact that these reraised exceptions occur suggests that these entries
are not the source of the problem. Often, you are not interested in reraised
exception entries in the log. Therefore, you may want to read the first few
entries before the end of bracket and then quickly skim over the ones that have
reraised exception

WebSphere Application Server CORBA support - Page 80

Also, sometimes the runtime remaps the exception it receives from a lower call
to another exception which is defined on its interface.

3. Find the initial failure
When you have found the first entry for the initial cause of the problem, you can
take action to resolve the problem. Depending on the situation, you may also
want to read a couple of entries before the initial failure's entry, just in case
there is some additional data to help you diagnose the problem.

Formatting and merging multiple trace files
If you turn on component trace, WebSphere Application Server enterprise services stores
trace data in one or more trace logs, which must be formatted before you can read their
contents.

If you want to format several trace logs at the same time and merge the output into one file,
you can use the combtrace utility, as described in this topic.

If you want to format a single trace log, you can use the showlog utility as described
in“Formatting an activity or trace log” on page 78 .

To use the combtrace utility to format multiple trace log files, complete the following steps

1. Open a command-line window on the host where the trace logs are stored.

2. On the command line, type the following command
Combtrace outfilename

The combtrace command calls showlog -debug to format all the
yydddhhmmss.xxx trace files in the current directory, and sequentially
combines the results in the specified outputfile. It ignores all file names
containing a character other than a number or a period (.).

You can use the protrace utility to filter the output in the outfilename file, as described in
“Filtering the information in a formatted trace file” on page 81.

Filtering the information in a formatted trace file
If you turn on component trace, WebSphere Application Server enterprise services stores
trace data in one or more trace logs, which must be formatted before you can read their
contents.

After you have formatted a trace log, as described in related tasks, you can use the protrace
utility to filter the formatted trace information. You can use the protrace utility to filter the
formatted trace information, to perform one or more of the following actions:

• Filtering: each entry in the trace is reduced to a single line (with the exception of raw
data).

• Filtering: entry and exit trace points are used to control indenting of the output. A
separate indent is maintained for each thread in the trace.

• Formatting: parenthesis are added to the output to allow editors such as vi to match
entry and exit trace points.

• Filtering: the utility is configurable. For example, fields (for example, PID) can be
switched off.

• Sorting: the output is sorted into date and time sequence.

WebSphere Application Server CORBA support - Page 81

To use the protrace utility to filter a formatted trace log file, complete the following steps

1. Open a command-line window on the host where the formatted trace log is
stored.

2. On the command line, type the following command
protrace inputfile [outputfile] [-t thread] [-i maxindent]
[-r] [-m]
[-s(b,e,d,n,p,t,r,i)] [-inc stringlist] [-exc stringlist]
[-v]

Where:
inputfile

is the file output from the showlog or combtrace command.

outputfile
(if specified) the output is sent to this file rather than sent to standard
output.

-t thread
displays entries for the specified thread.

-i maxindent
specifies the maximum indent level. Set it to 0 (zero) to disable
indenting.

-r
includes any raw data in the output.

-m
displays the primary message.

-s(b,e,d,n,p,t,r,i)
suppresses output specified by one or more of the following characters
appended to the -s:

b
disables braces. ({})

e
disables extended message.

d
disables date/time.

n
disables entry numbering.

p
disables process Id.

t
disables thread Id.

r
disables the thread indent report generated after each run.

i
disables the raw data indicator.

For example, the option -sedp means that extended message,
date/time, and processId information is suppressed.

WebSphere Application Server CORBA support - Page 82

-inc stringlist
specifies a set of inclusion strings. The primary or extended message
must contain at least one of these strings to be output. Separate each
entry in the list with white space.

-exc stringlist
specifies a set of exclusion strings. The primary or extended message
must not contain any of these strings to be output. Separate each entry
in the list with white space.

-v

Notes:

1. By default, open and close braces ({...}) are added to entry
and exit trace points. This allows bracket matching in
editors such as vi.

2. The list separator in the inclusion and exclusion options is a
space character. Inclusion or exclusion strings that contain
a space character must be delimited with quote (") symbols.
For example: -exc "was entered".

3. The R field in the output is the raw data indicator field. This
field is only displayed when the raw data display is disabled
and is used to highlight entries that have raw data
associated with them. Such entries have a dash (-) in this
field. To remove the indicator, and append the raw data to
the output, specify the -r flag on the command line.

4. The protrace utility warns you if any invalid entries are found
in the input file. A trace entry is invalid if the function name
is missing or the date/time field is missing or incorrectly
formatted.

The output in the outfilename file can be displayed in a text editor (or some other utility).

Identifying and resolving CORBA interoperability issues
By embracing the CORBA open architecture, WebSphere can work with new and old
applications from different vendors. Since complete compatibility between CORBA ORBs is
not yet available, this section describes issues that you may encounter when working with
different ORBs, and provides some strategies to resolve these issues.

Compliance statements by ORB vendors do help to identify a set of features that can be
expected to function appropriately within a distributed environment involving multiple
instances of the same ORB. However, compliance does not assure interoperability between
different ORBs.

When trying to resolve an interoperability problem, first review the fundamentals: the
communication link (GIOP/IIOP). Ensure that both the client and server ORBs support the
expected features. Next, begin at your point of failure in the steps below. Review the
information provided in the linked topics, and if needed consult the CORBA specification.
The CORBA specification also includes comments on differences between different levels of
the GIOP specification.

Failure to interoperate between a CORBA client and a servant object is, by its very nature,
manifest in the external communication protocols between the two. If interoperability fails,
check the following in sequence:

WebSphere Application Server CORBA support - Page 83

1. Check the communication links: “CORBA communication protocols
(GIOP/IIOP)” on page 8 .

2. Check the use of the naming service: “C++ CORBA client, locating the root
naming context (bootstrapping)” on page 16 and “C++ CORBA client, locating a
servant object” on page 18 .

3. Check for unsupported CORBA valuetypes and data types: “CORBA value type
considerations ” on page 8 and “Resolving unsupported CORBA data types” on
page 10 .

CORBA support example articles
This part contains example topics about the CORBA support provided by WebSphere
Application Server 4.0 enterprise services. These topics provide an overview of, and links
to, the samples provided with WebSphere Application Server enterprise services.

• “CORBA support concept articles” on page 1

• “CORBA support task articles” on page 39

• “CORBA support reference articles” on page

WebSphere Application Server CORBA support - Page 84

Sample: C++ CORBA client of a C++ servant object
Samples are provided to demonstrate typical use of the CORBA client and server
programming models to develop a C++ CORBA client of a C++ CORBA server within a
WebSphere Application Server environment. The client and server use standard CORBA
and IBM CORBA extension methods.

The sample code demonstrates tasks to create a client that accesses a server object as
follows:

• Define the server on WebSphere Application Server.

• Create a C++ server, named WSLoggerServer, that hosts a C++ implementation object
(a servant in CORBA 2.3 terminology).

• Define and implement a C++ servant, named WSLogger_Impl.

• Create a C++ client, named WSLoggerClient, to use the server and its servant.

• Build the client and server components.

• Test the client and server.

Sample files are provided for Windows, AIX, and Solaris platforms.

For more information about the samples, see Tutorial: Creating a user-defined C++ server
and client (wsBuildLogger.htm) in the WSLoggerServer sample. If you have installed the
samples option for WebSphere Application Server enterprise services, the tutorial and
associated files are installed in the following directory: see the samples article "Tutorial:
Creating a user-defined C++ server and client" at
WAS_HOME/Enterprise/samples/sampcppsdk.

WebSphere Application Server CORBA support - Page 85

Sample: C++ CORBA client of an Enterprise JavaBean
Samples are provided to demonstrate typical use of the CORBA client programming model
to develop a C++ CORBA client of the Hello Enterprise JavaBean within a WebSphere
Application Server environment. The client uses standard CORBA methods.

The sample code demonstrates tasks to create a client that accesses a server object as
follows:

• Performing general setup.

• Generating C++ bindings from the EJB source files and Java source files.

• Creating a C++ client, named WSEJBClient, which uses the Hello Enterprise JavaBean
supplied with WebSphere Application Server.

• Building the client.

• Testing the client.

Sample files are provided for Windows, AIX, and Solaris platforms.

For more information about the samples, see Tutorial: Creating a user-defined C++ client
that uses an Enterprise JavaBean (wsBuildEJBClient.htm) in the WSLogger sample. If you
have installed the samples option for WebSphere Application Server enterprise services, the
tutorial and associated files are installed in the following directory:
WAS_HOME/Enterprise/samples/sampcppsdk.

WebSphere Application Server CORBA support - Page 86

CORBA interoperation samples
Samples are provided to demonstrate typical use of the CORBA and EJB programming
models for interoperation between WebSphere and 3rd-party ORBs. Where necessary, the
strategies described in the previous sections are applied. The sample code covers the
following scenarios:

Client Server

3rd-party ORB, C++ language bindings WebSphere Enterprise JavaBean

WebSphere EJB server (as a CORBA client) 3rd-party Java CORBA object

3rd-party C++ CORBA object

WebSphere EJB server (as a CORBA client) coexistent
with a 3rd-party Java ORB

3rd-party C++ CORBA object

For the latest list of interoperation samples, see Samples and Tutorials > Websphere -
3rd Party ORB interoperation in the navigation pane of the WebSphere Application Server
enterprise services infocenter.

The Enterprise JavaBeans used in the sample code, for both client and server, are session
beans.

The program techniques vary from one scenario to another, and are described in detail in
the documentation for the scenario.

Each set of sample code explores server object access, primitive data types, and complex
data types and operations between a WebSphere ORB and a specific vendor ORB. The
sample code does not attempt to verify compliance, nor does it attempt to verify consistent
behavior of an ORB. For example, not all possible ways of exchanging data types are
explored: simple data types can be passed to the server as CORBA in parameters, and
returned in the return-value, where CORBA out and inout parameters are not used. Some
features work or do not work for a specific ORB. The information accompanying each
sample states whether or not a feature can be used successfully.

The sample code demonstrates access to a server object as follows:

• Name Service IOR: A utility writes the IOR of the server's root naming context to a file,
which is read by a client. The client looks-up the server object in that naming context.

• Object IOR: A utility writes the server object's IOR to a file, which is read by client.

For CORBA server objects, the sample code demonstrates methods that exchange simple
IDL data types as input parameters (CORBA in parameters) and return types. The sample
code also demonstrates methods that exchange complex IDL data types and operations.
This includes the following data types and operations:

• octet

• boolean

• short

• long

• long long

• float

• double

• char

WebSphere Application Server CORBA support - Page 87

• wchar

• Object

• string

• wstring

• any

• compound data types (struct, union, array, sequence)

For CORBA access to Enterprise JavaBeans hosted by a WebSphere EJB server, the
sample code demonstrates use of Java data types. The sample code also demonstrates the
exceptions that are generated by an Enterprise JavaBean and caught by the client. This
includes the following following Java data types and exceptions:

• Java data types (primitive data types):

• byte

• boolean

• short

• lint

• long

• float

• double

• char

• org.omg.CORBA.Object

• Exceptions generated by Enterprise JavaBeans:

• java.lang.IndexOutOfBoundsException (RuntimeException)

• java.lang.UnknownError java.rmi.remoteException

• java.rmi.MarshalException

• java.rmi.NoSuchObjectException

• java.rmi.AccessException

• java.rmi.RemoteException

• javax.ejb.createException

• javax.transaction.TransactionRequiredException

• javax.transaction.TransactionRolledBackException

• javax.transaction.InvalidTransactionException

WebSphere Application Server CORBA support - Page 88

C++ value type library, examples
The following examples are provided to illustrate use of the valuetype library methods in a
distributed environment.

Example: A client program that uses a remote object to call methods of
::java::util::Vector

//First obtain the stringified ior of an EJB deployed on an AE server
using namespace com::ibm::ws;
CORBA::Object_var vector_obj;
//init the orb
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "DSOM");
//Get the stringified ior from a file, then use it to obtain a valid object reference

ifstream in;
int fileIndex = 0;
char* iorfile = "VectorSession.ior"; // the stringified ior of a session bean that

// uses instances of the java serializable
// java.util.Vector

in.open(iorfile);
if (in.fail()) {

std::cerr << "Cannot open file " << iorfile << std::endl;
return 1;

}
char iorstr[2048];
//read ior from file
in >> iorstr;
in.close();
std::cout << "using ior:'" << iorstr << "'" << std::endl;
//get stringified ior
vector_obj = orb->string_to_object(iorstr);
if (CORBA::is_nil(vector_obj))
{

std::cerr << "string_to_object failed"<< std::endl;
return 1;

}
// Now, call the createVector method of the stub class ejbPackage::VectorSession to access
// an EJB method that returns an instance of the java serializable, java.util.Vector. The
// stub method then returns a pointer to a java::util::Vector.
::CORBA::Short initialElement = 999;
java::util::Vector *vPrt;

try
{

vPrt = vector_obj ->createVector(initialElement);
if (vPrt == 0)
{

VtlUtil::debug("In testVector: vector_obj ->createVector(arg) returned a null pointer\n");
}

} catch (...)
{

VtlUtil::debug("In testVector: vector_obj ->createVector(arg) has thrown an exception\n");
}

//Next use the remote object to a method of ::java::util::Vector.
/************************
* Create and populate a
* java::lang::Object
************************/

short inValue = 999;
::CORBA::Long incrementValue = 1;
java::lang::Object obj;
obj <<= inValue; //rvalue is a ptr
/**
* Call the addElement method using the pointer obtaned remotely
* via the createVector method. Add "numberToAdd" elements.
* Verify that the correct size is returned
***/

::CORBA::Long numberToAdd = 5;
for (int i = 0; i < numberToAdd; i ++) {

try {
vPrt->addElement (obj);
} catch (...)

{
VtlUtil::debug("In testVector: In catch after pwPtr->addElement()\n");

}
}

Example: A client program that uses a remote object to call methods of
::java::lang::Boolean

using namespace com::ibm::ws;
const char *factoryName = "java::lang::Boolean_init";
// Use the utility method, com::ibm::ws::VtlUtil::getBooleanFactory to get a pointer to the registered
// java:lang::Boolean_init factory object.
java::lang::Boolean_init* fact = VtlUtil::getBooleanFactory();
if(fact == 0)
{

VtlUtil::debug("VtlUtil::getFactory returned a null value ");
}
else
{

VtlUtil::debug("VtlUtil::getFactory returned a valid value ");
}
//call create__boolean to create a pointer to a java::lang::Boolean that contains true
java::lang::Boolean* booleanPtr = fact->create__boolean(1);
if(booleanPtr == 0)
{

VtlUtil::debug("booleanPtr == 0");
return failed;

}

WebSphere Application Server CORBA support - Page 89

else
{

VtlUtil::debug("create__boolean returned a valid value: test succeeded");
}
CORBA::Object_var boolean _obj;
::CORBA::Boolean trueBooleanValue = boolean_obj->callBooleanValue(booleanPtr);
int tempTrueBooleanValue = trueBooleanValue;
if (tempTrueBooleanValue == 1)
{

VtlUtil::debug("tempTrueBooleanValue == 1");
}

WebSphere Application Server CORBA support - Page 90

Notices
This information was developed for products and services offered in the U.S.A. IBM may not
offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or service is not intended
to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:
IBM Director of Licensing IBM Corporation North Castle DriveArmonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation Licensing 2-31Roppongi 3-chome, Minato-ku Tokyo 106,
Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS DOCUMENT
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the document. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been
exchanged, should contact:
IBM Corporation Department LZKS 11400 Burnet Road Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it
are provided by IBM under terms of the IBM International Program License Agreement or

WebSphere Application Server CORBA support - Page 91

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific
environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products
should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples may include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM Corporation in the
United States, other countries, or both:

WebSphere Application Server CORBA support - Page 92

Advanced Peer-to-Peer Networking
AFS
AIX
APPN
AS/400
CICS
CICS OS/2
CICS/400
CICS/6000
CICS/ESA
CICS/MVS
CICS/VSE
CICSPlex
DB2
DB2 Universal Database
DCE Encina Lightweight Client
DFS
Encina
IBM
IBM System Application Architecture
IMS
IMS/ESA
Language Environment

*** MQSeries
MVS/ESA
NetView
Open Class
OS/2
OS/390
OS/400
Parallel Sysplex
PowerPC
RACF
RAMAO
RMF
RISC System/6000
RS/6000
S/390
SAA
SecureWay
TeamConnection
Transarc
TXSeries
VSE/ESA
VTAM
VisualAge
WebSphere

Domino, Lotus, and LotusScript are trademarks or registered trademarks of Lotus
Development Corporation in the United States, other countries, or both.

Tivoli is a registered trademark of Tivoli Systems, Inc. in the United States, other countries,
or both.

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Windows, Windows NT, and the
Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Some of this documentation is based on material from Object Management Group bearing
the following copyright notices:

Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 Ing. C. Olivetti &C.Sp
Copyright 1997 International Computers Limited
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited
Copyright 1995, 1996 Novell USG
Copyright 1995, 1996 02 Technolgies
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.

WebSphere Application Server CORBA support - Page 93

Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software
Copyright 1995, 1996 Servio, Corp.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1996 Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.
Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be deemed to
have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software
to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,
THE OBJECT MANAGEMENT GROUP, AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND WITH REGARDS TO THIS MATERIAL INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. The Object Management Group and the companies listed
above shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

This software contains RSA encryption code.

Other company, product, and service names may be trademarks or service marks of others.

WebSphere Application Server CORBA support - Page 94

	Contents
	CORBA support concept articles
	WebSphere CORBA support
	WebSphere CORBA support scenarios
	CORBA client to WebSphere EJB server
	WebSphere EJB server (as a CORBA client) to CORBA server
	WebSphere to 3rd-party ORB interoperation
	General CORBA interoperation considerations
	WebSphere to 3rd-party CORBA ORB coexistence

	The CORBA programming model
	The CORBA client programming model
	The CORBA server programming model
	Interface Definition Language (IDL), usage and implementation

	WebSphere CORBA value type library for C++
	C++ value type library, data type mappings
	C++ value type library, runtime type information
	C++ value type library, application programming interface

	WebSphere Enterprise JavaBeans as clients of 3rd-party CORBA ORBs
	WebSphere Enterprise JavaBeans as CORBA clients, the CORBA components
	WebSphere Enterprise JavaBeans as CORBA clients, the CORBA interfaces
	Writing WebSphere Enterprise JavaBeans as clients of a 3rd-party CORBA
ORB
	Writing CORBA servers for third-party ORBs

	Problem determination
	Hints and tips: The activity log

	An overview of basic CORBA concepts

	CORBA support task articles
	Developing a C++ CORBA client
	Creating IDL files for an Enterprise JavaBean
	Creating the CORBA client main code (client.cpp)
	Creating CORBA client main code (client.cpp), adding include statements
and global declarations
	Creating CORBA client main code (client.cpp), adding code to check
input parameters
	Creating CORBA client main code (client.cpp), adding code to initialize
the client environment
	Creating CORBA client main code (client.cpp), adding code to get a
pointer to the root naming context
	Creating CORBA client main code (client .cpp), adding code to access
the servant object
	Creating CORBA client main code (client .cpp), adding code to call
methods on the servant object
	Creating CORBA client main code (client.cpp), adding code to shutdown
the client and release resources used

	Building a C++ CORBA client

	Developing a CORBA server
	Storing a logical definition for a CORBA server in the system implementation
repository
	Defining the interface for a CORBA servant class
	Compiling a CORBA server implementation class IDL (using idlc)
	Adding declarations to a CORBA servant class definition (servant.ih)
	Adding code to a CORBA servant implementation (servant_I.cpp)
	Creating the CORBA server main code (server.cpp)
	Creating CORBA server main code (server.cpp), adding include statements
and global declarations
	Creating CORBA server main code (server.cpp), adding code to check
input parameters
	Creating CORBA server main code (server.cpp), adding code to initialize
the server environment
	Creating CORBA server main code (server.cpp), adding code to access
naming contexts
	Creating CORBA server main code (server.cpp), adding code to name,
create, and bind servant objects
	Creating CORBA server main code (server.cpp), adding code to create
a WSServerShutdown object
	Creating CORBA server main code (server.cpp), adding code to put the
server into a loop to service requests
	Creating CORBA server main code (server.cpp), adding code to shutdown
the server and release resources used

	Building a C++ CORBA server

	Specifying runtime properties for C++ CORBA clients and servers
	Creating your own C++ valuetypes
	Writing a WebSphere Enterprise JavaBean as a client of a 3rd-party
CORBA ORB
	Writing a WebSphere Enterprise JavaBean as a CORBA client, contacting
the client-side ORB
	Writing a WebSphere Enterprise JavaBean as a CORBA client, locating
servant objects
	Writing a WebSphere Enterprise JavaBean as a CORBA client, invoking
a servant object
	Writing a WebSphere Enterprise JavaBean as a CORBA client, building
the Enterprise JavaBean

	Tasks for problem determination
	Formatting an activity or trace log
	Reading a formatted activity log
	Formatting and merging multiple trace files
	Filtering the information in a formatted trace file
	Identifying and resolving CORBA interoperability issues

	CORBA support example articles
	Sample: C++ CORBA client of a C++ servant object
	Sample: C++ CORBA client of an Enterprise JavaBean
	CORBA interoperation samples
	C++ value type library, examples

